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Abstract: This note is a practical description of Boolean algebra and its

- application to the analysis and synthesis of digital computers.
It is argued that knowledge of the theory and methods described
here is equivelent in value to considerable experience and in-
genuity in the logical design of computers, and that it provides
a way of bringing a novice in the field up to the point where he
can make contributions considerably more quickly than this is
done at present,

1,0 INTRODUCTION

To a first approximation we can describe a binary computer as
a get of 2 state memory devices functionally connected by an informeation
processing network. This first approximation to any particular computer
represents ite logical design; if it hes been well engineered end well
constructed, the approximation will be useful: for example, we may then
ignore the fact that the voltages at critical points in the machine may
assume any one of & continmuous range of values.

It is customary to represent the logical structure of a machine
by block diagrams. Unfortunately, you cannot galculate with block dia-
grams: they are merely expository devices. Everyone will agree that it
would be helpful to be able to represent machines by sets of equations
for which we know gimple rules of trensformation. Much would then become
routine which now requires more or less experience and ingenulty, leading
the designer more quickly to the important decisions.

There exists a system of mathematics within which such calculation
is possible. Its mechanical rules are simpler than those of ordinary
elgebra, as will be seen in the next section. With a very little practice
at 1t, a novice in the field of digitel computers can solve, with under=-
standing, a large class of non-triviesl problems. For example, the follow-
ing problem is solved later in the text.
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Degign a three bit "counter®" with the following "loops®:

FF1 FF2 FF3

1 1 0

0 i | : §
e 2 0 (alternates between 110 and 011)

0 0 0

0 1 0 (passes from 000 into its

1 0 0 cycle, but 000 is not

0 0 y § included in the cycle)
0 1 0

1 1 1

1 0 1

1 0 1  (sticks on 101)

Such devices might be used as operation counters,

We do not by any means suggest that facility at Boolean algebra
will supercede experienge and ingemuity in the 1ogica1 design of computers.
Rathor

(1) the algsbra provides a way of efficlently chenneling the
experience and ingermity of the novices a unified theory accelerates and
deepens learning.

(2) 4t sllows the practicing designer immediate access to the
important, non-routine probleml: they allow him %o use his skill where
i% counts, :

2,0 BOOLEAN ALGEERA

Boolean algebra is most often developed as an abstract mathema-
tical gystem, the interpretation being left open. Here, however, we parallel
each step in the exposition of the theory with its counterpart in terms of
the familiar block:diagrems in the hope of promoting a sense of confidence
and femilierity with the new technique.

The voltage (or current or whatever physical magnitude represents
information) et any logleally important point in a machine mey be repres-
ented t0 a first approximation as a function of time which, for every value
of +, is either O or 1, Any change in such & function will then be a jump
discontinuity.
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The elemente of our ealgebra are such Boolean functions of time.

We define four operations on such functionss

ways of compounding

from x(t) end y(%) new Boolean functions., For conciseness we shall omit
the time variable in the following teble, in which, for example, "x'" is
an abbreviation for "xf(4)", and "x+ y" abbreviates "x(t) + y(t)".

Under "Graph" we show the output waveform x>
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Since there are a finite number of different ways of assigning
- 0 and 1 as values to n variebles, it will always be possible to completely
describe any Boolean function by a table as we have done for the four above.

For n inputs there are 22" Boolean functions, any one of which
might be realized electronically in some simple way. The algebra is neutral
on thig issue: new physical realizations of functions which previously had
to be built up out of others have algebralc representations waiting for them
and can be integrated, without chenging the algebra, into the data of the
design problem.

To proceed with the formalism: there are 2R ways of assigning
one of the two values, O, 1, to each of n variables. Then it is practical
to check any presumed theorem of our algebra by substituting (in tebular
form) each possible combination of velues for the variables on each side ,
of the equation. Thus we can prove that the cyclic sum, () , is represented
by this combination of gates, mixers and inverters: i

x® y= (xy')+ (o)
00O ool 0 100
011 000 1 111
110 111 1 000
101 100 0 001
X@ gy b?r
definition
identical
for all

x
Note that once the 4 pairs of values of x, y are listed, the’zalues of
x' and y' are determined, and from these, x.y', x'.y and xy' + x'y.

By the same tabular method each of the following theorems of

the algebra can be proved. Again, for conciseness, we have omitted time
variables.
/

Law of Double Negation: (x')'= x. = L ANV ] X S{NV] x

Dual Theorems (The result of interchanging '0' and '1', '+' and '.' in an
expression is the complement of that expression. The result of that inter-
change in a theorem is another theorem. ) ”
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For Produects For Sums

No Powers No Nugericalv
i Coefficients: x + x = x

Multiply by a constant as Addition of a constant:
in grithmetics

0°x=Ong{G‘$}‘““O l]+x=1 HI—?——‘i
X

X
lox = x Hlx O+x=x LOW—%'x
' x
X
o 1
x.x' =0 x+ x! =1
GT
0 1 S
FE

Agsoeiative and Commtative La

in pure products: in pure sums:
x(yz) = (xy)z = xyz x+t(yte)=(x+y)+tz=x+y+z
Xy = yx xX*Tymsy+tx
De Morgan's Theorem: (x + y)' = xiy? (xy)! = x' + y°

Distributive Law

“MMultiply fhrough" and factor Unlike grithmetic; you m
as in arithmetics "add through® a products

x+ (yz) =(x+y).(x+ zg

|

Y

R




Engineering Note E=458 =1 Page 6

A very hendy simplification: x+ x'y=x+y

Theorems of more purely theoretical interests
Expangion of 'I'

I is the sum of all I=x+x'
2% pogsible products :
of n veriasbles and =xy-+ xly +xy' + xiy!

their primeao = xyz‘ + x'yz + xy'z + xy'g + xyzf + x'yzﬁ‘;bw'z'+ x'y'zg!
= XyzW * ...0..(14 terms) . + xlytgiy!
Each function of n variables can be represented by dropping some of the
terms of the above sums
f(x) = £(1)x + £(0)x?
f(x,y) = £(1,1)xy + £(0,1)x'y + £(1,0)xy' + £(0,0)x'y!
£f(x,¥,2) = £(1,1,1)xyz. + ..... + £(0,1,0)x'yz' + ..... + £(0,0,0)x'y'z’
etc. -
Hote the relation between zeros in the argument places and primes on
$he corresponding wvariables.

This last theorem is of special importance since it allows us to write
an algebraic expression for a function directly from its table:

x 3y | £2lxy) The table is an abbreviation of 4 statements:
p TR O e Y r(1 ,1) =1
R 0 1) =0
1 6 |1 f(l 0) =1
0 2 |2 f(O 0) =1

.. £(x,y) = £(1,1)xy + £(0,1)x'y + £(1,0)xy* + £(0,0)x'y’
l.xy +0.x'y + lxy! + 1.x'y!

xy + 0+ xy' +x'y!
ny'*xy'*xﬂy'
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A further examples:

x y s | &lx,y,2)

5 ERT T ¢ 0

s T S 0

i L & S B 1l )

0 0 4 0 g(x,y,2) = xy'z + xyz' + x'y'z
1 1 0 1 ;
o100

1 0 O 0

0 0 O 1

" As an excercise, note that in the first example, f(x,y) can be further
simplified to x + y'. (Factor, and use the theorems: a + a' = 1;
l.a=a; at+a'b=a+0Db)

3.0 APPLICATION TO PASSIVE NETWORKS

We may now illustrate the technique of reducing networks which
do not contain memory elements. It is assumed that all pulses occur at
the same time, so the time variable will be dropped.

Exanple of translation of equations into block diagram

Here regard a and b as inputs, x, y and z
as outputs and assume that g and b are
obtained from FF's so that both a, b and
a' and b' are aveilable,

x=ab + al

(atB?)r ~ 41 b)

y

z=a* (ab)? - |

QX

5 T (Y] ik

pgl WA
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Simplification: This design contains redundancies in the sense that fewer
gates and inverters may be used to get the game outputs for each input:

Since x+ x'y=x+ y
x=al +Db
By De Morgan's theorem
y=a+hb
z=a+a' +d =1+Dp' =1
Thus z is simply a point which is permanently at, say, high voltage.

This gives as a simpler equivalent block design

a 7 f 0 k&_

P 0 X

[ A

L

4.
H-l—.L

Example of translation of block diagram into symbolss

We may analyze the circuit following and simplify it by first
translating it into equations:

U /

2ol +a +a’k

o'l @ o4+
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0. Then the aa'b term wvanishes.

How we simplify: aa' =0 and 0.b
ata'b =g+ b, Hence x = Eé'(a + bi] ', By De Morgan's theorem,
|
x=Db+* (a+ )" and by another application
|

x=b+a'd = L

Simplified block diagram:

a
& , —0 %
L]

A further simplification, which will eliminate the gate, is left as an
exercise.

Tranglation of tableg'into equations

It is desired to congtruct a circuit with the properties given
by the table:

OFHFOFROKFOH|D
oGO Y
OCOO0OOHHKFHH|
OHOOOHOO| X

which tells, for each possible triad of input values, the desired output.

We find the desired x = f(a,b,c) as a sum of the products assoc-
jated with the 1's in the table.

x = ab'e + ablc’ = ab'(c + ¢') = adb'(1) = ab’

Then ¢ is superfluous:
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The devices indicated above have their analogies in the methods
of Aiken and Shannon, However, the treatment of flip-flops in the next
section is new, and represents a radical advance over other methods.

4.0 THE FLIP-FLOP EQUATIONS

At this point it becomes necessary to explicitly indicate the
dependence on time of the variables in our discussion. Expressions like
'A(t)' represent voltage (or current or whatever physical quantity is
used as the realization of our O and 1) at particular points in the machine
at time t. If 'A(4)' is such an expression, A(t +T)' will be the voltage
(or whatever) at the same point in the machine T seconds later.

For definiteness, let us assume we are dealing with a clocked
machine, i.e., a machine in which any changes in state of the FF's must
occur at discrete times, the times at which the clock pulses occur., Call
the period of the clock T.

We shall analyze, under the name 'flip-flop' an Eccles-Jordan
multivibrator with 2 inputs, a clear and a get, with a cross-over circuit
such that when both inputs are 'on' simultaneously, triggering action
occurs and the FF is complemented. This is somewhat different (superfic-
jally) from the WWI sort of FF which is provided with 3 inputs, no 2 of
which may be ‘on' at once. However, the transformation to the WW variety
is simple, once the equation for the present type is established.

We know that the state of the FF after the inputs have been
fulsed depends only on (1) which input has been pulsed (has value I) and
2) the state of the FF at the time the input was pulsed: A(t+T)=fEa(t),a(t),A(t-5

For example, if neither input is pulsed, i.e., if a(t) = a(t) = 0, then
the FF state doesn't change: A(t + T) = A(t). Ifoonly the clear side
is pulsed [ a(t) = 1, a(t) = 0| the state of the FF goes to 0O regardless
of what it was before; A(t + T) = 0. And if the FF is complemented by
pulsing both inputs ( a(t) = a(t) = I) then A(t + T) = A'(%). These
characteristics of th® FF may be summarized by the following table.

A(t + 1) ! Oa(t) | _ﬁft) A{t), Explanation

Complement
Set

Clear

No change
Complement
Set

Clear

No change

|
|
|

HHFOHO

oHOrOHOH
corKroorK
CooOoOrRHKK

|
oo

|
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This table determines A(t + T) as a function of the inputs and the state
at time t. To get an equation for the FF we represent the table in the

form
A+ 1) = £ [a(8),8(0),44)] =

ﬂllnahhuuﬁ)h““ﬁfmoo)dﬁhWﬂﬂhh
that is, as a sum of those products which correspond to the 'l's under A(t + T)

At + 1) = a'(t)a(t)a(t) + a'(t)a’(t)A(t) + a(t)a(t)A’(t) + a'(t)a(t)A!(t)
Factoring 'oa”(t)A(t)" from the 1st 2 terms and "a(t)A'(t)" from the 2nd 2 terms:
As+ 1) = ar(0)a() [alt) + ar(8)] +a(®)ar(6) [Lalt) + ar(8)]

and since x + x' = I and x.I = x

At + T) = "aﬂ(t)A(t) + a(t)Al (%)

This is the flip-flop equation, which describes the action of a FF the way
x(t) Dy(s) = x(t)y*' (t) + x* (t)y(t) describes the action of a partial sum
eircuit. Here, however, we deal essentially with a difference in time (it
is this fact which made the analysis of the FF come later than that of
"instantaneous" networks in Boolean algebra).

Now the problem of designing a circuit using flip-flops is simply
that of connecting the proper network onto the two inputs. That is, if we
know a(t) and a(t) as functions of the ultimate inputs to the circuit we
can dfaw block diagrams for the inputs to the flip-flops and hence have the
circuit.

Illustrations of Circuit Design via Flip-Flop Equations
2 Stage Binar unte

(This example is chosen because the result is familiar. In the
next example we illustrate the use of this method in analyzing a more
difficult problem.) We wish the counter to be cyclic, i.e., the successive
states of the flip-flop are as shown. The flip-flop will progress from
each state to the next after a count command (P(%)).

5 A,
[FF1] [¥F2 ]

O+ OOo
O OrOo
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Apparently we need to clear FFl in only one case: when Aj and A, are
both 1 and there is 2. count pulse.

Thus  gap () = A3 (t)a(t)P(t)

In other cases where Aj = O the previous state was also 0, so no pulse
is required to maintain the state. Note that we are designing in terms
of the changes in state of the flip-flops, and not in terms of the states
themselves.
We must set A, when A; = 0, Ay = 1 and there is & count pulse:
a1(t) = A1° (¢)A2(t)P(4)
Similarly for Azz
Clear: _a,(t) = A ' (£)A,(£)P(t) + A (£)A,(£)P(%)

i.e.; we wish to clear Az when either of these two conditions exist:

A1=0,A2=1,px;lse

A =1,4,= 1, pulse
Now we can factor: Ll"(t)Az(t)P(t) + Ll(t)%(t)P(t)

=[a,"(t) + Ll(tﬂ A (8)P(%) = [17] A, (+)P(%)
S oaa(t) = A (4)P(¢)

Thus we wish to clear on the next pule whenever it holds a 1, a fact
which might have been réad directly from the table (regardless of what
is iin the left hand column, the successor of any ?1? under '12' is a 0).

Finally, to set %8

ay(8) = [ 41 (04,0 (4) + A (DA, (0)] B(8)
[4,7(#) + & (£)] Ayt (#)R(H)
At (£)P(%)

]

which means that is to be cleared on the next pulse whenever it holds
a '0' regardless of what Al holds. This also might have been seen from
the table.
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We now have, for the equations for the changes to the grids of
the flip-flop, the following (abbreviated by dropping the 't'):

081 4185F
a1= Ap'AgP
&2= A2'P

These may be reduced by replacing 'AoP' in the first equation by 'gan!
(from the third) and ditto in the seconds

021 A1 o2
a1j= A1' o282
032= A2P
62= AzﬂP

Thus we have elimineted several gates. The block diagram is unfamiliar
because of the use of two-input flip-flops.

GT

P

Using only the trigger inputs of flipwflops results in a simpler circuit:

Here ,a =a = ,a. The flip-flop equation becomes

A(t + 1) = a(t)A'(t) +a'(£)A(t) = _a(t) ®A(s)
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Returning to the table, A, should be complemented whenever Ay = 1:
c®1 = AP

end for Aj:s ap=P (complemented on every pulse)

The Block Diagram

Note that the delay necessary so that Ap will change after P has tried

to pass the gate is assumed to exist in the FF., This was implicit in
our original FF equation.

We now indicate, without much comment, the solution of the less
familiasr problem proposed in the introduction. We shall use only the
complement input to the flip~flops (except for reading in numbers, a simple
process which we wont include in the problem)., The "counter" changes
state when it receives a commend pulse, P(t).

Ay Ay Aq
1 1 0 AT) = ,a@ A

0 i 1

é % g (abbreviated form of the full equation:
0 1 0 Alt+ T) = galt)@A())

: S 0 0

8 g % We are concerned only with the ghanges
1 1 1 in the states of the flip-flops.

1 0 1

1 0 1 (stdck)
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For Ayt o8y = (AjA A1 + A TA A, + &) TAALT + A ATAN)P
= ElAsn(Az TAY) A A (At Azaﬂ
B = (AAgT *+ A TAP

o
|

Fer hat Mg ™ (“1"“‘:2'\“:5a A AL F A A TAL A AP
[A7 45" (hg! * &) + Ay T4y + ‘HA:;ZI '

o = [h'4' * AUy "0y Y AT P,
For Ayt o8z = (AjAghs' + &) TAA; + AAyTAZ '+ A 1A TALIP
ElAzn(Az A * A A4 Aénl—_l d

= 9 L]
B3 = [ty + &g

In order to simplify the block diagram for this counter, let us
assume that we have available a "package" realization of x®y.

o
|

©
|

= ] 0
o (A1A3 + Ay Az)P as before

e * E‘l”‘zn + A, (4 As)ﬂ x
cas = (A1®A3)P

We may now (assuming that inverters are cheap) use the same circuit for
A AB in the second and third equations.

T

Gt \NV T




o
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In case inverters are more expensive than gates, we might synthesize
(81 @ A3)' directly :

N
Ay 6T (A @Ay’

[ﬁpte that this is the dual of the circuit for&): we interchanged gatea(t),f"“
and mixers (+)]. ity

As a final example of the use of the élgebra in synthesizing
circuits we shall design an adder.

Let A; and B; be the digits to be added in stage #i, and let
the carry into this stage be C;. Then the carry out will be C; . 3 and
the well known table governs the action of the stage:

Ay (8)  By(8)  C5(%) || €5 41(8) || 25(6 +T)

OHOHOHFOHK
OOFHOOKHHH
COO0OOKFHKHHKM |
COOHOKHM
oOrFHOHOOH

Note that we require the carry to be instantaneous: there is to be no
cunulative delay from stage to stage. Also note that the sum is to be
stored in A;. This time our table does not represent the successive states
of a counter! We are interested in successive states of Aj. These are
indicated row by row by looking first at column one and then at the parallel
entry in the last column. Use complementable FF: (we wish to complement
in cases 3, 4, 5, 6). Note that these are just the cases in which B4 (%) =
Ci'(t), 1.e., By(t) ®Cy(s) =1
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a,(t) = [B . (t)®DcC, ()| P(¢) We have introduced the add
Yo Bl RABARITE o s il

Now we need to know how to get C (t) as a function of the three

parameters on the left. Apparen%ly

" 8
Ci +1 (A,iBiCi + A Bic + A B “G + AiBici )P

which can be factored:

O w1 = [B0 ¥ (Bi@ci)“ﬂ P

or in unabbreviated form:

6y 4 1(8) = [B (810, (8) + (3,(6) Do, (1))a, (1) ] B(¥)

Note that because of the delay presumed inherent in the flip-flop Ci +1
will depend on the original A(t), before complementing.

Further reduction: Since Bi(t)(:)ci(t) appears in both equations:
o8 (1) = [B, () D¢, ()] P(%)

C; 4 1(t) =B (#)C, (£)P(%) + & (t);. (t)

Now C, (t) is a result of gating various inputs from previous stages with
the command pulse, P(t). Therefore, we need not multiply it again by P(t):

21 (t) = B (£)P() D c, (%)

(t) = B,(6)0,(£) + _a, (£)A, (%)

i G ol

Block Diagram

CL+| ‘—j
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5.0 DELAY ELEMENTS

To illustrate our method of treating delay elements, consider
the following device for realizing x@® y on the trigger input to a flip-flop.

_/‘x(-&+$)+ 4 (4
4 ()

It has already been noted that the realization of @ with ordinary electronic
components requires two gates, two inverters (unless the complements of the
inputs are also available) and a mixer; it is advantageous to trade for all
this a delay element and a single mixer. The action of the second circuit
is simple: if x end y both occur, the flip-flop is complemented twice,
resulting in no change, whereas if one but not the other occurs it is
complemented only once. :

We can easily derive the equivalence of the two circuits in our
formalism, but we have as yet no mechanical way of determining where it
would be judicious to introduce delays. In this respect our treatment of
delays parellels that of flip=flops: the introduction of both flip-flops
and delays is a problem of planning. The design problem takes those ele=
ments as data together with their operation cycle, and asks for the most
economical connecting network which meets the "boundary conditions".

(The analogy between flip-flops and delay elements has as its theoretical
basis the fact that any delay element can be represented as a flip-flop
gated with 2 clock of appropriste frequency and phase.)

6.0 OTHER PROBLEMS AND APPLICATIONS

Magnetic Devices

Ceramic and ferromagnetic cores act as memory devices in such a
way that there is generally no continuous signal output indicating that the
core holds a '0' or a '1', It has already been proposed that such devices
be interpreted as flip-flops with built-in gates., ;

The main apparent difficulty in applying this algebra to magnetic
devices is that from a 2 state core, three outputs are possible: a pulse
of "+" polarity, a pulse of "=" polarity and no pulse. We wish, if possible,
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to avoid going over to a three-valued algebrs for the analysis of these
devices, first because of the complexity of such a formalism, and second
because the cores are themselves devices which have only two states of
magnetization in current applications,

It would be easy enough to resort to some such device as lumping
together two of the three outputs from a core for the purposes of analysis;
but it remains to be seen: whether such a device will result in a theory
which ignores important logical possibilities in circuits using magnetic
cores, For further remarks, see Appendix III.

Probability in the Boolean Machine

When a computer is interpreted as a physical realization of a
set of Boolean equations it becomes possible to apply probability theory
in such a way that we obtain information about the density of information
in criticel registers. The application to input-output problems (buffer
storage, etc,) is apparent. (See articles by Reed in Bibliography.)

Combinatorial Problems; Planning vs. Design

We have shown a method whereby, given the desired cycle, a logic-~
ally optimum counter may be designed (relative to existing "packaged"
realizations of logical functions). But this theory sheds no direct light
on the problem: what is the most desirable cycle for a given application?
Rather, we have suggested that the theory, in reducing the actual design -
to a routine process, leads the designer more quickly to that crucial
question. N flip-flops are capable of 20 different configurations, and
there are 220 different "counting" cycles which might be obtained. The
optimum electronic realizations of these are not all of the same complex-
ity; and often, in a particular application (say where arbitrary meanings
are assigned to the various stages of the count) any one of a number of
these cycles would be equally useful, The problem is then not: "What,
for the given cycle, is the optimal realization?", but rather, "Comparing
a number of usable cycles and their optimal realizations, which of these
is optimum?" (which of & mumber of relative minima is least?)

We might call such decisions gombinstorial rather than logical.
The algebra, as developed here, provides no complete solutions to such
problems, However, it appears that the problem may be soluble by further
analysis. (One possibility is this: formulate a set of fully mechanical
rules for deciding between two circuits on grounds of relative complexity
in terms of available components; then program a computer to work out all
optimal designs (relative minima) and decide between them as to the absolute
minimum, )

In general, the broader questions of computer planning are il-
luminated but not solved by the present theory. It is entirely possible
that further theoretical development, incorporating combinatory, statistical
and information-theoretic elements with the present theory may lead to a
mathematical treatment of the broader questions concerning the organization
of computing machinery.
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The present theory gives something like the following general
plcture of digitel computers. Any particular anslog computer may be re-
garded as a physical realization or anslyzer of a set of differential
equations. Similarly we may regard any digital computer, general purpose
or otherwise, as a physical reslization or analyzer of a set of Boolean
difference equations.

The equations analyzed by a machine may be studied in a perfectly
abstract way (this has not been done here) just as the machine may be
studied as a physical entity. Then two points of view are possible:

(1) The Boolean difference equations describe the working of
the machine.

(2) The machine realizes or analyzes the equations.

It is the validity of the second point of view which motivates
the building of any machine.

Higtory of this Theory and Relestion to Othe; Theog;eg

The English mathematician, George Boole,  -presented, in 1847, the
first workeble but cumbersome predecessor ¢f the present sort of formallsm.
He was interested in its interpretation as an algebra of logic and of
probability, and it was the application to logic which inspired the investi-
gations of his successoras, W. S. Jevons, C., S. Peirce, E. Schroeder and
others in increasing the power and simplicity of the algebra.

One logical interpretation of the present algebra is this: let
the variables (dropping the time arguments altogether) represent sentences
such as "3>2", "33 5" and "Water boils at 100°C." The two values O and I
are interpreted respectively as falsity and truth, so that 3>2 =1 but
3)35= 0, "x'" is the sentence which is true when "x" is false, and vice
versa: (the contradictory of "x") "it is not the cese that x" or briefly
"not x". Therefore, 53 5)! = I, "x.y" is the sentence'x and y, which
is true only when both x and y are true: (3>5).(3>2)=0. x+ y is
x and/or y (briefly: x or y), which is true if x is true or y is true or
both are true: (3>5)+ (3>2)= I, Similer interpretations may be found
for the other Boolean functions, end it will be seen that, on this inter-
pretation, the theorems of the system are those laws of logic which apply
to propositions end their combinations.

When we drop the assumption thet the variables may have only
the two values O and I there results a formalism which has &s one of its
interpretations a logic of clagges containing the classical theory of
syllogisms.

It was, as far as we know, Claude Shannon who, in 1938, first
published an interpretation under which the algebra becomes a theory of
relay and switching circuits. Shannon's interpretation led the way to an
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application of the algebra to static information-processing networks of

all kinds, including those used in present-day electronic digital computers.
However, Shennon's theory took no account of the dependence on time of the
states of a computer. Therefore, while it led to an analysis of networks
of gates, mixers, inverters and the rest, it did not permit an analysis of
flip-flops. That theory was no substantial help in designing counters,
adders and so on.

After Shannon, the principal development of algebraic methods
in this field came from Burkhart, Kelin and Aiken of the Harvard Computa-
tion Leboratory. In the form in which it was published in 1951, their
algebra (which shared with Shannon's & lack of adequate means for represent-
ing time va;iables) was an arithmetic of O end I,

Boolean Algebra Alken's Formulation
( + and . have the meanings ( + and . have their ordinary
used in this text) arithmetical meanings)

x! le-x

xy xy

X+7 X+y - Xy

Superficially, the Aiken algebre is easier to use than Boolean
algebra, since it is merely ordinery arithmetic restricted to O and I.
However, for every new lew which one must learn in order to use Boolean
algebra, one must learn an arithmetical trick to use the Aiken algebra.
Congider, for example, the transformation which in Boolean algebra is
accomplished by De Morgan's theorem:

() = x' & 7

In Alken's algebra it becomes necessary to delicately introduce 1l's and
perentheses in order to go from 1 = xy (our "(xy)'") to (1-x) + (1-y) -
(l-x)(l~y) (our "x' + y'"). Then Aiken's arithmetic is at least as hard
to handle as Boolean algebra. Furthermore, it has the disadventage that
while an entire expression such s 'x +y - xy' (our 'x + y') is always
either O or 1, yet such expressions often contain parts which are neither
O nor 1, and hence meaningless. Thus if x =y =1, x +y = xy =1, but
part of it, x + y, is 2, which is meaningless in the interpretation. We
have examined this matter here in some detail in order to justify our use
of a simple but unfamiliar formaligm rather than a familiar but unexpect-
edly complicated one.
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The present theory, with its use of time variables throughout,
is the work of Irving S. Reed. To our knowledge it is the first analysis
of computing machines powerful enough to provide a general method for
synthesizing flip=flop circuits such as accumulators by straightforward
~ calculation. Furthermore, by designing not in terms of the sequence of

states of the flip-flops, but rather in terms of the changes in their
states, we are led directly to a minimal design, without the use of such
cumbersome devices as "minimization charts".

It should be stressed that the present report is an account of
the most direct and easily used practicel outcomes of the theory. For a
rigorous mathematical account of the theory the reader is referred to the
papers by Reed in the Bibliography. The introduction of time variebles
makes possible an extension of Boolean algebra into anealygis. The theoret-
ical background of the results presented here is an analogue of the calculus
and theory of ordinary differentisl equations, based, not on ordinary
arithmetic, but rather on Boolean algebra.

These methods were used, in a restricted form, in the design of
the MADDIDA and CADAC computers, beginning in the winter of 1947. One of
the results of the theoretical studies has been that the present method
is applicable to pulse circuits in general, and not only to computers
using a special sort of clock waveform,
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APPENDIX I
Summary
xly| X+y Xy xX@VY x$y xly
1]1 0 1 1 0 0 0
0|1l 1 i 0 1 0 1
1|0 0 1 0 1 0 i
0|0 1 0 0 0 1 1

- There are 22n distinct functions of n variables, some of which are repeti-
tions of functions of n =1, n = 2, ..e.y 1, O variables. E.g., x' appears
sbove as a function of two variables (its value is defined forrall 4 values
of x, y; but since it is actually definable in terms of x alone, it is
really a function of 1 veriable). The two functions of O variables are

O end I,

There are an infinite number of functions in terms of which all

functions can be defined. The two such functions of 2 varisbles are‘¥ and
o For exsample:
x|x:= x!

(xly) | (xly) = xy

It follows that all other functions are definesble in terms ofl » since all
functions are definable in terms of not and and:

X+ y= (xlyl )1
x@y=xy"+ x'y
etc.
Physical Realizations of Functiong:
(The 1ist is not complete) (In the megnetic circuits current in the indi-

cated directions represents 1l; no current represents 0O; diodes might be
necessary to prevent back flow and for clamping.)
. '
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Complement A Product

For n inputs:

X

%‘ Zt v
—_‘L —-— +d'¥v% # + x‘. x&.....xh-

Feovw X \'wpu'\-g; %'\ve: QW\‘:”"Q'\C-»‘\“\M",
output pulte s wverted,

(Bias and voltage dividing
network are such that when - — xy [Pulses]
the grid goes positive, the

A X 9 [>.c.Levels]

x' point goes down to zero.)

I l - x4y [Pulser]
ol g il s t
: \ : rp\—ov'\cles A'Mf“c{&)"\-fv\;
X =N T i u\ {-— X*V\ ED'C'Levc S] c\_,’hyu‘\' Pu\s‘c, i< |'vwev-+t:l.
94\ x?.

’ B
X\ X 3% ** \/ "
P -
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Partial Sum

: If you can ignore the polarity of the output and depend on the
coincidence in time, duration, emplitude and shepe of x eand y ~---=====-

t—xesa,

x

W
4 d ><e;\a == :i'iigi &

Otherwige
Black Box #1 ‘ Black Box #2
(If the variables and algo (If the variebles, but not their
their primes are available.) primeg, are available.
~~~~~~~ gl e . e e
o i ‘:
| |
X Q \ 4 . |
' ’ \ ) |
Y l
/ \ S st NV
% il i;__ REGBEFTS A ‘:l ““““
*EB‘\ x QD

It follows from the stetements on the previous page thet, given realiza-
tions of not and and, black box reelizations of all other functions can
be constructed. And given realizations of 4-or':| , all needed black boxes
can be constructed.

Flip-Flops
A’ A

: Triggers when both inputs
are pulsed at once.

A(E +€) = a(t)a!(+) ¥ a' (£)A(%:

Al A

% & &

Redv to the first
At + €) = alt) @A) (gsﬁzzﬁe rst case
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Magnetic oalt) a(t) a(t) | At+€) | 4 @) | 4-@) R(t)

Memory Core :
& ' 1 1 0 0 0
0 1 ) i § 0 0 0
k) 0 p 0 0 1 B e
0 0 k| b2 ) 0 0
: § 1 0 0 0 0 0
0 1 0 3 a3 - 0 0

currents as shown i 0 0 0 0 0 0

represent 1, No 0 0 0 0 0 0 0

current represents O,

Value of A: 4 =1, $=0 R=d_,)

A(t +¢) = Ea'(t) + a(t] A(t) +Ea'<£) : a(tﬂ A'(t)

R(%) = oa(t)av(t)A(i)

This can be set and cleared; read out by clearing (if the core held a 1
there will be a pulse out). However: it won't trigger es shown, and the
resdout is a single pulse, rather than a D.C. level.
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APPENDIX II
Some Theorems of Boolean Algebra

Ignore order and grouping in pure sums and pure products.

"Wultiply through" and factor as in ordinary algebra, and : "add
through" a product.

a(b+ ¢) = ab 4+ ac

a+ (boe)= (a+ b).(a+ ¢)

O+ x=x Ox=0 X+ X=X x+ x'=1

lyx=1 l.x=X ngigi X . xt=0

Expansion of g Function
f(x,y,2) = £(0,0,0)x'y'z' + £(1,0,0)xy'z® + .... + £(1,1,1)xyz
= [£(0,0,0) + xty¥2] [£(1,0,0) + x'¥ya] av..a[£(1,1,0) * xi4ya]
In particular, for the constant function f(x,y,z) = I for all x,y,z, we get
I =x'y'2" + xy's' + .... + xyz (all 8 terms are present)
and for the constant f(x,y,z) = 0 we get
0 = (xtytz)e(x'+ty+tz)e...o(x'+y'+2') (all'B factors are present)
De Morgan's Law: (xy)' ==x'+y' ; (xty)' = x'y
Elimination of a factor: x+ xly=x+y
Theorems relating to ® :
x@(y®Pz) = (xPy) Pz =x®y®z:
x@Dy=y®x
x@y=xy' +x'y
x@y®Dxy

x+y
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(x®@y) =x @Dy =x@y

Kx@y)" is an interesting function: it is 1 exactly when x and y
have the same value.|

x(y®@z) = xy@ xz
If x@y=2, x=y®z (Pernits solution of equations)
x@®1

]

= x!
x0=x
x®x=0

For a more complete 1list of theorems, see works of Couturat and
Whitehead listed in Bibliography.

Any expression can be put in the form:
Ax + Bx'
e.g., the equation for the FF with 2 inputs is in that form.

To complement such an expression it is sufficient to complement
the "coefficients":

(Ax + Bx!)! = A'x + B'x!
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APPENDIX III
Core Anglysis wif.h 3 Valued leogie

alt) alt) alt) | a(t+€) | R(t)

=] =1 -l =l 0 a(t) = +1 has same effect

0 =1 =1 =1 0 -

% «l -1 0 as a(t) = +1

-] 0 =1 1 &

0 0 =1 =1 0 R is wound so that when

1 g =1 =1 0 the state of the core is

=1 1 =1 ;| 1 moving toward 1, R=1, i.e.,

0 1l =1 1 1

1 1 =1 =1 0 [R(+) = Yeafalt) < a(t +¢)]

-1 =] 0 0 0

0 -l 0. » ) - E(t),=_3_[¢E(t) = At +¢€)]

1 =1 0 =1 g

=1 0 0 | 1 R(t) = <1[>|A(t) > A(t +€)

0 Q 0 0 0 [: :}¢$[: :]
- 1 0 0 = =1 "&" means if and only if

=1 1 0 b | b '

0 1 0 b 4 b ! o

1 1 0 0 0 & o

<1 =1 3 2 0 o

0 =1 1 =1 =1 A =R

1 =1 i =1 =1

=1 0 1 1 0 !

1 0 1 =21L -36 =d ) =t j0=me Wmagwet-

3 1 i 1 0 '3 rem

1 1 1 1 0 CorvienXe ta e w‘\v\é\v\y ondL

@os\&\vc as S\rvan %M
Optesite cuomank t -y . Mo I: 0,

The rules of 3 valued algebra are more cumbersome than those of the present
theory.

Note that cores require a 3 valued analysis only to the same extent that
vacuum tube circuits do., In vacuum tube circuits, toc, there are three
possible inputs and outputs: positive, negative and zero pulses. In
trying to account for such circuits in terms of O and 1 alone, we are
somewhat farther from reality than when we use =1, O and 1. But the three
valued analysis is itself a high-order eabstraction from the real situation
with its contimuum of infinitely meny values.
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The point is that we pay for the additional simplicity of each
higher order of abstraction in faithfulness of the resulting black-and-
white picture of the real situation.

We believe that a 3 valued analysis would be of use, but the
use would be a better evaluation of the limitations of the two valued
approach. There may exist combinations of elements whose utility depends
on the polarities of the pulses involved., Such designs could be "cranked
out" of a 3 valued analysis. But it may be that, having recognized them,
they can be introduced into the two valued analysis by special devices.
One such device is translating a single-pulse-train:

) "
into two: XUp A Lk R :
‘ ) i ™3
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