NeXTstep Concepts

Important Information

This version of the NeXTstep® Concepts manual is based on Release 1.0. It’s included in
the current release of the Developer’s Library as a temporary means of providing you with
necessary conceptual information about NeXTstep. As described below, specific chapters
in this manual will be replaced by updated concepts material. Until that material is
available, this manual—when taken in the context of the release notes—can help give you
an overview of NeXTstep.

Release Notes

The current NeXTstep programming environment differs in various ways from the 1.0
environment described in this manual. Generally, these differences are in the form of
additional functionality, although there have also been some isolated, but significant,
changes to existing systems and to the user interface. The release notes are your source of
information about the changes between the 1.0 release and the current release of NeXTstep.

You can access the release notes either from the Digital LibrkarianTM or directly from their
location in /NextLibrary/Documentation/NextDev/ReleaseNotes. The release notes that
are the most relevant to the subjects presented in this manual are:

e AppKit.rtf
WindowServer.rtf
¢ AllocInitAndNew.rtf

In addition, you’ll find updated information on user interface guidelines and other subjects
in /NextLibrary/Documentation/NextDev/Notes.

NeXTstep Concepts Updates

In an effort to provide you with updated material in a timely manner, specific chapters of
this manual will be replaced by a series of shorter manuals. These shorter manuals will be
made available through developer mailings.

NeXT Developer’s Library

NeXTstep

Draw upon the library of software contained in NeXTstep to develop your
applications. Integral to this development environment are the Application Kit and
Display PostScript.

Concepts

A presentation of the principles that define NeXTstep, including user interface
design, object-oriented programming, event handling, and other fundamentals.
Reference, Volumes 1 and 2

Detailed, comprehensive descriptions of the NeXTstep Application Kit software.

Sound, Music, and Signal Processing

o

®

Let your application listen, talk, and sing by using the Sound Kit and the Music Kit.
Behind these capabilities is the DSP56001 digital signal processor. Independent
of sound and music, scientific applications can take advantage of the speed of
the DSP.

Concepts
An examination of the design of the sound and music software, including chapters
on the use of the DSP for other, nonaudio uses.

Reference

Detailed, comprehensive descriptions of each piece of the sound, music, and DSP
software.

®

NeXT Development Tools

A description of the tools used in developing a NeXT application, including the
Edit application, the compiler and debugger, and some performance tools.

NeXT Operating System Software

A description of NeXT’s operating system, Mach. In addition, other low-level
software is discussed.

Writing Loadable Kernel Servers

How to write loadable kernel servers, such as device drivers and network protocols.

o

NeXT Technical Summaries

Brief summaries of reference information related to NeXTstep, sound, music, and
Mach, plus a glossary and indexes.

®

Supplemental Documentation

Information about PostScript, RTF, and other file formats useful to application
developers.

NeXTstep Concepts

We at NeXT Computer have tried to make the information contained in this manual as accurate and reliable as possible.
Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any matter whatsoever relating to this
manual, including without limitation the merchantability or fitness for any particular purpose. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to notify the purchaser. In no
event shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase or use of this
manual or the information contained herein.

Copyright ©1990 by NeXT Computer, Inc. All Rights Reserved.
[2908.00]

The NeXT logo and NeXTstep are registered trademarks of NeXT Computer, Inc., in the U.S. and other countries. NeXT,
Applnspector, Digital Librarian, Digital Webster, Interface Builder, Music Kit, Sound Kit, and Workspace Manager are trademarks
of NeXT Computer, Inc. Display PostScript and PostScript are registered trademarks of Adobe Systems Incorporated. UNIX is a
registered trademark of AT&T. Helvetica and Times are registered trademarks of Linotype AG and/or its subsidiaries and are used
herein pursuant to license. Wreath and Monogram is a registered trademark of Merriam-Webster, Incorporated and is used herein
pursuant to license. WriteNow is a registered trademark of T/Maker Company. Mathematica is a registered trademark of Wolfram
Research, Inc. All other trademarks mentioned belong to their respective owners.

Notice to U.S. Government End Users:
Restricted Rights Legends
For civilian agencies: This software is licensed only with “Restricted Rights” and use, reproduction, or disclosure is subject
to restrictions set forth in subparagraph (a) through (d) of the Commercial Computer Software—Restricted Rights clause at
52.227-19 of the Federal Acquisition Regulations.

Unpublished—rights reserved under the copyright laws of the United States and other countries.

For units of the Department of Defense: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

NeXT Computer, Inc., 900 Chesapeake Drive, Redwood City, CA 94063.

Manual written by Don Larkin, Matt Morse, Jackie Neider, and Caroline Rose
Edited by Caroline Rose

Book design by Eddie Lee

Mlustrations by Jeff Yaksick and Don Donoughe

Production by Adrienne Wong, Jennifer Yu, and Katherine Arthurs
Publications management by Cathy Novak

Reorder Product #N6007B

Contents

1-1

1-8
1-9

2-1

2-5

2-11
2-30
2-37
2-52
2-60
2-75
2-81

3-1
3-3
3-4
3-7
3-16
3-25
3-29
3-34
3-36

4-1

4-6

4-19
4-29
4-45
4-47
4-51

Chapter 1: System Overview
NeXTstep

The Mach Operating System
Sound and Music Overview

Chapter 2: The NeXT User Interface
Design Philosophy

User Actions

The Interface to the Operating System

The Window Interface to Applications
Application and Window Status

Menus

Panels

Controls

Chapter 3: Object-Oriented Programming and Objective-C
Objects

Messages

Classes

How Messaging Works

The Object Class

Options

Type Encoding

Language Synopsis

Chapter 4: Drawing

Design Philosophy

The Screen

The Window System

Compositing and Transparency

Instance Drawing

Sending PostScript Code to the Window Server
Imaging Conventions

5-1 Chapter 5: Events
5-4 Event Basics

5-4 Types of Events

5-9 The Event Record
5-17 Keyboard Information
5-18 Event Masks

5-20 The Event Queue

5-21 Event-Related Services

6-1 Chapter 6: Program Structure

6-4 Writing a Program with the Application Kit
6-12 Principal Application Kit Classes

6-37 Program Framework

6-50 Managing Windows

6-63 Environmental Information

6-68 Application Kit Conventions

7-1 Chapter 7: Program Dynamics
7-5 Event Handling

7-69 Drawing in the View Hierarchy
7-106 Printing

8-1 Chapter 8: Interface Builder
8-6 Interface Builder and Program Design
8-11 Interface Builder Tutorial

8-53 Interface Builder Reference

9-1 Chapter 9: User-Interface Objects
9-4 The Text Class
9-35 The Box Class

10-1 Chapter 10: Support Objects and Functions
10-4 Streams

10-11 Archiving to a Typed Stream

10-21 The Defaults System

10-31 The Pasteboard

10-36 Exception Handling

Index

Chapter 1
System Overview

1-5
1-5
1-6
1-6
1-7
1-7

1-8

1-9
1-9
1-10
1-10
1-10

NeXTstep

Interface Builder

The Application Kit

The NeXT Window Server
Drawing with Display PostScript
Handling Events

The Mach Operating System

Sound and Music Overview

Sound Kit

Music Kit
Creating and Storing Music Data
Creating and Performing Musical Sounds

1-1

Chapter 1
System Overview

As illustrated in Figure 1-1, there are four levels of software between a NeXT " application
program and the hardware that executes it:

« The NeXT Interface Builder

¢ Objective-C software “kits”

» The NeXT Window Server and specialized C libraries
» The Mach operating system

Figure 1-1. System Overview

Interface Builder is a powerful tool that lets you graphically design your application’s user
interface. It also makes it easy for you to establish connections between user-interface
objects and your own code (for example, the code to execute when a button on the screen
is clicked).

System Overview 1-3

1-4

NeXT application programs are written in Objective-C, an extension to C that adds
object-oriented concepts to the language. The software kits define a number of classes, or
object templates, that you can use in your own applications. The software kits currently
provided by NeXT are:

» AnApplication Kit that every application uses to implement the NeXT window-based
user interface

« Sound Kit" for adding sounds to your application, doing speech analysis, and
performing other sound manipulation

* Music Kit for music composition, synthesis, and performance

The NeXT Window Server is a low-level background process used by the Application Kit
to manage windows and to send user events, such as mouse and keyboard actions, back to
an application. Included in the Window Server is a Display PostScript® interpreter that’s
used for all drawing of text and graphics on the screen or printed page. The Display
Postscript system was jointly developed by NeXT and Adobe Systems Inc. as an
enhancement of Adobe’s PostScript™ page description language.

Sound Kit and Music Kit use the DSP56001 digital signal processor (the DSP) as a sound
synthesizer. Objects in these kits communicate with the DSP by calling functions in the
DSP system library. In addition to establishing and managing a channel of communication
between your application and the DSP, the functions in the DSP system library also provide
diagnostic capabilities and data conversion routines.

The functions in the array processing library use the DSP as an array processor, allowing
your application to process multidimensional data with great speed and efficiency. Any
application can include and use the array processing library.

Mach is a multitasking operating system developed at Carnegie Mellon University. It acts
as an interface between the upper levels of software and the three Motorola microprocessors
provided with the NeXT computer: the MC68040 central processor, the MC68882
floating-point coprocessor, and the DSP56001 digital signal processor.

The rest of this chapter elaborates on this simplified overview. In the next section, Interface
Builder, the Application Kit, and the Window Server are described as part of the NeXT'step
working environment. Subsequent sections describe Mach and the sound and music
facilities, which aren’t included in NeXTstep. From this base of knowledge about the
NeXT system, you can go on to read the chapters that address your areas of interest.

Chapter 1: System Overview

NeXTstep

NeXTstep combines the essential components of the software design into a working
environment for both the user and the application developer. Figure 1-2 shows the software
elements of NeXTstep.

Display PostScript

Figure 1-2. NeXTstep

Workspace MamagerTM is an application that runs automatically after you log in. From
Workspace Manager you can launch applications, manage files, and perform other tasks, as
described in detail in the NeXT User’s Reference manual.

Interface Builder

Interface Builder is a powerful application that has a twofold purpose:

» It lets you graphically design a user interface for your application.
+ Itcreates a programming environment for each new project.

Interface Builder displays a window that represents your application’s user interface and
provides graphic access to a number of standard interface objects, such as text fields,
buttons, and menus. To design an interface, you simply drag the interface objects into your
application’s interface window and place them where you want them. You can inspect and
modify an object to create a particular look—you can even give it a sound effect.

Interface objects understand user events such as mouse and keyboard actions and
automatically perform basic display operations when an action is directed at them. For
example, a button knows how to graphically highlight itself when the user clicks it, a text
field displays the characters that the user types in it, a window disappears when its close
button is clicked, and so on.

NeXTstep 1-5

1-6

In addition, Interface Builder has tools for connecting interface objects to each other. For
instance, you can connect a button to a panel such that the panel comes to the front when
the user clicks the button, or you can connect a slider to a text field so that the value
displayed in the text field is continuously updated as the user drags the slider’s knob up and
down. NeXT provides the code for the basic interface operations; you can also design your
own objects and actions and connect them in Interface Builder. For some simple
applications, the interface objects and the code provided by NeXT are sufficient, allowing
you to create an application without writing a line of code.

Most applications, of course, require more work than simply defining an interface. The
other facet of Interface Builder, its creation of a programming environment, makes it a good
place to start a new project even if the interface is trivial compared to the amount of
programming the project requires. Interface Builder can automatically create a UNIX®
makefile (the script for your application’s compilation routine), some basic source code, and
the header files that your application needs to compile.

The Application Kit

All applications use the Application Kit regardless of their purpose and complexity. The

buttons, sliders, and windows that you use to design an interface with Interface Builder are
defined as classes in the Application Kit. Also, as described in the next section, it’s through
this Kit that your application is able to draw on the screen and receive events from the user.

The Objective-C language and the software kits make it easy to create your own class of
object. One of the features of the language is that it supports class inheritance; this means
that you can create a class that inherits the attributes of another class. For example, you can
create a class that inherits from the Application Kit’s Button class (by convention, class
names are capitalized in Objective-C). Your version of Button will be able to do everything
that the Kit version can do, plus you can add to it the specialized functionality that your
application requires.

The NeXT Window Server

The NeXT Window Server is a low-level background process that creates and manipulates
windows on the screen. Your application establishes a connection with the Window Server
through the Application Kit and opens one or more windows. Windows provide a vehicle
for communication between the user and the application. The Window Server manages this
communication as it fulfills two functions:

» It draws images on the screen according to instructions sent from your application.
» It sends user events back to your application.

Chapter 1: System Overview

Drawing with Display PostScript

The Window Server draws images with NeXT’s implementation of the Display PostScript
system. Display Postscript provides an interactive, display-oriented environment that’s
independent of any window system. NeXT’s implementation extends the language with
features unique to the NeXT window system.

All the Display PostScript operators and the NeXT extensions to the language can be
accessed as C functions. In addition, NeXT supplies a program named pswrap that lets you
generate C functions that correspond to your own PostScript procedures.

Handling Events

Besides drawing images on the screen, the Window Server also identifies user events and
dispatches them to your application. Through a mechanism defined in the Application Kit,
the event is forwarded to the appropriate object:

» The event may be handled entirely by an Application Kit object. For example, if the
user chooses a command that edits the text of a Text object, the operation is handled
entirely by code that’s built into the definition of the Text class in the Application Kit.

» The Application Kit object may do some of the event handling, leaving the rest to your
code. If, for example, the user clicks a button on the screen, the Application Kit’s
definition of the Button class takes care of highlighting and unhighlighting the button,
while your code performs application-specific actions associated with the object.

Figure 1-3 shows the overall data flow for a typical application that accepts input from the
keyboard and mouse and displays output on the screen.

Application Process Window Server Process

s Fyonts
- PostScript

Figure 1-3. Window System Data Flow

NeXTstep 1-7

In this program model, the application consumes user events and draws on the screen. This
largely replaces the UNIX model in which an application reads from the standard input
stream and writes to the standard output stream. The Application Kit and the Window
Server work together to reduce the work you must do to build applications that interact with
the user.

The Mach Operating System

1-8

The Mach operating system provides complete compatibility with UNIX 4.3BSD
(Berkeley Software Distribution) but adds a faster and more consistent system of
interprocess communication, a larger virtual memory space, memory-mapped files, and
multiple threads of execution within a single address space. Mach gives programmers the
entire standard UNIX environment; existing machine-independent UNIX 4.3BSD
applications need only be recompiled to run on the NeXT computer.

Every running application is a separate process. In Mach, several processes may be running
concurrently. For example, the Window Server process runs at the same time as all
currently executing application processes (see Figure 1-4).

Figure 1-4. Window Server and Application Processes

In addition to providing a multitasking environment, Mach lets processes CorTlglmunicate
with each other. This feature is used by applications such as Digital Webster ', which can
look up a word selected from text that’s displayed by an entirely different application.

Chapter 1: System Overview

Sound and Music Overview

The NeXT computer provides a powerful system for creating and manipulating sound and
music. The software for this system is divided into two kits: Sound Kit and Music Kit. The
kit that you need depends on the demands of your application:

« Sound Kit lets you incorporate prerecorded sound effects into your application and
provides easy access to the microphone input so you can record your own sounds. The
objects in Sound Kit let you examine and manipulate sound data with microscopic
precision.

» Music Kit provides tools for composing, storing, and performing music. It lets you
communicate with external synthesizers as well as create your own software
instruments. Like Sound Kit, Music Kit provides objects that create and manipulate
sounds with exquisite detail, but, more importantly, Music Kit helps you organize and
arrange groups of sounds and design a performance.

Sound Kit

A small number of system beep-type sound recordings, stored in files on the disk (called
soundfiles), are provided by NeXT. Through Sound Kit, you can easily access these files
and incorporate the sounds into your application. It’s also extremely easy to record new
sounds into the NeXT computer. Simply plug a microphone into the input jack at the back
of the monitor and, with a single message to the Sound Kit’s Sound object, you can record
your own sound effect. Sound playback is just as simple: another message and the sound
is played on the internal speaker and sent to the stereo output jacks at the back of the
monitor.

When you record a sound using the Sound object, a series of audio “snapshots” or samples
is created. By storing sound as samples, you can analyze and manipulate your sound data
with an almost unlimited degree of precision. The SoundView class lets you see your
sounds by displaying the samples in a window.

While Sound Kit is designed primarily for use on sampled data, you can also use it to send
instructions to the DSP. The speed of the DSP makes it an ideal sound synthesizer and, in

- general, DSP instructions take up much less space than sampled data. The Sound object
manages the details of playing sounds for you, so you needn’t be aware of whether a
particular Sound contains samples or DSP instructions.

Sound and Music Overview 1-9

1-10

Music Kit

Music Kit provides a number of ways to compose and perform music. By attaching an
external synthesizer keyboard to a serial port, you can play the NeXT computer as a musical
instrument. Alternatively, you can compose music to be played by the computer by creating
music data in a text editor or by creating an algorithm that generates it automatically. These
approaches can be combined in performance. For instance, a musician can use an external
keyboard to trigger precomposed events, allowing the computer to create sounds and
gestures that are impossible on a traditional instrument, but at moments specified by the
performer.

Creating and Storing Music Data

Music Kit represents music as a series of Note objects. Each Note object describes the
characteristics of a musical note, such as its pitch, loudness, and duration. How a Note
object is performed depends on the detail it contains.

Notes can be stored in a file as statements written in ScoreFile, a music language developed
at NeXT that represents music as text. A file written in the ScoreFile language is called a
scorefile. In addition to reading and writing scorefiles from an application, you can also
create and modify them with a text editor.

Music Kit recognizes the MIDI (Musical Instrument Digital Interface) standard. You can
attach a MIDI instrument to a serial port at the back of the computer and capture a
performance. MIDI commands are turned into Note objects that can be manipulated and
stored.

Creating and Performing Musical Sounds

As mentioned earlier, one of the benefits of the DSP56001 is that it can be used to
synthesize sounds. The generality of the DSP allows a wide range of synthesis techniques;
in fact, the DSP can emulate almost any commercially available keyboard synthesizer. A
number of ready-to-use DSP software instruments are provided as Objective-C classes in
the Music Kit. Software instruments are constructed from synthesis building blocks also
written in Objective-C, so you can easily modify the existing instruments or design your
own.

Just as you can enter music data through MIDI, you can perform music on an external
synthesizer by sending MIDI data back out a serial port. Music Kit and music-related
device drivers are designed to handle synchronization for you, allowing you to synthesize
music on the DSP and send MIDI data to an external synthesizer at the same time.

Chapter 1: System Overview

By using objects from both Music Kit and Sound Kit, you can create an instrument that
plays sampled data. For instance, you can use a Sound object to record a single tone from
a traditional instrument and then play the tone back at the pitches and times specified by a
series of Note objects. You can also use Sound Kit to record, in soundfiles, entire musical
performances synthesized on the DSP.

Figure 1-5 shows the components for creating, playing, and storing music and sound with
the hardware and software of the NeXT computer.

microphone in speaker and line out MIDI

Figure 1-5. Music and Sound Components

Sound and Music Overview — 1-11

1-12

Chapter 2
The NeXT User Interface

2-5
2-6
2-6
2-7
2-7
2-8
2-8
29

29
2-10
2-11

2-11
2-11
2-12
2-14
2-14
2-15
2-16
2-17
2-17
2-18
2-19
2-19
2-19
2-20
2-21
2-21
2-21
2-22
2-22
2-23
2-23
2-23
2-24
2-26

Design Philosophy
Basic Principles
Consistency
User Control
Naturalness
Using the Mouse
Action Paradigms
Direct Manipulation
Control Action
Target Selection
Tool Selection
Extensions

User Actions
The Keyboard
Character Keys
System Control Keys
Modifier Keys
Special Combinations
Notation
The Mouse
Clicking
Multiple-Clicking
Dragging
Moving an Object
Defining a Range
Sliding from Object to Object
Dragging from a Multiple-Click
Pressing
Modifier Keys and the Mouse
The Cursor
Mouse Scaling
Hiding the Cursor
Left and Right Orientation
Keyboard Alternatives
Standard Keyboard Alternatives
Mouse Priority

2-1

2-2

2-26
2-26
2-27
2-27
2-28
2-28
2-29
2-29

2-30
2-30
2-31
2-32
2-32
2-33
2-34
2-34
2-35
2-37

2-37
2-38
2-39
2-40
2-42
2-43
2-43
2-44
2-45
2-46
2-47
2-47
2-48
2-49
2-49
2-50
2-50
2-51

2-52
2-52
2-53
2-54
2-54
2-55
2-56
2-58
2-58
2-58

Selection

Dragging to Select

Clicking to Select

Multiple-Clicking to Select

Extending the Selection
Continuous Extension
Discontinuous Extension
Text and the Shift Key

The Interface to the Operating System
The Application Dock
The File System
Home Directories
NeXT Directories
Local and Personal Directories
Net
Paths
File Names
File Packages

The Window Interface to Applications
Window Types
Window Appearance
Window Style
Conventions
Miniwindows
Icons
Lists
Window Size
Window Ordering
Window Placement
Window Behavior
Reordering Windows
Moving Windows
Resizing Windows
Closing Windows
Miniaturizing Windows
Hiding and Retrieving Windows

Application and Window Status

The Active Application
Activating an Application
Deactivating an Application
Conditional Activation

The Key Window

The Main Window

Choosing the Key Window and Main Window
In the Active Application
When an Application Is Activated

2-59
2-60
2-60

2-60
2-61
2-62
2-63
2-63
2-64
2-64
2-66
2-66
2-67
2-67
2-69
2-71
2-73
2-74
2-75

2-75
2-76
2-77
2-77
2-78
2-79
2-79
2-80
2-80
2-80

2-81
2-82
2-83
2-86
2-88
2-89
2-90
2-90
2-91
2-91

Clicking in a Window
Working in a Window
Making a Click Unnecessary

Menus

Submenus
Keeping a Submenu Attached
Tearing off an Attached Submenu
Detaching a Submenu
Submenu Hierarchy

Commands

The Main Menu
Placement

Bringing the Main Menu to the Cursor

Standard Commands
The Window Menu
The Edit Menu
The Font Menu
The Find Menu
The Request Menu

Panels
Attention Panels
Types of Attention Panel
Attention Panel Appearance
Attention Panel Behavior
Dismissing an Attention Panel
Control Panels
Persisting Panels
Relinquishing Key Window Status
The Information Panel

Controls

Sliders

Buttons

Text Fields

Scrollers
Scroller Layout
The Knob and Bar
The Scroll Buttons
Automatic Scrolling
Fine Tuning

2-3

Chapter 2
The NeXT User Interface

Changes made for the current release of NeXTstep affect the information presented
in this chapter. For details see:

/NextLibrary/Documentation/NextDev/Notes/UIUpdate/UIUpdate.rtf

This chapter discusses the NeXT user interface from the programmer’s point of view. It’s
meant to serve as a bridge between your experience as an end user of the NeXT computer
and your experience writing applications for other end users.

» Itexplains the user interface and introduces some of its rationale so that it will be easier
for you to design your application.

+ It expands on terminology you're already familiar with from the NeXT User’s
Reference manual. Terminology introduced in this chapter is used without further
explanation throughout the rest of the manual.

» It gives guidelines that all applications should follow. When the interface to your
application is consistent with others running on the NeXT computer, users will find it
more familiar, quicker to learn, and easier to use.

Much of the functionality and appearance of the NeXT user interface is built into the
Window Server and Application Kit. You won’t need to program the complete interface for

your application; windows, buttons, scrollers, and other graphic objects are provided for
you. The descriptions in this chapter will help you make the best use of these facilities.

Design Philosophy

A user interface must meet the needs of both novice and experienced users.
« For the novice or infrequent user, it must be simple and easy both to learn and to
remember. In particular, it shouldn’t require any relearning after an extended absence

from the computer.

» For the more experienced user, it must be fast and efficient. Nothing in the user
interface should get in the way or divert the user’s attention from the task at hand.

The challenge is to accommodate both these goals in ways that don’t conflict—to combine
simplicity with efficiency.

The NeXT User Interface 2-5

2-6

A graphical (mouse-based) user interface is well suited to this task. Because graphical
objects can be endowed with recognizable features of real objects, users can borrow on their
everyday experience when they approach the computer. Graphical buttons work like you’d
expect real buttons to work, windows behave much like separate tablets or sheets of paper,
sliders and other graphical objects act like their physical counterparts off-screen. The
computer becomes less an entirely new world with its own rules than an extension of the
more familiar world away from the computer screen.

This not only makes the user interface easier to learn and remember, it also permits
operations to be simpler and more straightforward. Picking an option is as easy as flicking
a switch; resizing a window is as direct and simple as pulling on a tab. Thus the same
attributes of the user interface that provide simplicity for novice users can also result in
efficiency for more expert users.

Basic Principles

The NeXT user interface is designed with certain basic principles in mind. Four are
especially important, and can be stated succinctly:

» The interface should be consistent across all applications.
» The user is in charge of the workspace and its windows.
» The interface should feel natural to the user.

» The mouse, rather than the keyboard, is the primary instrument for user interaction with
the interface.

Each of these principles is spelled out in more detail in the sections that follow.

Consistency

When all applications have the same basic user interface, every application benefits. The
consistency makes each application easier to learn, thus increasing the likelihood of its
acceptance and use.

Just as drivers become accustomed to a set of conventions on public highways, so users tend
to learn and rely on a set of conventions for their interaction with a computer. Although
different applications are designed to accomplish different tasks, they all share, to one
degree or another, a set of common operations—selecting, editing, scrolling, setting
options, making choices from a menu, managing windows, and so on. Reliable conventions
are possible only when these operations are the same for all applications.

Chapter 2: The NeXT User Interface

The conventions permit users (like drivers) to develop a set of habits, and to act almost
instinctively in familiar situations. Instead of being faced with special rules for each
application (which would be like each town defining its own rules of the road), users can
carry knowledge of how one application works on to the next application.

User Control

The workspace and the tools for working in it (the keyboard and mouse) belong to the user,
not to any one application. Users should always be free to choose which application and

which window they will work in, and to rearrange windows in the workspace to suit their
own tastes and needs.

When working in an application, the user should be afforded the widest possible freedom
of action. It’s inappropriate for an application to arbitrarily restrict what the user can do; if
an action makes sense, it should be allowed.

In particular, applications should avoid setting up arbitrary “modes,” periods when only
certain actions are permitted. Modes often make programming tasks easier, but they usurp
the user’s prerogative of deciding what will be done. They can thus feel annoying and
unreasonable to users who aren’t concerned with implementation details.

On occasion, however, modes are a reasonable approach to solving a problem. Because
they let the same action have different results in different contexts, they can be used to
extend functionality. When permitted, a mode should be freely chosen, provide an easy
way out, and keep the user in control. On the NeXT computer, modes are used in only three
situations:

» In the tool-selection paradigm, discussed under “Action Paradigms” below
« In attention panels, discussed under ‘“Panels” later in this chapter

e In “spring-loaded” modes that last only while the user holds a key or mouse button
down

Naturalness

The great advantage of a graphical user interface is that it can feel natural to the user. The
screen becomes a visual metaphor for the real world; the objects it displays can be
manipulated in ways that reflect the ways familiar objects in the real world are manipulated.
This is what’s meant when a user interface is said to be “intuitive”—it behaves as we expect
it would based on our experience with real objects in the real world.

The similarity of graphical to real objects is at a fundamental rather than a superficial level.

Graphical objects don’t need to resemble physical objects in every detail. But they do need
to behave in ways that our experience with real objects would lead us to expect.

Design Philosophy 2-7

2-8

For example, objects in the real world stay where we put them; they don’t disappear and
reappear again, unless someone causes them to do so. The user should expect no less from
graphical objects. Similarly, although a graphical dial or switch doesn’t have to duplicate
all the attributes of a real dial or switch, it should be immediately recognizable by the user
and should be used for the sorts of operations that real dials and switches are used for.

Each application should try to maximize the intuitiveness of its user interface. Its choice of
graphical objects should be appropriate to the tasks at hand, and users should feel at home
with the operations they’re asked to perform. The more natural and intuitive the user
interface, the more successful an application can be.

Using the Mouse

All aspects of the user interface are represented by graphical objects displayed on-screen,
and all graphical objects are operated mainly by the mouse, not the keyboard. The keyboard
is principally used for entering text; the mouse is the more appropriate instrument for a
graphical interface.

Nevertheless, it’s often a good idea to provide keyboard alternatives to mouse actions (see
“Keyboard Alternatives” later in this chapter). They can be efficient shortcuts for
experienced users. Keyboard alternatives are always optional, however; visual
representations on the screen never are. A keyboard operation without a corresponding
mouse-oriented operation on-screen isn’t allowed.

One of the goals of the user interface is to extend to mouse operations the same naturalness
and consistency that the keyboard provides for experienced typists. This is possible only if
mouse operations follow established paradigms that users can come to rely on. The next
section defines the paradigms used on the NeXT computer.

Action Paradigms

A graphical user interface works best when there are well-defined paradigms for using the
mouse. The paradigms must be broad enough to encompass actions for the widest possible
variety of applications, yet precise and limited enough so that users are always aware of
what actions are possible and appropriate.

The NeXT user interface supports these four paradigms of mouse action:
» Direct manipulation

e Control action

o Target selection

+ Tool selection

These paradigms are described below.

Chapter 2: The NeXT User Interface

Direct Manipulation

Most objects respond directly to manipulation with the mouse—a button is highlighted
when pressed, a window comes forward when clicked, the knob of a slider moves when
dragged. Direct manipulation is the most intuitive of the action paradigms and the one best
suited for modifying the position and size of graphical objects. Windows, for example, are
reordered, resized, and moved only through direct manipulation.

By directly manipulating icons that represent documents, applications, mail messages, or
other objects stored in the computer’s memory, users can manipulate the objects the icons
represent. For example, dragging an icon to a new location can change the position of a file
in the directory hierarchy.

Some objects, such as buttons and menu commands, can’t be moved or resized. They
nevertheless respond to direct manipulation as a way of giving feedback to the user. The
response—mainly highlighting—shows that the user’s action has successfully invoked one
of the other paradigms.

Control Action

Some objects—buttons, scrollers, and text fields, among others—are vehicles for the user
to give instructions to an application. By manipulating the object, the user controls what
the application does. Clicking a close button, for example, not only causes the button to
become highlighted, it also removes the window from the screen. The button is simply a
control device—Iike a light switch or a steering wheel—that lets the user carry out a certain
action. Graphical objects that play this role on the screen are therefore collectively known
as controls.

The control-action paradigm is most appropriate for setting program attributes other than

the position and size of graphical objects—for example, determining which font to use or
whether to boot from an optical or a Winchester® disk. (See “Controls” later in this chapter
for more on control objects.)

Target Selection

Some controls act on a selected domain. The user first selects what the control should act
on, the rarget, then chooses the control. For example, a user might select a range of text in
a file, then choose the Cut command from the Edit menu to remove it. The selection of a
target always precedes the choice of a control action. Selected objects are usually editable
graphics or text, but they may also be other types of objects, such as windows (the Close
command) and icons (the Delete command).

Target selection is the normal paradigm for controlling or operating on objects. It has the

advantage that a sequence of different control actions can apply to the same target. For
example, selected text can be changed first to a different font, then to a different point size,

Design Philosophy 2-9

2-10

and then perhaps copied to the pasteboard. Moreover, a single control can act on a number
of different user-selected targets, making it extremely efficient and powerful. The Cut
command, for example, can delete text, as well as graphics, icons, and other objects.

Tool Selection

In this paradigm, users can change the meaning of subsequent mouse actions by selecting
an appropriate tool, often displayed in a palette with several other tools. Each tool controls
a certain set of operations that are enabled only after it’s chosen. For example, a graphics
editor might provide one tool for drawing circles and ovals, another for rectangles, and still
another for simple lines. Depending on which tool is chosen, mouse actions (clicking and
dragging) will produce very different visual results. The cursor assumes a different shape
for each tool, so that it’s apparent which one has been selected, and the tool itself remains
highlighted.

The tool-selection paradigm is appropriate when a particular type of operation is likely to
be repeated for some length of time (for example, drawing lines). It’s not appropriate if the
user would be put in the position of constantly choosing a new tool before each action.

Tool selection, in effect, sets up a mode—a period of time when the user’s actions are
interpreted in a special way. A mode limits the user’s freedom of action to a subset of all
possible actions, and for that reason is usually to be avoided. But in the tool-selection
paradigm, the mode is mitigated by a number of factors:

« The mode isn’t hidden; the altered shape of the cursor and highlighted state of the tool
make it apparent which actions are appropriate.

+ The mode isn’t unexpected; it’s the result of a direct user choice, not the by-product of
some other action.

e The way out of the mode (usually clicking in another tool) is apparent and easy. It’s
available to the user at any time.

¢ The mode mimics the way things are done in the real world. Artists and workers choose
an appropriate tool (whether it’s a brush, a hammer, a pen, or a telephone) for the
particular task at hand, finish the task, and choose the next tool.

C hapter 2: The NeXT User Interface

Extensions

Users will come to count on a basic set of familiar operations throughout the user interface.
It’s each application’s responsibility to make the action paradigms it uses apparent to the
user—controls should look like controls (like objects that fit into the control-action
paradigm), palettes of tools should be self-evident, and so on.

An application should also make certain that its paradigms fit the action. It wouldn’t be
appropriate, for example, to force users to choose a “moving tool” or a control action just
to move an object. Graphical objects should move, as real objects do, through direct
manipulation.

Properly used, the paradigms described above can accommodate a wide variety of
applications. Yet over time, as programmers develop innovative software, new and
unanticipated operations will require extending the user interface.

Extensions shouldn’t be undertaken lightly. All possible solutions within the standard user
interface described in this chapter should be exhausted first. Added functionality must be
carefully weighed against the ill effects of eroding inter-application consistency for the
user.

If an extension is required, it should be designed to grow naturally out of the standard user
interface, and must adhere to the general principles discussed above.

User Actions

Users give instructions to the computer through their actions on the mouse and keyboard.
Because these two devices are central to the user interface, they’re discussed first, before
windows and other graphical objects.

The Keyboard

The NeXT computer keyboard resembles a conventional typewriter keyboard, with the
usual keys in their traditional locations. However, the keyboard also has many keys that
aren’t found on typewriters, including Command, Alternate, and Control keys, and a set of
keys arranged in a calculator-style numeric keypad. Keys on the keypad are situated more
conveniently for entering numbers and doing calculations than are the corresponding keys
on a typewriter keyboard.

Figure 2-1 illustrates the U.S. version of the NeXT keyboard (currently the only version).

User Actions 2-11

system control keys

modifier keys
Figure 2-1. The Keyboard

As shown in Figure 2-1, there are three basic types of keys:
» Character keys, which transmit characters to the computer.

« System control keys, which control the computer’s basic functions—the Power and
volume keys, for example.

* Modifier keys, such as Shift and Command, which change the effect of a keyboard or
mouse action—for example, Shift-3 yields “#”, Command-c issues a Copy command,
and Alternate-click extends a selection. The modifier key is held down while another
key or a mouse button is pressed.

Each of the three key types is discussed in its own section below.

The green label on the front of some keys indicates the function that the key will perform
when pressed along with the Command key (which is itself labeled in green). For more
information, see the section on the modifier keys.

Character Keys

The character keys generate text characters such as letters, numbers, punctuation marks,
and other symbols. They include the space bar, which generates the space character (ASCII
0x20) and all the keys on the keypad. Applications recognize characters by the codes listed
in the NeXT Technical Summaries manual. Characters generated from the keypad can be
distinguished from the same characters generated on the main keyboard by an additional
flag, but normally this isn’t necessary.

2-12 Chapter 2: The NeXT User Interface

Several special character keys, listed below, generate characters that typically perform a
function—the character causes the application to make something happen. Exactly what
happens depends on the application; some typical functions are mentioned here.

The Return key generates a carriage return (ASCII 0x0D), which moves the insertion
point or prompt to the beginning of the next line, much like the carriage return of a
typewriter. When data is entered in a text field or form, Return informs the application
that the data is ready for processing.

The Enter key (on the numeric keypad) generates the ETX character (ASCII 0x03).
Like Return, it signals that data is ready for processing. It need not move an insertion
point or prompt to the beginning of the next line. (Enter can also be generated with
Command-Return.)

The Delete key generates the DEL character (ASCIH 0x7F), which removes the
preceding character in text or deletes the current selection. Shift-Delete generates the
backspace character (ASCII 0x08), which moves the insertion point back one character.
In most applications, backspace performs the same functions as Delete.

The Tab key (and Control-I) generate the tab character (ASCII 0x09), which moves
forward to the next tab stop, or to the next text field in sequence. Shift-Tab generates
the back tab character (ASCII 0x19), which moves backward to the previous tab stop
or text field.

The Esc key generates the escape character (ASCII 0x1B). It’s included on the
keyboard for UNIX compatibility but has no direct role in the user interface. Shift-Esc
generates a tilde (~).

The arrow keys, to the right of the main keyboard, move the symbol that’s used in some
contexts to track where the user is writing or entering data—for example, the insertion
point in a document processor. These keys generate the character codes for arrow
symbols in the Symbol font (Symbol 0xAC, 0xAD, 0xAE, and OxAF), but they should
never be used to generate visible characters. When the Shift key is down, they generate
the character codes for the double arrows (Symbol 0xDC, 0xDD, 0xDE, and 0xDF), but
these characters also shouldn’t be made visible.

Visible arrows are generated in the Symbol font by other character keys. To know what to
do with an arrow character, an application must check to see which key generated the
character. Since characters generated by the arrow keys are flagged in the same way as
characters generated by keys on the keypad, this is fairly straightforward. See “Keyboard
Event Information” in Chapter 5, “Events,” for more information.

Note: The arrow keys have nothing to do with the cursor, which is controlled only by the
user’s mouse movements.

If the user holds a character key down for a certain amount of time, the character is
repeatedly generated in rapid-fire succession. The time the character starts to repeat and
the rate at which it repeats are system-configurable; the user can set them with the
Preferences application.

User Actions 2-13

2-14

System Control Keys

The five system control keys are located above the arrow keys. They’re illustrated in Figure
2-2.

Figure 2-2. System Control Keys

» The Power key turns the computer on and off.

¢ The volume keys control the volume of the built-in speaker. They also control the
volume at the stereo headphone jack on the MegaPixel Display. When the Command
key is held down, the volume-down key toggles the built-in speaker (and only that
speaker) off and on.

» The brightness keys control the brightness of the display.

All the system control keys, except Power, repeat when held down.

Modifier Keys

Modifier keys change the meaning of other keys and of the user’s actions with the mouse.
Unlike character keys, modifier keys by themselves don’t generate characters. There are
seven modifier keys: Control and two each of Shift, Alternate, and Command. Programs
can distinguish between the left and right key of the Shift, Alternate, and Command pairs,
but if they do, they won’t be hardware-independent (for details, see “Event Flags™ in
Chapter 5).

To use a modifier key, the user must hold the key down and, while keeping it down, press
the key (or perform the mouse action) to be modified. More than one modifier key may be
used at a time—for example, Command-Alternate-3.

The modifier keys and their effects when used with other keys are presented below.

» The Shift key modifies keystrokes to produce the uppercase character on letter keys and
the upper character on two-character keys. Pressing Command-Shift, and releasing the
Shift key before another key is pressed, sets Alpha Lock, which in turn illuminates the
green light in the Shift key. Alpha Lock turns on Shift for letter keys only. To turn
Alpha Lock off, press and release Command-Shift again.

Chapter 2: The NeXT User Interface

» The Alternate key modifies keystrokes to produce an alternate character to the one that
appears on the key; in general, these are special characters that are used relatively
infrequently. To find out which alternate characters are generated by which keys, see
the NeXT User's Reference manual.

» The Control key modifies keystrokes to produce standard ASCII control characters.
Some control characters are generated by single character keys—for example, Tab is
Control-I, Return is Control-M, and backspace (Shift-Delete) is the same as Control-H.

* The Command key provides a way of choosing commands with the keyboard rather
than the mouse. As an alternative to clicking a menu command with the mouse, the
user can press the Command key in conjunction with the character displayed in the
menu next to that command. Some standard commands are marked in green on the
front of the keys which (unshifted) are the keyboard alternatives for those commands.
For example, Command-c chooses the Copy command. Other standards are
recommended in the “Keyboard Alternatives” section later in this chapter.

Each of the modifier keys sets a flag indicating that it was down; Alpha Lock sets a flag
different from the one set by Shift. The Shift, Alternate, and Control keys usually also
change the character code that the application receives (from what it would be without the
modifier key). The Command key usually doesn’t change the character; it simply signals
that the user’s intent in typing the character was to issue a command.

The Command key also disables two normal keyboard features. While it’s held down:

« Keys don’t repeat.
» Alpha Lock doesn’t produce uppercase characters.

Special Combinations

A handful of Command-key combinations produce special effects. Some play a particular
role in the user interface; others, in effect, give commands to the computer itself, rather than
to just one application. The special combinations are listed below. All but the last three of
these combinations are marked in green on the keyboard.

» Command-Shift sets and unsets Alpha Lock, but only when the Shift key is released
before another key is pressed. (This was described in the discussion of the Shift key
above.)

» Command-Return is the same as Enter.

* Command-. (period) lets users abort the current operation in some applications.

« Command-space is used for file name completion. In contexts where it’s appropriate
for the user to type a file name (such as in a Workspace Manager window or an Open

panel), Command-space displays as many characters as match all possible file names
in the directory. If the user first types enough characters to identify a particular file and

User Actions 2-15

2-16

then presses the space bar with the Command key down, the remaining characters of
the file name are filled in. (In many applications, the Esc key also performs file name
completion.)

e Command-volume down turns the speaker off and on.

¢ Command-Command-", produced by holding both Command keys down and pressing
the key at the upper left of the numeric keypad, generates an NMI (nonmaskable
interrupt). It brings up the NMI monitor window.

¢ Command-", produced with just the Command key to the right of the space bar, displays
a panel that gives the user the option of restarting the computer, turning the power off,
or cancelling the command.

+ Command-Alternate-*, produced by pressing the Command and Alternate keys at the
lower left of the keyboard in conjunction with the * key on the keypad at the upper right,
performs a reset to reboot the machine. The reset is immediate; no panel or monitor
gives the user the option of cancelling the instruction.

Notation

Control characters are traditionally indicated by uppercase letters—for example, Control-I.
This doesn’t mean, however, that the Shift key must be used in conjunction with the Control
key. Control-I when produced with the Shift key down (or in Alpha Lock) is the same as

Control-I when produced without the Shift key.

The Command and Alternate keys, on the other hand, distinguish between shifted and
unshifted characters; Command-I isn’t the same as Command-i, and Alternate-I isn’t the
same as Alternate-i.

Since Alpha Lock doesn’t produce uppercase characters when the Command key is
pressed, it’s recommended that “Command-Shift-1" (rather than “Command-I"’) be used to
note the uppercase Command character in user documentation. The inclusion of “Shift” is
a reminder to the user to manually press the Shift key.

In contrast, Alpha Lock works with the Alternate key. Uppercase Alternate characters
therefore don’t require an explicit mention of the Shift key; documentation should use the
simpler “Alternate-1" instead of “Alternate-Shift-1.”

Chapter 2: The NeXT User Interface

The Mouse

The mouse controls the movement of the cursor on-screen. Typically, the user moves the
cursor over an object in the workspace and presses a mouse button to make something
happen. With the mouse, the user can edit documents, rearrange windows, and operate any
control; the mouse is the essential tool of a graphical interface.

Users can manipulate the mouse in just two ways:

* Move it to position the cursor. The standard arrow cursor “points to” the object touched
by its tip. (The cursor is also said to be positioned “over” the object at its tip.)

» Press and release the mouse buttons. The mouse that comes with the NeXT computer
has two buttons, one on the right and one on the left. Initially, both buttons work alike,
but they can be differentiated by the Preferences application (see “Left and Right
Orientation” below).

From these two simple actions, a few basic mouse operations are derived:

* Clicking

* Multiple-clicking
* Dragging

e Pressing
Clicking

The user clicks an object by positioning the cursor over it, then pressing and releasing a
mouse button. Usually the mouse isn’t moved during a click, and the mouse button is
quickly released after it’s pressed. However, timing generally isn’t important; what’s
important is where the cursor is pointing when the mouse button is pressed and released.

Clicking is used to pick an object or a location on the screen. If the object is a window, the
click brings it to the front and may select it to receive characters from the keyboard. If the
object is a menu command, button, or other control, the click performs the control’s action.
In text, a click selects the insertion point. In a graphics editor, it may select the location for
a Paste command.

When the user clicks an object on-screen, the object experiences the click as two separate
user actions, one when the mouse button is pressed, and one when it’s released. The object
should provide immediate graphic feedback to the user when the mouse button goes down.
However, depending on the intent of the click, the object may wait for the mouse button to
go back up before doing anything more:

» If the click is intended to initiate a control action or choose a tool, the object usually
acts when the mouse button goes up. This gives users an opportunity to change their
minds. If they move the cursor away from the object before releasing the button, the
action is canceled. Suppose, for example, that a user presses the left mouse button

User Actions 2-17

2-18

while the cursor points to the Cut command in the Edit menu. The command is
highlighted, but nothing is cut until the mouse button is released. If the user moves the
cursor outside the menu before releasing the mouse button, the command won’t be
carried out.

» If the click is intended to manipulate the object itself, the object reacts immediately
when the mouse button goes down. For example, when a window is clicked, it comes
to the front of the screen without waiting for the mouse button to go up. Similarly,
when editing text, the user is committed to a new selection as soon as the mouse button
is pressed.

Multiple-Clicking

The user double-clicks an object by positioning the cursor over it, then quickly pressing and
releasing a mouse button twice in succession. The mouse button must be pressed the
second time within a short interval of the first, or the action will count as two successive
clicks rather than a double-click. In addition, the cursor can’t move significantly during the
interval; this is to guarantee that the double-click remains focused on a single location
on-screen.

With the Preferences application, users can set the maximum length of the time interval to
suit their individual needs.

The user triple-clicks an object by rapidly pressing and releasing a mouse button three times
in succession. The time interval between successive clicks and the distance the cursor can
move between the first and the last click are subject to the same constraints that apply to a
double-click.

Double-clicking should be used only for actions that logically extend the action of a single
click, and triple-clicking only for actions that extend a double-click. There are two reasons
for this rule, one philosophical, the other programmatic:

» Complex mouse actions are best remembered and understood when they appear to
grow naturally out of simpler actions.

» Every double-click includes a single click (the first click in the sequence), and every
triple-click includes a double-click. At the time an application receives one click, it
can’t know that any others are on their way. So it must first act on the single click, then
the double-click, then the triple-click.

For example, double-clicking an icon in a Workspace Manager window picks out that icon
justas a single click would. It then goes on to open the application associated with the icon.
A single click in text selects an insertion point, a double-click extends the selection to a
word, and a triple-click extends it further to a full line, sentence, or paragraph.

Chapter 2: The NeXT User Interface

Quadruple clicks (and above) become increasingly difficult for users to produce or
understand. They’re neither used nor recommended in the NeXT user interface.
Triple-clicks should be used only sparingly.

Dragging

The user drags by pressing a mouse button and moving the mouse (and cursor) while the
button is down. Dragging is used in a variety of situations, principally these three:

* To move an object, such as a window or the knob of a scroller
» To define a range, usually to select the objects falling within the range

» To slide from one object to another, in order to extend an action initiated in the first
object to the second object

Moving an Object

The user can drag an object by positioning the cursor over it, pressing the mouse button,
and moving the mouse while the button is down. The object moves so that it remains
aligned with the cursor on-screen. If the object is constrained within a particular area or
track—as is a scroller knob, for example—it remains as closely aligned with the cursor as
possible.

Every dragging action implies a click; the mouse button goes down to initiate dragging and
back up again to end it. If an object responds to both clicking and dragging, every time it’s
dragged it will also respond to the click. Dragging a window, for example, also brings it to
the front.

Defining a Range

The user can also drag over an area or through a series of items (such as text characters) to
define a range. The action here is the same as for dragging an object: The mouse is moved
while the mouse button is held down. The position of the cursor when the mouse button is
pressed is the anchor point; its position when the mouse button is released is the endpoint.
The difference between the anchor point and endpoint determines the area or objects inside
the range.

Applications often drag out—or “rubberband”—a rectangle to show the area covered
between the anchor point and endpoint. This is illustrated in Figure 2-3.

User Actions 2-19

2-20

anchor point

Figure 2-3. Rubberbanding

Dragging to define a range is mostly used to make a selection (such as a string of text
characters or a group of icons) for the target-selection paradigm.

Sliding from Object to Object

Usually, for a click to choose an object in the control-action or tool-selection paradigm, the
mouse button must be both pressed and released as the cursor points to the object. In some
cases, however, users can press the mouse button as the cursor points to one object, then
drag to another object before releasing the button. Dragging serves to extend the action
over two or more related objects. The object under the cursor when the mouse button goes
up is the one that responds as if it were clicked.

~ For example, a user can choose a menu command by pressing the mouse button as the

cursor points to one command and releasing it as it points to another. Users can similarly
drag from one tool to another tool when they’re displayed together in a palette.

Controls that are presented to the user in a group can act in the same way. For example, a
user can drag from object to object in a set of mutually exclusive buttons or switches.
Dragging through a group of sliders arranged like a graphic equalizer might reset all of
them.

Sometimes it’s possible to drag from one type of object into another. A user can drag from
a button that controls a pop-up list through the list to make a selection, or from a menu
command that controls a submenu into the submenu.

In each case, the object the cursor points to when the dragging action begins and the object
it points to when the dragging action ends are part of a single functional entity. The manner
in which the objects are displayed should make this unity apparent.

Chapter 2: The NeXT User Interface

Dragging from a Multiple-Click

The act of pressing a mouse button to initiate dragging can be part (the last part) of a
double-click or triple-click. If the user doesn’t immediately release the mouse button and
begins dragging at the end of a multiple-click, the dragging action can be assigned a
meaning that’s related to the meaning of the multiple-click.

For example, double-clicking selects a word in editable text, and dragging from a
double-click selects additional words within a range of text. If triple-clicking selects a line,
dragging from a triple-click will select additional lines within the range.

Pressing

The user presses an object on-screen by positioning the cursor over it, pressing a mouse
button, and holding the button down for a period of time. Although pressing implies
clicking (since the mouse button must be released sometime), an object is said to be pressed
rather than clicked if releasing the mouse button too soon would cut the action short.
Control objects that respond to pressing act immediately when the mouse button is pressed;
they don’t wait for the button to go up.

For the most part, pressing is an alternative to repeated clicking. It should be used wherever
a control action can be repeated with incremental effect. For example, clicking a scroll
button scrolls one line of text, clicking the button again scrolls another line, and so on;
pressing the scroll button scrolls lines repeatedly for a continuous action until the mouse
button is released.

Pressing is also used to initiate the action of sliding from one object to another. If a button
controls a pop-up list, the user presses the button and drags through the list to choose one
of its options. After pressing a menu command to attach a submenu, the user can drag into
the submenu.

Modifier Keys and the Mouse

Applications can detect when the user is holding down a modifier key while clicking,
dragging, or pressing, and can choose to assign a different meaning to the modified mouse
action. Modified mouse actions implement only optional or advanced features of the user
interface (because they 're harder to remember and require more coordination to produce).
They typically extend or alter the effect of the unmodified mouse action. For example:

» Dragging a file icon from one directory window to another moves the file to the new
directory; Command-dragging copies the file instead.

+ Clicking a scroll button scrolls a line of text; Alternate-clicking scrolls a larger amount.

User Actions 2-21

2-22

* Dragging a window by its title bar moves the window, brings it to the front, and
activates its application; Alternate-dragging moves the window and brings it to the
front, but doesn’t activate its application.

» Clicking selects a new insertion point in text; Alternate-clicking extends the selection
to include everything between the current insertion point and the point of the click.

» Clicking selects an icon in a directory window; Shift-clicking adds new icons to the
current selection.

Alpha Lock doesn’t work for Shift-clicking (or Shift-dragging); the Shift key must be held
down manually. This way, users won’t find themselves Shift-clicking by mistake when they
intend only to click.

Although applications can use the Control key to modify a mouse action, the other modifier
keys are preferred for this wherever possible.

The Cursor

An application can change the cursor from the standard arrow to any other image of an
equal size (16 pixels by 16 pixels on the MegaPixel Display). When doing so, it must
specify what point in the cursor acts like the tip of the arrow. That point, the cursor’s kot
spot, should be apparent to the user from the shape of the image. For example, if the cursor
is an “X”, the hot spot would be where the two lines cross.

For some types of applications, a shape other than an arrow might be more convenient. For
example, an I-beam cursor is handier for positioning between characters. Its hot spot is in
the center of the beam.

It’s often a good idea to change the shape of the cursor to indicate that the user has entered
amode. In applications that use the tool-selection paradigm, the cursor should change to
indicate which tool has been selected. For example, the cursor might look like a pencil
while thin lines are being drawn in a graphics application, or like a wide brush when
painting in broad strokes.

If mouse actions are valid only in a certain area, the cursor should revert to its normal shape
when it leaves the area. It’s best not to change the cursor too often, however. To avoid
confusing the user, stick with the standard arrow wherever reasonable.

Mouse Scaling

The cursor moves on-screen when the user moves the mouse; but the ratio of the two
movements isn’t one-to-one. Rapid mouse movements move the cursor farther than slow
ones. Users can set the mouse scaling, how responsive the cursor is to mouse movements
at different speeds, with the Preferences application.

Chapter 2: The NeXT User Interface

Hiding the Cursor

A visible cursor is essential for mouse actions, but it can get in the way when the user is
concentrating on using the keyboard. Therefore, applications that let users enter or replace
text normally hide the cursor—make it disappear from the screen—when the user begins
typing. A hidden cursor returns to the screen as soon as the user moves the mouse, signaling
a shift in attention away from the keyboard back to the mouse.

The cursor is also hidden whenever the user selects an insertion point or a range of text. A
new selection is a good indication that the user is ready to begin typing again. Hiding the
cursor when the user selects a new insertion point avoids confusion between the I-beam
cursor and the vertical bar representing the insertion point. Unless it’s hidden, the I-beam
can obscure the vertical bar.

Left and Right Orientation

To start, the two buttons of the mouse work identically; either button can be used for the
ordinary operations of clicking, dragging, and pressing.

The two buttons can be differentiated with the Preferences application. Users can enable
one of the buttons, either the right or the left, for the special function of bringing the main
menu to the cursor (see “The Main Menu” later in this chapter for details). Thereafter, the
enabled button has only that function; it can’t be used for ordinary mouse operations. This
leaves the other button as the one that will be primarily used.

Users generally feel most comfortable operating the mouse with the index finger, and
therefore prefer to keep the button nearest that finger as the primary button. For
right-handed users, the left mouse button is nearest the index finger; for left-handed users,
it’s the right mouse button. Therefore, right-handed users generally enable the right mouse
button to bring the main menu to the cursor, and left-handed users enable the left mouse
button.

In general, documentation takes the point of view of a right-handed user. The primary
mouse button is referred to as the “left” mouse button and the events it generates as “left
mouse events.”

Keyboard Alternatives

A graphical user interface is easy for most people to learn and remember. Objects have a
familiar look on the screen and behave in a way that’s reminiscent of the real-world objects
they emulate. However, many users find it faster and easier to operate graphical objects
using the keyboard rather than the mouse. For this reason, it’s often appropriate to provide
keyboard alternatives to the mouse, at least for common operations.

User Actions 2-23

Keyboard alternatives consist of a single keystroke, modified by the Command key (and
possibly another modifier key). The Command key is required so that keystrokes that make
something happen (give commands) are clearly separated from those that enter data (cause
typing to appear).

Any character can be used in combination with the Command key. If the character is a
letter, it can be either uppercase or lowercase, although lowercase characters are preferred
because they don’t require the user to press two modifier keys (Shift and Command) at
once.

Note: Alpha Lock doesn’t affect the character typed with the Command key. A manual
Shift is required to produce an uppercase keyboard alternative. Lowercase keyboard
alternatives are generated even while Alpha Lock is on.

Keyboard alternatives are allowed only for the commands in a menu, the buttons in a panel,
or the items in a pull-down list. (Menus, panels, and pull-down lists are described under
“Window Types” later in this chapter.) The characters used as a keyboard alternatives must
be displayed to the user in the menu, panel, or list. Menus put them on the commands
themselves and pull-down lists follow this example. A panel can present the keyboard
alternatives for its buttons in any way that’s appropriate to the design of the panel.

Standard Keyboard Alternatives

NeXT has reserved two groups of keyboard alternatives for some common commands. The
first group is listed in the table below along with the commands they perform and the menus
where the commands are located. (See “Menus” later in this chapter for more information
on the listed commands and menus.)

Keyboard Alternative Command Menu
Command-a Select All Edit menu
Command-b Bold (Unbold) Font menu
Command-c Copy Edit menu
Command-h Hide main menu
Command-i Italic (Unitalic) Font menu
Command-o Open Window menu
Command-p Print main menu
Command-s Save ‘Window menu
Command-t Font Panel Font menu
Command-v Paste Edit menu
Command-w Close Window menu
Command-x Cut Edit menu
Command-z Undo Edit menu

The keyboard alternatives shown above must be used for the listed commands, and can be
used only for those commands. If your application implements the functionality that a
command represents, it must provide both the command and the keyboard alternative.

2-24 Chapter 2: The NeXT User Interface

This means, for example, that if your application has windows with close buttons (as almost
all applications do), it must have a Window menu with a Close command and Command-w
as the command’s keyboard alternative. If your application opens files, it must have an
Open command with Command-o as the keyboard alternative. If it doesn’t allow the user
to open files, it won’t have an Open command and must forgo using Command-o as a
keyboard alternative. Command-o is associated only with the Open command.

Keyboard alternatives in the second group are less severely restricted. Theyre listed in the
table below:

Keyboard Alternative Command Menu
Command-= Define in Webster ~ Request menu
Command-d Find Previous Find menu
Command-e Enter Selection Find menu
Command-f Find Panel Find menu
Command-g Find Next Find menu

{ an application implements the functionality that one of these items represents, it must
make use of the listed keyboard alternative. For example, if your application has a Find
panel, you must provide Command-f as a way of bringing the panel up.

However, if an application doesn’t implement the particular functionality of an item (if it
doesn’t have a Find panel, for example), it can use the keyboard alternative (Command-f)
for something else. Nevertheless, to preserve inter-application consistency, it’s strongly

recommended that you first try to use characters that don’t overlap with those on this list.

Note: In addition to the listed keyboard alternatives, many applications use Command-n
for New in the Window menu, Command-q for Quit in the main menu, and Command-? for
Help, also in the main menu.

Most of the keyboard alternatives listed in the two groups above are formed from the first
letter of the commands they perform. Those that use another character are mnemonic in
another way, or are conveniently situated near a related keyboard alternative on the
keyboard. For example:

» The letter “x” is used to cross out or delete material, making it an appropriate keyboard
alternative for the Cut command. It’s located near “c” (for the related Copy command)

on the keyboard. The letter “v” (for Paste) is also located near “c”’; some users
remember it as an upside-down caret.

« The letter “z”, the last letter in the alphabet, is used to undo the last series of editing
changes (since the user last changed the selection).

» The letter “f” is used to bring up the Find panel. The key to its right on the keyboard,
“g.” is used for the Find Next command, and the key to its left, “d,” is for Find Previous.

» The letter “a” stands for the “all” of Select All, and some users associate the letter “t,”

which brings up the Font panel, with “type” or “typeface,” or with the last letter of
“font.”

User Actions ~ 2-25

2-26

Mouse Priority

The user interface is visual, so all operations—all menu commands and scrolling
operations, for example—have a graphical representation on-screen and can be performed
using the mouse. Keyboard alternatives are just that: alternatives. They should never be
used for operations that can’t be performed using the mouse.

A keyboard alternative must accomplish exactly the same thing as the mouse. Even slight
variations between a mouse action and its keyboard alternative run counter to the principle
that every keyboard operation must match a corresponding mouse operation.

Although keyboard alternatives are tied to a graphic representation, they don’t require the
representation to be on-screen. Keyboard alternatives for menu commands and panel
buttons work even if the menu or panel is hidden.

Selection

Users select graphical objects by clicking and dragging with the mouse. A variety of
objects can be selected, including:

* Windows

» Tools in a palette

» Cells in a matrix or fields in a form

» Icons in a directory window

» Items in a list (of files or mail messages, for example)
» Characters in editable text

» Graphical elements of editable artwork

Selecting an object simply picks it out and distinguishes it from others of the same type; it
doesn’t change the object in any way. Most selections pick out targets for subsequent
actions in the target-selection paradigm.

If users are allowed to insert new material into a display, they can select not only objects
already displayed, but also locations for the insertions. For example, it’s possible to select
characters that have been typed into a text field, or the point where new typing should
appear.

This section concentrates on how selections are made in editable material, but the rules
often carry over to other types of selection as well.

Dragging to Select

Dragging selects everything in the range defined by the anchor point (where the cursor was
located when the mouse button was pressed) and the end point (the cursor’s location when
the mouse button is released).

Chapter 2: The NeXT User Interface

What “everything in the range” means depends on the type of material selected. In serially
arranged material—such as characters in connected text—the selection includes the entire
series between the anchor and end points. For material consisting of objects that can be
independently arranged—such as icons or the graphic elements that make up a picture—the
selection includes everything within a rectangle defined by the anchor and end points. The
highlighted material in Figure 2-4 shows the difference between selection in text and
graphics.

ras when warm ,wet climatic cal
3 died,

S Were
inthe

oo O O
R O O

o o o &

Selecting text Selecting graphics

Figure 2-4. Dragging to Select Text and Graphics

Clicking to Select

If the anchor point and end point are substantially the same—as they are for a click—the
user’s action may sometimes select the item under the cursor and sometimes simply select
that location. In a graphics editor, for example, a click can select an existing figure or a
location to insert a new one.

In text, a click always selects a location—an insertion point—where characters can be
entered from the keyboard. The insertion point is normally marked by a blinking vertical
bar located between characters. If the user clicks on top of a character, the insertion point
is adjusted to the nearest character boundary. Clicking in a margin, or in an empty area
away from any text, puts the insertion point next to the nearest character in series.

Multiple-Clicking to Select

Although a single click selects only an insertion point in text, multiple-clicking selects
characters already inserted. A multiple-click always selects a linguistically meaningful
unit. Normally, double-clicking selects a word, and triple-clicking selects a paragraph (all
the text between Return characters).

If the user drags from a multiple-click, additional units of the same type are selected. For
example, double-clicking a word selects the word; dragging from the double-click then
selects every other word that’s even partially within the range defined by the anchor and end
points.

User Actions 2-27

2-28

Extending the Selection

Normally, as soon as users commit themselves to a new selection by pressing a mouse
button (to begin clicking or dragging), the current selection is canceled in favor of the new
one. However, when the Alternate or Shift key is held down, the current selection is
extended, not canceled.

Continuous Extension

Clicking and dragging with the Alternate key down results in a new selection that’s a
continuation of the previous one. The new selection includes the previous selection and
everything lying between it and the location of the cursor when the user releases the mouse
button. The Alternate key is thus an alternative to dragging as a way of selecting a range—
the user can click to establish an anchor point, hold down the Alternate key, and click again
to determine the end point.

If the previous selection is already a range, Alternate-clicking and Alternate-dragging move
the edge of selection that’s closest to the cursor when the mouse button goes down to the
cursor’s location when the mouse button goes up. The Alternate key thus also provides a
way of adjusting the boundaries of the previous selection. Alternate-clicking outside a
selected range extends the range to the point of the click. Alternate-clicking inside a
selected range repositions the closest edge of the selection to the point of the click.

Alternate-clicking is illustrated in Figure 2-5.

Initial selection Alternate-clicking Alternate-clicking
on Violet on Orange

Figure 2-5. Extension with the Alternate Key

If the current selection is the result of a multiple-click, the Alternate key extends it just as
dragging would. Double-clicking a word, holding the Alternate key down, and clicking
another word elsewhere in the text extends the selection to include both words and all those
between.

Chapter 2: The NeXT User Interface

Discontinuous Extension

The Shift key lets users add to, or subtract from, the current selection. Additions don’t have
to be continuations of the current selection, so discontinuous selections can result.

To add to the selection, the user clicks and drags as usual while holding the Shift key down.
New material is selected, but the previous selection also remains. This is illustrated in the
middle column of Figure 2-6.

To subtract from the selection, the user holds the Shift key down while clicking or dragging
over the current selection. Shift-clicking and Shift-dragging deselect material that’s
already been selected. While keeping the Shift key down, the user can first select material,
then deselect it, then select it again.

Initial selection Shift-dragging from ‘ Shift-dragging from
Mauve to Violet Brown to Orange

Figure 2-6. Extension with the Shift Key

Shift-dragging either selects or deselects; it never does both. Which it does depends on the
item under the cursor when the mouse button goes down (the item at the anchor point):

+ If the item isn’t currently part of the selection, Shift-dragging serves to select it and
everything the user drags over. It won’t deselect material that happens already to be

selected.

o If the item is currently selected, Shift-dragging deselects it and any other selected
material that’s dragged over. It won’t add unselected material to the selection.

Text and the Shift Key

Many applications support only continuous selection for text. Discontinuous selection is
more common for editable graphics, icons, and items arranged in a list.

As a convenience for users, if an application doesn’t support discontinuous selection when

the user is editing text, it should make the Shift key, in addition to the Alternate key,
available for continuous selection.

User Actions ~ 2-29

The Interface to the Operating System

2-30

One of the goals of the NeXT user interface is to provide a simple, graphical interface to
the UNIX operating system. This is largely the responsibility of Workspace Manager, the
NeXT application that’s brought to the screen after the user logs in. More specifically,
Workspace Manager provides a graphical interface to the file system. It’s a substitute for a
UNIX command interpreter (or “shell”) that locates files, displays directory contents,
associates files with applications and icons, launches applications, and keeps track of the
user’s home directory and working environment. It lets users manage files by manipulating
their iconic representations.

For command-line interaction with the operating system, users can put up a window that
T™

emulates a VT-100 terminal and runs a standard shell. This window is provided by the

Terminal application, which can be launched from Workspace Manager.

Terminal is documented in the NeXT Development Tools manual. Workspace Manager is
documented in User’s Reference.

The Application Dock

Workspace Manager maintains an application dock, a strip where the user can keep icons

for commonly used applications, along the right edge of the screen. The dock has slots for
12 icons under the NeXT logo at the top. The logo serves both as the icon for Workspace
Manager and as a handle where users can grab the dock to drag it up and down in its track.

The dock stays in front of most windows, so the icons in it are readily available; it’s a
convenient place for users to put the tools they favor for working on the computer. By
dragging icons for selected applications into the dock from Workspace Manager’s directory
windows, users can customize it for their own needs. When a user logs out, Workspace
Manager remembers what icons were in the dock and restores them when the user logs in
again.

To launch an application, an icon in the dock works just like an icon in a directory window;
double-clicking it starts up the application. But once the application is running, the docked
icon assumes other functions. Mainly, it provides a way of quickly retrieving hidden or
obscured windows belonging to the application. (See “Hiding and Retrieving Windows”
later in this chapter for details.)

Because the icon has additional responsibilities for running applications, Workspace
Manager places a freestanding icon on the screen when it launches an application, if there
isn’t an icon for it already in the dock. If more than one copy of an application is running,
each process has its own icon.

Chapter 2: The NeXT User Interface

The freestanding icon can be moved into the dock just like an icon from a directory window.
If it isn’t moved to the dock, it will disappear when the application terminates.

Docked and freestanding icons are illustrated later in Figure 2-13.

The File System

The file system on the NeXT computer is arranged very much like a traditional UNIX file
system (see the Technical Summaries manual for details on how they differ).

However, by default, when users view the file system in Workspace Manager, they won’t
see many of the traditional UNIX directories. Instead, they’ll see only a small number of
directories that organize the tools and information they most need. Under the root (/)
directory, they’ll find the directories shown on the left in Figure 2-7:

» — R nexthhm

Figure 2-7. Top-Level Directories

Although users can choose to see the entire UNIX directory structure in Workspace
Manager, and have an unrestricted view of it in a Terminal window, these few directories
are all that most users will need. But when you begin to program for the NeXT computer,
you may want a less restricted view of the file system. Header files, libraries, compilers,
debuggers, and other programming tools are located in their traditional UNIX directories.
To see these directories in a Workspace Manager window, set the UNIX Expert switch in
the Preferences application and log in again.

The Interface to the Operating System — 2-31

2-32

Home Directories

In Figure 2-7, the directory labeled “user” stands for the user’s home directory. The home
directories of other users may also be visible. As is traditional, home directories bear the
name of the user—the name that the user logs in under.

If a machine is connected to a file server over a network, users’ home directories would
more likely be located somewhere on the file server. Figure 2-7 simply illustrates the
default location for a home directory and where it would be located if it were on the startup
disk. Home directories on remote machines are accessed through the Net directory
described below.

NeXT Directories

Four of the top-level directories begin with a “Next” prefix. They contain documents,
resources, and applications that are bundled with the computer. The NextApps directory
contains supported applications for NeXT users. In it you’ll find general-interest
applications like Digital Webster , Mathematica®, WriteNow®, Preferences, and
PrintManager, as well as applications used for programming, such as Interface Builder and
Edit. The programming applications in NextApps are ones that even users who don’t
consider themselves to be “programmers” might be interested in.

The NextAdmin directory also contains supported applications, but ones that will be used
mainly by system administrators and network managers. They 're not for general users like
those in NextApps.

NextDeveloper has three subdirectories:

Apps Holds applications that will be used solely by programmers.
Debuggers, profiling tools, language-specific editors, and other
window-based programming tools belong here. Like all other
applications in the four “Next” directories, these applications can
be run from Workspace Manager; command-line debuggers and
profiling tools belong in standard UNIX directories such as /bin
and /usr/bin.

Demos Contains programs that demonstrate the capabilities of the NeXT
computer. These aren’t full applications and aren’t supported by
NeXT. However, they include games and utilities that users, not
just developers, may find interesting.

Examples Contains example programs for the NeXT computer.
Subdirectories contain source code that you can study and
compile.

Chapter 2: The NeXT User Interface

The NextLibrary directory contains resource files organized into several subdirectories.
The subdirectories are shown in the second column of Figure 2-7 and are described below:

Documentation Holds technical documentation for the NeXT computer. You’ll
find the NeXTstep reference manual on-line in the
Documentation/NextDev/NextStep directory.

Fonts Holds the PostScript fonts available to all applications.

Images Has files containing graphic images, in both Encapsulated
PostScript format (EPS) and Tag Image File Format (TIFF).

Literature Stores books that can be searched by the Digital Librarian. The
complete works of Shakespeare are here.

Mathematica Contains packages and sample notebooks for the Mathematica
application.

Music Holds musical pieces written in the ScoreFile language and
musical performances stored as Musical Instrument Digital
Interface (MIDI) data.

References Stores reference material, including the dictionary and thesaurus

for the Digital Webster application.

Sounds Holds sound files available to all applications, including the file for
the system “beep.”

The four “Next” directories are reserved by NeXT. If you store your own files there, they’ll
be overwritten in future system updates.

Local and Personal Directories

The four directories with a “Next” prefix can be matched by four identical directories with
a “Local” prefix. Internally, these four directories are organized like their “Next”
counterparts. But instead of containing files supplied by NeXT, they hold information and
applications provided for all users at a local site. Any user who logs in to a machine, or
boots from it over a network, has access to its “Local” directories. If you add a new font
for all users of your network, for example, it would reside in /LocalLibrary/Fonts.

“Local” directories are created as they’re needed. They’re not included on the release disk.
Users can add unprefixed Library and Apps subdirectories in their home directories to
hold information and applications that they alone have access to. Users who develop

utilities for their own use or purchase private copies of a word processor and spreadsheet,
for example, should put them in ~/Apps.

The Interface to the Operating System 2-33

2-34

Net

The Net directory gives the user access to file systems that are physically located on remote
machines. The immediate subdirectories under Net name the machines where the file
systems are located. The next level of subdirectories name the root directories of the file
systems on those machines. For example, /Net/willow/misc is where the misc file system
located on the willow computer would be mounted.

Net has subdirectories only if the user’s computer is set up to be connected to other
machines over a network.

All the directories illustrated in Figure 2-7 above, including Net, are physically located on
the disk that the user’s machine was booted from. If a user boots from a local optical disk,
for example, NextLibrary and all its subdirectories will be stored on the optical disk.
Remote directories are mounted only under Net.

Paths

On UNIX, an environmental variable, path, holds an ordered set of directories that are
searched for executable files. The default path used by Workspace Manager lists these six
directories:

~[Apps

[LocalApps

/NextApps
/NextDeveloper/Apps
/NextAdmin
/NextDeveloper/Demos

Workspace Manager uses this path in two ways:

» Tofind the icons it should display for files associated with a particular application. Icon
information is embedded within a segment of the application executable.

» To find the application it should launch when the user double-clicks on a file.

Before using the search path to find which executable to launch, Workspace Manager first
looks in the dock. Each icon in the dock represents a particular application residing in a
particular directory on disk. By putting an icon in the dock, the user has indicated a
preference for that version of the application over any others.

If an application isn’t in the dock, Workspace Manager looks next in the current working
directory, the directory containing the file the user wants to open. Only after failing to find
the application there does it turn to the path listed above.

Chapter 2: The NeXT User Interface

In the path, Workspace Manager looks first in the Apps subdirectory of the current user’s
home directory. That’s where the user’s own applications would be. It next looks in the
LocalApps directory for site-wide software, then in the NextApps, NextDeveloper/Apps,
NextAdmin, and NextDeveloper/Demos directories for NeXT-supplied software. This
ordering of directories lets users customize their software to override site-wide software,
and lets site-wide software override software supplied by NeXT.

Similarly ordered paths are used in other contexts. If an application requires a particular
sound file, for example, it should search for it first in ~/Library/Sounds, then in
/LocalLibrary/Sounds, and only then in /NextLibrary/Sounds.

Users can alter the path shown above for Workspace Manager by setting a value for the
ApplicationPaths parameter in their defaults database. You might do this, for example, to
add a /LocalAdmin or /LocalDeveloper/Apps directory to the path. See Chapter 10 for
more on the defaults database.

File Names

On UNIX (and other operating systems), particular types of files are sometimes identified
by a characteristic file name extension. The extension is the last period in the file name and
all the characters that follow it. Files with the same extension are presumed to be of the
same type.

Workspace Manager uses file name extensions not only to identify particular types of files,
but also to associate document files with applications. Every application that defines its

own data format should append an identifying extension to the names of its document files.

These standard extensions have a well-established history:

.a A C library file

.asm A file containing source code for the digital signal processor (DSP)
.c A file containing C source code

for.F A file containing Fortran source code

.h A C header file

Ink A file with relocatable object code for the DSP

Jdod A program that can be loaded to run on the DSP

st A file with the listing for a DSP program

.m A file containing Objective-C source code

.0 A file containing binary, relocatable object code

p A file containing Pascal source code

T A file with source code for the Ratfor variety of Fortran

.S A file containing assembly source code for the main processor

The Interface to the Operating System ~ 2-35

2-36

To these NeXT adds a variety of its own extensions, including these common ones:

.app A directory containing an executable file

.dsp A file with binary code for the DSP

.eps A file containing Encapsulated PostScript code

.ma A text file for a Mathematica notebook

.mb A file containing binary information for a Mathematica notebook
.mbox A file containing mail messages

.midi A file with binary MIDI data

.nib An archive file produced by Interface Builder

.ps A file containing PostScript code

psw A file containing declarations for the pswrap utility

.pswm A file with pswrap declarations and Objective-C source code
atf A file in Rich Text Format (RTF)

.score A music file in the ScoreFile language

.snd A sound file

iff A file in Tag Image File Format (TIFF)

.wn A file in WriteNow format

.wndict A WriteNow dictionary

This list is open-ended. Other extensions will be added in the future.

Your application should use its own unique file name extensions to identify (and help
Workspace Manager identify) its documents. To request that an extension be registered and
reserved for your use, write to:

NeXT Technical Services
Extension Registry

900 Chesapeake Drive
Redwood City, CA 94063

You can also send your request by electronic mail to ask_next@NeXT.COM or
...\nextlask_next.

The request should include the following information:

» The file name extension you want to register. List a first and a second choice.
e The name of the application the request is for.

¢ Your name and the name of your company.

* Your postal address and your electronic mail address, if you have one.

* Your telephone number.

You’ll be informed when the extension is registered, or if it can’t be for any reason. NeXT
Technical Services will make the list of registered extensions available to you so that you
can choose an extension not already assigned.

Registering a file name extension reserves it for your use. If you fail to register an extension
that you intend to use, someone else may register and use it instead.

Chapter 2: The NeXT User Interface

File Packages

A file package is a directory that Workspace Manager presents to users as if it were a file.
Because users normally don’t look inside a file package (unless they explicitly open it as a
directory), they’re not likely to alter or reorganize its contents.

An application should create a file package when it has a group of files that it needs to keep
together. For example, if your application displays help information that’s stored in
independent text files, or if it makes use of a private utility program, or if it just loads
archived objects from Interface Builder “.nib” files, you may want to keep these auxiliary
files in close proximity to the application executable. A file package is the way to do it.

Similarly, if your application creates documents that are split into more than one file—for
example, if text is in one file and artwork in another—these files can also be grouped in a
file package.

A file package for an application executable should have the same name as the executable
file, plus a “.app” extension. When the user double-clicks a package with this extension,
Workspace Manager looks inside it to find the executable. Since a package might contain
more than one executable file, Workspace Manager recognizes the one to launch from the
name of the package.

File packages for documents should bear the same extension that’s assigned to the
application’s document files. For example, WriteNow’s file packages have a “.wn”
extension. Workspace Manager doesn’t require there to be an identically named file within
the package, but an application can impose this, or any other, requirement on its own
packages. Opening and naming files within a document file package is entirely the
application’s responsibility.

The Window Interface to Applications

The NeXT user interface is window-based. Applications present themselves visually to
users by drawing in page-like rectangles that can be moved around the screen and stacked
on top of each other much like separate tablets or sheets of paper. Each rectangle, or
window, is placed on the screen by a particular application, and each application will most
likely own a variety of different windows. They are, in a sense, windows into the
application.

This section introduces windows in the user interface. Later sections concentrate on

particular kinds of windows, on the objects displayed within windows, and on how the
windows of one application or another can be selected by the user.

The Window Interface to Applications ~ 2-37

Window Types

There are several different types of windows, distinguished by their appearance, by their
behavior in response to user actions, and by the roles they’re assigned within an application.

The ordinary windows where the main work of an application is done are known as
standard windows. They’re what users normally think of when “windows” (without any
modifier) are referred to. Standard windows are the most widely used type of window and
the principal type for all applications. If an application lets the user edit files, each file will
be displayed in a separate standard window. If the application is a game, the game board
will be in a standard window, and if the application is a simple accessory like a clock, the
clock face will occupy a small standard window of its own.

Most applications will also have other windows that support the work done in standard
windows. These supporting windows are summarized in the list below and are illustrated
later in Figures 2-9 through 2-15.

Panel A window that’s used to give instructions to the application—for
example, the Font and Find/Replace panels of WriteNow—or that
presents information to the user—for example, the Info and Help
panels of many applications.

Menu A window that contains a list of commands. Menus are
implemented as a special type of panel and play a special role.
They give the user access to all parts of the application.

Pop-up list A menu-like list of options that appears on top of a button when
the button is pressed and disappears when the button is released.
While the mouse button is down, the user can drag through the list
to make a selection. The button displays the last item selected, and
the list pops up so that the item is over the button.

Pull-down list A menu-like list that appears under a button when the button is
pressed. The user can drag down into the list to choose an action.
The button displays a constant title for the items in the list, much
like the title bar of a menu.

Miniwindow A small, titled picture that represents a window that’s been
miniaturized. Miniaturizing a window removes it from the screen
and replaces it with its miniwindow. Double-clicking the
miniwindow returns the unminiaturized window to the screen.

Freestanding or An application icon that Workspace Manager has placed on

docked icon the screen for a running application, or one that has been dragged
from a directory window (or from its place on the screen) into the
dock. Freestanding and docked icons represent whole
applications much as miniwindows represent single windows. All
freestanding and docked icons, like the dock itself, belong to
Workspace Manager.

2-38 Chapter 2: The NeXT User Interface

Panels and menus each have a special subtype that’s distinguished from other members of

the group:

Attention panel A panel that requires some user action before work can be done in
any other window of the application—for example, the window
that asks whether the user wants to save changes to a document
before quitting. When the user acts, the panel disappears.

Main menu The principal menu of the application, the one that bears the name

of the application (or an abbreviation) in its title bar. It’s the one
menu that’s guaranteed to be on-screen while the user is working
in the application. Through a system of submenus, the main menu
gives the user access to all of the application’s other menus and
most of its panels.

In addition to these window types, users will also see the workspace window, the normally
dark gray background to all the other windows on-screen.

In documentation for users, the term “window” generally refers only to standard windows,
though panels and menus are acknowledged to be windows of a special type.
Miniwindows, lists, and icons are referred to only by their specific names; they should not
be included within the generic term “window” as this would imply common behavior that’s
lacking.

Window Appearance

Every window has a content area, where the application is free to draw (although the
Application Kit draws default miniwindows and icons for you). Most windows also have
a title bar above the content area, and a border surrounding both the content area and title
bar.

The title bar is the center of control for the window. It holds the window’s title, if it has
one, and may contain buttons that can be used to dismiss it from the screen. Users move a
window by dragging it by its title bar.

Windows with a title bar may also have a resize bar at the bottom, below the content area
but within the border. By dragging any of the regions of the resize bar, the user can alter
the size and shape of the window. Resizing is the only window control located outside the

title bar.

The parts of a window are illustrated in Figure 2-8.

The Window Interface to Applications 2-39

240

title bar title

title bar buttons

Figure 2-8. A Window

——— content area

— border

resize bar

Visually, the various types of windows are distinguished by their size, by the way they’re
positioned relative to other windows, by the nature of the display within their content areas,
and by their style—the appearance of their borders, title bars, and resize bars.

Window Style

Standard windows and panels come in three distinct styles:

Plain window

Titled window

Resizable Window

No border or title bar.

A title bar and a black border. On the MegaPixel Display, the
border is one pixel wide. The title bar is 21 pixels high and is
separated from the content area by a one-pixel line that
matches the window border. A window with a 100-by-100
pixel content area will be 102 pixels wide and 124 pixels high.

A resize bar, title bar, and a black border surrounding both.
The title bar and border are the same as for a titled window;
the resize bar extends from the left to the right border at the
bottom of the window. On the MegaPixel Display, the resize
bar is eight pixels high. The top row of pixels is dark gray, the
row beneath is white, and the remaining six rows are light

gray.

Figure 2-9 illustrates resizable standard windows and Figure 2-10 illustrates titled panels.

The different shades of gray shown in their title bars indicate their current status—whether
they might be affected by user’s next action. Window status is discussed under “The Key
Window” and “The Main Window” later in this chapter.

Chapter 2: The NeXT User Interface

Smtan‘(.liarﬂ Wi‘ndoil}

Standard Windows

Figure 2-9. Standard Windows

Standard windows don’t have to have a resize bar, though one is usually provided if the
window displays scrollable contents.

Figure 2-10. Panels

Panels can also be resizable, though they rarely need to be.

Like other panels, attention panels have a title bar and border, but the title bar remains
empty, without a title or buttons. Because it doesn’t permit the user to continue working in
any other window of the application, it’s important that an attention panel be immediately
recognizable. The appearance of attention panels is discussed and illustrated under
“Panels” later in this chapter.

The Window Interface to Applications ~— 2-41

Each of the other window types has its own style:

Menus The title bar of a menu is solid black. The title itself isn’t centered
like the title of a panel or standard window; it begins at the left
margin of the title bar. On the MegaPixel Display, menus have a
dark gray border just on their top and left sides; the border on the
bottom and right is drawn within the content area as part of the
menu commands. Menus are illustrated in Figure 2-11.

Lists Pop-up and pull-down lists have the same style as menus, except
that they don’t have title bars.

Miniwindows Miniwindows lack borders and title bars, though miniature title
bars and beveled borders are ordinarily drawn within their content
areas.

Icons Like miniwindows, freestanding and docked icons lack borders

and title bars, but typically have beveled borders drawn within
their content areas.

Menu

Figure 2-11. Menus

Conventions

Conventions govern the appearance of all windows. For standard windows and panels, the
conventions are pretty much confined to the question of style. Title bars, resize bars, and
borders have a fixed appearance, but you're free to draw within the window’s content area
as you see fit (though some restrictions apply to attention panels—see “Panels” later in this
chapter).

However, the drawing done within the content areas of other window types is more
constrained. Menus and lists, for example, enclose a group of commands, and each
command must follow a specified format (see “Menus” later for details). Miniwindows and
icons are even more tightly constrained.

2-42 Chapter 2: The NeXT User Interface

Miniwindows

Miniwindows have a fixed size—64 pixels by 64 pixels on the MegaPixel Display. A small
title bar is drawn across the top of a miniwindow, but it’s inside the content area, not above
it. The title bar shows the title of the window that was miniaturized, or at least a portion of
it. Like icons, miniwindows have a beveled border, also drawn inside the content area, to
make them look raised from the surface of the screen.

If a standard window holds an editable document, its miniwindow displays the icon for that
document. In Figure 2-12, the miniwindow on the left shows the icon for a WriteNow
document. This is the same icon that’s displayed for the document in a directory window.
The miniwindow to its right has the generic icon for ASCII documents.

Figure 2-12. Miniwindows

If a standard window doesn’t hold a document, its miniwindow displays the application
icon. This also is illustrated in Figure 2-12. One miniwindow shows the icon for the
BuildDisk application and another, labeled “Poker,” shows the generic application icon.

Icons

Freestanding and docked icons are the same size as miniwindows and have the same
beveled border to make them look raised above the screen. Each icon window displays the
icon for an application—an image that on the MegaPixel Display can be no more than 48
pixels high by 48 pixels wide, so that it can fit comfortably in the 64 pixel by 64 pixel
window.

The Window Interface to Applications ~ 2-43

2-44

freestanding icons docked icons

running

not running

launching

Figure 2-13. Freestanding and Docked Icons

Workspace Manager adds three small dots—similar to an ellipsis—in the lower left corner
of a docked icon when the application the icon represents isn’t running. The ellipsis
disappears when the application is launched. While it’s launching, the icon is highlighted
in white, as shown in Figure 2-13. (Since freestanding icons appear on-screen only when
the application is launched, they’re never marked by an ellipsis.)

The docked icon for an application that isn’t running displays the same image that
represents the application in a directory window. However, you can provide an icon for the
application when it’s running that’s different from, but related to, the icon found in a
directory window.

Lists

Pop-up lists are used in lieu of a series of mutually-exclusive switches. They save screen
space and prevent overcrowding in panels. Each list is controlled by a button that can be

recognized by a special symbol, GGk , as illustrated in Figure 2-14. The label on the button
that precedes the symbol.indicates the current selection from the list. When the user makes
a new selection, the button label changes.

Chapter 2: The NeXT User Interface

Figure 2-14. Pop-Up List

Pressing the button pops the list up so that the item matching the button label appears on
top of the button. The list remains up only while the user holds the mouse button down.
When the user releases the mouse button after dragging to a different item in the list, the
label on the button changes to that item.

Since a pop-up list needs a more constant title than the changing button label, one is
provided outside the button. In Figure 2-14, the list is entitled “Number.”

Pull-down lists are similar to pop-lists, except that they appear under the controlling button
rather than on top of it. The button’s label doesn’t change and it’s marked by a special
symbol, %7 , as illustrated in Figure 2-15.

Figure 2-15. Pull-Down List

While the choices a user makes in a pop-up list set a state, the choices made in a pull-down
list perform actions, much like menu commands. Before putting a pull-down list in your
application, be sure that a menu wouldn’t do the job better.

Window Size
The only windows that have a fixed size are miniwindows and icons. The initial size of all

other windows is determined by the application. Generally, standard windows are larger
than panels and panels are larger than menus, but there are no fixed rules.

The Window Interface to Applications — 2-45

2-46

Window Ordering

Windows on-screen are ordered from front to back. Like sheets of paper loosely stacked
together, windows in front can overlap, or even completely cover, those behind them. Each
window has a unique position in the order. When two windows are placed side-by-side, one
is still technically in front of the other.

Note: Even though a window is totally obscured by other windows, it’s still considered to
be on-screen; it retains its ranking in the order and can be exposed by moving the windows
on top to the side.

To prevent menus and docked icons from being buried under larger windows, they’re
ordered above all others. Because attention panels demand, as their name implies, the
user’s full attention, they too are kept in front. On-screen windows are divided into these
SiX tiers:

* Pop-up and pull-down lists are assigned the top tier. They remain on-screen only while
the user holds a mouse button down so they only momentarily obscure other windows.
Putting them in the top tier guarantees that they won’t pop up in back of another
window.

+ Attention panels are assigned to the second tier. Like lists, they’re only temporarily
on-screen. But, unlike lists, the user must do something to dismiss them, rather than
continue an action to keep them visible. Keeping an attention panel in front, where it
can’t be covered by other windows, confronts the user with it until it’s dismissed and
thus encourages prompt user action.

* The main menu is assigned the next tier back. In the absence of an attention panel or
list, the usual case, it’s the frontmost window on-screen.

e Other menus are assigned to a tier just below the main menu. They can cover each
other, but not the main menu.

» Docked icons occupy the fifth tier. They can be covered by lists, attention panels, and
menus, but not by the ordinary windows of your application.

» All other windows are grouped in the sixth—the last and largest—tier. Most of the
windows seen on-screen are in this tier. They can cover each other, but can’t come in
front of the dock, menus, attention panels, or lists.

This six-tier system keeps attention panels, menus, and docked icons in view, and thus
readily available to the user; it prevents them from being inadvertently lost in a large pile
of windows. Although attention panels, menus, and docked icons may cover other
windows, the user can get them out of the way when needed. Menus can be moved to the
side or closed; the dock can be slid mostly off-screen. Attention should be attended to and
dismissed.

When a window is first placed on-screen, it should come up at the front of its tier.

Chapter 2: The NeXT User Interface

Window Placement

The user is free to rearrange windows on the screen, but the initial placement of windows
is up to the application. To ensure a consistent user interface, all applications should follow
these guidelines for locating windows:

* When an application is launched, its main menu should appear in the upper left corner
of the screen. Users who prefer a different default location for the main menu can
choose one with the Preferences application, and you may want to let users specify a
preference just for your application.

* Standard windows should come up to the right of the main menu, allowing enough
room for submenus that might later be attached to the main menu. Some applications
also allow room for panels to come up to the left of the standard window and below the
main menu.

« Attention panels should come up in the center of the screen, where they won’t be
overlooked.

» No part of any window (other than miniwindows and icons) should be placed
off-screen.

You’re encouraged to let users specify where the standard windows, main menu, and
important panels of your application should appear the next time the application is
launched. See the reference to a Preferences command under “The Main Menu” later in
this chapter.

The Application Kit and Workspace Manager determine the initial placement of

miniwindows and freestanding icons. They’re lined up along the lower edge of the screen
to keep them out of the way of other windows.

Window Behavior
Windows respond to user actions in the following ways:

* Any window can be brought to the front of the screen, relative to other windows in its
tier.

* Any window with a title bar can be moved to a new location on the screen, as can any
icon or miniwindow.

* Any window with a resize bar can be resized.

e A window with the appropriate buttons in its title bar can be closed or miniaturized.

The Window Interface to Applications ~ 2-47

A standard window can display either of two buttons in its title bar:

Miniaturize button ~ Clicking the miniaturize button replaces the window with its
miniwindow counterpart. The miniwindow represents the
window on-screen and gives the user access to it;
double-clicking the miniwindow causes it to disappear and the
miniaturized window to reappear.

Close button Clicking the close button removes the window from the screen.

When the user clicks in a title bar button, the action of the button is performed. The click
doesn’t count as “clicking in a window” for the purpose of bringing the window to the front,
making it the key window, or activating an application (the key window and active

application are discussed in the “Application and Window Status” section of this chapter).

Title bar buttons are illustrated in Figure 2-16. The window on top has both buttons as they
normally appear. The miniaturize button is on the left and the close button is on the right.
The window in back shows what the close button looks like when the window displays a
document that the user has edited but hasn’t saved.

miniaturize button close button

miniaturize button close button

Figure 2-16. Title Bar Buttons

Reordering Windows

Clicking in a window brings it to the front of its tier, provided that the click isn’t in a title
bar button. The window is reordered immediately as the mouse button is pressed. Unlike
clicking a button or menu command, the action doesn’t wait until the mouse button is
released. If the user is dragging the window to a new location, this lets the window assume
its reordered position before being moved.

Because the main menu is the only window in its tier, its order relative to other windows

can’t be changed. Docked icons similarly share a unique tier; since they never overlap,
reordering them is pointless.

2-48 Chapter 2: The NeXT User Interface

Moving Windows

The user can drag any window by its title bar. The action of pressing and releasing the
mouse button to drag the window also counts as a click and brings the window to the front
of its tier.

Icons and miniwindows don’t have title bars but can be dragged from any point within their
interiors. A docked icon can be dragged to a new position in the dock, but it disappears if
left anywhere else, unless the application it represents is running. An icon not in the dock
can be dragged anywhere on the screen just like other windows. But if it’s left near an
empty slot in the dock, it may snap into the slot.

The dock itself can be dragged by the NeXT logo. It moves up and down in its track at the
right of the screen, but can’t move to the left or right. No part of the NeXT logo can be
dragged off-screen.

When a window is dragged, one point within it remains aligned with the mouse cursor.
Since the cursor always stays on-screen, the point aligned with the cursor also remains
on-screen. This prevents the window from being dragged off-screen to a location where the
user can’t retrieve it.

Resizing Windows

A window with a resize bar can be resized by the user. As the user begins dragging in the
resize bar, an outline of the window edge snaps to the cursor. The outline follows the cursor
until the user releases the mouse button to end dragging. The window then resizes to the
outline.

When the user begins dragging in the central region of the resize bar, the window becomes
shorter or taller depending on whether the user drags up or down. Beginning at either end
of the resize bar and dragging to the left or right causes the window to become wider or
narrower. Beginning at either end and dragging diagonally moves a corner (and its two
adjacent sides) in or out.

An application can constrain the shape of a resizable window so that it doesn’t become too
big or too small, or so that it grows and shrinks in unit amounts.

Note: The window outline snaps to the cursor only after the user starts dragging. This

prevents a click in the resize bar—which might be meant only to bring the window to the
front—from inadvertently resizing it. :

The Window Interface to Applications ~ 2-49

2-50

Closing Windows

The close button removes a window from the screen. What this means depends on the type

of window:

Menus and panels

Standard windows

A menu that’s closed is removed from the screen, but the user
retains a way to quickly retrieve it through a command in another
menu. Panels that are closed are retrievable in the same way. (See
“Menus,” later in this chapter, for more information.)

When a panel that was closed is returned to the screen, it assumes
its former size and location, and it retains its former state. From
the user’s point of view, and programmatically, it’s the same panel
that was closed.

Closing a standard window usually removes it from the
application as well as from the screen. From the user’s point of
view, the same window can’t again be made visible. The
application might create a new window with the same title and a
similar display, but there would be differences. The selection
might not be preserved, and the new window won’t necessarily be
located in the same place or have the same shape as the old one,
especially if the user had moved or resized the window that was
closed.

Closing a window that displays the contents of a file normally also
closes the file. Users should be given a chance to save any changes
to the file before it’s closed. This is typically done through an
attention panel such as the one illustrated in the “Panels” section
later in this chapter.

The close button has a matching command in the Window menu, and the command has a
keyboard alternative, Command-w (for “window”). Command-w closes a window selected
by the user, if the window has a close button. (See “The Window Menu” below for details.)

Miniaturizing Windows

Miniaturizing a window removes it from the screen without destroying it or its contents.
The window disappears from view, and a miniwindow appears to represent it on-screen.
Double-clicking the miniwindow reverses the miniaturization.

Users can’t work in a miniaturized window, but programs can continue to alter its display.
For example, if you begin compiling a program in a Terminal window, and then miniaturize
the window, you’ll see any error messages written by the compiler when you return the

window to the screen.

Chapter 2: The NeXT User Interface

Miniaturizing a window differs from closing one in a number of ways:

* Miniaturizing preserves the window as it was last seen on-screen; a window that’s
closed can’t be retrieved in the same state.

* Miniaturizing a window leaves behind a miniwindow so that it can brought back to the
screen; closing a window doesn’t provide the user with a way of getting it back.

* Miniaturizing a window that displays a file won’t close the file or change the way it’s
displayed; closing a window closes the file it displays.

Menus can’t be miniaturized and don’t need to be, since closing serves roughly the same
function. When a menu is closed, it’s preserved and can be returned to the screen through
a menu command; a miniwindow isn’t needed to get it back. Menus are generally small to
begin with; there wouldn’t be much advantage to miniaturizing them further.

A panel can have a miniaturize button, but it’s rare that one would be needed. Like menus,
panels can be closed and returned to the screen through a menu command. A miniaturize
button is redundant, unless a miniwindow would, for some reason, be more convenient for
the user than the command, or unless the panel persists on-screen when the application isn’t
active (see “Persisting Panels” later in this chapter).

Like the close button, the miniaturize button has a counterpart command in the Window
menu that can miniaturize a target window. But, unlike the close button, its command
doesn’t have a standard keyboard alternative. See “The Window Menu” later in this chapter
for information on how the command works.

Hiding and Retrieving Windows

The Hide menu command and its keyboard alternative, Command-h, let the user clear the
screen of all the windows belonging to an application. This opens up the workspace so that
it’s easier to work in another application.

When an application is hidden, only its freestanding or docked icon remains on-screen.
When the user double-clicks the icon, the hidden windows reappear at the front of the
screen. Users can resume working in the application, picking up again at exactly the same
point where they left off.

Double-clicking an application icon has one other effect: It activates the application (as
discussed in the next section), and so may cause the menus and panels of another
application to disappear while those of the newly activated application reappear.

Double-clicking the icon for a running application always activates it and brings its
windows to the front, even if the application wasn’t hidden. A hidden application has all
its windows return at the front of the screen. However, if the application wasn’t hidden, but
its windows are simply covered by the windows of other applications, double-clicking its

The Window Interface to Applications ~ 2-51

icon brings only its panels and frontmost standard window forward. Other standard
windows may remain covered. Since the double-click activates the application, its menus
also return to the screen.

Note: A window that’s completely obscured by other windows is “covered,” but not
“hidden” in the sense used here. A covered window can be made visible by moving the
windows on top of it to the side. A hidden window can’t be; it’s completely removed from
the workspace.

Application and Window Status

2-52

Since UNIX can run more than one application process at a time, the screen is likely to
display windows for a variety of different applications. Workspace Manager is one
application that will almost always have a window on-screen. Some users will also run
Mail and a spreadsheet, or perhaps a word processor and Digital Webster, at the same time
as other applications.

The user must be able to pick a particular application, and a particular window in that
application, to work in. The application that the user is currently working in is known as
the active application; the windows that are the current focus of user attention in the active
application are the key window and the main window. The key window and main window
are usually one and the same; the two terms identify different functional roles that can be
assumed by the same window:

» The key window is the window that receives characters from the keyboard.
* The main window is the window containing the selected target for control actions.

These three concepts—the active application, key window, and main window—refer not to
inherent properties of applications and windows, but to their status at a particular point in
time. They’re discussed more fully in the three sections that follow.

The Active Application

Out of all running applications, at most one is selected to be the active application, the
principal application the user is working in. An application must be activated—made to be
the active application—before the user can type in its windows or use its menus.

The active application differs from other running applications in four ways:

» It’s the only application with visible menus. When an application is deactivated, its
menus are hidden from view; when it’s reactivated, theyre restored to the screen.

Chapter 2: The NeXT User Interface

» It’s the application that owns most, if not all, of the panels that are visible on-screen.
In general, panels behave like menus; they hide when the application isn’t active and
return to the screen when the application is reactivated. In exceptional cases, however,
the application may choose to leave a panel on-screen even when the application isn’t
active. (See “Panels” below for guidelines on when it’s appropriate to allow a panel to
persist.)

» It’s the application that receives the user’s keyboard actions. Typing and keyboard
alternatives can affect only the active application. When there’s no active application,
the user’s keystrokes have no effect.

» It’s the application that contains the key window and main window (if there is a current
key window or main window), and its windows are likely to be in front of the windows
of other applications.

Activating an Application

The task of selecting the active application is left to the user. An application never becomes
active unless the user does something to activate it. The user’s action can be direct, such as
launching the application or clicking in one of its windows, or indirect, such as having one
application send a message to another application.

An application is activated when:

» The user launches it, provided no other application is currently active. After launching
an application, Workspace Manager deactivates itself so the newly launched
application is free to become active. Unless the user reactivates Workspace Manager
or activates another application while the newly launched application is being read into
memory, the new application will become the active application.

» The user double-clicks a miniwindow belonging to the application, or double-clicks the
application’s freestanding or docked icon. Double-clicking a docked icon will launch
the application if it’s not already running.

» The user clicks within one of the windows belonging to the application, provided the
window isn’t a miniwindow or icon. (Clicking a miniwindow or icon just once may
bring it to the front, but won’t activate the application.)

» Itreceives a message from another application, if the message asks it to do something
that may require interaction with the user. A message to open another file received from
Workspace Manager is one such message. A message sent to Webster asking it to
define a word is another. (See “Conditional Activation” below for details.)

A docked application that’s launched automatically when Workspace Manager starts up is

not activated; Workspace Manager remains the active application. Only applications that
are launched due to direct user action are given the opportunity to become active.

Application and Window Status ~ 2-53

2-54

Deactivating an Application

There can be only one active application per workspace (that is, one per Window Server) at
atime. Whenever the user chooses a new active application, the previous one is
automatically deactivated. The Application Kit and Workspace Manager take care of this
task.

However, some user actions can deactivate an application without activating a successor.
The active application is deactivated when:

¢ The user hides its windows (by using the Hide command).
» The user terminates it (by choosing the Quit command).

In neither case is another application activated. It takes a positive act on the user’s part to
make an application active.

In addition, an application should deactivate itself just before sending a message to another
application, if the intent of the message is to have the other application become active. (See
“Conditional Activation” below for details.)

Note: A deactivated application is still an active process running on the computer. It’s
“deactivated” only in the sense that it no longer is the active application.

Conditional Activation

Applications communicate with each other through messages. When an application
receives a message asking it to do something that might require user participation—even to
the extent of operating a scroller—it needs to become active. However, it should activate
itself only if the user hasn’t turned to another application and made it the active application.

For example, one application could send a message requesting the services of another
application (as a word processor might call upon a spelling checker). The first application
(the word processor) deactivates itself immediately before sending the message to the
second application (the spelling checker). The second application then activates itself on
condition that no other application is currently active. Since the first application had
deactivated itself, this condition will be met, unless the user has activated another
application in the meantime.

Conditional activation follows from the principle of user control. This principle is violated
if an application forces activation when the user wants to turn to something else.

Chapter 2: The NeXT User Interface

The Key Window

Users expect to see their actions on the keyboard and mouse take effect not only in a
particular application, but also in a particular window of that application. Each user action
is associated with a window by the Window Server and Application Kit. Before acting, the
user needs to know which window will be affected; there should be no surprises.

Since the mouse controls a cursor, it’s quite easy for the user to determine which window a
mouse action is associated with; it’s whatever window the cursor is pointing to. But the
keyboard doesn’t have a cursor, so there’s no natural way to determine where typing will
appear.

The window associated with keyboard actions, the one where typing will appear, is known
as the key window. To mark the key window for users, the Application Kit highlights its
title bar (by turning it black). A window without a title bar can also be the key window, but
only windows with title bars are marked. A potential key window should always have a title
bar.

Key window highlighting is illustrated in Figure 2-17.

one Window
This is the key window, where typing will appear

Figure 2-17. The Key Window

You can think of the highlighting as a kind of cursor for the keyboard. It shifts from window
to window as the key window changes. Key-window status also moves from application to
application as the active application changes. Only one window on the screen is marked at
a time, and it must be in the active application. There’s just one key window per Window
Server—that is, only one per machine and keyboard.

For a window to be designated as the key window, it must be able to accept characters from
the keyboard. Standard windows should always have this ability, but menus lack it, as do
lists, miniwindows, and icons. Each application can determine which of its panels can
receive keyboard actions. (See Chapter 5 and Chapter 7, “Program Dynamics,” for
information on how to do this.)

Application and Window Status ~ 2-55

2-56

Note: A window doesn’t have to become the key window to receive, and act on, keyboard
alternatives. It does, however, have to be in the active application.

Since the key window belongs to the active application, its black title bar has the secondary
effect of helping to show which application is currently active. The key window is the most
prominently marked window in the active application, making it “key” in a second sense:
It’s the main focus of the user’s attention on the screen.

You probably want the principal windows of your application to receive this attention; any
that contain documents or hold the application’s principal display should certainly receive
it. In general, all the standard windows in your application should be permitted to become
the key window, even if they don’t respond to keyboard actions. Giving key window status
to a window focuses attention on it and prevents the user from typing in any other window.

If the key window doesn’t do anything with the user’s typing, it should beep as it receives
the keystrokes to indicate to the user that typing isn’t appropriate.

The Main Window

The standard window where the user is currently working is known as the main window.
Usually, the main window is also the key window, and therefore the main focus of attention
on the screen. Whenever a standard window becomes the key window, it also becomes the
main window.

Panels and menus can never be the main window; only standard windows can. But many
panels can be made the key window. When key window status shifts from a standard
window to a panel, main window status remains with the standard window.

The main window is the focus of user actions in panels and menus. The Find panel in
WriteNow, for example, requires the user to supply information by typing it. Since the
panel is the destination of the user’s keystrokes, it’s marked as the key window. But the
panel is just an instrument through which users can do work in another window—the main
window.

So that users can pick out the main window when it’s not the key window, the Application
Kit highlights its title bar in dark gray. If the main window is also the key window, it has
only the black highlighting of the key window.

Figure 2-18 illustrates the main window when it’s marked as the key window and when it’s
not.

Chapter 2: The NeXT User Interface

BT
This is both the key window and the main window.

 StandariWindow

This is still the main window, but the Panel is now the key
window.

Figure 2-18. Marking the Main Window

Like user actions in a panel, menu commands may affect the main window. For example,
the Save command saves the document displayed in the main window and the Bold
command turns the current selection in the main window bold.

Application and Window Status ~ 2-57

2-58

A menu command can also affect a panel. A Paste command could enter text in a Find
panel, for example. For this reason, user actions in a panel or menu need to be associated
with both the key window and the main window:

* An action is first associated with the key window.

» If the key window is a panel and it can’t handle the action, the action is next associated
with the main window.

Note that this order of precedence is reflected in the way windows are highlighted: The key
window is always marked; the main window is marked only when it’s not the key window.

The main window is always in the same application as the key window, the active
application. It follows the key window as the user’s actions shift the focus from window to
window and from application to application.

Choosing the Key Window and Main Window

Whenever possible, the user, rather than the application, selects the key window and main
window.

In the Active Application

In the active application, the user can select a new key window by clicking in it. If the
window is a standard window, it’s also made the main window. If it’s a panel, it’s
highlighted as the new key window, but the former main window retains its status and is
highlighted in dark gray. The user can’t make a window the main window without also
making it the key window.

The Application Kit chooses a new key window (or main window) for the active application
whenever the user closes or miniaturizes the window currently having that status:

» Ifthe closed or miniaturized window was the key window but not the main window, the
Application Kit makes the main window the new key window.

e Otherwise, the Application Kit chooses the frontmost window that accepts typing to be
the new key window, and the frontmost standard window to be the new main window.
The new key window will generally also be the new main window.

When an Application Is Activated

When an application is activated, one of its windows is made the key window and one
(perhaps the same one) is made the main window. Again, whenever possible, the user
makes the selection:

Chapter 2: The NeXT User Interface

« If the user activates the application by clicking in a window that accepts keystrokes, it
becomes the key window. If the window is a standard window, it’s also made the main
window.

» If the user activates an application by double-clicking a miniwindow, the window it
represents again appears on-screen and becomes the key window and main window.

If an application is activated without the user directly selecting a new key window, the
user’s previous selections are honored. For example, if the user reactivates an application
by double-clicking its icon, the previous key window and main window are restored.

When an application is activated on launch, there are no previous choices to honor. The
application should designate one of its windows to be the initial key (and main) window. If
the application opens a document file for the user, the window that displays the document
should be the key window.

Note: When a new application is activated, its key window may be highlighted before the
former key window (in the deactivated application) loses its highlighting. This is an
unavoidable consequence of a multitasking environment. Users can begin working in one
process (the new active application) before their instructions to another process (the
previous active application) have been completed. Although the former key window may
retain its highlighting for a short time, it’s no longer the key window; all keyboard actions
are associated with the new active application.

Clicking in a Window
Clicking in a window has two separate, but related, results:

» The window becomes the key window (and usually also the main window), and its
application is activated.

e The window comes to the front of its tier.
The first is a change in the window’s status, the second in its position on-screen.

It’s clear that both results are required to make the window available to the user to work in.
The window needs to be reordered in front of other windows so that its contents aren’t
covered. It also must become the key window for the user to be able to type in it and for it
to receive menu commands. For a window to become the key window, its application must
be activated.

On the NeXT computer, however, these two results of a mouse click, while logically
related, are not inseparable. If the click is in the window’s title bar and is modified by the
Alternate key, it brings the window to the front, but doesn’t make it the key window or
activate its application. Alternate-clicking in the title bar thus lets users rearrange and
reorder windows on the screen without changing the current key window, main window, or
active application.

Application and Window Status ~ 2-59

Menus

Working in a Window

Users also click to work within windows—to operate buttons and sliders, to scroll, and to
make selections. If the user clicks in a window that isn’t already the key window, a question
arises concerning intent: Did the user intend the click just to bring the window forward and
make it the key window, or was it also intended to do some work within the window? This
question is addressed by the following guideline:

« If the user chooses a particular control—such as a button or scroller—to click in, the
click will not only bring the window forward, make it the key window, and activate its
application, the click will also operate the control. Since controls are small, it’s
reasonable to assume that the user chose to click the control, not just the window.

e If the click is just generally within the content area of the window, the click will bring
the window forward, make it the key window, and activate its application, but won’t do
anything else. Specifically, the click won’t alter the current selection.

However, if the user chooses to double-click within the content area of the window, the
double-click will act just like a double-click in the key window. Double-clicking on a word
should select the word whether the window is the key window or not.

Making a Click Unnecessary

When an application designates a new key window for the user to work in, as it does when
the current key window is closed or miniaturized, it simulates the action of a mouse click
by bringing the window forward. Whenever an application acts on the user’s behalf, its
action should do exactly what the user’s action would have done.

A menu is a titled window that displays a vertical list of commands; each command controls
a particular action that’s carried out when the command is chosen.

To choose a command, the user presses the left mouse button as the cursor points anywhere
within the content area of the menu and releases it as the cursor points to the desired
command. This can be as simple as clicking the command, or the user can drag through the
menu, from command to command. Each command that comes under the cursor while the
mouse button is down is highlighted.

2-60 Chapter 2: The NeXT User Interface

Menus provide users a point of entry for all the functionality of an application, its obscure
and common features alike. Because of this special role, they behave in a special way:

» All the visible menus for an application disappear when the user starts working in
another application. They reappear when the user returns to the application. (Menus
that weren’t previously on-screen don’t reappear.)

» Menus are segregated into two of the frontmost tiers of on-screen windows. They
appear to float above all other windows (except attention panels and lists).

* Menus can’t be miniaturized. They don’t need to be, since closing a menu serves only
to hide it temporarily.

¢ Menus are hierarchically arranged. Choosing a command in one menu can produce
another menu with its own list of commands.

The first three of these points were discussed earlier in this chapter. (See “The Active
Application,” “Window Ordering,” and “Miniaturizing Windows” above.) The menu
hierarchy is discussed below.

Submenus

Every menu, except the main menu, should be a submenu of another menu, its supermenu
in the application’s hierarchy of menus. The main menu is at the top of the hierarchy; it’s
the only menu that’s not a submenu.

Each submenu is associated with a particular command in its supermenu. The submenu
typically remains off-screen until the user chooses the command that it’s associated with.
This makes the submenu visible and attaches it to its supermenu.

An attached submenu is displayed alongside and to the right of its supermenu. The title
bars of the two menus are aligned at the same height. Figure 2-19 shows a main menu with
its Edit submenu attached.

] My fpp Edit

Figure 2-19. Attached Submenu

Menus 2-61

2-62

The submenu comes to the screen as soon as the user presses the mouse button or drags into
the controlling command. The attachment is usually temporary, however; the submenu
disappears when the user drags into another command. The user can drag from a
controlling command into a submenu to choose one of the submenu’s commands. As long
as the mouse button is held down, the submenu remains visible and the controlling
command stays highlighted.

Keeping a Submenu Attached

If the user brings a submenu to the screen and releases the mouse button while the submenu
is still visible, the submenu remains on-screen and attached to its supermenu. The easiest
way to attach a submenu is simply to click its controlling command, but the user can also
drag to the command and release the mouse button while the submenu is visible.

There’s just one exception to this rule: If the user drags into the submenu to choose one of
its commands, the submenu disappears once the choice has been made. The intent of the
user’s action is to choose a submenu command, not to attach the submenu and keep it
on-screen.

The controlling command for an attached submenu stays highlighted to indicate that the
submenu is attached. In Figure 2-19 above, the Edit command is highlighted while the Edit
menu is attached.

A supermenu and its attached submenu act like a single window. User actions that move or
close the supermenu also move and close the submenu; an attached submenu has no close
button of its own. A submenu attached to the main menu is assigned to the same window
tier as the main menu.

An attached submenu can also have its own submenu attached. This is illustrated in Figure
2-20. The Sink menu is attached to Kitchen, and Kitchen is attached to House. Moving or
closing the House menu serves to move or close all three.

Kitchen Sink

Figure 2-20. Three Attached Menus

Chapter 2: The NeXT User Interface

Tearing off an Attached Submenu

The user can tear off an attached submenu by dragging it away from its supermenu. Moving
it free of its supermenu gives it an independent life on-screen. As a sign of its
independence, it gets, for the first time, its own close button. The close button identifies the
menu as a torn-off submenu. (Any submenus that were, directly or indirectly, attached to
the torn-off submenu move with it and remain attached.)

The idea is for users to attach a submenu, then tear it off and move it to a desired location
if they want it to stay on-screen. Once a submenu has been torn away from its supermenu,
it stays where the user puts it.

When the user drags through a menu, copies of torn-off submenus are temporarily attached
while the cursor is over their controlling commands. It’s possible to drag into the copy to
choose a command, just as for any other temporarily attached submenu. Figure 2-21 shows
a transient copy of a torn-off Edit menu.

l My App Edit

Figure 2-21. Attached Copy

The torn-off submenu stays in place while the copy is on-screen. The copy is temporary; it
stays on-screen only while the mouse button is held down. When the mouse button is
released, the copy disappears, even if the cursor is over the controlling command. To
reattach a torn-off submenu and keep it attached, the user must first close it.

Detaching a Submenu

Besides tearing it away from its supermenu, users can detach a submenu in any of three
other ways:

» By again choosing its controlling command. This removes the submenu (and any
submenus attached to it) from the screen. Choosing the Kitchen command in the House
menu in Figure 2-20 above detaches both the Kitchen and Sink submenus.

» By choosing any other command in the supermenu.

» By closing the supermenu. When a supermenu closes, its attached submenu is detached
and closed.

Menus 2-63

2-64

All three ways of detaching a submenu remove it from the screen; it disappears from view.
If the submenu has its own attached submenu (as Kitchen does in Figure 2-20), they both
disappear (and both detach).

Submenu Hierarchy

Since menus should be easily accessible to the user, you should try to keep your
application’s menu hierarchy as shallow as possible. In general, a menu should be located
no more than two steps away from the main menu. (Note that, for purposes of illustration,
Figure 2-20 violated this guideline. Since the House menu was torn off from another menu,
the Sink menu is at least four steps away from the main menu.)

A menu can have as many submenus as it has commands (but only one can be attached at
atime). A menu can also be made the submenu of more than one menu, but there would
be little reason to establish this relationship and it’s not recommended.

Commands

A menu can display several different kinds of commands. Some act like controls in the
control-action paradigm—Hide, Quit, and Info, for example. Others—such as, Copy,
Paste, and Miniaturize—participate in the target-selection paradigm.

Many commands cause other windows to appear on-screen:

e Some bring up a standard window—the New command in the Window menu, for
example.

» Some control submenus. The action of the command is simply to attach the submenu
to the menu. The command stays highlighted while the submenu is attached.

« Some put an attention panel on-screen to help clarify or complete the command. For
example, the Save As command produces a panel that asks the user to type in the name
of the file where the document should be saved. The controlling command (Save As)
remains highlighted until the attention panel is dismissed.

e Others bring up a panel that can stand on its own, independent of the command that
produced it. Sometimes the panel simply imparts information to the user—a Help
panel, for example. But usually it acts as a control panel where the user can give
instructions to the application—the Font and Find panels, for example. Such panels are
very similar to submenus in that they open a range of options to the user. However,
unlike submenus, they don’t attach to a supermenu and can’t have submenus (or
subpanels) of their own.

Chapter 2: The NeXT User Interface

Menu commands should be short, consisting of a single word if possible, a short phrase if
not. If a command controls a submenu or brings up a submenu-like panel, it should be
identical to the title of the submenu or panel. If it brings up a standard window, it should
match the title of the window if at all possible. Otherwise, wherever possible, the first word
of the command should be a verb, so the command reads like a short imperative sentence
for the action it performs.

The first and last words of a command begin with uppercase letters; all other words are
capitalized as they would be in a title. It’s preferable to avoid abbreviations in commands,
especially those that aren’t standardized or widely used.

When a command can’t be carried out, it should be dimmed (displayed in gray rather than
black). For example, the Save command is dimmed when there’s no open file to save.
Dimmed commands shouldn’t be highlighted in response to user actions.

Commands that control submenus are marked by the submenu symbol, , as illustrated in
Figure 2-22. Those that control a panel are marked by an ellipsis (...). Commands that
bring up a standard window (like the New command in the Window menu) are unmarked;
they aren’t followed by an ellipsis.

Figure 2-22. Sample Commands

The character used as the keyboard alternative for a command is displayed to the right of
the command, aligned with the submenu symbol. Commands that control submenus can’t
have keyboard alternatives, although those that bring up a panel can.

When a command is activated by a keyboard alternative, the command is highlighted just
as if it had been clicked. Keyboard alternatives can also operate commands in off-screen
menus. When they do, the closest command in a menu on-screen is highlighted. For
example, if the Kitchen and Sink menus in Figure 2-20 above were off-screen and the user
chose one of the commands in the Sink menu, the Kitchen command in the House menu
would be highlighted. This ensures users of immediate, visual feedback that the keyboard
alternative has in fact invoked the command.

If a menu command controls a submenu, it remains highlighted as long as the submenu is
attached. If it controls an attention panel, it remains highlighted until the panel is dismissed
from the screen. Commands don’t stay highlighted if they bring up a panel that’s not an
attention panel.

Menus 2-65

2-66

The Main Menu

Every application should have at least one menu, a main menu that bears the name of the
application, or a suitable abbreviation, in its title bar. If an application has just a main menu,
it holds all the commands for the application. If it has more than one menu, all but the main
menu should be made submenus of another menu. Through the hierarchical arrangement
of submenus, the main menu gives the user access to all the menus of the application.

Because the main menu is at the top of the menu hierarchy, it lacks a close button and
always remadins on-screen when its application is active.

~ Placement

When an application is first launched, its main menu appears in the upper left corner of the
screen. This has several advantages to the user:

» Because every main menu comes up in the same place, users always know where to find
it.

* The name of the current active application, in the main menu’s title bar, is always in a
common and logical location on-screen.

» Inthe upper left corner, the main menu is less likely to block the view of other windows.
Standard windows are generally more centrally located on the screen, the dock adheres
to the right edge of the workspace, and miniwindows and icons line up along the bottom
edge.

* A rapid movement of the mouse easily brings the cursor to the main menu. Because
the cursor can’t leave the workspace, it stops within the menu; the user doesn’t have to
be concerned with moving the cursor too quickly or too far.

However, users can change the default location of the main menu with the Preferences
application, and you’re encouraged to permit users to state a specific preference for where
the main menu of your application should come up the next time it’s launched.

Chapter 2: The NeXT User Interface

Bringing the Main Menu to the Cursor

If the right mouse button is enabled (with the Preferences application), it can be used to gain
quick access to the main menu. When the user presses the right mouse button anywhere in
the workspace (except over an icon), a copy of the main menu for the active application

appears under the cursor. The copy stays on-screen until the right mouse button is released.

To begin, the cursor lies directly over the main menu'’s title bar. The user can drag down
into the menu (and into a temporarily attached submenu) to choose a command. When the
right mouse button is released, the copy and any temporarily attached submenus disappear.

Note: Users can also enable the left mouse button for this special function (see “Left and
Right Orientation” earlier in this chapter). By convention, documentation takes the point
of view of right-handed users, who generally prefer to enable the right mouse button.

Standard Commands

There’s a great deal to be gained if commands shared by most applications are arranged
similarly in similar menus. Every application should lay out its main menu like the model
illustrated in Figure 2-23.

Figure 2-23. The Main Menu

Menus 2-67

The commands shown in this figure are described below:

Command
Info...

Window

Edit

Font

Print...

Preferences...

Help...

Find

Request

2-68 Chapter 2: The NeXT User Interface

Action

Brings up a panel containing information about the application. It
might display the name of its author, a copyright notice, a version
number, or a few lines of help. You can determine the type of
information most appropriate for your application. (See “The
Information Panel,” under ‘“Panels” below.)

Attaches the Window menu, which contains commands affecting
windows and the files displayed in windows. See “The Window
Menu,” below.

Attaches the Edit menu, which contains commands affecting the
current selection in editable documents. See “The Edit Menu,”
below.

Brings up the Font menu, which has commands to alter the font of
the current selection. Each command alters one aspect of the font,
such as its size or style, while leaving other aspects intact. There’s
also a command to bring up the Font panel, one of the specific
panels defined in the Application Kit. The Font menu and Font
panel target currently selected text; the Preferences panel should
be used to alter the default font for static displays. (See “The Font
Menu” below.)

Brings up a panel that permits the user to print a document. This
panel is also defined in the Application Kit.

Brings up a panel that permits the user to customize the
application. All preferences should carry over to the next time the
user launches the application; most will also affect the way the
application works during the current session. Preferences can
include such things as the location and size of windows, the
default font size, the format for displaying data, and where to store
document files.

Brings up a panel with helpful information on how to use the
application, or with instructions on how to get that help.

Attaches the Find menu, which contains commands related to the
Find panel. One of its commands brings up the panel. See “The
Find Menu” below.

Brings up a menu with commands that request action from other
applications. For example, users can request the dictionary
application (Digital Webster) to look up the current selection, or
Workspace Manager to open a file. See “The Request Menu”
below.

Hide Hides all the windows of the application. See “Hiding and
Retrieving Windows” above.

Quit Terminates the application. If the application has any open files
that the user has altered but not saved, this command should bring
up an attention panel giving the user the option of canceling the
command and perhaps also of saving the altered files.

The Info, Hide, and Quit commands should be in the main menu of every application. The
other commands shown in Figure 2-23 should be included where appropriate. Since almost
all applications require a Window menu to hold commands corresponding to title bar
buttons, the main menu almost always has a Window command too.

Other frequently used commands can be added to the main menu after the Print command

and before Preferences. Added commands should pertain to the entire application. Less
common commands should be placed in submenus.

The Window Menu

The Window menu contains commands affecting windows and the files they display as a
whole. Commands affecting selected contents of the window are mainly in the Edit menu.

Figure 2-24 illustrates the standard format of the Window menu.

Windowr

Figure 2-24. The Window Menu

Menus 2-69

The commands illustrated in Figure 2-24 are summarized below:

Command
Open...

New

Save

Save As...

Save To..:

Revert to Saved

Page Layout...

Miniaturize

Close

2-70 Chapter 2: The NeXT User Interface

Action

Brings up the Open panel so the user can open a file. Opening a
file also opens a window to display it in. The Open panel is
provided by the Application Kit.

Opens a new, unnamed file and a window to display it in.

Saves changes to a file (writes them to the disk). If the file is
unnamed, this command should have the same effect as the Save
As command.

Saves the file displayed in the window, as changed, by writing it to
anew file with a name supplied by the user. The new file becomes
the file displayed in the window, and the window’s title is changed
accordingly. This command places an attention panel on-screen
which asks the user to type in a file name, or cancel the command.
This panel is defined in the Application Kit.

Saves the file displayed in the window, as changed, by writing it to
a new file with a name supplied by the user. In this respect, Save
To is identical to the Save As command. However, Save To
doesn’t replace the window’s current file with the new one. You
can choose whether to implement Save As or Save To or both in
your application.

Replaces the current version of the file displayed in the window
with the version saved on disk. This undoes any changes made to
the file since it was last saved.

Brings up the Page Layout panel, which lets users determine how
documents are to be printed and displayed on the screen.

Miniaturizes the current key window, if it has a miniaturize button.
If the key window doesn’t have a miniaturize button but the main
window does, the command miniaturizes the main window. If
neither window has a miniaturize button, the command has no
effect. (See “Miniaturizing Windows” above.)

Closes the current key window, if it has a close button. If the key
window lacks a close button but the main window has one, the
command closes the main window instead. If neither has a close
button, the Close command is inoperative. (See “Closing
Windows” above.)

In some applications, the user can open documents that are displayed in more than one
window. For these applications, the Close command should be a counterpart to the Open
command: It should close the document file and all the windows that display it. The
Window menu should then include another command, Close Window, that would close a
single window (if it has a close button). Close Window, rather than Close, has the
Command-w keyboard alternative. The arrangement of these commands is illustrated in
Figure 2-25.

Figure 2-25. Close Commands

The Save, Save As, Save To, and Revert to Saved commands affect the main window and
the document it displays. The Miniaturize and Close commands are alternatives to the title
bar buttons with the same names; they can affect a window only if it has the corresponding
button in its title bar.

An application can add its own commands to the Window menu immediately above the
Page Layout command.

The Edit Menu

The Edit menu contains commands that alter the selection in the current key window (or in
the main window if the key window doesn’t respond to the command). A command is
dimmed when it can’t operate on the current selection.

Figure 2-26 illustrates the standard format of the Edit menu.

Figure 2-26. The Edit Menu

Menus 2-71

2-72

The commands shown in Figure 2-26 are described in the table below.

Command
Cut

Copy

Copy As

Paste

Delete

Undo

Duplicate

Select All

Figure 2-27. Copy As

Action
Deletes the current selection and copies it to the pasteboard.

Copies the current selection to the pasteboard without deleting it.

Attaches a submenu that permits the user to copy the current
selection to the pasteboard as a specified data type. The submenu
lists the possible data types, as illustrated in Figure 2-27.

Replaces the current selection with the contents of the pasteboard.

Deletes the current selection without copying it to the pasteboard.
The Delete key has the same effect.

Undoes the last editing change. This usually means all changes
since the user last made a selection, including the selection of an
insertion point.

Duplicates the current selection in an appropriate place and makes
the duplicate the current selection. The “appropriate place”
depends on the application. Graphics programs generally offset
each copy a small amount from the original; a text editor might
place the duplicate text on a new line.

Makes the entire contents of the file the current selection.

Applications that permit the user to edit text or graphics should support at least the Cut,
Copy, Paste, and Select All commands. Additional commands can be added to the Edit
menu immediately above Select All

Chapter 2: The NeXT User Interface

The Font Menu

Applications that support text entry and editing should provide a Font menu and Font panel.
The panel is defined in the Application Kit; it contains controls that set and preview fonts.
The menu has a command to bring up the panel, and commands to make common
adjustments to a font. It’s illustrated in Figure 2-28.

Figure 2-28. The Font Menu

Font menu commands are explained in the chart below.

Command Action
Font Panel... Brings up the Font panel and makes it the key window.
Bold Makes the current selection bold, if it’s not bold already, and

makes it unbold if it is. The name of the command alternates
between “Bold” and “Unbold” depending on the selection.

Italic Makes the current selection italic or “oblique,” if it isn’t already,
and makes it unitalic if it is. The name of the command alternates
between “Italic” and “Unitalic” depending on the selection.

Larger Makes the current selection one point larger.

Smaller Makes the current selection one point smaller.

Heavier Uses a heavier typeface to display the current selection.
Lighter Uses a lighter typeface to display the current selection.

If the current selection is an insertion point, these commands affect the next set of
characters inserted, rather than any existing text.

Each command leaves the other font attributes intact. For example, Bold will change

11-point Times® Roman to 11-point Times Bold and 24-point Courier Oblique to 24-point
Courier Bold Oblique.

Menus 2-73

2-74

If there’s more than one font in the selection, Larger and Smaller change each to be one
point larger or smaller than its current size. The other commands make only the change
that’s appropriate for the first character in the selection. For example, if the first character
in a multifont selection is italic, the (Un)italic command will remove the italic trait from all
the text in the selection, but won’t change any text that isn’t italic. If the first character isn’t
italic, the same command (but now called “Italic”’) will italicize the entire selection, but
won’t alter any text that’s already italic.

The Find Menu

Applications that display large amounts of text are encouraged to include a Find menu like
the one illustrated in Figure 2-29. Other applications may also find this menu useful, but
because it’s designed most specifically for text, a variation of it may better meet their needs.

Find

Figure 2-29. The Find Menu

Command Action

Find Panel... Brings up the Find panel, makes it the key window, and selects
everything in its Find field so that the user can easily enter new
text. If the panel is already on-screen, the command brings it to
the front, makes it the key window, and selects the Find field.

Find Next Searches forwards for the next occurrence of the string in the
panel’s Find field.

Find Previous Searches backwards for the previous occurrence of the string in
the panel’s Find field.

Enter Selection Enters the current selection into the panel’s Find field so that Find
Next and Find Previous can search for it.

Find Next and Find Previous begin searching at the current selection. If the search is
successful, the text that’s found is selected and becomes the starting point for the
subsequent search. Neither command requires the Find panel to be on-screen. However, if
the panel’s Find field is empty, Find Next and Find Previous both bring up the Find panel,
make it the key window, and select its Find field. This is exactly what the Find Panel
command does. These other commands do it as convenience to the user, who has indicated
an intention to do a search.

Chapter 2: The NeXT User Interface

The Request Menu

Panels

Applications are encouraged to let users avail themselves of services provided by other
applications, and to make their own services similarly available. One way that this is done
is through the Request menu. Each command in the menu names both an action and an
application to perform that action. Some examples are given in Figure 2-30.

Request

Figure 2-30. The Request Menu

Define in Webster passes the current selection to the Digital Webster application, which
looks it up in the dictionary and thesaurus. Search in Librarian and Search in Quotations
request those applications to search for a selected text string in the digital library. Open
from Workspace sends a selected pathname to Workspace Manager, which asks the
appropriate application to open the file.

Request commands conditionally activate the other application, but only if user input might
be required. (Webster is likely to require the user to scroll the display, but Workspace
Manager doesn’t need the user’s help to get a file opened. The application that opens the
file will become active, but Workspace Manager won’t.)

Each application that accepts a request from another application should publicize both the
message it responds to and the command that can be used to send the message. It’s
important that the command be consistent across all applications that use it. The four
commands shown in Figure 2-30 are standard for four applications they name—Webster,
Librarian, Quotations, and Workspace Manager. You're encouraged to make use of these
commands in your application and to define commands that other applications can use to
send requests to your application.

Panels support the work done in the principal windows of an application. Like menus, most
panels are vehicles through which the user can give instructions to the application. But
unlike menus, they aren’t restricted to a single column of commands; a panel can provide
the user with a variety of different control objects—buttons, sliders, text fields, and more—
arranged as best suits its purpose. The Font, Find, Page Layout, and Open panels are all
examples. Such panels can be viewed as generalized and more versatile menus.

Panels 2-75

2-76

Some panels play a different role, however. Instead of letting the user give instructions to
the application, they give information to the user. Help panels, the information panel, and
attention panels that display warnings are examples.

What unites all panels—whether they convey instructions from the user to the application
or information from the application to the user—is that they play conventional, supporting
roles. None of them are sites for the user’s main work in the application. In a panel, the

dialog between the application and the user is highly structured in both form and content.

Given their functional similarity to menus, it’s not surprising that panels share some menu
attributes:

« Panels aren’t destroyed when they’re closed; they can again be brought to the screen.
o Panels generally aren’t miniaturized.

* The controls in a panel can respond to keyboard alternatives, even when the panel isn’t
on-screen.

* A panel can never become the main window.
However, panels differ from menus in some of the same ways that standard windows do.
Panels and standard windows share the same border and title bar styles, for example, and

either can become the key window.

Attention panels differ from both standard windows and other panels in a number of ways.
They have a distinctive look of their own and occupy one of the frontmost tiers on-screen.

Attention Panels

An attention panel demands attention from users by denying them the ability to work in any
other window of the active application. Until it’s explicitly dismissed, the panel limits what
the user can do within the application to just rearranging windows. Nothing else—title bar
buttons, text entry, miniwindows, or controls in other panels—will work. The only menu
commands that work are those that can affect the panel itself—for example, Cut, Copy, and
Paste, if the panel includes a text field.

It’s possible to activate another application while an attention panel is on-screen, but when
the user returns to the previous application, the mode created by the attention panel will still
be in effect.

Chapter 2: The NeXT User Interface

Types of Attention Panel

Attention panels are appropriate only in a limited number of situations. Because they create
a mode that severely limits the user’s freedom of action, their use should be restricted as
much as possible. A panel can be made an attention panel when:

» It gives the user information about the current context. Such panels usually warn of an
error, of a potentially dangerous or unexpected result of the user’s current course of
action, or of a condition that makes it impossible to carry out a requested action. But
they may also simply supply information the user will need to proceed intelligently
with the application.

» Itinterrupts an action to give the user an opportunity to take corrective steps—as, for
example, the panel that interrupts the Quit command to let users save altered files

before the application terminates.

o It clarifies or completes a user action—as, for example, the panel that completes the
Save As and Save To commands.

Attention panels that interrupt or complete an action always give the user the option of
canceling the action, in which case it’s as if the user had never initiated the action in the first

place. Panels that inform or warn should, if possible, let the user choose what to do in
response to the information they convey.

Attention Panel Appearance

Because an attention panel sets an exclusive mode for itself, in effect disabling the rest of
the application, it must be unmistakable and immediately apparent to the user. Some of the
features that distinguish attention panels from other windows are illustrated in Figure 2-31.
These features include: '

* Anempty title bar. The panel is labeled by text within its content area and is dismissed,
not by a close button, but by buttons within the content area.

e Larger than usual type.
* Anicon to identify its application.
» A Cancel button that lets the user cancel the action that brought the panel up.

+ The Return symbol,£=f] , on a button with the panel’s default action. In Figure 2-31,
it’s the Quit button, but it could also have been the Cancel button.

Panels 2-77

2-78

an empty title bar

larger type

default choice in the
lower right corner

the application icon a way to cancel

Figure 2-31. Attention Panel

Attention Panel Behavior

It’s not enough that attention panels look different than other windows; they must also
behave differently, in ways that keep the user’s attention. For this reason, an attention panel
is always the key window (when its application is active) and stays in front of all other
windows on the screen (except pop-up and pull-down lists the user activates from the panel
itself). Applications should place their attention panels squarely in front of the user at the
center of the screen.

Unlike other panels, an attention panel stays on-screen when the user chooses another
active application. The panel can’t be buried or forgotten; the user may need to move it to
the side to keep it from obscuring the windows of the other application.

When the user returns to the application that put up the attention panel, the panel again
becomes the key window—even if the user activated the application by clicking in a
different window.

Sometimes, an application other than the active application may put an attention panel
on-screen. For example, after the user prints a WriteNow file, the application handling the
print job could bring up a panel with a “printer out of paper” warning. Since this attention
panel doesn’t belong to the active application, it won’t be the key window. It therefore
won’t have a black title bar and the Return key won’t work to activate its default button.

Dismissing an attention panel by clicking one of its buttons activates its application, just as
any other click within the window would.

Chapter 2: The NeXT User Interface

Dismissing an Attention Panel

Attention panels are dismissed from the screen as soon as the user takes the required action,
which can be as simple as typing Return. When dismissed, the panel’s mode ends.

Even attention panels that give warnings require user action to dismiss them and end the
mode. This forces the user to take note of the warning.

Each action that can dismiss an attention panel is represented by a separate button inside its
content area. In contrast, an ordinary panel is closed only by its close button (or the Close
command), never by a button in the content area.

The buttons that dismiss an attention panel should be located along the right and lower
edges of the panel, with the default button—the one operated by Return—in the lower right
corner. The Return key is used as a shortcut for the action the user is most likely to take,
provided that action is also not destructive. Actions the user might regret—such as deleting
a file or removing recent editing changes—shouldn’t be made easier with the Return
shortcut.

Each button must be clearly labeled with the action it performs. Generic labels (like “Yes,”
“No,” and “OK”) are not permitted, since they require the user to look elsewhere, perhaps
to other text, to understand what the button actually does. However, a button labeled “OK”
can be used to dismiss an attention panel that issues a warning.

If an attention panel completes or interrupts a user action, one of its buttons must be labeled
“Cancel”.

Control Panels
Panels that aren’t attention panels—"“control panels”—can be left on-screen as the user
works in the application. They’re brought to the screen by menu commands, just as
submenus are. But they don’t attach to a supermenu and remain at hand until they re closed.

Control panels differ from attention panels in a number of ways:

» They aren’t isolated into a tier of their own above other windows; they compete with
standard windows for space on the screen.

« They generally aren’t visible unless they belong to the active application; they rarely
persist on-screen once the application has been deactivated.

¢ They generally become the key window only if they accept characters from the
keyboard.

Panels 2-79

2-80

» They’re closed by a close button in the title bar, rather than by a button in the content
area. ‘

» They display a title in the title bar like standard windows.

Persisting Panels

By default, a control panel is removed from the screen when its application is deactivated.
The user sees only panels related to the active application. This prevents confusion—such
as might arise when there are similar Find panels for two different applications on-screen
at once.

An application can override this default behavior and allow its panels to remain on-screen
after it has been deactivated, but only if they contain information that would be pertinent to
the user’s activities in another application. This should be a rare occurrence.

Relinquishing Key Window Status

A control panel should remain the key window only as long as necessary. If user actions
within the panel affect the main window, key window status should be returned to the main
window as soon as those actions are completed.

For example, when the user clicks the Set button (or types Return) in a Font panel to change
the font of the current selection in the main window, the panel gives up being the key
window. In all likelihood, the user is finished with the Font panel (at least until the selection
has changed) and is ready to resume working in the main window. Under these ’
circumstances, the user should be free to begin working in the main window immediately,
without being forced to click it once just to make it the key window.

The Information Panel

The panel controlled by the Info command in the main menu provides the user with basic
information about the application. Although each application can decide what type of
information to provide, it’s recommended that it minimally include:

* The name of the application

» The application icon

» Copyright information

» The current version of the application

The information panel should not be implemented as an attention panel.

Chapter 2: The NeXT User Interface

Controls

Controls are graphical objects that users manipulate with the keyboard and mouse to give
instructions to an application. They’re patterned after familiar control devices from
everyday life—switches, knobs, forms, gauges, and the like—and perform analogous
functions. Like the dials and levers on a machine, graphical control objects let the user
“operate” an application.

Every control responds visually to direct manipulation by the user—a dial turns, a button
pushes in or highlights, the knob of a slider slides. Controls go beyond this direct response,
however, to cause the application to do something. They, in effect, translate the user’s direct
manipulation into an instruction for the application. A button sets a state or initiates a
program action, a slider sets a value, a menu item sends a command, and so on.

Which keyboard and mouse actions a control responds to and how it reacts visually are part
of the definition of the control; they’re discussed further in this section. What the control
causes an application to do is part of the definition of the application; it depends solely on
how the application uses the control. In this respect, graphical controls are no different
from control devices in the real world. For example, identical mass-produced switches can
be installed on a variety of different machines. The manufacturer of the switch provides it
with a user interface; the installer gives it specific meaning for a specific machine. (See
Chapter 7 for information on how to “install” the controls defined for you in the Application
Kit.)

The Application Kit defines five canonical controls:

¢ Sliders

¢ Buttons

¢ Menu commands
o Text fields

e Scrollers

Because they’re widely used, each of these controls is described in some detail in its own
section. Menu commands were described under “Menus” above; the others are described
in the sections below.

You can also design your own controls—the Application Kit makes this relatively easy—
but they should adhere to these basic design principles:

* Every control must provide immediate feedback to let the user know that an action has
“taken.” Just as users can look at a dial on a stove to see whether it has been turned, a
graphical control must alter its appearance in response to user actions. It shouldn’t
depend on a reaction elsewhere in the application to give the user feedback.

» Every control should have a distinctive appearance and behavior. Don’t design controls
that look so similar to the canonical controls that users will confuse one with the other.

Controls 2-81

+ The behavior of a control should be apparent from its appearance. After a bit of
familiarity with the NeXT computer, users should be able to easily recognize a control
object and know almost instinctively how to operate it.

Sliders

A slider is a device that sets a value. As illustrated in Figure 2-32, it consists of a vertical
or horizontal bar and a knob that moves on the bar.

Figure 2-32. Slider

The position of the knob in the slider indicates its current value. Users can move the knob,
and thus alter the value, by positioning the cursor anywhere over the bar (even the part of
the bar that’s covered by the knob) and pressing the left mouse button. The knob
immediately jumps to the location of the cursor. The user can release the mouse button to
fix the knob in its new location, or begin dragging the knob along the bar.

A slider can set values on a continuous scale (between some maximum and minimum) or

values at discrete intervals. If the latter, the knob jumps to the position of the nearest
permitted value when the user releases the mouse button.

2-82 Chapter 2: The NeXT User Interface

Buttons

Buttons are the primary controls for setting a state or initiating an application action.
They’re used for the controls in title bars (the miniaturize and close buttons), for Cancel and
the other choices that dismiss attention panels, and in most other situations where a basic
control device is called for.

Buttons can assume a variety of different shapes and sizes, making it more appropriate

sometimes to refer to them as “switches,” “check boxes,” or “toggles,” rather than as
“buttons.” Some of the variety is illustrated in Figure 2-33.

Figure 2-33. An Assortment of Buttons

All buttons respond to a click; some also respond to being pressed. Those that respond to
being pressed send an instruction to the application immediately as the user pushes the
mouse button down. Typically, they repeat the instruction at regular intervals—as long as
the mouse button is held down and the cursor is kept over the button on-screen—for a
continuous, iterative action. Users can drag away from the button and back again to stop
and restart the action. A button that responds only to being clicked sends its instruction to
the application when the user releases the mouse button, provided the cursor is over the
button on-screen.

Whether it responds to being clicked or to being pressed, a button changes its appearance
as soon as the mouse button goes down. It retains its altered appearance while it’s under
the cursor and the mouse button remains down. When the user releases the mouse button,
the button on-screen keeps its altered appearance long enough for its instruction to be
carried out. Usually this is momentary (though it need not be), so users generally notice the
button changing as soon as the click is over.

Controls 2-83

A button’s appearance during a click (or while it’s pressed) can change in any of four ways:
¢ It can highlight.

» It can appear to be pushed in.

¢ It can both highlight and appear to be pushed in.

» If the button displays a bitmap image (as title bar buttons do), it can alter the bitmap it
displays.

These changes are illustrated for buttons with just one state in Figure 2-34.

Before During After
clicking click clicking

Figure 2-34. One-State Buttons

Buttons that are used to set a state display one state before being clicked and another after
the click. The difference in state is generally shown by the presence or absence of
highlighting or by changing the icon the button displays. It can also be accomplished by
changing the button’s label. The possibilities are illustrated in Figure 2-35.

2-84 Chapter 2: The NeXT User Interface

Before During After During After
clicking click first click second click second click

Figure 2-35. Two-State Buttons

Figure 2-35 also illustrates some of the principles that determine how a button looks during
a click:

+ A button must change its appearance during a click, as soon as the mouse button goes
down.

¢ The appearance of a button during a click should reflect what’s about to happen.
Buttons that display a state should reflect the state after the click.

« Ifhighlighting is used to indicate state, it shouldn’t also be used to give feedback during
aclick. Some other change (such as the appearance of being pushed in) should be used
instead.

A button’s label usually states, in a succinct shorthand, what action it causes the application
to take. Even when a button purports to label a state (as in Figure 2-35), users are apt to
think of it not as the current state, but as the state that will be set if the button is clicked. In
other words, they’re liable to interpret it as an action. An “On” button, for example, is more
likely to be interpreted to mean “Press this to turn something on,” than “This is now on.”

Controls 2-85

2-86

It’s best, therefore, to use icons and highlighting to show the current state, and reserve the
button’s label as a brief statement of what the button does. Buttons that do label a state, like
the “AM” and “PM” buttons in Figure 2-35, should be used only where what they label is
clearly visible. The buttons in Figure 2-35 could be used alongside a digital representation
of the time, but they can’t stand alone.

A button with an action label shouldn’t change the action it performs. Although it’s
sometimes tempting to alter the action with the button’s state—to switch between “Start”
and “Stop,” or between “Erase” and “Restore,” for example—it’s best to provide a different
button for each action and disable those that aren’t operable. Where necessary, a pop-up
list can be used to save screen space.

Button labels should be capitalized like menu commands: The first and last words begin
with uppercase letters and the words between are capitalized as they would be in a title.

Dimming the label of a button (using gray text) indicates that the button is disabled.

Text Fields

A text field is a slot where the user can type in a single line of data—such as a file name, a
part number, or an address. The text is editable and selectable; the data is entered only when
the user types Return or clicks a button that’s associated with the field.

Text fields can be titled and arranged in groups to produce an on-screen form, such as the
one illustrated in Figure 2-36.

Figure 2-36. Text Fields in a Form

Like all editable text, a text field has a white background when the user is entering data, and
a light gray background when the entire field is selected. To indicate that it’s editable, a text
field is surrounded by a bezeled border that makes it appear inset from the surface of the
screen. Figure 2-36 illustrates this border.

Chapter 2: The NeXT User Interface

When there’s more than one text field in a window, the Tab key can move the selection—
the point where typing will appear—from one field to another:

Tab Moves from one text field to the next one in series. For example,
in the form illustrated in Figure 2-36, Tab would cause the current
selection to jump from the name field to the street address field to
the city field, and so on.

Shift-Tab Moves from one text field to the previous one in series.

When the user presses the Return key after typing in a text field, the field makes something
happen. Data might be entered and processed, a search might begin for text that matches
the string in the field, or a document might be saved to a file name the user typed. Exactly
what happens is up to the application. To let users know what to expect, it’s recommended
that you include a button in the display to act as the equivalent of Return. The button’s label
is an explicit reminder of what Return will do; from the user’s point of view, Return is
simply a shortcut for the action of the button.

There’s also direct feedback that Return has taken effect:

If the text field is in an attention panel, Return may dismiss the panel.
« If the text field is one in a series, Return may select the next field (just as Tab would).

« If the action of the text field is repeatable, Return may select all the text in the same
field so the user can easily replace it.

» If a button is associated with the text field, Return may cause the button to act as if it
had been clicked.

In some cases, where a text field is part of a form, Return may not perform any particular
action of its own. Instead, it will do just what Tab does—move the selection to the next
field. Action on a button or other control is required to enter data typed into the form.

Generally, text fields accept unrestricted data, but sometimes an entry won’t be acceptable
if it’s the wrong data type—if, for example, the user types in a floating-point number when
an integer is called for. Text fields generally recognize these five restricted types of data:

* Unsigned integers

« Signed integers

» Unsigned floating-point numbers
» Signed floating-point numbers

* Dates

If the user’s entry isn’t acceptable, all of the text in the field is selected and highlighted. The
user can make any necessary corrections and try again.

If the user enters more text than will fit in the field, the entry is automatically scrolled so
that the insertion point stays visible.

Controls 2-87

Scrollers

Scrollers are used to control what’s displayed within a window, or within a rectangular
subsection of a window. When the material to be displayed is larger than the opening
available to display it, the user must scroll unseen portions into the opening in order to view
them. Figure 2-37 shows, diagrammatically, a scrollable document, the area available to
view it, and the scrollers that can move the opening around on the surface of the document.

Chapter 1t
Setting Up the Computer

ex has Fosxpats:

fs ore o tww Jik drbves aod i processerboand hatsemes

sain’

+ The MegaPixel Display, which displays textapd guphics oo g high
black-and-white screen

* A keyboawd, for entering information and conts: ing
functions, such as twning the coraputer on ang

e computeds physicsl

+ A mouse, forpointing to and manipulating objeess on die somer

Setting up the NeXT Comp ter is easy—so easy it
o do it Allyou have to do, after unpacking the ey
attacha fow cables and plug itin.

This chapter shows you where to putthe computeys
“Strting and Ending 2 Work Session,™ shows youl b
with it

nd Safety

The NeXT Cornputer is finished with a black painft
fading. ¥Yetthatpaintis also susceptible to i

Waming:

BRI BERIARY Cwrw wnt by ¥

Figure 2-37. Scrollable Document

As illustrated in Figure 2-37, a scroller has just three parts, a bar, a knob, and an optional
set of scroll buttons. Figure 2-38 shows a vertical scroller, which scrolls a document up and
down. A horizontal scroller scrolls from side to side.

2-88 Chapter 2: The NeXT User Interface

knob

bar

| } scroll buttons

Figure 2-38. Vertical Scroller

Scroller Layout

If a document is taller than the opening available to view it, it’s provided with a vertical
scroller. If it’s wider than the opening, it’s provided with a horizontal scroller. The layout
of both scrollers was illustrated in Figure 2-37 above.

The horizontal scroller is located along the bottom edge of the opening, so it won’t be
adjacent to the window’s title bar. The vertical scroller is positioned along the left edge of
the opening. Since text is generally aligned at the left margin, this keeps the scroller close
to the display it controls. The user can drag a window partially off-screen (or under the
dock) to the right and still scroll a meaningful amount of text into view.

The scroll buttons for both vertical and horizontal scrollers occupy the lower left corner,
where the two scrollers meet. Keeping all the scroll buttons in the same region makes it

easy for users to move from one set to the other.

If a document is provided with scrollers, but happens, perhaps temporarily, to fit within the
opening, one of two things happen:

» The scrollers disappear and light gray strips appear in their place. The strips indicate
that the document will be scrollable, should it grow larger than the opening.

¢ The scrollers remain, but indicate that the document isn’t scrollable because the knob
fills the bar.

Controls 2-89

2-90

The Knob and Bar

The bar of a scroller represents the entire scrollable document; the knob represents the part
of the document that’s visible. The placement of the knob in the bar shows which part is
currently visible in the opening. On a vertical scroller, the height of the knob relative to the
height of the bar indicates how much of the document, from top to bottom, is visible. On a
horizontal scroller, the width of the knob indicates how much of the document is visible
from side to side. The knob shrinks as the user adds material to the document, and grows
as material is deleted. However, the knob never shrinks to be smaller than a square.

Users scroll the display by moving the knob in the bar. The knob can be moved in four
ways:

» By dragging it to a new location. The display is adjusted as the knob moves.

» By clicking in the bar (outside the knob). The knob jumps to the location of the click,
and the display is adjusted accordingly. If the user doesn’t immediately release the
mouse button from the click, the knob can be dragged to a new location. This permits
users, in a single mouse action, to select the general part of a document they want to
view (by clicking in the bar) and then to adjust the display (by dragging the knob).

» By clicking or pressing the scroll buttons. The arrows on the scroll buttons point in the
direction the knob will move.

» By extending a selection outside the opening where it’s displayed. This automatically
scrolls unseen portions of the selection into view.

By moving the knob in the bar, users metaphorically move an opening around on the surface
of the document so that they can see the portions they desire. Visually, of course, it’s the

document that appears to move, not the opening. This means that the knob and the display
move in opposite directions. To avoid confusion, documentation should concentrate on the
metaphor of adjusting the portion of the document that’s visible, rather than adjusting the
document to make it visible.

The Scroll Buttons

The scroll buttons permit more precise scrolling than direct manipulation of the knob.
When clicked, a vertical scroll button scrolls a single line of text. When pressed, it
repeatedly scrolls one line after another. If the document displays something other than text
(graphics perhaps), the application can determine the precise distance to scroll; it’s always
a distance comparable to a single line of text. Horizontal scroll buttons work in a similar
way, scrolling a small amount in a horizontal direction.

The two scroll buttons on the same scroller form a related pair. When the user drags from
one to the other without releasing the mouse button, each button acts as if it had been
pressed. It’s not possible to slide from the scroll buttons on one scroller to those on the
other scroller, however.

Chapter 2: The NeXT User Interface

When the Alternate key is held down, the scroll buttons scroll one viewful at a time.
Generally, when scrolling down a document, the bottom line (or two) is redisplayed at the
top of the opening each time the display changes. When scrolling toward the beginning of
a document, the top line (or two) is redisplayed at the bottom. This provides users with a
bit of overlapping context and reassures them that nothing was skipped over when the
display changed.

Sometimes scroll buttons appear alone, without the rest of the scroller—for example, in
Workspace Manager’s Directory Browser. Since the knob and bar aren’t present to indicate
when it’s impossible to scroll further in one direction or the other, the arrow on the scroll
button is dimmed when the button won’t work.

Automatic Scrolling

When the user begins a selection in the visible part of a document then drags outside the
opening, the document will scroll continuously to bring more of the selection into view,
until the user releases the mouse button. The farther the user drags outside the opening, the
greater each repeated change in the display. It’s as if the application tries repeatedly to
bring the point under the cursor into view.

As the document scrolls, the scroller knob is adjusted to reflect the current position of the
display.

Fine Tuning

If a document is large, small movements of the knob may correspond to sweeping changes
in the display. This makes it difficult for users to adjust the display with precision when
dragging the knob.

To make fine adjustments possible even for large documents, some scrollers have a “fine
tuning” mode. While the Alternate key is held down, the knob and display move only
slightly in response to large movements of the mouse. In this mode, the knob moves in the
direction it’s dragged, but doesn’t stay with the cursor; it continues to reflect the position of
the document being displayed.

Once the Alternate key is released, any subsequent dragging action will cause the knob to
jump to the position of the cursor.

Controls 2-91

2-92

Chapter 3

Object-Oriented Programming and Objective-C

3-3
3-4
3-6

3-7
3-8
3-9
39
3-10
3-10
3-10
3-11
3-12
3-12
3-13
3-15
3-16

3-16
3-19
3-19
3-20
3-20
3-21
3-22
3-23
3-24

3-25
3-26
3-26
3-26
3-27
3-28
3-29

Objects

Messages
Messages and Function Calls
Dynamic Binding

Classes
Inheritance
Inheriting Instance Variables
Inheriting Methods
Overriding One Method with Another
Abstract Superclasses
Class Definitions
The Interface
Separating the Interface from the Implementation
Importing the Interface
The Implementation
Adding to a Class
Variables and Class Objects

How Messaging Works
Selectors
Varying the Message at Run Time
Identifying Return and Argument Types
Hidden Arguments
Messages to self and super
An Example
Using super
Redefining self

The Object Class
Memory Management
Class Initialization
Avoiding Messaging Errors
Archiving Support
Inheritance Relationships
Posing

3-1

3-2

3-29
3-30
3-31
3-32
3-33
3-33

3-34

3-36
3-36
3-36
3-37
3-37
3-37
3-38
3-38

Options
Static Typing
Public Instance Variables
Return and Argument Types
Getting a Method Address
Getting an Object Data Structure

Type Encoding

Language Synopsis
Messages

Defined Types
Preprocessor Directives
Compiler Directives
Method Declarations
Method Implementations
Other Keywords

Objects

Chapter 3
Object-Oriented Programming and Objective-C

Changes made for the current release of NeXTstep affect the information presented
in this chapter. For details see:

/NextLibrary/Documentation/NextDev/ReleaseNotes/ObjC.rtf
/NextLibrary/Documentation/NextDev/ReleaseNotes/AllocInitAndNew.rtf
/NextLibrary/Documentation/NextDev/ReleaseNotes/Zones.rtf

This chapter discusses the principles of object-oriented programming as they’re
implemented in the Objective-C language, the language used in the NeXT software kits.
Programs based on the kits must be written in Objective-C.

Objective-C is an extension of the C language; its syntax is a superset of standard C syntax,
and its compiler works for both C and Objective-C source code. The compiler recognizes
Objective-C source files by a “.m” extension, just as it recognizes files with only standard
C syntax by a “.c” extension. As implemented by NeXT, the Objective-C language is fully
compatible with ANSI standard C.

Because object-oriented programs postpone many decisions from compile time to run time,
the Objective-C language depends upon a run-time system for executing the compiled code.
This discussion presents the language—and important elements of the run-time system—
as they’re implemented for the NeXT computer. NeXT has modified the GNU C compiler
to also compile Objective-C and provides its own run-time system.

Throughout this manual and in other NeXT documentation, the term “Objective-C” refers
to the language as presented here.

You can find more extensive discussions of object-oriented programming in any of several
books that have been published on the subject. Some titles are listed under “Suggested
Reading” in the NeXT Technical Summaries manual. A formal grammar of the Objective-C
extensions to C is also presented in Technical Summaries.

As the name implies, object-oriented programs are built around objects. An object
associates data with the particular operations that can use or affect that data. These
operations are known as the object’s methods; the data they affect are its instance variables.
In essence, an object bundles a data structure (instance variables) and a group of procedures
(methods) into a self-contained programming unit.

Objects 3-3

Messages

For example, through the Application Kit, you can produce an object that displays a matrix
of cells to users of your application. The cells might be text fields where the user can enter
data, a series of mutually exclusive switches, a list of menu commands, or a bank of sliders.
A Matrix object contains instance variables that define the matrix, including its dimensions
and coordinates, the font used to display character strings in the cells, the arrangement of
cells into rows and columns, and the cells themselves. The Matrix can apply methods that
do such things as alter its size, change its position on-screen, add and remove cells, set the
color that’s displayed between cells, and highlight the user’s selection.

An object’s instance variables are private to the object; you get access to them only through
the object itself. Moreover, an object sees only the methods that were designed for it; it
can’t mistakenly perform methods intended for other types of objects. This encourages a
style of structured programming that isolates each problem a program must solve into a
separate object. Just as a C function localizes its automatic variables, hiding them from the
rest of the program, an object hides both its instance variables and its methods.

In Objective-C, objects are identified by a distinct data type, id. This type is defined as a
pointer to an object (in reality, a pointer to the object’s data structure). Like a C function or
an array, an object is identified by its address. All objects, regardless of their instance
variables or methods, are of type id. For the object-oriented constructs of Objective-C, id
replaces int as the default data type. (For strictly C constructs, such as function return
values, int remains the default type.)

Note: Objects can also be more restrictively typed, based on their particular data structures.
(See “Classes” and “Options” below for details.)

The keyword nil is defined as a null object, an id with a value of 0. id, nil, and the other
basic types of Objective-C are defined in the header file objc.h, which must be included in
every Objective-C program. It’s in the objc subdirectory of /usr/include.

To get an object to do something, you must send it a message telling it to apply a method.
In Objective-C, message expressions are enclosed in square brackets:

[receiver message]

The receiver is an object, and the message tells it what to do. In source code, the message
is simply the name of a method and any arguments that are passed to it. When a message
is sent, the run-time system selects the appropriate method from the receiver’s repertoire
and has the receiver apply it. For this reason, the method name in a message is called a
method selector.

3-4 Chapter 3: Object-Oriented Programming and Objective-C

For example, this message tells the myMatrix object to perform its display method, which
draws the matrix and its cells in a window:

[myMatrix displayl;

Methods can also take arguments. The message below tells myMatrix to change its
location within the window to coordinates (30.0, 50.0):

[myMatrix moveTo:30.0 :50.0];

Here the method name (selector), moveTo::, has two colons, one for each of its arguments.
The arguments are inserted after the colons, breaking the name apart. Colons don’t have to
be grouped at the end of a method name, as they are here. Usually a keyword describing
the argument precedes each colon. The getRow:andCol:ofCell: method for example,
takes three arguments:

int row, column;
[myMatrix getRow:&row andCol:&column ofCell:someCell];

This message finds the location of someCell in the matrix and puts the row and column
where it’s located in the two variables provided.

Methods that take a variable number of arguments are also possible. Extra arguments are
separated by commas after the end of the method name. (Unlike colons, the commas aren’t

considered part of the name.) In the following example, the imaginary makeGroup:
method is passed one required argument (group) and three that are optional:

[receiver makeGroup:group, memberOne, memberTwo, memberThree];

Like standard C functions, methods can return values. The following example assigns the
gray value returned by the backgroundGray method to the variable shade.

float shade;
shade = [myMatrix backgroundGray]:;

A message to nil also is valid,

[nil moveTo:100.0 :22.5];

but it has no effect and makes little sense. Messages to nil simply return nil.

Messages 3-5

3-6

Messages and Function Calls

As the examples above illustrate, messages in Objective-C can appear in the same syntactic
positions as function calls in standard C. But, because methods “belong to” an object,
messages behave differently than function calls:

» Anobject has access only to the methods that it can perform. It can’t confuse them with
the methods of another object, even if the other object has a method with the same
name. This means that two objects can respond differently to the same message. For
example, each object sent a display message could display itself in a unique way. This
feature, which plays a significant role in the design of object-oriented programs, is
sometimes referred to as polymorphism.

* A method has automatic access to all the receiving object’s instance variables. You
don’t need to pass them to the method as arguments.

A method has access only to the receiver’s instance variables. If it requires information
about a variable stored in another object, it must send a message to the object asking it to
reveal the contents of the variable. The backgroundGray method in the example above is
used for just this purpose. It returns the value stored in one of myMatrix’s instance
variables.

Dynamic Binding

A crucial difference between function calls and messages is that a function and its
arguments are bound together in the compiled code, but a method and a receiving object
aren’t united until the program is running and the message is sent. A method is “called”
through a run-time messaging routine that locates the method named by the selector and
passes the object’s instance variables to it. (For more on this routine, see “How Messaging
Works,” below.)

This dynamic binding of methods and receivers works hand-in-hand with polymorphism to
give object-oriented programming much of its flexibility and power. Since each object can
have its own version of a method, a program can achieve a variety of results, not by varying
the message itself, but by varying just the object that receives the message.

This can be done as the program runs. Since messages aren’t bound to receivers until run
time, receivers can be decided “on the fly” and can be made dependent on user actions. In
the Application Kit, for example, users determine which objects receive messages from
menu commands like Cut, Copy, Paste, and Close.

Chapter 3: Object-Oriented Programming and Objective-C

Classes

An object-oriented program is typically built from a variety of objects. A program based
on the NeXT software kits might use Matrix objects, Window objects, List objects,
SoundView objects, Text objects, and others. Programs often use more than one object of
the same kind or class—several Lists or Windows, for example.

In Objective-C, you define objects by defining their class. The class definition is a
prototype for a kind of object; it declares the instance variables that become part of every
object belonging to the class and defines a set of methods that all objects in the class can
use.

The compiler creates just one visible object for each class, a class object that knows how to
build new objects belonging to the class. (For this reason it’s sometimes also called a
“factory object.”’) The class object is the compiled version of the class; the objects it builds
are instances of the class. The objects that will do the main work of your program are
instances created by the class object at run time.

Note: The compiler also builds a “metaclass object” for each class. It describes the class
object just as the class object describes instances of the class. But while you can send
messages to instances and to the class object, the metaclass object is used only internally
by the run-time system.

This code tells the Matrix class object to create a new Matrix instance and assign it to the
myMatrix variable:

id myMatrix;
myMatrix = [Matrix new];

This last line of code, or one like it, would be necessary before myMatrix could receive
any of the messages that were illustrated in the previous examples. Every class object has
at least one method (like new) that enables it to produce new objects. These methods often
take arguments to initialize the new instance and have keywords to label the arguments
(newFrame:text:alignment:, for example), but they all generally begin with “new”.

By convention, class names (here “Matrix”’) begin with an uppercase letter; the names of
instances (here “myMatrix”) typically begin with a lowercase letter. Unlike instance
names, class names don’t identify variables. They can be used in only two, very different
contexts:

« Asthereceiver in a message expression, the class name refers to the class object. This
usage was illustrated in the example above. The class name can stand for the class
object only as a message receiver. In any other context, you must ask the class object
to reveal its id (by sending it a class message). The example below assigns the Matrix
class object to the myClass variable:

id myClass;
myClass = [Matrix class];

Classes 3-7

3-8

» The class name can also be used as a type name for instances of the class. For example:

Matrix *anObject;
anObject = [Matrix new];

Here anObject is statically typed to be a Matrix. The compiler will expect it to have
the data structure of a Matrix instance. Static typing enables the compiler to do better
type checking and permits other optimizations. See “Options” later in this chapter for
details.

Inheritance

All classes are linked together in a hierarchical tree with a single class, the Object class, at
its root. Every class (but Object) has a superclass one step nearer the root, and any class
(including Object) can be the superclass for any number of subclasses one step farther from
the root. Figure 3-1 illustrates the hierarchy for a few of the classes in the NeXT
Application Kit.

Object

Figure 3-1. Some Application Kit Classes

When you define a class, you must link it to the hierarchy by declaring its superclass; every
class you create must be the subclass of another class. Plenty of potential superclasses are
available:

» The Object class and a handful of others are provided with the run-time system.

» The Application Kit defines a variety of classes for objects that can draw on the screen
and respond to user actions on the keyboard and mouse.

* Sound Kit has classes that provide a high-level abstraction for recording, playing,
visualizing, and editing sounds.

* Music Kit defines classes for music composition, synthesis, notation, and performance.

Chapter 3: Object-Oriented Programming and Objective-C

You can create new subclasses for any of these classes; you can also create subclasses for
any of the classes you create.

Each class inherits both instance variables and methods from its superclass.

Inheriting Instance Variables

When a class object creates a new instance, the new object contains not only the instance
variables that were defined for its class, but also the instance variables defined for its
superclass, and for its superclass’s superclass, all the way back to the root Object class. The
instance variables for the Object class become part of every object.

Figure 3-1 above shows that the Matrix class is a subclass of the Control class; the Control
class is a subclass of View; View is a subclass of Responder; and Responder is a subclass
of Object. So a Matrix object includes the instance variables defined for Control, View,
Responder, and Object, as well as those defined specifically for Matrix. This is simply to
say that a Matrix object isn’t only a Matrix, it’s also a Control, a View, a Responder, and an
Object.

For example, if a variable is statically typed to be a View, you could assign a Matrix instance
to it:

View *myView;
myView = [Matrix new];

This is possible because a Matrix is a View. It’s more than a View since it also has the
instance variables of a Control and a Matrix, but it’s a View nonetheless.

Inheriting Methods

An object has access not only to the methods that were defined for its class, but also to
methods defined for its superclass, and for its superclass’s superclass, all the way back to
the root of the hierarchy. A Matrix object can use methods defined in the Control, View,
Responder, and Object classes as well as methods defined in its own class.

Any new class you define in your program can therefore make use of the code written for
all the classes above it in the hierarchy. This type of inheritance is a major benefit of
object-oriented programming. When you use one of the object-oriented kits provided by
NeXT, your programs can take advantage of all the basic functionality coded into the kit
classes. You have to add only the code that customizes the kit to your application.

Class objects also inherit from the classes above them in the hierarchy. But because they
don’t have instance variables (only instances do), they inherit only methods.

Classes 3-9

Overriding One Method with Another

There’s one useful exception to inheritance: When you define a new class, you can
implement a new method with the same name as one defined in a class farther up the
hierarchy. The new method overrides the original; instances of the new class will perform
it rather than the original, and subclasses of the new class will inherit it rather than the
original.

Although overriding a method blocks the original version from being inherited, other
methods defined in the new class can sometimes skip over the redefined method and find
the original (see “Messaging to self and super,” below, to learn how). The redefined
method can also incorporate the very method it overrides. When it does, the new method
serves only to refine or modify the method it overrides, rather than replace it outright.

Although a subclass can override inherited methods, it can’t override inherited instance
variables. Since an object has memory allocated for every instance variable it inherits, you
shouldn’t try to override an inherited variable by declaring a new one with the same name.
If you do, errors will result.

Abstract Superclasses

Some classes are designed only so that other classes can inherit from them. These abstract
superclasses group methods and instance variables that will be used by a number of
different classes into a common definition. The Object class is the prime example of an
abstract superclass. Although programs often define Object subclasses and use instances
belonging to the subclasses, they never use instances belonging directly to the Object class.

Class Definitions

Much of object-oriented programming consists of defining new object classes. In
Objective-C, classes are defined in two parts:

« A file that declares the interface to the new class
* A file that actually defines the class (contains the code that implements it)

Each class requires both files; the declaration of the interface and the class implementation
can’t be in the same file. However, a single file can declare more than one class, or
implement more than one class. Nevertheless, it’s customary to have separate interface and
implementation files for each class.

Interface and implementation files typically are named after the class. The implementation
file has a “.m” suffix, indicating that it contains Objective-C source code. The interface file
can be assigned any other extension. Because it’s included in other source files, the
interface file usually has the “.h” suffix typical of header files. For example, the Matrix
class is declared in Matrix.h and defined in Matrix.m.

3-10 Chapter 3: Object-Oriented Programming and Objective-C

The Interface

The declaration of a class interface begins with the compiler directive @interface and ends
with the directive @end. (All Objective-C directives to the compiler begin with “@”.)

@interface ClassName : ItsSuperclass

{

variableDeclarations
}
methodDeclarations
@end

The first line of the declaration presents the new class name and links it to its superclass.
The superclass defines the position of the new class in the inheritance hierarchy, as
discussed under “Inheritance” above.

Following the class declaration, braces enclose declarations of instance variables, the data
structures that will be part of each instance of the class. Here’s a partial list of the instance
variables declared in the Matrix class:

id selectedCell;
int numRows;
int numCols;

float backgroundGray;
id cellClass;

Methods for the class are declared next, after the braces enclosing instance variables and
before the end of the class declaration. The names of methods that can be used by class

objects, class methods, are preceded by a plus sign:

+ new;

The methods that instances of a class (objects created by the class object) can use are called
instance methods, and are marked with a minus sign:

- display;

Although it’s not a common practice, you can define a class method and an instance method
with the same name.

Method return types are declared using the standard C syntax for casting one type to
another: ‘

- (float)backgroundGray;

Argument types are declared in the same way:

- setTag: (int)anlInt;

Classes 3-11

3-12

If a return or argument type isn’t explicitly declared, it’s assumed to be the default type for
methods and messages—an id. The new, display, and setTag: methods illustrated above
all return ids.

When there’s more than one argument, they’re declared within the method name after the
colons. They break the name apart in the declaration, just as in a message. For example:

- moveTo: (NXCoord) x : (NXCoord)y;
~ getRow: (int *)aRow andCol: (int *)aColumn ofCell:aCell;

Objective-C borrows this syntax from Smalltalk, one of the first object-oriented languages,
rather than from standard C. (NXCoord is a defined type for floating-point values that
specify coordinate measurements.)

Methods that take a variable number of arguments declare them just as a function would:

- makeGroup:group, ...;

Separating the Interface from the Implementation

The purpose of the interface file is to declare the new class to other source modules. It
contains all the information they need to know about the class:

» Through its list of method declarations, the interface file lets other modules know what
messages can be sent to objects belonging to the class. Every method that can be used
outside the class definition is declared in the interface file; methods that are internal to
the class implementation can be omitted, provided they’re defined before theyre used.

» The interface file also lets potential subclasses of the class know what instance
variables they’ll inherit, and how they’ll be linked into the inheritance hierarchy.

Separating an object’s interface from its implementation fits well with the design of
object-oriented programs. An object is a self-contained entity that can be viewed from the
outside almost as a “black box.” Once you’ve determined how an object will interact with
other elements in your program—that is, once you’ve declared its interface—you can freely
alter its implementation without affecting any other part of the application.

Importing the Interface

The interface file must be included in any source module that mentions the class. It’s
usually included with the #import directive:

#import "Matrix.h"

Chapter 3: Object-Oriented Programming and Objective-C

This directive is identical to #include, except that it makes sure that the same file is never
included more than once. It’s therefore preferred, and is used in place of #include in source
code throughout this manual.

Since the interface file itself mentions another class—its own superclass—it begins by
importing the interface file for the superclass:

#import "ItsSuperclass.h"

@interface ClassName : ItsSuperclass

{

variableDeclarations

}

methodDeclarations
@end

This convention means that every interface file includes, indirectly, the interface files for all
inherited classes.

The Implementation

A class definition is structured very much like its declaration. It begins with an
@implementation directive and ends with @end:

@implementation ClassName : ItsSuperclass

{

variableDeclarations

}
methodDefinitions
@end

However, every implementation file imports its own interface. For example, Matrix.m
imports Matrix.h. Because the implementation doesn’t need to repeat any of the

declarations it imports, it can safely omit:

e The declaration of a superclass
+ The declarations of instance variables

This simplifies the implementation and makes it mainly devoted to method definitions:
#import " ClassName.h"
@implementation ClassName

methodDefinitions
@end

Classes 3-13

3-14

Chapter 3:

Methods for a class are defined, like C functions, within a pair of braces. Before the braces,
they’re declared in the same manner as in the interface file. For example:

+ new
{
}

- display
{
}

- moveTo: (NXCoord)x : (NXCoord)y
{
}

The definition of an instance method has all the instance variables of a potential receiving
object within its scope. It can refer to them simply by name. Although the compiler creates
the equivalent of C structures to store instance variables, the exact nature of the structure is
hidden. You don’t need the structure member operator (.) or the structure pointer operator
(->) to refer to an object’s data. For example, the following method definition refers to the
receiver’s tag instance variable:

- setTag: (int)anInt
{
tag = anInt;
As the next example shows, instance variables and methods can share the same name:
- (float)backgroundGray
{
return (backgroundGray) ;
Methods that take a variable number of arguments handle them just as a functions would:
#import <stdarg.h>
- getGroup:group,
{

va_list ap;
va_start (ap, group);

Object-Oriented Programming and Objective-C

Adding to a Class

Methods can be added to a class by declaring them in an interface file under a category
name and defining them in an implementation file under the same category. The category
name indicates that the methods are additions to an existing class, not a new class.

The declaration of a category interface must import the interface file for the class that’s
being extended:

#import " ClassName.h"

@interface ClassName (Category)
methodDeclarations
@end

Note that a category can’t declare any new instance variables for the class; it includes only
method declarations.

The implementation, as usual, imports its own interface. Assuming that interface and
implementation files are named after the category, it looks like this:

#import "Category.h"

@implementation ClassName (Category)
methodDefinitions
@end

The methods added in a category can be used to extend the functionality of a class or
override methods the class inherits. However, they can’t override methods defined
elsewhere in the class; a class can’t define the same method more than once. There’s no
limit to the number of categories that you can add to a class, but each category name must
be different, and each must declare and define a different set of methods.

Categories can be used to extend classes defined by other implementors—for example, you
can add methods to the classes defined in the NeXT software kits. The added methods will
be inherited by subclasses and will be indistinguishable at run time from the original
methods of the class.

Categories can also be used to distribute the implementation of a new class into separate
source files—for example, you could group the methods of a large class into several
categories and put each category in a different file. When used like this, categories can
benefit the development process in a number of ways:

» They provide a simple way of grouping related methods. Similar methods defined in
different classes can be kept together in the same source file.

* They simplify the management of a large class when more than one developer is
contributing to the class definition.

Classes 3-15

» They let you achieve some of the benefits of incremental compilation for a very large
class.

» They can help improve locality of reference for commonly used methods.

» They enable you to configure a class differently for different applications, without
having to maintain different versions of the same source code.

Variables and Class Objects

Every instance of a class has its own copy of all the instance variables declared for the class;
each object controls its own data.

The class object, on the other hand, has no variables. Only internal data structures are
provided for the class; there are none that you can set or access directly. The class object
also has no access to any instance variables; it can’t initialize, read, or alter them.

Therefore, for all the instances of a class to share data, an external variable of some sort is
required. Some classes declare static variables and provide class methods to manage them.
(Declaring a variable static in the same file as the class definition limits its scope to just the
class—and to just the part of the class that’s implemented in the file. Unlike instance
variables, static variables can’t be inherited by subclasses.)

Static variables help give the class object more functionality than just that of a “factory”
producing instances; it can approach being a complete and versatile object in its own right.
A class object can be used to coordinate the instances it creates, allocate instances from lists
of objects already created, or manage other processes essential to the application. In the
limiting case, when you need only one object of a particular class, you can put all the
object’s state into static variables and use only class methods. This saves the step of
creating an instance.

Note: It would also be possible to use external variables that weren’t declared static, but
the limited scope of static variables better serves the purpose of encapsulating data into
separate objects.

How Messaging Works

3-16

In Objective-C, messages aren’t bound until run time. The compiler converts a message
expression,

[receiver message]

Chapter 3: Object-Oriented Programming and Objective-C

into a call on a messaging function, objc_msgSend(). This function takes the receiver and

the name of the method mentioned in the message—that is, the method selector—as its two

principal arguments:
objc_msgSend(receiver, selector)

Any arguments passed in the message are also handed to objc_msgSend():
objc_msgSend(receiver, selector, argl, arg2, . .)

The messaging function does everything necessary for dynamic binding:

+ It first finds the procedure (method implementation) that the selector refers to. Since
the same method can be implemented differently by different classes, the precise

procedure that it finds depends on the class of the receiver.

» It then calls the procedure, passing it the data structure (instance variables) of the
receiving object, along with any arguments that were specified for the method.

» Finally, it passes on the return value of the procedure as its own return value.

Note: The compiler generates calls to the messaging function. You should never call it
directly in the code you write.

The key to messaging lies in the structures that the compiler builds for each class and object.
Every class structure includes these two essential elements:

* A pointer to the superclass.

» A class dispatch table. This table has entries that associate method selectors with the
addresses of the methods they name. The selector for the moveTo:: method is
associated with the address of (the procedure that implements) moveTo::, the selector
for the display method is associated with display’s address, and so on.

When a new object is created, its instance variables are stored in a memory location

identified by the object name. Among the object’s variables is a pointer to its class

structure. This pointer, called isa, serves to identify the object’s class.

These elements of class and object structure are illustrated in Figure 3-2.

How Messaging Works ~ 3-17

3-18

superclass
selector...address

) selector...address
The Root Class (Object) selector...address

——)

superclass
selector...address

selector...address
The Object’s Superclass selector...address

superclass
selector...address

' selector...address
The Object’s Class selector...address

J

. ca -
. instance variable
_instance variable

Figure 3-2. Messaging

When a message is sent to an object, the messaging function follows the object’s isa pointer
to the class structure, where it looks up the method selector in the dispatch table. If it can’t
find the selector there, objc_msgSend() follows the pointer to the superclass and tries to
find the selector in its dispatch table. Successive failures cause objc_msgSend() to climb
the class hierarchy until it reaches the Object class. Once it locates the selector,
objc_msgSend() calls the method entered in the table and passes it the receiving object’s
data structure.

To speed the messaging process, the run-time system caches the selectors of methods
currently in use. There’s a separate cache for each class, and it can contain selectors for
inherited methods as well as for methods defined in the class. Before searching the dispatch
tables, the messaging routine checks the cache of the receiving object’s class. If the method
selector is in the cache, messaging is only slightly slower than a function call. Once a

Chapter 3: Object-Oriented Programming and Objective-C

program has been running long enough to “warm up” its caches, almost all the messages it
sends will find a cached method. Caches grow dynamically to accommodate new messages
as the program runs.

Selectors

For efficiency, full ASCII names are not used as method selectors in compiled code.

Instead, the compiler and run-time system write each method name into a table, then pair
the name with a unique identifier (an unsigned int) that will serve as its proxy. Compiled
selectors are assigned to a special data type, SEL, to distinguish them from other integers.

A compiled selector contains fields of coded information that aid run-time messaging. You
should therefore let the system assign SEL identifiers to methods; it won’t work to assign
them arbitrarily yourself.

The @selector() directive lets Objective-C source code refer to the compiled selector,
rather than to the full method name. Here the selector for moveTo:: is assigned to the

action variable:

SEL action;
action = @selector (moveTo::);

Values generally should be assigned to SEL variables at compile time with the @selector()

directive. However, in some cases, a program may need to convert a character string to a
selector at run time. This can be done with the sel_getUid() function:

action = sel_getUid("moveTo::");

This and other run-time functions are described in the NeXTstep Reference manuals.

Varying the Message at Run Time
The perform:, perform:with:, and perform:with:with: methods, defined in the Object
class, take SEL identifiers as their initial arguments. All three methods map directly into
the messaging function. For example,

[myMatrix perform:@selector (moveTo::) with:30.0 with:50.0]

is equivalent to:

[myMatrix moveTo:30.0 :50.0];

How Messaging Works ~ 3-19

3-20

These methods make it possible to vary a message at run time, just as it’s possible to vary
the object that receives the message. Variable names can be used in both halves of a
message expression:

id target = [anObject getTheReceiver];
SEL action = [anObject getTheSelector];
[target perform:action];

In this example, the receiver (target) is chosen at run time (by the fictitious
getTheReceiver method), and the method the receiver is asked to perform (action) is also
determined at run time (by the imaginary getTheSelector method).

perform: and its companion methods return an id. If the method that’s performed returns
a different type, it should be cast to the proper type:

float myGray;
myGray = (float) [target perform:@selector (backgroundGray)];

Identifying Return and Argument Types

Compiled selectors identify method names, not method implementations. Matrix’s
backgroundGray method, for example, will have the same selector as backgroundGray
methods defined in other classes. This is essential to polymorphism; it lets methods like
perform: and perform:with: send the same message to receivers belonging to different
classes. (However, identically named class and instance methods have different compiled
selectors.)

The messaging routine has access to method implementations only through selectors, so it
treats all methods with the same selector alike. It discovers the return type of a method, and
the data types of its arguments, from the selector. Therefore, except for messages sent to
statically typed receivers, dynamic binding requires all implementations of identically
named methods to have the same return type and the same argument types. (Statically
typed receivers are an exception to this rule, since the compiler can learn about the method
implementation from the class type.)

Hidden Arguments

When the messaging function finds the procedure that implements a method, it calls the
procedure and passes it all the arguments in the message. It also passes the procedure two
hidden arguments:

» The receiving object. This argument is how the receiver’s instance variables come
within the scope of the method implementation.

e The selector for the method.

Chapter 3: Object-Oriented Programming and Objective-C

These arguments are “hidden” because they aren’t declared in the source code that defines
the method. Theyre inserted into the implementation when the code is compiled.

Although these arguments aren’t explicitly declared, source code can still refer to them (just
as it can refer to the receiving object’s instance variables). Methods refer to the receiving
object as self, and to their own selectors as _cmd. In the example below, _cmd refers to the
selector for the strange method and self to the object that receives a strange message.

- strange

{
id target = [anObject getTheReceiver];
SEL action = [anObject getTheMethod];
if (target == self || action == cmd)

return nil;
return [target perform:action];

self is the more useful of the two arguments. It’s discussed in more detail in the next
section.

Messages to self and super

Messaging syntax poses a problem whenever a method needs to refer to the object that
performs it. Suppose, for example, that the reposition method needs to change the
coordinates of whatever object it acts on. It can use the moveTo:: method to make the
change, but it can’t know the exact name of the receiving object. The object that receives
the moveTo:: message should be the very same object that the reposition message itself is
sent to. But a reposition message might be sent to any number of objects with any number
of different names:

- reposition

{
[??? moveTo:30.0 :50.0];

To solve this problem, Objective-C provides two terms that refer to the object that performs
a method:

self
super

How Messaging Works ~ 3-21

3-22

The reposition method should read either:

- reposition
{
[self moveTo:30.0 :50.07;

or:

- reposition
{
[super moveTo:30.0 :50.0];

Here self and super both refer to the object receiving a reposition message, whatever
object that may happen to be. The two terms are quite different, however. self is one of the
hidden arguments that the messaging routine passes to every method; it’s a local variable
that can be used freely within a method implementation, just as the names of instance
variables can be. super is a term that substitutes for self only as the receiver in a message
expression. As receivers, the two terms differ principally in how they affect messaging:

» self searches for the method implementation in the usual manner, starting in the
dispatch table of the receiving object’s class. In the example above, it would begin with
the class of the object receiving the reposition message.

» super starts the search for the implementation in a very different place. It begins in the
superclass of the class that defines the method where super appears. In the example
above, it would begin with the superclass of the class where reposition is defined.

Wherever super receives a message, the compiler substitutes another messaging routine for
objc_msgSend(). The substitute routine looks directly to the superclass of the defining
class—that is, to the superclass of the class sending the message to super—rather than to
the class of the object receiving the message.

An Example

The difference between self and super becomes clear in a hierarchy of three classes.
Suppose, for example, that we create an object belonging to a class called Low. Low’s
superclass is Mid; Mid’s superclass is High. All three classes define a method called
setRadius. Mid also defines a method called drawCircle, which uses the setRadius

method:
Classes Methods
High setRadius
Mid setRadius, drawCircle
Low setRadius

Chapter 3: Object-Oriented Programming and Objective-C

We now send a message to our Low object to apply the drawCircle method, and
drawCircle, in turn, sends a setRadius message to the same Low object. If drawCircle
calls this object self,

- drawCircle

{

[self setRadius];

the messaging routine will find the version of setRadius defined in Low, self’s class.
However, if drawCircle calls this object super,

- drawCircle
{

[super setRadius];

the messaging routine will find the version of setRadius defined in High. It ignores the
receiving object’s class (Low) and skips to the superclass of Mid, the class where
drawCircle is defined. Neither message finds Mid’s version of setRadius.

As this example illustrates, super provides a way to bypass a method that overrides another
method. Here it enabled drawCircle to avoid the Mid and Low versions of setRadius that
redefined the original High version.

Not being able to reach Mid’s version of setRadius may seem like a flaw, but, under the
circumstances, you wouldn’t ever want to perform it:

» The author of the Low class intentionally overrode Mid’s version of setRadius so that
instances of the Low class (and its subclasses) would apply the redefined version of the
method instead.

» In sending the message to super, the author of Mid’s drawCircle method intentionally

skipped over Mid’s version of setRadius (and over any versions that might be defined
in Mid’s subclasses) to perform the version defined in the High class.

Using super
Messages to super allow functionality to be distributed over more than one class. You can
override an existing method to modify or add to it, and still incorporate the original method

in the modification:

- (float)backgroundGray
{

return ([super backgroundGray]);

How Messaging Works ~ 3-23

3-24

For some tasks, each class in the inheritance hierarchy can implement a method that does
part of the job, and pass the message on to super for the rest.

It’s also possible to concentrate core functionality in one method defined in a superclass,
and have subclasses incorporate the method through messages to super. For example,
every class method that creates a new instance must allocate storage for the new object and
initialize its isa pointer to the class structure. This is typically left to the new method
defined in the Object class. Methods defined in other classes are linked to Object’s method,
directly or indirectly, through messages to super. A typical instance-creating class method
is shown below. Note that it declares a local variable to hold the new instance and statically
types it to the name of the class:

+ new

{

ClassName *newlInstance;

newlnstance = [super new];
[newInstance initObject];
return (newInstance) ;

This hypothetical new method first performs a new method defined in another class higher
up the inheritance hierarchy. It then initializes the new object by sending it an initObject
message, and finally returns the object it created. The new method farther up the hierarchy
might be Object’s new method, or it might be a method with its own message to super. In
either case, the chain of messages will reach up to the Object class.

Redefining self

super is simply a flag to the compiler telling it where to begin searching for the method to
perform, but self is a variable name that can be assigned a new value. The new method
shown above is a class method, so, initially, self and super both refer to the class object. In
an instance method, they would both refer to the instance.

To illustrate the special role of self, let’s suppose that the initObject method used by new
in the example above did just two things—perform the setRadius method and initialize an
instance variable, numCount.

- initObject

{
[self setRadius];
numCount = 1;

Suppose also that we wanted to move these operations into the new method. Two changes
would have to be made:

Chapter 3: Object-Oriented Programming and Objective-C

* The setRadius method would have to be sent to newInstance rather than self. In the
new method, self refers to the class object, and setRadius is an instance method.

» The direct reference to the numCount instance variable would have to become
indirect. When an instance variable is mentioned in a method, it’s assumed to belong
to self. For new, self is the class object, and classes don’t have instance variables.

These two changes are shown in the revised example below:

+ new

{

ClassName *newlInstance;

newlnstance = [super new];
[newInstance setRadius];
newlInstance->numCount = 1;
return (newlnstance) ;

Note: The indirect reference to numCount as a member of the newInstance structure is
possible here only because newInstance is statically typed to be a ClassName object and is
declared within the implementation of the ClassName class. See “Options” later for more
on static typing.

The two coding changes illustrated above are necessary only because, in a class method like
new, self refers to the class object. But self is a variable; it can be redefined. Class methods
often redefine it to be the new instance. This would simplify the new method shown above,
and let it absorb initObject’s code unchanged:

+ new

{
self = [super new];
[self setRadius];
numCount = 1;
return (self) ;

Redefining self doesn’t affect the meaning of super; it still refers to the class object. If the
setRadius message in the example above were sent to super instead of self, the run-time
system would search for a class method named setRadius, rather than an instance method.

The Object Class

Because the Object class is at the root of all inheritance hierarchies, the methods it defines
are inherited by every other class. Its methods therefore define behaviors that are inherent
to every instance and class object. A few of these methods—such as, new, class and
perform:—have already been mentioned in this chapter. Others are discussed here. For
complete information on the Object class, see NeXTstep Reference, Volume 1.

The Object Class ~ 3-25

Memory Management

Objects are created at run time in dynamically allocated memory. When an object has
outlived its usefulness, this memory should be freed. Object’s free method releases the
memory occupied by the receiver:

[self free]l;
Future messages to the receiver will result in an error.
Note: Class objects are created at compile time and can’t be freed.

Assigning an object to another variable, as in this example

id target;
target = myMatrix;

merely stores its id under a different name; it doesn’t duplicate the object. To duplicate an
object, memory must be dynamically allocated for a new instance. The copy method
allocates this memory and returns the copy:

id myClone;
myClone = [myMatrix copyl;

Class Initialization

The run-time system sends an initialize message to every class object before the class
receives any other messages. This gives the class a chance to set up its run-time
environment before it’s used. If no initialization is required, you don’t need to write an
initialize method to respond to the message; the Object class defines an empty version that
your class can inherit and apply.

If a class makes use of static or global variables, the initialize method is a good place to set
their initial values. Some classes in the NeXT software kits define initialize methods to
read in values for program parameters from the user’s defaults database. (For more
information on these parameters and the database, see Chapter 10, “Support Objects and
Functions.”)

Avoiding Messaging Errors
If an object receives a message to perform a method that isn’t in its repertoire, an error

results. It’s the same sort of error as calling a nonexistent function. But because messaging
occurs at run time, the error often won’t be evident until the program executes.

3-26 Chapter 3: Object-Oriented Programming and Objective-C

It’s relatively easy to avoid this error when the message selector is constant and the class of
the receiving object is known. As you’re programming, you can check to be sure that the
receiver is able to respond. The compiler will check for you if the receiver is statically
typed.

However, if the message selector or the class of the receiver varies, it may be necessary to
postpone this check until run time. The respondsTo: method, defined in the Object class,
determines whether a potential receiver can respond to a potential message. It takes the
method selector as an argument, and returns whether the receiver has access to a method
matching the selector:

if ([target respondsTo:@selector (moveTo::)])
[target moveTo:0.0 :0.0];

else
fprintf (stderr, "target can’t be moved");

Archiving Support

The Object class has support for copying object data structures from one location to
another. An object can be stored in a file and later reactivated, for example, or sent to
another application, which can then activate and use it.

The write: method writes an object (its instance variables) to a data stream, and read: reads
in an object from a stream, reinitializing its instance variables. The stream is generally
connected to an archive file where the object is stored, but it might be connected to a port,
to memory, or to some other repository.

Any class that declares instance variables must define its own read: and write: methods to
read and write the instance variables declared in the class. So that all of an object’s instance
variables can be read and written, each new version of either method should incorporate,
through a message to super, the version it overrides:

- write: (NXTypedStream *)stream
{
[super write:stream];

Writing an object to a stream is initiated by a call to the NXWriteObject() function, which
sends the object a write: message. Reading an object from a stream is initiated by a call to
NXReadObject(), which allocates memory for a new object of the correct class and sends
it a read: message to initialize its instance variables from the stream. Although you may
implement versions of read: and write:, read: and write: messages should be generated
only indirectly through NXReadObject() and NXWriteObject().

See Chapter 10 for more on archiving, streams, and these functions.

The Object Class ~ 3-27

3-28

Immediately after an object has been unarchived with the read: method, NXReadObject()
sends it an awake message. The inherited version of awake defined in the Object class does
nothing but return self. But a class can define an awake method of its own to reinitialize

its instances and make sure they’re in a usable state before they receive any other messages.
For example, after a Window object is unarchived, its awake method gets a window for it
to manage from the Window Server.

After the awake message, NXReadObject() sends each unarchived object a
finishUnarchiving message. This message gives Objective-C programs a chance to free
the unarchived object and substitute another object for it. finishUnarchiving should return
nil if there is no substitution, and the replacement object if there is. The default version
defined in the Object class returns nil.

Inheritance Relationships

Every object can identify its position in the inheritance hierarchy. The class method returns
the id of the receiver’s class and name returns the class name:

id myClassObject = [myMatrix class];
const char *myClassName = [myMatrix name];

The superClass method returns the id of the receiver’s superclass:
id myParent = [myMatrix superClass];

Object’s isMemberOf: and isMemberOfGivenName: methods test whether the receiver
is an instance of a particular class. In these examples, they test whether myMatrix is an
instance of View. Itisn’t, so both messages would return NO:

BOOL idTest = [myMatrix isMemberOf: [View class]];
BOOL nameTest = [myMatrix isMemberOfGivenName:"View"];

Two similar methods, isSKindOf: and isKindOfGivenName: test whether the receiver
inherits from a particular class. Since a Matrix is a kind of View (the Matrix class inherits
from View), the two messages below would return YES:

BOOL idTest = [myMatrix isKindOf:[View classl]];
BOOL nameTest = [myMatrix isKindOfGivenName:"View"];

The “is kind of”” and “is member of” relationships are both basic to inheritance in
object-oriented programming. For example, an object can be statically typed to any class
that it’s a “kind of,” but responds to messages with all the methods defined for the class it’s
a “member of.”

Chapter 3: Object-Oriented Programming and Objective-C

Posing

Options

You can have a subclass take the place of its own superclass at run time. The subclass
inherits from its superclass, so none of the functionality of the superclass is lost in the
substitution. But the subclass can add functionality to the superclass by defining new
methods, or modify the superclass by overriding inherited methods. (However, it can’t
define any new instance variables of its own.)

In the example below, the fictional NewMatrix class takes the place of the Matrix class.

[NewMatrix poseAs:[Matrix class]];

A poseAs: message should be sent before the superclass receives any messages. After the
poseAs: message is sent, all messages sent to the superclass will actually be received by the
posing subclass. The subclass can also receive messages under its own name.

Posing is a way of adding methods to an existing class definition. A simpler and more direct
way to add methods is to implement them in a category of the class, not in a subclass. A
class can have any number of categories, but only one posing subclass. Categories also
don’t require you to send a message to have them take effect. (See “Adding to a Class”
earlier in this chapter for information on categories.)

There’s only one thing that posing can do that a category can’t: A posing subclass can
override methods defined in the superclass it replaces, but a category can’t override
methods already defined for the class it extends.

Objects are dynamic entities. As many decisions about them as possible are pushed from
compile time to run time:

* The memory for objects is dynamically allocated at run time by class methods that
create new instances.

» Objects are dynamically typed. In source code (at compile time), all objects are of type
id. The exact class of an id variable (and therefore its particular data structure) isn’t
determined until the program is running.

* Objects and methods are dynamically bound, as described under “How Messaging
Works” above. A run-time procedure locates the method that “belongs to” the object
and passes it the object’s instance variables.

These features give object-oriented programs a great deal of flexibility and power, but there

is a price to pay. Messages are somewhat slower than function calls, for example, and the
compiler can’t check the exact types (classes) of id variables.

Options 3-29

3-30

Since, on occasion, particular features of object-oriented programming may be less
important than speed and directness, Objective-C lets you turn some of its object-oriented
features off in order to shift operations from run time to compile time.

Static Typing

If a class name is used in place of id in an object declaration,

Matrix *thisObject;
thisObject = [Matrix new];

it restricts the declared variable to instances of the class and its subclasses. In the example
above, thisObject can only be a Matrix of some kind.

Although thisObject is statically typed, it’s still dynamically allocated by the same class
method that creates instances of type id. Because an id is really a pointer to an object,
thisObject is declared as a pointer to a Matrix.

Statically typed objects have the same internal data structures as objects declared to be ids.
The type doesn’t affect the object; it affects only the amount of information given to the
compiler to refer to the object. With the additional information provided by static typing,
the compiler can deliver better type-checking services in two situations:

« When a message is sent to a statically typed receiver, the compiler can check to be sure
that the receiver can respond. A warning is issued if the receiver doesn’t have access
to the method named in the message.

» When a statically typed object is assigned to a statically typed variable, the compiler
can check to be sure that the types are compatible. A warning is issued if they’re not.

An assignment can be made without warning provided the class of the object being assigned
is identical to, or inherits from, the class of the variable receiving the assignment. This is
illustrated in the example below.

View *aView;
Matrix *aMatrix;

aMatrix = [Matrix new];
aView = aMatrix;
/* aMatrix = aView; this doesn’t work */

Here aMatrix can be assigned to aView because a Matrix is a kind of View—the Matrix
class inherits from View. However, if the roles of the two variables are reversed and aView
is assigned to aMatrix, the compiler will generate a warning; not every View is a Matrix.

Chapter 3: Object-Oriented Programming and Objective-C

There’s no check when the expression on either side of the assignment operator is an id. A
statically typed object can be freely assigned to an id, or an id to a statically typed object:

id firstObject, secondObject;
Matrix *aMatrix;

firstObject = [Matrix new];
aMatrix = firstObject;
secondObject = aMatrix;

Because methods like new return ids, the compiler doesn’t check to be sure that a
compatible object is returned to a statically typed variable. The following code is

error-prone, but is allowed nonetheless:

Matrix *aMatrix;
aMatrix = [Window new];

Note: This is consistent with the implementation of void * (pointer to void) in ANSI C.
Just as void * is a generic pointer that eliminates the need for coercion in assignments
between pointers, id is a generic pointer to objects that eliminates the need for coercion to
a particular class in assignments between objects.

Better type checking is just one of the advantages of static typing. When an object is
statically typed, these other options also become possible:

+ The object’s instance variables can be declared public and accessed directly.

» The object can be freed from the restriction that identically named methods must have
identical return and argument types.

These two topics are discussed in the sections that follow.

Public Instance Variables

The instance variables of a statically typed object can be made public, instead of being
treated as private to the object. Rather than send a message (like backgroundGray) to the
object asking it to reveal a value, you can access public instance variables directly, as

components in a structure:

thisGray = thisObject->backgroundGray;

Options 3-31

3-32

In general, this directness is possible only for instance variables that have been declared
public in the interface file. All instance variables that are declared after an @public
directive are considered public in statically typed objects. The example below shows how
the Matrix class could have made its backgroundGray instance variable public:

@interface Matrix : Control
{

private variables
@public

float backgroundGray;

other public variables

Note: None of the instance variables declared in the NeXT software kits are public.

There’s just one context in which the @public directive isn’t needed to make an instance
variable public. A statically typed instance of a class has public instance variables within
the implementation of its own class. For example, in the implementation of the Foo class,
a method could create a Foo instance and directly access its instance variables:

- getCounterpart

{
Foo *aFoo = [self copyl;
aFoo->variable = 0;

This feature was used in the presentation of the new method under “Messages to self and
super” above.

Return and Argument Types

In general, methods that share the same selector (the same name) must also share the same
return and argument types. This constraint is imposed by dynamic binding because the
class of the message receiver, and therefore class-specific details about the method it’s
asked to perform, can’t be known at compile time.

However, when a message is sent to a statically typed object, the class of the receiver is
known by the compiler. Therefore, the message is freed from the restrictions on its return
and argument types.

Chapter 3: Object-Oriented Programming and Objective-C

Getting a Method Address

To dynamically bind a receiving object to a method implementation, the messaging routine
must find the implementation that’s appropriate for the object. This was discussed under
“How Messaging Works” above.

On occasion, as when a particular method will be performed many times in succession, you
may want to avoid repeating this step each time the method is performed. With a method
defined in the Object class, methodFor:, you can ask for a pointer to the procedure that
implements a method, then use the pointer to call the procedure. The example below shows
how the procedure that implements the moveTo:: method might be called:

id (*matrixMover) () ;
int i;
matrixMover = [target methodFor:@selector (moveTo::)];
for (i = 1000; i > 0; i--)
(* matrixMover) (target, @selector (moveTo::),

(NXCoord) x++, (NXCoord)y++):;

The procedure call is indirect, here through the matrixMover pointer returned by
methodFor:. The first two arguments passed to the procedure are the receiving object
(self) and the method selector (_cmd).

As illustrated above, methodFor: always returns a pointer to a function that returns an id.
If the function actually returns another value (as the procedure that implements
backgroundGray would), you must coerce the value returned by methodFor: to the
correct type:

float (*grayGetter) () ;

grayGetter = (float (*) ()) [target
methodFor:@selector (backgroundGray)];

Using methodFor: to circumvent dynamic binding saves most of the time required by
messaging. However, the savings will be significant only where a particular message would
be repeated many times, as in the for loop shown above.

Getting an Object Data Structure

A fundamental tenet of object-oriented programming is that the data structure of an object
is private to the object. Information stored there can be accessed only through messages
sent to the object. However, there’s a way to strip an object data structure of its “objectness”
and treat it like any other C structure. This makes all the object’s instance variables publicly
available.

Options ~ 3-33

When given a class name as an argument, the @defs() directive produces the declaration
list for an instance of the class. This list is useful only in declaring structures, so @defs()
can appear only in the body of a structure declaration. This code, for example, declares a
structure that’s identical to the template for an instance of the Matrix class:

struct matrixDef {
@defs (Matrix)
} *public;

Here public is declared as a pointer to a structure that’s essentially indistinguishable from
a Matrix instance. With a little help from a type cast, a Matrix id can be assigned to the
pointer. The object’s instance variables can then be accessed publicly through the pointer:

id aMatrix;
aMatrix = [Matrix new];

public = (struct matrixDef *)aMatrix;
public->backgroundGray = 0.0;

Type Encoding

3-34

To assist tools in the run-time environment, the compiler encodes the return and argument
types for each method in a short string and associates the string with the method selector.
The coding scheme it uses can also be of use in other contexts and so is made publicly
available with the @encode() directive. When given a type specification, @encode()
returns the string encoding that type. The type can be a basic type such as an int, a pointer,
a tagged struct or union, or a class name—anything, in fact, that can be used as an
argument to the C sizeof() operator.

char *bufl = @encode(int **);
char *buf2 = Qencode(struct key);

I

char *buf3 = @encode (Matrix);

The table on the next page lists the type codes. Note that many of them overlap with the
codes used in writing to a typed stream. However, there are codes listed here that you can’t
use when writing to a typed stream and there are codes that you may want to use when
writing to a typed stream that aren’t generated by @encode(). (See Chapter 10 for
information on typed streams.)

Chapter 3: Object-Oriented Programming and Objective-C

Code Meaning

C A char

i An int

S A short

1 A long

C An unsigned char

I An unsigned int

S An unsigned short

L An unsigned long

f A float

d A double

v A void

* A character string (char *)
@ Anid

A pointer to a class (Class)
: A method selector (SEL)
[...] An array

{...} A structure

(..) A union

bnum A bitfield of num bits
Atype A pointer to type

? An unknown type

The type specification for an array is enclosed within square brackets; the number of
elements in the array is specified immediately after the open bracket, before the array type.
For example, an array of 12 pointers to floats would be encoded as:

[127f]
Structures are specified within braces, and unions within parentheses. The type of each
component within the structure or union is listed in sequence, even for structures and unions
that are typedef’ed. However, for pointers to structures and unions, only the structure or
union tag is listed. For example, an NXRect structure (discussed in the next chapter) would
be encoded as:

{{f£}{£ff}}
But a pointer to an NXRect structure would be encoded using the structure tag:

~{_NXRect}

This avoids the endless recursion that would otherwise result when a structure component
points to a structure of the same type.

A question mark indicates an unknown type. It’s generated mainly by untagged structures
and unions and by pointers to functions.

Type Encoding ~ 3-35

Language Synopsis
Objective-C adds a small number of constructs to the C language and defines a handful of
conventions for effectively interacting with the run-time system. Most of these constructs
and conventions were described in the preceding sections of this chapter. This section
summarizes all the additions to the language. It mentions only one or two topics that
weren’t discussed earlier; these topics play a less central role in the construction of
object-oriented programs.

For a more formal presentation of Objective-C syntax, see the grammar in the NeXT
Technical Summaries manual.

Messages
Message expressions are enclosed in square brackets:
[receiver message]
The receiver can be:
* A variable or expression that evaluates to an object
» A class name (indicating the class object)

» super (indicating an alternative search for the method implementation)

The message is the name of a method plus any arguments passed to it.

Defined Types

The principal types used in Objective-C are defined in objc/objc.h. They are:

id An object (a pointer to its data structure)

Class A class (a pointer to its data structure)

SEL An unsigned int that identifies a method

STR A character string

IMP A pointer to a method implementation that returns an id
BOOL A boolean value, either YES or NO

(The Class type is specific to NeXT’s implementation of the language.)

In addition, class names can be used to statically type instances of the class.

3-36 Chapter 3: Object-Oriented Programming and Objective-C

Preprocessor Directives
The preprocessor understands two new notations:

#import Imports a header file. This directive is identical to #include,
except that it won’t include the same file more than once.

/! Begins a comment that continues to the end of the line.

Compiler Directives
Directives to the compiler begin with “@”’:

@selector(method) Returns the compiled selector that identifies method.

@interface Begins the declaration of a class or category interface.
@implementation Begins the definition of a class or category.

@end Ends the declaration or the definition of a class or category.
@public Precedes the declaration of public instance variables.
@encode(spec) Yields a character string that encodes the type structure of spec.

@defs(classname) Yields the internal data structure of classname instances.

Method Declarations
The following conventions are used in method declarations:
* A “+” precedes declarations of class methods.
* A “~”precedes declarations of instance methods.

» Arguments are declared after colons (:). Typically, a label describing the argument
precedes the colon. Both labels and colons are considered part of the method name.

* Argument and return types are declared using the C syntax for type casting.

e The default return and argument type for methods is id, not int as it is for functions.
By extension, id is also the default return type for message expressions.

Language Synopsis ~ 3-37

Method Implementations
Each method implementation is passed two hidden arguments:

» The receiving object (self)
» The selector for the method (_cmd)

Within the implementation, both self and super refer to the receiving object. super

replaces self as the receiver of a message to indicate that only methods inherited by the
implementation should be performed in response to the message.

Other Keywords
The objc/objc.h header file also defines these useful terms:

nil A null object pointer, (id)0
Nil A null class pointer, (Class)0

3-38 Chapter 3: Object-Oriented Programming and Objective-C

Chapter 4

Drawing

4-4 Design Philosophy

4-6 The Screen

4-6 Pixels, Halftones, and Rectangular Coordinates
4-7 The NeXT Computer Screen

4-9 Screen Coordinates

4-10 Window Coordinates

4-11 Modifying the Coordinate System
4-11 View Coordinates

4-12 Borders and Content Areas

4-13 Printing Coordinates

4-14 Rectangles

4-15 Rectangle Geometry

4-17 When a Rectangle Isn’t Rectangular
4-19 The Window System

4-20 Window Numbers

4-20 Contexts and Graphics States

4-21 The Current Window

4-22 Changing Graphics States

4-23 Window Buffering

4-25 Choosing a Buffering Type

4-26 The Screen List

4-26 Window Tiers

4-27 Off-Screen Windows

4-28 The Background Color

4-29 Compositing and Transparency
4-30 Transparent Paint

4-33 Data Representation

4-33 Bitmaps

4-34 Premultiplication

4-36 Compositing

4-36 Compositing Operators

4-36 composite

4-38 compositerect

4-39 Types of Compgsiting Operations
4-41 Copy

4-41 Clear

4-42 PlusD and PlusL

4-42 Transparency Operations

4-1

42

4-43
4-44

4-45

4-47
4-48
4-49
4-50

4-51
4-52
4-56
4-56
4-57
4-59
4-60

Dissolving
Highlighting

Instance Drawing

Sending PostScript Code to the Window Server
Using pswrap

Using Single-Operator Functions

Connection Buffering

Imaging Conventions
The General Rule
Outlines with No Area
Points
Zero-Width Lines
Half-Open Shapes
Clipping

Chapter 4
Drawing

Changes made for the current release of NeXTstep affect the information presented
in this chapter. For details see:

/NextLibrary/Documentation/NextDev/ReleaseNotes/ WindowServer.rtf
/NextLibrary/Documentation/NextDev/ReleaseNotes/ AppKit.rtf

All of your program’s visual output, whether sent to the laser printer or displayed on the
screen, is generated through the PostScript language, a high-level, interpreted language
with special facilities for drawing and handling graphic images, including text. The
PostScript language has typically been used to produce high-quality images on the printed
page. On the NeXT computer, it’s also used for imaging on the screen. NeXT and Adobe
Systems Incorporated have jointly developed the Display PostScript system, which refines
the language and adapts it to the interactive requirements of the screen.

Because the NeXT computer creates both screen and printed images through the same
language, the screen can display a document just as it will be printed. Except for
differences in resolution, what you see is what you get.

Applications draw within windows—screen rectangles that can be moved, resized, and
layered on top of each other—rather than directly on the screen. The NeXT window system
is implemented as an extension to the Display PostScript system. At the most fundamental
level, applications create and manage windows through PostScript operators. However, the
Application Kit provides an object-oriented interface to the window system that most
applications should use; the Kit handles basic window-management tasks for you.

NeXT has made other extensions to the Display PostScript system so that applications can
better use the capabilities of the window system and MegaPixel Display. The principal
additions permit compositing, drawing with partially transparent paint, and instance
drawing:

» Compositing builds a new image by overlaying images that were previously drawn. It’s
analogous to a photographer printing a picture from two negatives, one placed on top
of the other. However, on the NeXT computer there are even more ways that each of
the images you start with can contribute to the composite.

All image-transferring operations, including simply copying an image from one

location to another, are accomplished through compositing. Compositing is the only
way to copy on the NeXT computer.

Drawing 4-3

» Compositing can achieve interesting effects when the initial images are drawn with
partially transparent paint. In a typical compositing operation, paint that’s partially
transparent won’t completely cover the image it’s placed on top of; some of the other
image will show through. The more transparent the paint is, the more of the other
image you’ll see.

You can set the coverage of the paint you draw with—how transparent or opaque it is—
just as you set its color or gray level.

» Instance drawing puts temporary images on the screen, and removes them again, at
little processing cost. When instance drawing is removed, the original images are
automatically restored. Instance drawing is useful for temporarily highlighting an
image, for showing an object being dragged from one location to another, and for other
kinds of dynamic drawing.

All operators added to the Display PostScript system by NeXT are described in detail in the
NeXTstep Reference, Volume 2. The Display PostScript system is documented in four
publications by Adobe Systems Incorporated—PostScript Language Extensions for the
Display PostScript System, Client Library Reference Manual, pswrap Reference Manual,
and Perspective for Software Developers. The PostScript language itself is described in the
PostScript Language Reference Manual by Adobe Systems Incorporated, published by
Addison-Wesley. A beginning guide to the language and a series of example graphics
programs are provided in the PostScript Language Tutorial and Cookbook, by the same
author and publisher.

This chapter discusses drawing on the NeXT computer using the Display PostScript system
and its extensions. In addition to transparency, compositing, and instance drawing, it
describes how drawing works in the NeXT window system and on the MegaPixel Display.

Later chapters—Chapters 6, “Program Structure,” 7, “Program Dynamics,” and 9,
“User-Interface Objects”—discuss drawing in the broader context of the Application Kit.
The Kit defines objects that draw the graphic elements of the NeXT user interface,
including scrollers, switches, sliders, menus, and user-editable text; you don’t need to write
this PostScript code yourself. You can therefore focus your attention on drawing that’s
unique to your application. The drawing code you write will be integrated into the
object-oriented program structure provided by the Kit, and will use the Display PostScript
system and the extensions to it discussed in this chapter.

Design Philosophy

When one imaging model is used for the printer and another for the screen, application
programs must pursue two parallel lines of development. In addition to the extra work, it’s
nearly impossible to make screen and printed images match.

44 Chapter 4: Drawing

The NeXT computer avoids these problems by using a single imaging model, the PostScript
language, for all drawing. The PostScript language is well-suited to this role because:

* It’s device independent.

» It’s programmable.

» It provides a complete two-dimensional imaging model.
» It’s a widely used standard on printers.

Extensions to the PostScript language are the foundation for the NeXT window system.
Drawing instructions and window management operations are both sent to the same
interpreter. Because of this integration, you’ll have fewer issues to worry about as you
program your application.

Drawing on the screen has dynamic aspects that are missing when drawing for the printer:

e It’sinteractive. Applications must follow the user’s instructions and respond
graphically to the user’s actions.

» Itchanges over time. Applications can repeatedly reuse the same area of a window by
erasing and replacing what’s displayed there.

» Ituses a number of different windows simultaneously. Instead of drawing one page at
a time, applications present the user with a multi-windowed interface.

These aspects present applications with both challenges and opportunities. One challenge
is speed. To meet it, the Display PostScript system has been refined to respond quickly,
without losing any of the original generality and power of the PostScript language. In a few
cases, operators have been added so that common operations can be executed more
efficiently.

Another challenge is programming simplicity. This challenge is met mainly by relieving
applications of bothersome chores:

* Much of your program’s drawing can be done through Application Kit objects that have
the ability to draw themselves. Common drawing operations such as scrolling,
resizing, clipping, and erasing are also handled through Application Kit objects. In
addition, the Kit has facilities that make it relatively easy to use bitmaps and icons.

» The Window Server handles the dynamic behavior of windows. It moves and resizes
them in response to user actions, without your program’s intervention.

* The Window Server provides windows with backup buffers so that it can automatically
save images when a window is hidden, and automatically restore them again when the
window becomes visible once more.

Buftering also makes it possible to draw into windows that never appear on-screen. The

images that are cached in off-screen windows can then be copied to windows on-screen,
using the same operators that transfer images between on-screen windows.

Design Philosophy 4-5

NeXT has adopted an advanced model for moving and combining images. Compositing
and transparency make it possible for programs to explore new visual effects, such as
slowly dissolving one image into another and building a final image out of several layers.
With window buffering, they make animation fairly simple. NeXT compositing is fully
compatible with color graphics, so you won’t have to redesign your program for a color
screen. Compositing is implemented as an extension to the PostScript language, but it’s
also possible to composite in Objective-C code using the Bitmap object of the Application
Kit.

To help applications provide immediate feedback to users, NeXT has also augmented the
PostScript language with instance drawing. Images that are drawn in this mode are
temporary; when they re removed, the original image reappears.

The Screen

46

The first part of this section briefly covers some background terminology. The parts that
follow introduce drawing on the NeXT MegaPixel Display.

Pixels, Halftones, and Rectangular Coordinates

Images on the screen are formed from tiny picture elements, or pixels, arranged in a
rectangular grid of columns and rows that fill the entire surface of the screen. Because of
their positions in the grid, pixels can be thought of as little square dots. Each pixel has a
separate representation in screen memory and can be assigned an independent color value.
Varying the color of the individual pixels makes it possible to render an almost unlimited
variety of images on the screen.

Typically, a pixel on a monochrome computer screen is capable of showing just two colors:

either black or white. A black line is rendered by turning all the pixels along its path black;
a white circle has all the pixels within its radius turned white. Intermediate shades of gray
are rendered by halftoning, turning some pixels black and others white. A mixed pattern of
adjacent black and white pixels appears as a solid, uniformly colored gray area. Figure 4-1
is a close-up diagram of a halftone gray area. The lines represent the pixel grid; the spaces
between the lines represent individual pixels.

Chapter 4: Drawing

Figure 4-1. Halftone with Black and White Pixels

Locations on the screen are described using a standard rectangular (Cartesian) coordinate
system. Points are identified by their position relative to a horizontal x-axis and a vertical
y-axis. The origin, where the two axes meet, is (0, 0). A point 500 pixels to the right of the
origin as measured along the x-axis and 200 pixels above the origin as measured along the
y-axis is (500, 200). Negative coordinates locate points below the x-axis and to the left of
the y-axis.

The resolution of an image is a function of pixel density. The more pixels there are in a
given area (that is, the smaller they are), the more detailed and precise the image can be.
Computer screens have a lower resolution (fewer pixels per inch) than do laser printers.

The NeXT Computer Screen

The visible area on the MegaPixel Display screen holds nearly a million pixels, 1120 along
each horizontal row and 832 in each vertical column. There are about 92 pixels per inch in
each direction (91.80 per inch along the x-axis and 92.44 along the y-axis when the display
is exactly 12.2 inches by 9 inches, but these dimensions may vary by £0.100 inch).

Pixels on the NeXT monochrome screen aren’t limited to just black and white; each one
can also display two shades of gray, for a total of four discrete colors:

white
light gray
dark gray
black

The Screen 4-7

4-8

This reduces the need for halftoning while increasing the number of halftone shades.
Where halftones are used, there’s less variation in the color of adjacent pixels, so the screen
can show purer, less granular shades of gray. Transitions from one shade of gray to another
in continuous-tone images are smoother. Contrasts between a shade of gray and either
black or white are sharper, since the gray can be rendered with fewer, if any, black or white
pixels.

Figure 4-2 shows the same shade of halftone gray as Figure 4-1, only rendered with light
gray rather than black pixels. Note that Figure 4-2 has three times as many nonwhite pixels,
all closer to the desired shade of gray than the black pixels in Figure 4-1.

Figure 4-2. Halftone with Gray and White Pixels

Each pixel requires two bits of memory to distinguish the four colors. When needed, two
additional bits are set aside to store the coverage of the pixel—how transparent or opaque
itis. (See “Compositing and Transparency,” later in this chapter.) Halftoning produces
intermediate “shades” of coverage, just as it produces intermediate shades of gray.

To avoid halftoning on the MegaPixel Display, you can set the gray level to a value that
results in pure black, pure white, or a pure gray. These four C constants are defined to the
required values:

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Chapter 4: Drawing

In the PostScript language, values specified to three decimal places work:

white 1.0
light gray 0.667
dark gray 0.333
black 0.0

Screen Coordinates
The entire screen can be thought of as the first (upper right) quadrant of a two-dimensional
coordinate grid, with the origin in the lower left corner and the positive x-axis extending
horizontally to the right and the positive y-axis extending vertically upward. A unit along

either axis is equal to the distance across one pixel, approximately 1/92 inch.

Figure 4-3 illustrates this screen coordinate system.

.(500.0, 200.0)

0.0, 0.0)

Figure 4-3. The Screen Coordinate System

Coordinates are specified as floating-point numbers. This permits you to move anywhere
on the screen, not just from pixel to pixel. Coordinates that are integers—those that have
no fractional part—Ilie between pixels in the screen coordinate system; fractional
coordinates locate points somewhere within a pixel. Figure 4-4 indicates where four
sample points are located in relation to pixel boundaries.

The Screen 4-9

4-10

(3.0, 3.0)

(2.0, 2.5)

(1.0,1.0) (2.5, 1.25)

Figure 4-4. Points and Pixels

“Imaging Conventions” below explains how fractional coordinates and lines that cut
through pixels are handled on-screen.

The screen coordinate system has just one function: to position windows on the screen.
When your application creates a new window, it must specify the window’s initial size and
location in screen coordinates. For drawing in a window, it will use a different coordinate
system, one that’s specific to the window (see “Window Coordinates” below).

No matter where a window is located, its edges are always aligned on pixel boundaries. If
you try to position a window using fractional coordinates, they will be adjusted to whole
integers. Fractional coordinates can be freely used when drawing within a window,
however.

As Figure 4-3 above illustrates, the screen coordinate system extends beyond the screen in
all directions. However, its range is not unlimited. No screen coordinate (no point within
a window) can have a value greater than 16000 or less than —16000:

(=16000 < x < +16000, —16000 <y < +16000)

All windows must fit within the space bounded by +16000.

Window Coordinates

The reference coordinate system for a window is known as the base coordinate system. It
differs from the screen coordinate system in only two ways:

« Itapplies only to a particular window; each window has its own base coordinate system.

e Its origin is at the lower left corner of the window, rather than the lower left corner of
the screen. If the window moves, the origin and the entire coordinate system move with
it. Animage retains its position within a window’s coordinate system no matter where
the window is located.

Chapter 4: Drawing

In PostScript language terms, the base coordinate system is the equivalent to a “default user
space” for the window. It provides a starting place for programs that draw within a window,
just as the default user space provides a starting place for programs that describe pages for
a printer.

Note: You can also establish a reference coordinate system with the same coordinate units
as the default user space, 1/72 inch. However, this documentation assumes the base
coordinate system for all windows. The base coordinate system is more convenient for
drawing on the screen, since coordinate units fall on pixel boundaries. It’s also the initial
coordinate system established for all windows created through the Application Kit. (For
more information, see the discussion of the windowdeviceround and windowdevice
operators in the NeXTstep Reference manual.)

Modifying the Coordinate System

You’re not limited to the base coordinate system when you draw within a window.
PostScript operators can radically transform the window’s coordinates. The origin can be
moved (by the translate operator), the x- and y-axes can be turned to point in any direction
(by the rotate operator), and the size of a unit along either the x- or y-axis can be expanded
or shrunk (by the scale operator). The base coordinate system is simply the reference
system for any subsequent transformations by PostScript operators.

PostScript transformations apply only within a window. They don’t alter the screen
coordinate system, and therefore can’t affect the size or location of the window itself.

When you draw, coordinates are expressed in the application’s current coordinate system,
the system reflecting the last coordinate transformations to have taken place within the
current window. The PostScript interpreter keeps track of this system through the current
transformation matrix (CTM) of the current graphics state.

View Coordinates

Drawing is usually limited to areas that are smaller than the whole window. The
Application Kit permits you to set up rectangular regions within a window and to move and
resize them, much as windows themselves are moved and resized on the screen. The Kit
provides each region—or “View,” after the Objective-C class that defines them—with a
coordinate system, which it makes the application’s current coordinate system before you
draw. This coordinate system is a transformation of the base coordinate system and has a
more convenient origin, at the lower left corner of the area you’re drawing in. Figure 4-5
illustrates the relationship between the base coordinate system and the default coordinate
system provided for a View.

The Screen 4-11

4-12

window

(0.0, 0.0)
View default coordinates

\ (0.0, 0.0)

Window base coordinates

Figure 4-5. Window and View Coordinates

You can use Application Kit methods or PostScript operators, or both, to further modify
these default coordinates. See Chapters 6 and 7 for more on Views.

Borders and Content Areas

The initial size of a window is determined by parameters that specify its width (along the
x-axis) and its height (along the y-axis) in the screen coordinate system. These two
parameters define the window’s initial content area, the area that’s available for drawing.
The window’s initial location is set by parameters that specify the lower left corner of the
content area.

Windows typically have a title bar above the content area and a border around both the
content area and title bar. Often they also have a resize bar below the content area and inside
the border. (Some windows may have a border but lack a title bar and resize bar; some lack
even the border.)

The window border, title bar, and resize bar lie outside the requested window area. If you
ask the Application Kit to create a titled window 100 pixels wide and 100 pixels high, the
window border and title bar will surround the 100-by-100 square you asked for. The point
where you locate the window will correspond to the lower left corner of the square, inside
the border. The border, title bar, and content area all lie inside the window, and share the

window’s coordinate system.

Figure 4-6 is a close-up view of the corner of a titled window created at (50.0, 300.0) in the
screen coordinate system. The window border is just one pixel wide. The point where the
window was located becomes the origin of the initial drawing coordinates within the

Chapter 4: Drawing

content area (the coordinate origin for a View that fills the content area). The origin of the
base coordinate system lies at the lower left corner of the window itself, outside the border.

(0.0, 0.0)
initial drawing
coordinates

(50.0, 300.0)
screen coordinates

(0.0, 0.0)
base coordinates

Figure 4-6. Window Corner

Printing Coordinates

When a screen image is printed by the NeXT 400 dpi Laser Printer, or by any other
PostScript printer, one unit within the base or screen coordinate system (that is, one pixel)
translates to 1/72 inch, equal to about one typographical point. Since a screen pixel is
smaller, approximately 1/92 inch, the screen shows images at just over three-fourths their
printed size. This reduction permits a full 8 1/2-by-11-inch page to be shown on the screen
from top to bottom, without scaling the window’s coordinate system.

This doesn’t mean that an image must always be shown on the screen at three-fourths its
printed size. It’s possible, for example, to use the PostScript scale operator to “magnify”
the image on the screen, then print the image without the scaled magnification. The screen
version could actually be larger than the unmagnified printed version.

Laser printers produce images with many more pixels per inch than do screen displays. The
NeXT laser printer prints either 300 or 400 pixels per inch, depending on the setting.
Printed images, therefore, have a higher resolution and are portrayed in more detail than
screen images.

For example, a vertical line with a specified width of one unit within the base coordinate
system can be shown on the screen as a thin rectangle just one pixel wide. When the line
is printed, it will look almost 28% larger and have a width of at least four printer pixels.
Setting the width of this line to less than 1—to 0.25, for example—will have no effect on
the dimensions of the line on-screen, but will make the line thinner when it’s printed.

The Screen 4-13

Rectangles

It’s often necessary to limit a PostScript operation, or drawing in general, to a particular
area of the screen. These areas are most often specified as rectangles:

* A window is a rectangle in the screen coordinate system.

» Several PostScript operators, such as the compositing operators discussed under
“Compositing and Transparency” below, act on rectangles within windows.

» The Application Kit uses rectangles extensively to designate particular areas—called
“Views”—where drawing can occur inside windows (see Chapter 6 for details).

On the NeXT computer, a rectangle is a combination of a point and an extent. The point
locates the rectangle by assigning it x and y values within a coordinate system. The extent
specifies the size of the rectangle—its width as measured in a direction parallel to the x-axis
and its height as measured in a direction parallel to the y-axis. The width and height are
measured from the point that locates the rectangle.

This way of specifying a rectangle has one consequence of note: A rectangle is aligned with
its coordinate system,; the sides of the rectangle are parallel to the coordinate axes. Figure
4-7 illustrates a rectangle with the orientation of the base or screen coordinate system.

height

(x,y) width

Figure 4-7. Rectangle

PostScript operators take four parameters to specify a rectangle. An example is rectfill,
which fills a rectangle with the current color:

x y width height rectfill

In the Application Kit, rectangles are specified as C structures of type NXRect. The NeXT
header file event.h (in the dpsclient subdirectory of /usr/include) defines the elements that
make up an NXRect structure:

4-14 Chapter 4: Drawing

» Since all coordinate values must be specified by floating-point numbers, it defines
NXCoord as a float:

typedef float NXCoord;

» A pair of NXCoord variables—one for the x coordinate and one for the y coordinate—
designate a point:

typedef struct NXPoint {

NXCoord X7
NXCoord v
} NXPoint;

* A pair of NXCoord variables also designate the size of a rectangle:

typedef struct NXSize {

NXCoord width;
NXCoord height;
} NXSize;

The NeXT header file graphics.h (in the appkit subdirectory) combines NXPoint and
NXSize structures to define the rectangle itself:

typedef struct NXRect {

NXPoint origin;
NXSize size;
} NXRect;

The values in an NXSize structure should never be negative; for the Application Kit, the
width and height of a rectangle must be positive (or 0.0). This means that the point that
locates a rectangle (origin) will have the smallest coordinate values of any point in the
rectangle. The extent of a rectangle is measured in positive directions from its origin.

Rectangle Geometry

From a pair of rectangles within the same coordinate system, it’s possible to calculate a
third rectangle, their union, the smallest rectangle that completely encloses them both.

It’s often also possible to calculate a fourth rectangle, their intersection. Two rectangles are
said to intersect if they have any area in common. Since rectangles within the same

coordinate system have parallel sides, this area will also be a rectangle.

Rectangular union and intersection are illustrated in Figure 4-8.

The Screen 4-15

4.16

first rectangle

second rectangle

intersection

Figure 4-8. Union and Intersection of Rectangles

When passed pointers to two NXRect structures, NXIntersectRect() returns YES if the two
rectangles intersect and NO if they don’t.

BOOL overlap;
overlap = NXIntersectRect (&rectl, &rect2);

If the two rectangles intersect, you can use NXIntersectionRect() to calculate the area that
overlaps. It will place the intersection in the structure specified by its second argument and
return a pointer to the same structure.

NXRect *smallrect;
smallrect = NXIntersectionRect (&rectl, &rect2);

If the two rectangles don’t overlap, NXIntersectionRect() returns a NULL pointer and
doesn’t modify either of the rectangles it’s passed.

NXUnionRect() is similar to NXIntersectionRect(). It places the union of the two
rectangles in the structure specified by its second argument and returns a pointer to the
structure.

NXRect *bigrect;
bigrect = NXUnionRect (&rectl, &rect2);

Chapter 4: Drawing

NXUnionRect() and NXIntersectionRect() perform two of the most common calculations
on rectangles. But there are also a number of other functions that modify NXRect
structures in prescribed ways:

* NXSetRect() initializes an NXRect structure.
* NXlntegralRect() alters a given rectangle so that it has no fractional coordinates. If
the coordinate system hasn’t been scaled or rotated, it guarantees that the sides of the

rectangle will lie on pixel boundaries.

NXDivideRect() slices a rectangle in two. You can specify the size of the slice and the
side from which it should be taken.

» NXlnsetRect() calculates a rectangle that’s inset from the one given.
+ NXOffsetRect() moves a rectangle by specified offsets along the x- and y-axes.

Another function, NXPointInRect(), is used to determine whether a particular point (such
as the location of the cursor) lies within a particular rectangle.

BOOL inside;
inside = NXPointInRect (&point, &rect);

It returns YES if the point touches the rectangle, and NO if it doesn’t.

All these functions are defined in the Application Kit. They’re described in more detail in
the NeXTstep Reference manuals.

When a Rectangle Isn’t Rectangular

The sides of a rectangle are always parallel to the x- and y-axes of its coordinate system.
Since the coordinate axes are typically perpendicular to each other, the corners of a
rectangle are, as expected, 90° angles.

It’s possible, however, to modify the PostScript coordinate system so that the axes intersect
at an angle other than 90°. A rectangle specified within such a coordinate system won’t
appear to be a rectangle at all. It will have the shape of a nonrectangular parallelogram;
since its sides are parallel to the coordinate axes, they won’t meet to form 90° corners. This
is illustrated in Figure 4-9.

The Screen — 4-17

4-18

Figure 4-9. Nonrectangular Rectangle

The most straightforward way to produce a skewed coordinate system is with the following
sequence of two PostScript transformations:

1. Scale the coordinate system unequally.
2. Rotate the coordinate axes into the scaled coordinates.

For example, Figure 4-9 above shows the approximate result of this PostScript code:

2.0 1.0 scale
30.0 rotate
40.0 40.0 100.0 100.0 rectfill

Here the rectfill operator produces a rectangle at (40.0, 40.0) with a width and height both
equal to 100.0. In an unscaled, unrotated coordinate system, it would appear as an upright
square.

Before the coordinate transformations in this example, the x-axis was horizontal and the
y-axis was vertical; units along both axes had the same length. The scale operator stretched
the length of a horizontal unit (measured along the x-axis) to twice the length of a vertical
unit (measured along the y-axis). The rotate operator then altered the position of the x- and
y-axes, but not the horizontal and vertical orientation of the scaling. Like anything else
located in this scaled coordinate system, the x- and y-axes are stretched in a horizontal
direction, and are thus pulled away from the perpendicular. Figure 4-10 illustrates what
happened to the x-axis in the previous figure when it was rotated 30 in the scaled coordinate
system.

Chapter 4: Drawing

7
e

~730 degrees
(unscaled)

old x-axis

- original unit

& J

Y
scaled unit

Figure 4-10. Rotated x-Axis in Scaled Coordinates

Although skewed coordinates turn rectangles into parallelograms, NeXT documentation
refers to any area specified by a point and an extent as a “rectangle,” no matter what shape
it has. When viewed from within a skewed coordinate system, a nonrectangular rectangle
still has 90° angles; it’s nonrectangular only when viewed from the outside.

The Window System

The NeXT window system is grounded in extensions to the Display PostScript system. The
extensions create windows, move and resize them, order them from front to back, direct
drawing to them, associate events with them, remove them from the screen, and carry out
other low-level window management tasks.

The Application Kit builds on these operators and provides an object-oriented
programming interface to them. An application should create the windows it needs through
the Kit. The Kit defines Window objects to manage windows, link them to an
event-handling mechanism, and oversee the drawing that’s done in them. Creating a
Window object through the Kit produces a window to draw in and provides a structure that
integrates the window into the application. The methods for creating and managing
windows are discussed under “Managing Windows” in Chapter 6.

The Window System — 4-19

4-20

Window Numbers

Applications typically use a number of different Window objects and keep track of them
through their object ids. The Window Server keeps track of windows by assigning each one
a unique window number as an identifier. The window number is an int guaranteed to be
greater than 0.

No two windows, even if they belong to different applications, will be assigned the same
window number. However, when a window is destroyed, the Window Server may reuse its
number.

Contexts and Graphics States

The Window Server can serve a large number of client applications; its PostScript
interpreter interprets PostScript code concurrently for all running applications.

For each connection that it has to an application, the Window Server maintains an
independent PostScript execution context. Figure 4-11 illustrates the context that each
application sees.

Application A's Context Application B's Context

Dictionary
Stack

Figure 4-11. PostScript Execution Contexts

Chapter 4: Drawing

Every context has its own set of stacks, including an operand stack, graphics state stack, and
dictionary stack. There are three built-in dictionaries in the dictionary stack. From top to
bottom, they are userdict, nextdict, and systemdict. userdict is private to the context,
while nextdict and systemdict are shared by all contexts. nextdict is a modifiable
dictionary containing any dynamic information common to all applications, such as
downloaded packages. systemdict is a read-only dictionary containing all the PostScript
operators, both the standard ones and those implemented by NeXT.

The Current Window

Each context has a current graphics state and graphics state stack. The current graphics
state is a set of parameters that the PostScript interpreter uses when rendering images on
the screen (or printed page). It includes parameters for such things as the current color, line
width, clipping path, and dash pattern.

Three parameters are especially important to the window system:
e The current device, where drawing is to be rendered

» The current transformation matrix (CTM), which maps the coordinate system the
application is currently using to the device

o The current clipping path, which defines the area where images can be rendered

When drawing on the screen, the device is a window. The device of the current graphics
state is the current window. PostScript painting operators, such as stroke, fill, and show,
draw directly in the current window. You don’t need the showpage or copypage operators
to make images visible.

When the current graphics state is set to a new window device, the other two parameters
also change:

e The current transformation matrix is initialized to the window’s base coordinate
system. (Thereafter, the initmatrix operator can be used to reestablishes this

coordinate system.)

» The current clipping path is set to a path around the window. (The initclip operator
reestablishes this clipping path.)

These changes ensure that drawing is confined to the current window and is in a coordinate
system specific to the window.

The Window System 4-21

4-22

Changing Graphics States

As users shift their attention from place to place on the screen, applications are required to
shift the drawing focus from window to window and graphics state to graphics state. There
can be only one current graphics state, and therefore only one current window, for each
execution context.

The graphics state stack saves former graphics states that might later be restored. The gsave

operator pushes the current graphics state on the stack and grestore replaces the current
graphics state with one from the stack. This is illustrated in Figure 4-12.

setgstate

currenigstate

grestore

Graphics
State Stack

Figure 4-12. Graphics States

Because applications typically draw in many windows, it’s possible for each graphics state
on the stack to point to a different window device.

The stack saves graphics states in a particular order, but as users shift their attention
on-screen, an application can be required to switch between graphics states in an order that
the stack can’t predict. Therefore, to simplify the task of switching between graphics states,
the Display PostScript system permits graphic states to be saved not only on the stack, but
also in individual graphics state objects. The gstate operator creates a new graphics state
object and copies the current graphics state to it. The code below saves the current graphics
state in an object named foo:

/foo gstate def

A graphics state object is not stored on the stack; the gstate operator allocates memory for
it. Applications therefore tend not to create many graphics state objects for themselves, but
reuse the ones they do create.

The currentgstate operator copies the current graphics state to a graphics state object, and
the setgstate operator copies the graphics state recorded in a graphics state object to the
current graphics state. These two operators are illustrated in Figure 4-12 above. They serve
functions parallel to gsave and grestore.

Chapter 4: Drawing

At minimum, the Application Kit keeps one graphics state object for each window. The
object identifies the window (as the device) and records its base coordinate system. Shifting
the drawing focus from one window to another is a matter of first setting the current
graphics state from the desired window’s graphics state object and then altering parameters
of the current graphics state as needed. Altering these parameters doesn’t affect the
graphics state object.

Additional graphics state objects can be assigned to facilitate shifting back and forth
between particular graphics states within a window. For example, one object could be
assigned to a text display and another to the scroller that scrolls the display. Views created
through the Application Kit should be assigned graphic state objects using Kit methods
rather than PostScript operators.

Window Buffering

Windows often overlap when there’s more than one on the screen. When a group of
windows are stacked together, a mouse click within one of them usually brings it to the front
and its previously obscured contents become visible. Whether the contents are
automatically made visible by the Window Server or must be redrawn by the application
depends on whether the window has a backup buffer. The buffer stores pixel values for the
portions of a window that aren’t shown on the screen. When those portions become visible
again, they can be copied from the buffer by the Window Server rather than be redrawn by
the application.

So that you can pick the buffering scheme that’s best for the needs of your application, three
distinct types are provided:

* Nonretained. A nonretained window has no buffer. All drawing is done directly
on-screen—that is, into the memory dedicated to holding screen pixel values. If part
of the window gets covered by another window, the memory for that part of the screen
changes and a portion of the covered window’s contents are lost. If later the window is
uncovered, any drawing in that part will be replaced by the background color.

* Retained. A retained window has a buffer equal to the size of the window. Drawing is
done directly on-screen—directly into screen memory—for all visible portions of the
window, and into the buffer for all portions of the window that are covered and not
visible. If a visible portion of the window becomes obscured, the contents of that
portion are saved in the buffer. If the obscured portion of the window is later revealed,
the contents of the buffer are copied on-screen.

* Buffered. Like aretained window, a buffered window has a buffer large enough to hold
its entire contents. However, the buffer isn’t only backup storage, it also serves as a true
input buffer. All drawing is first done in the buffer, then is copied to the screen through
an explicit call to the NeXT PostScript flushgraphics operator. Drawing done through
the Application Kit’s display methods is automatically flushed.

These three types are illustrated in Figure 4-13.

The Window System 4-23

424

Screen Buffer

A nonretained window
has no buffer. All draw-
Nonretained ing is done directly (none)
Wherever possible, a
retained window is also
Retained drawn on the screen
se, drawing is
1 a buffer until
ared part of the
is visible again.
All drawing in a buffered | flushgraphics | All drawing in a buffered
window is first done in window is first done in
Buffered the buffer. The visible the buffer. The visible

part of the drawing is
then placed on-screen
through a call to the
flushgraphics operator.

Figure 4-13. Window Buffering

When a covered portion of a retained or buffered window becomes visible, the newly
uncovered portion is automatically refreshed from the buffer. However, an uncovered
portion of a nonretained window needs to be redrawn from scratch. Nonretained windows
that are created through the Application Kit can handle this automatically. See
“Kit-Defined Events” in the “Event Handling” section of Chapter 7.

The NeXT header file dpsNeXT.h (in /usr/include/dpsclient) defines three C constants

that you can use to specify the buffering type when creating a window through Application
Kit methods:

Chapter 4: Drawing

NX_NONRETAINED
NX_RETAINED
NX_BUFFERED

When created directly with PostScript operators, the equivalent constants are:

Nonretained
Retained
Buffered

Choosing a Buffering Type

Because it combines the simplicity of drawing directly on the screen with the security of a
backup buffer, a retained window is usually preferred over a nonretained window.
Nonretained windows are appropriate for transitory images that you don’t need to save, or
for windows you can guarantee will never be covered. However, in a multi-application
environment, this guarantee is a hard one to give.

A buffered window is appropriate when you’re drawing images that take some time to
appear, and you don’t want users to watch them being rendered on-screen. With a buffered
window, an elaborate picture can be displayed first in the buffer, and when it’s complete be
flushed instantaneously to the screen.

Buffered windows also yield smoother transitions between images when you're repeatedly
drawing in the same area of the window. Suppose, for example, that your application draws
the word “RUNNING” and then replaces it with “FINISHED”. PostScript operators paint
only within the outline of images they 're rendering—in this case, within the outlines of the
letters of the two words. Therefore, it’s necessary to erase “RUNNING” before drawing
“FINISHED”; otherwise, some of “RUNNING” will show through the spaces between the
letters of “FINISHED”. PostScript code like the following might be used:

1 setgray % set the current color to white
0 0 120 20 rectfill % erase
0 setgray % set the current color to black

0 0 moveto
(FINISHED) show
flushgraphics

show "FINISHED"
flush, if it’'s a buffered window

o° oo

The Display PostScript operator rectfill first erases a rectangular area by filling it with
white, then show draws “FINISHED” in black.

Since a buffered window erases and redraws in the buffer, then flushes the buffer to the
screen, you won'’t see the first image (“RUNNING”) removed before the second image
(“FINISHED”) replaces it. However, a retained window erases and redraws on-screen.
This difference doesn’t much matter for a case where one word replaces another. But where
images rapidly replace each other—as in an animation or redrawing lines of text in response
to the user’s typing—you’ll notice a slight flicker in a retained window as images are erased
before they’re replaced.

The Window System 4-25

The Screen List

The Window Server keeps track of the current front-to-back order of windows through a
screen list. The list is rearranged every time the user brings a window to the front or sends
one to the back. Applications reorder windows on-screen by reordering them in the list.
This should be done through Application Kit methods. See Chapter 6 for details.

A window can be placed at the top of the screen list—that is, in the frontmost position—at
the bottom of the list, or in any position above or below another window. Every window
has a unique position in the list; even if two windows don’t overlap on the screen, one of
them is listed in front of the other. Windows can also be left off the list, and thus kept off
the screen.

When you position a window in the list, you must specify two parameters:
» Whether it’s to be placed above or below another window, or left off the list entirely.

* What the window number of the other window is. If this number is 0, the window
you’re ordering will be placed at the very top or bottom of the list. If the window you’re
ordering is to be left off the list, this second parameter is ignored.

The NeXT header file dpsNeXT.h (in /usr/include/dpsclient) defines three C constants
that can be used to order windows:

NX_ABOVE
NX_BELOW
NX_OUT

In PostScript code, the constants are:
Above

Below
Out

Window Tiers

The Application Kit divides the screen list into six tiers. The top five tiers keep special
types of windows from being buried under other windows when they're on-screen. The

tiers are:

1. Pop-up and pull-down lists

2. Attention panels

3. The main menu and attached submenus
4. Other menus

5. Docked icons

6. All other windows

4-26 Chapter 4: Drawing

See Chapter 2, “The NeXT User Interface” for more on window tiers, and Chapter 6 for
information on how to keep windows in the proper tier.

Off-Screen Windows

Windows are created off-screen. Applications must place them in the screen list to make
them visible. If a window is buffered or retained, it’s a good idea to draw in it before
moving it on-screen. This prevents the user from seeing images rendered in stages.
Windows that are kept permanently off-screen can be useful for caching images that you
want to composite to on-screen windows. (See “Compositing and Transparency” later in
this chapter for more information on compositing from an off-screen window.)

An off-screen window is entirely invisible; it has no screen memory. All drawing goes
directly into the window’s buffer. Drawing in an off-screen nonretained window is
pointless; since it has no buffer, there’s nowhere for the drawing to go. Flushing an
off-screen buffered window is similarly pointless.

You can put a window in the screen list, and take it out again, with Application Kit methods
(described under “Mar:aging Windows” in Chapter 6). A window disappears from the
screen when it’s removed from the list, and is restored to the screen when it’s put back in
the list. (A removed window disappears only because covered portions of the windows
behind it—including the background window for the entire screen, workspace Window—
are redisplayed.)

It’s also possible to locate windows off-screen yet keep them in the screen list. Because the
screen coordinate system extends far beyond the screen along both the x- and the y-axis,
you can assign coordinates that prevent a window from being visible. An ordinary-sized
window located at (—5000.0, —5000.0) would not show up on the screen, for example.

For two reasons, it’s preferable to keep windows off-screen by removing them from the
screen list rather than by assigning them off-screen coordinates:

» Events—user actions on the keyboard and mouse—can be associated with any window
in the screen list, whether its coordinates place it on the screen or off. However,
windows not in the list don’t get events. Since events are usually associated with an
on-screen display (a slider or button, for example) and require visual feedback, they
shouldn’t normally be associated with windows the user can’t see. Events are discussed
in the next chapter.

* Windows that aren’t in the screen list can be assigned on-screen coordinates. This

simplifies subsequent handling; placing the window on-screen involves no coordinate
adjustments and no effort to remember where the window was located.

The Window System 4-27

4-28

The Background Color

Windows created through the Application Kit should be assigned a background color with
methods defined in the Kit. This section describes the background color of windows at a
lower level, the level of PostScript operators.

When a new window is created, the pixels within it are initialized to a background color,
usually white. You can choose a color other than white by combining the effects of a few
PostScript operators.

Through the setexposurecolor operator, you can determine the color that’s displayed when
new areas of the window are exposed. This operator sets the color that’s shown in areas
added to a window when it’s resized larger. It also sets the color that’s used when covered
areas of a nonretained window are exposed. (When retained and buffered windows are
exposed, their on-screen appearance is determined by the contents of their buffers.)

This code sets the background color of the current window to 50% gray:

0.5 setgray Set a new gray value

o
©
o
©

setexposurecolor Set the background color to new gray value
To make the initial color of a nonretained window match the color set with this operator,
create the window off-screen, set the background color, then move the window on-screen.

You can set the background color of a retained or buffered window by a combination of the
fill operator (for the initial surface area of the window) and the setexposurecolor operator
(for any future surface area if the window is resized). The window should be created
off-screen and its background color set, before being moved on-screen.

When an area of a window is erased, you may want the color shown to be the same as the
background color. Since the erasepage operator erases to white, don’t use it unless white
is the color you want. Instead make the clipping path the current path and fill it with the
background color of your choice. This code erases to 50% gray:

clippath % Make the clipping path the current path
0.5 setgray % Set a new gray value
fill % Fill current path with new gray value

Chdpter 4: Drawing

Compositing and Transparency

Compositing is a NeXT extension to the Display PostScript system that enables separately
rendered images to be combined into a final image. It encompasses a wide range of imaging
capabilities:

+ It provides the means for simply copying an image “as is” from one place to another.

o Itlets you add two images together so that both appear in the composite superimposed
on each other.

+ It defines a number of operations that take advantage of transparency in one or both of
the images that are combined. When they’re composited, the transparency of one
image can let parts of the other show through.

Compositing can be used for copying within the same window on the screen, as during
scrolling, or for taking an image rendered in one window and transferring it to another.
Images are often stored in off-screen windows and composited into windows on-screen as
they’re needed. For example, the Workspace Manager first renders application and
document icons in off-screen windows, then copies them on-screen.

When images are partially transparent, they can be composited so that transparent sections
of one determine what you’ll see of the other. Each compositing operation uses
transparency in a different way. In a typical operation, one image provides a background
or foreground for the other. When parts of an image are transparent, it can be composited
over an opaque background, which will show through the transparent “holes” in the image
on top. In other operations, transparent sections of one image can be used to “erase”
matching sections of the image it’s composited with. In most operations, the composite is
calculated from the transparency of both images.

Compositing with transparency can achieve a variety of interesting visual effects. A
partially transparent, uniformly gray area can be used like a pale wash to darken the image
it’s composited with. Patches of partially transparent gray can add shadows to another
image. Repeated compositing while slowly altering the transparency of two images can
dissolve one into the other. Or an animated figure can be composited over a fixed
background.

Before images can be composited, they must be rendered. To take advantage of
transparency when compositing, at least one of the images needs to be rendered, to some

extent, with transparent paint.

The next section describes how to create transparent images for compositing. If you're
interested only in using compositing to copy, turn to the later section titled “Compositing.”

Compositing and Transparency — 4-29

4-30

Transparent Paint

On the NeXT computer, you can set a coverage parameter in the current graphics state in
addition to the color parameter:

» The setalpha operator sets the current coverage to an alpha value in a range from 0
(completely transparent) to 1 (completely opaque).

0.333 setalpha

The default alpha value is 1. To use transparency, you must explicitly set a lower value;
currentalpha returns the current setting.

« The setgray operator sets the current color to a value in a range from 0 (black) to 1
(white):

0.5 setgray
currentgray returns the current setting.

Note: In this discussion, the color parameter is illustrated by the single value, sometimes
referred to as a gray value, that’s set by setgray and returned by currentgray. However,
the principles of compositing and transparency outlined here also apply when the color
parameter has more than one component. For example, the red, green, and blue
components in an RGB color system can each be set to a different value, but each would
interact with the alpha value just as the gray value does.

Together, the alpha value and color value determine the kind of paint that’s used when
rendering an image. The color value determines the color of the paint; the alpha value
determines how opaque or transparent it is. In the example above, the paint is mostly
transparent; only one third of it is opaque. If it had been made completely transparent, as in

0.0 setalpha

the current color would have been irrelevant; images drawn with transparent paint are
invisible.

Figure 4-14 below illustrates the kind of paint that would be produced from an alpha value
0f 0.333 and a color value of 0.5. Setting the color value midway between white and black
is like mixing equal equal portions of white and black paint (or, on the NeXT MegaPixel

Display, equal portions of light gray and dark gray) to produce a medium gray. Making this
paint only a third opaque is like mixing one portion of it with two portions of transparent
paint.

Chapter 4: Drawing

0.5 setgray 0.333 setalpha

Figure 4-14. Mixing Transparent Paint

The color is still 0.5, midway between black and white, but the paint is diluted with
transparency. When drawing with this paint, as in

0 0 100 100 rectfill
some of the background will show through.

What paint with a gray value of 0.5 and an alpha value of 0.333 actually looks like depends
on the background it’s applied against. The paint is just one-third opaque, so it contributes
only one-third of the visual result. The background contributes the other two-thirds.

The background that shows through transparent paint is device-dependent. You won’t see
the images already displayed in the area being painted; they’ll be erased no matter what
paint you use. Rather, the background depends solely on the imaging model assumed by
the device. There are two principal, and competing, models:

* In the PostScript imaging model, an image is built up by applying paint on a white
surface. This is a convenient model for printers, which normally put ink on white

pages, and it fits well with the assumptions of artists who begin with a white canvas.

+ In the competing model, images are built up by adding color to a colorless, black
surface. This model is commonly assumed in video and color graphics.

Devices can also assume backgrounds other than black or white, but black and white are the
only two that need to be discussed here.

Compositing and Transparency — 4-31

Figure 4-15 below shows how each of these imaging models would affect the partially
transparent gray paint in the example above.

0 0 100 100 rectfill

B |

assumed white assumed black
background background

Figure 4-15. Painting with Transparency

If the background color is black, the result will appear blacker than the medium gray we
originally set. If the background color is white, the result will be whiter.

The NeXT MegaPixel Display adopts the PostScript model: A white background is
assumed. Areas painted with completely transparent paint appear white on-screen; areas
painted with partially transparent grays appear as lighter grays. However, for external data
representation, the second imaging model, with a black background, is assumed. See “Data
Representation” below for details.

In either case, the appearance of the painted image may be deceptive, since, when
composited, the transparency of the image may let some of the other image (rather than a
black or white background) show through.

Note that painting destroys any images that were previously rendered in the same area.
Painting one image after another completely obliterates the first image. Even when the
paint is totally transparent, the images it covers are destroyed (in favor of the background
color assumed by the device). The only way to combine images is through compositing.

4-32 Chapter 4: Drawing

Data Representation

Painting operators (such as rectfill and stroke) produce an image on-screen or in a window
buffer. They directly affect pixel values.

The values that painting operators produce depend on a number of factors, including:
» The alpha and color values of the current graphics state.

* The transfer function (which maps values set by setgray and setalpha to values used
by the device).

» The current halftone screen. (See “Pixels, Halftones, and Rectangular Coordinates”
above for information on halftones.)

The range of values that a pixel can represent depends on the number of bits provided per
pixel. On the MegaPixel Display, two bits of memory are set aside to store the color of each
pixel, and another two to store its coverage. Values for the coverage of pixels are stored
separately from color values.

Every pixel within a window has both color and coverage components. However, for
efficiency, memory isn’t allocated for the coverage component if all the window’s pixels are
opaque. Instead of being explicitly stored, the opaqueness of the window is implicit. Once
any pixel needs to be assigned an explicit coverage value (because it’s no longer completely
opaque), alpha storage is allocated for the entire window.

There are significant performance advantages associated with windows that have implicitly
opaque pixels. Imaging in such a window is twice as fast as imaging in a window with
explicit coverage, since only half as much memory is affected. Copying between implicitly
opaque windows is optimized to be highly efficient; compositing operations between
windows with explicitly stored coverage values can be several times slower.

The currentwindowalpha operator, described in the NeXTstep Reference, Volume 2,
reports whether a window has an explicit coverage component. It’s useful mainly for
debugging; you’d rarely need to know how a window’s coverage values are stored.

Bitmaps

A bitmap is binary data that describes the pixel values for an image. It’s an external data
representation, perhaps kept in a file or in memory allocated by your program, as opposed
to the representations used internally by the device.

A bitmap is the most efficient way of rendering a complicated image in a window; the
external data values in the bitmap can be translated directly into device-internal pixel
values. The NXImageBitmap() function displays a bitmap image, and NXReadBitmap()
produces a bitmap from an existing image. (These two functions are described in the
NeXTstep Reference, Volume 2.)

Compositing and Transparency — 4-33

4-34

Bitmaps cover a rectangular area and describe all the pixels within the rectangle. Because
the MegaPixel Display requires two bits of memory for each component of a pixel, a bitmap
also assigns two bits per pixel for each component. Bitmaps always have a color
component and may or may not also have a coverage component. If all the pixels described
by the bitmap are completely opaque, the coverage component can be omitted.

By convention, bitmaps use the same color and coverage scales as setgray and setalpha:

Color Value Coverage
White 1 Opaque
Black 0 Transparent

Where there’s more than one bit of storage per pixel, all the bits for a component must be
“on” for the pixel to be white or opaque, and all must be “off” for it to be black or
transparent. Because there are two bits per pixel for both color and coverage on the
MegaPixel Display, each pixel can have any of four values in each component:

Color Coverage
White Opaque
Light gray 2/3 opaque
Dark gray 1/3 opaque
Black Transparent

Not every combination of color and coverage values is permitted, however. When there’s
any degree of transparency, color values are adjusted toward black. This adjustment is
explained in the next section.

Premultiplication

It’s convenient, both in bitmaps and in device-internal image representations, to store color
values that reflect the effect of the coverage component. The intended or “true” color (as

determined by setgray) is multiplied by the coverage before being stored. So a white pixel
(true color = 1) that’s one-third transparent (coverage = 0.667) will store a color value of

0.667 (1 X 0.667).

There are two reasons for this adjustment:
» It’s arequired part of all compositing operations. Doing the multiplication when pixel

values are first stored—"“premultiplying”—means that it can be avoided during
compositing. This makes compositing more efficient.

» Itresults in a value that more accurately reflects the pixel’s actual color contribution.

Chapter 4: Drawing

For example, when the color parameter is set to 0.5 and the coverage parameter equals
0.333, as illustrated in Figure 4-14 above, color values are premultiplied to 0.167

(0.5 x 0.333). This value reflects the visual result of placing this mostly transparent paint
over an assumed black background, as shown in Figure 4-15 above; the background biases
the color toward black. If 0.167 isn’t one of the pure colors available on the device, the
actual color values for pixels in the painted area will be determined by the halftone pattern
for 0.167 gray.

Where pixel values are opaque (coverage = 1), premultiplication doesn’t change color
values. But where there’s any degree of transparency, premultiplying results in color values
that are blacker than the true values set. This reflects the effect of an assumed black
background showing through. In bitmaps, color values must be premultiplied “toward
black” in this way. This means that, in external data representations, a pixel’s color value
can never be greater than its coverage value. The table in Figure 4-16 below summarizes
permitted color and coverage combinations.

Figure 4-16. Permitted Pixel Values

Note that the color of a completely transparent pixel is black, and a white pixel can only be
opaque. Only opaque pixels can show the full range of colors.

Although a black background is assumed for the external data representation stored in
bitmaps, the internal representations on the MegaPixel Display use the opposite convention.
Internally, color values are premultiplied towards white rather than black. Where there’s
transparency, stored color values are whiter than the true color, reflecting an assumed white
background showing through. NXImageBitmap() and the imaging operators on which it’s
based accurately translate external (bitmap) values into the correct internal values for the
MegaPixel Display. NXReadBitmap() produces correct bitmaps from internal image
representations.

Note: Premultiplication toward white is accomplished, in part, by using an internal gray
scale that’s the inverse of the PostScript gray scale. Internally, O is white and 1 is black.

C ompositing and Transparency ~— 4-35

4-36

At first glance, the difference between external and internal data representation may seem
unnecessary. However, premultiplication toward black for external data representation is a
device-independent standard. Converting from it to a variety of device-internal
representations—including the representations required for color systems and the
premultiplied-toward-white representations required for the MegaPixel Display—are easy
and accurate. Adopting it as a standard means that you won’t have to modify bitmap data
to render it on different devices.

Compositing

In general, compositing combines two rectangular images of the same size, shape, and
orientation, one a source image and the other a destination image, with the result replacing
the destination image. Source and destination images may be located in the same window,
or in different windows. The windows may be on-screen or off.

Compositing Operators

There are three compositing operators—composite, compositerect, and dissolve. The
most general of the three is composite. It and compositerect are described below. dissolve
is a special-purpose operator described later under “Dissolving.”

composite

The composite operator takes a list of eight operands; the first four specify the rectangle of
the source image:

src, srcy, width height srcgstate dest, dest, op composite

The fifth operand, srcgstate, names a graphics state that specifies both the window device
where the source rectangle is located and the coordinate system it’s defined in.

The next two operands, dest, and dest,, locate the destination image in the current window
and current coordinate system. Pixels in the destination image are paired one-to-one with
pixels in the source image. The destination rectangle will be the same size and orientation
as the source rectangle, regardless of the current coordinate system. It’s positioned relative
to (dest,, desty) exactly as the source rectangle is to (src,, srcy). This is illustrated in Figure
4-17.

Chapter 4: Drawing

Source

composite

Destination

/T T

(srcx, srey)

composite

AR

(destx, desty)

(srcx, srcy)

Rotated axes

Figure 4-17. Compositing

(desty, deSty)

The outline of the source rectangle may cross pixel boundaries due to fractional
coordinates, scaling, or (as in the second example in Figure 4-17 above) rotated axes. The
source image includes all the pixels that the rectangle encloses or enters. See “Imaging
Conventions” later in this chapter for information on how outlines chose pixels.

The final operand to composite specifies the type of compositing operation. There are

several to choose from:

Copy Sover
Clear Sin
PlusD Sout
PlusL. Satop
Xor

Dover
Din
Dout
Datop

Compositing and Transparency — 4-37

4-38

The dpsNeXT.h header file defines matching constants that can be used in Objective-C
code:

NX_COPY NX_SOVER NX_DOVER

NX_CLEAR NX_SIN NX_DIN

NX_PLUSD NX_SOUT NX_DOUT

NX_PLUSL NX_SATOP NX_DATOP
NX_XOR

The operation called “Copy” is one of the most basic; it simply replaces the destination
image with the source image. In the example below, it moves the source image ten units
higher in the same window:

oe

myGState setgstate make myGState the current graphics state

0 0 200 200 % the source rectangle
myGState % the source graphics state
0 10 % location of the destination rectangle

o

Copy composite copy source to destination
In this example, the source and destination images overlap. This is typically the case when
an image is scrolled.

compositerect

When the source of a compositing operation is a constant color, it’s convenient to use the
compositerect operator instead of composite.

dest, dest, width height op compositerect

compositerect is like composite, except that there’s no real source image; its first four
operands define the destination rectangle directly in the current window. compositerect’s
effect on the destination is as if there were a source image filled as specified by the color
and alpha parameters in the current graphics state. For example, you could erase a
rectangular area to white by setting the current color to 1 and then calling compositerect to
perform a Copy operation:

1 setalpha
1 setgray
0 0 100 100 Copy compositerect

This is exactly the same as:
1 setalpha

1 setgray
0 0 100 100 rectfill

However, compositerect can be used for compositing operations other than Copy; rectfill
and the other painting operators only render images in Copy mode.

Chapter 4: Drawing

Types of Compositing Operations

Most compositing operations are designed to make use of transparency in the source or
destination image. But some, such as Copy illustrated above, are useful even when both
images are completely opaque.

Figure 4-18 below illustrates all the compositing operations and summarizes each one in
terms of what replaces the destination image. “Source image” or “destination image” in a
result means both the color and coverage components of the pixels in the corresponding
image. For simplicity, these summaries assume that the coverage values in the images are
either 1 or O (opaque or fully transparent). The paragraphs following the illustration
describe each operation in more detail.

Compositing and Transparency — 4-39

Destination
Source before

opaque - opaque

I
transparent transparent

Operation Destination after

Copy

Clear

PlusD

PlusL

_
-

Sover

~
X~
SH
~

Dover

Sin

Din

Sout

Dout

Satop

Datop

Xor

pANE MK K)i

Source image.

Transparent.

Sum of source and destination images, with color values approaching 0 as a limit.

Sum of source and destination images, with color values approaching 1 as a limit.
(PlusL is not implemented for the MegaPixel Display.)

Source image wherever source image is opaque, and destination image elsewhere.

Destination image wherever destination image is opaque, and source image elsewhere.

Source image wherever both images are opaque, and transparent elsewhere.

Destination image wherever both images are opaque, and transparent elsewhere.

Source image wherever source image is opaque but destination image is transparent,
and transparent elsewhere.

Destination image wherever destination image is opaque but source image is transparent,
and transparent elsewhere.

Source image wherever both images are opaque, destination image wherever destination
image is opaque but source image is transparent, and transparent elsewhere.

Destination image wherever both images are opaque, source image wherever source
image is opaque but destination image is transparent, and transparent elsewhere.

Source image wherever source image is opaque but destination image is transparent,
destination image wherever destination image is opaque but source image is transparent,
and transparent elsewhere.

Figure 4-18. Compositing Operations

4-40 Chapter 4: Drawing

For a more complete discussion of compositing, including information on how composite
images are calculated, see the paper “Compositing Digital Images” by Thomas Porter and
Tom Duff in Computer Graphics (SIGGRAPH ’84 Conference Proceedings) Volume 18,
Number 3 (July 1984).

Copy

Copy is the simplest compositing operation and probably the one most used. It ignores the
destination image, and replaces it with the source image; every pixel in the source rectangle
is copied to the destination. Copy is used in scrolling to move an image from one location
to another. It’s also used to bring images stored in off-screen windows to the screen. Copy
is the only way images are moved on the NeXT computer.

Clear

Whereas Copy ignores the destination image, Clear ignores both the destination and the
source. It turns the destination rectangle completely transparent. Clearing the rectangle has
the same effect as painting it with pure transparent paint. This code

0 0 100 100
Clear compositerect

is equivalent to

0 setalpha
0 0 100 100 rectfill

except that Clear doesn’t change the alpha value in the current graphics state.

Clear is useful for creating a transparent surface to paint on. A transparent surface is like a
clear sheet of plastic that you can selectively color with opaque paint. When the sheet is
placed over another image, the other image will show through wherever paint hasn’t been
applied.

Before it’s painted on. a transparent surface lets the background color—white on the
MegaPixel Display—show through everywhere. However, you should never use Clear
simply to erase to the background. A transparent surface isn’t the same as an opaque white
surface. If the destination window doesn’t already have memory allocated to store the
coverage component of its pixels, Clear will allocate it. It may therefore double the amount
of memory for the window.

Compositing and Transparency ~— 4-41

442

PlusD and PlusL

PlusD (for “darker”) and PlusL. (for “lighter’’) are two versions of the same basic operation.
They both add the source and destination images together. Where partially transparent
areas in the source and destination overlap, the composite becomes more opaque. It’s like
looking through two panes of tinted glass rather than one; together they 're more opaque
than either alone. Where either of the original images is completely opaque, the composite
is also opaque; where either image is completely transparent, the composite has the
coverage of the other image.

PlusD and PlusL differ only in how they add source and destinatibn color values. PlusD
adds colors so that they become darker; PlusL adds them so that the result is lighter.

PlusD compositing is the more natural of the two for devices like the MegaPixel Display
where the white background of the PostScript imaging model is assumed; it adds color
values to be less like the background. Where the gray of one image overlaps the gray of the
other, a darker shade of gray results. Black plus any other color yields black; white plus
another color yields the other color.

PlusL compositing is not currently implemented for the MegaPixel Display. It would be
most naturally used where a black background is assumed, for it adds color values to
become lighter, less like the background. Where the gray of one image overlaps the gray
of the other, a lighter shade of gray results. Black plus any other color yields the other color;
white plus another color yields white.

Transparency Operations

For Copy, Clear, PlusD, and PlusL, neither the source nor the destination image need be
transparent (though they can be). In contrast, the other compositing operations are most
interesting and useful when one (or both) of the images is partially transparent. The
transparency of one image helps determine what you’ll see of the other.

With one exception, the operations that make use of transparency come in pairs and have
similar names. The first letter of the name is an “S” or a “D,” standing for “source” or
“destination.” The remaining letters of the name describe the type of operation. They’re
summarized in the list below:

Sover and Dover One image is placed over the other. Transparency in the image on
top lets the image underneath show through.

Aside from Copy, Sover and Dover are perhaps most common and
useful compositing operations. They permit a foreground image
to be composited over a background image, or let areas of partial
opacity in the image on top add shading to the image underneath.
The arrow cursor you see on the screen is placed there using Sover
compositing. The source rectangle has transparent pixels
surrounding the opaque arrow.

Chapter 4: Drawing

Sin and Din One image is displayed wherever, and to the extent that, the other
image is opaque. In a sense, the transparency of the second image
eliminates portions of the first.

Sin and Din can be used to clip a picture to a particular shape, say
an oval. The oval is drawn with opaque paint on a clear
(transparent) surface, and the picture is Sin’ed over it. Or, if
you’ve drawn a portrait of someone on a clear surface, you can
turn it into a silhouette by using compositerect to Sin a black
rectangle over it. All the opaque pixels in the portrait will turn
black.

Sout and Dout One image is displayed wherever, and to the extent that, the other
image is transparent. The opacity of the second image eliminates
portions of the first.

Satop and Datop ~ One image is placed on top of the other, with the composite
adopting the transparency of the image underneath. The image on
top shows through only where (and to the extent that) the image
underneath is opaque. The image underneath shows through only
where (and to the extent that) it’s opaque and the image on top is
transparent.

Xor Each image is visible only where (and to the extent that) it’s
opaque and the other image is transparent.

Dissolving

The dissolve operator blends two images together. Typically, it’s called over and over again
in a loop so that one image (the source) can appear to slowly replace the other (the
destination).

dissolve takes almost the same set of operands as composite, but since it uses a compositing
operation that’s particular to its purpose (one similar to Plus), the operation isn’t stated as
an operand. Instead, you specify a fraction, delta, that determines how much each image
contributes to the composite:

srcy srey width height srcgstate dest, dest, delta dissolve
When delta is 0, only the destination image is in the composite; when it’s 1, only the source
image is present. In the example below, 40% of the composite comes from the source

image; the remaining 60% belongs to the original destination image.

0 0 200 200 myGState 50 50 0.4 dissolve
To gradually replace one image with another, dissolve should be called in a loop with delta

increasing slowly from O to 1 with each call. Since it must combine the original destination
and source images each time, the altered destination image must be replaced with the

Compositing and Transparency ~— 4-43

original before dissolve is called. This is done by storing the destination image in an
off-screen window and copying it to the destination rectangle each time through the loop.
Dissolving should be done in a buffered window so that only the result produced by the
dissolve operator is flushed to the screen.

In the example below, the original destination image is stored in an off-screen window
identified by the offGS graphics state object; the source image is in a window identified by
the sreGS graphics state object.

01 64 {

oe

begin loop, stepping from 0 to 64

/delta exch 64 div def redefine delta each time as the current step

number of steps divided by the total

o0 o°

0 0 200 200 offGs
0 0 Copy composite

oe

copy in the original destination

0 0 200 200 srcGS
0 0 delta dissolve

o©

dissolve in the source image

flushgraphics % flush the result to the screen
} for % end the loop
Highlighting

On the NeXT MegaPixel Display, highlighting is usually accomplished by changing white
pixels to light gray and light gray pixels to white:

» Buttons and menu commands have a light gray background that turns to white when
they’re highlighted.

» Selectable text is displayed against a white background, which becomes light gray to
mark the selection.

Since the background color to a display is typically light gray or white, this type of
highlighting fits a variety of contexts and doesn’t radically change what the user sees.

To make highlighting easy, there’s an additional compositing operation, called “Highlight,”
that’s used only with the compositerect operator:

10 10 50 50 Highlight compositerect

On the MegaPixel Display, Highlight turns every white pixel in the destination rectangle to
light gray and every light gray pixel to white, regardless of the pixel’s coverage value.
Repeating the same operation reverses the effect. (Highlight may act differently on other
devices. For example, on displays that assign just one bit per pixel, it would invert every
pixel.)

4-44 Chapter 4: Drawing

The NXHighlightRect() function is the most direct way to highlight in Objective-C code.
It performs Highlight compositing on the area specified by an NXRect structure. The code
in the example below is equivalent to the PostScript code shown above:

NXRect rect = {{10.0, 10.0}, {50.0, 50.0}};
NXHighlightRect (&rect) ;

Note: The Highlight operation doesn’t change the value of a pixel’s coverage component.
To ensure that the pixel’s color and coverage combination remains valid, Highlight
operations should be temporary and should be reversed before any further compositing.

Instance Drawing

A screen-oriented user interface often does highly interactive drawing as a means of
providing feedback to the user, typically in response to the user dragging with the mouse.
Examples of this include stretching out a rectangle, moving an object around on the screen,
and highlighting objects as they’re selected. In general, something is drawn over and over
again, changing its location, size, or orientation each time, with previous occurrences of the
image disappearing as new occurrences are drawn. This kind of interactive, temporary
drawing is facilitated by a NeXT extension to the Display PostScript system known as
instance drawing.

Instance drawing is temporary drawing done within an on-screen window. Rendered
images appear directly on-screen and aren’t saved in the window’s buffer. They can be
easily removed and replaced with the original image, usually in preparation for the next
instance drawing.

The setinstance operator turns instance drawing mode on and off. While the mode is on,
all drawing in the current window is treated as instance drawing rather than as part of the
window’s permanent display. The mode setting is stored as a parameter in the current
graphics state. All images produced in instance drawing mode are removed by the
newinstance operator (so named because you call it when you’re about to replace a
previous instance with a new one). newinstance restores the original image.

In addition, there’s a hideinstance operator for restoring the original image within a
specified rectangle. For example, if instance drawing is used to mark selected objects,
hideinstance can be invoked to unmark objects the user has deselected by dragging back
over them.

If you do instance drawing in a retained or buffered window and part of the drawing is
obscured by another window, you’ll get a window-exposed subevent (of the kit-defined
event) if the obscured part of the drawing is exposed. In practice, it should rarely happen
that your instance drawing is obscured by another window; usually you’ll do instance
drawing in the frontmost window, since that’s the window the user is actively working in.
(Events are discussed in the next chapter.)

Instance Drawing 4-45

The following example illustrates the three instance drawing operators—setinstance,
hideinstance, and newinstance. You can run the code that’s presented here in a PostScript
previewer such as pft to see the demonstration on-screen.

Normally you’d do instance drawing in response to events and take some of the drawing
coordinates from the current position of the cursor. But this demonstration uses coordinates
that are randomly determined. In a self-contained loop, it draws a black rectangle in a
narrow window along the left edge of the screen and bounces one side of the rectangle up
and down. The bouncing effect is produced by progressively adding small slices to the
rectangle to make it grow larger, and by subtracting small slices to make it grow smaller.
Slices are added in instance drawing mode and hidden using the hideinstance operator.

First, the window is created:

/w 100 def

/h 832 def

0 0 w h Buffered window
windowdeviceround

Define w for "width"
Define h for "height"
Create a buffered window
Make it the current device

o A0 o° o0 o°

Above 0 currentwindow Place the window on-screen

orderwindow

To show that hideinstance and newinstance reinstate the original image, there has to be
something showing in the window before instance drawing begins. This code supplies a
simple design:

00 Oh wh woO

3 {8 copy 8 2 roll} repeat
4 {moveto curveto} repeat
stroke

flushgraphics

Put window corners on the stack
Set up to start from each corner
Draw the curve from each corner
Stroke the path

Flush it to the screen

o0 o0 o° o0 oo

The code that follows draws the bouncing rectangle. It has two loops: The outer one
switches the end of the window where the rectangle is drawn. The inner loop expands and
contracts the rectangle from that end a random number of times. Each time through the
inner loop, a new y coordinate (ynew) is selected at random. Depending on the location of
ynew, the rectangle is either stretched—by having rectfill repeatedly fill one-pixel-high
cross sections of the window—or constricted—by having hideinstance remove
one-pixel-high cross sections.

After a few times, this whole process is repeated at the other end of the window. To start
fresh from the other end, the newinstance operator is used to remove the entire rectangle.

4-46 Chapter 4: Drawing

true setinstance Turn on instance drawing mode
50 {
/yold 0 def
rand 20 mod {
/ynew rand
h mod def

ynew yold gt {

Repeat the outer loop 50 times

To start, define yold to be 0

Repeat inner loop 0-19 times

Define ynew to be a random number less
than the window height

If ynew is greater than yold, add

o o° o o° o° o° o° o°

yold 1 ynew
{0 exch w 1
rectfill} for

slices to the rectangle

oe

H Otherwise, hide slices of the rectangle
yold -1 ynew
{0 exch w 1
hideinstance} for
} ifelse
/yold ynew def Redefine yold to be ynew
} repeat
0 h translate

1 -1 scale

Repeat the inner loop

Move the coordinate origin

Flip the polarity of the y-axis
newinstance Remove all instance drawing

} repeat Repeat the outer loop

0 o0 o o o° o° o

false setinstance Turn off instance drawing mode

Sending PostScript Code to the Window Server

Your application must send PostScript code to the NeXT Window Server to draw on the
screen. Communication with the Window Server is made possible through a bidirectional
connection between the application process and the Window Server process. This section
discusses how applications send drawing information over this connection to the Server.

Programs based on the Application Kit establish this connection automatically at startup.
If your program doesn’t use the Application Kit, you must establish a connection to the
Window Server through direct calls to functions defined in the library libNeXT.a. This
library includes the basic Display PostScript client library along with extensions that
support the NeXT window system.

The primary documentation for the client library and for the Display PostScript System in
general is contained in a series of manuals by Adobe Systems. See “Suggested Reading”
in the NeXT Technical Summaries manual for information about these manuals. For
information about those functions that are specific to the NeXT implementation of the
Display PostScript System, see NeXTstep Reference, Volume 2 and the comments in the
NeXT header file dpsclient/dpsNeXT.h.

Once a connection is established, information passes across it in both directions until the
connection is closed when the user quits the application. For transmission efficiency, the
information sent to the Window Server consists primarily of binary-encoded PostScript
code. For further efficiency, the information passed in either direction across the

Sending PostScript Code to the Window Server — 4-47

4-48

connection is accumulated into buffers before being sent across the connection. In most
cases, the buffers are flushed automatically without the explicit intervention of the
application.

Most of the drawing information your application sends to the Window Server (for
example, instructions for drawing standard user-interface objects like buttons and sliders)
is created and sent for you by the Application Kit objects that make up your application.
You only need to write and send drawing instructions for those features that are unique to
your application. There are several ways to accomplish this: using the pswrap program,
using C functions that correspond to individual PostScript operators, or writing directly to
the connection. The next three sections discuss these techniques.

Using pswrap

For most programmers, pswrap provides the best way of sending PostScript code to the
Window Server. pswrap (described in detail in Adobe Systems’ pswrap Reference
Manual) is a program that creates a C function to correspond to a sequence of PostScript
code. When your application is run, a call to the C function sends a binary-encoded version
of the PostScript code to the Window Server.

Each function definition begins with defineps and ends with endps. The definition includes
the C function name, any the function requires, and a listing of the PostScript code the
function represents.

For example, you could define a function that draws a square on the screen, as illustrated
below:

defineps drawSquare (float x)
newpath
100.0 100.0 moveto
0.0 50.0 rlineto
50.0 0.0 rlineto
0.0 -50.0 rlineto
closepath
X setgray
stroke
endps

The first six lines of PostScript code in this example outline a square area on the screen.
The setgray operator sets the shade of gray equal to the value of x, the input argument to

this function. Finally, stroke paints the outline with the selected shade of gray.

Elsewhere in your C source code, you can call this drawSquare function in the same
manner as you would any C function:

drawSquare (0.5) ;

Chapter 4: Drawing

pswrap lets you combine PostScript and Objective-C (or C) code in a natural way. pswrap
functions can take input arguments (as above) and can, through output arguments, return
values sent across the connection from the PostScript interpreter. A pswrap function can
be defined in a separate file or can be included in the same file as the Objective-C source
code. If Objective-C and PostScript code are combined in a single file, pswrap passes the
Objective-C code through unchanged to an output file and translates only the embedded
PostScript code that’s marked by the defineps and endps delimiters. After preprocessing
with pswrap, the output file can be compiled in the normal way.

The benefits of using pswrap to create a function corresponding to several lines of
PostScript code are most clearly seen in comparison to the alternatives: the single-operator
functions and writing directly to the connection.

Using Single-Operator Functions

The easiest way to send one or two lines of PostScript code to the Window Server is by
using a set of C functions that have a one-to-one correspondence with the PostScript
operators. These functions were created by applying pswrap to PostScript code containing
each of these operators; thus, they can be considered a fundamental kind of
pswrap-generated function.

Each of these “single-operator” functions has the same name as the corresponding
PostScript operator, but begins with the prefix “PS” or “DPS”. The functions that have the
“PS” prefix act on the current PostScript context; you must specify the PostScript context
for the “DPS” functions.

Note: Standard Display PostScript single-operator functions are listed in Adobe Systems’
Client Library Reference Manual. Those single-operator functions that are specific to the
NeXT computer environment are described in NeXTstep Reference, Volume 2. The C
functions chapter in the Technical Summaries manual summarizes all single-operator
functions.

An example of a single-operator function is PSsetgray(), the C function that corresponds
to the PostScript setgray operator.

The arguments to a single-operator function are the operands required by the corresponding
PostScript operator, as seen in this rewrite of the above example:

PSnewpath () ;

PSmoveto (100.0, 100.0);
PSrlineto (0.0, 50.0);
PSrlineto(50.0, 0.0);
PSrlineto (0.0, -50.0);
PSclosepath () ;
PSsetgray(0.5) ;
PSstroke () ;

Sending PostScript Code to the Window Server — 4-49

4-50

In some cases, if a PostScript operator leaves a value on the stack, the corresponding
single-operator function also leaves a value on the stack rather than returning it to the
application. This is done for efficiency, since typically the value is needed as input for the
next operator to be executed.

In general, using pswrap to create a customized function corresponding to multiple lines
of PostScript code is preferable to using multiple single-operator functions. Customized
functions reduce the interpretation overhead incurred by multiple single-operator function
calls. In addition, pswrap lets you program directly in PostScript code, making program
listings more natural and concise.

Connection Buffering

For efficiency, data passed from the application to the Window Server is first accumulated
in a buffer. Data returned from the Server is similarly buffered. To ensure that all data in
the application’s buffer is sent across the connection, the buffer must be flushed. As long
as your application makes use of Application Kit facilities, you will rarely need to flush
buffers explicitly.

The buffer on the application side is flushed automatically at the following times:

* Whenever the application tries to get events
» After a timed entry executes

This buffer can also be flushed explicitly with a call to DPSFlush(). Simple programs that
just draw on the screen but don’t get data from the Window Server have to call DPSFlush()
to ensure that all PostScript code generated is flushed to the Server. Applications might also
call DPSFlush() in these situations:

» Before doing especially time-consuming processing in response to an event, to give the
user more timely feedback

* In GDB (the GNU debugger), to ensure that all PostScript code generated so far has
been sent to the Window Server

The buffer on the Window Server side is flushed automatically at these times:

* Whenever the Server has an event or error to send the application
* Whenever the flush operator is executed

Chapter 4: Drawing

Connection buffering and the fact that your application and the Window Server are separate
processes executing asynchronously provide another reason for using pswrap functions to
send drawing information to the Window Server. Code destined for the Window Server is
not sent until the application-side buffer is flushed. Once the code arrives in the Server, it
may have to wait to be executed until the Server has finished with another application’s
input. Finally, tokens are returned from the Server as they become available; token output
is not synchronized with PostScript code input.

Fortunately, pswrap insulates you from most of the consequences of this asynchrony. As
described above, a pswrap function flushes the application-side buffer for you. It also
flushes the Window Server side buffer when a token is ready to be returned to the
application. The returned token is checked for an internal synchronization code to ensure
that the token is the correct one to return to a particular pswrap-generated function. In fact,
the only time this asynchrony of execution may become evident is when error messages are
received. An error message received at one moment may refer to a section of code sent to
the Server somewhat earlier. However, error messages usually contain enough contextual
information to allow you to determine the problem’s location relatively easily.

Imaging Conventions

In the PostScript language, all visible forms have an outline delineating the area to be
colored. This is true both of filled figures and of simple lines.

There are two steps to drawing a filled figure:

1. Construct a path around the area that’s to be colored.
2. Fill the area outlined by the path.

Drawing a line—whether it’s open (like an arc) or closed (like a full circle)—also takes two
steps:

1. Construct the path where you want the line located.
2. Stroke the path to color the line.

Stroking fills an outline that’s constructed along either side of the path using the line width,
line cap, and line join parameters of the current graphics state. One-half the line width falls
on one side of the path and one-half on the other. This outlines the area covered by the line,
with the path running through the center of the outline. The line cap parameter determines
the shape of the outline at the ends of an open path; line join determines its shape where
separate segments of the path meet. When the path is stroked, the outline is filled. The path
itself has a width of 0.

Figure 4-19 illustrates the path and outline of a short curved line with a width set to 2 and
butt-end line caps.

Imaging Conventions 4-51

4-52

\\

//—’————— \ \
- T N
- — .
Y l /\\\ outline

4777 \path

AT TN

Figure 4-19. Path and Outline

It’s possible that a line drawn in this way will totally cover only a few pixels. A
one-pixel-wide line drawn along a path from (4.0, 10.0) to (700.0, 183.0), for example, will
touch many pixels, but cover none of them entirely.

Because figures and paths can cut across pixels in this way, it’s reasonable to ask just which
pixels an outline will affect. For the most part, the answer doesn’t matter: Pixels are so
small that you ordinarily don’t need to be concerned with which ones are turned on when
an outline is filled.

For the cases when you’re doing detailed drawing and are concerned with this question, the
remainder of this section discusses the way imaging is carried out on the NeXT MegaPixel
Display and 400 dpi Laser Printer.

The General Rule

An outlined figure selects all the pixels that it overlaps. This includes all the pixels its
outline completely surrounds and any pixel the outline enters, even if most of the pixel
actually lies outside the area the outline encloses. (An outline enters a pixel if it crosses
from one side to another, or if it simply cuts into the pixel without actually passing through.)

This general rule chooses the pixels that can be colored—either uniformly or in a halftone
pattern—when an outline is painted. The examples below illustrate this principle. Each
assumes that the drawing is done with solid, opaque paint; the pixels that are colored in the
illustrations are the ones this rule selects.

Consider the outline of a white circle, like the one illustrated in Figure 4-20. The path
defining the circumference of the circle completely encloses some pixels, but encloses only
parts of others. Every pixel the circumference passes through is turned white, even if most
of the pixel lies outside the circle.

Chapter 4: Drawing

| circumference

/

Figure 4-20. Section of a White Circle

If an outline lies on a pixel boundary but doesn’t enclose or enter the pixel, the pixel isn’t
treated as if it were inside the outline. The pixel and the outlined figure don’t overlap.

The 3-by-5 rectangle illustrated in Figure 4-21 has an outline that doesn’t enter any pixels;
it lies entirely on pixel boundaries. When the rectangle is filled with black paint, only the
15 pixels entirely enclosed within the outline turn black.

height = 3.0

~

(10.0, 10.0)

width = 5.0

Figure 4-21. Filled Rectangle

Imaging Conventions 4-53

4-54

Figure 4-22 and Figure 4-23 illustrate two horizontal lines, each with its line width set to 1.
The path of the line in Figure 4-22 was drawn down the center of a row of horizontal
pixels—say, from (100.0, 4.5) to (800.0, 4.5). Its outline completely covers each pixel on
its path, but it doesn’t enter any in the adjacent rows. Therefore, only a single row of pixels
is colored to show the line.

} line width = 1.0

Figure 4-22. Horizontal Path at Pixel Midpoint

In Figure 4-23, the path of the line was drawn slightly lower—say, from (100.0, 4.3) to
(800.0, 4.3). The line partially overlaps two rows of pixels, the row the path passes through
and the row beneath. Both rows are colored to display the line.

path } line width = 1.0

Figure 4-23. Horizontal Path below Pixel Midpoint

Chapter 4: Drawing

As the two illustrations above show, an outline one-pixel wide will be displayed as a
one-pixel line only if it falls midway between pixel boundaries. Otherwise, it will be twice
as thick.

This variation in how outlines of the same width are displayed is generally not desirable.
It’s especially noticeable on-screen and especially when the outlines are thin.

To eliminate the variation, the Display PostScript system has added a parameter to the
graphics state which, when true, adjusts the thickness of stroked lines so that they always
approximate the width of the outline. With stroke adjustment, the line shown in Figure 4-23
above would turn on a single row of pixels, no matter where it’s located. This is illustrated
in Figure 4-24.

path

} line width = 1.0

Figure 4-24. Stroke Adjustment for a Path below Pixel Midpoint

Stroke adjustment is true by default on the NeXT computer.

The general rule, as stated and illustrated above (and as modified by stroke adjustment), is
all that’s required to select pixels if the outline encloses any area at all. Where an outline
collapses to a single point or to a line with a width of 0, however, additional rules are
needed. The additions are required so that:

» A zero-width line can be shown using the fewest number of pixels possible.

» Al figures—even points and zero-width lines drawn along pixel boundaries—can be
visible.

The following two sections discuss these special rules.

Imaging Conventions — 4-55

Outlines with No Area

When, to draw a very thin line, you set the PostScript line width variable to 0, the resulting
outline is identical to the path; it has no width at all. A zero-width outline can also result
when a path that defines a filled figure doubles back on itself. Occasionally, an outline will
collapse to a single point.

Points

A single point is shown by turning on a single pixel. If the point lies in the middle of a pixel,
that pixel is the one turned on. If the point lies between pixels, just one of the pixels is
chosen. The choice depends on the device. Figure 4-25 below illustrates how the choice is
made on the NeXT MegaPixel Display and 400 dpi Laser Printer.

» Ifthe point lies on the vertical boundary between pixels, the pixel on the right is the one
chosen.

» If the point lies on the horizontal boundary between pixels, the one below is chosen.

« If the point lies on the corner of four pixels, the one on the lower right is chosen.

255752 | (5.0, 6.5)

(6.0, 4.0)

3.5,3.0)]

Figure 4-25. Pixels that Display Points

4-56 Chapter 4: Drawing

Zero-Width Lines

Zero-width lines are rendered by turning on the fewest possible number of pixels to show
a connected line. For a straight line, this is accomplished by comparing the base
coordinates of its two endpoints:

» If the difference between the two x coordinates is greater than the difference between
the two y coordinates (the line is more horizontal than vertical), exactly one pixel will
be turned on in each vertical column between the two endpoints.

+ If the difference between the two y coordinates is greater than the difference between
the two x coordinates (the line is more vertical than horizontal), exactly one pixel will
be turned on in each horizontal row.

» If the differences between the y coordinates and the x coordinates are the same (the line
is drawn at a 45° angle), exactly one pixel will be turned on in each column and in each

Tow.

Figure 4-26 illustrates how these conventions apply to a variety of straight zero-width lines.

Figure 4-26. Zero-Width Lines

To choose which pixel to turn on in a particular column or row, the conventions look only
at the section of the line falling within that column or row. The pixel that includes the
section’s midpoint is the one that’s chosen. Figure 4-27 shows how a pixel is chosen when
a zero-width path passes through two pixels in the same column. In the illustration, the
pixel on the top left is chosen over the pixel below it, because it contains the midpoint of
the path segment falling within the left column.

Imaging Conventions 4-57

4-58

midpoint /

Figure 4-27. Choosing a Pixel

When the midpoint falls on the boundary between pixels, only one of the pixels is chosen.
The choice is made for midpoints in the same way as it’s made for other points (see “Points”
and Figure 4-26).

+ Within a row, the pixel on the right is chosen.
» Within a column, the lower of the two pixels is chosen.

Where a horizontal or vertical zero-width line lies entirely between pixels, every midpoint
is on a pixel boundary. This is illustrated by the rectangular path in Figure 4-28. Here the
line width was set to 0 and the path was stroked rather than filled. The pixels that are
colored are the ones that would be chosen on the NeXT screen and laser printer.

Chapter 4: Drawing

. pixels that get painted

Figure 4-28. Zero-Width Line on a Rectangular Path

All the conventions discussed above for zero-width lines are used even if the outline isn’t
straight. An automatic PostScript flattening process turns a curved path into a series of very
short, straight-line segments that approximate the curve. The conventions apply to these
segments. (The segments are actually chords joining selected points along the curved path.)

Half-Open Shapes

This section explains the principle that lies behind the general rule and some of the other
imaging conventions that were illustrated above. It’s presented for readers who would like
to know the basis for the conventions.

The general rule can be restated as follows:

If a pixel and an outlined figure have one or more points in common, the pixel is part
of the figure.

It’s fairly easy to tell that a pixel and a figure have a point in common when the point lies
within the pixel and is surrounded by the outline of the figure. It’s more problematic when
the point is on a pixel boundary or on the outline itself.

To solve the problem, all shapes, whether pixels or outlined figures, are considered
“half-open”: Only about half the points on the edge of the shape are included in it. When
two figures are tiled together, each point along their common border will belong to just one
of the figures. Similarly, the points on a border between two pixels belong to just one pixel;
each point on the screen is assigned to one and only one pixel.

Imaging Conventions — 4-59

4-60

Since PostScript flattening turns every curve into a series of short, straight segments, the
rules that determine which points on the edge of a shape belong to the shape, and which do
not, need to be stated only for straight edges. All shapes, whether outlines or pixels, are
covered by the same rules:

o If the edge of a shape faces exactly upward or at all leftward, the points on the edge
belong to the shape. If the edge faces exactly downward or at all rightward, the points
on the edge don’t belong to the shape.

* A point at the corner between two straight edges belongs to the shape if both of the
edges do, or if just one edge does and the corner is concave. If neither edge belongs to
the shape, the corner point doesn’t either.

Note: The directions stated in these rules are for the NeXT MegaPixel Display and 400 dpi
Laser Printer. They may be different on other devices.

By these rules, each pixel includes its upper and left borders and the corner point that joins
them. The upper left is the only corner that belongs to the pixel.

The outline of a straight zero-width line collapses to the path of the line, but is still treated
as having an edge on each of its sides. The edges face in opposite directions. Following
the rules stated above, the endpoints of the line—the corners between the two edges—don’t
belong to the line.

Clipping

A PostScript clipping path outlines the area where painting operators (such as show, fill,
and stroke) can render an image. Like any other outline, it selects pixels according to the
general rule and other conventions discussed above. Only pixels selected by both the
clipping path and an outlined figure can actually be used to display the figure.

Figure 4-29 and Figure 4-30 show how clipping paths and image outlines interact. Both
figures illustrate a rectangular path like the one shown in Figure 4-28. This time, however,
the width of the line is set to 1 and path is made to double as the clipping path.

In Figure 4-29, the path is located exactly as it was in Figure 4-28: entirely on pixel

boundaries. The outline of the one-pixel-wide line therefore covers half of every pixel on
either side of its path. However, none of the pixels around the outside of the clipping path
are within the area where drawing can occur, since the clipping path doesn’t enter or enclose
them. Only a single strand of pixels inside the clipping path is colored to display the line.

Chapter 4: Drawing

N

clipping path

i e s S EEE S R SN U

. pixels that get painted outline (line width = 1.0)

Figure 4-29. Clipping Path between Pixels

In Figure 4-30, the rectangle has been shifted slightly to the left. Each of the vertical
sections of the clipping path now passes through a column of pixels. On the left, both
columns of pixels the outline enters are used to display it. One column has the clipping path
running through it, so it isn’t clipped from the drawing area. The other column is entirely
surrounded by the clipping path, so it also lies within the drawing area. (On the right, only
one of the columns lies within the drawing area.)

N

clipping path

outline (line width = 1.0)

Figure 4-30. Clipping Path Crossing Pixels

Imaging Conventions — 4-61

Finally, it might be helpful to return to the zero-width line illustrated in Figure 4-28, one
drawn along a rectangular path lying entirely between pixels. What happens if the path is
made into a clipping path? Since the path and zero-width line don’t enter any pixels, only
the pixels that the clipping path entirely surrounds can be used to display the line. As shown
in Figure 4-31, just two sides of the rectangle will be visible.

N

clipping path

pixels that get painted

Figure 4-31. Clipped Zero-Width Rectangular Line

4-62 Chapter 4: Drawing

Chapter 5

Events

5-4 Event Basics

5-4 Types of Events

5-5 Keyboard Events

5-5 Mouse Events

5-6 Timer Events

5-7 Cursor-Update Events

5-7 Kit-Defined Events

5-8 System-Defined Events

5-8 Application-Defined Events

5-9 The Event Record

5-10 Event Types

5-11 Event Flags

5-13 Type-Specific Event Data

5-14 Mouse-Down and Mouse-Up Events
5-15 Key-Down and Key-Up Events
5-15 Mouse-Entered and Mouse-Exited Events
5-16 Kit-Defined Events

5-17 System-Defined Events

5-17 Application-Defined Events
5-17 Keyboard Information

5-18 Event Masks

5-20 The Event Queue

5-21 Event-Related Services

5-22 Executing Timed Entries

5-23 Interval Variability

5-24 Checking Mach Ports

5-24 Checking File Descriptors

5-25 Scheduling

5-1

5-2

Chapter 5
Events

Changes made for the current release of NeXTstep affect the information presented
in this chapter. For details see:

/NextLibrary/Documentation/NextDev/ReleaseNotes/WindowServer.rtf
/NextLibrary/Documentation/NextDev/ReleaseNotes/ AppKit.rtf

Applications on the NeXT computer respond to four types of input:

» Events. The direct or indirect reports of a user’s actions—+key-down and mouse-up
events, for example.

+ Timed entries. Functions that are executed at a given frequency.
» Data received at a Mach port.
« Data waiting at a file descriptor.

Of these four, events are by far the most prevalent and important. In fact, the heart of an

application is its event loop, the routine that repeatedly checks for the arrival of new events.
It’s only when the application is running the event loop that it can receive input from the

three other sources. Because these four types of input are so closely interrelated, they're

discussed together in this chapter.

The chapter begins with an examination of events: their types, components, and how
they 're distributed to an application. It then discusses the other types of input and how an
application coordinates its response to them.

Since most of an application’s event processing is done through the Application Kit objects
it includes, the close look at events that this chapter provides may at times contain more
detail that you’ll actually need to get started writing an application. The next two chapters,
“Program Structure” and *“Program Dynamics,” introduce the Application Kit and its
event-handling system. You can either turn directly to those chapters and refer back to this
one for background information as needed, or you can read through this chapter first.

Events 5-3

Event Basics

Applications on the NeXT computer are driven by the user’s actions on the keyboard and
mouse. The Window Server treats each user action as an event, which it associates with a
window and reports to the application that created the window. For most events, the
Window Server sends the event to the application only if the window’s event mask permits
it. The mask has a different bit set for each type of event the application is interested in.

Pertinent information about each event—such as which character was typed and where the
mouse was located—is collected in an event record. When an event is reported to an
application, its record is stored in a C structure and made available to the application
through the Application Kit.

Since an application and the Window Server are separate processes that execute
asynchronously, a system is needed to coordinate their communication. For example, an
application may be involved in a long computation and momentarily unable to process the
event records that the Window Server sends. So that no information is lost, as event records
are received in the application, they re temporarily placed in storage called the event queue.
When the application is ready to process an event, it takes an event record from the queue.
Only when the application checks the queue can it also check for timed entries or data at a
Mach port or in a file.

Most events follow the same path: from the Window Server to the application’s event
queue, and from there, to the objects and functions of the application. However, the
Application Kit can create an event record and insert it into the event queue for distribution
or send it directly to its destination. In some cases, it’s more efficient or convenient for the
Application Kit to create an event record itself. The Kit can then either insert the record in
the event queue for distribution or send it directly to its destination. If an event follows one
of these alternate pathways, it’s pointed out in the discussion that follows.

Types of Events

The different types of events an application receives can be grouped in these seven
categories:

* Keyboard events

* Mouse events

» Timer events

o Cursor-update events

e Kit-defined events

» System-defined events

» Application-defined events

5-4 Chapter 5: Events

As described in the following sections, some of these categories comprise discrete events.
For example, mouse-down, mouse-up, and mouse-dragged events are discrete types of the
mouse events category. Some categories contain a single compound event whose event
record contains information specifying which of several possible actions caused the event.
The distinction between discrete and compound events will become clear from the
examination of the event record later in this chapter.

Keyboard Events

Among the most common events sent to an application are these direct reports of the user’s
keyboard actions:

* A key-down event when the user generates a character by pressing a key
e A key-up event when the key is released

* Aflags-changed event when the user presses or releases the Alternate, Shift, Control,
or Command key, or turns Alpha Lock on or off

Of these, key-down events are the most useful to the application. Key-up events are less
used since they follow almost automatically when there has been a key-down event.

Because the event record for every event type includes flags that indicate the state of Alpha
Lock, Alternate, Shift, Control, and Command, applications normally don’t need to receive
flags-changed events; they ’re useful only for applications that have to keep track of the state
of these keys continuously. The default event mask for a new window doesn’t allow
flags-changed events.

Mouse Events

Mouse events are generated by changes in the state of the mouse buttons and by changes in
the position of the mouse cursor on the screen. Along with keyboard events, they re among
the most useful to applications. This category consists of:

» Two sets of mouse-down and mouse-up events, one for the left mouse button and one
for the right. “Mouse-down” means the user pressed the button; “mouse-up” means the
button was released. If the mouse has just one button, only left mouse events are
generated.

» Two types of mouse-dragged events—one for when the mouse is moved with its left
mouse button down, or with both buttons down, and one for when it’s moved with just
the right button down. A mouse with a single button generates only left mouse-dragged
events. As the mouse is moved with a button down, a series of mouse-dragged events
is produced. The series is always preceded by a mouse-down event and followed by a
mouse-up event.

Types of Events 55

5-6

» A mouse-moved event when the user moves the mouse without holding down either
mouse button.

* Mouse-entered and mouse-exited events if the application has asked the Window Server
to set a tracking rectangle in a window. These events report whether the cursor has
entered the rectangle or left it. For each rectangle, you can specify whether these events
should be generated only when one or another (or both) of the mouse buttons is being
held down. A window can have any number of tracking rectangles; the event record
identifies which rectangle was entered or exited. For more information on setting a
tracking rectangle, see “Mouse-Exited and Mouse-Entered Events” in Chapter 7,
“Program Dynamics.”

Mouse-dragged and mouse-moved events are generated repeatedly as long as the user keeps
moving the mouse. If the user holds the mouse stationary, neither event is generated until
it moves again. Nevertheless, mouse-dragged and mouse-moved events are different from
all other events in that they report continuous rather than discrete user actions. They
therefore place a heavy load on the system; applications should ask for them only when
necessary. The default event mask for a newly created window doesn’t allow either of these
two mouse events. You need to reset the mask when you’re ready to respond to these events
and set it back again when you’re done. See “Modal Event Loops” in Chapter 7 for an
example of how this can be done.

Note: The use of the terms “left” and “right” above is a matter of convention (see Chapter
2, “NeXT User Interface” for more information). Unless the mouse buttons have been
differentiated using the Preferences program, either mouse button generates the “left”
version of these mouse events. If, on the other hand, a user unlinks the two buttons, the
primary mouse button (either left or right) generates “left” mouse events and the other
button generates “right” mouse events.

Timer Events

A timer event notifies an application that a certain time interval has elapsed. An application
can register that it wants timer events and that they should be placed in its event queue at a
certain frequency. When the application no longer needs them, the flow of timer events can
be turned off. An application can’t have more than one stream of timer events active at a
time. These events are a service of the routines that place events in an application’s event
queue and so aren’t created by the Window Server.

Timer events provide a way for applications to interleave two activities. For example,
consider automatic scrolling. As the user drags the mouse outside a window, the
application checks for mouse-dragged events and sends a message to select and scroll the
contents of the window. The number of lines scrolled at a time depends on the distance the
mouse is dragged way from the top or bottom edges of the window: The farther it’s
dragged, the greater the number of lines scrolled at a time. However, the sending of
scrolling messages can’t be contingent on the receipt of mouse-dragged events. If the user
stops moving the mouse but continues to hold the mouse button down, the flow of
mouse-dragged events stops although the window should continue scrolling.

Chapter 5: Events

To solve this problem, the application can specify that, while it’s checking for
mouse-dragged events (whether it finds one or not), it will receive timer events at a given
interval. Each time it receives a timer event, it can send a message to the window to scroll.

Cursor-Update Events

A cursor-update event informs an application that the cursor has crossed the boundary of a
predefined rectangular area within a window. The application can then respond by updating
the cursor’s shape. For example, the Edit application changes the cursor from an arrow to
an I-beam whenever the cursor is within the text area of the window. There may be one or
more rectangles defined at a time, and the rectangles can overlap partially or fully. A
different cursor can be defined for each rectangle.

Cursor-update events may seem closely related to mouse-entered and mouse-exited events.
In fact, the Application Kit converts specially marked mouse-entered and mouse-exited
events into cursor-update events and then sends them on to the application. Consequently,
these events are only available to applications based on the Kit. The Kit also provides the
facilities for registering a cursor and assigning it to a particular area of a window. Once
your application has assigned a cursor to a specific area, the Application Kit does the rest.
Kit routines check for incoming cursor-update events and update the cursor’s image
accordingly. In doing so, the Kit consumes the cursor-update events, making it unnecessary
for your code to handle them.

Kit-Defined Events

Kit-defined events contain information that the Application Kit uses to manage your
application. Since the Kit is designed to respond to events of this type, the code you write
will rarely need to take them into account.

A kit-defined event is a compound event, a single event type that serves as a vehicle for
various subevents. By examining the event record of a kit-defined event, an application can
determine which of several kit-defined subevents has occurred. These subevents report
changes to a window or to the status of the application that created the window. Kit-defined
subevents are:

* A window-moved subevent when the user has dragged the window to another location
on the screen. Most applications won’t care exactly where a user moves a window and
won’t need to respond to this subevent. The Application Kit uses it to keep track of
where windows are on the screen.

* A window-resized subevent when the application has the Window Server resize a
window in response to the user’s actions. The subevent reports the window’s new
dimensions to the application. Although the Window Server resizes the window, it
doesn’t generate the window-resized subevent. Instead, the Application Kit creates the
subevent and sends it on to its destination.

Types of Events 5-7

5-8

* A window-exposed subevent when a nonretained window that was covered or
positioned off-screen becomes exposed. This subevent lets the application know which
part of the window needs to be redrawn. Window-exposed subevents also occur for
retained windows when instance drawing in them is exposed. (See “Instance Drawing,”
in Chapter 4, “Drawing.”)

* An application-activated subevent when an inactive application is activated. This
subevent alerts the application to display the markings on its main and key windows
and to redisplay any panels that it hid when it became inactive.

* An application-deactivated subevent to cause a previously active application to
become inactive. The application receiving an application-deactivated subevent makes
its panels disappear and relinquishes the main and key windows.

System-Defined Events

A system-defined event is also a compound event, serving to group subevents which report
activities of system-wide importance. As with kit-defined events, the Application Kit
responds to system-defined events, making it unnecessary in most cases for you to handle
these events directly.

Currently, there’s only one subevent, the power-off subevent, of the system-defined event.
This subevent is generated when the user turns the power off by pressing the Power key on
the keyboard. Before the power actually goes off, applications have time to notify the user
of files not saved and do other cleanup if necessary. This subevent is not generated by
power failures or any other means that might be used to turn the computer off.

Application-Defined Events

An application-defined event is a compound event with no predefined subevent types. An
application can define as many subevent types as it needs. The event record contains several
fields that the application can use to give specific content to the subevent.

An application might make use of these events in a number of ways. From the keyboard
and mouse events it receives, it could recognize the user’s intentions and generate an event
record for the appropriate application-defined subevent. It could post the event record to its
queue and then process the record as it does those it receives from the Window Server. (See
“The Event Queue” at the end of this chapter and DPSPostEvent() in NeXTstep Reference,
Volume 2.)

Chapter 5: Events

The Event Record

Information about each event is stored in an event record. In some cases, the Application
Kit extracts information out of the event record for you; usually, you’ll need to access it
directly. When the application sees it, the event record has the structure shown below. This
structure is defined, along with event-related constants and macros, in the NeXT header file
dpsclient/event.h.

typedef struct NXEvent ({

int type /* event type */
NXPoint location; /* mouse location */
long time; /* time since startup */
int flags; /* key state flags */
unsigned int window; /* window number */
NXEventData data; /* type-specific information */
DPSContext ctxt; /* context number */
} NXEvent;

Here’s what the event record contains in its various components (called “fields” or
“members” in standard C terminology):

Component Content

type The event type—whether it’s a mouse-down, key-up, or kit-defined
event, for example. (See the list in the next section.)

location The mouse location—its x and y coordinates in the window’s base
coordinate system—immediately following the event, except for two
subevents:

« For window-moved subevents, it’s the lower left corner of the
window after the move, in screen coordinates. (This point is the
origin of the base coordinate system.)

» For window-exposed subevents, it’s the lower left corner of the
rectangle to be redrawn, in base coordinates.

time The time that the event occurred relative to system startup. The unit of
time is hardware-dependent; on the NeXT computer, it’s measured as
the number of vertical retrace intervals (1/68 seconds) since the startup
of the Window Server.

flags Flags indicating whether the mouse buttons or modifier keys like Shift
and Command were down when the event occurred, or whether a key
that was pressed was on the numeric keypad (see “Event Flags”
below).

The Event Record 5-9

5-10

window

data

ctxt

Event Types

In most cases, the window number of the window associated with the
event. For left mouse-down, left mouse-up, and left mouse-dragged
events, it’s the window that the cursor was over when the mouse button
was pressed. For right mouse events that occur over a window in the
active application, it’s also the window that the cursor was over when
the mouse button was pressed. However, for right mouse events that
occur elsewhere, it’s the number of the window that last received a left
mouse-down event. (The Application Kit uses this information to
bring up the application’s main menu in response to a right
mouse-down event.) For mouse-moved events, it’s the number of the
topmost window that accepts this type of event.

In the case of application-activated and application-deactivated
subevents, this field identifies the application that’s being deactivated
(for application-activated subevents) or the application that’s being
activated (for application-deactivated subevents).

Type-specific information (see “Type-Specific Event Data” below).

A number identifying the PostScript context associated with this event.
Since an application typically creates only one context in the Window
Server, the content of this field won’t be of interest. This field is
provided for applications that establish multiple PostScript contexts
and that must know which context an event arrived from. (See “The
Event Queue” at the end of this chapter and Chapter 4 for more
information about PostScript contexts.)

The event type is indicated by one of these symbolic constants:

Chapter 5: Events

Constant

NX_KEYDOWN
NX_KEYUP
NX_FLAGSCHANGED
NX_LMOUSEDOWN
NX_LMOUSEUP
NX_RMOUSEDOWN
NX_RMOUSEUP
NX_MOUSEMOVED
NX_LMOUSEDRAGGED
NX_RMOUSEDRAGGED
NX_MOUSEENTERED
NX_MOUSEEXITED
NX_TIMER
NX_CURSORUPDATE
NX_KITDEFINED
NX_SYSDEFINED
NX_APPDEFINED

Constant

NX_MOUSEDOWN
NX_MOUSEUP
NX_MOUSEDRAGGED

Event Type

Key-down

Key-up

Flags-changed

Mouse-down, left or only mouse button
Mouse-up, left or only mouse button
Mouse-down, right mouse button
Mouse-up, right mouse button
Mouse-moved

Mouse-dragged, left or only mouse button
Mouse-dragged, right mouse button
Mouse-entered

Mouse-exited

Timer

Cursor-update

Kit-defined

System-defined

Application-defined

As a convenience, these synonyms for left mouse events are provided for your use:

Equivalent to

NX_LMOUSEDOWN
NX_LMOUSEUP
NX_LMOUSEDRAGGED

Event Flags

The flags component of the event record contains the flags illustrated in Figure 5-1. Each
flag is 1 in the situation stated in the diagram, and O otherwise. Bits that aren’t labeled in
the diagram are reserved for future use.

The Event Record 5-11

5-12

hardware-independent NeXT hardware only
A A

r A\'4
31 21 20 19 18 17 16 6 5 4 3 2 1 0

key on numeric keypad

Command key down

Alternate key down

Control key down
Shift key down ~

Alpha Lock set or —
Shift key down

right Alternate key down —_
left Alternate key down ——