7)) mips

RISC/os (UMIPS)
System Administrator’s Guide
Volume Il
Order Number 3206DOC

The power of RISC is in the system.

I

RISC/os (UMIPS)
System Administrator’s Guide
Volume Il
Order Number 3206DOC

April 1989

Your comments on our products and publications are wel-
come. A postage-paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 84-00039-B/02-00136

© 1989 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX.

MIPS Computer Systems, Inc.
930 Arques Ave.
Sunnyvale, CA 94086 -

Customer Service Telephone Numbers:

California: (800) 992-MIPS
All other states: (800) 443-MIPS
International: 415) 330-7966

Mfg. Part Number 84-00039-B/02-00136

Introduction

This part of the UMIPS System Administrator’s Guide contains procedures that
can be followed to implement UMIPS functions. The procedures are concerned with
system administrator input and system output but not with describing the reasons for
the various actions. To understand why these procedures are performed and to
understand them better in order to tailor them to your specific needs, first refer to the
corresponding chapter in the first half of this document. In addition, references to
particular manual pages (or "man" pages) are referenced throughout this document.
They can be read in the accompanying manuals, for example, the System
Administrator’s Reference and the User’s Reference Manual. They can also be
accessed from the UMIPS system by entering:

$ man command_name

where command_name is the UMIPS command name.

System Administration Commands

To simplify system administration, UMIPS provides the System Administration
Package or sysadm menu interface to help perform common administrative tasks. In
addition, all administrative tasks can be performed by using the "manual” approach of
the more traditional UNIX command sequences. For example, to add a new user one
may simply enter: :

sysadm adduser

and then follow the prompts until the user has been added to the system. Adding a
user can also be performed by making a user directory, adding an entry to the
/etc/passwd file, checking the /etc/group file and a few other actions also performed
with UMIPS commands. The Procedures always document both approaches when
they are available. Use whichever one you feel more comfortable with.

The procedures shown in this guide by-pass the higher level System Administra-
tion Menus and take you directly to the subcommands. Subcommands are the
equivalent of menu selections from lower level menus. If you prefer, you may start at
the main menu with the unadorned command

sysadm
You will see the list of subcommand choices:
SYSTEM ADMINISTRATION
filemgmt file management menu
machinemgmt machine management menu
syssetup system setup menu

ttymgmt tty management menu
usermgmt user management menu

Ul W N

Enter a number, a name, the initial part of a name, or
? or <number>? for HELP, q to QUIT:

You can now enter a number or name to pursue the various choices. Alternatively,

PROCEDURES INTRODUCTION PO-1

Introduction

from the command prompt, you can get to the submenu level directly with a com-
mand like

$ sysadm filemgmt
Password:

System States

In some procedures, we state that a particular system state is required. This
means that the system must be in standalone, single-user or multi-user modes. The
standalone mode corresponds to the monitor and standalone shell (sash) levels.
Single-user mode corresponds to run level 1, while the multi-user mode corresponds
to run levels 2 or 3, Procedures for bringing the system to different system states are
found in Procedure 3, System State Procedures. See the section on "Operating Lev-
els,” in Chapter 3, System States, for more information on system states.

Logins

In some procedures, we state that a particular login is required. This frequently
means that you must be logged in as root to do the procedure. The phrase "an
authorized login" is also used. The standard meaning of this term is that you must log -
in using a special administrative or system login name to do the procedure (see
Chapter 1, System Security, for a description of these logins).

Passwords

It is strongly recommended that you set up and use passwords for administrative
and system logins (see Procedure 1.4 for information on how to do this). In the pro-
cedures, we assume that such password protection has been established. When you
enter a sysadm command as an ordinary user, therefore, you are prompted for a pass-
word, We show this with an entry like:

$ sysadm adduser
Password: -

At this point, to go ahead with the procedure, you are required to enter an acceptable
password. As is always the case in the UNIX system, the password is not echoed to
your screen. '

In procedures that require you to be logged in as root (that is, the super-user),
you are not prompted for the sysadm password. Also, the pound sign (#) prompt is
used to represent the root login. Here’s an example:

sysadm addgroup
#

P0-2 SYSTEM ADMINISTRATOR’S GUIDE

Introduction

Information in the Examples

While every effort has been made to present displays of information just as they
appear on your terminal, it is possible that your system will produce slightly different
output. Some displays reflect a particular machine configuration that may differ from
yours. Changes between releases of the UMIPS system software may cause small
differences in what appears on your terminal.

PROCEDURES INTRODUCTION P0-3

System Ildentification and Security Pro-
cedures

The following procedures are covered in this section:

Procedure 1.1

Procedure 1.2

Procedure 1.3

Procedure 1.4

Procedure 1.5

Bringing up a New System
To ready the system for the following procedures.

Set Time and Date
Ta set the time and date of the internal system clock.

Establish or Change System Node Name
To define the formal system name, especially for the computer to be
a node in a network.

Assigh Special Administrative Passwords
To assign special passwords to administrative and system logins.

Forgotten Root Password Recovery
To recover from forgetting or the corruption of the root password.

SYSTEM IDENTIFICATION AND SECURITY PROCEDURES P1-1

Procedure 1.1: Bringing-Up a New System

This introductory procedure is designed to get the system up and running so the
following procedures can be performed.

References
Release Notes
Terminal Documentation

Step 1: Many system administration functions are performed at the console termi-
nal, which should be set to a 9600 baud rate.

Here are some things you might want to do to make sure your console terminal is
configured properly. Use the Operator’s Guide for your terminal to learn how to
make these equipment checks.

® Set the input/output terminal speed option to 9600.

m Set the interface to 8-bit ASCII character mode, full duplex, stop bits equal to

"1", with a parity of "none", "disabled" or "space" depending on the terminal
you have.

® If you lose communication with the system, check to see if the terminal is still .
plugged in.

A printer should be part of the console equipment configuration because it pro-
vides a record of exactly what was done and how the system responded. It is essen-
tially the system log, and it is especially advantageous when you run diagnostics. If
your console terminal has this capability, the best method is to hook the printer
directly to the system console. (If you have a Teletype 5425, for example, there is an
auxiliary port on the rear of the terminal. Other manufacturers’ brands offer the
same feature.) The console printer should be independent of the LP Spooler system
(discussed in Procedure 7).

Step 2: To bring up an M-Series RISComputer for the first time, power it on and
then wait for the monitor prompt ">>" at the console., At this point,
enter "auto":

>> auto

The system will come up to multiuser mode in a few minutes, performing various
system checks and echoing results out to the screen. It is not necessary to answer any
prompts at this time.

When the startup procedure is complete, the system will display the console login:

mips Console login:

P1-2 SYSTEM ADMINISTRATOR’'S GUIDE

Procedure 1.2: Set Time and Date

This procedure is used to set the system time and date.

References
Release Notes
sysadm datetime(1)
date(1)

Correcting the date by one or more days should always be done in the single-user
mode. Setting the date ahead while in the multi-user mode with cron running should
be avoided. The cron program will try to "catch-up" for the time interval involved
(i.e., the processes that were scheduled to run in the time interval are started by
cron).

Setting the clock is required when you

m first get the system

B reset nonvolatile random access memory (NVRAM)
B replace a failed clock battery

Step 1: To set the time and the date use the System Administration Menu date-
time. For example: ’

$ sysadm datetime
Password:

Running Subcommand ‘datetime’ from menu ’syssetup’,
SYSTEM SETUP

Current time and time zone is: 04:59 EDT
Change the time zone? [y, n, q, ?] n
Current date and time: Tue. 08/28/85 05:00
Change the date and time: [y, n, g, ?1 Yy

Month default 08 (1-12): <CR>
(Using <CR> fo accept the default)
Day default 28 (1-31): <CR>
Year default 84 (70-99): <CR>
Hour default 05 (0—-23): <CR>
Minute default 00 (0-59): 04

Date and time will be set to: 08/28/84 05:04. OK? [y, n, gl Yy
The date and time are now changed.

SYSTEM IDENTIFICATION AND SECURITY PROCEDURES P1-3

Procedure 1.2

Step 2: The clock also can be set using the date command. You must be logged in
as root to set the date and time with date. The arguments to the date
command are in the sequence of month, day, hour, minute, and year.

date 0216131688
Sun Feb 16 13:16:00 EST 1988

P1-4 SYSTEM ADMINISTRATOR’'S GUIDE

Procedure 1.3: Establish or Change System
Name

This procedure demonstrates how to determine the current name of the system
and how to change it temporarily or "permanently".

References
uname (1)
hostname (1)

Command—uname

The name of the RISComputer can be set by using the uname command. Use
the uname command to list system and node information:

uname —a

mips mips 3_0 UMIPS mips

uname —A

mips mips 3_0 UMIPS mips ml120 ATT V3 0
#

Changing the System Name

To change the name of your system temporarily, use the hostname command:

hostname newname
uname
newname

This name will last until the system is rebooted or the name is otherwise changed. To
make a lasting name change, edit the /etc/local_hostname file, replacing the current
name ("no_hostname_set" on a new system) with the chosen name. The contents of
/etce/local_hostname look something like this:

mips
netmask 0xff000000 broadcast 192.255.255.255

SYSTEM IDENTIFICATION AND SECURITY PROCEDURES P1-5

Procedure 1.4: Assign Special Administra-
tive Passwords

This procedure demonstrates how to use various commands to assign and change
passwords. The M-Series systems are shipped with passwords for all logins with the
exception of root, who should be assigned a password immediately.

References
sysadm syspasswd
sysadm admpasswd
passwd(1)

After you have set up your RISComputer you should assign passwords to the spe-
cial administrative and system logins (see Chapter 1, System Security, for definitions
of these logins). The administrative logins are: setup, powerdown, and sysadm,

The system logins are: sys, adm, bin, uucp, nuucp, lIp, rje, daemon, and trou-
ble.

Step 1: The following command will step you through all the special administrative
logins to see whether you want to assign or change any of the passwords.

sysadm admpasswd

Note: if you want to change the passwords for
any of these logins, you may do it with this command.
For example, the following is displayed.:

Running subcommand ’admpasswd’ from menu ’syssetup’,

SYSTEM SETUP

Do you want to give passwords to administrative \
logins? [y, n, ?, gl y

If you enter "y", you are prompted about each
administrative login.

The login ’setup’ already has a passwoxd.

Do you want to change the password, delete it, or skip it?
[e, 4, s, g, ?] s

Password unchanged.

The login ‘powerdown’ already has a password.

Do you want to change the password, delete it, or skip it?
[c, d, s, g, ?] q

Password unchanged.

#

P1-6 SYSTEM ADMINISTRATOR’'S GUIDE

Step 2:

Step 3:

Procedure 1.4

To assign a password to the special system logins, enter:

sysadm syspasswd
Note: if you want to change any of these passwords,
you must either be logged in as root or as one
of these logins, and then execute the passwd command.
For example, the following is displayed.:
Running subcommand ’syspasswd’ from menu ’syssetup’,
SYSTEM SETUP
Do you want to give passwords to system \
logins? [y, n, ?, gl y
Do you want to give the ’‘daemon’ login a \
password? [y, n, ?, q] n
The following system logins still do not have passwords:
daemon

This command will only let you assign passwords to those logins that have

never received a password in the first place.

You can also assign passwords individually with the passwd command.
As superuser enter:

passwd username
and you will be prompted for the new password information. For example:

passwd johnr
New password:
Re—enter new password:

#

User "johnr" now has a new password.

SYSTEM IDENTIFICATION AND SECURITY PROCEDURES P1-7

Procedure 1.5: Forgotten Root Password
Recovery

If you have forgotten the root password and your system automatically boots up to
multiuser mode, you are faced with the unfortunate situation of having to supply the
root password to the login prompt before you can get in there and edit the password
file. The way to get around this is to come-up only as far as single-user mode as
described in this Procedure. You can then edit the password file and assign a new
password. '

References
shutdown(1M)
passwd(1)

If the system is in monitor mode (i.e., the prompt is ">>"), go to Step 3. If the sys-
tem is in single-user state, skip to Step 4. If the system is in the multi-user state, skip
to Step 2. (Refer to Chapter 3 for a discussion of system states.)

Step 1: Follow this step if the system is turned off.

If your system is off, power-up the system (i.e., press the Power button) to get to the
monitor prompt: o

>>

Now go to Step 3.

Step 2: From the multiuser mode, it will be necessary to shut the system down in a
manner less than graceful. :

First, be sure everyone is off the system. If you are unable to write(1) them, you will
have to resort to such archaic measures as telephone or (gasp!) walking over to their
terminal. Next, sync(1) the system a few times and then press the reset button or key
switch. Your session will look something like this:

who
root tty0 May 13 09:58
johnr ttyqo0 May 16 16:31

write johnr

Please logoff. The system is coming down for a few minutes.

sync;sync;sync

Intrepid MIPS Monitor Version 4.0 MIPS OPT Wed Apr 13 \
16:40:45 PDT 1988

Memory size: 16777216 (0x1000000) bytes

Icache size: 65536 (0x10000) bytes

Dcache size: 65536 (0x10000) bytes

>

The ">>" is the monitor prompt.

P1-8 SYSTEM ADMINISTRATOR’S GUIDE

User Services Procedures

The following procedures are covered in this section:

Procedure 2.1

Procedure 2.2

Procedure 2.3

Procedure 2.4

Procedure 2.5

Add Users or Groups
To add information about new users of the system, or to name
groups.

Modify User Information
To change information about users or groups.

Delete Users or Groups
To remove users or groups from the system.

List Users or Groups
To display information about users or groups.

Write to All Users
To send a message to all users logged in.

USER SERVICES PROCEDURES

P2-1

Procedure 2.1: Add Users or Groups

The following procedure identifies new users and groups to the system. The way
to perform the same functions without using the sysadm command is also presented
in this procedure.

References
sysadm adduser(1)
sysadm addgroup(1)

Step 1: Enter one of the following commands:

$ sysadm adduser
Password:

or

$ sysadm addgroup
Password:

Step 2: The command sysadm‘ adduser is not currently implemented.
Step 3: If you enter the command sysadm addgroup, this sequence appears: - -

Running subcommand ’addgroup’ from menu ‘usermgmt’,

USER MANAGEMENT

Anytime you want to quit, type "q".

If you are not sure how to answer any prompt, type "?" for help,
or see the Owner/Operator Manual.

If a default appears in the question, press <(RETURN> for \
the default.

Enter group name [?, q]: seventy?
Enter group ID number (default 45201) [?, gq]: <CR>
(Accepting default by entering <CR>)
This is the information for the new group:
Group name: seventy7
group ID: 45201
Do you want to install, edit or skip this entry [i, e, s, ql? i
Group installed

Do you want to add another group?[y, n, g] n

Adding Users Using Commands

Users can be added with a sequence of commands that perform the following:
create a home directory

add an entry to /ete/passwd

P2-2 SYSTEM ADMINISTRATOR'S GUIDE

Procedure 2.1

add "environment" files

In the following example, we’ll set up a new user named pat. The example
assumes you are logged in as superuser (root).

Step 1: Make a new directory in your user area for pat:
mkdir /user/pat

Step 2: Using a text editor, add an entry for pat in the /etc/passwd file. The exam-
ple entry in /etc/passwd shown here is explained below. ‘

pat::649:40:Pat A. Jones:/user/pat:/bin/csh

The entry for pat shows seven colon-separated fields. The first field, "pat” is the
login-name of the user. The next field is temporarily empty - in a moment we’ll assign
pat a password. The third field, "649", is a unique user id number , and is followed
by the group number, in this case "40".a Next, is a description of the user. The last
two fields are the user’s home directory and login shell, /user/pat and /bin/csh,
respectively.

Step 3: Save the password file and, add a password for pat with the passwd com-
mand:

passwd pat

New Password:
Re—enter new password:
#

Step 4: Copy any login and environment files to the user’s home directory:

cp /etc/stdcshre /user/pat/.cshre
chown pat /user/pat /user/pat/.cshre

The "cshre" file is copied to pat’s home directory because she is a C-shell user. The

directory and file permissions are changed to give pat control of the contents of
/user/pat.

USER SERVICES PROCEDURES P2-3

Procedure 2.2: Modify User Information

This procedure demonstrates how to later change some of the values assigned to a
user initially with the previous procedure.

References
sysadm modadduser

B FEnter the command:

$ sysadm modadduser
Password:

The sysadm modadduser command gives you the opportunity to change either or
both of the default values for group ID and home (parent) directory that appear on
the adduser form. The screen below shows an example of changing the default group
number from 1 to 100. ‘

Running subcommand ‘modadduser’ from menu ’‘usermgmt’

USER MANAGEMENT

Anytime you want to quit, type "q"

If you are not sure how to answer any prompt, type "?" for help,
or see the Owner/Operator Manual.

Current defaults for adduser:
group ID 1 (other)
parent directory /usr
Do you want to change the default group ID? [y, n, ?, gl Yy
Enter group ID number or group name [?, g] 100
Do you want to change the default parent \
directory? [y, n, ?, gl n

These will be the new defaults:

group ID: 100

parent directory: /usr

Do you want to keep these values? [y, n, ql ¥y
Defaults installed.

$

Changes can also be made by directly modifying the /etc/passwd and /etc/group
files. For example, a new group can be defined in /etc/group and then the group field
in /etc/passwd can be edited to switch users to the new group.

P2-4 SYSTEM ADMINISTRATOR'S GUIDE

Procedure 2.3: Delete Users or Groups

Use this procedure to delete users and/or groups.

References
sysadm delgroup(1)
sysadm deluser(1)

Step 1: Deleting a group ID is done with this command:

$ sysadm delgroup
Password:

Step 2: The prompt sequence is as follows:

Which group name do you wish to delete?[q] sévenqﬂ
Do you want to delete group name \
"seventy7’, group ID 45201?[y, n, ?, gl y
seventy7 has been deleted
Do you want to delete any other group?[y, n, ql] q

separately using sysadm deluser.

T

Step 3: Deleting a user’s login ID requires more persistence. The user’s home

The sysadm delgroup command. deletes only the specified group and not the user
NOE| login(s) assigned to that group. The logins belonging to the group must be deleted

directory and all the files in and below that directory are deleted as well.

Here is the sequence:

$ sysadm deluser
Password:

Running subcommand ‘deluser’ from menu ’‘usermgmt’,
USER MANAGEMENT

This function COMPLETELY REMOVES THE USER, their mail file,
home directory and all files below their home directory
from the machine. Once this is done, there is no way
guaranteed to get them all back.

BE SURE THIS IS WHAT YOU WANT TO DO!

Enter login ID you wish to removelqg]: jqp

"jgp’ belongs to ‘John Q. Public’

whose home directory is /usr/jqp
Do you want to remove login ID 'jgp’?[y, n, ?, ql ¥y
/usr/jgp and all files under it have been removed.

Enter login ID you wish to remove [g]: q

USER SERVICES PROCEDURES

P2-5

- Procedure 2.3

Removing Users or Groups with Command Sequences

To remove a group from your system "manually”, delete the line containing that
group entry from /etc/group. Remember, this does not remove the users. If there
are users belonging to this group that you do not want removed from the system, it is
necessary to move them to another group. Do this by changing the group field in
their /etc/passwd entry to another group id number. Then use chgrp(1l) to change
the group ownership of the user’s files.

To remove users from the system, remove their /ete/passwd entry. Also, remove
the files in their home- and sub-directories and their mail files (see mail(1)). It is
good idea to back up these files before removing them and then saving them for a
while in case data in them is found to be needed later.

P2-6 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 2.4: List Users or Groups

Use this procedure to get a listing of users and groups.

References
sysadm Isgroup(1)

Step 1: The two sysadm subcommands in this procedure enable you to see what
groups and what users are in the computer. The command to list groups

is:

$ sysadm lIsgroup
Password:

which produces a report with these column headings:

Groups currently in the computer _
(press <RETURN> to start listing each time you hear the bell)

group group logins permitted to become
name number members using newgrp
adm 4 root,adm, daemon

bin 2 root,bin,daemon

daemon 12 ’ root,daemon

mail 6 root

other 1

rije 8 rije,shqger

root 0 root

sys 3 root,bin, sys,adm

$

Step 2: If you enter the command:

$ sysadm lsuser
Password:

the following lines appear on your terminal:

Users currently in the computer
(press <RETURN> to start listing each time you hear the bell)

<CR>

When you press <RETURN> a list in the following form is displayed:

USER SERVICES PROCEDURES

P2-7

Procedure 2.4

Users currently in the computer:
(press <RETURN> to start printing each time you hear the bell)
login name user name

ark Allen Kramer
fdr Fred D. Richards
1bj Larry John

zip .Zippy Pinhead

$

Listing the Group and Password Files

Another way to view the group and user entries is to use a UMIPS to command
to print the /etc/passwd and /etc/group files, For example,

less /etc/passwd
and
cat /ete/group

cause the two files to be output to the screen - the first command uses less(1) to page

through the /etc/passwd file a screenful at a time, and the second command uses
cat(1) to print the entire /etc/group file to the screen.

P2-8 SYSTEM ADMINISTRATOR'S GUIDE

Procedure 2.5: Write to All Users

This procedure demonstrates how to broadcast a message to all users on the sys-
tem simultaneously.

References
wall(1)

Step 1: For times when it is necessary to communicate with all users on the system -
at once, the UMIPS wall command is used.

wall

The command reads whatever you type in at your terminal until it reads an
end-of-file (indicated by typing in a control-d).

Step 2: The message you type in is sent immediately to the terminal of all users
logged in.- It is preceded by:

Broadcast Message from ...

A typical use of the wall command is to warn users that the system-is
about to be shutdown:

Broadcast Message from root: System coming down in
ten minutes. Please log off.

USER SERVICES PROCEDURES P2-9

System States Procedures

The following procedures are covered in this section:

Procedure 3.1 Powerup
To power up the system to the multi-user state.

Procedure 3.2 Powerdown
To halt the system and turn the power off.

Procedure 3.3 Shutdown to Single-User

To bring the system to the single-user state to do administrative
tasks.

Procedure 3.4 Return to Multi-User
To return the system to the multi-user state for standard operations.

Procedure 3.5 Running Monitor Programs
To bring the system to the monitor mode to run standalone pro-
grams.

Procedure 3.6 Halt and Reboot the Operating System
To halt and reboot the system from the hard disk.

Procedure 3.7 Recovery from System Trouble
To handle system troubles due to hardware or software problems.

Procedure 3.8 Install the Operating System
To reload the system from tape, if the system itself has been
severely damaged or to change the disk partitions. Procedures
include update install and a full install.

SYSTEM STATES PROCEDURES P3-1

Procedure 3.1: Powerup

This procedure is used to turn on the system and bring it up to its default run-
level of multi-user mode.

References
auto(1SPP)
boot(1SPP)

To power up the RISComputer perform the following procedure:
Step 1: Turn on the console and wait for the cursor to appear.

Step 2: Press the Power button on the RISComputer and you will see output similar
to the following on the console:

MIPS Monitor Version 1.5 MIPS OPT Mon Sep 21 \
15:41:43 PDT 1987 root

Memory size: 4194304 (0x400000) bytes

Icache size: 16384 (0x4000) bytes

Dcache size: 8192 (0x2000) bytes

Step 3: Enter "auto” at the boot monitor prompt: (Note that your system keyswitch
must be switched on to perform this step.)

>> auto

Autoboot: waiting to load dkip(0,0,8)sash (CRTL-C to abort)

'81120+15232+203056 entry: 0xa0300000

MIPS Standalone Shell Version 1.5 MIPS OPT Fri Nov 13 \
07:03:57 PST 1987 root

’

Loading dkip(0,0,0)/unix

557456+68640+373248 entry: 0x80021000

CPU: MIPS R2000 Processor Chip Revision: 3.0
Delay multiplier = 3, cnt = 761

UNIX System V Release 2_0 mips Version UMIPS_V
Total real memory = 4194304
Available memory = 2879488

if _enpl: controller not available
ipsl: controller not available
root on dev 0x400 (fstyp is ffs)
Available memory = 2752512

Checking root file system () automatically.

The system is coming up. Please wait.

x%*%x Normally all file systems are fscked,

*x*xx*x To fsck only dirty ones, type ’‘yes’ within 5 seconds:
xxx*xx Al]l file systems will be fscked,

mountall: fscking /dev/usr (/usr).
** /dev/usr

P3-2 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 3.1

** Tast Mounted on

** Phase 1 — Check Blocks and Sizes

** Phase 2 Check Pathnames

** Phase 3 Check Connectivity

** Phase 4 — Check Reference Counts

** Phase 5 — Check Cyl groups

4562 files, 103133 used, 85232 free (224 frags, \
10626 blocks, 0.1% fragmentation)

***%% FILE SYSTEM WAS MODIFIED ***%*%*
/dev/usr mounted on /usr ,
Internet daemons: routed portmap inetd rwhod.
NFS daemons: nfsd biod.

The system is ready.

Step 4: Log on to the system when the prompt MIPS Console Login: appears.
You can log in with a system or user login. This is multiuser mode.

mips Console login: rootcsh

Password:

UNIX System V Release 3_0 mips

Copyright (c) 1984 AT&T

All Rights Reserved

LR A EEEE RS EEEEEE SR EE LS EEEEEEEEEEEEEEEEEEEEEEEEEE]

* *
* MIPS — The Measure of Performance *
* *

kkhkkkhkkhkkhkhkhkhkkhkhkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

#

SYSTEM STATES PROCEDURES P3-3

Procedure 3.2: Powerdown

This procedure is used to halt the system and bring it down gracefully. The pro-
cess of bringing the system down may be performed using sysadm commands or by
using the shutdown script.

References
sysadm powerdown(1)
shutdown(1M)

There are differences in the procedure depending on whether you are in multi-
user or single-user state.

From Multi-User

The best way to turn off the computer while the system is in the multi-user state is
to enter the sysadm powerdown command. Entering this command causes the system
to flush the system buffers, close any open files, stop all user processes and daemons
currently running, unmount file systems, and bring the system down to monitor mode
at which time power can be safely turned off.

Step 1: Check who is logged in before taking any action that would affect a
logged-in user. Enter:

sysadm whoson
A typical response might be:

These users are currently logged in:

ID terminal number sign—on time
root console 18:06
jaf tty22 22:30

Step 2: Notify any users that the system is shutting down via the /ete/wall(1M)
command (see Procedure 2.5). For example:

/etc/wall <CR>

Broadcast Message from root (console) on unix Wed Feb 26 07:30:27...
The system will be coming down in 5 minutes.

Please log off. <CIRL-D>

P3-4 SYSTEM ADMINISTRATOR’S GUIDE

«

Procedure 3.2

Step 3: Enter:

sysadm powerdown

Observe the following output and enter appropriate prompt responses:

Running subcommand ’powerdown’ from ‘machinemgmt’,
MACHINE MANAGEMENT '

Once started, a powerdown CANNOT BE STOPPED.

Do you want to start an express powerdown? [y, n, ?, gl n
Enter the number of seconds to allow

between the warning messages (default 60): [?, q] 30

Shutdown started. Thu May 16 17:10:57...

Broadcast Message from root (console) Thu May 16 17:10:59
THE SYSTEM IS BEING SHUT DOWN NOwW ! ! !
Iog off now or risk your files being damaged.

INIT: New run level: 0
The system is coming down. Please wait.
System ‘services are now being stopped.

The system is down.

MIPS Monitor Version 1.5 MIPS OPT Mon Sep 21 \
15:41:43 PDT 1987 root

Memory size: 4194304 (0x400000) bytes

Icache size: 16384 (0x4000) bytes

Dcache size: 8192 (0x2000) bytes

>

The Power button may now be pressed to turn power off.

From Single-User

If the system is in the single-user state, use the following command to powerdown
the system.

Step 1: To remove power and guarantee file system integrity, use the shutdown
command as follows:

shutdown =y —i0 —g0
The arguments have the following meanings:
—y assume yes answers to all questions
—i0 go to state 0 (monitor mode)

—g0 allow grace period of 0 seconds

Observe output similar to the following on the console:

SYSTEM STATES PROCEDURES P3-5

Procedure 3.2

Shutdown started.

The system will be shutdown in 0 seconds.
Please log off now.

THE SYSTEM IS BEING SHUTDOWN NOW ! I |
Longff now or risk your files being damaged.
The system is coming down. Please wait.

The system is down.

MIPS Monitor Version 1.5 MIPS OPT Mon Sep 21 2
15:41:43 PDT 1987

Memory size: 4194304 (0x400000) bytes

cache size: 16384 (0x4000) bytes

Dcache size: 8192 (0x2000) bytes

>

All services are stopped and power may be removed from the machine.

P3-6 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 3.3: Shutdown to Single-User

This procedure demonstrates how to shut the system down to single-user mode.
Single-user mode is used to perform various administrative tasks that must be per-
formed when the system is in single-user mode, for example, file backups.

References
shutdown(1M)
init(1M)

If possible, bring the system down to the single-user state during off-hours, since
users at terminals do not have access to the system in the single-user state.

Step 1: Log in as root at the console..
Step 2: Enter:
shutdown
By default, shutdown prompts you about the various broadcast messages,
provides a 60-second grace period between each message, and brings the
system to the single-user state. When you arrive in the single-user state,
you will see the following:

INIT: SINGLE USER MODE

You may now proceed with your intended tasks.

SYSTEM STATES PROCEDURES P3-7

Procedure 3.4: Return to Multi-User

Multi-user mode is the standard operating mode of the M-Series RISComputers.
This procedure demonstrates how to bring the system back up to multi-user mode
after it has been in single-user or monitor modes for administrative purposes.

References

init(1M)

There are three system states from which you can return the system to the multi-
user state. You can bring the system back from the single-user state and the monitor
mode, and you can cause the system to immediately halt and reboot (see Procedure
3.6, Halt and Reboot the Operating System).

From Single-User

After administrative tasks are finished, you can bring the system back to the
multi-user state from the single-user state via the init command.

Step 1: At the console, enter:
telinit 2

This causes init to inspect /etc/inittab

and execute entries that will initialize the system
to the multi-user state.

The following is displayed:

INIT: New run level: 2

The system is coming up. Please wait.

The file systems are checked and
the current system configuration is printed out.
Finally:

The system is ready.

MIPS Console Login:

Now you can log in either as root or as a conventional user,
since the system is in the multi-user state.

P3-8 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 3.4

From the Monitor

After monitor programs have been run, you can bring the system back from the
monitor mode by executing the automatic boot program from the hard disk.

Step 1: When you receive the monitor prompt, enter auto:

>> auto

Step 2: After the the sanity of the root file system is checked (via fsstat(1M)), a
file system check is performed if necessary (via fsck(1M)), the system

configuration is printed out, and the system is placed in the multi-user
state. Observe the prompt:

MIPS Console Login:

~ You may log in with an appropriate system or user login.

SYSTEM STATES PROCEDURES P3-9

Procedure 3.5: Running Monitor Programs

This procedure is just designed to demonstrate how to access the monitor mode
and to introduce simple use of it. For details regarding the various commands and
options available with the monitor mode, refer to your M-Series Technical Reference.

References
shutdown(1M)
init(1M)

Many programs can be run while in monitor mode. In addition, by using the
monitor command boot(1SPP), it is possible to access UNIX programs.

To bring the system to monitor mode from multi-user mode, first shutdown to
single-user mode as described in Procedure 3.3. To bring the system down to monitor
mode from single-user mode, enter a few sync(1) commands and then "init 0" at the
single-user prompt:

sync;sync
telinit 0

You will be in monitor mode when you see the following prompt:

>>

P3-10 SYSTEM ADMINISTRATOR'S GUIDE

Procedure 3.5

To display a list of commands and their syntax, use the help(SPP) command:

>> help
COMMANDS:
autoboot: auto
boot: boot [-f FILE] [-n] [ARGS]
cat: cat FILE_LIST
disable: disable CONSOLE_DEVICE
dump : dump [—(b|h|w)] [-(o|d|u|x]|c|B)] RANGE
enable: enable CONSOLE_DEVICE
fill: fill [~(b|h|w)] [-v VAL] RANGE
get: g [-(b|h|w)] ADDRESS
go: go [INITIAL_PC]
help: help [COMMAND]
help: ? [COMMAND]
initialize: init
load: load CHAR_DEVICE
put: p [-(b|h|w)] ADDRESS VALUE
printenv: printenv [ENV_VAR_LIST]
setenv: setenv ENV_VAR STRING
sload: sload CHAR_DEVICE
spin; spin [[-v VAL] [-c CNT] [-(r|w)(b|h|w) ADDR]]*
test: test [mem(c)lcpu(c)|fpu(c)|all] \
[test num(s)|?(help)] [1]|L](oop)
unsetenv: unsetenv ENV_VAR
warm: warm

COMMAND FLAGS
commands that reference memory take widths of:
-b —-- byte, -h —— halfword, -w —— word (default)
RANGE'’s are specified as one of:
BASE_ADDRESS#COUNT
START ADDRESS:END_ ADDRESS
Erase single characters by CTRL-H or DEL
Rubout entire line by CTRL-U
>>

To display the current monitor environment, use the printenv(1SPP) command:
>> printeny
netaddr=97.1.0.97
1lbaud=9600
rbaud=9600
bootfile=dkip(0,0,8)sash
bootmode=d
console=1
To use the UMIPS mv(1) command, use the monitor boot command as follows:

>> boot dkip()unix initfile=/bin/myv initarg=oldname initarg=newname

where oldname and newname are filenames as supplied with standard mv syntax.

SYSTEM STATES PROCEDURES P3-11

Procedure 3.6: Halt and Reboot the Operat-
ing System

This procedure allows you to halt the system and reboot from /unix on the hard
disk. There are a number of reasons why you might want to do this. For example,
you may suspect that the running version of the kernel has been corrupted in some
way (power glitch, etc.) and wish to start it over. Or, you may wish to run a different
version of the kernel.

References
sysadm reboot(1)
shutdown(1M)

One way to run a different version of the kernel is to replace /unix with another
kernel. To do this, copy /unix to a backup file and replace it with the other kernel,
for example;

cp /unix /unix.backup
cp unix.std /unix

This replaces the current kernel with the one originally shipped with the system.
After doing this you could follow the steps in the procedure below to cause the sys-

tem to boot the new kernel. Refer to Chapter 3, System States, for more information
on how to boot different kernels.

Step 1: If you are in multi-user mode, you must first get everybody off the system.
To see if anyone is on, use the who(1) command:

who

If users are on the system, use the wall(1M) command as described in Pro-
cedure 2.5 to inform them that the system is coming down.

To halt and reboot the system from the hard disk, enter sysadm reboot (or
shutdown —i6):

sysadm reboot

Running subcommand ’‘reboot’ from menu ’‘machinemgmt’,
MACHINE MANAGEMENT

Once started, a reboot CANNOT BE STOPPED.
Do you want to start an express reboot? [y, n, ?, gl Yy

Shutdown started. Mon Apr 25 15:45:04 PDT 1988
Broadcast Message from root (tty0) on mips Mon Apr 25 15:45:05...

THE SYSTEM IS BEING SHUT DOWN NOwW ! ! !
Log off now or risk your files being damaged.

INIT: New run level: 6

P3-12 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 3.6

The system is coming down. Please wait.
System services are now being stopped.
cron aborted: SIGTERM ’

The system is down.
The system is being restarted.

Autoboot: Waiting to load dkip(0,0,8)sash (CTRL-C \
to abort) ... loading -

81120+15232+203056 entry: 0xa0300000

MIPS Standalone Shell Version 1.5 MIPS OPT Fri Nov \
13 07:03:57 PST 1987 root

Loading dkip(0,0,0)/unix

663072+69056+373248 entry: 0x80021000

CPU: MIPS R2000 Processor Chip Revision: 3.0

Delay multiplier = 3, cnt = 742 .
UNIX System V Release 2_0 mips Version UMIPS
Total real memory = 4194304

Available memory = 2772992

if _enpl: controller not available
ipsl: controller not available
Buffer cache: 512 pages

256 bufs

16384 bytes buf headers
root on dev 0x400 (fstyp is ffs)
Available memory = 2646016

Checking root file system () automatically.
The system is coming up. Please wait.

*xx** Normally all file systems are fscked.

*xx** To fsck only dirty ones, type ’‘yes’ within 5 seconds:

*kxxxx A]l]l file systems will be fscked.

mountall: fscking /dev/usr (/usr).

**x /dev/usr

** Last Mounted on

** Phase 1 — Check Blocks and Sizes

** Phase 2 — Check Pathnames

** Phase 3 — Check Connectivity

** Phase 4 — Check Reference Counts

** Phase 5 — Check Cyl groups

4627 files, 103421 used, 84944 free (208 frags, 10592 blocks, \
0.1% fragmentation)

SYSTEM STATES PROCEDURES P3-13

Procedure 3.6

kk%%* FILE SYSTEM WAS MODIFIED *#%%%%
/dev/usr mounted on /usr

Internet daemons: routed portmap inetd rwhod.

NFS daemons: nfsd biod.

[any NFS mounts]

The system is ready.

mips Console login:

P3-14 SYSTEM ADMINISTRATOR’'S GUIDE

Procedure 3.7: Recovery from System Trou-
ble

This procedure demonstrates how to save important information regarding the
system state in the event that something has gone wrong. This information can be

used for diagnostic purposes.

References
crash(1M)
savecore(1M)

The following is an example of data collection using the crash command. In this
example, user and process information is collected and saved in a file. Speak with
your service representative regarding which data it would be most useful to save for a

particular situation.

seript crash.script
Script -started, file is crash.script

The script(1) command makes a file containing the
record of an interactive session. The file records

all terminal activity until a CTRL-D ("D) is entered.

In this example, the session will be saved in crash.script.

crash
dumpfile = /dev/mem, namelist = /unix, outfile = stdout
reading symboltable......... i

This example uses the file /dev/mem and the namelist
/unix, and outputs to the screen (stdout). These are the
defaults so no arguments are supplied to crash. If you want
to use a different dumpfile, see savecore(IM).

> ?

b (buffer) findslot od srmount
base fs p (proc) stack
buf (bufhdr) help pcb stat
buffer i (inode) pdt stream
bufhdr inode pfdat strstat
c (callout) 1 (lck) proc t (trace)
callout 1lck g (quit) trace
dballoc linkblk grun ts
dbfree m (mount) queue u (user)
dblock major quit user
defproc map rd (od) v (var)
dis mbfree redirect var

ds mblock region vtop

f (file) mode s (stack) ?

file mount search emd
findaddr nm size

The "?" gets a list of possible commands to supply to

SYSTEM STATES PROCEDURES

P3-15

Procedure 3.7

the crash ">" prompt.

>u
PER PROCESS USER AREA FOR PROCESS 25

USER ID’s: uid: 0, gid: 1, real uid: 0, real gid: 1
PROCESS TIMES: user: 1016, sys: 85, child user: 0, child sys: 0

PROCESS MISC:
command: crash, psargs: crash
proc slot: 25, cntrl tty: . 15,0
start: Wed May 25 17:47:15 1988
mem: 278f4, type: exec
proc/text lock: none
inode of current directory: 38
OPEN FILES AND POFILE FLAGS:

[0]: F#53, O [1]: F#53, 0 [2]: F#53, 0
[3]1: F#36, O [4]: F#37, O
FILE I/0:
u_base: 100d7cd8, file offset: 2490368, bytes: 0,
segment: data, cmask: 0022, ulimit: 4194304
sfile mode(s): read
SIGNAL DISPOSITION:
1: default 2: 414600 3: default 4: default
5: default 6: default . 7: default 8: default
9: default 10: default 11: default 12: default
13: default 14: default 15: default 16: default
17: default 18: default 19: default 20: default
21: default 22: default 23: default 24: default
25: default 26: default 27: default 28: default
"u" gets you everything you ever wanted to know about
user processes.
> P
PROC TABLE SIZE = 300
SLOT ST PID PPID PGRP UID PRI CPU EVENT NAME FLAGS
0 s 0 0 0 0 0 0 800bdlc9 sched load sys nwak
1l s 1 0 0 0 39 0 f£f£ffc000 init
2 s 2 0 0 0 0 0 80037£f78 vhand load sys nwak
3 s 3 0 0 0 20 0 8004fb5c bdflush load sys nwak
4 s 262 1 262 573 28 0 c011780c csh
5 s 2313 154 2313 0 26 2 800bd28c rlogind load
6 s 2314 2313 2313 649 30 0 800bf8a8 csh
7 s 132 1 0 0 26 0 c0116db8 syslogd
8 s 150 1 0 0 26 0 800bd28c routed load
9 s 156 1 156 0 26 0 c00036cc rwhod load
10 s 153 1 0 0 26 0 800bd28c portmap
11 s 154 1 0 0 26 0 800bd28c inetd
12 s 163 1 0 0 26 0 ¢c000344c nfsd poll
13 s 165 163 0 0 26 0 c000344c nfsd
14 s 166 163 0 0 26 0 c000344c nfsd
15 s 167 163 0 0 26 0 c000344c nfsd
16 s 168 1 0 0 26 0 800bd2e0 biod
17 s 170 1 0 0 26 0 800bd2e0 biod
18 s 172 1 0 0 26 0 800bd2e0 biod
19 s 174 1 0 0 26 0 800bd2e0 biod

P3-16 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 3.7

20 s 257 1 257 0 26 0 c0116£f40 cron

21 s 2339 2314 2313 0 30 0 800cOb2c csh

22 s 2347 2339 2313 0 28 0 c011bf64 script load
23 r 2348 2347 2313 0 60 1 00000000 script load
24 s 2349 2348 2313 0 30 0 800c0Oeel csh

25 r 2357 2349 2313 0 62 17 00000000 crash load

"n

'p" prints the process table.

> q

is used to exit from crash

D
Script done, file is crash.script

Entering a CTRL D terminates the script session. The
crash.script file now contains a copy of the above session.

SYSTEM STATES PROCEDURES P3-17

Procedure 3.8: Reload the Operating Sys-
tem

Just as file systems have backup versions, so does the UMIPS operating system -
on the two tapes delivered with the system. There are two ways to reload the operat-
ing system if it is necessary.

E An update install replaces (overwrites) the core system files on the hard disk
with those originally distributed.

B A complete install is a full restore and erases everything on the system disk and
then loads the original version of the operating system.

Consult your latest Release Notes for details on how to perform these levels of
install. The procedures here serve as examples of how these steps are performed.
Read through the procedures and the corresponding section of the Release Notes for
reloading the operating system before you do the procedure. If you understand all of
the steps, then reload the operating system. If you do not understand the reload pro-
cedure, contact your service representative for help.

~Update Install

You may want to do this procedure if you have received an update to the operat-
ing system, or simply want to replace a large number of the system files.

The following is a commented printout of an update install session. The session
begins at the monitor prompt (see Procedure 3.5). Note that your system output will
not be identical to this example. Also note that the tape controller (tpqic) and disk
controller (dkip) used here may be different on your system (refer to your Release
Notes). This procedure is performed with Tape 1 in the tape drive.

>> boot -f tpqic (,,2)sash
This loads the standalone shell (sash) from tape 1
137024+42912+176224 entry: 0xa0300000
MIPS Standalone Shell Version 4.0 MIPS OPT Thu Jun 16 \
08:38:48 PDT 1988 root
sash: cp -b 16K tpqic(,,3) dkip(,,1)

This copies the miniroot from the tape to disk. The following series
of dots indicates the copy is in progress.

12288000 (0xbb8000) bytes copied
sash: boot -f dkip(,,1)unix.r2300_std root=ips0d0s1l

This boots the miniroot. The root disk specified - ipsOdOs1 - later
becomes system swap space, so the temporary miniroot information is
overwritten by swapping once the UMIPS system is up and running.
569088+70416+471296 entry: 0x80021000
CPU: MIPS R2000 Processor Chip Revision: 5.0

P3-18 SYSTEM ADMINISTRATOR’'S GUIDE

Procedure 3.8: Reload the Operating System
FPU: MIPS R2010 VLSI Floating Point Chip Revision: 2.0
UNIX System V Release 3_0 mips Version UMIPS

Total real memory 4194304
Available memory 2838528

if enpl: controller not available
ipsl: controller not available
Root on dev 0x401, swap on dev 0x401

WARNING: clock lost 168 days

WARNING: CHECK AND RESET THE DATE!
root on dev 0x401 (fstyp is ffs)
Available memory = 2711552

UMIPS Miniroot run level 1

Making miniroot device files for m800 systenm...
erase="H, kill="U, interrupt="C.

set-a

Install=update

inst

Set the "Install" option to "update", and start the installation process by executing inst.

MIPS software package installation

Subpackage root will be installed.
Subpackage m800 will be installed.
Subpackage sppbin will be installed.
Subpackage usr will be installed.
Install subpackage cmplrs (y n) [n]? Yy
Install subpackage man (y n) [n]?y

Selected subpackages:
root m800 sppbin usr cmplrs man
Is this what you want (y n) [yl? ¥y

This selects an update installation of all parts of the package. If you
are in a hurry you may want to save a few minutes here by skipping the
compilers and/or man pages installations until later.

========== getting system clock/calendar ==========

The current value of the clock is: Thu Dec 31 16:38:17 PST 1987
Is the clock correct (y n) [y]? n

Enter the correct time and date as "mmddhhmm[yy]": 0621121688
Tue Jun 21 12:16:00 PDT 1988

The current value of the clock is: Tue Jun 21 12:16:00 PDT 1988
Is the clock correct (y n) [yl?y

SYSTEM STATES PROCEDURES P3-19

Procedure 3.8: Reload the Operating System

We update the clock.

The system is in a single—user run level.

========== jnstalling sash to volume header ==========

/dev/root mounted on /mnt
/dev/usr mounted on /mnt/usr

========== preserving local files ==========

Running preserve —s for subpackage root... 28 files preserved.

No preserve list or findmods list for m800- preserve not executed.
No preserve list or findmods list for sppbin- preserve not executed.
Running preserve —-s for subpackage usr... 18 files preserved.

No preserve list or findmods list for cmplrs— preserve not executed.
No preserve list or findmods list for man— preserve not executed.

=mommmmmmE Verifying disk space ==========

The system will now be checked to verify that there is enough
disk space with the current configuration to successfully
install the package (and any selected optional subpackages).
For large packages (especially operating system packages),
this can be time consuming. ..

There is enough space.
========== gtripping old links ==========

Stripping links for subpackage root.
Stripping links for subpackage m800...
Stripping links for subpackage sppbin.
Stripping links for subpackage usr...
Stripping links for subpackage cmplrs..
Stripping links for subpackage man..

Rewinding the tape...
Verifying tape id... ok
Forward spacing the tape...

Loading subpackage: root...
Forward spacing the tape.
Loading subpackage: m800. .

Forward spacing the tape,
Forward spacing the tape...

P3-20 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 3.8: Reload the Operating System

Loading subpackage: sppbin...
Forward spacing the tape...
Rewinding the tape...

Please mount umips tape number 2 and press return: <CR>
Replace tape 1 with tape 2 and press return.

Rewinding the tape...
Verifying tape id... ok
Forward spacing the tape...

Loading subpackage: usr...
Forward spacing the tape...
Loading subpackage: cmplrs..
Forward spacing the tape..
Loading subpackage: man. ..
Forward spacing the tape..
Rewinding the tape...

running first comply pass...
running second comply pass...

An attempt will now be made to clean up any files left over
from previous versions of the software which has just been
installed.

Searching for old versions to remove...

Running preserve —r for subpackage root...

No preserve list or findmods list for m800- no files restored.
No preserve list or findmods list for sppbin— no files restored.
Running preserve -r for subpackage usr...

No preserve list or findmods list for cmplrs— no files restored.
No preserve list or findmods list for man— no files restored.

mmmmmmmm== cleaning up ==s========

Copying packaging information directory to \
/mnt/usr/pkg/lib/umips3.0, ..

Unmounting filesystems...

/mnt/usr: Unmounted

/mnt: Unmounted

SYSTEM STATES PROCEDURES P3-21

Procedure 3.8: Reload the Operating System

sync
sync
init 0
#

The system is brought down to monitor mode.
INIT: New run level: 0
Miniroot shutdown
M/800 MIPS Monitor Version 4.0 MIPS OPT Thu May 19 \
00:37:43 PDT 1988 root
Memory size: 4194304 (0x400000) bytes
Icache size: 65536 (0x10000) bytes
Dcache size: 65536 (0x10000) bytes

>> auto

The updated UMIPS system is booted.

P3-22 SYSTEM ADMINISTRATOR’'S GUIDE

Disk Management Procedures

Study these procedures to become familiar with the format command BEFORE
using it - misuse of format can cause you to lose all information on your disk. The
format command performs three distinct functions: writing a volume header, scanning
a disk for bad blocks, and formatting a disk to prepare it to receive data. When using
format, perform ONLY those functions needed in your situation.

To abort the format command at any time, enter CTRL-C.
NOTE

T

The portion of the format command you need to use depends on your
configuration and your needs:

® If you have SCSI drives, it is not normally necessary to do anything to them
other than writing a volume header - formatting and extensive bad blocking is
performed at the factory. Writing a volume header on a SCSI disk is covered
in Procedure 4.3.

B If you have SMD drives, they must be formatted before they can be used. This
is covered in Procedure 4.1.

m If you suspect your disk has developed bad sectors, regardless of whether it is a
SCSI or SMD drive, use the scan portion of the format command as docu-
mented in Procedure 4.2.

In addition, these Procedures discuss use of the UMIPS dvhtool(1M) and prtvtoc(1M)
commands.

Note that this section assumes a certain configuration of disk and tape controller -
refer to your Release Notes for information regarding your particular configuration.

The following procedures are covered in this section:

Procedure 4.1 Disk Preparation
To prepare an SMD disk for use.

Procedure 4.2 Scanning a Disk for Bad Sectors
To check a disk for bad blocks.

Procedure 4.3 Writing a Volume Header
To prepare a SCSI disk for use.

Procedure 4.4 Using the dvhtool Utility
To modify the volume header from UMIPS.

Procedure 4.5 Using the prtvtoc Utility
To print the volume header information.

DISK MANAGEMENT PROCEDURES P4-1

PROCEDURE 4.1 - Disk Formatting

If your M—Series RISComputer uses SCSI disk drives, the formatting procedure

NOTE| described here is not necessary. Normally, you will just have to write the volume
header as described in Procedure 4.3. If you want to check a disk for possible bad
blocks, skip to Procedure 4.2, "Scanning a Disk".

The following procedure demonstrates the formatting and partitioning of the system
hard disk. NOTE: THIS DESTROYS ALL DATA ON THE DISK. This pro-
cedure would be used, for example, to install an entirely new version of the operating
system or to replace one that has become hopelessly corrupted. Formatting a disk is
also necessary when preparing a new disk to be added on to your system (except for
SCSI disks as described above). If you have any data on the disk that you want to
save, do so before performing this procedure.

References
format(1SPP)
boot(1SPP)

Step 1: Go to Monitor Mode

Go to monitor mode as explained in Procedure 3. The operation will wipe out the
existing UMIPS operating system so it must be performed from the monitor.

Step 2: Boot the Format Utility

In this step, you boot the format utility and follow its prompts all the way through to
a formatted, bad-blocked and partitioned disk.

>> boot -f tpis(,,2)format
Obtaining format
147968+51760+319824 entry: 0x80020000

format is booted from the tape

MIPS Format Utility
Version 4.0 Fri Apr 22 19:10:48 PDT 1988

name of device? dkis
LUN number? 0
target id? 0

Note that the name of your tape and disk device (in this case "tpis" and "dkis",
respectively) may differ. Refer to your Release Notes for details.

choose new drive parameters (y if yes)? n

The UNIX file system partitions may be either BSD or System V
do you desire BSD file system partitions (y if yes)? y

BSD file partitions are requested because this will be a fast file system (ffs)

dump device parameters (y if yes)? n

P4-2 SYSTEM ADMINISTRATOR’'S GUIDE

PROCEDURE 4.1 - Disk Formatting

modify device parameters (y if yes)? n

dump partition table (y if yes)? y
Root partition is entry #0
Swap partition is entry #1 -
Default boot file is /vmunix

entry type #blks #cyls cg(mod) 1lst_lbn 1lst_cyl num bytes
0-a BSD file sys 44496 103 6(7) 2160 5 22781952
1-b BSD file sys 39312 91 5(11) 600912 1391 20127744
2-c BSD file sys 638064 1477 92(5) 2160 5 326688768
3-d BSD file sys 554256 1283 80(3) 46656 108 283779072
4-e BSD file sys 339984 787 49(3) 46656 108 174071808
5-f BSD file sys 170208 394 24(10) 386640 895 87146496
6-g BSD file sys 510192 1181 73(13) 46656 108 261218304
7-h BSD file sys 44064 102 6(6) 556848 1289 22560768
8 volume header 2160 5 0(5) 0 0 1105920
partition 9 size == 0

10 entire volume 640224 1482 92(10) © 0 327794688
11-i BSD file sys 384480 890 55(10) 2160 5 196853760
12-j BSD file sys 253584 587 36(11) 386640 895 129835008
13-k BSD file sys 83376 193 12(1) 556848 1289 42688512
14-1 BSD file sys 192240 445 27(13) 2160 5 98426880
15-m BSD file sys 192240 445 27(13) 194400 450 98426880

We requested the partition table be displayed. Note that both the "old"
lettering scheme and the "new" numbering scheme are displayed.

modify partition table (y if yes)? n
The default partitioning scheme was used.
formatting destroys ALL disk data, perform format (y if yes)? y

formatting
scanning destroys disk data, perform scan (y if yes)? y
number of scans for bad blocks (3 are suggested)? 3

The "scan" phase performs bad-blocking.

starting cylinder is 0, ending cylinder is 1482

The formatting is done.

DISK MANAGEMENT PROCEDURES P4-3

PROCEDURE 4.2 - Scanning a Disk

The following procedure is simply a commented typescript of the output supplied
by the format command when performing a scan for bad sectors. In this example, a
single partition of an SMD disk is scanned. Scans performed on SCSI disks are for -
the entire disk - a single partition cannot be scanned independently. Note that a scan
reads and writes the area scanned, consequently destroying data, so you must back-up
devices before scanning them if they contain information you want saved. Refer to the
Technical Reference Manual and your Release Notes for addxtlonal information on the
format command.

M/800 MIPS Monitor Version 4.0 MIPS OPT Thu May 19 \
00:37:43 PDT 1988

Memory size: 4194304 (0x400000) bytes

Icache size: 65536 (0x10000) bytes

Dcache size: 65536 (0x10000) bytes

>> boot dkip(0,0,8)format

format is booted from the SMD disk. It may also be booted from tape
(and from a network if you are so configured).

81120+15232+203056 entry: 0xa0300000
MIPS Standalone Shell Versiom 1.5 MIPS OPT Fri Nov \
13 07:03:57 PST 1987

Loading dkip(0,0,8)format
125200+28288+249376 entry: 0x80020000

MIPS Format Utility
Version 1.5 Tue Dec 1 16:05:31 PST 1987

name of device? dkip

controller number? 0

unit number? 0

read in 29 defects from ‘on disk’ bad sector table

choose new device parameters (y if yes)? n

The UNIX file system partitions may be either BSD or System V
do you desire BSD file system partitions (y if yes)? y

BSD is chosen because this is the fast file system

dump device parameters (y if yes)? n
modify device parameters (y if yes)? n

dump partition table (y if yes)? n
modify partition table (y if yes)? n

If the drive is directly from the factory defects can be
read from it ONLY ONCE before it is formatted.

read factory defects from the drive (y if yes)? n

formatting destroys disk data, perform format (y if yes)? n

P4-4 SYSTEM ADMINISTRATOR’'S GUIDE

formatting wasn’t done, perform scan anyway (y if yes)? y
scan entire disk (y if yes)? n
entry number of partition to scan? 7

Note that if your disk is a SCSI device, the whole disk must be
scanned - there is no option to scan only a single partition.

scanning destroys disk data, perform scan:(y if yes)? y

number of scans for bad blocks (3 are suggested)? 3

A series of dots appears on the screen until the scanning is complete.
If any bad blocks (i.e., sectors) are found, the bad block table is
automatically updated.

media defect list manipulation, when prompted
choose one of (list, add, delete, quit)
command? list
1lbn (cyl, head, sec, bytes .from index)
27525 (43, 6, 57, 36480)
52704 (83, 6, 36, 23040)
58431 (92, 7, 30, 19200)

74989 (119, 0, 19, 12160)
etc

command? quit
mapping destroys disk data, perform map (y if yes)? y
dump bad sector table (y if yes)? y
bad sector table:

bad block 27525 slipped

bad block 52704 slipped

bad block 58431 slipped

bad block 74989 slipped
bad block 91252 slipped

etc
writing bad sector table at lbn 630...
The new bad sector table is written to logical block number 630.
The final command below writes the new volume header, containing

the new block sector table to disk

write new volume header? (y if yes)? y

DISK MANAGEMENT PROCEDURES

PROCEDURE 4.2 - Scanning a Disk

P4-5

PROCEDURE 4.2 - Scanning a Disk

writing volume header. ..
exit(0) called

M/800 MIPS Monitor Version 4.0 MIPS OPT Thu May 19 \
00:37:43 PDT 1988

Memory size: 4194304 (0x400000) bytes

Icache size: 65536 (0x10000) bytes

Dcache size: 65536 (0x10000) bytes

>>

P4-6 SYSTEM ADMINISTRATOR'S GUIDE

PROCEDURE 4.3 - Writing a Volume Header

This procedure uses the format utility to write a volume header on a SCSI disk.
This is normally the only procedure necessary to prepare a SCSI disk for use.

>> boot -f bfs() <hostname>:/stand/format
Obtaining <hostname>:/stand/format from server <hostname?
147968+51760+319824 entry: 0x80020000

In this example, the format utility is booted off of a network server machine
(<hostname>). The format utility could also be booted off the disk or tape.

MIPS Format Utility
Version 4.0 Fri Jun 3 11:01:11 PDT 1988 root

name of device? dkis
LUN number? 0
target id? 0

choose new drive parameters (y if yes)? y
device parameters are known for{
(9) fuji 2246sa (140Meg SCSI)
(10) cdc 94161 (160Meg SCSI)
(11) cdc 94171 (328Meg SCSI)
(12) fuji 2249sa (325Meg SCSI)
enter number for one of the above? 11
The Unix file system partitions may be either BSD or System V
do you desire BSD file system partitions (y if yes)? y

dump device parameters (y if yes)? y

number cylinders = 1482
number heads = 9

number sectors per track = 48
number bytes per sector = 512

sector interleave = 1
modify device parameters (y if yes)? n

dump partition table (y if yes)? y
Root partition is entry #0

Swap partition is entry #1
Default boot file is /vmunix

entry type #blks #cyls cg(mod) 1lst_lbn 1lst_cyl num_bytes
0-a BSD file sys 44496 103 6(7) 2160 5 22781952
1-b BSD file sys 39312 91 5(11) 600912 1391 20127744
2-c BSD file sys 638064 1477 92(5) 2160 5 326688768
3-d BSD file sys 554256 1283 80(3) 46656 108 283779072
4-e BSD file sys 339984 787 49(3) 46656 108 174071808
5-f BSD file sys 170208 394 24(10) 386640 895 87146496
6—g BSD file sys 510192 1181 73(13) 46656 108 261218304
7-h BSD file sys 44064 102 6(6) 556848 1289 22560768
8 volume header 2160 5 0(5) 0 0 1105920

partition 9 size ==

DISK MANAGEMENT PROCEDURES

P4-7

PROCEDURE 4.3 - Writing a Volume Header

10

11-i
12-3
13-k
14-1
15-m

entire volume

BSD file
BSD file
BSD file
BSD file
BSD file

sys
sys
sys
sys
sys

640224
384480
253584
83376

192240
192240

1482
890
587
193
445
445

92(10)
55(10)
36(11)
12(1)

27(13)
27(13)

modify partition table (y if yes)? n

formatting destroys ALL SCSI disk data, perform \

scanning destroys disk data, perform scan (y if yes)? n

format (y if yes)? n

0

2160
386640
556848
2160
194400

SCSI defect list manipulation, when prompted
choose one of (list, add, delete, quit)
command? list
no defects in list
command? quit '

write new volume header? (y if yes)? y

writing volume header...
exit(0) called

Intrepid MIPS Monitor Version 4.0 MIPS OPT Wed Apr 13 \

Memory size:
Icache size:
Dcache size:

>

P4-8

16:40:45 PDT 1988

SYSTEM ADMINISTRATOR’S GUIDE

16777216 (0x1000000) bytes
65536 (0x10000) bytes
65536 (0x10000) bytes

0

5
895
1289

450

327794688
196853760
129835008
42688512
98426880
98426880

PROCEDURE 4.4 - Using the dvhtool Utility

This procedure examines the disk volume header and then makes a modification
to it.

Step 1: Examine the Disk Volume Header

The first step of this procedure uses the dvhtool command to look at the disk
volume header. For information regarding the volume header, refer to Chapter 4 and
dvh(4).

dvhtool

Command? (read, vd, pt, dp, write, bootfile, or quit): read
Volume? /dev/rdsk/ips0dOvh

We read the disk volume header (ips0dOvh) in order to examine the information it
contains. The other options to the dvhtool Command?: prompt are "vd" for the
volume directory, "pt" for the partition table, "dp" for the device parameters,
"write" to write new data, "bootfile" to replace the default boot file (unix), and
"quit" to exit dvhtool.

Command? (read, vd, pt, dp, write, bootfile, or quit): dp,

current contents:

dp_skew: 4
dp_gapl: 12
dp_gap2: 12
dp_spare0: 1
dp_cyls: 823
dp_shdo: 0
dp_ trkso0: 10
dp_shdl: 0
dp_trksl: 0
dp_secs: 64
dp_secbytes: 512
dp_interleave: 1
dp_flags: 37
dp_datarate: 0

Command? (name value, or 1) <CR>
"dp" is entered to get a list of the device parémeters. Note that this information
could be matched with the different disk types defined in /etc/disktab as one way
to determine the type of disk you have. In this example, the 823-cylinder and 64-
sector disk match the 2333-64 defined in /etc/disktab .

Command? (read, vd, pt, dp, write, bootfile, or quit): vd

current contents:

file len 1lbn
bsttab: 348 640
sash: 265064 641

Command? (d FILE, a UNIX_FILE FILE, c¢ UNIX FILE FILE, \
or 1) <CR>

DISK MANAGEMENT PROCEDURES P4-9

PROCEDURE 4.4 - Using the dvhtool Utility

"vd" is entered to list the volume directory. The example shows the bad sector table

(bsttab) and the sash, their size and starting logical block number location (Ibn). (

Command? (read, vd, pt, dp, write, bootfile, or quit): pt
"pt" displays the partition table.
current contents:

part n_blks 1st_blk type
0: 39680 5120 bsd4?2

1: 39680 487040 bsd42
2: 521600 5120 bsd42
3: 442240 44800 bsd42
4: 264960 44800 bsd42
5: 133120 309760 bsd42
6: 398080 44800 bsd42
7: 44160 442880 bsd42
8: 2560 0 volhdr
9; 2560 2560 trkrepl
10: 526720 0 volume
11: 304640 5120 bsd42
12: 216960 309760 bsd42"
13: 83840 442880 bsd4?2
14: 152320 5120 bsd4?2
15: 152320 157440 bsd42

Command? (part nblks 1lstblk type, or 1) <CR>

entering a carriage return to the prompt returns the higher level prompt ' (

Command? (read, vd, pt, dp, write, bootfile, or quit): bootfile
Current Boot file name is /unix
Enter name up to 16 characters: <CR>

Command? (read, vd, pt, dp, write, bootfile, or quit): quit
#

Step 2: Modifying the Volume Header

This is an example of using the dvhtool command to modify the disk volume
header. UNLESS YOU KNOW WHAT YOU ARE DOING AND HAVE REASON
TO DO IT, DON’T MODIFY THE VOLUME HEADER. This step of the pro-
cedure gives an example of how to replace a volume header file if one has somehow
been lost. In the example, the unix file /stand/format is written to the disk volume
header.

dvhtool I

Command? (read, vd, pt, dp, write, bootfile, or quit): read
vVolume? /dev/rdsk/ipsO0dOvh

It is necessary to read in the volume to work with. In this case the volume is ' (

ipsO0dOvh, the volume header

P4-10 SYSTEM ADMINISTRATOR'S GUIDE

PROCEDURE 4.4 - Using the dvhtool Utility

Command? (read, vd, pt, dp, write, bootfile, or quit): vd
Enter "vd" to access the volume directory.

current contents:
file len 1bn
bsttab: 348 640
sash: 265064 641

This is the volume directory. Note that there is no format command here, so we’ll
add one with the copy in /stand

Command? (d FILE, a UNIX_FILE FILE, ¢ UNIX FILE FILE, \
or 1) a /stand/format format

The options are "d" for delete, "a" to add a new file, and "c" to overwrite an exist-
ing file. In this example, we add the /stand/format command to the volume direc-
tory as format

Command? (d FILE, a UNIX _FILE FILE, ¢ UNIX_FILE FILE, or 1) 1

current contents:
file len 1bn
bsttab: 348 640
sash: 265064 641
format: 277504 1

"I" lists the contents of the directory, and format is now there. The "lbn" is the
starting logical block number and does not read correctly until the directory is writ-
ten to the volume header.

Command? (d FILE, a UNIX_FILE FILE, c UNIX FILE FILE, \
or 1) <CR>

entering a carriage return to the prompt returns the higher level prompt

Command? (read, vd, pt, dp, write, bootfile, or quit): write
vVolume? (/dev/rdsk/ips0d0Ovh)

write the new value to the volume header

DISK MANAGEMENT PROCEDURES P4-11

PROCEDURE 4.4 - Using the dvhtool Utility

Command? (read, vd, pt, dp, write, bootfile, or quit): vd

\
current contents: (j
file len lbn '
bsttab: 348 640

sash: 265064 641
format: 277504 1159

Now, when we list the volume directory, the format command shows up with the
correct address

Command? (d FILE, a UNIX_FILE FILE, c¢ UNIX FILE FILE, or \
1) <CR>

Command? (read, vd, pt, dp, write, bootfile, or quit): quit

#

P4-12 SYSTEM ADMINISTRATOR’'S GUIDE

PROCEDURE 4.5 - Using the prtvtoc Utility

This procedure uses the UMIPS prtvtoe(1M) utility to list volume header informa-
tion to the screen. The example consists of the single prtvtoc command supplied with
the system disk device. Use this command to get information about various volumes

quickly.

root% prtvtoc /dev/rdsk/ips0d0s0
* /dev/rdsk/ips0d0s0 (bootfile "/unix") partition map

*

Dimensions:

512 bytes/sector

64 sectors/track

10 tracks/cylinder

823 cylinders

815 accessible cylinders
Unallocated space:

*

*

*

*

*

*

*

* Start
* 309760
* 526720
* 44800
* 157440
* 442880
* 309760
* 487040
* 442880
* 526720
* 487040
* 526720
*

*

Size
-304640
—-521600

-39680
-112640
-398080
—264960
-329600
-133120

—83840

—44160

-39680

Partition Tag Flags First Sector Sector Count Mount Directory

0

W O N U W

R R R R R
G W R o

root%

4

N S N Y A = i JY Y N N N N N N

0

O O O O OO OO OO OOC o oo

5120
487040
5120
44800
44800
309760
44800
442880
0

2560

0

5120
309760
442880
5120
157440

39680 /
39680
521600
442240
264960
133120
398080
44160
2560
2560
526720
304640
216960
83840
152320
152320

DISK MANAGEMENT PROCEDURES

P4-13

File System Administration Procedures

The following procedures are covered in this section:

Procedure 5.1

Procedure 5.2

Procedure 5.3

Procedure 5.4

NOTE
T

Adding Extra Swap Space on the System Disk
Using a free partition on the disk for added swap space.

Create File Systems on an Extra Disk
To define additional file systems when more than one disk device is
available.

Maintaining File Systems
To check and possibly repair file systems.

To monitor disk space usage.

To reorganize disk space.

File System Backup and Restore _
To provide a storage copy of active files.

To archive unneeded files.

To bring files and file 'systems back from storage.

Some variation in these procedures may occur depending on the configuration of your

system.

FILE SYSTEM ADMINISTRATION PROCEDURES P5-1

Procedure 5.1: Adding Extra Swap Space
on the System Disk

This procedure illustrates the creation and mounting of a new file system on an
already existing disk partition. The disk partition used is partition "7", a free partition
on the UMIPS system disk as it is shipped. The partition is added as additional swap
space.

Step 1: Partition "7" on the system disk, when it is shipped, is an already formatted
but unused partition. To create a swap file system on the partition, use the swap(1M)
command:

swap -a /dev/dsk/ips0d0s7 44160

The syntax here is:

letc/swap -a special_file swaplo swaplen

Where special_file is the UMIPS file name for the partmon swaplo is the startmg
512-byte block (sector) of the swap space and swaplen is the size of the partition in
512-byte sectors.

Step 2: Now, check to see that the new swap file system has been recognized by the
system. Use the swap -1 command:

swap -1

You should see something like this:

path dev swaplo blocks free
/dev/dsk/ips0d0sl 4,1 0 39680 39680
/dev/dsk/ips0d0s7 4,23 0 44160 44160

Step 3: The new swap space is now recognized by the system, but has to be explicitly
added each time the system is brought up. To cause the swap space to be automati-
cally added each time the system is brought up multiuser, add this entry to /etc/fstab:

/dev/dsk/ips0d0s7 none swap xrw,noauto 0 0

P5-2 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 5.2: Create File Systems on an
Extra Disk

This procedure illustrates the creation and mounting of a new file system on an
additional disk added to your system. The disk must first be formatted using the
format(SPP) command. The formatting scheme used in this example is the default
formatting scheme. The disk partition used is partition "2", the partition which con-
sists of all available space on the disk. For information regarding how to format a
disk to create new partitions, refer to the discussion on disk partitions in Chapter 4 as
well as Procedure 4.2, Custom Partitioning.

~ Step 1: Partition "2", created with the default formatting scheme, is created as a new
file system by the newfs.ffs command:

newfs.ffs -s 521600 /dev/dsk/ips5d0s2 2333-64
The syntax here is:

/etc/newfs.ffs -s sectors special_file disk_drive

Where sectors is the size of the partition in 512 byte sectors, special_file is the
UMIPS file name for the partition, and disk_drive specifies the hard disk device that
the file system is being created on.

The system output will look something like this:

newfs.ffs -v -N -s 521600 /dev/dsk/ips5d0s2 2333-64
/etc/mkfs.ffs -N /dev/dsk/ips5d0s2 521600 64 10 8192 1024 16 \
10 60 2048 t
/dev/dsk/ips5d0s2: 521600 sectors in 815 cylinders of 10 \
tracks, 64 sectors
267.1Mb in 51 cyl groups (16 c¢/g, 5.24Mb/g, 2048 i/g)
super—block backups (for fsck —-b#) at:
32, 10336, 20640, 30944, 41248, 51552, 61856, 72160, 82464, 92768,
103072, 113376, 123680, 133984, 144288, 154592, 163872, 174176,
184480, 194784, 205088, 215392, 225696, 236000, 246304, 256608,
266912, 277216, 287520, 297824, 308128, 318432, 327712, 338016,
348320, 358624, 368928, 379232, 389536, 399840, 410144, 420448,
430752, 441056, 451360, 461664, 471968, 482272, 491552, 501856,
512160,
#

Step 2: Now that the file system has been created, it should be checked to make sure
that all is well before mounting it and entrusting data to it. Run the fsck.ffs program
on it:

fsck.ffs /dev/dsk/ips5d0s2
The output looks something like:

fsck.ffs /dev/dsk/ips5d0s2

**x /dev/dsk/ips5d0s2

** Last Mounted on

** Phase 1 — Check Blocks and Sizes
** Phase 2 — Check Pathnames

FILE SYSTEM ADMINISTRATION PROCEDURES P5-3

Procedure 5.2: Create File Systems on an Extra Disk

% Phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts

*% Phase 5 - Check Cyl groups

2 files, 9 used, xxxxx free (xx frags, xxxxx blocks, \
0.1% fragmentation)

*x%%% FILE SYSTEM WAS MODIFIED ***%%
#

- If fsck reports problems, remake the file system with newfs.ffs as above.

Step 3: Now, it’s time to mount the new file system. Make a directory on which to
mount the file system and then use the mount command:

mkdir /newfilesys
mount /dev/dsk/ips5d0s2 /newfilesys

Step 4: Finally, test and use the new file system:

s /newfilesys

lost+found

mkdir /newfilesys/newuser

cp /ete/stdeshre /newfilesys/newuser/.cshre

cp /ete/stdprofile /newfilesys/newuser/.profile
ls -a /newfilesys/*
/newfilesys/lost+found:

./ o/

/newfilesys/newuser:

4 4 .cshrco* .profilex*
4 ,

As a separate file system, newfilesys can be unmounted at any time:

umount /newfilesys
1s /mewfilesys

S/

To cause the new file system to be automatically mounted at boot time, add the
following entry in /etc/fstab:

/dev/dsk/ips5d0s2 /newfilesys ffs rw 0 0

P5-4 SYSTEM ADMINISTRATOR’'S GUIDE

Procedure 5.3: Maintaining File Systems

This procedure demonstrates a few techniques used to ensure that files are not
becoming too large, and are not just sitting on the system for a long time without
being used.

References
fsck(1M)
sysadm fileage(1)
sysadm filesize(1)
du(1M)
df(1M)

File System Checking

In this procedure, a simple file system check is performed. The example shows
file system check output in which no problems are encountered - the usual situation.
For details regarding how to respond to various problems that may be encountered
during file system checks, refer to Chapter 5 and Appendix B.

File system checking is performed with the fsck(1) command. The check should
be performed on an unmounted file system as shown in the procedure below. Note
that the file system being checked is a user file system that has been created on the
system disk partition 7.

Step 1: IN SINGLE USER MODE, get a list of the currently mounted file systems
using the mount(1M) command:

mount

/dev/root on / type ffs (rw)

/dev/usr on /usr type ffs (rw)
/dev/dsk/ips0d0s7 on /user2 type ffs (rw)
#

The output from mount shows three mounted file systems: the root file system, the
usr file system and a user file system created on the extra system disk partition.

Step 2: Now unmount the file system to be checked using the umount(1M) command
(note that’s Umount, not UNmount):

umount /dev/dsk/ips0d0s7
#

A quick check with mount will show the file system to be unmounted:

mount

/dev/root on / type ffs (rw)
/dev/usr on /usr type ffs (rw)
#

Step 3: Now perform the file system check with fsck:
fsck.ffs /dev/dsk/ips0d0s7

** /dev/dsk/ips0d0s7
** Last Mounted on

FILE SYSTEM ADMINISTRATION PROCEDURES P5-5

Procedure 5.3

** Phase 1 — Check Blocks and Sizes
** Phase 2 — Check Pathnames

** Phase 3 — Check Connectivity

** Phase 4 — Check Reference Counts
% Phase 5 — Check Cyl groups

44 files, 1303 used, 19400 free (16 frags, 2423 blocks, \
0.1% fragmentation)

***** FILE SYSTEM WAS MODIFIED **%%%
#

Step 4: Finally, re-mount the file system and, if desired, go to multiuser mode:

mount /dev/dsk/ips0d0s7 /user2
init 2
#

Note that this file system check could be performed automatically each time the
system comes up by including it in an entry in /etc/fstab as described in Chapter 5.

Monitoring Disk Usage .

The second part of the file system maintenance procedure involves various ways
of making sure that enough space is available on hard disk to accommodate the users’
needs. In the example for this procedure the /user2 file system is monitored, but the
commands could be used on any directory on the system.

Step 1: Enter the du(1) command to see the disk usage of the specified directory and
subdirectories:

$ du /user2

117 /user2/johnr
2471 /user2/tmp
2588 /user2/fred
5194 /user?2

$

NOTE: The number in the left column is in 512-byte blocks (sectors).

Step 2: Enter the df(1M) command to see the free disk space associated with the
specified file system:

$ df /user2
Filesystem Type kbytes use avail %use Mounted on

/dev/dsk/ips0d0s7 ffs 20703 4667 16036 23% Juser2
$

NOTE: df reports free space in Kbytes.

Step 3: If you judge that a more detailed look at files is indicated, there are two
sysadm commands you can use:

P5-6 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 5.3

sysadm fileage
and
sysadm filesize
The fileage command causes you to be prompted for two pieces of information:
1. the full pathname 6f the directory to search

It is important to be specific in your response. If you select a high-level direc-
tory, such as /usr, you may get a great deal more information than you want.

2. the number of days to go back. The default is 90 days.

For example:
sysadm fileage

Running subcommand ’'fileage’ from menu ’filemgmt’,
FILE MANAGEMENT

Enter full pafh name of the directory to search
(default /usr/admin): /user/johnr
Enter the number of days to go back (default 90): 12

FILES NOT MODIFIED IN THE LAST 12 DAYS IN /user/johnr

file size date of
owner (characters) last access filename
johnr 37 Apr 12 19:19 .logout
johnr 598 Apr 12 23:15 .profile
johnr 1998 Apr 13 17:22 init.notes
johnr 20058 Apr 14 17:04 main.c
johnr 381 Apr 13 21:43 ps—ef.initl
johnr 1509 Apr 13 17:22 ps—ef.init2
johnr 254 Apr 13 18:53 rcfiles
johnr 19456 Apr 14 00:43 sysadm.menus

Step 5: filesize displays information on the n largest files (default is 10) in a directory
named by you.

For example:
sysadm filesize

Running subcommand ’filesize’ from menu ’filemgmt’,
FILE MANAGEMENT

Enter full path name of the directory to search
(default /usr/admin) [?, q]: /user2

Enter the number of large files to be included in list
(default 10) [qg]:<CR>

FILE SYSTEM ADMINISTRATION PROCEDURES P5-7

Procedure 5.3

The 10 largest files in /user2:

file size

owner (characters)

root
root
root
root
root
root
root
root
root
root

#

110592
110592
98304
98304
94208
94208
94208
94208
81920
81920

date of
last access

filename
tmp/ftp
fred/ftp
tmp/ci
fred/ci
tmp/fcs
tmp/co
fred/recs
fred/co
tmp/uptime
fred/uptime

Step 4: Use the find(1) command to perform similar actions. For example, you might
include the following command line in a crontab file (see crontab (1)):

find /usr -type f —mtime +60 —print | mail root

Every time this command is run, root will receive mail which indicates files not
modified in 60 days or more.

P5-8

SYSTEM ADMINISTRATOR’S GUIDE

Procedure 5.4: File System Backup and
Restore ’

The following section demonstrates how to make complete as well as partial
backup and restores, and how to deal with backups spanning multiple tapes.

Complete Backup

Take the system to the single-user mode; (see Procedure 3.3, Shutdown to Single-
User). To perform a file system backup, use the dump.ffs(1) command. To perform
a dump of an entire file system use the 0 and u keys as shown in the example below.
The "0" causes the entire file system to be dumped, and "u" updates the
/etc/dumpdates file,

dump.ffs Ou /dev/dsk/ips0d0s7
DUMP: Date of this level 0 dump: Wed Apr 27 15:10:06 1988
DUMP: Date of last level 0 dump: Wed Apr 27 15:07:02 1988
DUMP: Dumping /dev/dsk/ips0d0s7 to /dev/mt/ctape0
DUMP: mapping (Pass I) [regular files]
DUMP: mapping (Pass II) [directories]
DUMP: estimated 2674 tape blocks on 0.07 tape(s).
DUMP: dumping (Pass III) [directories]
DUMP: dumping (Pass IV) [regular files]
DUMP: DUMP: 2676 tape blocks on 1 tape(s)
DUMP: DUMP IS DONE
DUMP: level 0 dump on Wed Apr 27 15:10:06 1988
DUMP: Tape rewinding

This example shows the output when the entire /dev/dsk/ips0d0s7 has been
dumped to tape. In addition, the file /etc/dumpdates has been updated with the date
and level of this dump:

cat /etc/dumpdates

/dev/dsk/ips0d0s7 0 Wed Apr 27 15:10:06 1988
#

Incremental Backup
Incremental backups are performed in a similar manner:

dump.ffs 1u /dev/dsk/ips0d0s7
DUMP: Date of this level 1 dump: Thu Apr 28 14:40:42 1988
DUMP: Date of last level 0 dump: Wed Apr 27 15:10:06 1988
DUMP: Dumping /dev/dsk/ips0d0s7 to /dev/mt/ctape0
DUMP: mapping (Pass I) [regular files]
DUMP: mapping (Pass II) [directories]
DUMP: estimated 2667 tape blocks on 0.07 tape(s).
DUMP: dumping (Pass III) [directories]
DUMP: dumping (Pass IV) [regular files]

FILE SYSTEM ADMINISTRATION PROCEDURES P5-9

Procedure 5.4

DUMP: DUMP: 2667 tape blocks on 1 tape(s)
DUMP: DUMP IS DONE
DUMP: level 1 dump on Thu Apr 28 14:40:42 1988
DUMP: Tape rewinding

#

In this case, the same file system is dumped a day later. The "1" causes this backup
to include only the files that have changed since a lower-level dump (in this case "0")
has been recorded in /etc/dumpdates. '

Restore

Login as root. Take the system to the single-user mode (run-level S or 1). Use
the restore.ffs(1) command to restore files from tapes made with the dump command.

This example shows a complete file system restore being made from a dump tape
to the "/user2" directory.
lIs /user2
cd /user2
restore.fisr
1s
fred/ lost+found/ tmp/
johnr/ restoresymtable
#

The files on the dump tape have been restored to the directory that the restore was
run from (in this case, /user2).

Return the system to the normal operating configuration (see Procedure 3.4,
Return to Multi-User). Store the backup tapes in a safe place.

Interactive Restore

A commented printout follows in which a file system is dumped and then restored
using the -i, or interactive option.

dump.ffs Ou /dev/dsk/ips0d0s7
DUMP: Date of this level 0 dump: Thu Dec 31 17:11:40 1987
DUMP: Date of last level 0 dump: Tue May 3 17:28:24 1988
DUMP: Dumping /dev/dsk/ips0d0s7 to /dev/mt/ctapeO
DUMP: mapping (Pass I) [regular files]
DUMP: mapping (Pass II) [directories]
DUMP: estimated 1130 tape blocks on 0.03 tape(s).
DUMP: dumping (Pass III) [directories]
DUMP: dumping (Pass IV) [regular files]
DUMP: DUMP: 1132 tape blocks on 1 tape(s)
DUMP: DUMP IS DONE
DUMP: level 0 dump on Thu Dec 31 17:11:40 1987
DUMP: Tape rewinding

For starters, we dump a filesystem and then mount it.
mount /dev/dsk/ips0d0s7 /user2

rm -r /user2
rmdir: /user2: Directory is a mount point or in use

P5-10 SYSTEM ADMINISTRATOR’'S GUIDE

Procedure 5.4

Is /user2
cd /user2

For the purposes of this demonstration, everything is removed
from the file system (except the mount directory, user2, itself).

restore -i

This starts the restore in interactive mode. The "restore>"
prompt indicates restore is ready to accept commands, and the first
command we give it is "?" for a list of possible comniands.

restore > ?
Available commands are:
ls [arg] - list directory
cd arg — change directory
pwd - print current directory
add [arg] — add ‘arg’ to list of files to be extracted
delete [arg] - delete ‘arg’ from list of files to be extracted
extract - extract requested files
setmodes — set modes of requested dlrectorles
quit - immediately exit program
verbose - toggle verbose flag (useful with ”ls")
help or ‘?’ - print this list
If no ‘arg’ is supplied, the current directory is used
restore > lIs

Devconfig.entry dce inittab

Image/ disk.script log
Permissions.entry disktab lost+found/
Poll,entry dump.script lpbug

Scripts/ dvhtool.all lsuser.temp
Sysfiles.entry dvhtool.example lt.c
Systems.entry dvhtool.script manipulate
backup.bug fake master.d/ newbugs
backup.script files_to_save pass

bin/ firsttime.install passwd

bugmail fred/ ps—ef.initl
comments fs ps—ef.init2
commentsl fsck.script rbackup
cpio.bug fstab rbackup.script
cpio.script hosts rcfiles
crash.script incdump. script restore.script

An "ls" shows the various files and directories on the dump tape.
We’ll restore two directories and two files by adding them to a list
of things to be restored and then extracting them.

restore > add bin

restore > add fred

restore > add rcfiles tty.script
restore > extract

You have not read any tapes yet.
Unless you know which volume your file(s) are on you should
start with the last volume and work towards the first.

FILE SYSTEM ADMINISTRATION PROCEDURES P5-11

Procedure 5.4

Specify next volume #: 1

set owner/mode for ’.’? [yn] ¥y

restore > quit (i
#1s

bin/ fred/ rcfiles tty.script

pwd

/user?2

#

tar and cpio

The tar(1) and cpio(1) commands are alternate ways of performing backups of
files and directories.

The tar Command

tar is a useful command for dumping directories and files. It does not support
dump levels like the dump and restore commands, so its use is more limited to mak-
ing specific backup copies. In the following example, a directory and its subdirec-
tories are tarred to the tape device, and then a specific file is extracted from that tar
tape: -
tar -cdv /user2 o e
/user2/johnr/bugmail 1 blocks
/user2/johnr/comments 1 blocks
/user2/johnr/commentsl 1 blocks
/user2/johnr/disktab 9 blocks)
/user2/johnr/files _to_save 1 blocks n(i

A backed-up file is then removed and restored to demonstrate the tar utility:

rm /user2/johnr/comments

s /user2/johnr/comments

/user2/johnr/comments: No such file or directory
tar -xv /user2/johnr/comments

X /user2/johnr/comments, 316 bytes, 1 tape blocks
1s /user2/johnr/comments

/user2/johnr/comments

#

The cpio Command

cpio is used in conjunction with other UMIPS commands to create backups as
well as perform many other functions. The simple example below is enough to hint at
cpio’s involved syntactical requirements. The example backs up a directory and any
subdirectories, and then restores any files requiring restoration (files in which the tape
version is newer than the disk version or the disk version is missing altogether.)

find /user2/fred/* -print | cpio -ovde > /dev/rmt/ctape0

/user2/fred/—ef.init2)

/user2/fred/bugmail (i
/user2/fred/ci

P5-12 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 5.4

/user2/fred/co
/user2/fred/comments

/user2/fred/uptim
2550 blocks '

cpio is now used to get a list of the files on the tape:
cpio -itvd < /dev/rmt/ctapel

100644 root 0 Apr 28 14:31:57 1988 /user2/fred/-ef.init2
100666 root 276 Apr 27 14:00:27 1988 user2/fred/bugmail
100555 root 98304 Apr 27 14:00:36 1988 user2/fred/ci

100555 root 94208 Apr 27 14:00:36 1988 /user2/fred/co

100644 root 316 Apr 27 14:00:27 1988 /user2/fred/comments

2550 blocks

Finally, ¢pio is used to replace those disk files that are older or missing in relation to
the tape backup:

cpio -ivde < /dev/rmt/ctape0

current </user2/fred/-ef.init2) newer or same age
/user2/fred/—ef.init2

current </user2/fred/bugmail’ newer or same age
J/user2/fred/bugmail

current <{/user2/fred/ci> newer or same age
/user2/fred/ci

current </user2/fred/co’> newer or same age

2550 blocks
#

FILE SYSTEM ADMINISTRATION PROCEDURES P5-13

System Reconfiguration Procedures

The following procedures are covered in this section:

Procedure 6.1 Reconfigure the Kernel
To reconfigure the operating system after making a change to a ker-
nel parameter value.

SYSTEM RECONFIGURATION PROCEDURES P6-1

Procedure 6.1 - Reconfigure the Operating
System Kernel

The following procedure is an example of a simple kernel reconfiguration. There
would be no need to perform this particular reconfiguration unless you were having
problems with file table overflows. In general, don’t modify kernel parameters unless
you know what you are doing. Chapter 6 goes into detail about how to monitor sys-
tem performance and provides explanations about the function of the various kernel
parameters.

Step 1: Modify the appropriate kernel parameter value

NOTE: In the following discussion, the CPU designation "rXXXX" must be replaced
by the correct CPU number for your system, for example, r2300.

Change directory to the master.d directory and copy the standard kernel and sysgen
files to local versions:

cd /usr/reconfig/master.d

cp kernel.rXXXX_std kernel.local

cp sysgen.rXXXX_std sysgen.local
Now edit the appropriate #define statement in kernel.local. This example assumes
there have been file table overflows occurring which indicates the file table size must
be enlarged. Therefore, we increase the NFILE parameter:

#define NFILE 1200 /* was 1000 */
Step 2: Build the new kernel

(You need to be running /bin/sh when you execute the following commands, and the
SHELL environment variable needs to be /bin/sh.)

cd [usr/reconfig
BUILD_TYPE=reconfig make unix.local

This will take a few minutes.
Note: If you get the message:
Make: Don’t know how to make unix.local. Stop.
Try using this command line instead:
BUILD_TYPE=reconfig make UNICES=unix.local
Step 3: Link the new kernel to unix

You now have a new UMIPS kernel in the current directory called unix.local. Move
it to the root and link it to /unix:

mv unix.local /
In /unix.local /unix

P6-2 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 6.1 - Reconfigure the Operating System Kernel

Note that the original unix kernel (unix.rXXXX_std) still exists, it just is no longer
linked to /unix. If you have any problems with your new kernel, you can always go
back to the original kernel.

Step 4: Boot the new kernel

sync
#powerdown

>> auto

The system will now boot-up on the new kernel. Again, if there are any problems,
remember that you can still boot the old kernel:

>> boot dkisQunix.rXXXX_std

where dkis is the controller designator and rXXXX is the CPU name for your system.

SYSTEM RECONFIGURATION PROCEDURES P6-3

LP Spooler Administration Procedures

This section contains the following procedures:

Procedure 7-1 Installing the Printer Spooler
To initially set-up a printer system.

Procedure 7-2 Manipulating the Printer Spooler
To make changes to print requests.

Procedure 7-3 Printer Defaults
To establish a default printer.

LP SPOOLER ADMINISTRATION PROCEDURES P7-1

Procedure 7.1: Installing the Printer Spooler

In this procedure, the lp spooler is set-up to print to a serial printer. Substitute
the name of the tty port to which your printer is attached for the one used in the
example (/dev/ttyql). (If you are attaching a parallel printer, use port /dev/lp0 and
the printer model pprx.)

Step 1: Check Files and Permissions

Check the owner and permission bits for the pstatus and qstatus files in the
/usr/spool/lp directory. You should see something like this:

—rW—Ir——r-—-— 1 1lp bin 0 May -11 09:00 pstatus
—IW-r—-—Ir—— 1 1p bin 0 May 11 09:00 gstatus

If pstatus and qstatus are not there, be sure to create them.

Also, check the permission bits and owners of /usr/spool/lp/model.
It should look something like this:

total 37

drwXrwxr—x 2 1lp bin 512 May 11 09:00 ./
drwxrwxr—-x 7 1lp bin 512 May 11 09:00 ../
—IWXTWXIr—X 1 bin bin 1687 May 26 06:21 1640*
“IWXIWXI—X 1 bin . bin 3347 May 26 06:21 5310%*
—IWXIWXIE—X 1 bin bin © 1103 May 26 06:22 dgplo*
—“IWXITWXY—X 1 bin bin 1013 May 26 06:22 dumb¥*
-rwxrwxr-x 1 bin bin 2046 May 26 06:22 £f450%*
—IWXTWXIL—X 1 bin bin 1897 May 26 06:22 hp*
~TWXTWXI—X 1 bin bin 1083 May 26 06:22 lgp40x*
~IWXTWXIT—X 1 bin bin 318 May 26 06:22 ph.daps*
—“IWXIWXI~X 1 bin bin 1411 May 26 06:22 pprx*
—“IWXTWXY—X 1 bin bin 1749 May 26 06:22 prx*

Also, make "lp" the owner of the special file where your printer will be, for example:

chown Ip /dev/ttyql

Step 2: Shut Down the LP Scheduler
As root, enter:
[usr/lib/lpshut

to shut down the lp scheduler (it may already be shut down which is fine). To verify
that it has been shut down, enter:

lpstat -r
You should get this response:

/usr/lib/lpshut: scheduler not running

P7-2 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 7.1: Installing the Printer Spooler

Step 3: Run lpadmin

Now its time to inform the system of the new printer. The name of the printer
installed in the example is "Proc7". Choose any name you like. The printer model
used is "dumb" - replace this with the model in /usr/spool/lp/model that corresponds
to your printer or refer to the Chapter 7 section, Writing Interface Programs to create
a new one. The Ipadmin command for this set-up looks like this:

[usr/lib/Ipadmin -pProc7 -mdumb -v/dev/ttygqla

Step 4: Restart the Scheduler
Now, get the scheduler going by starting Ipsched:

lusr/lib/lpsched

Step 5: Enable the Printer

Enable the new printer with the enable command:
enable Proc7

The system responds with:

enable: printer "Proc7" enabled

Step 6: Accept Printer Requests

To get the printer spooler to accept requests for the new printer, enter:
accept Proc7

The system responds with:

accept: destination "Proc7" accepting requests

Step 7: Print a File
Print a file with Ip, specifying the new printer:
Ip -dProc7 testfile

The output should go to the printer.

LP SPOOLER ADMINISTRATION PROCEDURES P7-3

Procedure 7.2: Manipulating the Printer
Spooler

The following procedure demonstrates various techniques used to selectively dis-
able and enable printers, and cancel and redirect print jobs.

Step 1: Determine Printer Status
To see a summary of the spooler status, enter:

$ /usr/lib/lpstat -s

no system default destination
device for Test: /dev/null
device for New: /dev/null
device for me: /dev/ttyq0
device for Proc7: /dev/ttyql

To see a summary of the printer status, enter:

$ /usr/lib/lpstat -p
printer New is idle. enabled since May 26 12:42
printer me disabled since May 26 16:11 — reason unknown
printer Proc7 is idle. enabled since May 26 14:29

To see a summary of printer acceptance status, enter:

$ [usr/lib/lpstat -a

New accepting requests since May 26 12:43
me accepting requests since May 26 13:31
Proc7 accepting requests since May 26 14:26

To see the status of all output requests pending, enter:

$ /usr/lib/lpstat -o
New20 root 785 May 26 16:11
New22 johnr 785 May 26 17:05

Step 2: Disabling Printers and Rejecting Jobs
To cancel a single job, get its id and then use the cancel command:

$ lpstat

me—22 johnr 785 May 26 17:05
$ cancel me-22

request "me—22" cancelled

$ lpstat

$

Disable a printer to stop all of its jobs from printing immediately. This example stops
the printer Proc7 from printing any more requests, and will cause any currently print-

ing job to start over once the printer is again enabled:

disable Proc7

P7-4 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 7.2: Manipulating the Printer Spooler

At this time, the printer Proc7 will still accept jobs. To keep the printer from accept-
ing any more jobs, enter:

reject -r"temporary situation, sorry" Proc7
Now, if you submit any jobs to Proc7, you get:
lp -dProc7 temp.c
lp: can’t accept requests for destination "Proc7" -
temporary situation, sorry '
Step 3: Enabling Printers and Accepting Jobs
To restore the previous situation, use enable to enable the Proc7 printer once again: .
enable Proc7
Proc7 will now continue printing any jobs in its queue.
To allow Proc7 to once again accept jobs, use accept:
luasr/lib/accept Proc7
and jobs will again be sent to printer Proc7.

Step 4: Moving Print Jobs

To move the queued jobs from one printer to another, shut down the Ip scheduler
and then use the Ipmove command:

/usr/lib/lpshut
/usr/lib/lpmove New Proc7

This example moves the jobs queued at printer New to the queue at printer Proc7. In
addition, print requests to New will be rejected until that printer is explicitly enabled.

To move specific jobs from one printer to another, use Ipmove with the job id(s) and
the name of the destination printer:

/usr/lib/lpmove New20 New21 Proc7a

This moves the two jobs New20 and New21 to the printer Proc7. Note that this also
causes the printer New to reject jobs until enabled.

LP SPOOLER ADMINISTRATION PROCEDURES P7-5

Proceduré 7.3 - Printer Defaults

This procedure demonstrates how to set up a particular printer as the system (\
default. 7

Specifying a Default Printer

To establish one of the printers on the system (or the only printer) as the default
printer, use the Ipadmin command with the -d option:

lpadmin -dProc7

This causes the default printer to become Proc7, which now receives the jobs that do
not specify a particular printer, such as:

$ Ip test.c

If your Ip spooler system does not start automatically when you come up multi-
NOTR\ser,

refer first to your Release Notes for any lp spooler setup instructions before contact-
I ing your Field Representative."

P7-6 SYSTEM ADMINISTRATOR'S GUIDE

TTY Management Procedures

Procedure 8.1 Check TTY Line Settings
To tell what line settings are defined.

Procedure 8.2 Make TTY Line Settings
To create new TTY line settings and hunt sequences.

Procedure 8.3 Modify TTY Line Characteristics
To change the characteristics of TTY lines. To turn lines on or off.

Procedure 8.4 Observe UMIPS File Changes
To demonstrate the file changes made by the preceding exercise.

TTY MANAGEMENT PROCEDURES P8-1

Procedure 8.1: Check TTY Line Settings

This procedure uses the sysadm lineset command to determine the currently
defined terminal line settings.

References
sysadm lineset(1)

Step 1: Enter this command to go directly to the lineset display:

$ sysadm lineset
Password:

This display appears on your terminal:
INSERT
Rﬁhning subcommand ’lineset’ from menu ’ttymgmt’,
TTY MANAGEMENT
Tty Line Settings and Sequences

co_1200 co_300 co_9660' co_4800 co_2400

console (does not sequence)
du_1200 du_300 du_9600 du_4800 du_2400
dx_1200 (does not sequence)
dx_ 19200 (does not sequence)
dx_2400 (does not sequence)
dx_4800 (does not sequence)
dx_9600 (does not sequence)

Each of the line settings is just a name, used to identify a set of tty line characteris-
tics. During the login process, the line settings on one line "hunt" from left to right,
moving from one to the next on receiving a BREAK signal. The rightmost setting on
each line hunts to the first one again, forming a circular hunt sequence.

Note that some settings do not sequence. Sending a BREAK will not make it change
in any way.

Step 2: To look at a line setting in detail:

P8-2 SYSTEM ADMINISTRATOR’'S GUIDE

Procedure 8.1

Select one line setting to see it in detail [?, g]: console

Line Setting: console
Initial Flags: B9600 CLOCAL
Final Flags: B9600 CLOCAL SANE TAB3
Login Prompt: HOSTNAME Console login:
Next Setting: console

B9600 9600 Baud

CLOCAL Local line '

SANE Set All Modes To "Traditionally Reasonable" Values
TAB3 Expand Horizontal-tab To Spaces

Select another line setting or
{RETURN> to see the original list [?, g]: du_9600

Line Setting: du_9600
Initial Flags: B9600
Final Flags: B9600 SANE TAB3 HUPCL
Login Prompt: HOSTNAME login:

Next Setting: du_4800 -
B9600 9600 Baud
HUPCL Hang Up on Last Close
SANE Set All Modes To "Traditionally Reasonable" Values
TAB3 Expand Horizontal—-tab To Spaces

Select another line setting or
{RETURN> to see the original list [?, gl: g

#

Step 3: Notice that we didn’t have to start with the leftmost entry of a row. Any
entry can be specified.

TTY MANAGEMENT PROCEDURES P8-3

Procedure 8.2: Make TTY Line Settings

In this procedure we create a test setting that will go from 9600 to 19200 baud
when the BREAK key is pressed.

References
sysadm mklineset

Step 1: Enter this command to go directly to the mklineset display:

$ sysadm mklineset
Password:

Step 2: This sequence of prompts appears on your terminal:

Running subcommand ‘mklineset’ from menu ’ttymgmt’,
TTY MANAGEMENT

Enter the name of the new tty line setting [?, gl: x9600

Select a baud rate [?, g]: 9600

Enter the login prompt you want (default = "login: ") [?, ql: test:
Do you want to add another tty line setting to the \

' sequence? [y, n, gl y

Enter the name of the new tty line setting [?, gq]: x19200

Select a baud rate [?, g]: 19200

Enter the login prompt you want (default = "test:") [?, ql: test2:

Do you want to add another tty line setting to the \ '
sequence? [y, n, gl n

Here is the tty line setting sequence you created:

%9600 x19200
Line Setting: x9600
Initial Flags: B9600 HUPCL
Final Flags: B9600 SANE IXANY HUPCL TAB3
Login Prompt: test:
Next Setting: x19200
Line Setting: x19200
Initial Flags: B19200 HUPCL
Final Flags: B19200 SANE IXANY HUPCL TAB3
Login Prompt: test2:
Next Setting: %9600

B19200 19200 Baud

B9600 9600 Baud

HUPCL Hang Up on Last Close

IXANY Enable Any Character to Restart Output

SANE Set All Modes To "Traditionally Reasonable" Values
TAB3 Expand Horizontal-tab To Spaces

Do you want to install this sequence? [y, n, q] Yy
Installed.

P8-4 SYSTEM ADMINISTRATOR’'S GUIDE

Procedure 8.3: Modify TTY Line Charac-
teristics

This procedure modifies an already existing tty line setting. The objective here is
to tell the computer which port to use with the line settings defined above in Pro-
cedure 8.2.

References
sysadm modtty

Step 1: Enter this command to go directly to the modtty display:
$ sysadm modtty
Password:

Step 2: This sequence of prompts appearé on your terminal:

Running subcommand ’‘modtty’ from menu ’ttymgmt’,
TTY MANAGEMENT

"Changeable tty lines:

"ttyl ttyho ttyhll ttyhl4 ttyh2 ttyh4 ttyh6 ttyh8
tty2 ttyhl ttyhl2 ttyhl5 ttyh3 ttyh5 ttyh7 ttyh9
tty3 ttyh1l0 ttyhl3

Select the tty you wish to modify,

or enter ALL to see a report of all ttys [?, g]: ttyhl3

ttyhl13: current characteristics:
State off
Hangup Delay off
Line Setting dx_ 19200
Description none LDISCO

Available states:
off on
Select a state (default: off) [?, g]: on

Enter a hangup delay, in seconds, or ’off’ (default: \
off) [?, gql: <CR>

Available line settings:

co_1200 co_4800 du_1200 du_300 du_ 9600 dx 19200 dx 4800
co_2400 co_9600 du_2400 du_4800 dx_1200 dx_2400 dx_9600
co_300 console %9600 x19200

Select a line setting (default: dx _19200) [?, gql: x9600

Current description:
none LDISCO

Enter a new description (default: current \
description) [?, g]l: <CR>

ttyhl3: new characteristics:

TTY MANAGEMENT PROCEDURES P8-5

Procedure 8.3

State on

Hangup Delay off

Line Setting %9600
Description none LDISCO

Do you want to install these new characteristics? [y, n, ql ¥y
ttyhl3 now has new characteristics.

Changeable tty lines:

ttyl ttyhO ttyhll +ttyhl4 +ttyh2 ttyh4 ttyh6é ttyhs
tty2 ttyhl ttyhl2 +ttyhl5 +ttyh3 ttyh5 ttyh7 ttyho
tty3 ttyhl0 ttyhl3

Select the tty you wish to modify,

or enter ALL to see a report of all ttys [?, gl: q

4 .

P8-6 SYSTEM ADMINISTRATOR’'S GUIDE

Procedure 8.4: Observe UMIPS File
Modifications

This procedure simply points out the changes that the preceding procedures have
made to UMIPS files. The same changes could have been made directly to the files
by the system administrator using a standard editor.

References
grep(1)

Procedure 8.2 caused the /etc/gettydefs file to be modified. The changes are demon-
strated below by using the grep command to list the occurrences of our "test" prompt
in the gettydefs file:

grep test /etc/gettydefs

X9600#‘B9600 HUPCL # B9600 SANE IXANY HUPCL TAB3 #test:#x19200
x192004# B19200 HUPCL # B19200 SANE IXANY HUPCL TAB3 #test2:#x9600
#

Procedure 8.3 modified the /etc/inittab file. In particular, -turning the line setting
"on" caused the word "off" to be replaced by "respawn", and the former gettydefs
reference of dx_19200 has been replaced by "x9600". Again, grep is used to locate the
new information:

grep ttyhl3 /etc/inittab

hd:234:respawn:/etc/getty ttyhl3 x9600 none LDISCO # none LDISCO

TTY MANAGEMENT PROCEDURES P8-7

UUCP Networking Procedures

The following procedures are covered in this section:

Procedure 9.1 Set Up UUCP Networking Files
To configure basic networking files.

Procedure 9.2 UUCP Networking Maintenance .
To maintain basic networking files and operations.

Procedure 9.3 UUCP Networking Debugging
To track down problems in basic networking.

UUCP NETWORKING PROCEDURES P9-1

Procedure 9.1: Set Up UUCP Networking

Files

This procedure provides instructions for setting up UUCP and putting it into

operation. The following topics are covered:

Set Up Devices File

Set Up /etc/inittab

Set Up Systems File

Set Up Poll File

Set Up Permissions File
Set Up Devconfig File
Set Up Sysfiles File
Add uucp lo‘giﬁs »

Set Up Devices File

The Devices file (/usr/lib/uucp/Devices) contains information about-the devices

used to call other machines.

#ident

H 3 e = 3k 3= 3 = e = 3 3 e 3 3 I H FH Ik F oFH I H FH o I

Some sample entries:

NOTE - all lines must have at least 5 fields

use -’ for unused fields

The Devices file is used in conjunction with the Dialers file.

Types that appear in the 5th field must be either built-in
functions (801, Sytek, TCP, Unetserver, DK)
or standard functions whose name appears in the first
field in the Dialers file.

Two escape characters may appear in this file:

= \D which means don’t translate the phone #/token

- \T translate the phone #/token using the Dialcodes file

Both refer to the phone number field in the Systems
file (field 5)

\D should always be used with entries in the Dialers file,
since the Dialers file can contain a \T to expand the
number if necessary.

\T should only be used with builtin functions that require
expansion

NOTE: — if a phone number is expected and a \D or \T is
not present a \T is used for a builtin, and \D is used
for an entry referencing the Dialers file.

(see examples below)

—-—-—Standard modem line
ACU cul02 cua02 1200 801
ACU contty — 1200 penril

P9-2 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 9.1

$ o3 e 3 $k 3 e e e 3 3 3 3 e 3 3 FH FH e W H W H H

or
ACU contty — 1200 penril \D

———=A direct line so ’‘cu -lculd0’ will work
Direct culd0 — 4800 direct

—-——A ventel modem on a develcon switch (vent is the token
given to the develcon to reach the ventel modem)

ACU culd0 - 1200 develcon vent ventel ' '

ACU culd0 - 1200 develcon vent ventel \D

———To reach a system on the local develcon switch
Develcon culd0 — Any develcon \D

———Access a direct connection to a system
systemx tty00 — Any direct

where the Systems file looks like

systemx Any systemx 1200 unused " in:-\r\d-in: nuucp
word: nuucp
(The third field in Systems matches the first
field in Devices))

—-——To connect to any system on the DATAKIT VCS network
DK DK 0 Any DK \D

UUCP NETWORKING PROCEDURES P9-3

Procedure 9.1

——-To connect to a system on a Datakit in nj/ho
DKho - uucp Any DK nj/ho/\D

——-To use an ACU that is connected to Datakit that DK does
not understand how to talk to directly
ACU - 0 Any DK vent ventel \D

—-—-To use a dialer that the Datakit understands how to
chat with _
This is a special case where the translation must be
done by the Devices file processing.
ACU DKacu 0 Any DK py/garage/door.\T

F HE HF H HEHHHHHFHHEHFHH

TCP — 0 Any TCP ™
$H##4##4 AT&T Transport Interface

——-To use a STREAMS network that conforms to the AT&T
Transport Interface with a direct connection to login
service (i.e., without explicitly using the Network
Listener Service dial 's¢ript):

networkx,eg devicex — — TLIS \D
The Systems file entry looks like:
systemx Any networkx — addressx in:——in: nuucp word: nuucp

You must replace systemx, networkx, addressx, and devicex
with system name, network name, network address and
network device, respectively. For example, entries for
machine "sffoo" on a STARLAN NETWORK might look like:
sffoo Any STARLAN - sffoo in:——in: nuucp word: nuucp
and:
STARLAN,eg starlan — — TLIS \D

FH o H H H = FH I FH H F FH O HH FHFHHF

P9-4 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 9.1

———-To use a STREAMS network that conforms to the AT&T
Transport Interface and that uses the Network Listener
Service dial script to negotiate for a server:

networkx,eg devicex — - TLIS \D nls

——-To use a non—-STREAMS network that conforms to the AT&T
Transport Interface and that uses the Network Listener
Service dial script to negotiate for a server:

networkx,eg devicex — — TLI \D nls

HhdadH

NOTE: blank lines and lines that begin with a <space>,
{tab>, or # are ignored.
protocols can be specified as a comma—-subfield of the
device type either in the Devices file (where
device type.is field 1) or in the Systems file
(where it is-field 3).

H o Ik I I I I FEHE HEHHHFHFHHE K K FHH

Set Up /etc/inittab

The inittab file (/etc/inittab) contains information on the ports to which the dev-
ices are connected. For example:

t2:234:respawn: /etc/getty tty2:du_1200
This entry specifies port /dev/tty2 as a dial-in port (it issues a login message due to
the respawn entry), at 1200 baud. Refer to uugetty(1IM) for information on setting-up

a bidirectional line for UUCP. For further information on the inittab refer to
Chapter 3, Processor Operations.

UUCP NETWORKING PROCEDURES P9-5

Procedure 9.1

Set Up Systems File

The Systems file (/usr/lib/uucp/Systems) contains the information needed by

uucp to call and log on to a remote machine. Each entry represents one remote
machine that can be called by your UUCP Networking programs.

#ident

#

Entries have this format:

#

Machine-Name Time Type Class Phone Login

#

Machine—Name node name of the remote machine

Time day-of-week and time—-of-day when you may call

(e.g., MoTuTh0800-1700). Use "Any" for any day.

Use "Never" for machines that poll you, but that

you never call directly.

Type device type

Class transfer speed

Phone phone number (for autodialers) or token (for

data switches)

Login login sequence is composed of fields and subfields
in the format "[expect send] ". The expect field

may have subfields in the format "expect[-send-expect]”,
#

Example:

ocuuxb Any ACU 1200 chicago8101242 in:-—in: nuucp word: panzer

P9-6 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 9.1

Set Up Poll File

The Poll file (/usr/lib/uucp/Poll) contains a list of the machines that are to be
called (polled) by your M-Series RISComputer to see if they have anything to transmit
to you. It also contains the times they are to be polled.

#ident -
This file (Poll) contains a list of
‘"system <tab> hourl hour2 hour3 ..." lines for \

polling remote systems.
See examples below

Lines starting with # are ignored.
NOTE a tab must follow the machine name

I H H HF

Examples:

#raven 2 6 10

#quail 01234567 891011 12 13 14 15 16 17 18 \
19 20 21 22 23 K

Set Up Permissions File

The default /usr/lib/uucp/Permissions file provides the maximum amount of
security for your M-Series RISComputer. The file, as delivered, contains the follow-
ing entry:

LOGNAME=nuucp
You can set additional parameters for each machine to define:
the ways it can receive files from your machine
the directories it can read and write in

the commands it can use for remote execution

See Chapter 9 for information on how to set up this file.

Set Up Devconfig File

#ident

Devconfig provides a means of configuring STREAMS devices
by service.

FORMAT:

service=<service name)device=<device type> \
push=<STREAMS module list>

FH oFH FH FH FH o H H I I

where service name is "uucico" or "cu", device type is the

UUCP NETWORKING PROCEDURES P9-7

Procedure 9.1

device or caller type (3rd field in Systems file, 1st field
in Devices file), and STREAMS module list is a
colon—-separated list of STREAMS modules to be pushed on
this stream.

The examples below are for the STARLAN NETWORK and assume
that both cu & uucico are going through login and so need
full tty capabilities. If uucico connects to a uucico
server on the remote machine without going through login,
you would need to push only tirdwr.

EXAMPLE:
service=cu device=STARLANpush=ntty:tirdwr:1d0
service=uucicodevice=STARLANpush=ntty:tirdwr:1d0

Note: The tirdwr module is part of the STREAMS package.
Other modules needed to provide tty capabilities must be
supplied by the network provider.

S = e 3 = 3 3 3 3 3 e 3k F o o H FHF

Set Up Sysfiles File

/usr/lib/uucp/Sysfiles lets you assign different files to be used by uucp and cu as
Systems, Devices, and Dialers files. Here are some cases where this optional file may
be useful.

. ® You may want different Systems files so requests for cu login services can be
made to addresses other than uucp services.

® You may want different Dialers files to use different chat scripts for cu and
uucp.

® You may want to have multiple Systems, Dialers, and Devices files. The Sys-
tems file in particular may become large, making it convenient to split it into
several smaller files.

The format of the Sysfiles file is described in Chapter 9. The following is an
example of the file.

service=uucico systems=Systems.cico:Systems
dialers=Dialers.cico:Dialers
devices=Devices.cico:Devices

service=cu systems=Systems.cu: Systems
dialers=Dialers.cu:Dialers
devices=Devices.cu:Devices

P9-8 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 9.1

Add uucp logins

You must add one or more administrative logins to your system so incoming uucp
(uucico) requests from remote machines can be handled properly. Each remote
machine should have an entry in its Systems file for your machine that contains the
login ID and password that you add to your /etc/passwd file.

An example of a common entry in the /etc/passwd file is shown below.

/usr/lib/uucp/uucico

This entry shows that a login request by nuucp is answered by
/usr/lib/uucp/uucico. The home directory is /usr/spool/uucppublic. The ???? will
be replaced by an encrypted password that would be added using passwd nuucp.

UUCP NETWORKING PROCEDURES P9-9

Procedure 9.2: UUCP Networking Mainte-
nance

The purpose of the following procedures are to keep UUCP files from consuming
too much disk space. They can be run automatically with eron or done manually as
needed.

UUCP Networking Utilities comes with four shell scripts that will poll remote
machines, reschedule transmissions, and clean up old log files and unsuccessful
transmissions. These shell scripts should be executed regularly to keep your basic
networking running smoothly. Normally, they are run automatically with cron(1M),
though they can also be run manually. The few areas needing clean up that are not
handled by these shell scripts should be maintained manually.

Automated Networking Maintenance (cron)

The UUCP Networking Utilities are delivered with entries for uudemon shell
scripts in the /usr/spool/cron/crontabs/uucp file. These entries will automatically
handle some UUCP administrative tasks for you. Each of these shell scripts is in
/usr/lib/uucp.

When the M-Series RISComputer is in run state 2 (multi-user), cren scans the
/usr/spool/cron/crontabs/root file every minute for entries scheduled to execute at
that time. As the UUCP administrator, you should become familiar with eron and
the four uudemon shell scripts.

uudemon.poll
The uudemon.poll shell script, as delivered, does the following:
® Reads the Poll file (/usr/lib/uucp/Poll) once an hour.

® If any of the machines in the Poll file are scheduled to be polled, a work file
(C.sysnxxxx) is placed in the /usr/spool/uucp/nodename directory, where
nodename is replaced by the name of the machine.

The shell script is scheduled to run twice an hour just before vudemon.hour so
that the work files will be there when uudemon.hour is called. The default root cron-
tab entry for uudemon.poll is as follows:

1,30 * * * * "/usr/lib/uucp/uudemon.poll > /dev/null"

uudemon.hour
The uudemon.hour shell script you receive with your machine does the following:

® Calls the uusched program to search the spool directories for work files (C.)
that have not been processed and schedules these files for transfer to a remote
machine.

m Calls the uuxqt daemon to search the spool directories for execute files (X.)
that have been transferred to your M-Series RISComputer and were not pro-
cessed at the time they were transferred.

P9-10 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 9.2

The default root crontab entry for uudemon.hour is as follows:

39,9 * * x * /Jusr/lib/uucp/uudemon.hour

As delivered, this is run twice an hour. You may want it to run more often if you
expect high failure rates.

uudemon.admin

The uudemon.admin shell script, as delivered, does the following:

Runs the uustat command with —p and =q options. The =—q reports on the
status of work files (C.), data files (D.), and execute files (X.) that are queued.
The =—p prints process information for networking processes listed in the lock
files (/usr/spool/locks).

Sends resulting status information to the uuep administrative login via mail.

The default entry in /usr/spool/cron/crontabs/uucp for uudemon.admin is:

48 10,14 * * 1-5 /usr/lib/uucp/uudemon.admin

uudemon.cleanup

The delivered uudemon.cleanu shell script does the following:

Takes log files for individual machines from the /usr/spool/uucp/.Log direc-
tory, merges them, and places them in the /usr/spool/uucp/.Old directory
with other old log information. If log files get large, the ulimit may need to be
increased.

Removes work files (C.) 7-days old or older, data files (D.) 7 days old or older,
and execute files (X.) two days old or older from the spool files.

Returns to the sender mail that cannot be delivered.

Mails a summary of the status information gathered during the current day to
the UUCP administrative login (uucp).

The default uucp crontab entry for uudemon.cleanup is:

45

23 * * * Jusr/lib/uucp/uudemon.cleanup

Other Maintenance

Some files may grow indirectly from uucp activities. The /etc/init.d/uucp script
automatically removes uucp lock files when the system goes multi-user. If you want
to perform other uucp maintenance automatically at this time, add the appropriate
commands to this script.

UUCP NETWORKING PROCEDURES P9-11

Procedure 9.3: UUCP Networking Debug-
ging

These procedures describe how to go about solving common problems that may
be encountered with UUCP Networking Ultilities.

Check for Faulty ACU/Modem

You can check if the automatic call units or modems are not working properly in
several ways.

® Run uustat —q. This will give counts and reasons for contact failure.

® Run cu —d —line. This will let you call over a particular line and print debug-
ging information on the attempt. The line must be defined as Direct in the dev-
ices file. (You must add a telephone number to the end of the command line if
the line is connected to an autodialer or the device must be set up as direct.)

Check Systems File

Check that you have up-to-date information in your systems file if you are having
trouble contacting a particular machine. Some things that may be out of date for a
machine are its:

® Phone number
®m Login

® Password

Debug Transmissions

If you are unable to contact a particular machine, you can check out communica-
tions to that machine with Uutry and uucp.

Step 1: To simply try to make contact, run:
$ /usr/lib/uucp/Uutry =r machine

where machine is replaced with the node name of the machine you are having
problems contacting. This command will:

Start the transfer daemon (uucico) with debugging. You will get more debugging
information if you are root.

Direct the debugging output to /tmp/machine,
Print the debugging output to your terminal (tail —f). Hit BREAK to end output.

You can copy the output from /tmp/machine if you want to save it.

Step 2: If Uutry doesn’t isolate the problem, try to queue a job by running:

$ uwucp —r file machine!/dir/file

P9-12 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 9.3

where file is replaced by the file you want to transfer, machine is replaced by
the machine you want to copy to, and dir/file is where the file will be placed
on the other machine. The —r option will queue a job but not start the
transfer.

Now use Uutry again. If you still cannot solve the problem, you may need to
call support personnel. Save the debugging output; it will help diagnose the
problem.

Check Error Messages

There are two types of error messages for UUCP Networking Utilities: ASSERT
and STATUS. See Appendix C for a listing of these messages.

ASSERT Error Messages
When a process is aborted, ASSERT error messages are recorded in
/usr/spool/uucp/.Admin/errors. These messages include the file name,
scesid, line number, and text. These messages usually result from system
problems.

STATUS Error Messages E
Status error messages are stored in the /usr/spool/uucp/.Status direc-
tory. The directory contains a separate file for each remote machine your
M-Series RISComputer attempts to communicate with. These files con-
tain status information on the attempted communication and whether it
was successful.

Check UUCP Information

There are several commands you can use to check for basic networking informa-
tion.

uuname Use this command to list those machines your machine can contact.

uulog Use this command to display the contents of the log directories for
particular hosts.

uucheck —v Run this command to check for the presence of files and directories
needed by uucp. This command also checks the Permissions file and
outputs information on the permissions you have set up.

UUCP NETWORKING PROCEDURES P9-13

TCP/IP Networking Procedures

The following procedures are covered in this section:

Procedure 10.1 Setting-Up the Network
To prepare the local system to use the TCP/IP facilities.

Procedure 10.2 Using Remote Login and Remote Shell
To implement and demonstrate some practical tools.

Procedure 10.3 Using rwho and ruptime
To enable and use status tools.

Procedure 10.4 Using ftp and telnet
To introduce two other protocols.

TCP/IP NETWORK PROCEDURES P10-1

Procedure 10.1: Setting-Up the Network

This procedure sets-up the necessary software to access an existing TCP/IP net-
work. If you are setting up the initial network, configure the other machine(s) in the
same way as this one, but use a different host name and address. It is also recom-
mended. that you begin to establish the network by setting up two machines, and then
adding the other machines after the initial network has been verified.

If you are connecting to an existing network, use the netmask and broadcast
address being used there, and consult the network administrator regarding host
number and name.

References
Chapter 10, TCP-IP

Step 1: Set-up the hardware

This procedure assumes you have attached your machine to the network via ethernet
cable as described in the M-Series Technical Manual and your Ethernet supplier’s
documentation.

Step 2: Edit the /etc/local_hostname File

The /etc/local_hostname should contain the name of your machine and the broadcast
address. In this case a hostname of "oldguy" and a Class C broadcast address of
192.255.255.255 is used: ‘

oldguy :
netmask 0xffff0000 broadcast 192.255.255,255

Step 3: Edit the /etc/hosts File

The /etc/hosts file should be edited to include your hostname, address, and the host-
name and address of some other host on the network that you will have access to. In
this way it will be possible to get the complete /ete/hosts file from that machine once
you have the network working.

For example, if the name of your machine is "oldguy", and the host you have access
to is "snail", the hosts file for a Class C address might look like this:

127.1 localhost
192.0.0.1 oldguy
192.0.0.3 snail

Your /etc/hosts file will probably contain different names and numbers for your local
machine and for the remote machine, but it should have the same entry for
"localhost" as shown above.

Step 4: Reboot the Machine

To initialize the new information bring the system down and reboot the machine. The
easiest way to do this (once any other users are off the system) is:

sync;sync

P10-2 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 10.1: Setting-Up the Network
init 6
Step 5: Test the Local Set-up

Once the system is up in multi-user mode, the ping(1M) command can be used to
make a quick test of the network connection. First, make sure that the local set-up
is functioning by "pinging" the localhost:

ping localhost

PING localhost: 56 data bytes

64 bytes from 127.0.0.1: icmp_seqg=0. time=3. ms

64 bytes from 127.0.0.1: icmp_seg=1l. time=3. ms
INTERRUPT

————localhost PING Statistics———-

2 packets transmitted, 2 packets received, 0% packet loss
round-trip (ms) min/avg/max = 3/3/3

This output can be terminated by entering the Interrupt character (usually the Delete
key or CTRL-C). Without going into details (see ping(1M)), the message "0% packet
loss" means that the local setup is working.

Step 6: Test the Network Connection

Now, ping the remote host that was included in the /etc/hosts file.
ping snail
64 bytes from 192.0.0.3: icmp_seg=0. time=16. ms
64 bytes from 192.0.0.3: icmp_seqg=1l. time=14. ms
INTERRUPT _
————snail PING Statistics——--
2 packets transmitted, 2 packets received, 0% packet loss
round-trip (ms) min/avg/max = 14/15/16

This output indicates all is well with the network connection. The next procedures
use the TCP/IP connection to perform various tasks.

TCP/IP NETWORK PROCEDURES P10-3

Procedure 10.2: Using Remote Login and
Remote Shell

This procedure exercises the rlogin(1C) and rsh(1C) utilities. It assumes you
have verified the basic network setup as described in the previous procedure. This
procedure does not require root privileges.

Step 1: Remote Login

Use rlogin to remotely login to another machine you have access to (for example, the
other host name supplied in the previous exercise). You must have an account on the
remote machine. For example:

$ rlogin snail
Password:

% uname
snail

%

You are now on the remote host snail and can change directories, edit files, etc., as if
you had logged in on a directly connected terminal.

Step 2: Adding a .rhosts entry

At this point, add a file called .rhosts to your home directory on the local host. This
will allow you to rlogin without entering a password and will also allow you to use the
remote shell utility described shortly. The .rhosts file simply contains a list of host-
names of machines on which you also have accounts and from which you may want
the ability to login remotely or use a remote shell. For example, this example .rhosts
file in your home directory on the host named "snail":

oldguy
fredsbox

would allow you to remotely login to snail from "oldguy" and "fredsbox".
Step 3: Terminating a Remote Login
To terminate the remote login, hit Carriage Return and use "™ and a dot ".":
& <CR>
$.
Closed connection.
$
Step 4: Using the Remote Shell Utility

The remote shell (rsh(1C)) lets you access a remote machine for the duration of a sin-
gle command. (rsh requires that you have $HOME/.rhosts permission on the remote
host or that your local machine name is included in the remote hosts’
/ete/hosts.equiv file.) Note that this is /usr/ucb/rsh and not the restricted shell
/bin/rsh. If your $PATH variable has /bin before /usr/ucb, use the full path name
/usr/uceb/rsh.

P10-4 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 10.2: Using Remote Login and Remote Shell

For example, the following sequence executes the date command on the remote
machine "snail" but the next prompt is once again from the local machine:

$ rsh snail date

Wed May 4 17:06:17 PDT 1988
$

TCP/IP NETWORK PROCEDURES P10-5

Procedure 10.3: Using rwho and ruptime

This procedure uses the rwho(1C) and ruptime(1C) commands to show who is on
the network and what machines are up.

References
rwho(1C)
ruptime(1C)

Step 1: Verify the rwhod Daemon

Be sure the rwhod daemon is running. This should be automatically started when
you go to multiuser mode. To see if it is running, enter:

ps -e | grep rwhod
You should see something like this:
265 ? 6:43 rwhod
If the rwhod daemon is not ru;nﬁng, be sure you are in multiuser mode.

Step 2: Using rwho

To use rwho, enter rwho at the command line and a list of who is currently on the
system shows up:

$ rwho
adamb escargot:ttyqgb May 17 16:11 :14
allen electron:ttyh2 May 17 13:35 :13

anneli quacky: ttyqf May 17 10:30 :22
annette escargot:ttyqg4 May 17 16:47 :24
ara admin: ttyr3 May 17 08:47 :04
babu ‘giant:ttyp2 May 17 17:18

Step 3: Using ruptime

To use ruptime, enter ruptime at the command line. A list of currently up (and
down) machines is shown:

$ ruptime

brie up 6+01:44, 1 user, load 0.00, 0.00, 0.00
charlie down 3+10:41

dude up 1+22:03, 2 users, load 0.00, 0.00, 0.00
dunkshot up 2+22:17, 3 users, load 0.96, 1.05, 0.91
electron up 2+02:23, 22 users,load 0.26, 0.82, 0.91
escargot up 12+00:48, 15 users,load 0.12, 0.23, 0.52

P10-6 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 10.4: Using ftp and telnet

This procedure demonstrates a few simple ftp and telnet functions as a means to
verify that these utilities are working.

Using ftp

To initiate an ftp session with another host on the network simply enter ftp and
the host name:

$ ftp quacky
The following output appears on your terminal:

Connected to quacky.

220 quacky FTP server (4.3BSD version 4.105) ready.
Name (quacky:johnr): 331 Password required for johnr.
230 User johnr logged in.

ftp>

Note that with ftp you have to supply a password even if you have an account on the
system - ftp does not use the .rhosts file. To see a list of available commands, enter
"help" at the ftp> prompt:

ftp> help
Commands may be abbreviated. Commands are:

! cr macdef proxy send

S delete mdelete sendport status-
account debug mdir put struct
append dir mget pwd sunique
ascii disconnect mkdir quit tenex
bell form mls quote trace
binary get mode recv type
bye glob mput remotehelp wuser
case hash nmap rename verbose
cd help ntrans reset ?

cdup lecd open rmdir

close 1s prompt runique

ftp>

ftp> Is

200 PORT command successful. .
150 Opening data connection for /bin/ls (97.4.0.30,1118) (0 bytes).
Alpha

Mail

News

Work

aardvark

afile

(etc.)

226 Transfer complete.
563 bytes received in 0.67 seconds (0.82 Kbytes/s)

TCP/IP NETWORK PROCEDURES P10-7

Procedure 10.4: Using ftp and teinet

ftp> ed..
250 CWD command successful.
ftp> Is
200 PORT command successful.
150 Opening data connection for /bin/ls (97.4.0.30,1119) (0 bytes).
allen
alt
anneli
annette
(etc.)

226 Transfer complete.

770 bytes received in 0.3 seconds (2.5 Kbytes/s)
ftp> pwd '

257 "/usr/user" is current directory.

ftp> ed” '

250 CWD command successful.

ftp> get temp

200 PORT command successful.

150 Opening data connection for temp (97.4.0.30,1120) (844 bytes).
w226 Transfer complete.)
local: temp remote: temp

873 bytes received in 0.017 seconds (51 Kbytes/s)
ftp> quit

221 Goodbye.

Using telnet ‘
Below is a commented printout of a simple telnet session.

johnr@dunkshot_95% telnet painless
Trying. ..

Connected to painless.

Escape character is ’'7]’.

MIPS (painless)

login: johnr

Password:

UNIX System V Release 3_0 painless
Copyright (c) 1984 AT&T

All Rights Reserved

IEE T E R R RS EE IR RS E R LSS S SRS EESEEEEEEEESEEEEEEEES]

* *
* MIPS — The Measure of Performance *
* *

AKEKKAKKAKKKKKRKRAAKRKRKKKRKKRKKKRKRRkKkKRAkhhhkkkkhkhkkhkkkkkkk

no mail
johnr@painless_51% date

P10-8 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 10.4: Using ftp and telnet

Wed Jun 22 11:26:45 PDT 1988
johnr@painless_52% telnet

telnet> ?

Commands may be abbreviated. Commands are:

open connect to a site

close close current connection

quit exit telnet

escape set escape character

status print status information

options toggle viewing of options processing
crmod toggle mapping of received carriage returns
debug toggle debugging

ayt send Are You There

interrupt send Interrupt Process

passthru send escape character

? print help information

telnet> quit

johnr@painless_53% logout

logout

Bye. .. .

Connection closed by foreign host.

johnr@dunkshot_95%

TCP/IP NETWORK PROCEDURES P10-9

NFS Procedures

The following procedures are covered in this section:

Procedure 11.1 Setting-Up an NFS Server
To export a file system to the network.

Procedure 11.2 Setting-Up an NFS Client
To access a remote file system.

Procedure 11.3 Automatic Remote Mounts
To mount remote file systems automatically at boot time.

NFS NETWORK PROCEDURES P11-1

Procedure 11.1: Setting-Up an NFS Server

This procedure sets-up your M-Series system as an NFS server. It assumes you
are already connected to the network and able to use the TCP/IP procedures
described in the previous section. This procedure is performed in multiuser mode.

If you do not want to be an NFS server and only want to mount a remote file sys-
“tem from another server (i.e., be an NFS client), skip this procedure and go to the
next procedure.
References
mount(1M)
nfsd(1M)
biod(1M)

Step 1: Check NFS Daemons

Check the process status of the NFS and block I/0O daemons by eﬁteﬁng
the following: ’

ps -d | grep nfs

You should see something like the following:

307 ? 11:32 nfsd
308 ? 12:33 nfsd
306 ? 12:33 nfsd
309 ? 12:25 nfsd

This means the NFS daemons are running. Now enter:
ps -d | grep biod

and you should see something like this:

311 ? 0:00 biod
313 ? 0:00 biod
315 ? 0:00 biod
317 0:00 biod

If these daemons do not show up, you are probably not in multiuser mode, Either go
to multiuser mode or fire them up manually by executing the corresponding shell
script: : :

lete/rc2.d/S40nfs

Step 2: Export a File System

To export a file system (make it available to the network) you must edit the
/etc/exports file to include the name of the file system. For example, if you want to
export the /usr file system to everyone on the network, put this entry in /etc/exports:

/usr

P11-2 SYSTEM ADMINISTRATOR’S GUIDE

Procedure 11.1: Setting-Up an NFS Server

If you want to export the file system to just one machine, enter:
/usr hostname

where hostname is the name of the remote host to which you want to export /usr.

NFS NETWORK PROCEDURES P11-3

Procedure 11.2: Setting-Up An NFS Client

This procedure sets up your M-Series system as an NFS client. It assumes you
are already connected to the network and able to use the TCP/IP protocol procedures
described in the previous section.

References
mount(1M)
biod(1M)

Mount a Remote File System

If you are connected to a network that has a server which is exporting a file sys-
tem to you, you can mount a remote file system. Make a directory to mount it on, for
example: ‘

mkdir /usr2
and then use the mount command to mount the remote file system:

mount oldguy:/usr /usr2
This command mounts the /usr directory exportéd by the remote host "oldguy" onto
the local /usr2 directory. (If you are becoming a client on an already existing net-
work, talk to a network administrator to find out which remote file systems can be

accessed by your machine.) The /usr directory of "oldguy" can now be accessed just
like any other local directory.

P11-4 SYSTEM ADMINISTRATOR’S GUIDE

(x

Procedure 11.3: Automatic Remote Mounts

In this procedure, we modify the /etc/fstab file to automatically mount the /usr
directory from oldguy. In this case the remote file system is being mounted to use its
man pages - so we can remove the man pages on the local machine to get more disk
space. Since we are only interested in the man pages, we mount the file system
"read-only". (Note that with NFS, the server cannot export just a part of a file sys-
tem, for example /usr/man. The entire file system must be exported.)

Step 1: Modify /etc/fstab

Use an editor to add a line to the /etc/fstab file. The file systems specified in
/ete/fstab are mounted when the system goes multiuser. The following entry mounts
the remote /usr file system from the host oldguy:
oldguy:/usr /usr2 nfs ro,bg,soft,timeo=20 0 0
For details on what’s being done here, refer to the mount(1M) man page. The main
things that concern us here are the "nfs" and "ro" fields. "nfs" states that the file sys-
tem being mounted is an NFS file system and "ro" states that the file system is to be
mounted "read-only". -

Step 2: Mount the File System

If you reboot your system the system will attempt to mount the remote file system
when it goes mulituser. If you don’t want to reboot, you can enter:

mount -a

to cause the mount command to attempt to mount all the file systems specified in
/etc/tstab.

Step 3: Verify the Remote Mount

To verify that the remote file system is mounted, enter:
mount
The mount command with no arguments list all the currently mounted file systems.
You can now "Is" the /usr2 directory, for example, and see the files and directories in
oldguy’s fusr directory. To use oldguy’s man pages, enter the following:

In -s /usr2/usr/man /usr/man

NOTE: This only works if you’ve already removed /usr/man from your file system.

To verify that the file system is mounted "read-only", attempt to make a new file
some place in the /usr directory structure. Permission to save the file should be
denied.

NFS NETWORK PROCEDURES P11-5

A Fast File System for UNIX*

Marshall Kirk McKusick, William N. Joy,
Samuel J. Leffler, Robert S. Fabry

Computer Systems Research Group
. Computer Science Division
Department of Flectrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

(* UNIX is a trademark of Bell Laboratories.)

ABSTRACT

A reimplementation of the UNIX file system is described. The reimplementation pro-
vides substantially higher throughput rates by using more flexible allocation policies
that allow better locality of reference and can be adapted to a wide range of peri-
pheral and processor characteristics. The new file system clusters data that is sequen-
_tially accessed and provides two block sizes to allow fast access to large files while not
wasting large amounts of space for small files. File access rates of up to ten times fas-
ter than the traditional UNIX file system are experienced. Long needed enhance-
ments to the programmers’ interface are discussed. These include a mechanism to
place advisory locks on files, extensions of the name space across file systems, the
ability to use long file names, and provisions for administrative control of resource
usage.

Revised February 18, 1984

CR Categories and Subject Descriptors:

D.4.3 [Operating Systems]

File Systems Management —
file organization, directory structures, access methods

D.4.2 [Operating Systems]

Storage Management —
allocation/deallocation strategies, secondary storage devices

D.4.8 [Operating Systems]

Performance —
measurements, operational analysis

FAST FILE SYSTEM A-1

H.3.2 [Information Systems]

Information Storage -
file organization

Additional Keywords and Phrases: UNIX, file system organization, file system
formance, file system design, application program interface.

General Terms: file system, measurement, performance.

A-2 SYSTEM ADMINISTRATOR’S GUIDE

per-

Old File System

In the file system developed at Bell Laboratories (the “traditional” file system), each
disk drive is divided into one or more partitions. Each of these disk partitions may
contain one file system. A file system never spans multiple partitions. By “partition”
here we refer to the subdivision of physical space on a disk drive. In the traditional
file system, as in the new file system, file systems are really located in logical disk par-
titions that may overlap. This overlapping is made available, for example, to allow
programs to copy entire disk drives containing multiple file systems. A file system is
described by its super-block, which contains the basic parameters of the file system.
These include the number of data blocks in the file system, a count of the maximum
number of files, and a pointer to the free list, a linked list of all the free blocks in the
file system.

Within the file system are files. Certain files are distinguished as directories and con-
tain pointers to files that may themselves be directories. Every file has a descriptor
associated with it called an inode. An inode contains information describing owner-
ship of the file, time stamps marking last modification and access times for the file,
and an array of indices that point to the data blocks for the file. For the purposes of
this section, we assume that the first 8 blocks of the file are directly referenced by
values stored in an inode itself*. * The actual number may vary from system to sys-
tem, but is usually in the range 5-13. An inode may also' contain references to
indirect blocks containing further data block indices. In a file system with a 512 byte
block size, a singly indirect block contains 128 further block addresses, a doubly
indirect block contains 128 addresses of further singly indirect blocks, and a triply
indirect block contains 128 addresses of further doubly indirect blocks.

A 150 megabyte traditional UNIX file system consists of 4 megabytes of inodes fol-
lowed by 146 megabytes of data. This organization segregates the inode information
from the data; thus accessing a file normally incurs a long seek from the file’s inode to
its data. Files in a single directory are not typically allocated consecutive slots in the
4 megabytes of inodes, causing many non-consecutive blocks of inodes to be accessed
when executing operations on the inodes of several files in a directory.

The allocation of data blocks to files is also suboptimum. The traditional file system
never transfers more than 512 bytes per disk transaction and often finds that the next
sequential data block is not on the same cylinder, forcing seeks between 512 byte
transfers. The combination of the small block size, limited read-ahead in the system,
and many seeks severely limits file system throughput.

The first work at Berkeley on the UNIX file system attempted to improve both relia-
bility and throughput. The reliability was improved by staging modifications to critical
file system information so that they could either be completed or repaired cleanly by a
program after a crash [Kowalski78]. The file system performance was improved by a
factor of more than two by changing the basic block size from 512 to 1024 bytes. The
increase was because of two factors: each disk transfer accessed twice as much data,
and most files could be described without need to access indirect blocks since the
direct blocks contained twice as much data. The file system with these changes will
henceforth be referred to as the old file system.

This performance improvement gave a strong indication that increasing the block size

was a good method for improving throughput. Although the throughput had doubled,
the old file system was still using only about four percent of the disk bandwidth. The

FAST FILE SYSTEM A-3

Old File System

main problem was that although the free list was initially ordered for optimal access,
it quickly became scrambled as files were created and removed. Eventually the free
list became entirely random, causing files to have their blocks allocated randomly
over the disk. This forced a seek before every block access. Although old file sys-
tems provided transfer rates of up to 175 kilobytes per second when they were first
created, this rate deteriorated to 30 kilobytes per second after a few weeks of
moderate use because of this randomization of data block placement. There was no
way of restoring the performance of an old file system except to dump, rebuild, and
restore the file system. Another possibility, as suggested by [Maruyama76}, would be
to have a process that periodically reorganized the data on the disk to restore locality.

A-4 SYSTEM ADMINISTRATOR’S GUIDE

New File System Organization

In the new file system organization (as in the old file system organization), each disk
drive contains one or more file systems. A file system is described by its super-block,
located at the beginning of the file system’s disk partition. Because the super-block
contains critical data, it is replicated to protect against catastrophic loss. This is done
when the file system is created; since the super-block data does not change, the
copies need not be referenced unless a head crash or other hard disk error_causes the
default super-block to be unusable.

To insure that it is possible to create files as large as $2 sup 32$ bytes with only two
levels of indirection, the minimum size of a file system block is 4096 bytes. The size
of file system blocks can be any power of two greater than or equal to 4096. The
block size of a file system is recorded in the file system’s super-block so it is possible
for file systems with different block sizes to be simultaneously accessible on the same
system. The block size must be decided at the time that the file system is created; it
cannot be subsequently changed without rebuilding the file system.

The new file system organization divides a disk partition into one or more areas called
cylinder groups. A cylinder group is comprised of one or more consecutive cylinders
- on a disk. Associated with each cylinder group is some bookkeeping information that
includes a redundant copy of the super-block, space for inodes, a bit map describing
available blocks in the cylinder group, and summary information describing the usage
of data blocks within the cylinder group. The bit map of available blocks in the
cylinder group replaces the traditional file system’s free list. For each cylinder group
a static number of inodes is allocated at file system creation time. The default policy
is to allocate one inode for each 2048 bytes of space in the cylinder group, expecting
this to be far more than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of
each cylinder group. However if this approach were used, all the redundant informa-
tion would be on the top platter. A single hardware failure that destroyed the top
platter could cause the loss of all redundant copies of the super-block. Thus the
cylinder group bookkeeping information begins at a varying offset from the beginning
of the cylinder group. The offset for each successive cylinder group is calculated to
be about one track further from the beginning of the cylinder group than the preced-
ing cylinder group. In this way the redundant information spirals down into the pack
so that any single track, cylinder, or platter can be lost without losing all copies of the
super-block. Except for the first cylinder group, the space between the beginning of
the cylinder group and the beginning of the cylinder group information is used for
data blocks. While it appears that the first cylinder group could be laid out with its
super-block at the “known” location, this would not work for file systems with blocks
sizes of 16 kilobytes or greater. This is because of a requirement that the first 8 kilo-
bytes of the disk be reserved for a bootstrap program and a separate requirement that
the cylinder group information begin on a file system block boundary. To start the
cylinder group on a file system block boundary, file systems with block sizes larger
than 8 kilobytes would have to leave an empty space between the end of the boot
block and the beginning of the cylinder group. Without knowing the size of the file
system blocks, the system would not know what roundup function to use to find the
beginning of the first cylinder group.

FAST FILE SYSTEM A-5

New File System ‘Organization

Optimizing Storage Utilization ' (

Data is laid out so that larger blocks can be transferred in a single disk transaction,
greatly increasing file system throughput. As an example, consider a file in the new
file system composed of 4096 byte data blocks. In the old file system this file would
be composed of 1024 byte blocks. By increasing the block size, disk accesses in the
new file system may transfer up to four times as much information per disk transac-
tion. In large files, several 4096 byte blocks may be allocated from the same cylinder
so that even larger data transfers are possible before requiring a seek.

The main problem with larger blocks is that most UNIX file systems are composed of
many small files. A uniformly large block size wastes space. Table 1 shows the effect
of file system block size on the amount of wasted space in the file system. The files
measured to obtain these figures reside on one of our time sharing systems that has
roughly 1.2 gigabytes of on-line storage. The measurements are based on the active
user file systems containing about 920 megabytes of formatted space. '
Table 1 — Amount of wasted space as a function of block size.

Space used | % waste | Organization :

775.2 Mb 0.0 | Data only, no separation between files

807.8 Mb 4.2 Data only, each file starts on 512 byte boundary

828.7 Mb 6.9 Data + inodes, 512 byte block UNIX file system

866.5 Mb 11.8 Data + inodes, 1024 byte block UNIX file system

948.5 Mb 224 Data + inodes, 2048 byte block UNIX file system

1128.3 Mb 45.6 Data + inodes, 4096 byte block UNIX file system (

The space wasted is calculated to be the percentage of space on the disk not contain-
ing user data. As the block size on the disk increases, the waste rises quickly, to an
intolerable 45.6% waste with 4096 byte file system blocks.

To be able to use large blocks without undue waste, small files must be stored in a
more efficient way. The new file system accomplishes this goal by allowing the divi-
sion of a single file system block into one or more fragments. The file system frag-
ment size is specified at the time that the file system is created; each file system block
can optionally be broken into 2, 4, or 8 fragments, each of which is addressable. The
lower bound on the size of these fragments is constrained by the disk sector size, typi-
cally 512 bytes. The block.map associated with each cylinder group records the space
available in a cylinder group at the fragment level; to determine if a block is available,
aligned fragments are examined. Figure 1 shows a piece of a map from a 4096/1024
file system.

Figure 1 — Example layout of blocks and fragments in a 4096/1024 file system.

Bits in map XXXX XXO00 O00XX 0000
Fragment numbers 0-3 4-7 8-11 12-15
Block numbers 0 1 2 3

Each bit in the map records the status of a fragment; an “X” shows that the fragment

is in use, while a “O” shows that the fragment is available for allocation. In this

example, fragments 0-5, 10, and 11 are in use, while fragments 6-9, and 12-15 are

free. Fragments of adjoining blocks cannot be used as a full block, even if they are ()
large enough. In this example, fragments 6-9 cannot be allocated as a full block; only

A-6 ' SYSTEM ADMINISTRATOR’S GUIDE

New File System Organization

fragments 12-15 can be coalesced into a full block.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a
file is represented by zero or more 4096 byte blocks of data, and possibly a single
fragmented block. If a file system block must be fragmented to obtain space for a
small amount of data, the remaining fragments of the block are made available for
allocation to other files. As an example consider an 11000 byte file stored on a
4096/1024 byte file system. This file would uses two full size blocks and one three
fragment portion of another block. If no block with three aligned fragments is avail-
able at the time the file is created, a full size block is split yielding the necessary frag-
ments and a single unused fragment. This remaining fragment can be allocated to
another file as needed.

Space is allocated to a file when a program does a write system call. Each time data
is written to a file, the system checks to see if the size of the file has increased. A
program may be overwriting data in the middle of an existing file in which case space
would already have been allocated. If the file needs to be expanded to hold the new
data, one of three conditions exists: There is enough space left in an already allo-
cated block or fragment to hold the new data. The new data is written into the avail-
able space. The file contains no fragmented blocks (and the last block in the file con-
tains insufficient space to hold the new data). If space exists in a block already allo-
cated, the space is filled with new data. If the remainder of the new data contains
more than a full block of data, a full block is allocated and the first full block of new
data is written there. This process is repeated until less than a full block of new data
remains. If the remaining new data to be written will fit in less than a full block, a
block with the necessary fragments is located, otherwise a full block is located. The
remaining new data is written into the located space. The file contains one or more
fragments (and the fragments contain insufficient space to hold the new data). If the
size of the new data plus the size of the data already in the fragments exceeds the size
of a full block, a new block is allocated. The contents of the fragments are copied to
the beginning of the block and the remainder of the block is filled with new data.

The process then continues as in (2) above. Otherwise, if the new data to be written
will fit in less than a full block, a block with the necessary fragments is located, other-
wise a full block is located. The contents of the existing fragments appended with the
new data are written into the allocated space.

The problem with expanding a file one fragment at a a time is that data may be copied
many times as a fragmented block expands to a full block. Fragment reallocation can
be minimized if the user program writes a full block at a time, except for a partial
block at the end of the file. Since file systems with different block sizes may reside
on the same system, the file system interface has been extended to provide application
programs the optimal size for a read or write. For files the optimal size is the block
size of the file system on which the file is being accessed. For other objects, such as
pipes and sockets, the optimal size is the underlying buffer size. This feature is used
by the Standard Input/Output Library, a package used by most user programs. This
feature is also used by certain system utilities such as archivers and loaders that do

their own input and output management and need the highest possible file system
bandwidth.

The amount of wasted space in the 4096/1024 byte new file system organization is
empirically observed to be about the same as in the 1024 byte old file system organiza-
tion. A file system with 4096 byte blocks and 512 byte fragments has about the same
amount of wasted space as the 512 byte block UNIX file system. The new file system
uses less space than the 512 byte or 1024 byte file systems for indexing information for
large files and the same amount of space for small files. These savings are offset by

FAST FILE SYSTEM A-7

New File System Organization

the need to use more space for keeping track of available free blocks. The net result
is about the same disk utilization when a new file system’s fragment size equals an old
file system’s block size.

In order for the layout policies to be effective, a file system cannot be kept completely
full. For each file system there is a parameter, termed the free space reserve, that
gives the minimum acceptable percentage of file system blocks that should be free. If
the number of free blocks drops below this level only the system administrator can
continue to allocate blocks. The value of this parameter may be changed at any time,
even when the file system is mounted and active. The transfer rates that appear in
section 4 were measured on file systems kept less than 90% full (a reserve of 10%).

If the number of free blocks falls to zero, the file system throughput tends to be cut in
half, because of the inability of the file system to localize blocks in a file. If a file
system’s performance degrades because of overfilling, it may be restored by removing
files until the amount of free space once again reaches the minimum acceptable level.
Access rates for files created during periods of little free space may be restored by
moving their data once enough space is available. The free space reserve must be
added to the percentage of waste when comparing the organizations given in Table 1.
Thus, the percentage of waste in an old 1024 byte UNIX file system is roughly com-
parable to a new 4096/512 byte file system with the free space reserve set at 5%.
(Compare 11.8% wasted with the old file system to 6.9% waste + 5% reserved space
in the new file system.) T

File System Parameterization

Except for the initial creation of the free list, the old file system ignores the parame-
ters of the underlying hardware. It has no information about either the physical
characteristics of the mass storage device, or the hardware that interacts with it. A
goal of the new file system is to parameterize the processor capabilities and mass
storage characteristics so that blocks can be allocated in an optimum configuration-
dependent way. Parameters used include the speed of the processor, the hardware
support for mass storage transfers, and the characteristics of the mass storage dev-
ices. Disk technology is constantly improving and a given installation can have
several different disk technologies running on a single processor. Each file system is
parameterized so that it can be adapted to the characteristics of the disk on which it
is placed.

For mass storage devices such as disks, the new file system tries to allocate new
blocks on the same cylinder as the previous block in the same file. Optimally, these
new blocks will also be rotationally well positioned. The distance between ‘‘rotation-
ally optimal” blocks varies greatly; it can be a consecutive block or a rotationally
delayed block depending on system characteristics. On a processor with an
input/output channel that does not require any processor intervention between mass
storage transfer requests, two consecutive disk blocks can often be accessed without
suffering lost time because of an intervening disk revolution. For processors without
input/output channels, the main processor must field an interrupt and prepare for a
new disk transfer. The expected time to service this interrupt and schedule a new
disk transfer depends on the speed of the main processor.

The physical characteristics of each disk include the number of blocks per track and
the rate at which the disk spins. The allocation routines use this information to calcu-
late the number of milliseconds required to skip over a block. The characteristics of
the processor include the expected time to service an interrupt and schedule a new

A-8 SYSTEM ADMINISTRATOR’S GUIDE

New File System Organization

disk transfer. Given a block allocated to a file, the allocation routines calculate the
number of blocks to skip over so that the next block in the file will come into position
under the disk head in the expected amount of time that it takes to start a new disk
transfer operation. For programs that sequentially access large amounts of data, this
strategy minimizes the amount of time spent waiting for the disk to position itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group sum-
mary information includes a count of the available blocks in a cylinder group at
different rotational positions. Eight rotational positions are distinguished, so the reso-
lution of the summary information is 2 milliseconds for a typical 3600 revolution per
minute drive. The super-block contains a vector of lists called rotational layout
tables. The vector is indexed by rotational position. Fach component of the vector
lists the index into the block map for every data block contained in its rotational posi-
tion. When looking for an allocatable block, the system first looks through the sum-
mary counts for a rotational position with a non-zero block count. It then uses the
index of the rotational position to find the appropriate list to use to index through
only the relevant parts of the block map to find a free block.

The parameter that defines the minimum number of milliseconds between the comple-
tion of a data transfer and the initiation of another data transfer on the same cylinder
can be changed at any time, even when the file system is mounted and active. If a file
system is parameterized to lay out blocks with a rotational separation of 2 mil-
liseconds, and the disk pack is then moved to a system that has a processor requiring
4 milliseconds to schedule a disk operation, the throughput will drop precipitously
because of lost disk revolutions on nearly every block. If the eventual target machine
is known, the file system can be parameterized for it even though it is initially created
on a different processor. Even if the move is not known in advance, the rotational
layout delay can be reconfigured after the disk is moved so that all further allocation
is done based on the characteristics of the new host.

Layout Policies

The file system layout policies are divided into two distinct parts. At the top level are
global policies that use file system wide summary information to make decisions
regarding the placement of new inodes and data blocks. These routines are responsi-
ble for deciding the placement of new directories and files. They also calculate rota-
tionally optimal block layouts, and decide when to force a long seek to a new cylinder
group because there are insufficient blocks left in the current cylinder group to do rea-
sonable layouts. Below the global policy routines are the local allocation routines that
use a locally optimal scheme to lay out data blocks.

Two methods for improving file system performance are to increase the locality of
reference to minimize seek latency as described by [Trivedi80], and to improve the
layout of data to make larger transfers possible as described by [Nevalainen77]. The
global layout policies try to improve performance by clustering related information.
They cannot attempt to localize all data references, but must also try to spread unre-
lated data among different cylinder groups. If too much localization is attempted, the
local cylinder group may run out of space forcing the data to be scattered to non-local
cylinder groups. Taken to an extreme, total localization can result in a single huge
cluster of data resembling the old file system. The global policies try to balance the
two conflicting goals of localizing data that is concurrently accessed while spreading
out unrelated data.

FAST FILE SYSTEM A-9

New File System Organization

One allocatable resource is inodes. Inodes are used to describe both files and direc-
tories. Inodes of files in the same directory are frequently accessed together. For
example, the “list directory” command often accesses the inode for each file in a
directory. The layout policy tries to place all the inodgs of files in a directory in the
same cylinder group. To ensure that files are distributed throughout the disk, a
different policy is used for directory allocation. A, new directory is placed in a
cylinder group that has a greater than average number of free inodes, and the smallest
number of directories already in it. The intent of this policy is to allow the inode
clustering policy to succeed most of the time. The allocation of inodes within a
cylinder group is done using a next free strategy. Although this allocates the inodes
randomly within a cylinder group, all the inodes for a particular cylinder group can be
read with 8 to 16 disk transfers. (At most 16 disk transfers are required because a
cylinder group may have no more than 2048 inodes.) This puts a small and constant
upper bound on the number of disk transfers required to access the inodes for all the
files in a directory. In contrast, the old file system typically requires one disk transfer
to fetch the inode for each file in a directory. ' ‘

The other major resource is data blocks. Since data blocks for a file are typically
accessed together, the policy routines try to place all data blocks for a file in the same
cylinder group, preferably at rotationally optimal positions in the same cylinder. The
problem with allocating all the data blocks in the same cylinder group is that large
files will quickly use up available space in the cylinder group, forcing a spill over to
other areas. Further, using all the space in a cylinder group causes future allocations
for any file in the cylinder group to also spill to other areas. Ideally none of the
cylinder groups should ever become completely full. The heuristic solution chosen is
to redirect block allocation to a different cylinder group when a file exceeds 48 kilo-
bytes, and at every megabyte thereafter. The first spill over point at 48 kilobytes is
the point at which a file on a 4096 byte block file system first requires a single indirect
block. This appears to be a natural first point at which to redirect block allocation.
The other spillover points are chosen with the intent of forcing block allocation to be
redirected when a file has used about 25% of the data blocks in a cylinder group. In
observing the new file system in day to day use, the heuristics appear to work well in
minimizing the number of completely filled cylinder groups. The newly chosen
cylinder group is selected from those cylinder groups that have a greater than average
number of free blocks left. Although big files tend to be spread out over the disk, a
megabyte of data is typically accessible before a long seek must be performed, and
the cost of one long seek per megabyte is small.

The global policy routines call local allocation routines with requests for specific
blocks. The local allocation routines will always allocate the requested block if it is
free, otherwise it allocates a free block of the requested size that is rotationally
closest to the requested block. If the global layout policies had complete informa-
tion, they could always request unused blocks and the allocation routines would be
reduced to simple bookkeeping. However, maintaining complete information is
costly; thus the implementation of the global layout policy uses heuristics that employ
only partial information. ‘

If a requested block is not available, the local allocator uses a four level allocation
strategy: Use the next available block rotationally closest to the requested block on
the same cylinder. It is assumed here that head switching time is zero. On disk con-
trollers where this is not the case, it may be possible to incorporate the time required
to switch between disk platters when constructing the rotational layout tables. This,
however, has not yet been tried. If there are no blocks available on the same
cylinder, use a block within the same cylinder group. If that cylinder group is entirely
full, quadratically hash the cylinder group number to choose another cylinder group to

A-10 SYSTEM ADMINISTRATOR’S GUIDE

New File System Organization

look for a free block. Finally if the hash fails, apply an exhaustive search to all
cylinder groups.

Quadratic hash is used because of its speed in finding unused slots in nearly full hash
tables [Knuth75]. File systems that are parameterized to maintain at least 10% free
space rarely use this strategy. File systems that are run without maintaining any free
space typically have so few free blocks that almost any allocation is random; the most

important characteristic of the strategy used under such conditions is that the strategy
be fast.

FAST FILE SYSTEM A-11

Performance

Ultimately, the proof of the effectiveness of the algorithms described in the previous
section is the long term performance of the new file system.

Our empirical studies have shown that the inode layout policy has been effective.
When running the “list directory’” command on a large directory that itself contains
many directories (to force the system to access inodes in multiple cylinder groups),
the number of disk accesses for inodes is cut by a factor of two. The improvements
are even more dramatic for large directories containing only files, disk accesses for
inodes being cut by a factor of eight. This is most encouraging for programs such as
spooling daemons that access many small files, since these programs tend to flood the
disk request queue on the old file system. ‘

Table 2 summarizes the measured throughput of the new file system. Several com-
ments need to be made about the conditions under which these tests were run. The
test programs measure the rate at which user programs can transfer data to or from a
file without performing any processing on it. These programs must read and write
enough data to insure that buffering in the operating system does not affect the
results. They are also run at least three times in succession; the first to get the system
into a known state and the second two to insure that the experiment has stabilized
and is repeatable. The tests used and their results are discussed in detail in [Kri-
dle83].

A UNIX command that is similar to the reading test that we used is “cp file
/dev/null”, where “file”’ is eight megabytes long. The systems were running multi-user
but were otherwise quiescent. There was no contention for either the CPU or the
disk arm. The only difference between the UNIBUS and MASSBUS tests was the
controller. All tests used an AMPEX Capricorn 330 megabyte Winchester disk. As
Table 2 shows, all file system test runs were on a VAX 11/750. All file systems had
been in production use for at least a month before being measured. The same
number of system calls were performed in all tests; the basic system call overhead was
a negligible portion of the total running time of the tests.

A-12 SYSTEM ADMINISTRATOR’S GUIDE

Performance

Type of Processor and Write
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIBUS 48 Kbytes/sec 48/983 5% 29%
new 4096/1024 750/UNIBUS 142 Kbytes/sec 142/983 14% 43%
new 8192/1024 750/UNIBUS 215 Kbytes/sec 215/983 22% 46%
new 4096/1024 750/MASSBUS | 323 Kbytes/sec 323/983 33% 94%
new 8192/1024 750/MASSBUS | 466 Kbytes/sec 466/983 47% 95%

Unlike the old file system, the transfer rates for the new file system do not appear to
change over time. The throughput rate is tied much more strongly to the amount of
free space that is maintained. The measurements in Table 2 were based on a file sys-
tem with a 10% free space reserve. Synthetic work loads suggest that throughput
deteriorates to about half the rates given in Table 2 when the file systems are full.

The percentage of bandwidth given in Table 2 is a measure of the effective utilization
of the disk by the file system. An upper bound on the transfer rate from the disk is
calculated by multiplying the number of bytes on a track by the number of revolutions
of the disk per second. The bandwidth is calculated by comparing the data rates the
file system is able to achieve as a percentage of this rate. Using this metric, the old
file system is only able to use about 3-5% of the disk bandwidth, while the new ﬁle
system uses up to 47% of the bandwidth.

"Both reads and writes are faster in the new system than in the old system. The big-
gest factor in this speedup is because of the larger block size used by the new file sys-
tem. The overhead of allocating blocks in the new system is greater than the over-
head of allocating blocks in the old system, however fewer blocks need to be allo-
cated in the new system because they are bigger. The net effect is that the cost per
byte allocated is about the same for both systems.

In the new file system, the reading rate is always at least as fast as the writing rate.
This is to be expected since the kernel must do more work when allocating blocks
than when simply reading them. Note that the write rates are about the same as the
read rates in the 8192 byte block file system; the write rates are slower than the read
rates in the 4096 byte block file system. The slower write rates occur because the ker-
nel has to do twice as many disk allocations per second, making the processor unable
to keep up with the disk transfer rate.

In contrast the old file system is about 50% faster at writing files than reading them.
This is because the write system call is asynchronous and the kernel can generate disk
transfer requests much faster than they can be serviced, hence disk transfers queue
up in the disk buffer cache. Because the disk buffer cache is sorted by minimum seek
distance, the average seek between the scheduled disk writes is much less than it
would be if the data blocks were written out in the random disk order in which they
are generated. However when the file is read, the read system call is processed syn-
chronously so the disk blocks must be retrieved from the disk in the non-optimal seek
order in which they are requested. This forces the disk scheduler to do long seeks
resulting in a lower throughput rate.

In the new system the blocks of a file are more optimally ordered on the disk. Even

though reads are still synchronous, the requests are presented to the disk in a much
better order. Even though the writes are still asynchronous, they are already

FAST FILE SYSTEM A-13

Performance

presented to the disk in minimum seek order so there is no gain to be had by reorder-

ing them. Hence the disk seek latencies that limited the old file system have little o
effect in the new file system. The cost of allocation is the factor in the new system (‘
that causes writes to be slower than reads.

The performance of the new file system is currently limited by memory to memory
copy operations required to move data from disk buffers in the system’s address space
to data buffers in the user’s address space. These copy operations account for about
40% of the time spent performing an input/output operation. If the buffers in both
address spaces were properly aligned, this transfer could be performed without copy-
ing by using the VAX virtual memory management hardware. This would be espe-
cially desirable when transferring large amounts of data. We did not implement this
because it would change the user interface to the file system in two major ways: user
programs would be required to allocate buffers on page boundaries, and data would
disappear from buffers after being written.

Greater disk throughput could be achieved by rewriting the disk drivers to chain

together kernel buffers. This would allow contiguous disk blocks to be read in a sin-

gle disk transaction. Many disks used with UNIX systems contain either 32 or 48 512

byte sectors per track. Each track holds exactly two or three 8192 byte file system

blocks, or four or six 4096 byte file system blocks. The inability to use contiguous

disk blocks effectively limits the performance on these disks to less than 50% of the” -

available bandwidth. If the next block for a file cannot be laid out contiguously, then

the minimum spacing to the next allocatable block on any platter is between a sixth

and a half a revolution. The implication of this is that the best possible layout

without contiguous blocks uses only half of the bandwidth of any given track. If each

track contains an odd number of sectors, then it is possible to resolve the rotational

delay to any number of sectors by finding a block that begins at the desired rotational (
position on another track. The reason that block chaining has not been implemented y
is because it would require rewriting all the disk drivers in the system, and the current

throughput rates are already limited by the speed of the available processors. |

Currently only one block is allocated to a file at a time. A technique used by the
DEMOS file system when it finds that a file is growing rapidly, is to preallocate
several blocks at once, releasing them when the file is closed if they remain unused.
By batching up allocations, the system can reduce the overhead of allocating at each
write, and it can cut down on the number of disk writes needed to keep the block
pointers on the disk synchronized with the block allocation [Powell79]. This tech-
nique was not included because block allocation currently accounts for less than 10%
of the time spent in a write system call and, once again, the current throughput rates
are already limited by the speed of the available processors.

A-14 SYSTEM ADMINISTRATOR’S GUIDE

File System Functional Enhancements

The performance enhancements to the UNIX file system did not require any changes
to the semantics or data structures visible to application programs. However, several
changes had been generally desired for some time but had not been introduced
because they would require users to dump and restore all their file systems. Since the
new file system already required all existing file systems to be dumped and restored,
these functional enhancements were introduced at this time.

Long File Names

File names can now be of nearly arbitrary length. Only programs that read directories

are affected by this change. To promote portability to UNIX systems that are not

running the new file system, a set of directory access routines have been introduced to
“ provide a consistent interface to directories on both old and new systems.

Directories are allocated in 512 byte units called chunks. This size is chosen so that
each allocation can be transferred to disk in a single operation. Chunks are broken
up into variable length records termed directory entries.- A directory entry contains
the information necessary to map the name of a file to its associated inode. No direc-
tory entry is allowed to span multiple chunks. The first three fields of a directory
entry are fixed length and contain: an inode number, the size of the entry, and the
length of the file name contained in the entry. The remainder of an entry is variable
length and contains a null terminated file name, padded to a 4 byte boundary. The
maximum length of a file name in a directory is currently 255 characters.

Available space in a directory is recorded by having one or more entries accumulate
the free space in their entry size fields. This results in directory entries that are larger
than required to hold the entry name plus fixed length fields. Space allocated to a
directory should always be completely accounted for by totaling up the sizes of its
entries. When an entry is deleted from a directory, its space is returned to a previous
entry in the same directory chunk by increasing the size of the previous entry by the
size of the deleted entry. If the first entry of a directory chunk is free, then the
entry’s inode number is set to zero to indicate that it is unallocated.

File Locking

The old file system had no provision for locking files. Processes that needed to syn-
chronize the updates of a file had to use a separate “lock” file. A process would try
to create a “lock” file. If the creation succeeded, then the process could proceed with
its update; if the creation failed, then the process would wait and try again. This
mechanism had three drawbacks. Processes consumed CPU time by looping over
attempts to create locks. Locks left lying around because of system crashes had to be
manually removed (normally in a system startup command script). Finally, processes
running as system administrator are always permitted to create files, so were forced to
use a different mechanism. While it is possible to get around all these problems, the
solutions are not straight forward, so a mechanism for locking files has been added.

The most general schemes allow multiple processes to concurrently update a file.
Several of these techniques are discussed in [Peterson83]. A simpler technique is to

FAST FILE SYSTEM A-156

File System Functional Enhancements

serialize access to a file with locks. To attain reasonable efficiency, certain applica-
tions require the ability to lock pieces of a file. Locking down to the byte level has
been implemented in the Onyx file system by [Bass81]. However, for the standard
system applications, a mechanism that locks at the granularity of a file is sufficient.

Locking schemes fall into two classes, those using hard locks and those using advisory
locks. The primary difference between advisory locks and hard locks is the extent of
enforcement. A hard lock is always enforced when a program tries to access a file;
an advisory lock is only applied when it is requested by a program. Thus advisory
locks are only effective when all programs accessing a file use the locking scheme.
With hard locks there must be some override policy implemented in the kernel. With
advisory locks the policy is left to the user programs. In the UNIX system, programs
with system administrator privilege are allowed override any protection scheme.
Because many of the programs that need to use locks must also run as the system
administrator, we chose to implement advisory locks rather than create an additional
protection scheme that was inconsistent with the UNIX philosophy or could not be
used by system administration programs.

The file locking facilities allow cooperating programs to apply advisory shared or
exclusive locks on files. Only one process may have an exclusive lock on a file while
multiple shared locks may be present. Both shared and exclusive locks cannot be
present on a file at the same time. If any lock is requested when another process
holds an exclusive lock, or an exclusive lock is requested when another process holds
any lock, the lock request will block until the lock can be obtained. Because shared
and exclusive locks are advisory only, even if a process has obtained a lock on a file,
another process may access the file.

Locks are applied or removed only on open files. This means that locks can be mani-
pulated without needing to close and reopen a file. This is useful, for example, when
a process wishes to apply a shared lock, read some information and determine
whether an update is required, then apply an exclusive lock and update the file.

A request for a lock will cause a process to block if the lock can not be immediately
obtained. In certain instances this is unsatisfactory, For example, a process that
wants only to check if a lock is present would require a separate mechanism to find
out this information. Consequently, a process may specify that its locking request
should return with an error if a lock can not be immediately obtained. Being able to
conditionally request a lock is useful to “daemon” processes that wish to service a
spooling area. If the first instance of the daemon locks the directory where spooling
takes place, later daemon processes can easily check to see if an active daemon
exists. Since locks exist only while the locking processes exist, lock files can never be
left active after the processes exit or if the system crashes.

Almost no deadlock detection is attempted. The only deadlock detection done by the
system is that the file to which a lock is applied must not already have a lock of the

same type (i.e. the second of two successive calls to apply a lock of the same type will
fail).

A-16 SYSTEM ADMINISTRATOR’S GUIDE

File System Functional Enhancements

Symbolic Links

The traditional UNIX file system allows multiple directory entries in the same file sys-
tem to reference a single file. Each directory entry “links” a file’s name to an inode
and its contents. The link concept is fundamental; inodes do not reside in direc-
tories, but exist separately and are referenced by links. When all the links to an
inode are removed, the inode is deallocated. This style of referencing an inode does
not allow references across physical file systems, nor does it support inter-machine
linkage. To avoid these limitations symbolic links similar to the scheme used by Mul-
tics [Feiertag71] have been added.

A symbolic link is implemented as a file that contains a pathname. When the system
encounters a symbolic link while interpreting a component of a pathname, the con-
tents of the symbolic link is prepended to the rest of the pathname, and this name is
interpreted to yield the resulting pathname. In UNIX, pathnames are specified rela-
tive to the root of the file system hierarchy, or relative to a process’s current working
directory. Pathnames specified relative to the root are called absolute pathnames.
Pathnames specified relative to the current working directory are termed relative path-

-names. If a symbolic link contains an absolute pathname, the absolute pathname is

- used, otherwise the contents of the symbolic link is evaluated relative to the location

of the link in the file hierarchy.

Normally programs do not want to be aware that there is a symbolic link in a path-
name that they are using. However certain system utilities must be able to detect and
manipulate symbolic links. Three new system calls provide the ability to detect, read,
and write symbolic links; seven system utilities required changes to use these calls.

In future Berkeley software distributions it may be possible to reference file systems
located on remote machines using pathnames. When this occurs, it will be possible
to create symbolic links that span machines.

Rename

Programs that create a new version of an existing file typically create the new version
as a temporary file and then rename the temporary file with the name of the target
file. In the old UNIX file system renaming required three calls to the system. If a
program were interrupted or the system crashed between these calls, the target file
could be left with only its temporary name. To eliminate this possibility the rename
system call has been added. The rename call does the rename operation in a fashion
that guarantees the existence of the target name.

Rename works both on data files and directories. When renaming directories, the
system must do special validation checks to insure that the directory tree structure is
not corrupted by the creation of loops or inaccessible directories. Such corruption
would occur if a parent directory were moved into one of its descendants. The vali-
dation check requires tracing the descendents of the target directory to insure that it
does not include the directory being moved.

FAST FILE SYSTEM A-17

File System Functional Enhancements

Quotas

The UNIX system has traditionally attempted to share all available resources to the
greatest extent possible. Thus any single user can allocate all the available space in
the file system. In certain environments this is unacceptable. Consequently, a quota
mechanism has been added for restricting the amount of file system resources that a
user can obtain. The quota mechanism sets limits on both the number of inodes and
the number of disk blocks that a user may allocate. A separate quota can be set for
each user on each file system. Resources are given both a hard and a soft limit.
When a program exceeds a soft limit, a warning is printed on the users terminal; the
offending program is not terminated unless it exceeds its hard limit. The idea is that
users should stay below their soft limit between login sessions, but they may use more
resources while they are actively working. To encourage this behavior, users are
warned when logging in if they are over any of their soft limits. If users fails to
correct the problem for too many login sessions, they are eventually reprlmanded by
having their soft limit enforced as their hard limit.

Acknowlédgements

We thank Robert Elz for his ongoing interest in the new file system, and for adding
disk quotas in a rational and efficient manner. We also acknowledge Dennis Ritchie
for his suggestions on the appropriate modifications to the user interface. We appre-
ciate Michael Powell’s explanations on how the DEMOS file system worked; many of
his ideas were used in this implementation. Special commendation goes to Peter
Kessler and Robert Henry for acting like real users during the early debugging stage
when file systems were less stable than they should have been. The criticisms and
suggestions by the reviews contributed significantly to the coherence of the paper.
Finally we thank our sponsors, the National Science Foundation under grant MCS80-
05144, and the Defense Advance Research Projects Agency (DoD) under ARPA

Order No. 4031 monitored by Naval Electronic System Command under Contract No.

N00039-82-C-0235.

References
Almes78

Almes, G., and Robertson, G.

"An Extensible File System for Hydra"

Proceedings of the Third International Conference on Software
Engineering,

IEEE, May 1978.

Bass81

Bass, J.

"Implementation Description for File Locking",

Onyx Systems Inc, 73 E. Trimble Rd, San Jose, CA 95131
Jan 1981.

A-18 SYSTEM ADMINISTRATOR’S GUIDE

File System Functional Enhancements

Feiertag71

Feiertag, R. J. and Organick, E. L.,

"The Multics Input-Output System",

Proceedings of the Third Symposium on Operating Systems
Principles,

ACM, Oct 1971. pp 35-41

Ferrin82a

Ferrin, T.E.,

"Performance and Robustness Improvements in Version 7 UNIX",
Computer Graphics Laboratory Technical Report 2,

School of Pharmacy, University of California,

San Francisco, January 1982.

Presented at the 1982 Winter Usenix Conference, Santa Monica,
California.

Ferrin82b

Ferrin, T.E.,

"Performance Issuses of VMUNIX Revisited",

;login: (The Usenix Association Newsletter), Vol 7, #5,
November 1982. pp 3-6

Kridle83

Kridle, R., and McKusick, M.,

"Performance Effects of Disk Subsystem Choices for
VAX Systems Running 4.2BSD UNIX",

Computer Systems Research Group, Dept of EECS,
Berkeley, CA 94720,

Technical Report #8.

Kowalski78

Kowalski, T.
"FSCK - The UNIX System Check Program",
Bell Laboratory, Murray Hill, NJ 07974. March 1978

Knuth75

Kunth, D.

"The Art of Computer Programming”,

Volume 3 - Sorting and Searching,

Addison-Wesley Publishing Company Inc, Reading, Mass, 1975.
pp 506-549

Maruyama?76

Maruyama, K., and Smith, S.
"Optimal reorganization of Distributed Space Disk Files",
CACM, 19, 11. Nov 1976. pp 634-642

FAST FILE SYSTEM A-19

File System Functional Enhancements

Nevalainen77

Nevalainen, O., Vesterinen, M.

"Determining Blocking Factors for Sequential Files by
Heuristic Methods",

The Computer Journal, 20, 3. Aug 1977. pp 245-247

Pechura83

Pechura, M., and Schoeffler, J.
"Estimating File Access Time of Floppy Disks",
CACM, 26, 10. Oct 1983. pp 754-763

Peterson83

Peterson, G.

"Concurrent Reading While Writing",

ACM Transactions on Programming Languages and Systems,
ACM, 5, 1. Jan 1983. pp 46-55

Powell79

Powell, M.

"The DEMOS File System",

Proceedings of the Sixth Symposium on Operating
Systems Principles,

ACM, Nov 1977. pp 3342

Ritchie74

Ritchie, D. M. and Thompson, K.,
"The UNIX Time-Sharing System",
CACM 17, 7. July 1974. pp 365-375

Smith81a

Smith, A.
"Input/Output Optimization and Disk Architectures: A Survey",
Performance and Evaluation 1. Jan 1981. pp 104-117

Smith81b

Smith, A.

"Bibliography on File and I/O System Optimization and
Related Topics",

Operating Systems Review, 15, 4. Oct 1981. pp 39-54

Symbolics81

"Symbolics File System",
Symbolics Inc, 9600 DeSoto Ave, Chatsworth, CA 91311
Aug 1981.

A-20 SYSTEM ADMINISTRATOR’S GUIDE

File System Functional Enhancements

Thompson78

Thompson, K.

"UNIX Implementation”,

Bell System Technical Journal, 57, 6, part 2. pp 1931-1946
July-August 1978.

Thompson80

Thompson, M.

"Spice File System",

Carnegie-Mellon University,

Department of Computer Science, Pittsburg, PA 15213
#CMU-CS-80, Sept 1980.

Trivedi80

Trivedi, K.

"Optimal Selection of CPU Speed, Device Capabilities,
and File Assignments",

Journal of the ACM, 27, 3. July 1980. pp 457-473

White80

White, R. M.
"Disk Storage Technology",
Scientific American, 243(2), August 1980.

FAST FILE SYSTEM A-21

Fsck = The UNIX{ File System Check Program
Marshall Kirk McKusick

Computer Systems Research Group
Computer Science Division »
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

T. J. Kowalski

Bell Laboratories
Murray Hill, New Jersey 07974.

(TUNIX is a trademark of Bell Laboratories.)

ABSTRACT

This document reflects the use of fsck with the 4.2BSD and 4.3BSD file system organ-.
ization. This is a revision of the original paper written by T. J. Kowalski.

File System Check Program (fsck) is an interactive file system check and repair pro-
gram. Fsck uses the redundant structural information in the UNIX file system to per-
form several consistency checks. If an inconsistency is detected, it is reported to the
operator, who may elect to fix or ignore each inconsistency. These inconsistencies
result from the permanent interruption of the file system updates, which are per-
formed every time a file is modified. Unless there has been a hardware failure, fsck is
able to repair corrupted file systems using procedures based upon the order in which
UNIX honors these file system update requests.

The purpose of this document is to describe the normal updating of the file system, to
discuss the possible causes of file system corruption, and to present the corrective
actions implemented by fsck. Both the program and the interaction between the pro-
gram and the operator are described.

Appendix B: FSCK B-1

B-2

SYSTEM ADMINISTRATOR'S GUIDE

Introduction

This document reflects the use of fsck with the 4.2BSD and 4.3BSD file system organ-
ization. This is a revision of the original paper written by T. J. Kowalski.

When a UNIX operating system is brought up, a consistency check of the file systems
should always be performed. This precautionary measure helps to insure a reliable
environment for file storage on disk. If an inconsistency is discovered, corrective
action must be taken. Fsck runs in two modes. Normally it is run non-interactively
by the system after a normal boot. When running in this mode, it will only make
changes to the file system that are known to always be correct. If an unexpected
inconsistency is found fsck will exit with a non-zero exit status, leaving the system
running single-user. Typically the operator then runs fsck interactively. When run-
ning in this mode, each problem is listed followed by a suggested corrective action.
The operator must decide whether or not the suggested correction should be made.

The purpose of this memo is to dispel the mystique surrounding file system incon-
sistencies. It first describes the updating of the file system (the calm before the
storm) and then describes file system corruption (the storm). Finally, the set of
deterministic corrective actions used by fsck (the Coast Guard to the rescue) is
presented.

Appendix B: FSCK B-3

Overview of the File System

Superblock

A file system is described by its super-block. The super-block is built when the file
system is created (newfs(1FFS)) and never changes. The super-block contains the
basic parameters of the file system, such as the number of data blocks it contains and
a count of the maximum number of files. Because the super-block contains critical
data, newfs replicates it to protect against catastrophic loss. The default super block
always resides at a fixed offset from the beginning of the file system’s disk partition.
The redundant super blocks are not referenced unless a head crash or other hard disk
error causes the default super-block to be unusable. The redundant blocks are sprin-
* kled throughout the disk partition.

Within the file system are files. Certain files are distinguished as directories and con-
tain collections of pointers to files that may themselves be directories. Every file has
a descriptor associated with it called an inode. The inode contains information
describing ownership of the file, time stamps indicating modification and access times
for the file, and an array of indices pointing to the data blocks for the file. In this
section, we assume that the first 12 blocks of the file are directly referenced by values
stored in the inode structure itself. The actual number may vary from system to sys-
tem, but is usually in the range 5-13. The inode structure may also contain references
to indirect blocks containing further data block indices. In a file system with a 4096
byte block size, a singly indirect block contains 1024 further block addresses, a dou-
bly indirect block contains 1024 addresses of further single indirect blocks, and a tri-
ply indirect block contains 1024 addresses of further doubly indirect blocks (the triple
indirect block is never needed in practice).

In order to create files with up to 2132 bytes, using only two levels of indirection, the
minimum size of a file system block is 4096 bytes. The size of file system blocks can
be any power of two greater than or equal to 4096. The block size of the file system
is maintained in the super-block, so it is possible for file systems of different block
sizes to be accessible simultaneously on the same system. The block size must be
decided when newfs creates the file system; the block size cannot be subsequently
changed without rebuilding the file system.

Summary Information

Associated with the super block is non replicated summary information. The sum-
mary information changes as the file system is modified. The summary information
contains the number of blocks, fragments, inodes and directories in the file system.

Cylinder Groups

The file system partitions the disk into one or more areas called cylinder groups. A
cylinder group is comprised of one or more consecutive cylinders on a disk. Each

cylinder group includes inode slots for files, a block map describing available blocks
in the cylinder group, and summary information describing the usage of data blocks

B-4 SYSTEM ADMINISTRATOR’S GUIDE

Overview of the File System

within the cylinder group. A fixed number of inodes is allocated for each cylinder
group when the file system is created. The current policy is to allocate one inode for
each 2048 bytes of disk space; this is expected to be far more inodes than will ever be
needed.

All the cylinder group bookkeeping information could be placed at the beginning of
each cylinder group. However if this approach were used, all the redundant informa-
tion would be on the top platter. A single hardware failure that destroyed the top
platter could cause the loss of all copies of the redundant super-blocks. Thus the
cylinder group bookkeeping information begins at a floating offset from the beginning
of the cylinder group. The offset for the i+ Ist cylinder group is about one track
further from the beginning of the cylinder group than it was for the ith cylinder group.
In this way, the redundant information spirals down into the pack; any single track,
cylinder, or platter can be lost without losing all copies of the super-blocks. Except
for the first cylinder group, the space between the beginning of the cylinder group and
the beginning of the cylinder group information stores data.

Fragments

To avoid waste in storing small files, the file system space allocator divides a single
file system block into one or more fragments. The fragmentation of the file system is
specified when the file system is created; each file system block can be optionally bro-
ken into 2, 4, or 8 addressable fragments. The lower bound on the size of these frag-
ments is constrained by the disk sector size; typically 512 bytes is the lower bound on
fragment size. The block map associated with each cylinder group records the space
availability at the fragment level. Aligned fragments are examined to determine block
availability. '

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a
file is represented by zero or more 4096 byte blocks of data, and possibly a single
fragmented block. If a file system block must be fragmented to obtain space for a
small amount of data, the remainder of the block is made available for allocation to
other files. For example, consider an 11000 byte file stored on a 4096/1024 byte file
system. This file uses two full size blocks and a 3072 byte fragment. If no fragments
with at least 3072 bytes are available when the file is created, a full size block is split
yielding the necessary 3072 byte fragment and an unused 1024 byte fragment. This
remaining fragment can be allocated to another file, as needed.

Updates to the File System

Every working day hundreds of files are created, modified, and removed. Every time
a file is modified, the operating system performs a series of file system updates.
These updates, when written on disk, yield a consistent file system. The file system
stages all modifications of critical information; modification can either be completed
or cleanly backed out after a crash. Knowing the information that is first written to
the file system, deterministic procedures can be developed to repair a corrupted file
system. To understand this process, the order that the update requests were being
honored must first be understood.

When a user program does an operation to change the file system, such as a write, the
data to be written is copied into an internal in-core buffer in the kernel. Normally,

Appendix B: FSCK B-5

Overview of the File System

the disk update is handled asynchronously; the user process is allowed to proceed
even though the data has not yet been written to the disk. The data, along with the
inode information reflecting the change, is eventually written out to disk. The real
disk write may not happen until long after the write system call has returned. Thus at
any given time, the file system, as it resides on the disk, lags the state of the file sys-
tem represented by the in-core information.

The disk information is updated to reflect the in-core information when the buffer is
required for another use, when a sync(2) is done (at 30 second intervals) by
/etc/update, or by manual operator intervention with the sync(1M) command. If the
system is halted without writing out the in-core information, the file system on the
disk will be in an inconsistent state.

If all updates are done asynchronously, several serious inconsistencies can arise. One
inconsistency is that a block may be claimed by two inodes. Such an inconsistency
can occur when the system is halted before the pointer to the block in the old inode
has been cleared in the copy of the old inode on the disk, and after the pointer to the
block in the new inode has been written out to the copy of the new inode on the disk.
Here, there is no deterministic method for deciding which inode should really claim
the block. A similar problem can arise with a multiply claimed inode.

The 'problem with asynchronous inode updates can be avoided by doing all inode deal-.

locations synchronously, Consequently, inodes and indirect blocks are written to the
disk synchronously (i.e. the process blocks until the information is really written to
disk) when they are being deallocated. Similarly inodes are kept consistent by syn-
chronously deleting, adding, or changing directory entries.

B-6 SYSTEM ADMINISTRATOR'S GUIDE

(

Fixing Corrupted File Syétems

A file system can become corrupted in several ways. The most common of these
ways are improper shutdown procedures and hardware failures.

File systems may become corrupted during an unclean halt. This happens when
proper shutdown procedures are not observed, physically write-protecting a mounted
file system, or a mounted file system is taken off-line. The most common operator
procedural failure is forgetting to sync the system before halting the CPU.

File systems may become further corrupted if proper startup procedures are not
observed, e.g., not checking a file system for inconsistencies, and not repairing incon-
sistencies. Allowing a corrupted file system to be used (and, thus, to be modified
further) can be disastrous.

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block
on a disk pack, or as blatant as a non-functional disk-controller.

Detecting and Correcting Corruption

Mormally fsck is run non-interactively. In this mode it will only fix corruptions that
are expected to occur from an unclean halt. These actions are a proper subset of the
actions that fsck will take when it is running interactively. Throughout this paper we
assume that fsck is being run interactively, and all possible errors can be encountered.
When an inconsistency is discovered in this mode, fsck reports the inconsistency for
the operator to chose a corrective action.

A quiescent I.e., unmounted and not being written on. file system may be checked
for structural integrity by performing consistency checks on the redundant data intrin-
sic to a file system. The redundant data is either read from the file system, or com-
puted from other known values. The file system must be in a quiescent state when
fsck is run, since fsck is a multi-pass program.

In the following sections, we discuss methods to discover inconsistencies and possible
corrective actions for the cylinder group blocks, the inodes, the indirect blocks, and
the data blocks containing directory entries.

Super-Block Checking

The most commonly corrupted item in a file system is the summary information asso-
ciated with the super-block. The summary information is prone to corruption because
it is modified with every change to the file system’s blocks or inodes, and is usually
corrupted after an unclean halt.

The super-block is checked for inconsistencies involving file-system size, number of
inodes, free-block count, and the free-inode count. The file-system size must be
larger than the number of blocks used by the super-block and the number of blocks
used by the list of inodes. The file-system size and layout information are the most
critical pieces of information for fsck. While there is no way to actually check these
sizes, since they are statically determined by newfs, fsck can check that these sizes are

Appendix B: FSCK B-7

Fixing Corrupted File Systems
within reasonable bounds. All other file system checks require that these sizes be
correct. If fsck detects corruption in the static parameters of the default super-block,
fsck requests the operator to specify the location of an alternate super-block.

Free Block Checking

Fsck checks that all the blocks marked as free in the cylinder group block maps are
not claimed by any files. When all the blocks have been initially accounted for, fsck
checks that the number of free blocks plus the number of blocks claimed by the
inodes equals the total number of blocks in the file system.

If anything is wrong with the block allocation maps, fsck will rebuild them, based on
the list it has computed of allocated blocks.

The summary information associated with the super-block counts the total number of
free blocks within the file system. Fsck compares this count to the number of free
blocks it found within the file system. If the two counts do not agree, then fsck
replaces the incorrect count in the summary information by the actual free-block
count.

The summary information counts the total number of free inodes within the file sys-
tem. Fsck compares this count to the number of free inodes it found within the file
system. If the two counts do not agree, then fsck replaces the incorrect count in the
summary information by the actual free-inode count.

Checking the Inode State

An individual inode is not as likely to be corrupted as the allocation information.
However, because of the great number of active inodes, a few of the inodes are usu-
ally corrupted.

The list of inodes in the file system is checked sequentially starting with inode 2
(inode 0 marks unused inodes; inode 1 is saved for future generations) and progress-
ing through the last inode in the file system. The state of each inode is checked for
inconsistencies involving format and type, link count, duplicate blocks, bad blocks,
and inode size.

Each inode contains a mode word. This mode word describes the type and state of
the inode. Inodes must be one of six types: regular inode, directory inode, symbolic
link inode, special block inode, special character inode, or socket inode. Inodes may
be found in one of three allocation states: unallocated, allocated, and neither unallo-
cated nor allocated. This last state suggests an incorrectly formated inode. An inode
can get in this state if bad data is written into the inode list. The only possible
corrective action is for fsck is to clear the inode.

B-8 SYSTEM ADMINISTRATOR’S GUIDE

Fixing Corrupted File Systems

Inode Links

Each inode counts the total number of directory entries linked to the inode. Fsck
verifies the link count of each inode by starting at the root of the file system, and des-
cending through the directory structure. The actual link count for each inode is cal-
culated during the descent.

If the stored link count is non-zero and the actual link count is zero, then no direc-
tory entry appears for the inode. If this happens, fsck will place the disconnected file
in the lost+found directory. If the stored and actual link counts are non-zero and
unequal, a directory entry may have been added or removed without the inode being
updated. If this happens, fsck replaces the incorrect stored link count by the actual
link count. :

Each inode contains a list, or pointers to lists (indirect blocks), of all the blocks
claimed by the inode. Since indirect blocks are owned by an inode, inconsistencies in
indirect blocks directly affect the inode that owns it.

Fsck compares each block number claimed by an inode against a list of already allo-
cated blocks. If another inode already claims a block number, then the block number
is added to a list of duplicate blocks. Otherwise, the list of allocated blocks is
updated to include the block number.

If there are any duplicate blocks, fsck will perform a partial second pass over the
inode list to find the inode of the duplicated block. The second pass is needed, since
without examining the files associated with these inodes for correct content, not
enough information is available to determine which inode is corrupted and should be
cleared. If this condition does arise (only hardware failure will cause it), then the
inode with the earliest modify time is usually incorrect, and should be cleared. If this
happens, fsck prompts the operator to clear both inodes. The operator must decide
which one should be kept and which one should be cleared.

Fsck checks the range of each block number claimed by an inode. If the block
number is lower than the first data block in the file system, or greater than the last
data block, then the block number is a bad block number. Many bad blocks in an
inode are usually caused by an indirect block that was not written to the file system, a
condition which can only occur if there has been a hardware failure. If an inode con-
tains bad block numbers, fsck prompts the operator to clear it.

Inode Data Size

Each inode contains a count of the number of data blocks that it contains. The
number of actual data blocks is the sum of the allocated data blocks and the indirect
blocks. Fsck computes the actual number of data blocks and compares that block
count against the actual number of blocks the inode claims. If an inode contains an
incorrect count fsck prompts the operator to fix it.

Fach inode contains a thirty-two bit size field. The size is the number of data bytes in

the file associated with the inode. The consistency of the byte size field is roughly
checked by computing from the size field the maximum number of blocks that should

Appendix B: FSCK B-9

Fixing Corrupted File Systems

be associated with the inode, and comparing that expected block count against the
actual number of blocks the inode claims. (

Checking the Data Associated With an Inode

An inode can directly or indirectly reference three kinds of data blocks. All refer-
enced blocks must be the same kind. The three types of data blocks are: plain data
blocks, symbolic link data blocks, and directory data-blocks. Plain data blocks con-
tain the information stored in a file; symbolic link data blocks contain the path name
stored in a link. Directory data blocks contain directory entries. Fsck can only
check the validity of directory data blocks.

Each directory data block is checked for several types of inconsistencies. These
inconsistencies include directory inode numbers pointing to unallocated inodes, direc-
tory inode numbers that are greater than the number of inodes in the file system,
incorrect directory inode numbers for ““.”” and ““..”, and directories that are not
attached to the file system. If the inode number in a directory data block references
an unallocated inode, then fsck will remove that directory entry. Again, this condi-
tion can only arise when there has been a hardware failure,

If a directory entry inode number references outside the inode list, then fsck will
remove that directory entry. This condition occurs if bad data is written into a direc-
tory data block.

The directory inode number entry for “.” must be the first entry in the directory data

block. The inode number for “.” must reference itself; e.g., it must equal the inode (
number for the directory data block. The directory inode number entry for ““..” must

be the second entry in the directory data block. Its value must equal the inode

number for the parent of the directory entry (or the inode number of the directory

data block if the directory is the root directory). If the directory inode numbers are

incorrect, fsck will replace them with the correct values. If there are multiple hard

links to a directory, the first one encountered is considered the real parent to which

“..” should point; fsck recommends deletion for the subsequently discovered names.

File System Connectivity

Fsck checks the general connectivity of the file system. If directories are not linked
into the file system, then fsck links the directory back into the file system in the
lost+found directory. This condition only occurs when there has been a hardware
failure.

Acknowledgements

I thank Bill Joy, Sam Leffler, Robert Elz and Dennis Ritchie for their suggestions and
help in implementing the new file system. Thanks also to Robert Henry for his edi-
torial input to get this document together. Finally we thank our sponsors, the
National Science Foundation under grant MCS80-05144, and the Defense Advance
Research Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval
Electronic System Command under Contract No. N00039-82-C-0235. (Kirk McKusick,

July 1983) (,

B-10 SYSTEM ADMINISTRATOR’'S GUIDE

Fixing Corrupted File Systems

I would like to thank Larry A. Wehr for advice that lead to the first version of fsck
and Rick B. Brandt for adapting fsck to UNIX/TS. (T. Kowalski, July 1979)

References
Dolotta78

Joy83

Dolotta, T. A., and Olsson, S. B. eds.,
UNIX User’s Manual, Edition 1.1,
January 1978.

Joy, W., Cooper, E., Fabry, R., Leffler, S., McKusick, M.,
and Mosher, D.

4.2BSD System Manual,

University of California at Berkeley,

Computer Systems Research Group Technical Report

#4, 1982.

McKusick84

McKusick, M., Joy, W., Leffler, S., and Fabry, R.
A Fast File System for UNIX,

ACM Transactions on Computer Systems 2, 3.

pp. 181-197, August 1984.

Ritchie78

Ritchie, D. M., and Thompson, K.,

The UNIX Time-Sharing System,

The Bell System Technical Journal

57,

6 (July-August 1978, Part 2), pp. 1905-29.

Thompson78

Thompson, K.,

UNIX Implementation,

The Bell System Technical Journal

57,

6 (July-August 1978, Part 2), pp. 1931-46.

Appendix B: FSCK

B-11

Fsck Error Conditions

Conventions

Fsck is a multi-pass file system check program. Each file system pass invokes a
different Phase of the fsck program. After the initial setup, fsck performs successive
Phases over each file system, checking blocks and sizes, path-names, connectivity,
reference counts, and the map of free blocks, (possibly rebuilding it), and performs
some cleanup. Normally fsck is run non-interactively to preen the file systems after an
unclean halt. While preen’ing a file system, it will only fix corruptions that are
expected to occur from an unclean halt. These actions are a proper subset of the
actions that fsck will take when it is running interactively. Throughout this appendix
many errors have several options that the operator can take. When an inconsistency
is detected, fsck reports the error condition to the operator. If a response is
required, fsck prints a prompt message and waits for a response. When preen’ing
most errors are fatal. For those that are expected, the response taken is noted. This
appendix explains the meaning of each error condition, the possible responses, and
the related error conditions. The error conditions are organized by the Phase of the
fsck program in which they can occur. The error conditions that may.occur in more
than one Phase will be discussed in initialization.

Initialization

Before a file system check can be performed, certain tables have to be set up and cer-
tain files opened. This section concerns itself with the opening of files and the initiali-
zation of tables. This section lists error conditions resulting from command line
options, memory requests, opening of files, status of files, file system size checks, and
creation of the scratch file. All the initialization errors are fatal when the file system
is being preen’ed.

C option?
C is not a legal option to fsck; legal options are -b, -y, —n, and -p. Fsck terminates
on this error condition. See the fsck(1M) manual entry for further detail.

cannot alloc NNN bytes for blockmap

cannot alloc NNN bytes for freemap

cannot alloc NNN bytes for statemap

cannot alloc NNN bytes for Incntp

Fsck’s request for memory for its virtual memory tables failed. This should never
happen. Fsck terminates on this error condition. See a guru.

Can’t open checklist file: F
The file system checklist file F (usually /erc/fstab) can not be opened for reading.

Fsck terminates on this error condition. Check access modes of F.

Can’t stat root
Fsck’s request for statistics about the root directory */”” failed. This should never
happen. Fsck terminates on this error condition. See a guru.

Can’t stat 7

B-12 SYSTEM ADMINISTRATOR’S GUIDE

Fsck Error Conditions

Can’t make sense out of name F

Fsck’s request for statistics about the file system F failed. When running manually, it
ignores this file system and continues checking the next file system given. Check
access modes of F.

Can’t open F

Fsck’s request attempt to open the file system F failed. When running manually, it
ignores this file system and continues checking the next file system given. Check
access modes of F.

F: (NO WRITE)

Either the —n flag was specified or fsck’s attempt to open the file system F for writing
failed. When running manually, all the diagnostics are printed out, but no
modifications are attempted to fix them.

file is not a block or character device; OK

You have given fsck a regular file name by mistake. Check the type of the file
specified. Possible responses to the OK prompt are: ignore this error condition.
ignore this file system and continues checking the next file system given.

UNDEFINED OPTIMIZATION IN SUPERBLOCK (SET TO DEFAULT)

The superblock optimization parameter is neither OPT_TIME nor OPT_SPACE.
Possible responses to the SET TO DEFAULT prompt are: The superblock is set to
request optimization to minimize running time of the system. (If optimization to
minimize disk space utilization is desired, it can be set using tunefs(IM).) ignore this
error condition.

IMPOSSIBLE MINFREE=D IN SUPERBLOCK (SET TO DEFAULT)

The superblock minimum space percentage is greater than 99% or less then 0%. Pos-
sible responses to the SET TO DEFAULT prompt are: The minfree parameter is set
to 10%. (If some other percentage is desired, it can be set using tunefs(1M).) ignore
this error condition.

One of the following messages will appear:

MAGIC NUMBER WRONG

NCG OUT OF RANGE

CPG OUT OF RANGE

NCYL DOES NOT JIVE WITH NCG*CPG

SIZE PREPOSTEROUSLY LARGE

TRASHED VALUES IN SUPER BLOCK

and will be followed by the message:

F: BAD SUPER BLOCK: B

USE -b OPTION TO FSCK TO SPECIFY LOCATION OF AN ALTERNATE
SUPER-BLOCK TO S.spLY NEEDED INFORMATION; SEE fsck(1M).

The super block has been corrupted. An alternative super block must be selected
from among those listed by newfs (1IFFS) when the file system was created. For file
systems with a blocksize less than 32K, specifying —b 32 is a good first choice.

INTERNAL INCONSISTENCY: M _
Fsck’s has had an internal panic, whose message is specified as M. This should never
happen. See a guru.

CAN NOT SEEK: BLK B (CONTINUE)

Fsck’s request for moving to a specified block number B in the file system failed.
This should never happen. See a guru. Possible responses to the CONTINUE

Appendix B: FSCK B-13

Fsck Error Conditions

prompt are: attempt to continue to run the file system check. Often, however the
problem will persist. This error condition will not allow a complete check of the file
system. A second run of fsck should be made to re-check this file system. If the
block was part of the virtual memory buffer cache, fsck will terminate with the mes-
sage “Fatal 1/O error”. terminate the program.

CAN NOT READ: BLK B (CONTINUE)

Fsck’s request for reading a specified block number B in the file system failed. This
should never happen. See a guru. Possible responses to the CONTINUE prompt
are: attempt to continue to run the file system check. It will retry the read and print
out the message:

THE FOLLOWING SECTORS COULD NOT BE READ: N

where N indicates the sectors that could not be read. If fsck ever tries to write back
one of the blocks on which the read failed it will print the message:

WRITING ZERO’ED BLOCK N TO DISK

where N indicates the sector that was written with zero’s. If the disk is experiencing
hardware problems, the problem will persist. This error condition will not allow a
complete check of the file system. A second run of fsck should be made to re-check
this file system. If the block was part of the virtual memory buffer cache, fsck will
terminate with the message ‘“Fatal I/O error”. terminate the program.

CAN NOT WRITE: BLK B (CONTINUE)

Fsck’s request for writing a specified block number B in the file system failed. The
disk is write-protected; check the write protect lock on the drive. If that is not the
problem, see a guru. Possible responses to the CONTINUE prompt are: attempt to
continue to run the file system check. The write operation will be retried with the
failed blocks indicated by the message:

THE FOLLOWING SECTORS COULD NOT BE WRITTEN: N

where N indicates the sectors that could not be written. If the disk is experiencing
hardware problems, the problem will persist. This error condition will not allow a
complete check of the file system. A second run of fsck should be made to re-check
this file system. If the block was part of the virtual memory buffer cache, fsck will
terminate with the message ‘“Fatal I/O error”. terminate the program.

bad inode number DDD to ginode
An internal error has attempted to read non-existent inode DDD. This error causes
fsck to exit. See a guru.

Phase 1 = Check Blocks and Sizes

This phase concerns itself with the inode list. This section lists error conditions
resulting from checking inode types, setting up the zero-link-count table, examining
inode block numbers for bad or duplicate blocks, checking inode size, and checking
inode format. All errors in this phase except INCORRECT BLOCK COUNT and
PARTIALLY TRUNCATED INODE are fatal if the file system is being preen’ed.

UNKNOWN FILE TYPE I=/ (CLEAR)

The mode word of the inode [indicates that the inode is not a special block inode,
special character inode, socket inode, regular inode, symbolic link, or directory
inode. Possible responses to the CLEAR prompt are: de-allocate inode I by zeroing
its contents. This will always invoke the UNALLOCATED error condition in Phase
2 for each directory entry pointing to this inode. ignore this error condition.

B-14 SYSTEM ADMINISTRATOR’S GUIDE

Fsck Error Conditions

PARTIALLY TRUNCATED INODE I=] (SALVAGE) ‘

Fsck has found inode I whose size is shorter than the number of blocks allocated to
it. This condition should only occur if the system crashes while in the midst of trun-
cating a file. When preen’ing the file system, fsck completes the truncation to the
specified size. Possible responses to SALVAGE are: complete the truncation to the
size specified in the inode. ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)

An internal table for fsck containing allocated inodes with a link count of zero cannot
allocate more memory. Increase the virtual memory for fsck. Possible responses to
the CONTINUE prompt are: continue with the program. This error condition will
not allow a complete check of the file system. A second run of fsck should be made
to re-check this file system. If another allocated inode with a zero link count is
found, this error condition is repeated. terminate the program.

B BAD I=]

Inode I contains block number B with a number lower than the number of the first
data block in the file system or greater than the number of the last block in the file
system. This error condition may invoke the EXCESSIVE BAD BLKS error condi-
tion in Phase 1 (see next paragraph) if inode I has too many block numbers outside
the file system range. This error condition will always invoke the BAD/DUP error
condition in Phase 2 and Phase 4.

EXCESSIVE BAD BLKS I=/ (CONTINUE)

There is more than a tolerable number (usually 10) of blocks with a number lower
than the number of the first data block in the file system or greater than the number
of last block in the file system associated with inode I. Possible responses to the
CONTINUE prompt are: ignore the rest of the blocks in this inode and continue
checking with the next inode in the file system. This error condition will not allow a
complete check of the file system. A second run of fsck should be made to re-check
this file system. terminate the program.

BAD STATE DDD TO BLKERR
An internal error has scrambled fsck’s state map to have the impossible value DDD.
Fsck exits immediately. See a guru.

BDUP I=]

Inode I contains block number B that is already claimed by another inode. This error
condition may invoke the EXCESSIVE DUP BLKS error condition in Phase 1 if inode
I has too many block numbers claimed by other inodes. This error condition will
always invoke Phase 1b and the BAD/DUP error condition in Phase 2 and Phase 4.

EXCESSIVE DUP BLKS I=] (CONTINUE)

There is more than a tolerable number (usually 10) of blocks claimed by other inodes.
Possible responses to the CONTINUE prompt are: ignore the rest of the blocks in
this inode and continue checking with the next inode in the file system. This error
condition will not allow a complete check of the file system. A second run of fsck
should be made to re-check this file system. terminate the program.

DUP TABLE OVERFLOW (CONTINUE)

An internal table in fsck containing duplicate block numbers cannot allocate any
more space. Increase the amount of virtual memory available to fsck. Possible
responses to the CONTINUE prompt are: continue with the program. This error
condition will not allow a complete check of the file system. A second run of fsck
should be made to re-check this file system. If another duplicate block is found, this

Appendix B: FSCK B-15

Fsck Error Conditions

error condition will repeat. terminate the program.

PARTIALLY ALLOCATED INODE I=] (CLEAR)
Inode [is neither allocated nor unallocated. Possible responses to the CLEAR
prompt are: de-allocate inode I by zeroing its contents. ignore this error condition.

INCORRECT BLOCK COUNT I=I (X should be Y) (CORRECT)

The block count for inode I is X blocks, but should be Y blocks. When preen’ing the
count is corrected. Possible responses to the CORRECT prompt are: replace the
block count of inode I with Y. ignore this error condition.

Phase 1B: Rescan for More Dups

When a duplicate block is found in the file system, the file system is rescanned to find
the inode that previously claimed that block. This section lists the error condition
when the duplicate block is found.

B DUP I=1

Inode I contains block number B that is already claimed by another inode. This error
condition will always invoke the BAD/DUP error condition in Phase 2. You can
determine which inodes have overlapping blocks by examining this error condition
and the DUP error condition in Phase 1.

Phase 2 — Check Pathnames

This phase concerns itself with removing directory entries pointing to error condi-
tioned inodes from Phase 1 and Phase 1b. This section lists error conditions resulting
from root inode mode and status, directory inode pointers in range, and directory
entries pointing to bad inodes, and directory integrity checks. All errors in this phase
are fatal if the file system is being preen’ed, except for directories not being a multiple
of the blocks size and extraneous hard links.

ROOT INODE UNALLOCATED (ALLOCATE)

The root inode (usually inode number 2) has no allocate mode bits. This should
never happen. Possible responses to the ALLOCATE prompt are: allocate inode 2
as the root inode. The files and directories usually found in the root will be recovered
in Phase 3 and put into lost+found. If the attempt to allocate the root fails, fsck will
exit with the message:

CANNOT ALLOCATE ROOT INODE. fsck will exit.

ROOT INODE NOT DIRECTORY (REALLOCATE)

The root inode (usually inode number 2) is not directory inode type. Possible
responses to the REALLOCATE prompt are: clear the existing contents of the root
inode and reallocate it. The files and directories usually found in the root will be
recovered in Phase 3 and put into lost+found. If the attempt to allocate the root
fails, fsck will exit with the message:

CANNOT ALLOCATE ROOT INODE. fsck will then prompt with FIX Possible
responses to the FIX prompt are: replace the root inode’s type to be a directory. If
the root inode’s data blocks are not directory blocks, many error conditions will be
produced. terminate the program.

B-16 SYSTEM ADMINISTRATOR’'S GUIDE

Fsck Error Conditions

DUPS/BAD IN ROOT INODE (REALLOCATE)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks in the root inode (usu-
ally inode number 2) for the file system. Possible responses to the REALLOCATE
prompt are: clear the existing contents of the root inode and reallocate it. The files -
and directories usually found in the root will be recovered in Phase 3 and put into
lost+found. If the attempt to allocate the root fails, fsck will exit with the message:
CANNOT ALLOCATE ROOT INODE. fsck will then prompt with CONTINUE. Pos-
sible responses to the CONTINUE prompt are: ignore the DUPS/BAD error condi-
tion in the root inode and attempt to continue to run the file system check. If the
root inode is not correct, then this may result in many other error conditions. ter-
minate the program.

NAME TOO LONG F

An excessively long path name has been found. This usually indicates loops in the
file system name space. This can occur if the super user has made circular links to
directories. The offending links must be removed (by a guru).

I OUT OF RANGE I=] NAME=F (REMOVE)

A directory entry F has an inode number [that is greater than the end of the inode
list. Possible responses to the REMOVE prompt are: the directory entry F is
removed. ignore this error condition.

UNALLOCATED I=/ OWNER=0 MODE=M SIZE=S MTIME=T type=F
(REMOVE) o

A directory or file entry F points to an unallocated inode I. The owner O, mode M,
size §, modify time T, and name F are printed. Possible responses to the REMOVE
prompt are: the directory entry F is removed. ignore this error condition.

DUP/BAD I=] OWNER=0 MODE=M SIZE=S MTIME=T fype=F (REMOVE)
Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with direc-
tory or file entry F, inode I. The owner O, mode M, size S, modify time T, and direc-
tory name F are printed. Possible responses to the REMOVE prompt are: the direc-
tory entry F is removed. ignore this error condition.

ZERO LENGTH DIRECTORY I=] OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (REMOVE)

A directory entry F has a size § that is zero. The owner O, mode M, size S, modify
time 7, and directory name F are printed. Possible responses to the REMOVE
prompt are: the directory entry F is removed; this will always invoke the BAD/DUP
error condition in Phase 4. ignore this error condition.

DIRECTORY TOO SHORT I=]/ OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (FIX)

A directory F has been found whose size S is less than the minimum size directory.
The owner O, mode M, size S, modify time T, and directory name F are printed.
Possible responses to the FIX prompt are: increase the size of the directory to the
minimum directory size. ignore this directory.

DIRECTORY F LENGTH S NOT MULTIPLE OF B (ADJUST)

A directory F has been found with size S that is not a multiple of the directory block-
size B. Possible responses to the ADJUST prompt are: the length is rounded up to
the appropriate block size. This error can occur on 4.2BSD file systems. Thus when
preen’ing the file system only a warning is printed and the directory is adjusted.
ignore the error condition.

Appendix B; FSCK B-17

Fsck Error Conditions

DIRECTORY CORRUPTED I=]/ OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (SALVAGE)

A directory with an inconsistent internal state has been found. Possible responses to
the FIX prompt are: throw away all entries up to the next directory boundary (usually
512-byte) boundary. This drastic action can throw away up to 42 entries, and should
be taken only after other recovery efforts have failed. skip up to the next directory
boundary and resume reading, but do not modify the directory.

BAD INODE NUMBER FOR ¢.’ I=] OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (FIX) . - _

A directory I has been found whose inode number for .’ does does not equal I. Pos-
sible responses to the FIX prompt are: change the inode number for .’ to be equal
to I. leave the inode number for ‘.’ unchanged.

MISSING ‘.’ I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (FIX)

A directory I has been found whose first entry is unallocated. Possible responses to
the FIX prompt are: build an entry for ‘.’ with inode number equal to I. leave the
directory unchanged.

MISSING <.’ I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F

CANNOT FIX, FIRST ENTRY IN DIRECTORY CONTAINS F

A directory I has been found whose first entry is F. Fsck cannot resolve this prob-
lem. The file system should be mounted and the offending entry F moved elsewhere.
The file system shiould then be unmounted .and fsck should be run again.

MISSING ¢.? I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F
CANNOT FIX, INSUFFICIENT SPACE TO ADD ¢.

A directory I has been found whose first entry is not ‘.”. Fsck cannot resolve this
problem as it should never happen. See a guru.

EXTRA .’ ENTRY I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found that has more than one entry for ‘.. Possible responses
to the FIX prompt are: remove the extra entry for ‘.”. leave the directory unchanged.

BAD INODE NUMBER FOR ‘..’ I=] OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (FIX)

A directory I has been found whose inode number for ..’ does does not equal the
parent of I. Possible responses to the FIX prompt are: change the inode number for
‘..’ to be equal to the parent of I (*..” in the root inode points to itself). leave the
inode number for ‘..” unchanged.

MISSING ¢..’ I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (FIX)

A directory I has been found whose second entry is unallocated. Possible responses
to the FIX prompt are: build an entry for ‘.. with inode number equal to the parent
of I (“..” in the root inode points to itself). leave the directory unchanged.

MISSING ¢..? I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F

CANNOT FIX, SECOND ENTRY IN DIRECTORY CONTAINS F

A directory I has been found whose second entry is F. Fsck cannot resolve this prob-
lem. The file system should be mounted and the offending entry F moved elsewhere.
The file system should then be unmounted and fsck should be run again.

MISSING ‘..’ I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F

CANNOT FIX, INSUFFICIENT SPACE TO ADD ..
A directory I has been found whose second entry is not ‘..”. Fsck cannot resolve this

B-18 SYSTEM ADMINISTRATOR’S GUIDE

Fsck Error Conditions

problem. The file system should be mounted and the second entry in the directory
moved elsewhere. The file system should then be unmounted and fsck should be run
again.

EXTRA ‘.. ENTRY I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (FIX)

A directory I has been found that has more than one entry for ‘..’. Possible
responses to the FIX prompt are: remove the extra entry for ‘... leave the directory
unchanged.

N IS AN EXTRANEOUS HARD LINK TO A DIRECTORY D (REMOVE)

Fsck has found a hard link, N, to a directory, D. When preen’ing the extraneous
links are ignored. Possible responses to the REMOVE prompt are: delete the
extraneous entry, N. ignore the error condition.

BAD INODE S TO DESCEND
An internal error has caused an impossible state S to be passed to the routine that
descends the file system directory structure. Fsck exits. See a guru.

BAD RETURN STATE S FROM DESCEND
An internal error has caused an impossible state S to be returned from the routine
that descends the file system directory structure. Fsck exits. See a guru.

BAD STATE S FOR ROOT INODE
Ahn internal error has caused an impossible state S to be assigned to the root inode.
Fsck exits. See a guru.

Phase 3 = Check Connectivity

This phase concerns itself with the directory connectivity seen in Phase 2. This sec-
tion lists error conditions resulting from unreferenced directories, and missing or full
lost+found directories.

UNREF DIR I=]/ OWNER=0 MODE=M SIZE=S MTIME=T (RECONNECT)

The directory inode I was not connected to a directory entry when the file system was
traversed. The owner O, mode M, size S, and modify time T of directory inode I are
printed. When preen’ing, the directory is reconnected if its size is non-zero, other-
wise it is cleared. Possible responses to the RECONNECT prompt are: reconnect

- directory inode I to the file system in the directory for lost files (usually lost+found).
This may invoke the lost+found error condition in Phase 3 if there are problems con-
necting directory inode [to lost+found. This may also invoke the CONNECTED
error condition in Phase 3 if the link was successful. ignore this error condition.
This will always invoke the UNREF error condition in Phase 4.

NO lost+found DIRECTORY (CREATE)

There is no lost+found directory in the root directory of the file system; When
preen’ing fsck tries to create a lost+found directory. Possible responses to the
CREATE prompt are: create a lost+found directory in the root of the file system.
This may raise the message:

NO SPACE LEFT IN / (EXPAND)

See below for the possible responses. Inability to create a lost+found directory gen-
erates the message:

SORRY. CANNOT CREATE lost+found DIRECTORY

and aborts the attempt to linkup the lost inode. This will always invoke the UNREF

Appendix B: FSCK B-19

Fsck Error Conditions

error condition in Phase 4. abort the attempt to linkup the lost inode. This will
always invoke the UNREF error condition in Phase 4.

lost+found IS NOT A DIRECTORY (REALLOCATE)

The entry for lost+found is not a directory. Possible responses to the REALLO-
CATE prompt are: allocate a directory inode, and change lost+found to reference it.
The previous inode reference by the lost+found name is not cleared. Thus it will
either be reclaimed as an UNREF’ed inode or have its link count ADJUST’ed later in
this Phase. Inability to create a lost+found directory generates the message:

SORRY. CANNOT CREATE lost+found DIRECTORY

and aborts the attempt to linkup the lost inode. This will always invoke the UNREF
error condition in Phase 4. abort the attempt to linkup the lost inode. This will
always invoke the UNREF error condition in Phase 4.

NO SPACE LEFT IN /lost+found (EXPAND)

There is no space to add another entry to the lost+found directory in the root direc-
tory of the file system. When preen’ing the lost+found directory is expanded. Possi-
ble responses to the EXPAND prompt are: the lost+found directory is expanded to
make room for the new entry. If the attempted expansion fails fsck prints the mes-
sage:

SORRY. NO SPACE IN lost+found DIRECTORY

and aborts the attempt to linkup the lost inode. This will always invoke the UNREF
error condition in. Phase 4. Clean out unnecessary entries in lost+found. This error
is fatal if the file system is being preen’ed. abort the attempt to linkup the lost inode.
This will always invoke the UNREF error condition in Phase 4.

DIR I=/] CONNECTED. PARENT WAS I=12

This is an advisory message indicating a directory inode /I was successfully connected
to the lost+found directory. The parent inode I2 of the directory inode I is replaced
by the inode number of the lost+found directory.

DIRECTORY F LENGTH S NOT MULTIPLE OF B (ADJUST)

A directory F has been found with size S that is not a multiple of the directory block-
size B (this can reoccur in Phase 3 if it is not adjusted in Phase 2). Possible responses
to the ADJUST prompt are: the length is rounded up to the appropriate block size.
This error can occur on 4.2BSD file systems. Thus when preen’ing the file system
only a warning is printed and the directory is adjusted. ignore the error condition.

BAD INODE S TO DESCEND _
An internal error has caused an impossible state S to be passed to the routine that
descends the file system directory structure. Fsck exits. See a guru.

Phase 4 — Check Reference Counts

This phase concerns itself with the link count information seen in Phase 2 and Phase
3. This section lists error conditions resulting from unreferenced files, missing or full
lost+found directory, incorrect link counts for files, directories, symbolic links, or
special files, unreferenced files, symbolic links, and directories, and bad or duplicate
blocks in files, symbolic links, and directories. All errors in this phase are correct-
able if the file system is being preen’ed except running out of space in the lost+found
directory.

UNREF FILE I=] OWNER=0 MODE=M SIZE=S MTIME=T (RECONNECT)

B-20 SYSTEM ADMINISTRATOR’'S GUIDE

Fsck Error Conditions

Inode I was not connected to a directory entry when the file system was traversed.
The owner O, mode M, size S, and modify time T of inode I are printed. When
preen’ing the file is cleared if either its size or its link count is zero, otherwise it is
reconnected. Possible responses to the RECONNECT prompt are: reconnect inode
I to the file system in the directory for lost files (usually lost+found). This may
invoke the lost+found error condition in Phase 4 if there are problems connecting
inode I to lost+found. ignore this error condition. This will always invoke the
CLEAR error condition in Phase 4.

(CLEAR)

The inode mentioned in the immediately previous error condition can not be recon-
nected. This cannot occur if the file system is being preen’ed, since lack of space to
reconnect files is a fatal error. Possible responses to the CLEAR prompt are: de-
allocate the inode mentioned in the immediately previous error condition by zeroing
its contents. ignore this error condition.

NO lost+found DIRECTORY (CREATE)

There is no lost+found directory in the root directory of the file system; When
preen’ing fsck tries to create a lost+found directory. Possible responses to the
CREATE prompt are: create a lost+found directory in the root of the file system.
This may raise the message:

NO SPACE LEFT IN / (EXPAND)

See below for the possible responses. Inability to create a lost+found directory gen-
erates thc inessage:

SORRY. CANNOT CREATE lost+found DIRECTORY

and aborts the attempt to linkup the lost inode. This will always invoke the UNREF
error condition in Phase 4. abort the attempt to linkup the lost inode. This will
always invoke the UNREF error condition in Phase 4.

lost+found IS NOT A DIRECTORY (REALLOCATE)

The entry for lost+found is not a directory. Possible responses to the REALLO-
CATE prompt are: allocate a directory inode, and change lost+found to reference it.
The previous inode reference by the lost+found name is not cleared. Thus it will
either be reclaimed as an UNREF’ed inode or have its link count ADJUST’ed later in
this Phase. Inability to create a lost+found directory generates the message:

SORRY. CANNOT CREATE lost+found DIRECTORY

and aborts the attempt to linkup the lost inode. This will always invoke the UNREF
error condition in Phase 4. abort the attempt to linkup the lost inode. This will
always invoke the UNREF error condition in Phase 4.

NO SPACE LEFT IN /lost+found (EXPAND)

There is no space to add another entry to the lost+found directory in the root direc-
tory of the file system. When preen’ing the lost+found directory is expanded. Possi-
ble responses to the EXPAND prompt are: the lost+found directory is expanded to
make room for the new entry. If the attempted expansion fails fsck prints the mes-
sage:

SORRY. NO SPACE IN lost+found DIRECTORY

and aborts the attempt to linkup the lost inode. This will always invoke the UNREF
error condition in Phase 4. Clean out unnecessary entries in lost+found. This error
is fatal if the file system is being preen’ed. abort the attempt to linkup the lost inode.
This will always invoke the UNREF error condition in Phase 4.

LINK COUNT type I=] OWNER=0 MODE=M SIZE=S MTIME=T COUNT=X

SHOULD BE Y (ADJUST)
The link count for inode 7, is X but should be Y. The owner O, mode M, size S, and

Appendix B: FSCK B-21

Fsck Error Conditions

modify time T are printed. When preen’ing the link count is adjusted unless the
number of references is increasing, a condition that should never occur unless precip-
itated by a hardware failure. When the number of references is increasing under
preen mode, fsck exits with the message:

LINK COUNT INCREASING Possible responses to the ADJUST prompt are:
replace the link count of file inode I with Y. ignore this error condition.

UNREF fype I=] OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

Inode I, was not connected to a directory entry when the file system was traversed.
The owner O, mode M, size S, and modify time T of inode I are printed. When
preen’ing, this is a file that was not connected because its size or link count was zero,
hence it is cleared. Possible responses to the CLEAR prompt are: de-allocate inode
I by zeroing its contents. ignore this error condition.

BAD/DUP fype I=] OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with inode
I. The owner O, mode M, size S, and modify time T of inode I are printed. This
error cannot arise when the file system is being preen’ed, as it would have caused a
fatal error earlier. Possible responses to the CLEAR prompt are: de-allocate inode [
by zeroing its contents. ignore this error condition.

Phase 5 - Check Cyl groups

This phase concerns itself with the free-block and used-inode maps. This section lists
error conditions resulting from allocated blocks in the free-block maps, free blocks
missing from free-block maps, and the total free-block count incorrect. It also lists
error conditions resulting from free inodes in the used-inode maps, allocated inodes
missing from used-inode maps, and the total used-inode count incorrect.

CG C: BAD MAGIC NUMBER

The magic number of cylinder group C is wrong. This usually indicates that the
cylinder group maps have been destroyed. When running manually the cylinder group
is marked as needing to be reconstructed. This error is fatal if the file system is being
preen’ed.

BLK(S) MISSING IN BIT MAPS (SALVAGE)

A cylinder group block map is missing some free blocks. During preen’ing the maps
are reconstructed. Possible responses to the SALVAGE prompt are: reconstruct the
free block map. ignore this error condition.

SUMMARY INFORMATION BAD (SALVAGE)

The summary information was found to be incorrect. When preen’ing, the summary
information is recomputed. Possible responses to the SALVAGE prompt are:
reconstruct the summary information. ignore this error condition.

FREE BLK COUNT(S) WRONG IN SUPERBLOCK (SALVAGE)

The superblock free block information was found to be incorrect. When preen’ing,
the superblock free block information is recomputed. Possible responses to the SAL-
VAGE prompt are: reconstruct the superblock free block information. ignore this
error condition.

B-22 SYSTEM ADMINISTRATOR’'S GUIDE

Fsck Error Conditions

Cleanup

Once a file system has been checked, a few cleanup functions are performed. This
section lists advisory messages about the file system and modify status of the file sys-
tem.

-V files, W used, X free (Y frags, Z blocks)
This is an advisory message indicating that the file system checked contained V files
using W fragment sized blocks leaving X fragment sized blocks free in the file system.

The numbers in parenthesis breaks the free count down into Y free fragments and Z
free full sized blocks.

**¥x%* REBOOT UNIX *#%%%

This is an advisory message indicating that the root file system has been modified by
fsck. If UNIX is not rebooted immediately, the work done by fsck may be undone by
the in-core copies of tables UNIX keeps. When preen’ing, fsck will exit with a code
of 4. The standard auto-reboot script distributed w1th 4.3BSD interprets an exit code
of 4 by issuing a reboot system call.

x4k% FILE SYSTEM WAS MODIFIED **##

This is an advisory message indicating that the current file system was modlﬁed by
fsck. If this file system is mounted or is the current root file system, fsck should be
halted and UNIX rebooted. If UNIX is not rebooted immediately, the work done by
fsck may be undone by the in-core copies of tables UNIX keeps.

Appendix B: FSCK B-23

Introduction

Appendix C describes directories and files of interest to a system administrator.

The directories of the root file system (/) are as follows:

bin Directory containing public commands.

boot Directory containing configurable object files created by the
/etc/mkboot(1M) program.

dev Directory containing special files that define all of the devices on
the system.

etc Directory containing administrative programs and tables.

lib Directory containing public libraries.

lost+found Directory used by fsck(1M) to save disconnected files.

tmp Directory used for temporary files.

usr Directory used to mount the /usr file system.

The following configurator files and directories are important in the administration
of the RISComputer:

® /etc/checklist
/etc/cshre
/etc/fstab
/etc/gettydefs
/etc/group
/etc/hosts

/etc/init.d Directory

/etc/inittab
/etc/local_hostname
/etc/reconfig/master.d
/etc/motd

/etc/passwd
/etc/profile

/etc/rc0

/etc/rc0.d Directory

/etc/re2

/etc/rc2.d Directory
B /etc/rc.d Directory
B /etc/rc3

® /etc/rc3.d Directory

Appendix C: DIRECTORIES AND FILES C-1

Introduction

/etc/shutdown
/etc/stdeshre
/ete/stdprofile

lete/TZ

/etc/utmp

/ete/wtmp
/usr/lib/cron/log
/usr/lib/spell/spellhist

/usr/news Directory

/usr/spool/cron/crontabs Directory

Each of these files is briefly described in this appendix.

C-2 SYSTEM ADMINISTRATOR'S GUIDE

Files

/etc/checklist

The /ete/checklist file is used to define a default list of file system devices to be
checked for consistency by /etc/fsck and /etc/ncheck. The character (raw) device
partition for the file system should be identified. The devices listed normally
correspond to those mounted when the system is in the multi-user mode (run level 2).
Remember that with the exception of root, a file system must be unmounted to be
checked. Therefore, the checklist file is a convenience for use when in the single-user
mode of operation with only the root file system mounted. When the system is
delivered, this file-contains only the root.

/etc/cshre

This is the initial environment settings for users of the C-shell. It is the basic set
of values assigned to all C-shell users on the system. A typical /etc/cshre looks like
this:

default settings for all users

#

umask 022
set path = (7/bin /usr/net /bin /usr/bin /usr/ucb .)

cat —-s /etc/motd

if ($?LOGNAME == 0) then
echo "$0": LOGNAME: parameter not set
exit 1

else

set mail=/usr/mail/$LOGNAME
endif
if ({ /bin/mail -e }) then

echo 'You have mail.’

endif

if ($LOGNAME != root) then
news -n

endif

Figure C-1: Typical /etc/cshre File

/etc/fstab

The /etc/fstab file is used as an argument to the /etc/mountall command. The
fstab file specifies the file system(s) to be mounted by /etc/mountall and remote file
system(s) to be mounted by /etc/rmountall. A typical /etc/fstab file is shown in Fig-
ure C-2. The format of the file is the block device name followed by the mount point
name. (See the mountall(1M) manual page in the System Administrator’s Reference

Appendix C: DIRECTORIES AND FILES C-3

Files

Manual for additional information.)

/dev/root / ffs rw 0 0

/dev/usr /usr ffs rw 0 O

/dev/dsk/ips0d0s7 none swap rw,noauto 0 0
yoda:/cmos /cmos nfs rw,bg,soft,timeo=20 0 0
yoda: /usr /yoda/usr nfs rw,bg,soft,timeo=20 0 0

Figure C-2: Typical /etc/fstab File

/etc/gettydefs

The /etc/gettydefs file contains information that is used by /etc/getty to set the
speed and terminal settings for a line. The getty command accesses the gettydefs file
with a label. The general format of the gettydefs file is as follows:

label# initial—flags # final-flags #login-prompt #next-label

Each line entry in the gettydefs file is followed by a blank line. (Refer to the get-
tydefs(4) manual page in the Programmer’s Reference Manual for complete informa-
tion.) Figure C-3 shows a typical RISComputer /etc/gettydefs file. '

C-4 SYSTEM ADMINISTRATOR’'S GUIDE

Files

console# B9600 CLOCAL # B9600 CLOCAL SANE TAB3 #\r\fn\n$HOSTNAME Console \
login: #console

co_9600#% B9600 CLOCAL # B9600 CLOCAL SANE TAB3 #\r\n\n$SHOSTNAME login: #co_4800
co_4800# B4800 CLOCAL # B4800 CLOCAL SANE TAB3 #\r\n\n$HOSTNAME login: #co_2400
co_2400#%# B2400 CLOCAL # B2400 CLOCAL SANE TAB3 #\r\n\n$HOSTNAME login: #co_1200
co_1200# B1200 CLOCAL # B1200 CLOCAL SANE TAB3 #\r\n\n$HOSTNAME login: #co_300
co_300% B300 # B300 SANE TAB3 #\r\n\n$HOSTNAME login: #co_9600

dx_19200% B19200 CLOCAL # B19200 CLOCAL SANE TAB3 #\r\n\n$HOSTNAME \
login: #dx_19200

dx_9600% B9600 CLOCAL # B9600 CLOCAL SANE TAB3 #\r\n\n$HOSTNAME login: #dx_9600
dx_4800# B4800 CLOCAL # B4800 CLOCAL SANE TAB3 #\r\n\n$HOSTNAME login: #dx_4800
dx_2400% B2400 CLOCAL # B2409 CLOCAL SANé fABBv#\;\n\n$HOSTNAME login: #dx_2400
dx_1200# B1200 CLOCAL # B1200 CLOCAL SANE TAB3 #\r\n\n$HOSTNAME login: #dx_ 1200
du_9600# B9600 # B9600 SANE TAB3 HUPCL #\r\n\n$HOSTNAME login: ¥du_4800
du_4800# B4800 # B4800 SANE TAB3 HUPCL #\r\n\n$HOSTNAME login: #du_2400
du_2400#%# B2400 # B2400 SANE TAB3 HUPCL #\r\n\n$HOSTNAME login: #du_1200
du_1200% B1200 # B1200 SANE TAB3 HUPCL #\r\n\n$HOSTNAME login: #du_300

du_300# B300 # B300 SANE TAB3 HUPCL ¥\r\n\n$HOSTNAME login: #du_9600

Figure C-3: Typical gettydefs File

/etc/group

The /etc/group file describes each group to the system. An entry is added for
each new group. Each entry in the file is one line and consists of four fields, which
are separated by a colon (:):

group name:password:group id:login names
Explanations for these fields are as follows:

group name The first field defines the group name. The group name is from
three to six characters long. The first character is alphabetic. The
rest of the characters are alphanumeric. No uppercase characters
appear. ‘

Appendix C: DIRECTORIES AND FILES C-5

Files

password The second field contains the encrypted group password. The
encrypted group password contains 13 bytes (characters). The
actual password is limited to a maximum of 8 bytes. The
encrypted password can be followed by a comma and up to 4 more.
bytes of password aging information. The use of group passwords
is discouraged.

group id The third field contains the group identification number, which
must be between 0 and 60,000. Group identification numbers 0
through 99 are reserved; O indicates the super-user (root). Com-
mas are not entered in this field.

login names The fourth field contains a list of all login names in the group.
Names in the list are separated by commas. The names listed may
use the /ete/newgrp command to become a member of the group.

Figure C-4 shows a typical RISComputer '/etc/group file.

root::0:root

other::1:root
bin::2:root,bin,daemon
sys::3:root,bin,sys,adm

adm: :4:root,adm,daemon
mail::6:root

rje::8:rje

daemon: :12:root,daemon

progs: :120:greg,tom,dvv,ads,memo
staff::121:mar,nnr, bob

Figure C-4: Typical /etc/group File

/etc/hosts Directory

The /etc/hosts directory is used by the networking software to determine the
name and addresses of accessible hosts.

NET : NET-ADDR : NETNAME
GATEWAY : ADDR, ADDR : NAME : CPUTYPE : OPSYS : PROTOCOLS
HOST : ADDR, ALTERNATE-ADDR (if any): HOSTNAME,NICKNAME : CPUTYPE

97.4.0.1 agate
97.4.0.3 diamond di
97.4.0.5 jade

Figure C-5: Typical /etc/hosts File

C-6 SYSTEM ADMINISTRATOR'S GUIDE

(\

Files

/etc/init.d Directory

The /etc/init.d directory contains executable files used in upward and downward
transitions to all system run levels. These files are linked to files beginning with S
(start) or K (stop) in /ete/ren.d, where n is the appropriate run level. Files are not
executed from this directory. They are only executed from /ete/ren.d directories.

/etc/inittab

The /etc/inittab file contains instructions for the /etc/init command. The instruc-
tions define the processes that are to be created or terminated for each initialization
state. Initialization states are called run levels or run-states.

run levels

By convention, run level 1 (or S or s) is single-user mode; run levels 2 and 3 are
multi-user modes. Chapter 3, "System Levels", summarizes the various run levels and
describes their uses. (See the inittab(4) manual page in the Programmer’s Reference
Manual for additional information.) Figure C-6 shows a typical RISComputer
/etc/inittab file. The typical entry is a series of fields separated by a colon (:):

identification:run-state:action:process

Explanations for these fields are as follows:

identification The identification field is a one- or two-character identifier for the
line entry. The identifier is unique for a line.

run-state The run-state defines the run level in which the entry is to be pro-
cessed.

action The action field defines how /etc/init treats the process field.

(Refer to the inittab(4) manual page in the Programmer’s Reference
Manual for complete information.)

process The process field defines the shell command that is to be executed.

Appendix C: DIRECTORIES AND FILES C-7

Files

Copyright (c) 1984 AT&T
All Rights Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T
The copyright notice above does not evidence any
actual or intended publication of such source code.

ETS

#ident "$ Header $"

#

Field #2 indicates the system’s default run level.
(X for unspecified.)

#

is:2:initdefault:

#

Boot time system initialization.

#

fs::sysinit:/etc/bcheckrec >/dev/syscon 2>&l
Check (& fsck) root fs.
mt::sysinit:/etc/brc >/dev/syscon 2>&l

Initialize /etc/mtab.

#

Run level changes.

#

sl:1:wait:/etc/shutdown -y —-iS —-g0 >/dev/syscon <&l 2>&l
s2:23:wait:/etc/rc2 >/dev/syscon <&l 2>&l
s3:3:wait:/etc/rc3 >/dev/syscon <&l 2>&l

System shut down.

telinit 0 = Shutdown and halt.

telinit 6 Shutdown and then reboot.

telinit 5 Like 6, but asks operator which unix
to boot. (DOESN’T WORK.)

H = H H H HFH

s0:056:wait:/etc/rc0 >/dev/syscon <&l 2>&l

Always run rcO.

of:0:wait:/etc/uadmin 2 0 >/dev/syscon <&l 2>&l

fw:5:wait:/etc/uadmin 2 2 >/dev/syscon <&l 2>&l1

RB:6:wait:echo "The system is being restarted." \
>/dev/syscon <&l 2>&l

rb:6:wait:/etc/uadmin 2 1 >/dev/syscon <&l 2>&l

Gettys

Enabled if field #3 is '"respawn';
Disabled if field #3 is "off".

The h* entries are for M500/800/1000/2000. The d* entries
are for M120 with the DIGI board.

H H H FHF H H HFH

C-8 SYSTEM ADMINISTRATOR'S GUIDE

Files

co:234:respawn: /etc/getty console console none LDISCO
(console == tty0)

t1:234:0ff:/etc/getty ttyl co_9600 none LDISCO
t2:234:0ff:/etc/getty tty2 co_9600 none LDISCO
t3:234:0ff:/etc/getty tty3 co_9600 none LDISCO
h0:234:0ff:/etc/getty ttyh0 dx_19200 none LDISCO
hl:234:0ff:/etc/getty ttyhl dx_19200 none LDISCO
h2:234:0ff:/etc/getty ttyh2 dx_19200 none LDISCO
h3:234:0ff:/etc/getty ttyh3 dx_19200 none LDISCO
h4:234:0ff:/etc/getty ttyh4 dx_ 19200 none LDISCO

Figure C-6: Typical /etc/inittab File

/usr/reconfig/master.d Directory

The /usr/reconfig/master.d directory contains files that define the configuration
of hardware devices, software drivers, system parameters and aliases. The files are
used by /etc/mkboot to obtain device information for the generation of device driver
and configurable module files. The first step in reconfiguring the system to run with
different tunable parameters is to edit the appropriate files in the
/usr/reconfig/master.d directory. (Refer to the master(4) manual page in the
Programmer’s Reference Manual for additional information.)

/etc/motd

The /ete/motd file contains the message-of-the-day. The message-of-the-day is
output by instructions in the /ete/profile file after a successful login. This message
should be kept short and to the point. The /usr/news file(s) should be used for
lengthy, more explicit messages.

/etc/passwd

The /etc/passwd file identifies each user to the system. An entry is added for
each new user. Each entry in the file is one line and consists of seven fields. The
fields are separated by a colon (:):

login name:passwd:user:group:account:login directory:program
Explanations for these fields are as follows:

login name The first field defines the login name. The login name is from three to
six characters long. The first character is alphabetic. The rest of the
characters are alphanumeric. No uppercase characters appear.

Appendix C: DIRECTORIES AND FILES C-9

Files

passwd The second field contains the encrypted login password. The
encrypted login password contains 13 bytes (characters). The actual
password is limited to a maximum of 8 bytes. The encrypted pass-
word can be followed by a comma and up to 4 more bytes of pass-
word aging information.

user id The third field contains the user identification number, which must be
between 0 and 60,000. Group identification numbers 0 through 99 are
reserved; 0 indicates the super-user (root). Commas are not entered
in this field.

group id The fourth field contains the group identification number, which must
be between 0 and 60,000. Group identification numbers 0 through 99
are reserved; 0 indicates the super-user (root). Commas are not
entered in this field.

account The fifth field is used by accounting programs. This field typically
contains the user name, department number, and bin number.

login directory The sixth field defines the full path name of the login directory.

program The seventh field defines the program to be executed after login. If it
is null, the shell (/bin/sh) is invoked.

Figure C-7 shows a typical /etc/passwd file. (See the passwd(4) manual pagé in
the Programmer’s Reference Manual for additional information.)

root::0:1:0000-Admin(0000):/:
daemon:*:1:1:0000-Admin(0000):/:
bin:*:2:2:0000-Admin(0000): /bin:
sys:*:3:3:0000-Admin(0000): /usr/src:
adm:*:4:4:0000-Admin(0000): /usr/adm:
uucp: *:5:5:0000—uucp(0000) : /usr/lib/uucp:
nuucp: *:10:10:0000—uucp(0000) :\

/usr/spool/uucppublic: /usr/lib/uucp/uucico
nobody:*:14:14: for weak daemons:/tmp:
rje:*:18:18:0000-rje(0000): /usr/rje:
lp:*:71:2:0000-1p(0000):/usr/spool/lp:
man:*:99:1:0000-Admin(0000):/:
setup:*:0:0:general system administration:/usr/admin:/bin/rsh
sysadm: *:0:0:general system administration:/usr/admin:/bin/rsh

Figure C-7: Typical /etc/passwd File

C-10 SYSTEM ADMINISTRATOR’S GUIDE

(

Files

/etc/profile

The standard (default) environment for all Bourne shell users is established by the’
instructions in the /etc/profile file. The system administrator can modify this file to
set options for the root login. For example, the following can be added to the

/etc/profile for the root login to cause the erase character to back up and to set the
TERM variable.

if [${LOGNAME} = root]
then
stty echoe
echo "Enter TERM: \c"
read TERM
export TERM

Figure C-8 shows the RISComputer default profile.

Appendix C: DIRECTORIES AND FILES C-11

Files

#ident

4 The profile that all sh logins get before using their
own .profile.

trap ™ 2 3
umask 022

MAIL=/usr/mail/${LOGNAME: ?}
export LOGNAME USER

This method of setting TZ is obsoleted by the new login.

. /etc/TIMEZONE

Login and -su shells get /etc/profile services.
-rsh is given its environment in its .profile.
case "$0" in
-su)
omit ’.’ to close security hole
PATH=/usr/net:/bin: /usr/bin: /etc: /usr/ucb
export PATH

~sh)
PATH=$HOME/bin: /usr/net:/usr/bin:/bin: /usr/ucb:.
export PATH

Allow the user to break the Message—-Of-The-Day only.

trap "trap ‘’ 2" 2
cat —-s /etc/motd
trap " 2

if mail -e
then

echo "you have mail"
fi

if [${LOGNAME} != root]
then

news —n
fi

esac
trap 2 3

Figure C-8: Standard /etc/profile File

C-12 SYSTEM ADMINISTRATOR’'S GUIDE

Files

/ eté/rcO

The /etc/rc0 file contains a shell script that is executed by /ete/shutdown for
transitions to single-user state, and by /etc/init on transitions to run levels 0, 5, and 6.
Files in the /ete/rc0.d directories are executed when /ete/rc0 is run. The file
K00ANNOUNCE in /ete/rc0.d prints the message "System services are now
being stopped."

system cleanup functions ONLY (things that end fast!)
for f in /etc/rc0.d/S*

{
if [-s ${f} 1
then
/bin/sh ${f} start
fi
}
fi
- trap "™ 15
S kill -15 -1
sleep 10
/etc/killall 9
sleep 10
sync; sync; sync
/etc/umountall

stty sane 2>/dev/null
sync; sync

echo '/

The system is down.’
sync

Figure C-9: Typical /etc/rc0 File

/etc/rc0.d Directory

The /ete/rc0.d directory contains files executed by /ete/rc0 for transitions to sys-
tem run levels 0, 5, and 6. Files in this directory are linked from the /etc/init.d
directory, and begin with either a K or an S. K indicates processes that are stopped,
and S indicates processes that are started when entering run levels 0, 5, or 6.

/etc/rc2

The /ete/re2 file contains a shell script that is executed by /ete/init on transitions
to run level 2 (multi-user state). Executable files in the /etc/re.d and any executable
files beginning with S or K in /etc/rc2.d directories are executed when /etc/re2 is run.
All files in rc2.d are linked from files in the /ete/init.d directory. These files are
prefixed with an S or a K and a number in the /etc/rc2.d directory.

Appendix C: DIRECTORIES AND FILES C-13

Files

Other files may also be added to /etc/re2.d and /ete/re.d directories as a function
of adding hardware or software to the system. Figure C-10 shows a typical RISCom-
puter /etc/re2 file.

#! /bin/sh

"Run Commands" executed when the system is changing

to init state 2, traditionally called "multi-user"
/etc/TIMEZONE

Pickup start-up packages for mounts, daemons, services, etc.

set ‘who -xr’
if [$9 = "g"]

then
echo 'The system is coming up. Please wait.’
BOOT=yes
if [-f /etc/rc.d/PRESERVE]
historical segment for vi and ex
then

mv /etc/rc.d/PRESERVE /etc/init.d

ln /etc/init.d/PRESERVE /etc/rc2.d/SO02PRESERVE
fi

elif [$7 = "2"]

then
echo ’'Changing to state 2.’
if [-d /etc/rc2.d]
then
for £ in /etc/rc2.d/K*
{
if [-s ${f)]
then
/bin/sh ${f)} stop
fi
}
fi
fi

Figure C-10: Typical /ete/rc2 File (screen 1 of 2)

C-14 SYSTEM ADMINISTRATOR’'S GUIDE

Files

if [-d /etc/rc2.d]

then
for f in /etc/rc2.d/S*
{
if [-s ${£f}]
then
/bin/sh ${f} start
fi
) .
fi
if ["${BOOT}" = "yes"]
then
stty sane tab3 2>/dev/null
fi
if ["${BOOT}" = "yes" -a -d /etc/rc.d]
then
for £ in ‘1ls /etc/rc.d’
{
if [| -s fetc/init.d/${f} 1
then
/bin/sh /etc/rc.d/${f}
fi
)
fi
if ["${BOOT}" = "yes" -a $7 = "2"]
then '

echo "The system is ready.’
elif [87 = "2"]
then

echo ‘Change to state 2 has been completed.’
fi

Figure C-10: Typical /etc/rc2 File (screen 2 of 2)

/etc/rc2.d Directory

The /ete/rc2.d directory contains files executed by /ete/rc2 for transitions to sys-
tem run level 3. Files in this directory are linked from the /etc/init.d directory, and
begin with either a K or an S. K indicates processes that should be stopped, and S
indicates processes that should be started when entering run levels 2 or 3.

Appendix C: DIRECTORIES AND FILES C-15

Files

/etc/rc.d Directory

The /etc/re.d directory contains executable files that do the various functions
needed to initialize the system to run level 2. The files are executed when /ete/rc2 is
run. (Files contained in this directory prior to UNIX System release 3.0 were moved
to /ete/rc2.d. This directory is only maintained for compatibility reasons.)

/etc/rc3

The /etc/re3 file is executed by /etc/init. It executes the shell scripts in
/ete/re3.d on transitions to system run level 3 (the Remote File Sharing state).

/etc/rc3.d Directory

The /etc/re3.d directory contains files executed by /ete/re3 for transitions to sys-
tem run level 3 (multi-user mode). Files in this directory are linked from the
/etc/init.d directory, and begin with either a K or an S. K indicates processes that
should be stopped, and S indicates processes that should be started when entering run
level 3. B

/etc/shutdown

The /ete/shutdown file contains a shell script to shut down the system gracefully
in preparation for system backup or scheduled downtime. After stopping all
nonessential processes, the shutdown script executes /etc/rc0 for transition to run
level s or S. For transitions to other run levels, the shutdown script calls /etc/init.
Figure C-11 shows a typical RISComputer /etc/shutdown file.

C-16 SYSTEM ADMINISTRATOR'S GUIDE

Files

#! /bin/sh

Sequence performed to change the init stat of a machine.
This procedure checks to see if you are permitted and

allows an interactive shutdown. The actual change of

state, killing of processes and such are performed by the
new init state, say 0, and its /etc/rcoO.

Usage:

shutdown [-y] [—g<grace-period>] [—i<init-state’>]
#! chmod +x ${file}

if [‘pwd’ = /]

then
echo "$0: You must be in the / directory to run /etc/shutdown.”
exit 1
fi
Check the user id.
if [-x /usr/bin/id]
then o
eval ‘id | sed ’‘s/[Ta-20-9=].%//'"'
if ["${uid:=0}" —ne 0]
then
echo "$0: Only root can run /etc/shutdown."”
exit 2
fi
fi
grace=60

askconfirmation=yes
initstate=s

Figure C-11: Typical /etc/shutdown File (screen 1 of 3)

Appendix C: DIRECTORIES AND FILES C-17

Files

while [$# —-gt 0]

do
case $1 in
~g[0-9]*)
grace=‘expr "$1" : ’'—g)’/
-i[Ss0156])
initstate=‘expr "$1" : ’'-i)’‘
-i[2341)
initstate=‘expr "$1" : ’'-i)’“
echo "$0: Initstate $i is not for system shutdown"
exit 1
Y) }
askconfirmation=
echo "Illegal flag argument ’$1’"
exit 1
*) o . -
" echo "Usage: $0 [-y] [—g<grace>] [-i<initstate>]"
exit 1
esac
shift
done
if [-n "${askconfirmation}" -a —-x /etc/ckbupscd]
then
Check to see if backups are scheduled at this time
BUPS=‘/etc/ckbupscd’
if ["$BUPS" != "]
then
echo "$BUPS"
echo "Do you wish to abort this shutdown and return to
command level to do these backups? [y, n] read YORN
if ["$YORN" = "y" -—o "$YORN" = "Y"]
then
exit 1
fi
fi
fi

Figure C-11: Typical /etc/shutdown File (screen 2 of 3)

C-18 SYSTEM ADMINISTRATOR’S GUIDE

Files

if [-z "${TZ}" -a -r /etc/TIMEZONE]
then

/etc/TIMEZONE
fi

echo ’\nShutdown started. \c’
date
echo

sync
cd /
trap "exit 1" 1 2 15

a="'who | wc -17"
if [${a) -gt 1 -a ${grace)} -gt 0]
then

su adm -c¢ /etc/wall<<-!
“GThe system will be shut down in ${grace)} seconds.
Please log off now™G.

|

. sleep ${grace}
fi

/etc/wall <<-! ‘
“GTHE SYSTEM IS BEING SHUT DOWN NOW ! ! I7G
“GLog off now or risk your files being damaged.”G

sleep ${grace}

if [${askconfirmation}]

then
echo "Do you want to continue? (y or n): read b
else
b=y
fi
if ["$b" 1= "y" 1]
then
/etc/wall <<-
False Alarm: The system will not be brought down.
]
echo ’Shut down aborted.’
exit 1
fi
case "${initstate}" in
s | s)
/etc/rcO
esac

/etc/init ${initstate}

Figure C-11: Typical /etc/shutdown File (screen 3 of 3)

Appendix C: DIRECTORIES AND FILES C-19

Files

/etc/stdcshre

This file is the standard cshrc that a system administrator can place in new C shell
user’s home directory as a starter SHOME/.cshrc. A typical /ete/stdcshre is shown

below.

#ident -

This is the default standard profile provided to a user.
They are expected to edit it to meet their own needs.
umask 022

stty line 1 erase '“H’ kill '~U’ intr ’'~C’ echoe
eval ‘tset -S -Q

list directories in columns
alias 1ls ’1s -C’

Figure C-12: Typical /etc/stdcshre File

~

/etc/stdprofile

This file is the standard profile that a system administrator can place in new
Bourne shell user’s home directory as a starter SHOME/.profile. A typical
/etc/stdprofile is shown below.

#ident "@(#)sadmin:etc/stdprofile 1.2"

This is the default standard profile provided to a user.
They are expected to edit it to meet their own needs.
umask 022

stty line 1 erase '"H’ kill ’'~U’ intr ’'~C’ echoe
eval ‘tset —-S -Qf .

list directories in columns
ls() { /bin/ls -C $*; }

Figure C-13: Typical /etc/stdprofile File

C-20 SYSTEM ADMINISTRATOR’S GUIDE

Files

/etc/TZ

The /ete/TZ file sets the time zone shell variable TZ. A typical /ete/TZ file is
shown below. The first line of this file should correspond to your time zone.

PST8PDT
Timezone value used by login and /etc/TIMEZONE
The value must start on the beginning of the first line
and a newline must follow the value.

#ident

Figure C-14: Typical /etc/TZ File

/etc/utmp

The /ete/utmp file contains information on the run-state of the system. This
information is accessed with a who -a command.

/etc/wtmp

The /etc/wtmp file contains a history of system logins. The owner and group of
this file must be adm, and the access permissions must be 664. Each time login is run
this file is updated. As the system is accessed, this file increases in size. Periodically,
this file should be cleared or truncated. The command line >/etc/wtmp when exe-
cuted by root creates the file with nothing in it. The following command line limits
the size of the /etc/wtmp file to the last 3600 characters in the file:

tail -3600c /etc/wtmp > /tmp/wtmp; mv /tmp/wtmp /etc/wtmp

Note that /ete/cren, /ete/rc0, or /ete/re2 can be used to clean up the wtmp file.
To use one of these functions, add the appropriate command line to the
/usr/spool/cron/crontab/root, /etc/shutdown.d/ ..., or /ete/rc.d/, re2.d, re3.d ...
file.

/usr/lib/cron/log

A history of all actions taken by /etc/cron is recorded in the /usr/lib/cron/log
file. The /usr/lib/cron/log file should be periodically truncated to keep the size of
the file within a reasonable limit. Note that /etc/cron, /ete/rc0, or /ete/rc2 can be
used to clean up the /usr/lib/cron/log file. To use one of these functions to limit the
size of a log file, add the appropriate command line to the
/asr/spool/cron/crontab/root, /etc/shutdown.d/ ..., or /etc/rc.d/ re2.d, red.d ...
file, as applicable. The following command line limits the size of the log file to the
last 100 lines in the file:

tail -100 /usr/lib/cron/log > /tmp/log; mv /tmp/log /usr/lib/cron/log

Appendix C: DIRECTORIES AND FILES C-21

Files

Figure C-15 shows the information typically found in the /usr/lib/cron/log file.

| **%x cron started *** pid = 81 Tue Sep 22 18:32:26 1987
> CMD: fusr/lib/sa/sal

> sys 85 ¢ Tue Sep 22 19:00:00 1987
¢ sys 85 ¢ Tue Sep 22 19:00:00 1987
> CMD: /usr/lib/sa/sal

> sys 88 c Tue Sep 22 20:00:00 1987
< sys 88 c Tue Sep 22 20:00:00 1987
> CMD: /usr/lib/sa/sal

> sys 91 ¢ Tue Sep 22 21:00:00 1987
< sys 91 ¢ Tue Sep 22 21:00:00 1987
> CMD: /usr/lib/sa/sal

> sys 94 ¢ Tue Sep 22 22:00:00 1987
< sys 94 c Tue Sep 22 22:00:00 1987
> CMD: /usr/lib/sa/sal

> sys 97 c Tue Sep 22 23:00:00 1987

Figure C-15: Typical /usr/lib/cron/log File

/usr/lib/spell/spellhist

If the Spell Utilities is installed, a history of all words that spell(1) fails to match
is kept in the /usr/lib/spell/spellhist file. Periodically, this file should be reviewed
for words that should be added to the dictionary. After the spellhist file is reviewed,
it can be cleared.

/usr/news

The /usr/news directory contains news files. The file names are descriptive of the
contents of the files; they are analogous to headlines. When a user reads the news,
using the news command, an empty file named .news_time is created in his or her
login directory. The date (time) of this file is used by the news command to deter-
mine if a user has read the latest news file(s).

/usr/spool/cron/crontabs

The /usr/spool/cron/crontabs directory contains crontab files for adm, root, and
sys logins. Providing their lognames are in the /usr/lib/cron/cron.allow file, users
can establish their own crontabs file using the crontab command. If the cron.allow
file does not exist, the /usr/lib/cron/cron.deny file is checked to determine if the user
is denied the use of the crontab command.

As root, you can either use the crontab(1) command or edit the appropriate file
under /usr/spool/cron/crontabs to make the desired entries. Revisions to the file
take effect at the next reboot. The line entry format of a
/usr/spool/cron/crontabs/logname file is as follows:

minute hour day month day-of-week command

The various fields of a crontabs/logname line entry are the following:

C-22 SYSTEM ADMINISTRATOR'S GUIDE

(!

Files

minute The minutes field is a one- or two-digit number in the range 0 through
' 59.
hour The hour field is a one- or two-digit number in the range 0 through 24.
day The day field is the numerical day of the month in the range 1 through
31.
month The month field is the numerical month of the year in the range 1
through 12. :

day-of-week The day-of-week field is the numerical day of the week where Sunday
is 0, Monday is 1, . . . and Saturday is 6.

command The command field is the program or command that is executed at the
time specified by the first five fields.

The following syntax applies.to the first five fields:

® Two numbers separated by a minus indicates an inclusive range of numbers
between the two specified numbers.

® A list of numbers separated by commas specifies all of the numbers listed.

B An asterisk specifies all legal values.

In the command field (sixth field), a percent sign (%) is translated to a new-line
character. Only the first line of a command field (character string up to the percent
sign) is executed by the shell. Any other lines are made available to the command as
standard input.

Figure C-16 shows a typical /usr/spool/cron/crontabs/logname file. The data
shown are the sys file. The file entries support system activity report activities (see
Chapter 6). Remember, you can use the cron function to decrease the number of
data terminal driven system administration tasks: include recurring and habitual tasks
in your crontab file.

#ident @(#)adm:sys 1.2
#ident WS
#

The sys crontab should be used to do performance
collection. See cron and performance manual pages
for details on startup.

#

0 * * *x 0-6 /usr/lib/sa/sal
20,40 8-17 * * 1-5 /usr/lib/sa/sal
5 18 * * 1-5 /usr/lib/sa/sa2 —-s 8:00 -e 18:01 —-i 1200 -A

Figure C-16: Typical /usr/spool/cron/crontabs/sys File

(Refer to the crontab(1) manual page in the User’s Reference Manual for additional
information.)

Appendix C: DIRECTORIES AND FILES C-23

Glossary
address

a.out

archive

automatic calling unit

bad block

block

block device

boot

boot program

buffer

buffer pool

cartridge tape
character device

child process

client

command

a number, label, or name that indicates the location of
information in the computer’s memory.

the default name of a freshly compiled object file, pro-
nounced ’A-dot-out’; historically a.out signified assembler
output.

1. a collection of data gathered from several files into one
file.

2. especially, such a collection gathered by ar(1) for use
as a library.

a hardware device used to dial stored telephone numbers;
allows the system to contact another system over phone
lines without manual intervention.

a section of a storage medium which cannot store data
reliably. This is a 512-byte disk block, otherwise known
as a sector.

the basic unit of buffering in the kernel, 8192 bytes; see
indirect, logical, and physical blocks and sectors.

a device upon which a file system [1] can be mounted, typi-
cally a permanent storage device such as a tape or disk
drive, so called because data transfers to the device occur
by blocks; cf. character device. '

to start the operating system, so called because the kernel
must bootstrap itself from secondary storage into an
empty machine. No login [3] or process persists across a
boot.

loads the operating system into ram.

1. a staging area for input-output where arbitrary-length
transactions are collected into convenient units for system
operations; the file system [3] uses buffers, as does stdio.
2. to use buffers.

a region of store available to the file system [3] for holding
blocks; all but raw [2] input-output for block devices goes

through the buffer pool so read and write operations may
be independent of device blocks.

a storage medium that consists of a magnetic tape wound
on spools housed in a plastic container.

a device upon which a file system [1] cannot be mounted
such as a terminal or the null device. (See raw device.)

see fork.

a host that has mounted an exported file system from an
NFS server.

1. an instruction to the skell, usually to run a program [1]
as a child process. 2. by extension, any executable file,
especially a utility program.

GLOSSARY G-1

Glossary

command file

conﬁguration

controller

core file

core image

crash

cron
cylinder

daemon

destination

device

diagnostic

directory

directory entry, entry

directory hierarchy

directory tree

disk

same as shell script.

the arrangement of the software or hardware of a system,
peripheral, or network as defined by the nature, number,
and chief characteristics of its functional units.

a device that directs the transmission of data over the
data links of a nerwork.

a core image of a terminated process saved for debugging;
a core file is created under the name ‘core’ in the current
directory of the process.

a copy of all the segments of a running or terminated pro-
gram; the copy may exist in main storage, in the swap

" area, or in a core file.

If a hardware or software error condition develops that
the system can’t handle, it takes itself out of service, or
crashes. Such conditions occur when the system can’t
allocate resources, manage processes, respond to requests
for system functions, or when the electrical power is
unstable.

" a command which creates a daemon that invokes com-

mands at specified dates and times.

the set.of all tracks on a disk which are the same distance
from the axis about which the disk rotates.

a background process, often perpetual, that performs a
system-wide public function, e.g. calendar(1) and
cron(1M); the affected spelling is an ancient legacy.

the remote system that will ultimately receive a file
transferred over a network.

1. a file [2] that is not a plain file or a directory, such as a
tape drive, or the null device; a special file. 2. a physical
input-output unit.

a message printed at your terminal that identifies and iso-
lates program errors.

a file that comprises a catalog of filenames [2]; the organ-
izing principle of the file system [2], a directory consists of
entries which specify further files (sense 2, including
directories), and constitutes a node of the directory tree.

1. an association of a name with an inode number appear-
ing as an element of a directory. 2. the name part of such
an association.

the tree of all directories, in which each is reachable from
the root via a chain of subdirectories.

same as directory hierarchy.

a platter coated with magnetic material on which data can
be stored.

G-2 SYSTEM ADMINISTRATOR’'S GUIDE

drive

dump
dvh

environment

error

€error message

exec

executable file

execute

FIFO

file

file descriptor

filename

file system

Glossary

the hardware device that holds magnetic disks and tapes
while they are in use.

a copy of the core image of the operating system.

disk volume header. A volume header (or "volume table
of contents") at the beginning of each disk contains infor-
mation regarding the physical device and the logical parti-
tions. It is manipulated by the standalone format and the
UMIPS dvhtool(1M) commands, and can be viewed by
using prtvtoc(1M). It is designated in a device name as
the "vh" partition, for example: ips0dOsvh.

1. a set of strings, distinct from the arguments, made
available to a process when it executes [2] a file; the
environment is usually inherited across exec(2) opera-
tions. 2. a specific environment [2] maintained by the
shell. 3. a nebulously identified way of doing things, as in
‘interactive environment’: a deprecated usage, not always
expunged from these manuals.

occurs when a hardware or software condition prevents
the successful execution of a system or a user process.

a message sent from the system to the system. console
when an error-occurs.

a system call which allows the user to request the execu-
tion of another program.

1. an object file that is ready to be copied into the address
space of a process to run as the code of that process. 2.
a file that has execute permission, either an executable file
[1] or a shell script.

1. informally, to run a program. 2. to replace the text seg-
ment and data segments of a process with a given program

[1].

a named permanent pipe which allows two unrelated
processes to exchange information using a pipe connec-
tion.

1. in general, a potential source of input or destination
for output. 2. most specifically, an inode and/or associ-
ated contents, i.e. a plain file, a special file, or a direc-
tory. 3. adirectory entry; several directory entries may
name the same file [2]. 4. most loosely, a plain file.

a conventional integer quantity that designates an open

file.

1. a pathname. 2. the last component name in a path-
name.

1. a collection of files that can be mounted on a block
special file; each file of a file system appears exactly once
in the i-list of the file system and is accessible via some
path from the root directory of the file system. 2. the col-
lection of all files on a computer. 3. the part of the ker-
nel that deals with file systems [1].

GLOSSARY G-3

Glossary

filter

flush

fork

formatting

free list

getty

group

groupid

host

i-list

indirect blocks

init

inode

a program [1] that reads from the standard input and
writes on the standard output, so called because it can be
used as a data-transformer in a pipeline.

to empty a buffer, for example to throw away unwanted
input-output upon interrupt or to release output from the
clutches of stdio.

to split one process into two, the parent process and
child process, with separate, but initially identical, rext,
data, and stack segments.

the process of imposing an addressing scheme on a disk.
This includes the establishment of a dvh, and the map-
ping of the disk into tracks and sectors.

in a file system [1], the list of blocks that are not occupied
by data. '

one of a series of processes which connect the user to the
UNIX system. getty is invoked by init, and in turn
invokes login.

1. a set of permissions alternative to owner permissions
for access to a file. 2."aset of userids that may assume

 the privileges of a group [1]. 3. the groupid of a file.

an integer value, usually associated with one or more
login names; as the userid of a process becomes the
owner of files created by the process, so the groupid of a
process becomes the group [3] of such files.

a computer that is configured to share resources in a
networked environment.

the index to a file system [1] listing all the inodes of the
file system; cf. inode number.

data blocks that are not directly referenced by a inode
(because the file has more blocks than can be specified in
the inode itself.

The inode has 3 addresses that indirectly reference (by a
cascade of pointers) some 2,114,114 data blocks (an
extremely large potential file size). the inode has 1
address that points to 128 more data blocks; a second
address that points to 128 blocks that each point to 128
data blocks; and finally a third address that points to 128
blocks each of which point to another 128 blocks, each of
which point to 128 data blocks!

a general process spawner which is invoked as the last
step in the boot procedure; it regularly checks a table that
defines what processes should run at what run level.

an element of a file system [1]; an inode specifies all pro-
perties of a particular file [2] and locates the file’s con-
tents, if any.

G-4 SYSTEM ADMINISTRATOR’'S GUIDE

inode number, i-number
instruction

integrity

interface programs

interrupt

IPC

kernel
kernel address space

line discipline

link

link count

load device

log files

logical block

login

memory

memory image

Glossary

the position of an inode in the i-list of a file system [1].
see address.

in a file system, the quality of being without errors due to,
bad blocks.

shell scripts and programs furnished with the LP spooling
software which interface between the user and the

~ printer.

1. a signal that normally terminates a process, caused by
a break or an interrupt character. 2. a signal generated
by a hardware condition or a peripheral device. 3.
loosely, any signal.

an acronym for interprocess communication.

the UNIX system proper; resident code that implements
the system calls.

a portion of memory used for data and code addressable
only by the kernel.

a module to handle protocol or data conversion for a
stream [2]. A line discipline, unlike a filter, is part of the
kernel.

1. to add an entry for an existing file to a directory; con-
verse of unlink. 2. by extension, a directory entry. 3.
loosely, any but one putatively primary directory entry for
a given inode; either linked [1] or a symbolic link.

the number of directory entries that pertain to an inode; a
file ceases to exist when its link count becomes zero and
it is not open.

designates the physical device from which a program will
be loaded into main memory.

contain records of transactions that occur on the system;

software that spools, for example, generates various log
files.

a unit of data as it is handled by the software; the UMIPS
system handles data in 8192-byte logical blocks.

1. the program that controls logging in. 2. the act of
logging in. 3. by extension, the computing session that
follows a login [2].

1. same as memory image. 2. physical memory
represents the available space in main memory; programs
are either swapped or paged into physical memory for exe-
cution. 3. virtual memory management techniques per-
mit programs to treat disk storage as an extension of main
memory.

same as core image.

GLOSSARY G-5

Glossary

mode, file mode

mount

namelist

network

networking

node name
‘null device
nyram

object file

operating system

open file

other

owner

page

the permissions of a file; colloquially referred to by a 3-
digit octal number, e.g. ’a 755 file’; see chmod(1).

to extend the directory hierarchy by associating the root of
a file system [1] with a directory entry in an already
mounted file system; converse is unmount, spelled
‘umount’.

same as symbol table.

the hardware and software that constitute the intercon-
nections between computer systems, permitting electronic
communication between the systems and associated peri-
pherals.

for computer systems, means sending data from one sys-
tem to another over some communications medium
(coaxial cable, phone lines, etc.). Common networking
services include file transfer, remote login, remote execu-
tion.

an up-to-six character name for the system; used as the
official name of the machine in a network.

a device [1] that always yields end of file on reading and
discards all data on writing (e.g., /dev/null).

the Non-Volatile Random Access Memory (NVRAM),
which permanently holds a few, special programs.

a file of machine language code and data; object files are
produced from source programs by compilers and from
other object files and libraries by the link editor; an
object file that is ready to run is an executable file [1].

the program for managing the resources of the computer.
It takes care of such things as input/output procedures,
process scheduling, the file system, removing this burden
from user programs.

1. the destination for input or output obtained by opening
a file or creating a pipe; a file descriptor; open files are
shared across forks and persist across executes [2]. 2.
loosely, a file that has been opened, however an open file
[1] need not exist in a file system [1], and a file [2] may be
the destination of several open files simultaneously.

1. a set of permissions regulating access to a file by
processes with userid different from the owner and
groupid different from the group of the file. 2. the cus-
tomary name of the default group [2] assigned upon login.

the userid of the process that created a file; the owner has
distinctive permissions for a file.

a fixed length, 1024-byte block that has a virtual address,
and that can be transferred between main and secondary
storage.

G-6 SYSTEM ADMINISTRATOR'S GUIDE

paging

parent process

partitions

path, pathname

permission

physical block

physical
pipe

pipeline
polling

ports

process

process id
process number

profile

program

Glossary

the process by which programs are truncated into pages.
and transferred between main and secondary storage by
the virtual handler (or paging daemon).

see fork.

units of storage space on disk, corresponding to the logi-
cal file systems.

a chain of names designating a file; a relative pathname
leads from -the current directory, for example, a path to
directory A, thence to directory B, thence to file C is
denoted A/B/C; a full pathname begins at the root, indi-
cated by an initial ’/’, as in /A/B/C.

a right to access a file in a particular way; read, write,
execute (or look up in, if a directory); permissions are
granted separately to owner, group, and others. permis-
sion bit a permission, so called because each permission
is encoded into one bit in an inode.

a unit of data as it is actually stored and manipulated; the
MIPS systems handle data in 512-byte physical blocks, or
"sectors".

see memory.

a direct stream connection between processes, whereby
data written on an open file in one process becomes avail-
able for reading in another.

a sequence of programs [1] connected by pipes.

the interrogation of devices by the operating system to
avoid contention, determine operation status, or ascertain
readiness to send or receive data.

the point of physical connection between a peripheral

device (such as a terminal or a printer) and the device
controller (ports board), which is part of the computer
hardware.

a connected sequence of computation; a process is
characterized by a core image with instruction location
counter, current directory, a set of open files, control ter-
minal, userid, and groupid.

an integer that identifies a process.
same as process id.

1. an optional shell script, ‘.profile’, or ‘.cshrc’ and/or
‘login’, conventionally used by the shell upon logging in
to establish the environment [3] and other working condi-
tions customary to a particular user. 2. to collect a histo-
gram of values of the instruction location counter of a
process.

1. an executable file. 2. a process. 3. all the usual
meanings.

GLOSSARY G-7

Glossary

queue

raw device

reboot

region

release

resource

re-tension

root

rotational gap

run level

schedule

scheduler

search path

sector

segment

a line or list formed by items in a system waiting for ser-
vice.

a character device where read and write operations are
not buffered, that is, characters are written directly to,
and read directly from, the device.

same as boot.
a group of machine addresses that refer to a base address.

a distribution of fixes or new functions for an existing
software product.

a directory that is advertised in a Remote File Sharing
environment. When a resource is mounted on a client,
the contents of the directory (files, devices, and nanied
pipes) and any of its subdirectories are potentially avail-
able to users on the client.

the process of re-winding the tape in a cartridge tape dev-
ice to make sure it is at the correct tautness for accurate
recording of data (see mt(7)).

1. a distinguished directory that constitutes the origin of
the directory hierarchy in a file system [1]. 2. specifically,
the origin for the file system [2], with the conventional
pathname ‘/’. 3. the origin of the directory hierarchy in a
file system [1].

the gap between the actual disk locations of blocks of
data belonging to the same file; the rotational gap com-
pensates for the continuous, high-speed rotation of the
disk so that when the controller is ready to reference the
next physical block the read-write head is positioned
correctly at the beginning of that block.

a software configuration of the system which allows a par-
ticular group of processes to exist.

to assign resources— main store and CPU time—to
processes.

a permanent process, with process number 1, and associ-
ated kernel facilities that does scheduling.

in the shell, a list of pathnames of directories that deter-
mines the meaning of a command; the command name is
prefixed with members of the search path in turn until a
pathname of an executable file [2] results; the search path
is given by the shell variable PATH.

A 512-byte portion of a disk frack which is usually the
smallest addressable section of the disk.

a contiguous range of the address space of a process with
consistent store access capabilities; the four segments are
(i) the text segment, occupied by executable code, (ii) the
data segment, occupied by static data that is specifically
initialized, (iii) the bss segment, occupied by static data
that is initialed by default to zero values, and (iv) the

G-8 SYSTEM ADMINISTRATOR’'S GUIDE

Glossary

semaphore

server

set userid

set userid bit

shared memory

shell

shell script

signal

single-user

source file

special file

spool

spool area
spooler

stack

standard error

standard input

stack segment, occupied by automatic data, see stack;
sometimes (ii), (iii), and (iv) are collectively called data
segments.

an IPC facility which allows two or more processes to be
synchronized.

a host that is actively sharing one of its advertised
resources with another host in a Remote File Sharing
environment.

a special permission for an executable file [1] that causes a
process executing it to have the access rights of the owner
of the file; the owner’s userid becomes the effective
userid of the process, distinguished from the real userid
under which the process began.

the associated permission bit.

an IPC facility which allows two or more processes to
share the same data space.

1. the program sk(1), which causes other programs to be
executed on command; the shell is usually started on a
user’s behalf when the user logs in. 2. by analogy, any
program started upon logging in. -

an executable file of commands taken as input to the
shell.

an exceptional occurrence that causes a process to ter-
minate or divert from the normal flow of control; see
interrupt, trap.

a state of the operating system in which only one user is
supported.

1. the uncompiled version of a program. 2. generally,
the unprocessed version of a file.

an inode that designates a device, further categorized as
either (i) a block special file describing a block device, or
(ii) a character special file describing a character device.

(simultaneous peripheral operations on line) to collect
and serialize output from multiple processes competing
for a single output service.

a directory in which a spooler collects work.
a daemon that spools.

a segment of the address space into which automatic data
and subroutine linkage information is allocated in last-in-
first-out fashion; the stack occupies the largest data
addresses and grows downward towards static data.

one of three files described below under standard output.

the second of three files described below under standard
output.

GLOSSARY G-9

Glossary

standard output

startup
sticky bit
sticky file

super block

swap

swap area

symbolic link

symbol table

System Administration

system calls

system console

system name

TCP/IP

open files, customarily available when a process begins,
with file descriptors 0, 1, 2 and stdio names ‘stdin’,
‘stdout’, ‘stderr’; where possible, utilities by default.read
from the standard input, write on the standard output,
and place error comments on the standard error file. Ini-
tially, all three of these files default to your terminal.

same as boot
a permission flag that identifies a file as a sticky file.

a special permission for a shared text file that causes a
copy of the text segment to be retained in the swap area to
improve system response.

the second block in a file system [1], which describes the
allocation of space in the file system; cf. boot block.

userid 0, which can access any file regardless of permis-
sions and can perform certain privileged system calls, e.g.
setting the clock.

to move the core image of an executing program between
main and secondary storage to make room for other
processes. T

~ the part of secondary store to which core images are

swapped; the swap area is disjointed from the file system.

an inode that contains the pathname of another. Refer-
ences to the symbolic link become references to the
named inode.

information in an object file about the names of data and
functions in that file; the symbol table and address reloca-
tion information are used by the link editor to compile
object files and by debuggers.

when capitalized, refers to the package of screens and
interactive prompts, invoked through the sysadm(1) com-
mand, that help you accomplish most system administra-
tion tasks.

1. the set of system primitive functions through which all
system operations are allocated, initiated, monitored,
manipulated, and terminated. 2. the system primitives
invoked by user processes for system-dependent func-
tions, such as I/O, process creation, etc.

the directly connected terminal used for communication
between the operator and the computer.

an up-to-six character name for the system; resides in the
SYS parameter.

the Transmission Control Protocol/Internet Protocol
communications software on an M-Series system. An
M-Series system can communicate across an Ethernet
local area network with other hosts and terminals using
TCP/IP communications software. this permits opera-
tions between machines such as file transfer and remote

G-10 SYSTEM ADMINISTRATOR'S GUIDE

table
text file, ASCII

track

trap

tunable parameters

tuning

userid

utility, utility program
version

virtual memory

Glossary

login services.

an array of data each item of which may be uniquely
identified by means of one or inore arguments.

a file, the bytes of which are understood to be in ASCII
code.

an addressable ring of sections on a disk; each disk has a
predefined number of concentric tracks, which allows the
disk head to properly access sections of data.

a method of detecting and interpreting certain hardware
and software conditions via software; a trap is set to
catch a signal (or interrupt), and determine what course
of action to take.

variables used to set the sizes and thresholds of the vari-
ous control structures of the operating system.

1. modifying the tunable parameters so as to improve sys-
tem performance. 2. the reconfiguration of the operating
system to incorporate the modifications into executable
version of the system.

an integer value, usually associated with a login name; the

" . userid of a process becomes the owner of files created by

the process and descendent (forked) processes.

a standard, generally useful, permanently available pro-
gram.

a separate program product, based on an existing one, but
containing significant new code or new functions.

see memory.

GLOSSARY G-11

Index

accept P7-2
adding users P2-2
adm 1-6

alias 2-9

ARP protocol 10-6
auto P3-2 ‘
backup 5-15

bad block 4-8
baud rate 8-1

bin 1-6

/bin/csh 2-3, 7
/bin/passwd 1-7
/bin/rsh 2-3, 9
/bin/sh 2-3

biod 11-4

block device 4-3
block size 5-4
boot P3-2, P4-2
Bourne shell 2-4

broadcast address 10-7

buffer cache 6-23
cancel 7-1 _
character device 4-3
chgrp P2-6

chmod command 1-7

client 11-1
console P1-2

cpio command 5-15, 18, P5-12

crash P3-15

cron command 6-4
C-shell 24, 7

ct 9-3

cu 9-3

cylinder 5-3
daemon 1-6

date P1-3

debugging NFS 11-8

Devconfig file (uucp) 9-6, 21, P9-6
Devices file (uucp) 9-6, P9-1

df command 5-15, P5-6

Dialcodes file (uucp) 9-6, 15
Dialers file (uucp) 9-6, 10

dial-in port P94
directories 5-4
disable 7-1, P7-3
disk device 4-3

disk formatting 4-5, P4-2
disk partitioning 4-5, 5-3

disk sectors 4-8
disk usage 5-12

du command 5-15, P5-6
dump command 5-15

dump levels 5-15

dump.ffs command P5-9

dvh 4-6

dvhtool command 4-6, P4-8

enable 7-1, P7-2, 4

encrypted password 1-3
environment files 2-4
environment variables 2-6

/etc/cshre 2-4, 3-3
/etc/disktab 4-1

/etc/dumpdates P5-9
/etc/exports 11-2, P11-1

/etc/fstab 3-3, 5-11

/etc/gettydefs 3-3, 8-2

/etc/group 2-3, 3-3

/etc/hosts 10-7, 11-2, P10-1
/etc/hosts.equiv 10-8, 10

/etc/init.d 3-3

/etc/inittab 3-3, 6, 8-4 .
. /etc/local_hostname 10-7, P10-1
/etc/motd 2-11, 3-3

/etc/mtab 5-10

/etc/passwd 2-2, 3-3

/etc/password 1-3

/etc/profile 2-4, 3-3

/etc/rc0 3-3
/etc/rc0.d 3-3
/etc/rc2 3-4
/etc/rc2.d 3-4
/etc/re3 3-4
/etc/rc3.d 3-4
/etc/re.d 34
/etc/shutdown 3-4

/etc/ TIMEZONE 3-4

/etc/utmp 3-4
/etc/wtmp 3-4
Ethernet 10-1
ethernet 9-26

Ethernet address 10-2
export command 2-7, 11-1

extra disk P5-3
FFS 5-2

ffstat command 5-22

file system 5-2, 3, 6, 8
file system backup P5-9
file system restore P5-10

find command 1-7, 5-14, 5-15
format (SPP) command 4-6, 9, P4-1, 2

INDEX

I-1

Index

formatting 4-5, P4-2
fragment 5-4

free memory 6-3

fsck command 5-22, P5-5
ftp 1-6, 10-21, P10-5
gateway 10-12, 14

getty command 8-2

gid (see group-ID)
group-ID (gid) 2-2, 4
hard disk 4-1

hard mount 11-6

home directory 2-2, 4
host number 10-5
hostname 10-7, P1-4
hunt sequence 8-1
ifconfig 10-12

init 3-6, P3-7

init state 3-5

inode 5-5, 24

Internet address 10-2
kernel P3-12

kernel parameters 6-18, P6-1
kernel reconfiguration P6-1
keyswitch 1-2

kill command 6-4

line settings 8-1

locked login 1-5

login name 2-2

login PO-2

lost+found 5-24

Ip 1-6, 7-1, 2, P72

Ip spooler P7-1

LP spooling 7-1, 11
lpadmin command 7-2, P7-2
lpmove command 7-6

lpsched command 7-2, 5, P7-2

Ipshut command 7-5, P7-1
Ipstat 7-1, P7-1

mail 2-12

mailx 2-12

manual section xv
Maxuuscheds 9-22
Maxuuxqts 9-22
MKDEYV command 4-4
mkfs.ffs 5-8, 9

mknod command 4-3
model interface 7-8
monitor mode P3-9

mount command 5-10, 11-1, 2, P5-5,

P11-2
mountd 11-4
multi user mode P3-8
multi-user state 3-5

1-2 SYSTEM ADMINISTRATOR’S GUIDE

multivol command 5-15, 19

ncheck command 1-8

netmask 10-7

netstat command 10-16 .
Network File System (NFS) (see NFS)

" newfs.ffs command 5-8, P5-3

news command 2-11
NFS 11-1, 4
NFS client 11-6

" NFS server 11-4

nice command 6-6

nobody 1-6

nuucp 1-6

paging parameters 6-20
parallel printer P7-1
partition 5-3

partitioning 4-5, P4-2
passed P1-5

password 2-2

password aging 1-3, 4
performance management 6-2
Permissions file (uucp) 9-6, 15, P9-6
ping command 10-11, P10-2
Poll file (uucp) 9-6, 21, P9-6
port 8-1

powerdown command 3-14
printer defaults P7-5
printer model P7-1

printer models 7-8

printer P7-1

prtvtoc command P4-12
rcp 10-17

rdump command 5-15, 19
reboot P3-12

reject command 7-7, P7-4
remote.unknown 9-22
resctricted shell 2-9
restore command 5-15, 17
RISC/os (UMIPS) xiii

rje 1-6

rlogin 10-17, 19, P10-3
root 1-6

root login 1-5

root partition 4-5

root password P1-7

route 10-12

rpc 11-4

rrestore command 5-15, 19
rsh command 10-17, 18
rsh P10-4

run level 3-5

run levels 3-10

run mode 3-5

run state 3-5

ruptime 10-17, 20, P10-4

rwho 10-17, 19, P10-4

S51K 5-2

sal 6-6

sa2 6-6

sadc 6-6

sar command 6-5, 6, 8
savecore P3-15

scan P44

scanning P4-4

SCSI drives P4-1

security 1-2, 6, 7, 10-10, 11
serial printer P7-1

server 11-1

setenv command 2-9

set-group identification (sgid) 1-7
set-user identification (suid) 1-7
shut down 3-1, 11, P1-7, P34, 7, 10
single-user mode 3-5, 11, P3-7
SMD drives P4-1

soft mount 11-6

spool 7-1 _

sqid (see set-group identification):
standalone mode 3-12

sticky bit (see text bit)

streams parameters 6-21

stty command 7-8, 8-6

su command 1-7

suid (see set-user identification)
super block 5-3, 23

superuser login xiv

swap command P5-2

swap partition 4-5

swap space 4-7, P5-2

sync command 5-21, P1-7

sys 1-6

sysadm addgroupt P2-2

sysadm admpasswd P1-5
sysadm datetime P1-3

sysadm delgroup P2-5

sysadm deluser P2-5

sysadm fileage command 5-14, P5-7
sysadm filesize P5-7

sysadm lineset 8-2, P8-1

sysadm Isgroup P2-6

sysadm Isuser P2-6

sysadm menu interface P0-1
sysadm mklineset 8-3, P8-3
sysadm modadduser P2-4
sysadm modify P8-4

sysadm modtty 8-4

sysadm powerdown P3-4

sysadm reboot P3-12
sysadm syspasswd P1-5
sysadm usermgmt 2-3
sysadm whoson P3-4
Sysfiles 9-6

Sysfiles file (uucp) 9-22, P9-7
System Administrator xiii
system log P1-2

system maintenance 5-12
system performance 6-3
system state 3-5, P0O-2
Systems file (uucp) 9-6, 11, P9-5
table overflows 6-5

tape drive 4-1, 3

tar command 35-18, P5-12
TCP/IP network 10-1, P10-1
telnet 10-21, P1-6

TERM 8-5

terminal options 8-1, 6, P8-1
text bit 6-3

time P1-3

timex 6-6

troubleshooting 6-5

TTY 81

tunable parameters 6-3, 18
uid (see user-ID)

umask command 2-7
umount 11-2

uname command P1-4
UNIX Operating system xiii
/unix P3-12

update install P3-18

user logins xiv

user-ID (uid) 2-2

user’s environment 2-4

usr partition 4-5
/usr/lib/spell/spellist 3-4
/usr/lib/terminfo 8-5
/usr/news 3-4
/usr/reconfig/master.d 3-3, 6-3
/usr/spool/cron/crontabs 3-4
/usr/spool/crontab 6-6
uucheck 9-4

uucico 9-5

uucleanup 9-4

uucp administrative files 9-23
UUCP debugging P9-11
UUCP 1-6, 9-3, P9-1, 9
UUCEP utilities 9-1

uugetty 9-5

uulog 94

uupick 9-3

uusched 9-5

INDEX

Index

Index

uustat 9-3

uuto 9-3

Uutry 9-4

uux 9-3

uuxqt 9-3

vhand 6-20

volume header P4-6, 12
vsar command 6-6, 7
wall command 2-12, P2-8
write command 2-12

-4 SYSTEM ADMINISTRATOR’S GUIDE

