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Abstract: This note is a practical description of Boolean algebra and its
application to the analysis and synthesis of digital computers.
It is argued that knowledge of the theory and methods described
here is equivelent in value to considerable experience and in-
genuity in the logical design of computers, and that it provides
a way of bringing a novice in the field up to the point where he
can meke contributions considerably more quickly than this is
done at present.

1.0 ODUCTION

To a first approximetion we can describe a binary computer as
a gset of 2 state memory devices functionally comnected by an information
processing network. This first epproximation to any particular computer
represents its logical design; if it has been well engineered and well
constructed, the approximestion will be useful: for example, we may then
ignore the fact that the volteges at critical points in the machine may
assume any one of a contimious range of wvalues.

It is customary to represent the logical structure of a machine
by block diagrams. Unfortunately, you cannot galculate with block dia-
gremss they are merely expository devices. Everyone will agree that it
vould be helpful to be able to represent machines by sets of equations
for which we know gimple rules of transformetion. Much would then become
routine which now requires more or less experience and ingenmuity, leading
the designer more quickly to the importent decisions.

There exists a system of mathematics within which such calculation
is possible. Its mechanical rules are simpler than those of ordinary
algebray as will be seen in the next section. With a very little practice

et ity a novice in the fleld of digital computers can solve, with under-
- standing, a large class of non-trivial problems. For example, the follow-
ing problem is solved later in the text.
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Design a three bit "counter" with the following "loopa':

—FFl FFr2 FE3
1 i 0
0 1 il
1 i 0 (alternetes between 110 and 011)
0 0 0
0 1 0 (passes from 000 into its
1 0 0  cycle, but 000 is not
0 0 1 included in the cycle)
0 1 0"
1 1 hE
) 0 1
1 0 1 (sticks on 101)

Such devices might be used as operation counters.

We do not by any means suggest that facility at Boolean algebra
will supercede experience and ingenuity in the logical design of computers.
Rether

(1) +the algebra provides a way of efficiently channeling the
experience and ingenuity of the novice: a unified theory accelerates and
deepens learning.

(2) it allows the practicing designer immediate access to the
importent, non-routine problems: they allow him to use his skill where
it counts.

2.0 BOOLEAN ALGEERA

Boolean algebra is most often developed as an abstract mathema-
tical system, the interpretation being left open. Here, however, we parallel
each step in the exposition of the theory with its counterpert in terms of
the femiliaer block diagrams in the hope of promoting a sense of confidence
and familiarity with the new technique.

The voltege (or current or whatever physical magnitude represents
information) at any logically important point in a machine may be repres-
ented to a first approximation as a funetion of time which, for every value
of ty is elther O or 1. Any change in such a function will then be a jump
discontinuity.
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Examples
I H ! . ! cLock
g j , : | PULSES
! ! A I r
° L : | ] GATE
' . ; D.C.
o : LEVEL

The elements of our algebra are such Boolean functions of time.

We define four operations on such functions: ways of compounding
from x(t) and y(t) new Boolean functions. For conciseness we shall omit
the time variable in the following table, in which, for example, "x'" is
an abbreviation for "x!(t)", and "x + y" abbreviates rx(t) + y(t)n.

?
Under "Graph" we show the output waveform X o %
when the inputs, x(t) and y(tsn: ares y :_,
Name Table |One Physical Block Diagiam Griaph
Real'izatigil
Not; x x! b
01 {
Complement| 1 0 |, el v Lk ’_,’
And; Xy Xy o ¥
000 :
Logical 010
- 1100 by
Product K B oid
+
x 9
Or; xy xty
00 O i
Logical 01 1 x+y| x x+'y '
101 |
Sum 11 1 9
Partial xy #By Proposal: :
Sum; 00 O See
Cyclic 01 1 P. 4
Sum; 10 1 x—.?—.x@g
Symmetric |11 O j p
Difference Y
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Since there are a finite number of different ways of assigning
O and 1 as values to n variables, it will always be possible to completely
describe any Boolean function by a table as we have done for the four above.

For n inputs there are 22" Boolean functionsy any one of which
might be realized electronically in some simple way. The algebra is neutral
on this issues new physical realizations of funetions which previously had
to be built up out of others have algebraic representations waiting for them
end can be integreted,; without changing the algebra, into the data of the
design problem. " ]

To proceed with the formalism: there asre 2" ways of assigning
one of the two valuesy O, 1, to each of n variables. Then it is practical
to check any presumed theorem of our algebra by substituting (in tabular
form) each possible combination of values for the variables on each side
of the equation. Thus we can prove thet the cyclic sumy, @, is represented
by this combination of gates, mixers and inverters:

INYV e x®y = (xy') + (x'. y)
:z--{—‘- 000 001 O0 100
. .1 Wl @0 1 111
s B IR 111 1 000
1.? 1 100 0 001

IV p—— T ZQy by

definition
Y
iyl 2 ) tl~identical
4 for all
X9y

Note that once the 4 peirs of values of x, y are listed, the values of
x' and y' are determined, and from these, X.y', x'.y and xy' + x'y.

By the same tabular method each of the following theorems of
the algebra can be proved. Agein, for conciseness, we have omitted time
variables.

: /
Law_of Double Negations (x')' = x. —Z o wv |—% IV f— %

Dual Theoremg (The result ofpinterchanging 10 and '1%, '4+' and ’.' in an
expression is the complement of that expression. The result of that inter-
change in a theorem is another theoremfg
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For Products * For Sunms
- No Ebyy_e_gg No Numericel 2
Coefficients: x+x=x
e x-
= 6T - X X - j =L
Multiply by a constant ag Addition of a constants:
in arithmetic:
HI
Oex = O LW [CT |—=0 l+x=1 l
. : X
lLix=x H . g 04 xnx N %
* X b 4 - _ﬁ x X X ;
. 2 x
Xex' = 0 x+xt=1
ocletive a omautative ¢ JIgnore grouping and o
in pure products in pure sumg .
x(yz) = (xy)z = xyz x+(y+z)=(x+y)+z=x+y+3
Xy = yx ' x+tyey+x
De Morgan's Theorem: (x + y)' = x'y' (Jw)' =x! +y!
ve L
"Multiply through® end fagtop ou_may also
t i "add through" a product:
x(y +8) = o9+ xs, E* (yes)= (x+y)i(x+a),
X x
Y
‘ " -
5 y % ®
2 y x =
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A very handy simplification: x+ x'y=x+y

y—=GT

FF

Theorems of more purely theoretical interest:

Expansion of 'I!

I is the sum of all
2D possible products

of n variables and

their primes.

x + x°?

I

xy +x'y +xy' +xty!

xyz + x'yz + xy's + xty'z + xyz' + x'yz'ixylz'+xly!z!
= }wz‘ + 00»0"(14 tema) DA x'y“z‘w'

T ec0eesesocoe

Each function of n variables cén be represented by dropping some of the
terms of the above sums

£f(x) = £(1)x + £(0)x*

£(x,y) = £(1,1)xy + £(0,1)x'y + £(1,0)xy* + £(0,0)x'y"

f(x’y,Z) = f(l,l,l)mz + co0eee + f(O,l,O)x'yz’ * e T f(0,0,0)x“y'z'

etc.

Note the relation between zeros in the argument places and primes on the
corresponding variables. '

This last theorem is of special importance since it allows us to write
an algebraic expression for a function directly from its table:

x vy | £(xyy) The teble is an abbreviation of 4 statements:
Rl L 95 f(1,1; =]

L W £(0,1) = 0

1 613 £(1,0) = 1

A T £(0,0) = 1

S 2(xey) = £(1,1)xy + £(0,1)x'y + £(1,0)xy® + £(0,0)x5y*

loxy + Oex'y + loxy' + lex'y?
xy + 0 + xy' + xty?
Ity +aty
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A further example:

x y z | glxyy,2)

111 0

01 1 0

l1 01 1

0o o1} o g(xyy,2) = xy'z + xyz' + x'y’sat
1 10 1 -

010 0

1 0 0 0

0 0 O 1l

As an exercise, note that in the first example, f(x,y) can be further
simplified to x + y'. (Factor, and use the theorems: a + af = 1;
l.a = a; a+a'b=a+b)

k)

3.0 APPLICATION TO PASSIVE NETWORKS

We may now illustrate the technique of.reducing networks which
do not contain memory elements. It is assumed that all pulses occur at
the same time, so the time variable will be dropped.

mple of translation of equatio nto block diagram

x=gb+al Here regard a and b as inputs, x, y and z
as outputs and assume that g eand b are
y = (a'b?)? - obtained from FF's so that both &, b and
_ a' and b' are available.
z = a + (ab)’
a
1
a Ox

S T o

}——E!f, —ef NV ‘ Oy
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Simplification: This design contains redundancies in the sense that fewer
gates and inverters may be used to get the game outputs for each input:

Since x + x'y = x+y

x=at + b

By De Morgen's theorem

y=a+hb

z=a+al +b!=1+bs

1

Thus 2z is simply a point which is permenently at, say, high voltage.
This gives as a simpler equivalent block design

a Oy
, )

a «1-} —Q X
A

0 =
¥

THiIIH

Example of translation of block diagram into symbolg:

We may analyze the circuit following and simplify it by first
translating it into equations:

a <

= ‘ | atald

| \I}(aa.'_b+a+afj-
G1’-—£4:f:;dv f—X = oy
i § ; [4'@al+ara'b)

ao'bra +aléd
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Now we simplify: aa' = 0 and O.b = O. Then the aa'b term vanishes.
a+a'b=a+ b, Hence x= [E'(a +'tia'._ By De Morgan's theorem,

x="Db+ (a+ b)" and by another application

x=b+ a'd!

Simplified block diagram:

e

&
§

GT

b

A further simplification, which will eliminate the gate, is left as an
exercise.

Translation of tables into egquations

It is desired to construct a circuit with the properties given
by the table:

™
o’
o)
™

OFHOFHOHOW
OCOoOHHOOKRHK
OCOO0OHKHKFE
orroocOrOO

which tells, for each possible triad of input values, the desired output.

We find the desired x = f(a,byc) @s a sum of the products assoc=-
lated with the 1l's in the table.

x = ab'c + ablc? = ab'(c + c!) = ab' (1) = ab!

Then c¢ is superfluous:
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The devices indicated above have their analogies in the methods
of Aiken and Shannon. However, the treatment of flip-flops in the next
section is new, and represents a radical advance over other methods.

4.0 THE FLIP-FLOP EQUATIONS

At this point it becomes necessary to explicitly indicate the
dependence on time of the variebles in our discussion. Expressions like
1A(t)" represent voltage (or current or whatever physical quentity is
used as the realization of our O and 1) at ticular points in the machine
at time t. If 'A(t)' is such an expression, 'A(t + T)' will be the voltage
(or whatever) at the same point in the machine T seconds later.

For definiteness, let us assume we are dealing with a clocked
machine, i.e., & machine in which any changes in state of the FF's must
occur at discrete times, the times at which the clock pulses occur. Call
: the period of the clock T.

We shall analyze, under the name ‘flip-flop' an Eccles=Jordan
multivibrator with 2 inputs, a glear and & get, with a ecross-over circuit
such that when both inputs are ‘on' simultaneously, triggering action
occurs and the FF is complemented. This is somewhat different (superfic-
ially) from the WWI sort of FF which is provided with 3 inputs, no 2 of
which may be ‘on' at once. However, the transformation to the WW variety
is simple, once the equation for the present type is established.

We know that the stete of the FF after the inputs have been
ulsed depends only on (1) which input has been pulsed (hes value I) and
2) the state of the FF at the time the input was pulsed: A(t+T)=f[;a(t),a(t),A(£§]

For exemple, if peither input is pulsed, i.e., if a(t) = a(t) = 0, then
the FF state doesn't change: A(t + T) = A(t). If only the clear side
is pulsed [;@(t) = 1, a(t) = 0] the state of the FF goes to O regardless
of what it was before: A(t + T) = O. And if the FF is complemented by
pulsing both inputs (,a(t) = a(t) = I) then A(t + T) = A%(t). These
characteristics of the FF may be summarized by the following table.

At + 1) || alt) a(t) A(t) Explanation

Complement
Set

Clear
No_change
Complement
Set
Clear

No change

ol ol -} -l ol-| o
ol ol+lollol-
OOHHOOWL
olololol=i---
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This table determines A(t + T) as a function of the inputs and the state
at time t. To get an equation for the FF we represent the table in the
form

A(t+ 1) = fEa(t),a(t),A(tﬂ =

£(1,1,1)pa(t)a(t)a(t) + coeenot £(0,0,0) 8 (t)at (£)4° (1),
that is, as a sum of those products which correspond to the 1's under "A(t + T)".
At + 1) = jat(b)a(t)alt) + qa'(t)a' (£)a(t) + jalt)alL)ar (v) + ja' (t)a(t)at ()
Factoring ".a'(t)A ()" from the lst 2 terms and "a(t)A'(t)" from the 2nd 2 terms:
At +T) = sa' (£)A(%) E(t) + a'(tﬂ + a(t)at(¢) E,a(t) # oa“(tﬂ

and since x+ x' = I and x.I = x

At + 1) = at(t)alt) + alt)ar(t)

This is the flip=flop equation, which describes the action of a FF the way
x(t) ®y(t) = x(t)y' (%) + x (tsy(t) describes the action of a partial sum
circuit. Here, however, we deal essentially with a difference in time (it
is this fact which made the analysis of the FF come later than that of
"instantaneous" networks in Boolean algebra).

Now the problem of designing a ecircuit using flip-flops is simply
that of connecting the proper network onto the two inputs. That is, if we
know ,a(t) and a(t) as functions of the ultimate inputs to the circuit we
can draw block diagrams for the inputs to the flip-flops and hence have the
circuit.

Illustrations of Circuit Design vig Flip-Flop Equetions

2 Stage Binary Counter

(This example is chosen because the result is familiar. In the
next example we illustrate the use of this method in analyzing a more ‘
difficult problem.) We wish the counter to be cyclic, i.e., the successive
states of the flip=flop are as shown. The flip-flop will progress from
each state to the next after a gount command (P(t)).

A Ar

OHHOO
OFrPOHO
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Apperently we need to clear FFl in only one case: when Ay and Ap are both
1l and there is a gount pulse.

Thus 081 (%) = A3 (£)ap(£)P(t)
In other cases where A} = O the previous state was elso 0, so no pulse is

required to maintein the state. Note that we are designing in terms of the
changes in state of the flip-flops, and not in terms of the states themselves.

We must get A, when A] = 0y A2 = 1 and there is a count pulse:
8y (t) = 2] (£)a,(£)P(t)
Similarly for Aos
Clears o8p(t) = A (t)Ay(£)P(t) + A9 (+)A5(t)P(L)
i.e.; we wish to clear Ay when either of these two conditions exist:
Ay = 0y Ap = 1, pulse
A =1, Ao =.l, pulse

Now we can factors A§(t)A,(t)P(t) +4,(t)a,(£)P(t)

. = E'l(t) + Al(t] A, (t)P(t) = [:l] A, (£)P(t)

o | o82(t) = Ax(2)P(%)

Thus we wish to clear A, on the next pulse whenever it holds a 1, a fact
which might have been read directly from the table (regardless of what is
in the left hand column, the successor of any '1' under 'Ap' is a 0).
Finally, to set Aj:
a,(t) = E\:‘L(t)Aé(t) + Al(t)Aé(tZI P(t)
[4160) + a1 (8] ap(e)eCe)

A5(t)p(t)

which means that Ay is to be set on the next pulse whenever it holds a

'0' regardless of what A] holds. This also might have been seen from the
table.
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We now have, for the equations for the changes to the grids of
the flip-flop, the following (abbreviated by dropping the ‘t'):

of1 =.AyhoP
18y = AAP
092 " AP
ag = AP

These may be reduced by replacing 'AgP' in the first: eguation by '.ay'
(from the third) end ditto in the second:

0®1 = A1 o%2
8 = 4] o8
" - AZP ‘
ap = AéP

Thus we have eliminated several gates. The block diagrem is unfemiliar
because of the use of two-input flip-flops.

P
Using only the trigger inputs of flip-flops results in-.a simpler circuit:

Here ,a = a = ,a. The flip-flop equation becomes

At + 1) = qal(t)ar(t) + jot (8)A(t) = qa(t) DA(t)
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Returning to the table, A; should be complemented whenever A, = 1:
c8l = AP \

and for As: o8z = P (complemented on gvery pulse)

The Block Diagram

Note that the deley necessary so that Ao will chenge after P has tried

to pass the gate is assumed to exist in the FF. This was implicit in our
original FF equation.

We now indicete, without much comment, the solutlon of the less
femiliar problem proposed in the imtroduetion. We shall use only the com-
plement input to the flip-flops (except for reading in numbers, a simple
process which we wonft ineclude in the problem). The "counter" changes
state when it receives & command pulse, P(t).

Ay Ay 53

1 1 0 A1) %= a@®a

0 1 ;& :

(1) % .8 (abbreviated form of the full equation:
0 1 0 ; C = t

: : 3 A+ T) = La(t) DA(t))

8 z é We are concerned only with the changes
1 1 1 in the states of the flip-flops.

1 0 d

1 0 1 (stick)
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For Ay: &) = (AlAzAz' T AJA A, + AJALAL + A Aﬁ' 3' )P
E\lA' (A2 + Al ) + AiAz Aé)

o8 (AA + AlA,

For Ay: &, = (ﬁﬁiﬁ tAJAAY + ALALA, + A1Asho)P
= ['A’(Aé +hg) + A (a1ay + A1A3]P

l:AiA'z + hy(agaL + AlA;Z‘_P] -

(A1AA% + AfAh3 + AjABAY R A{ASA3)P

[By44(ay + 43) + ajas(ay + 43)]P

{23 = ElA‘ + Al A]P

In order to simplify the block diagrem for this counter, let us
assume that we have available a "package" reslization of x D y.

)P

For A3: c83

081 = (AlAé + A{A,)P as before

etz = [B4Ay + 43(a; @ ay)] P
83 = (AJ_@AB)P

We may now (assuming that inverters are cheap) use the same circuit for
A] @ A3 in the second and third equations.

:.:]j +
[
~—~ T
G,T - ’
A2 A3 A
6 c e
GT
B
~ INV 6T
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In case inverters are more expensive than gates, we might synthesize
(4; @ 143) directly

A, O 'i

Al O_j
As O ‘ i O A Az,)l

Ay O

[ote that this is the dual of the circult for @ : we interchanged gates ()
end mixers (+]].

As a final exemple of the use of the elgebre in synthesizing
circuits we shall design an adder.

Let A; and By be the digits to be added in stage #1, and let
the carry into this stege be Cji. Then the carry out will be Cy4q and the
well known table governs the action of the stage:

: As(t)  By(t)  0g(t) || Caey () || Ayt +T)

OHOHOHOH
OOFPFOORE
QO0OO0OO0OHFHFKHFKF
OO0DOHGOPHE
OoO+HrHroKrFRoOoOOW

Note that we require the carry to be ingtantaneous: there is to be no
cunulative deley from stage to stage. Also note that the sum is to be
stored in Aj. This time our teble does not represent the successive states

of a counter! We are interested in successive states of Ay. These are
indicated row by row by looking first et column one and then et the perallel

entry in the last column. Use complementsble FF: (we wish to complement
in cases 3y 4y 5y 6). Note that these are just the cases in which Bj(t) =

ci(t), d.e., B (t)DC,(2) = 1
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o8y (t) = Eai(t)@ci(t) P(t) | [We have introduced the add
command: P(t).

Now we need to know how to get Ci+1(t) as a function of the three parameters
on the left. Apparently

Ci4+1 = (A3B;0; + AJB4Cy + A;BiC; + A,B,;C})P
which can be factored:
Ci41 = [BiCy + (By @oy)ay]p
or in unabbreviated form:

6141(8) = [By (803 () + (B4 (%) @0y (6))ay (8) | P(6)

Note that because of the delay presumed inherent in the flip-flop Ci4y
will depend on the original A(t), before complementing.

Further reduction: Since Bj(t) @ Cy(t) appears in both equations:
081 (t) = [By(+) @ s (4)] B(v)
Ci41(t) = By (t)cy (£)P(t) + Lay(t)ay(t)

Now\Ci(t) is a result of gating various inputs from previous stages with
the command pulse, P(t). Therefore, we need not multiply it agein by P(t):

cai(t) = Bi(£)P(t) @ cy(t)
Ci+1(t) = Bi(‘b)Ci(t) + cai(t)Ai(t’)

Block Diagram

AL f— Ci
Cia) =+ A | |

GT‘-—L—-Zf
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5.0 DEIAY ELEMENTS

To illustrate our method of treating delay elements, consider
the following device for realizing x @y on the trigger input to a flip-flop.

(o] [ (0] |
Ca' ca

X (t=d) +y(x)
x(t) 3(t) X(ty—{ pEe

y(+)
x(t=8)

It has already been noted that the realization of @ with ordinary electronic
components requires two gates, two inverters (unless the complements of the
inputs are also available) and a mixer; it is advantageous to trade for all
this a delay element and & single mixer. The action of the second circuit
is gimple: if x and y both occur, the flip-flop is complemented twice,
resulting in no change, whereas if one but not the other occurs it is com=-
plemented only once.

We can easily derive the equivalence of the two circuits in our
formalism, but we have as yet no mechanical way of determining where it
would be judicious to introduce delays. In this respect our treatment of
delays parallels that of flip=flops: the introduction of both flip-flops
and delays is a problem of planning. The design problem tekes those ele-
ments as data together with their operation cycle, and asks for the most
economical connecting network which meets the "boundary conditions".

(The analogy between flip-flops and delay elements has as its theoretical
basis the fact that any delay element can be represented as a flip=flop
gated with a clock of appropriate frequency and phase.)

6.0 OTHER PROBLEMS AND APPLICATIONS

Magnetic Devices

Ceramic and ferromagnetic cores act as memory devices in such a
way that there is generally no continuous signal output indicating that the
core holds a '0' or a '1'. It has already been proposed that such devices
be interpreted as flip-flops with built-in gates.

The main epparent difficulty in applying this algebra to magnetic
devices is that from a 2 state core, three outputs are possible: a pulse
of "+" polarity, a pulse of "=" polarity and no pulge. We wish, if possible,
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to avoid going over to a three-valued algebra for the analysis of these
devices, first because of the complexity of such a formalism, and second
because the cores are themselves devices which have only two states of
magnetization in current applications. »

It would be easy enough to resort to some such device as lumping
together two of the three outputs from a core for the purposes of analysis;
but it remains to be seen whether such a device will result in a theory
which ignores important logicel possibilities in circuits using magnetic
cores. For further remarks, see Appendix III. ~

Probebility in the Boolean Machine

When a computer is interpreted as a physical realization of a
set of Boolean equations it becomes possible to apply probability theory
in such a way that we obtein information about the density of information
in critical registers. The application to input=output problems (buffer
storage, etc.) is apperent. (see articles by Reed in Bibliography.)

Combinatorial Problemgi Planning vs. Design

We have shown & method whereby, given the desired cycle, a logic-
ally optimum counter may be designed (relative to existing "packaged" reali-
zations of logical functions). But this theory sheds no direct light on
the problem: what is the most desirable cycle for a given application?
Rather, we have suggested thet the theory, in reducing the actual design
to a routine process, leads the designer more quickly to that crucisl ques=-
tion. N flip-flops are capable of 20 different configurations, and there
are 2210 different "counting" cycles which might be obtained. The optimum
electronic realizations of these are not all of the same complexity; and
often, in a particular application (sey where arbitrary meanings are agsigned
to the various stages of the count) any one of a number of these cycles would
be equally useful. The problem is then not: "What, for the given cycle, is
the optimal realization?", but rather, "Comparing a number of usable cycles
and their optimal realizations, which of these is optimum?" (which of a
number of relative minima is least?)

We might call such decisions combinatorial rather than logical.
The algebra, as developed here, provides no complete solutions to such
problems. However, it appears that the problem may be soluble by further
analysis. (One possibility is this: formulate a set of fully mechanical
rules for deciding between two circuits on grounds of relative complexity
in terms of available components; then program a computer to work out all
optimal designs (relative minimas and decide between them as to the absolute
minimum. )

In general, the broader questions of computer planning are illum=-
inated but not solved by the present theory. It is entirely possible that
further theoretical development, incorporating combinatory, statistical and
information-theoretic elements with the present theory may lead to a mathe-
matical treatment of the broader questions concerning the organization of
computing machinery.
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The present theory gives something like the following general
picture of digital computers. Any particular analog computer may be re-
garded as & physical realization or analyzer of a set of differential
equations. Similarly we may regerd any digital computer, general purpose
or otherwise, as a physical realization or analyzer of a set of Boolean
difference equations.

The equations analyzed by a machine may be studied in a perfectly
abstract way (this has not been done here) just as the machine may be studied
as a physical entity. Then two points of view are possible:

(1) The Boolean difference equations describe the working of the
machine.

(2) The machine realizes or analyzes the equations.

It is the validity of the second point of view which motivates
the building of any machine.

History of this Theory and Relation to Other Theories

The English mathematician, George Boole, presented, in 1847, the
first workable but cumbersome predecessor of the present sort of formalism.
He was interested in its interpretation as an algebra of logic and of proba-
bility, and it was the application to logic which inspired the investigations
of his successorsy; W. S. Jevons, C. S. Peirce, E. Schroeder and others in
increasing the power end simplicity of the algebra.

One logical interpretation of the present algebra is this: let
the variables (dropping the time arguments altogether) represent gentences
such as "3 )>2", "3 35" and "Water boils at 100°C". The two values O and I
are interpreted respectively as falsity and truth, so that 3>2 = I but
3>56=0. "x'" ig the sentence which is true when "x% ig false, and vice
versas (the contradictory of "x") "it is not the case that x" or briefly
"not x". Therefore, (3>5)' = I. M"x.y" ig the sentence "x and y", which
is true only when both x and y are true: (3>5).(332)=10. x+y is
x and/or y (briefly: x or y), which is true if x is true or y is true or
both are true: (3>5) + (3>2) = I. Similar interpretations may be found
for the other Boolean functions, and it will be seen that, on this inter-
pretation, the theorems of the system are those laws of logic which apply
to propositions and their combinations.

When we drop the assumption that the variables may have only
the two values O and I there results a formalism which has as one of its
interpretations a logic of clagses containing the classicel theory of
syllogisms. _

It was, as far as we know, Claude Shennon who, in 1938, first
published an interpretation under which the elgebra becomes a theory of
relay and switching circuits. Shannon's interpretation led the way to an
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application of the algebra to static information-processing networks of

all kinds, including those used in present-day electronic digital computers.
However, Shannon's theory took no account of the dependence on time of the
states of a computer. Thersfore, while it led to an analysis of networks
of gates, mixers, inverters and the rest, it did not permit an analysis of

flip-flops. That theory was no substential help in designing counters,
adders and go on.

After Shannon, the principal development of algebraic methods
in this field ceme from Burkhart, Kalin and Aiken of the Harvard Computation
Laboratory. In the form in which it was published in 1951, their slgebra
(which shared with Shannon's a lack of adequate means for representing time
variables) was an arithmetic of O end I.

Boolean Algebra Aiken's Formulation
(+ and . have the meanings (+ and . have their ordinary
used in this text) arithmetical meanings)

=’ l=x

xy Xy

- Tkl § ETy-xy

Superficially, the Aiken algebra is easier to use than Boolean
algebra, since it is merely ordinary arithmetic restricted to O and I.
However, for every new law which one must learn in order to use Boolean
algebra, one must learn an arithmetical trick to use the Aiken algebra.

Consider, for example, the transformation which in Boolean algebra is accom=
plished by De Morgan's theorem:

(W)‘ = x‘ +y'

In Aiken's algebra it becomes necessary to deliceately introduce 1's and
parentheses in order to go from 1 - xy (our "(xy)'") to (1-x) + (1-y) -
(1=x)(1=~y) (Our "x' + y'"). Then Aiken's arithmetic is at least as hard
to handle as Boolean algebra. Furthermore, it has the disadvantage that
while an entire expression such as 'x + y = xy' (our 'x + y') is always
either O or 1, yet such expressions often contain parts which are neither .
O nor 1, and hence meaningless. Thus if x=y =1, x+y - xy = 1, but -
part of it, x + y, is 2, which is meaningless in the interpretation. We
have examined this matter here in some detail in order to justify our use

of a simple but unfamiliar formalism rather than a familiar but unexpect-
edly complicated one. :
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The present theory, with its use of time variables throughout,

is the work of Irving S. Reed. To our knowledge it is the first analysis
of computing machines powerful enough to provide a general method for syn-
thesizing flip=-flop circuits such as accumulators by straightforward cal-
culation. Furthermore, by designing not in terms of the sequence of states
of the flip-flops, but rather in terms of the changes in their states, we
are led directly to a minimal design, without the use of such cumbersome
devices as "minimization charts".

It should be stressed that the present report is an account of
the most direct and easily used practicel outcomes of the theory. For a
rigorous mathematicel account of the theory the reader is referred to the
papers by Reed in the Bibliography. The introduction of time varisbles
makes possible an extension of Boolean algebra into gnelysis. The theoret-
ical background of the results presented here is an enalogue of the calculus
and theory of ordinary differential equations, based, not on ordinary arith-
metic, but rather on Boolean algebra.

These methods were used, in a restricted form, in the design of
the MADDIDA and CADAC computers, beginning in the winter of 1947. One of
the results of the theoretical studies has been that the present method
is applicable to pulse circuits in general, and not only to computers using
a special sort of clock waveform.

s16MED_ I [ (ﬁu& (re7)

Irving S. Reed

E‘_ 9(_,

Richard C. Jeffréy

APPROVED A/W Cecy)

Norman H. Taylor

ISR/RCJIscp

Appendix I, Page 23
Appendix II, Page 27
Appendix III, Page 29
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APPENDIX I
xlyl|l x* =x+y xx =x@®y :ch y x!y
2 18 s | 0 i | 11 0 0 0
3 1 1 0 1 0 4
1] ® 0 1 0 i 0 1
0] 0 i 0 0 0 1 i

There are 22" distinct functions of n variables, some of which are repeti-
tions of functions of n = 1y n = 25 oeeey 1y O variebles. E.g., x' appears
above as a function of two variables (its value is defined for all 4 values
of x, y3 but since it is actually definable in terms of x alone, it is
really a function of 1 variable). The two functions of O varisbles are

O and I.

There are an infinite number of functions in terms of which all
functions can be defined. The two such functions of 2 variables are~¥ and
| . For example:

x‘x = x!

(xly) | (xly) = =y

It follows that all other functions are definable in terms of | s since all
functions are definable in terms of not and and:

x+y= (xiy')l
x@y = ' +x'y
etc.

Physical Realizations of Functions:

(The 1list is not complete) (In the magnetic circuits current in the indi-
cated directions represents 1; no current represents 0; diodes might be
necessary to prevent back flow and for clamping.)
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Complement *» Product

For n inputs:
X, Xg--.

. xn
.x' +—/\N\¢—f * i X,.xz.---.xh

- For 2 inputs; gives amplification:
output pulse is inverted.

(Bias and voltage dividing

network are such that when \ |
the grid goes positive, the A
x' point goes down to zero.)

xy [PuLses)

xy [p.c.Levers]

Sum

All circuits may be used

with n inputs; shown here

with n = 2. + For n inputs (shown with ns2):
=]
L I Xy x BIlAS
[PULSES) g " H
N |
- S a Y X+y .'E. | —xy l ﬂ
‘ J [pcLeverLs)| = L j
L. = ' oty
s ol . ——
— ld—)(’-—rb—s:"a‘
Provides Amplification; I
output pulse is inverted.
X + o
q [ X+y
-+ oo £
: e
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Partial Sum
1f you can ignore the polarity of the output and depend on the
coincidence in time, duration, emplitude and shape of x end y ==========
-1 '
3 1
. " 71 x@y
Y D x sl
— Xy
y——x
- 5—}
Otherwige . L
Black Box #1 Black Box #2
(If the variables and also (If the verisbles, but not thei
their primeg are available.) primes, are available. )
o S A oA N R AR D S e B, (]
| |
X O— i :
|
<’ ' |
I ]
| \ |
| !
| [eT}— |
|
|
9 ] :
3?) } a
e e ae bl e A i J

It follows from the statements on the previous page that, given realiza-
tions of not and and, black box realizations of all other functions can
be constructed. And given realizetions of ¢ or | , all needed black boxes
can be constructed. : 1 Gk :

Flip-Flops

&
!

e
At +€) = qa(t) Da(t)

Triggers when both inputs
are pulsed at once.

A(t +€) = a(t)a'(t) + ca'(t)A(t)

(Reduces to the first case
when a = qa)
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Magnetic 08 (t) a(t) A(t) A(t +€) R(t)
Memory Core

a 1 1 1 ! 0
i 0 1T 1 1 0
A T R 1
1 R) 0 0 ! 1 Q
‘ 1 3 0 0 0
currents as shown 0 r Bk - k 0
represent 1. No 1 0 0 0 Q
current represents O. 0 0 0 0 0

Value of A: % = 1,4 = 0

Alt +€) = L—Qa“(t) - a(iﬂ A(t) + Ea‘(t) ; a(tzl A (t)

R(t) = ca(t)a' (t)a(t)

This can be set and cleared; read out by clearing (if the core held a 1
there will be a pulse out). However: it won't trigger as shown, and the
readout is & single pulse, rather then & D-C level.
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APPENDIX II _
Some zheoggmg of Boolean Algebra

Ignore order and grouping in pure sums and pure products.

"Multiply through" and factor as in ordinary algebra, and: "add
through" a product.

a(b+ ¢c) = ab + ac

a+ (bec) = (a+1b).(a +c¢)

n
=

O+x=x Oex= 0 x+x=x x + x!

l+x=1 lex=X X e X

"
b
n
o

x.x'

Expansion of a Fun'ction
f(x,y,2) = £(0,0,0)x'y'2' + £(1,0,0)xy'2" + coo. + £(1,1,1)xyz
=[£(0,0,0) + xy+3)[£(1,0,0) + x147+] --v0 [£(1,152) + x4yt+a]
In particular, for the constant i‘unctidﬁ f(x,y,z) = I for all x,y,z, we get
I=x'yiz' + xy'2" + ccoc + xyz (all 8 terms are present)
and for the constant f(x,y,z) = O we get
0= (xty+z) ¢ (x'+y+2) gecco (x'+y'+z') (all 8 factors are present)
De Morgan's law: (xy)! = x' + y' ; (xty)! = x'y!
Elimination of a factor: x+ x'y=x+y
Theorems relating to @ :
x®(yDz)= xPy)Dz=xDyD =z
x®@y=yDx
x®y = xy' +x'y

x+y=xDyDxy
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xPy) =xDPy=xDy!

I__(_x @y)' is an interesting function: it is 1 exactly when x end y
have the same value.

x(y®z) = xyOxz

If x®@y =2, x=y@®Dz (Permits solution of equations)

x®@1I=x'
x®0=x
x@x=0

For a more complete list of theorems, see works of Couturat and
Whitehead listed in Bibliography.

Any expression can be put in the forms
Ax + Bx!
e.goy the equation for the FF with 2 inputs is in that form..

To complement such an expression it is sufficient to complement
the "coefficients": :

(Ax + Bx')! = A'x + Bix!
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APPENDIX III
Core Analysis with 3 Valued Logic

calt) alt) a(t) |alt +€) | R(t)
=1 =1 =1 =1 0 a(t) = +1 has seme effect
0 =1 =1 =1 Q o
1 =1 =1 =1 0 as ca(t) = H1
=1 0 =1 g 1
0 0 =1 =1 0 R is wound so that when
1 0 =1 =1 0 the state of the core is
=] 1 _"l 1 1 moving toward 1, R = l, ioel,
0 1 S 4 1
T 1 = =l 0 [R(t) = Y[ (1) < a(t +€)]
=1 . =l 0 0 0
0 e wd 0 -1 -1 [R(+) = QE[E®) = alt +€]]
B AT S T i () (t) > 4t + €]
=1 s .0 0 ik R(t) = = At At +
0 0 0] Q 0 E}:>[:
1 0 0_ =1 =1 "&" means if and only if
=1 1 .0 1 b ETRG : ,
0 v N i ¥ AR
i 1 0 0 0 i~ S
=1 -l g 1 1 0 saritrents
0 s B | =1 =1 qa "R
1 =] d =] =1
=1 0. 1 1 0
R 0 1 1 0 :
p 1 A W | =] =1 State of the core:
-1 I R 1 g
0 - T T 0 a=¢;41%;0=n0
& ;| A 1 0 magnetization.

Currents in the windings are
positive as shown by arrows.
Opposite current: =l. No Is0.

The rules of 3 valued algebra are more cumbersome than those of the present
theory. 5

Note that cores require a 3 valued analysis only to the same extent that
vacuum tube eircuits do. In vacuum tube circuits, too, there are three
possible inputs and outputs: positive, negative and zero pulses. In trying
to account for such eircuits in temms of O and 1 alone, we are somewhat
farther from reality than when we use =1, O and 1. But the three valued
analysis is itself a high-order abstraction from the real situation with

its continuum of infinitely many values.
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The point is that we pay for the additional simplicity of each
higher order of abstraction in faithfulness of the resulting black-and-
white picture of the real situation.

We believe that a 3 valued analysis would be of use, but the
use would be a better evaluation of the limitations of the two valued
approach. There may exist combinations of elements whose utility depends
on the polarities of the pulses involved. Such designs could be "cranked
out" of a 3 valued analysis. But it may be that, having recognized them,
they can be introduced into the two valued enalysis by special devices.
One such device is translating a single pulse-train.

A

e c—

into two:

e - ——-——

\
l
:f«
.l
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