Optimizing
Windows NT

The information
you need to

become an expert
on Windows NT!

Russ Blake

For Windows NT Workstation and Windows NT Server Version 3.5

Microsoft Press

Optimizing
Windows NT

Russ Blake

:WINDOWSNT
RESOURCE KIT

For Windows NT Workstation and
Windows NT Server Version 3.5

icrosoft:

M

PUBLISHED BY

Microsoft Press .

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Optimizing Windows NT / by Microsoft Corporation.
p. cm. -- (Microsoft Windows NT resource kit for Windows NT
workstation and Windows NT server version 3.5 ; 4)
Includes index.
ISBN 1-55615-655-3
1. Operating systems (Computers) 2. Microsoft Windows NT.

I. Microsoft Corporation. II. Series.
QA76.76.063M52455 1995 vol. 4
005.4'469--dc20 ‘ 94-47261
CIP
r95

Printed and bound in the United States of America.
23456789 QMQM 098765

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation. »

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

Adaptec is a trademark of Adaptec, Inc. AppleTalk and Macintosh are registered trademarks of Apple
Computer, Inc. DEC is a trademark of Digital Equipment Corporation. Olivetti is a registered trade-
mark of Ing. C. Olivetti. Intel is a registered trademark and i486 and Pentium are trademarks of Intel
Corporation. Microsoft, MS, MS-DOS, Win32, Windows, and XENIX are registered trademarks and
Windows NT is a trademark of Microsoft Corporation in the U.S.A. and other countries. MIPS is a
registered trademark of MIPS Computer Systems, Inc. NetWare and Novell are registered trademarks
of Novell, Inc. UNIX is a registered trademark of Novell, Inc. in the U.S.A. and other countries,
licensed exclusively through X/Open Company, Ltd. Unicode is a trademark of Unicode, Inc.

For my son Matthew: may his computers always be swift.

Contributors to this book include the following:

Lead Editor:
Chris Dragich

Technical Editors:
Jeff Angus, Karin Carter, Alan Smith, and Sharon Tighe

Indexer
Jane Dow

Production Team:
Karye Cattrell, Yong Ok Chung, and Cathy Pfarr

Graphic Designer:
Sue Wyble

Graphic Artists:
Tina Anderson, Gwen Grey, Brenda Potts, Elizabeth Read, Steve Winard

Contents

Introductiono e XXi
Chapter1 How to Optimize Windows NTcvet. 1
Windows NTIs AlwaysinTuneo, 2
Detecting Bottlenecks 3
Capacity Planningot 4
Optimizing Applicationsttt 4
Performance Monitor and Other Cool ToolstoUse 5
Performance Monitor Is a New Breed of Application. 6
Chapter2 Zen and the Art of Performance Monitoring 7
Computer Architecture 101. i 8
Bottleneck Defined 12
WhataCounter Counts. ittt 14
Why You Can’t Always Get Easy Answers About Performance. 15
How Performance Monitor Sees a Computer. 16
Performance Monitor Overviewttt 17
How Performance Counters Are Structured 21
Selecting CompuULersttt 22
Selecting Objects e 26
Selecting COUNtErSottt e et 28
Selecting Instances.o i e 31
Custom Displays PO 32
The Four Performance Monitor Views., 35
Chart VieW 36
Report View 43
Alert VIew 45
Lo VW . o 48
Loading and Viewing LogFiles 53
Saving Settings. 60
Exporting Performance Data., 62

Performance Monitoring Service. o i i 63

vi

Contents

Performance Monitor Limitations. L. 64
Why You Don’t See Any DiskData. 64
Why the Processor Queue Is Always Empty 64
Ways to Print Performance Data. 65
The GUI Batch Processort 65
TCP,SNMP,and Thee. e 66
Crucial Hot Keys e 66

Chapter 3 Detecting Processor Bottlenecks. 67

Bottlenecks Are Moving Targetso 68

Getting Started: Making an Overview SettingsFile........................ 70

" Charting the Response Surface i i 75

Analyzing Processor Performance 75
Why Performance Monitoring Is Free (Not!)., 79
Processor Scheduling on Windows NT..................... ...t 80
The Mystery of the Sawtooth Queue Length. 83
User Mode and PrivilegedMode. L. 86
What Multiple Processes and Threads Look Like 91
Bottlenecks at Lower Utilization. e 98
How the Graphics System Uses the Processor......................... 100
Processor Usage by 16-bit Windows Applications 103
Processor Usage by 16-bit MS-DOS Applications 109
Who Started All These Processes? oii.t. 112

Getting Rid of a Processor Bottleneck 114

Monitoring Multiple Processorst 116

Chapter 4 Detecting Disk Bottlenecksot 127

Making Sure Disk Performance Statistics Are Collected 128

Busy Disks Are Happy Disks 130

Uncovering High Disk Throughput. 139

Uncovering Even Higher Disk Throughput 142

Getting Rid of a Disk Bottleneck i, 149

Looking at Redundant Arrays of Inexpensive Disks 150

Contents vii

Chapter 5 Detecting Memory Bottlenecks 157
How the Windows NT Virtual Memory System Works 158

Configuring Available Memory in Windows NT. 160
Examples of Memory Activity and Paging. L, 160
Paging with Lots of Processes., 171
Monitoring the Nonpaged Pool............. L. 176
Lack of Memory Causes Diskto Suffer.................. 177
What aMemory Hog LooksLike. o i, 178
Chapter 6 Detecting Cache Bottlenecks....................c.ooiiiitt. 181
File System Cache Overview i, 182
Basic Cache Experimentsot 184
Sequential Reading and Writing. 190
Reading and Writing Randomly 197
Mapping FilesInto Memoryt 203
Tuningthe Cache. 206
Chapter 7 Detecting Network Bottlenecks, 207
A Profile of Network Throughput. 208
A Simple Model of a Network Bottleneck............................... 216

The Mystery of the Missing Time. oiiio.. 217
Generalizing Network Bottleneck Detection............. e 219
Using Role Reversal to Compare Platforms. 223
Adding ClientstoaTest Servero, 226
Server Disk ACHIVILYo e e 233
Copying a Directory from ServertoClient 237
Monitoring TCP/IP Performance 243
Monitoring NWLink Performance, 249
Chapter8 CapacityPlanning., 255
Performance Monitoring Service i i 256
Monitoring Multiple Servers. 258
Archiving and Storing Performance Data, 260
Analyzing Trendst e 261

Monitoring Desktop Computersttt .. 263

viii

Contents

Chapter @ Writing High-Performance Windows NT Applications............. 265
Managing MEeMOLYottt e e 266
Usingthe Kernel Wisely i e 267
Grappling with Graphics. e 269
Batch Processing for Graphics i 271
High Performance Graphics.v i i, 272
Managing the Device Context. i, 273
Asynchronous Input and the Window Manager. 274
Considerations for RISC Computers., 274
Choosing Between APISets i 275
Chapter 10 Tuning Windows NT Applications 279
Run Performance Monitor First e 280
The Windows APIProfiler i, 283
Setting Up the Profiling Environment 286
Profiling an Application.ciiiiiiiiiiiii 286
Listing an Application’s DLLS, 286
Collecting WAPDatao 287
Excluding Some APIs from Analysis with WAP....................... 287
Running WAP on Solitaire 288
Ending WAP. 290
The Call Attributed Profiler i 290
USINg CAP ..o e 292
Capview: aVisual Formof CAP....... oo, 296
The FIOSAP Profiler. i, 298
Usingthe /O Profiler. i i 301
The Win32 APILogger. e 304
Other Useful ToOIS. 305
PVIeW . o 306
PMOM. . o oo e 308
WPt . . 309

Contents ix

Chapter 11 Tuning the Working Set of Your Application................... 311
How Working Set Tuning CanHelp You, 312
How the Working Set Tuner Works. P 314
Using the Working Set Tuner. i, 316
Looking Inside Your Working Set i 318
Chapter 12 Writing a Custom Windows NT Performance Monitor. 323
Performance Monitor Source Code. i 324
Design Philosophy 324
Retrieving Performance Datao, 325

How the Performance Data Is Structured 327

Navigating Through the Performance Data Structures 330
Retrieving Counter Names and Explanations e 330
Retrieving Selected Data. 332
Performance Counter Definitions, 333
Monitoring Within an Application, 340
Chapter 13 Adding Application Performance Counters.................... 341
Adding Performance Counters: the BigPicture 342
Object and Counter Design. P PP 343
Setting Upthe Registry it i 343

Creating the Application’s Performance Key.................... 344

Adding Counter Names and Descriptions to the Registry 345

Other Registry Entries.t 351
Collecting Performance Data e 352
CreatingthePerformanceDLL.......................................;353

How the DLL Interfaces with a Performance Monitor Application 353

Error Handling inthe DLL oo, 358
Measuring Foreign Computerst 358
Installing Your Application.ttt 359
Sample Code 360

Instrumenting the VGA Driver i i i 360

DataCollection DLL e 363

X Contents

Appendixes

Appendix A Windows NT Performance Counters. 395
AppleTalk Object.o 396
Browser Objectt 400
Cache ObJECtt 404
FTP Server Object.t e i 410
Gateway Service for NetWare Objectcooviiv.... 413
ICMP Object . ..o e 418
Image ObJect 422
TP Object . ..ot e 424
LogicalDisk Object e e e e e, 428
MacFile Server Object 431
Memory ObJect 434
NBT ConnectionObject 439
NetBEULODJECt\ttt e e e e 440
NetBEUI Resource Object ... P 448
Network Interface Object i 449
Network Segment Object. i, 452
NWLIink IPX Objectot e 453
NWLink NetBIOS Object.o 460
Objects ObJECt.ottt 467
Paging File Object. o i 469
PhysicalDisk Objectcoiiviiii e 469
Process Object.t 472
Process Address Space Object i 477
Processor Objectt 486
RAS Port Objectt 487
RAS Total Object\ttt e 490
Redirector Object. i 493
SerVEr ObJeCt. . . vttt 501
System Object e 506
TCP ObJECt. . . o oot 510
Thread Object e 512
Thread Details Objectt e 515
UDP Objectot 515

WINS Server Objectottt e e 516

Contents xi

Appendix B Registry ValueEntries., 519
CurrentControlSet\Select Subkey 520
CurrentControlSet\Control Subkeys. 521
FileSystem Control Entries e 522
Session Manager Control Entrieso ... 523
WOW Startup Control Entries, 525
CurrentControlSet\Services Subkeys i i 526
Serial Subkey Entries in the CurrentControlSet\Services Subkey. 527
Mouse and Keyboard Driver Entries 528
SCSI Miniport Driver Entrieso i 532
Video Device Driver Entries. i 533
Registry Entries for Network Services. 535
AppleTalk and MacFile Service Entriesfor SEM 535
Browser Service Entries i 537
DiskPerf Service Entries e 539
DLC System Driver Entries i 540
EventLog Service Entries 541
NBF (NetBEUI) Transport Entries.oooviiiiinneea .. L... 542
NetLogon Service Entries i, 548
NWLink Transport Entries (IPX/SPX)., 552
Redirector (Rdr) Service Entries. i, 563
Remote Access Service (RAS)Entries............................... 564
Replicator Service Entries. i 570
Server Service Bntries, 572
TCP/IP Transport Entrieso i, 579
Workstation Service Entries 594
Registry Entries for Microsoft Mail. 600
Microsoft Mail Entries 600
MMFEntriesfor Mail. i 602
Microsoft Schedule+ Entries. 604
Registry Entries for User Preferences 605
Console Entries for USerst 605
Cursors Entry Values forUsers.c .. 607
Desktop Entry Values forUserso i i, 607
Keyboard and Keyboard Layout Entries for Users 608
Mouse Entries for Users i 609

Network Entries for USers.ot it 610

xii

Contents
Program Manager Entries forUsersco i, 611
Recovery Entries for USEIso.ouerinriraaaaeananan... 612
Windows Entries for Users 613
Registry Entries for Winlogon e 615
Registry Entries for Fonts e P 615
FontCache Entriescooiiiiiiiiiii i 615
FONtDPIENIHESottt 616
Registry Entries for Printing 616
Registry Entries for Software Classescooiiiiinn... 619
Registry Entries for Subsystems L 619
Microsoft OS/2 Version 1.x Software Registration Entries. 619
Windows Software Registration Entries. 620
Appendix C UsingResponseProbe e 621
Why You Would Use Response Probe.coo..... 622
Response Probe Design. PR 622
Normal Distribution.o i 623
THINK State e 624
FILEACCESS State e P 625
COMPUTE Stateottt i 625
~ Response Probe InputFiles. 626
Performing Response Probe Experiments. P 626
Seript Files 627
OutputFormat e 632
.. 635

xXiii

Figures
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11

Figure 2.12°

Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19
Figure 2.20
Figure 2.21
Figure 2.22
Figure 2.23
Figure 2.24

Figure 2.25
Figure 2.26
Figure 2.27
Figure 2.28
Figure 2.29
Figure 2.30
. Figure 2.31
Figure 2.32
Figure 2.33

Figures and Tables

Block diagram of the original IBM personal computer 8
Block diagram of a current Intel 486-based computer............... e 8
Memory bus organization of a current Intel 486-based computer ... 10
Block diagram of a RISC-based personal computer.............coeevene.. 11
Block diagram of a multiprocessor COmMPULerccerverrerrvereenrennes 12
Performance Monitor view of personal computer hardware............ 17
Performance Monitor Chart VIEWccccecervererersinnersereenieeneeseenanne 18
Performance Monitor Report view.........cceeveeveirenercccrssivensnrenecseenns 18
Performance Monitor AlETt VIEWc.ccceeceerercrvcreenrereresenreserensenens 19
Performance Monitor Log VIEWccccoeerivrererrerinnveniencenanserassensennes 20
Excel chart of exported Performance Monitor data............c..ccceun.n. 20
Add To Chart dialog BOXc.ceceeerierernrcrrrerriererieresresenvesessesessees 22
Computer Selection dialog boXcc.ecevreveenineenireninsccnerenienicissenene 23
Overhead of remote monitoring on the monitored computer............ 24
Overhead of remote monitoring on the monitoring machine............ 24
Selecting multiple objects for 10ggingeeveeveveerirveeverierererrcnnnnn 28
Selecting a counter for MEASUTEMENL........ccecceeererrerrenrererrersersesserenne 28
Selecting multiple counters for measurementc.ceeeveueveeeerennnnen 29
Using the EXplain teXt......c.cocoueiererneniernesereenesiesinieseerenteresssessennesens 30
Viewing all the counters for an object at one timecccoccveueneee. 31
Performance Monitor display Optionscccceveverereerenecereercrersenenn 33
Minimal Performance Monitor chart and report arrangement......... 34
All chart display options in graph mode of current activity 37
Chart histogram mode: a view of many processes’

o ProCeSSOT TiIMEccviieueereireeieenieeeeeeseereeee et et ee s ase e saesne e 41
Report with counters from multiple computers...........ccoeeevereerrvennenne 44
Some common alerts and their alert 10gS......cccceeveeercricrennnane. vrerenne 46
Setting an alert on multiple inStances...........cocovevererrierienririnreseininnans 48
Creating a10g fileccevuinrerenicrienicrrere st esens s eseesnennene 49
Analyzing data from a 1og file..........c.coeverevrinivinnniccinierisencnes 49
Add To Log dialog DOXcceecreererenierinreieneetereesiesesseneeeseneessessenens 50
Log Options dialog BOX......ccceceriernurreecniinnienseenienienneesiersessesenensannens 50
Log view during data COllectionc.cceureeererereeercereeenvenesesieninnns 51
Chart of a log file with fewer than 100 snapshots........c.cccccceveureue. 54

xiv

Figures and Tables

Figure 2.34

Figure 2.35
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12

Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16

Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20

Figure 3.21
Figure 3.22

Figure 3.23
Figure 3.24
Figure 3.25

Figure 3.26

Figure 3.27
Figure 3.28
Figure 3.29
Figure 3.30
Figure 3.31
Figure 3.32

Chart of logged data with more than 100 snapshots

INHE JOZ FIlE ..ttt 55
Anatomy of the Input Log File Timeframe dialog boxccc.c...... 56
Chart of processor and disk USage........cccveevivervcecrencivnierereerecennes 68
Report of processor and disk USage.........cceevervvevverrrrrecrreverrrnrnerenennne 69
Overview of @ busy Clientcccovereivenineniriesniesenceeieeeeene 73
Overview Of @ DUSY SEIVETcveeererierrenieneisiesieseniesseeseerenreseranns 74
Bottleneck on processor Utilizationcccoceeveveevvveeeevereererereneenns 75
Processor Queue Length with a processor bottleneck 77
Processes active during a processor bottleneckcccoevrveeucann. 78
Windows NT Performance Monitor overhead (not!).......ccceeeveeneen. 79
Components of processor queue lengthiceerivevennincnnneneenne 84
Anatomy of a periodic, blocked thread...........cocevevevenereieerreneniencns 85
Threads active during a processor bottleneck...........cocccereeerereencne 86
A self-absorbed application obsessed

With USer-mode ProCeSSINgG........ceeeererreerverienrersersresersnsreseessessessennenns 87
A process wisely using Windows NT to get its work done 88
Some key indicators of system call aCtiVity.........o.vrreerrrerersensensenee 89
Multiple processes in a processor bottleneckcoeveveieneveneenns 92
Processor queue length with multiple processes

CONSUMING the PIOCESSOTvieviiiiniiireniiiiiiiieninteisesseeisessseseeeenne 93
Comparing processor queue 1engths........c.oeeeeeercrrcerverreecerennrenenns 94
Which processes are eating the processor........cc.coveereeereerernsreneens 94
Processor consumption by multiple threads.........ccccoovevricrirncevennnnne 95
Processor time and queue length with multiple threads

(remOte MEASUIEIMENE)....ceivurreirerreeeerrrreererseereesssrrosiarsessssseesssesonnnes 96
Processes in a multithreaded processor bottleneck...........cccccevenene. 97
Threads in a single process in a multithreaded

Processor BOIENECK.coovvveueeeecirrierrrereese et sese e saesanas 97
Response time to a randomized processor 10ad...........cccceerveverereenens 99
Graphics architecture on Windows NTcccceevverenencnnrenieseennenne 100
Processor utilization by a graphics program pumping pixels 101
Thread context switching during graphics processing..........cc...... 102
16-bit Windows applications on Windows NTcceccrrereruenne 103
16-bit Windows NTVDM before application execution............... 104
16-bit Excel in the WOW NTVDMccovevrvevrnnrenecerereneneinens 104
16-bit Excel has calmed down nOW.......ccccceeereercrecrencerencrcneence. 105
16-bit Excel has Stopped........ccoceveviiercneeccrissenienniernsenenenneerenne 106
WowExec NTVDM threads after restarting 16-bit Excel............. 107

Figures and Tables Xv

Figure 3.33

Figure 3.34
Figure 3.35

Figure 3.36
Figure 3.37

Figure 3.38
Figure 3.39
Figure 3.40

Figure 3.41
Figure 3.42
Figure 3.43

Figﬁre 344
Figure 3.45

Figure 3.46
Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

Figure 4.9

" Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15

Figure 4.16

WowExec NTVDM threads after starting Excel

and Word for Windows........ccccccvverereneneccsnerensenesinesessesensseenes 108
16-bit MS-DOS applications on Windows NTcocceevceinnennee 109
Registry Editor set to change name of NTVDM

for running MS-DOS PrOgramsc.ccoueereereernrsveernessesresiascssseesions 110
Two MS-DOS applications monitored using

renamed NTVDMSccocriiinniiiininccecstiencnesesieessessesnae 111
Threads in a renamed NTVDM executing

an MS-DOS application.........coceevurcerrenvrcrenrenriesceressenseninmneesesanea 112
Object counts on a Windows NT system........ccceereeccrirurrnrercccrunnes 113
Eight processes in 0Nne proCeSSOT......u e creerereercriaressecsessrsnrasesessases 116
Processor time distribution among eight

PrOCESSES iN ONE PIOCESSOL ..vviveiisinriresrisieisreiessesssinssssaessessessones 117
Eight processes on €ight ProCesSOrSo.c.cvvverereeierivisrenisniesserenas 118
Processor use by eight processes on eight processors............c....... 119
Resource contention by eight graphics programs

on an eight-pProcessor COMPULET........covrverrrteesirenrsrseereresssssesesnnnnes 120
After the fourth process is added, no more work gets done 121
CSRSS threads with eight graphics programs

and EiZht PrOCESSOTSccuruereeererrrirrereeerereeeecsseenrereenssseesserssssenees 122
Memory contention in multiprocessor SYStemS.........ovvveevuererrerennen 123
Disk driver stack with disk performance driver installed............... 128
Processor and disk behavior during disk bashing..........c.cccovencncee 130
Processor and system activity when reading small

1eCOrds from disSKccceeeruererenrienecrcie et 131
Disk activity while reading short records, logging elsewhere........ 132
Background disk writing while reading short records 134
Study in contrasts: disk transfer rates.........ccoereerivienrininiinninenae 135
Five processes reading small records at once, or trying to 137
System overview of five processes reading

SMall records at ONCE.........ceveeuerurerrererercteeesieseeerecesstese e sesaenees 137
Disk behavior of five processes reading small records at once......138
Creating a 100-MB file.......cccccoenimerniniineinnnnrerienensensioniessenssesinens 139
System overview of creating a 100-MB file.........ccccocvriiircennnnncnns 140
Cache behavior when creating a large buffered file 141
Disk behavior when creating a large buffered file..........c.cccoruene... 141
Transfer rates achieved by various-sized reads.........c..cveveeeennne. 142
Transfer rates and transfer times achieved k

with various-sized reads......c..cooeviveecnninniiniinininiicnenesnesnenens 143
System overview during maximum disk throughput...................... 144

Xvi Figures and Tables

Figure 4.17 Randomly reading successively larger

records of @ 500-MB fil€cc.covvevmniiiinnininicnninsiesnnies 145
Figure 4.18 Narrowing down to the case of maximum throughput................... 146
Figure 4.19 Setting the time window to exclude extraneous data points........... 147
Figure 420 System overview reading across a 500-MB file

With 60K 1€COTdScvveemireircreereesirreecneeieereetenreer s ceeesaeeeeaens 147
Figure 421 Disk statistics reading across a 500-MB file

With 60K 1ECOTASevieverenrinrreeieeererieeseseeeterereres e seseeaeesaees 148
Figure 422 Disk behavior reading 60K records more randomly..................... 149
Figure 4.23 File creation on a single spindle.........c.cceeoeciviiiinencninicnccnnniennae 151
Figure 4.24 File creation on a three-spindle striped volume without parity 152
Figure 4.25 Physical disk statistics for a striped VOIUMEecrvverererrrererenenn. 153
Figure 426 Reading from three-spindle striped volume...........ccoveunens J 154
Figure 4.27 Reading from four-spindle hardware RAIDccvuveevrcnvienncn. 154
Figure 4.28 Disk throughput test for a three-spindle striped volume................ 155
Figure 429 Disk throughput test for a four-spindle hardware RAID 155
Figure 5.1 Handling page faults on Windows NTcccceeevnveenenivrvenvenenens 159
Figure 5.2 Processor activity while starting ClocK......c.cceceeevenercercecnneseenenne. 161
Figure 5.3 Page faults while starting CloCK........ccccvvuevereerensverieveesenneniencsenaens 161
Figure 5.4 Pages input while starting ClockK............ceccevveriererrcrnneerercorereecene. 162
Figure 5.5 Page reads while starting ClocK........coccevvvveviececvnreneeninnersencccnaens 163
Figure 5.6 Page faults by process while starting ClocK..........ccoeerrueerieverernnen. 164
Figure 5.7 Memory and disk reports when starting ClocK......c.ccceeeeruenreenne. 165
Figure 5.8 Working set size growth when starting Clock.......c.cccecceerveeuennee. 166
Figure 5.9 Available bytes decline when Clock Starts..........cccceeervrerenrenreennens 167
Figure 5.10 Working sets reduced to operating minimums

by the clearmem Utility........cceeeverirreerereerinieniercseereriensesmeneeressesseees 168
Figure 5.11 Both input and output page traffic during the startup of Clock...... 169
Figure 5.12 A working set is trimmed because it is inactivecc.ccecevveeruenen. 170
Figure 5.13 Nested bottlenecks during the startup of Clockovvcrvvcinennees 171
Figure 5.14 Processor usage and page traffic under increasing

INEMOTY PIESSULE ...vuveveriviviseeseresnsresissssssssisssnsssssssesssessssssnesssessnsnes 172
Figure 5.15 System usage at the onset Of PAZING..........eevververeerernsessesensaesensanns 173
Figure 5.16 Response Probe working sets as memory pressure increases........ 174
Figure 5.17 Memory statistics when paging iS €XCESSIVEccvrerererreensnivennen 174
Figure 5.18 Lack of memory causes excessive disk usagecccecervivenuennnne 177
Figure 5.19 Overview of memory hog activitycocoeeierieninessisisnnnnniiscnnans 178
Figure 520 Memory hog innards eXposedccvvvevevsiriviinncnnieesiensueienes 179
Figure 6.1 Cache references to absent file pages are resolved

by the MEeMOTY MANAZETcoeviverrerreririireistiiisriseesesresesnssresaones 183

Figures a'nd Tables xvii

Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Figure 6.6

Figure 6.7
Figure 6.8

Figure 6.9
Figure 6.10
Figure 6.11

Figure 6.12

Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16

Figure 6.17

Figure 6.18
Figure 6.19
Figure 6.20

Figure 6.21
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12

Disk performance of an example 386SX/25 laptop.........cccceveueeen. 184
System behavior during cached reading of a large file.................. 185
Cache statistics during the reading of a large file..........c.ccocerennen. 186
Copy Read Hits % and Copy Reads/Sec during

reading of alarge file........ccocoiivivcnniicinic 188
Cache and disk activity while reading

and writing a large file sequentiallycccceovverenrrvenenierversennnn. 190
Cache statistics for read/writing a large file sequentially.............. 191
Cache and system statistics for read/writing

a large file SeqUENtiallycocveveerrererrnerircenrenneesrensensuenesiersesnnssaens 192
Lazy writing by the System process is truly 1azycc..coceereenne. 193
System process threads divide the lazy work up.......cccccceeveennneene. 194
Disk response to cache activity during

sequential 1ead/WIiting........occecevirieniniinncenennnnieiinseessnessenennens 195
Memory manager and cache manager make

SWeEt MUSIC tOZELNETevveeeiciiecerce et et e et san s 196
Havoc reigns over random read/Writingecccceversrerervecrcrncesanes 197
The cache steals much needed pages from other working sets....... 198
Cache statistics for normally distributed read/writing................... 199
Cache statistics during normally-distributed

reading and WIItINgccccevviivrrerienieniiiniennene st siosessnsesaees 200
Memory manager and cache during

normally-distributed reading and WIitingccecevvrveereercrcriiennene 201
Disk statistics during normally-distributed reading and writing....202
Competing processes using mapped and file system reads 204
More competing processes using mapped

and file System reads.......ceccvereeeeeieenieecrieenercret e 205
Response time for mapped and buffered competing processes206
Client’s view of a network throughput test.........ccccceeveerrerreerceennen. 209
Server’s view of a network throughput test.........cccceevrvvenverenreenens 210
Client’s view of unbuffered reading of 2048-byte records............. 211
Server’s view of unbuffered reading of 2048-byte records 212
Redirector’s view of reading 2048 bytes.......ccccevvrrvecverrerensucnennes 214
Server’s view of reading 2048 bYtes......c.ceveveeveeveerrnerrcncreecnscnnnes 215
Processor usage on the client side while reading...........cceccveerneenne. 217
Processor usage on the server during client readscc.ceeeue.e.. 218
Client’s view of 14-page reads.......coceceerveennecrerniencnnnnninsenrcenesnnnne 220
Server’s view of 14-page reads.......cccevveeeverrerneenrenneenenesseessensennens 221
Pentium client statistics for 2048-byte reads........ccoceeverrerreereesuenne. 223
Server statistics when the server is an 1486/33......c.cccovveeveereerennnns 224

xviii Figures and Tables

Figure 7.13 Two clients on a server, NetBEUI view

from the SEIVer’s PErspectivec.coceceereeseeriresreseiessesisneneennenes 226
Figure 7.14 Two clients on a server, Server StatistiCsccceveererrenrareerervereans 227
Figure 7.15 Three clients pile on, NetBEUI statistics on the server.................. 228
Figure 7.16 Three clients pile on, Server statistics.......... s tresvesnenes 228
Figure 7.17 Four clients pile on, NetBEUI statistics on the server................... 229
Figure 7.18 Four clients pile on, Server StatiStiCs.......c.ccevererrererersecrennenrerecnnee 230
Figure 7.19 Five clients pile on, NetBEUI statistics on the server 231
Figure 7.20 Five clients pile on, Server statiSticscecceverrernuenvienas SRR 231
Figure 7.21 Server activity while reading a large fileccocerievevevcririvncecnene 233
Figure 7.22 NetBEUI view of disk access on the Serverccceceevververeereeenne 234
Figure 7.23 Server and disk view of disk access on the server...........ccoceveeene 235
Figure 7.24° Memory manager’s view of disk access on the server................... 236
Figure 7.25 NetBEUI on the server during direCtory Copycccoevvevcruvvereneranne 237
Figure 7.26 Cache and memory on the server during directory copy................ 238
Figure 7.27 Disk activity on the server during directory COpY.....c.ceevererveeenencne 239
Figure 7.28 NetBEUI on the client during directory Copyc.vererereesirivusennns 240
Figure 7.29 Cache and memory on the client during directory copy............... 241
Figure 7.30 Disk activity on the client during directory copy......c.cccoveeeveveneece. 242
Figure 7.31 Throughput chart for TCP/IPcccecocivmniniininininiieiinriininncnnes 244
Figure 7.32 Network Interface of TCP/IP doing

2048-byte reads, SEIVET SIAEceivueerruercreerecriereneneereesessesereeneaene 245
Figure 7.33 Server TCP/IP counters during 2048-byte reads........ccccevevrvruennene 246
Figure 7.34 Server NBT statistics during 2048-byte readscc.cecevervrivvennnen. 247
Figure 7.35 Server’s Network Interface statistics during

1024-byte writes to the SEIVET.........covviiimeviriiniiinieiiiiesciesiens 248
Figure 7.36 Server’s UDP/IP statistics during 1024-byte writes to server....... 249
Figure 7.37 Client’s throughput for unbuffered reading

with NWLink NetBIOScccoveienireeeetistnieeenseneesssissssennene 250
Figure 7.38 Server’s NWLink NetBIOS statistics for 2048-byte reads............ 251
Figure 7.39 General IPX activity as seen by Performance Monitor 252
Figure 740 Connection and disconnection between NWLink SPX partners....253
Figure 7.41 SPX exerciser inadvertently exercises the graphical subsystem....254
Figure 8.1 Setting alerts on disk free space for multiple drives..........cccoueueeee. 259
Figure 8.2 Creating an archive log file from daily 10gscccceeereeriviincrececnne. 260
Figure 8.3 Processor-usage growth on a server over several months.............. 262
Figure 9.1 Windows NT client-server graphics architecturec..ccceeeeruene 270
Figure 10.1 Overview of the Solitaire cascade........cooeevveveerversrsenrerrsensiesieceennen 281
Figure 10.2 Processor and system statistics during the Solitaire cascade......... 281
Figure 10.3 Process activity during the Solitaire cascade.........cccceevecvrervercrnee. 282

Figures and Tables Xix

Figure 10.4 Thread statistics during the Solitaire cascade.......c..ccccererrerrecrcnnnes 283
Figure 10.5 Application interface to the system before

and after running apf32cvt........ccvviviniinnniniiniiii 284
Figure 10.6 GDI32.DLL activity during the Solitaire cascade............c..cc.c..... 289
Figure 10.7 Call/attributed profile of Solitaire cascade,

called functions inCIUded..........evvuririverriieirnietieeaas 294
Figure 10.8 CAP of Solitaire cascade, excluding called functions 295
Figure 10.9 Capview tree profile of Solitaire cascade, zoomed out.................. 296
Figure 10.10 Capview tree profile of Solitaire cascade, zoomed in.................... 297
Figure 10.11 Capview list profile of Solitaire cascade.........cceceruereeeereercererueenne 298
Figure 10.12 Overview of an application without a processor problem.............. 299
Figure 10.13 System and processor views of an application ,

without a processor Problemc.cecveeeeerreecereinienecnnnninesiesnenens 299
Figure 10.14 Memory and cache views of an application

without a processor problemce.ceeerveerererreecriieeneencrcenensisennees 300
Figure 10.15 Logical disk view of an application

without a processor Problemccveiiieienicieeiniineieeenenees 300
Figure 10.16 Partial FIOSAP file statistics on the Zapdata application 303
Figure 10.17 Partial FIOSAP event and semaphore statistics

on the Zapdata applicationccoerevveerrrrerseerienrencnenesssesesennens 303
Figure 10.18 Log of API calls made by Performance Monitor

when drawing a chart legend.........ccoovvvvinininenininiiinininne 305
Figure 10.19 File Manager as seen by PVIeWcco.erveriererriereusnsenssnsssssssenns 306
Figure 10.20 File Manager memory details as seen by PView.......cc.cccccevcueeeenn 307
Figure 10.21 PMon view Of the UNIVETSE.......cccecerrererenerneeiresereereneeseeneereneenae 308
Figure 10.22 Windbg wt command of a portion of the Solitaire cascade 309
Figure 11.1 Partial vadump results of Performance Monitor charting.............. 320
Figure 12.1 How Performance Monitor collects performance data................... 326
Figure 12.2 How to obtain performance data.........cccceecveverrcernreensencrercressinnens 326
Figure 12.3 Basic structure of performance data.............ccoecevercevnininniininninnens 327
Figure 12.4 Performance data structure of an object with no instances............. 328
Figure 12,5 Performance data structure of an object

With ONe Or MOTe INStANCES....c.eerveemiricrctereereeiireseeeeeseeesnnes 329
Figure 13.1 How Performance Monitor collects data from

an extended ODJECt......c.oiviieecnniiiiicei 342
Figure 13.2 Collecting performance data from a non-Windows NT

COMIPULET cevvvvrerverrrenrervessesseseessarsoseersessressoseessesssosseineeseensessassasssonsens 358
Figure C.1 Complete Response Probe cycle..........occcevvirviviivmninininiinnnencnn. 623
Figure C.2 Normally distributed curves produced

by various standard deviations.........c..ceceeveeerrererenerncercrenrennennes e 624

XX

Figures and Tables

Tables

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 3.1
Table 3.2
Table 3.3
Table 6.1

Table 6.2
Table 11.1
Table 11.2

Table 12.1
Table 12.2
Table 12.3
Table 12.4
Table 13.1
Table 13.2
Table 13.3
Table 13.4
Table 13.5
Table 13.6
Table A.1

Absolute Counter VAIUESccceeeeeereerarserreeseecrarsaeseesnesesseeseossossens 14
Relative Counter ValUescoceeveeimieecennnereneneenereesnnieresseesensenns 15
Core Objects in Windows NT Performance Monitorcceueuene. 27
Performance Monitor Toolbar ICONScceovvvereririnicecnensisienseeneens 33
Settings File SUFfIXES ...ccovvverinericerrerienernneecsresnesesrensernsseessessenses 60
Thread Priorities in Windows NT.......cccceveeceinmninennncncsinieneneens 82
Thread States in Windows NTc.cccceveoireiieciernnnenneerencresveenienns 83
Processes in Windows NT with No Network Connection............. 114
Cached vs. Non-cached File I/O Times

in Milliseconds per Record............couovevrmeecneeninvisisereneneeisereenennes 185
Memory Mapped vs. File I/O Times in Milliseconds per Record..203 -
Code Working Set Tuning of Performance Monitor...........cccecvn... 313
Function Reference Patterns Before

and After Working Set Tuning.........ccvceeeevrvcnenecreseerescnereescepenens 315
Performance Data StruCtUresc.ceeevevvererrereesersceseresrersesesseesenes 329
Possible Values for IpszValueNamecccceoeeveeenrceernereneencnnes 333
Counter Type Field Definitions.......cc.ccveeevereeiieniesnncnencncserscnnenen. 334
Predefined Counter Types and How to Display Them 336
Performance Counters and Help Values..........cccooveerivrnerininnnes 346
LodCtr-Added Value Names and Descriptionsccceveeveeeeennnns 347
LodCtr Variablescccccecvenenenvinserieritenuenenseeseesresnssenieseesssssenns 348
Performance DLL FUnctions...........ceceeverveneeerreesseneeeencruesessesnenees 353
Collect Function Arguments and Descriptions...........ccccceceveveneenee. 356
Collect Function Return Values and Descriptions..............ccceeuene. 357
Performance Counter Reference Information..........cceecvreereeeneenene 395

xxi

Introduction

I encountered my first computer performance problem 25 years ago. A professor at
my college wanted to build a tightrope for his children in the backyard. He needed
to know how strong the rope would have to be, so he asked if I could help. Eager to
brandish my new-found programming expertise, I readily volunteered. He told me
the weight of his children and the length he wanted the tightrope to be, and I was off
in a rush to the time-sharing terminal. I created the program, punched in the paper
tape, and soon returned to him with the answer, gleeful with my success.

A few weeks later, another professor managing our link to the time-sharing
computer stopped by and asked me if I knew what had caused the computer service
to bill us an extra $600 that month. I knew we were charged for connect time and
for computation time, but the bill seemed incredible to me and I could think of no
reason for it. A few days later it dawned on me. My little program to compute the
tensile strength of the tightrope iterated repeatedly from 0 to degree x, where x was
the angle of descent of the tightrope. Then x would be increased, but the program
started back at O again. A very simple change to the program would have made it
hundreds of times more efficient. $600. Ouch.

So my first performance-measurement tool was a bill. Sometimes a bill is still the
most effective tool, because poor computer performance costs money. And solving a
performance problem by buying the wrong piece of hardware wastes money. But
the biggest cost of poor performance is in the productivity of all the people who use
our systems and our programs. If we could properly tune all the programs and
computers in the country we could pay off the national debt. Well, make a dent
anyway.

We want to help you to avoid that $600 bill, which (given inflation) is likely to be
somewhat larger today. This book describes the dynamic behavior of the
Microsofte Windows NT™ operating system and its applications, and how that
behavior affects their performance.

xxi Optimizing Windows NT

This book will prove useful to a wide range of computer professionals, including:

Corporate Information Systems and network administration personnel who
evaluate, design, deploy, and administer Windows NT on both servers and
desktop computers.

Corporate departmental administrators who must maintain Windows NT
departmental servers.

Corporate Information Systems personnel who design, implement, and maintain
mission-critical applications deployed on Windows NT.

Independent software vendors who port 16-bit applications to Windows NT, or
develop 32-bit applications for Windows NT.

Windows NT users who make decisions concerning the addition of hardware to
their computers to improve performance.

Because we figure that our readers include people with different backgrounds and
with exposure to a wide variety of different systems, we have tried to be careful to
define our terminology as we go along. If we’re going to win this game, we need to
start with a level playing field. Hopefully this will not prove too ponderous for those
of you well-versed in computer science. Even if you are, you should stay on your
toes: like all systems, Windows NT has its own terminology.

Once you have read this book, you will be able to:

Determine hardware requirements for deploying Windows NT.
Find bottlenecks in networks, servers, and desktop computers.

Determine accurately what new hardware purchase will best enhance your
productivity.

Gain an understanding of how various activities affect the performance of your
computer hardware.

Perform capacity planning, to determine your future equipment needs for servers
and desktop computers.

Gain an understanding of the performance-critical features of Windows NT.

Determine the effect of various design tradeoffs for optimally performing
applications.

Assess the hardware requirements for your applications.
Determine the bottlenecks in your applications, and remove them if possible.

Introduction xxiii.

This book is extremely topical, which is both an asset and a liability. It is tied to
the initial release of Windows NT 3.5, and reveals a host of details that are
extremely important for you to understand if you are to manage the performance

of Windows NT. But such details may change in subsequent releases. If you are
working with a later release of Windows NT, you may find that some algorithms
have been refined and some counter names have changed, and some of the hints we
mention here may no longer apply. We’ve tried to make sure that you’ll have all the
tools in your toolkit to characterize any changes clearly for yourself as they emerge
in new releases.

As you will discover, optimizing Windows NT is not an issue of tweaking many
magic system parameters. Instead you will learn a new set of powerful tools for
analyzing system performance. Each tool will lead you to the next until you have
decimated the bottleneck demon.

On the floppy disk (or CD-ROM) provided with this book, you will find a synthetic
load generator along with quite a few other useful tools. The synthetic load
generator, which helps you perform controlled performance experiments on your
system, is described in Appendix C of this book. The other utilities have online
documentation. We discuss most of these tools in the text as we cover related
topics, but you should browse the floppy disk for tools which might be useful in
your situation. Give them a try. They don’t weigh much, so you might as well carry
them around.

There are a few topics we have not tried to cover at all in this book. For example,
we have not tried to help you to minimize the disk space required for Windows NT
on your computer. As already mentioned, we have not tried to provide an
exhaustive treatise on the effects of changing the parameters listed in Appendix B,
mainly because we think you’ll never need to change them unless your situation is
quite unusual. And we have not tried to do an exhaustive comparison of the
performance of Windows NT on this or that hardware platform. Instead, we have
enabled you to do that comparison in your own environment.

Xxiv

Optimizing Windows NT

A book like this is the result of an enormous team effort. It is a book built upon a
great foundation of software. At the base of that foundation is the dedicated team
that built Windows NT (led by Dave Cutler), that tested it (led by Moshe Dunie
and Ken Gregg), and that documented it (led by Chris Brown and Peggy
Etchevers). I designed and helped implement Performance Monitor, but the bulk of
the code was written by Hon-Wah Chan and Mike Moskowitz, with a key
contribution by Bob Watson, and help from Christos Tsollis and all the NT
development team members who added counters to Windows NT. Windows NT
also supports a strong set of application performance tuning tools provided with this
book and in the Windows NT Software Development Kit and Device Driver Kit.
These were implemented by Reza Baghai (lead programmer), with help from
Paramesh Vaidyanathan, Lee Smith, Tom Zakrajsek, Mark Leaming, Mark
Lucovsky, Lou Perazzoli, Mark Enstrom, and Phillip Marino. And I want to give
special thanks to the dedicated editing team for this book. If this book is readable at
all, it is due to their many tireless hours, and if it’s not it’s because I mangled the
text hopelessly in the first place.

All these dedicated individuals have toiled long and hard to arm you with the most
advanced tools for bottleneck detection and capacity planning. So go forth and slay
those bottlenecks. It’s a tough job, but somebody has to do it!

Russ Blake
Fall 1994

CHAPTER 1

How to Optimize Windows NT

There are many ways to make your computer go faster—for example, you can drop
it from a tenth story window, a temptation we have all had. But it’s better to figure
out why it is slow, and then do something more reasonable about it.

In this book we’ll be picking through the various things that make computers
slow, particularly the things that slow down computers running the Microsofte
Windows NT™ operating system. And we’ll find out how to fix those problems,
because your time, and your computer’s or network’s time, is precious.

We’ll also talk a little about capacity planning, so that the capacity of your
computer or network can stay one step ahead of its necessary workload. And we’ll
cover strategies and tools you can use to make sure the applications you write
perform well on Windows NT.

This chapter serves as an overview of Windows NT performance issues, starting
with the tools historically available for tuning a system and how Windows NT
changes the traditional approach. We’ll define performance bottlenecks and how
to locate where in your systems they are occurring, and how to anticipate potential
bottlenecks so technology managers can accumulate the right equipment for your
applications’ requirements. We’ll take a quick look at what programmers can do
with the performance information Windows NT gathers, and finally, we’ll glance
at the key performance measuring tools included with this book.

2

Optimizing Windows NT

Windows NT Is Always in Tune

In the old days, operating systems were built with many tuning parameters that
could be adjusted to affect the performance of the system. These parameters
frequently had obscure effects deep within the system. Understanding these effects
meant grasping subtle design details. In fact, operating system designers became
adept at leaving the most difficult decisions about the system’s performance to the
users.

Unfortunately, the users rarely had the system’s source code at hand to help make
these decisions. In an effort to keep manuals simple and friendly, the documentation
rarely included the information required to set the parameters properly. Tuning an
operating system became the arcane art of somehow understanding the many poorly
documented values and how they affected the system’s performance. This task was
made more difficult because the interactions of the parameters were even more
obscure than the parameters themselves.

A major design goal of Windows NT was to eliminate the many obtuse parameters
that characterized earlier systems. Adaptive algorithms were incorporated in
Windows NT so that correct values are determined by the system as it runs. The
32-bit address space removed many limitations on memory and the need for users
to manually adjust parameters to partition memory.

Windows NT has fundamentally changed how computers will be managed in the
future. The task of optimizing Windows NT is not the art of manually adjusting
many conflicting parameters. Optimizing Windows NT is a process of determining
what hardware resource is experiencing the greatest demand, and then adjusting the
operation to relieve that demand. The system comes equipped with elegant (if we do
say so ourselves) tools for accomplishing this task. Teaching you how to use these
tools to make your computer run faster is the primary purpose of this book.

Windows NT did not achieve the goal of automatic tuning in every single case. A
few parameters remain, mainly because it is not possible for us to know precisely
how every computer is used. Default values for all parameters are set for a broad
range of normal system use, and they rarely need to be altered. But there are special
circumstances when changes might be advisable. In this book we will be sure to
mention the few tuning parameters that remain in Windows NT, and when it is
appropriate to change them from their default values.

Chapter 1 How to Optimize Windows NT 3

Detecting Bottlenecks

Of course you never drink bottled beer, but if you did you would notice that the
neck of the bottle is narrower than the base. When you turn the bottle upside-down,
the narrow neck of the bottle restricts the flow so that you can barely get enough
beer to quench your thirst.

With computer bottlenecks, the bottleneck is the part of the computer that is
restricting the flow of work. But unlike the neck on a beer bottle, the bottleneck
in a computer can move around from one part of the system to another.

Bottleneck detection is the process of isolating the hardware component that is
restricting the flow of your activities. But because it is generally easier to move
software around than it is to move hardware, it is also useful to find the software
component that is generating all the activity.

For example, let’s suppose you have a computer that occasionally gives a sluggish
response. You follow the directions in this book, and quickly determine that the
problem is that your main disk is very busy from time to time. You will want to find
the source of this disk activity. Depending on the source of the activity, you might
be able to move it to a second disk drive and thus reduce the interference with your
normal work.

And here’s something that you probably didn’t know: software sometimes has
bugs. These can cause programs to overconsume your hardware. If you find the
software is the problem, you can replace it or modify it—it is generally true that it
is cheaper to drop your software from the tenth story than your hardware.

Whether you are a single, isolated user with Windows NT on your desktop or
you are managing a great many file and print servers, the questions you ask and
the methods you use to find bottlenecks in your computer are similar, We will
thoroughly discuss bottleneck detection in Chapters 3 through 7. There are a
number of special considerations for computers being used in certain ways, and
we’ll look at those as we move along. But generally we all need to approach
bottleneck detection through the same looking glass.

4

Optimizing Windows NT

Capacity Pianning

Even if your computer is humming along today, you can be sure that at some point
in the future you will run out of capacity. That’s because newer software often uses
more hardware to get its job done. You will find over time that your hardware
resources are not keeping up with your use of the system.

Bosses like to have advance notice of any hardware requirements, along with lots
of documentation showing the need for new equipment. In Chapter 8 we’ll discuss
how to collect data on a regular basis so you can predict your future equipment
needs. Windows NT includes tools for easily archiving the capacity planning data
for your computer or network.

Monitoring your system on a regular basis will also provide you with essential
information for bottleneck detection. One of the topics we will cover in detail in this
book is the equipment-dependent nature of performance counters. For example, the
maximum transfer rate of a disk drive is dependent on many aspects of your system.
No one can just provide you with a “good” number. But by having a record of your
computer in normal operation, you can build an understanding of reasonable values
for your counters. Then, if you make a change or something slows down, you have

a baseline against which to compare your new situation. Without this baseline, the
detection of bottlenecks can be tricky.

Optlmlzmg Applications

If you are developing software for Windows NT, you will want to take advantage
of the advanced features that will make your application hot, hot, hot. It’s important
to know that much of the lore that guided the development of Windows-based
applications for 16-bit computers is no longer relevant to the new, 32-bit
architecture of Windows NT. In Chapter 9 we’ll cover these issues in some detail.

If you are merely a victim of these ruthless programmers, Chapter 9 will give you
a few weapons to defend yourself. You will be able to determine whether they are
using the correct techniques to get the most out of Windows NT. Imagine the looks
on their faces when you point out to them that they should be mapping the
WIZBANG.DAT file. Send us the videotape!

Chapter 1 How to Optimize Windows NT 5

If you are developing software on Windows NT, you immediately have access
(through the Windows NT Software Development Kit) to a strong set of tools for
application optimization. You can find out how your application is using the system,
and whether it is behaving as you hoped. You can acquire intimate knowledge of
such details as how long it takes to make any given system call on your computer
and how often your program is making that call. For example, you can use the
Windows NT API Profiler to determine which files are most heavily accessed and
which events and semaphores are causing the most delays within the application.
Chapter 10 will give you some guidelines on using these tools wisely, as well as
guidelines for other useful tools that are on the floppy disk accompanying this book.

You will also be able to minimize the memory used by your application: A
tool for automatic working set tuning is included in the Windows NT Software
Development Kit (SDK). Other tools will help you to understand your virtual
memory activity in some detail, so you can find memory and virtual memory
leaks. Chapter 11 discusses all of this.

In Chapters 12 and 13 we will provide information to help you write your own
performance monitor or to incorporate the monitoring technology into your
application so you can produce information about the system’s behavior along
with statistics about your application’s progress. And you will find out how to add
counters from your application to the performance monitor so that your users can
remotely monitor the progress of your application and correlate that progress with
computer resource usage. '

Performance Monitor and Other Cool Tools to Use

On Windows NT your primary tool will invariably be the Windows NT
Performance Monitor or a similar product. Performance Monitor is designed to
pinpoint the majority of performance problems. You can think of Performance
Monitor as a broad, horizontal tool that lets you look at a wide range of system
components. But some problems require other tools, which you can think of as
specialized, vertical tools for intensive monitoring of specific aspects of your
system or application. Performance Monitor can lead you to the correct tool for
the next phase in your investigation. This method of using Performance Monitor
first, and then a more specialized tool, will always save you time.

6

Optimizing Windows NT

Another tool that is quite handy for quickly assessing the status of programs on
your system is PView, available on the floppy disk provided with this book. PView
shows what programs are currently running and gives some basic information about
each. With the exception of a few items included in PView to aid in debugging
applications, all the data items in PView are also available in Performance Monitor.
But PView is a bit simpler to start and displays data in a different way that’s quite
handy for a quick glance at system status.

As mentioned above, additional tools exist for tuning individual applications. Some *
of these can also be an aid to tracking down performance problems. So be sure to
familiarize yourself with these tools even if you do not plan to write any

applications yourself.

Performance Monitor Is a New Breed of Application

The microcomputer industry has been built upon a few application types. Word
processors and spreadsheets make up the majority of applications sold. Other
popular application categories include databases, desktop publishing, presentation
graphics, drawing, and myriad games.

Windows NT Performance Monitor is not like any of these. It is an entirely new
type of application, so we are all amateurs in its use. If you invest the time to learn
how to use Performance Monitor, you will be repaid with knowledge of a powerful
tool. You will be able to understand a computer running Windows NT in a way that
few people ever understood the computers they have used. This knowledge will
enable you to do your job more effectively, or at least provide you with a great
conversation topic at parties.

In Chapter 2 we will discuss the rationale behind the Performance Monitor feature
set. This goes beyond just listing features to indicate how and why each one is
useful. In the following chapters we will explore what you can measure on
Windows NT, and what those measurements tell you. Reading this will empower
you to hunt bottlenecks in the densest, darkest networks of computers!

CHAPTER 2

Zen and the Art of
Performance Monitoring

Computer performance bottlenecks are usually typified by the overconsumption

of some hardware resource. Generally this results in the underconsumption of
other hardware resources. If a particular piece of equipment is the bottleneck in

a computer, it is usually true that by purchasing more of that resource you can
eliminate the bottleneck. But buying more of a different resource will not help, and
although we all like to help the economy whenever possible, it is best not to spend
the boss’s money needlessly.

To determine the precise location of the bottleneck in your computer, you must
become as one with the computer. There can be no distinction between you as an
individual and the computer as a machine. To achieve this state requires years of
meditation, prayer, and insanity.

Luckily we have an alternative approach, which requires only a little insanity:
Windows NT Performance Monitor. Performance Monitor is an excellent tool for
optimizing computer performance. With a little background information on how
computers work internally and how Performance Monitor measures performance,
you can make sure you are getting as much as possible from your computer.

You might think that a great deal of complex mathematical theory is required to
work on computer performance, but luckily that is not the case. If you can do
simple arithmetic, you can understand bottlenecks and capacity planning. We’ll
present some of the basics in the next few chapters. Anyway, even if you never
use this stuff, you’ll have some new terminology to use to impress your boss.

In this chapter, we’ll start with some of the basics of computer architecture, and
then go over the features of Performance Monitor and how you can use them to
solve various problems. Performance Monitor has online Help to explain how to
invoke its features using various keystrokes and mouse clicks, so we usually won’t
repeat those details here. Instead we’ll focus on why the various features exist, their
intended use, and their limitations. As any woodworker with fewer than ten fingers
will tell you, it’s worth spending some time getting to know your tools.

8 Optimizing Windows NT

Computer Architecture 101

To get a handle on the bottleneck issue, we need to understand just a little about
how our computer is organized internally. Figure 2.1 is a block diagram of the
hardware organization of the original IBMe personal computer. Modern systems
may partition things a bit differently, but the basic idea has not changed much since
the early 1980’s.

Random-access ||
memory (RAM) |

Read-only

Optional
memory (ROM)

COprocessor

TR

To more slots

Processor Graphics adapter |

video memory

adapter

TR R R e R A R T e

———
Floppy Hard
disk disk

Figure 2.1 Block diagram of the original IBM personal computer

Actually, Windows NT will not execute on one of the original PCs, because those
PCs used a processor that’s just too puny—a 16-bit processor, instead of a 32-bit
processor. A more modern system, based on the Intele 486 chip, is shown in
Figures 2.2 and 2.3.

486
microprocessor

Serial/ EISA/ISA
graphics parallel expansion

interfaces connectors

Figure 2.2 Block diagram of a current Intel 486-based computer

Chapter 2 Zen and the Art of Performance Monitoring 9

Just as some perfectly competent auto drivers don’t know how spark plugs work,
some perfectly competent computer users might not know how programs execute
on the architectures represented by the illustrations in this section. Programs are
composed of instructions that reside initially on the disk drive or across the network
on some other computer’s disk drive. The processor executes these instructions and
follows their logic. It is typical for Intel 486 processors to take about 2.75 processor
cycles per instruction, on average. The processor is running at a cycle rate

“determined by the system clock. Typical cycle rates today vary from 25 MHz to
100 MHz, (megahertz, or millions of cycles per second). A 66-MHz 486 executing
at a rate of, say, 2.75 cycles per instruction will observe an instruction rate of
approximately

(66,000,000 cycles/sec)

(2.75 cycles/instruction)

or 24,000,000 instructions per second.

In RISC architectures, the design goal is to execute one or two instructions in
every clock cycle. The price for this speed is a simpler instruction set, and hence
a compiler needs to generate about 20% more instructions to do agiven job.
Achieving this design goal is also heavily dependent on the effectiveness of the
cache hierarchy, and RISC systems tend to benefit from large caches. Because
caches are cheaper than processor chips, this is a reasonable approach.

When told to execute a program, Windows NT must bring the program into RAM.
Windows NT does this in pages so the whole program does not have to be in
memory at one time. This is called demand paging. Why use paging at all? To ’
efficiently use a scarce resource—RAM.

Control is transferred to the instructions in the program. Instructions are brought
from RAM into the processor and tell the processor what to do next. The program
can ask Windows NT to read file data from or write file data to the disks or the
network. This causes the data to pass from RAM to the adapter, which takes care
of transferring data to or from the media. On completion of the operation, the
adapter interrupts the processor.

The program can ask Windows NT to draw text or graphical images on the display
using the graphics adapter. In this case, the bits flow from RAM memory to the
video memory on the graphics adapter, or else the image is drawn directly into
video memory. Whatever is in video memory is automatically displayed on the
monitor by the graphics adapter hardware. The program can also ask Windows NT
to notify it when you press a key on the keyboard or move the mouse, which can
also be attached to the I/O-memory bus.

10

Optimizing Windows NT

You may have guessed by now that all this movement of data is on the I/O-memory
bus. This is not a wheeled vehicle inside your machine that ferries data around,

but there is absolutely nothing wrong with thinking of it as one. The bus is really a
collection of printed circuit board traces along which electrons scream at about half
the speed of light. Unfortunately, the circuitry controlling the bus access and routing
slows things down quite a bit. In the design in Figure 2.1, the processor and the I/O-
memory bus run at the same rate: 8 MHz. One big difference between Figures 2.1
and 2.2 is the partitioning of the system hardware into two separate buses, so
slower /O traffic does not interfere with the high-speed processor memory traffic
of today’s systems. These buses are fast enough that they are seldom a computer
system bottleneck. There are exceptions, however, and we’ll mention a few later on.

Numeric
CPU coprocessor

Cagr;?‘trrr;ﬁgirory cacﬁ;zKr?l)gr?\ oy Second-level Second-level System.
cache controller || cache memory memory
486 processor I

32-bit processor/memory bus
Figure 2.3 Memory bus organization of a current Intel 486-based computer

The two memory caches detailed in Figure 2.3 help form a memory hierarchy,
which speeds system operation considerably while also reducing bus traffic. The
cache built into the 486 processor is 8K and holds recently used code and data. This
exploits a well-known property of programs—a program uses many of the memory
bytes that it has used in the recent past. This is called locality. By keeping these
bytes near the processor in high-speed (expensive) memory, access to them is much
more rapid. Usually it takes one processor cycle to fetch something from the first-
level cache. The second-level cache is larger, slightly cheaper memory that is not in
the processor chip itself. The second-level cache can usually be accessed in two
processor cycles. It is not unusual for a main memory access to take around 10
processor cycles, so you can see the caches provide a huge performance win when
the data is present there. The presence of the cache hierarchy in the 486 is the main
reason for its large performance improvements over the 386. Now that it is
commonplace in the industry, it will be a while before we again see such a large
leap in processor performance from one generation to the next.

Chapter2 Zen and the Art of Performance Monitoring 1

The block diagram in Figure 2.4 shows a Reduced Instruction Set Computing
(RISC) system. One important difference between the designs shown in Figures 2.3
and 2.4 is the inclusion of video memory on the high speed memory bus instead of
on the much slower I/O bus. This is a great benefit to graphics performance,
typically improving graphical performance by a factor of between 5 and 10. This
design is beginning to appear in 486-based systems as well as RISC systems.

Secondary
cache

R4000 | H

TRRE

J R4000 bus Memory {Memory bus
—..:.m::rm control/ -
DMA
Serial chip set Video bus
PROM
A .
Ethernet Video
EISAbus Remote bus || JVigeo

EISA
chip set

A

scsl Floppy Serial/paralle! Keyboard/
disk ports mouse
{V ‘ T |

Real-time '
Sound PROM clock NVRAM

Figure 2.4 Block diagram of a RISC-based personal computer

The main difference between Figure 2.5 and its predecessors is the addition of
multiple processors. This permits multiple programs (or parts of programs, called
threads) to execute simultaneously. Because they are all using the same memory,
cache design is very important to reduce memory traffic and the potential for
memory to be a bottleneck in such systems. The common memory usually will

limit the amount of useful concurrence (ability of the multiple processors to work
together) such a design will yield in practice, and the limits are very application-
dependent. Although it may be difficult to predict the common memory-imposed
limit, you will at least be able to determine how effective adding a new processor is
once you’ve done it, so don’t stop reading yet.

12

Optimizing Windows NT

486
microprocessor

486
microprocessor

Second-level Second-level

cache

Figure 2.5 Block diagram of a multiprocessor computer

BottleneCk Defined

Think of an interaction as a unit of work on the system. This could be a user
interaction with an application, a reading of a file from a network server, or a
sending of e-mail across the network. It is best if you define this action yourself,
because you know what your computer is being used to accomplish. (Well, maybe
you don’t. But we certainly don’t know.) If we know just a few things about this
interaction, there are a lot of things we can say about the performance limitations
of the system. '

The first thing we want to know is the total time the interaction uses on each unit
of hardware on the computer. Call this the demand for the device, and measure it
in seconds.

If demand(processor) is the processor time used by the interaction, and
demand(disk) is the disk time used by the interaction, we can invent a natural
law called the Consistency Law that states:

util(processor) = demand(processor)
util(disk) demand(disk)

where util(device) is the utilization of the device (either the disk or the processor in
this case). Util(device) is a number from O to 1 which is generally expressed as a
percentage from O to 100%. This tells us that the devices will be busy in relation to
the demand for them. A consequence of this law is that a device may not necessarily
be at maximum utilization in order for a system to be achieving maximum
throughput, defined as interactions per second.

Chapter2 Zen and the Art of Performance Monitoring 13

If a device can achieve utilization of 1 (for reasons why a device may not be
able to achieve utilization of 1, see the discussion of sequencing in Chapter 7),
the maximum throughput for that device is:

max throughput(device) = 1
demand(device)

Clearly, the device with the smallest max throughput in the system for this
interaction will determine the maximum throughput the system can achieve. This
device is the bottleneck. Notice that making any other device faster can never yield
more throughput; it can only make the faster device have lower utilization. This is
why it is so important to discover the bottleneck in a system before signing the
purchase order for new hardware!

For example, suppose that an interaction requires .3 seconds of processor time

and .5 seconds of disk time, and no other device time. The processor can handle 3.3
interactions per second, while the disk can handle 2 interactions per second. So the
overall system can handle only 2 interactions per second, at which point the disk
will be saturated (utilization = 1). By the Consistency Law, the utilization of the
processor at that point is .3/.5 = .6, or 60%. Pretty cool, huh?

This gives rise to a general observation known as the Throughput Law, which
says that for all devices, the overall throughput of the system is measured by the
following: -

throughput = util(device)
demand(device)

For certain devices, it is useful to define the demand for the device in terms of the
number of times the device is used by the interaction, and the average amount of
time the device is used on each visit, known in queuing theory as the service time of
the device:

demand(device) = visits(device) * service(device)

Windows NT Performance Monitor is based on these simple yet powerful
principles. For each device, it counts and displays such basic elements as the
utilization, visits, and service time. Sometimes it displays only some of these values
and you can easily compute the others. This is done in those cases when we must
leave it to you to define what constitutes an interaction on your system.

14 Optimizing Windows NT

But we also use a simple trick. Because we don’t know what your interaction is, we
define the default interaction on the system as whatever took place during the last
second. With this definition of interaction, demand(device) expressed as a fraction
of a second is the same numerically as util(device) expressed as a number from 0 to
1. So if you don’t care to define your interaction too precisely, you can use our
default definition and get meaningful results.

Soon, you will easily be able to toss these simple formulas around. Your friends
will be amazed.

What a Counter Counts

Someone once said that if you can’t measure it, you can’t manage it. Unfortunately,
just being able to measure something does not guarantee that you can manage it.
But it’s a start.

Fundamental to Performance Monitor is the concept of a counter. On hardware
devices, counters count visits to the device (in the fancy parlance of the previous
section, visits(device)). The Physical Disk device has, for example, a count of disk
transfers made, expressed as Transfers/sec. The service(device) is sometimes also
provided, as in Avg. Disk sec/IO in the case of Physical Disks. Often we break
down these visits into categories to better indicate the cause of the activity. To
continue the example, we provide the counters Disk Reads/sec and Disk Writes/sec
S0 you can gain a better understanding of the cause of disk congestion.

We have a strong bias for expressing counters as rates per second, and timers as the
fraction of time that a device is used (expressed as a percentage). The advantage of
this approach is that if a counter is observed over a five-minute period and then
compared to its value over a 10-second period, the numbers are comparable if they
are expressed as a fraction of time or a rate over time.

" You’ll have to deal with this a lot, so let’s take an example to make this concept
clear. Suppose we have one counter that is timing disk operation, and another that is
counting disk transfers. Table 2.1 shows a simple case with absolute counter values.
Table 2.1 Absolute Counter Values

10-second interval 5-minute interval
Disk time 8.654 seconds 225.621 seconds
Disk transfers 258 transfers 9024.8 transfers

Chapter 2 Zen and the Art of Performance Monitoring 15

Looking at these two sets of data, it is actually a bit difficult to see which one has
the busier disk. Look at the same situation in Table 2.2, expressed as rates and
utilizations: '

Table 2.2 Relative Counter Values .

10-second interval 5-minute interval
Disk time 86.54% 75.20%
Disk transfers 25.800 Transfers/sec 30.080 Transfers/sec

Now we can see that over the five minute interval the disk was slightly less busy,
yet handled more transfers. How can this be? Either there was less seeking/rotation
on each transfer, or fewer bytes per transfer. To determine which, see the Average
Disk Bytes/IO counter for this disk. But we won’t fuss with that now because the
real point here is that Table 2.2 is directly relevant, and Table 2.1 is not. Now you
can see why Performance Monitor will display nearly all of its data in the form
shown in Table 2.2.

Why You Can’t Always Get Easy Answers About
Performance

You might want to know what a good value is for Physical Disk: Transfers/sec.
We’d love to give a simple answer, but we can’t. We don’t know anything about
your hardware or applications software, and there are many factors that affect the
answer.

So now you’ll ask about the maximum Physical Disk: Transfers/sec. We don’t
know that either, for the same reason. Do you know the maximum speed your car
can attain? How would you find out? By driving as fast as you could, of course.
But where? Up a hill, or down? Around a Formula I race car track, or the Daytona
Speedway? All these factors affect the highest speed you can attain with your car.

Similarly, a large set of factors determines the normal operating range for each
Performance Monitor counter. You’ll have to drive your system through a large
number of conditions, or at least those of interest to you, and develop a sense for
normal operating ranges for your equipment. You should record these typical values
in Performance Monitor log files for future reference. Then, as you make changes in
your workload or your hardware, you can refer to your earlier experience as a
baseline.

16

Optimizing Windows NT

We can help a little if you want to know the maximum values you can attain on
various counters. Included on the disk that accompanies this book is a utility called
Response Probe. Response Probe lets you place known, pure, predefined loads on
your equipment. You can then characterize, in a disciplined way, the response
surface of your computer—its response to pure loads. You can max out your disk
drive, no problem, and in several different ways. By using Response Probe you can
establish maximum counter numbers under a variety of known conditions and then
use that logged information later when assessing real data.

* The only counters that we can say much about immediately are the queue length

counters. A little later on we talk about the relationship between queue lengths and
utilization. But here we can make a simple statement: the apparent speed of the
device is inversely proportional to the length of the waiting line. It’s just like at the
grocery store or the bank. In general, waiting lines longer than 2 are bad.

How Performance Monitor Sees a Computer

We need to descend from this ethereal realm of generalizations into the realities of
performance monitor construction. Software performance monitors are great tools,
but they have certain limitations we can’t ignore. They measure what they can
without disturbing the system under measurement too much. And some elements
cannot be measured because the current generation of hardware does not support
counters or timers on those elements.

Here’s an important example: the processor and the cache/RAM memory
hierarchy are busy during the execution of instructions. Because we don’t have

an inexpensive way to partition the activity among these tightly knit elements, we
consider them as a unit when we think of the processor as a device doing work in
the system. When we become concerned about memory being a bottleneck in the
system, we usually are concerned about its size, not its speed. On single processor
systems we just lump memory speed into processor speed, and we won’t say much
more about it. From now on when we speak of the processor being busy, we will be
speaking of the group of hardware devices shown in Figure 2.3.

Note The new Intel Pentium™ processor and other new processors have counters on
some of these low-level items. A Performance Monitor extended object for these
counters is included on the diskette or CD-ROM provided with this book.
(Extended objects are explained in Chapter 13 of this book.) In particular, these
new counters should help with finding memory speed bottlenecks in multiprocessor
systems.

Chapter2 Zen and the Art of Performance Monitoring 17

Mouse
Memory
LAN
File
Processor cache
Disk
Display

Figure 2.6 Performance Monitor view of personal computer hardware

So, what does happen when memory is too small? Then there is not enough room in
memory for all the needed pages of program code and data. The system starts to
spend a lot of time moving pages between disk and RAM. Bummer. What you see

is loads and loads of disk utilization. By the definition of bottleneck, you might be
tempted to rush out and buy a faster disk drive. Bad decision! What you really need
is more memory. Although the disk is, strictly speaking, the bottleneck in the.
system, the reason it is the bottleneck is lack of memory. There is a Windows NT
counter (Memory: Pages/sec) that clearly shows this to be the case, and a number of
other counters to help you back it up.

Lack of memory is by far the most common cause of serious performance problems
in computer systems. If you stop reading here, you can do better than you should
just by saying “Memory!” whenever someone complains about performance. But if
you have the integrity your parents raised you to have, you’ll want to understand
enough about how the system works to draw reasonable conclusions about what you
observe. Don’t worry; by the time we’re done, you’ll be downright dangerous.

Performance Monitor Overview

We can’t really say much about Performance Monitor unless we first give a brief
overview of how you can view its data. :

You can chart a counter. This will display the counter’s values over time. You can
chart many counters at one time. A chart of two counters is displayed in Figure 2.7.
The horizontal axis is time. '

18 Optimizing Windows NT

L R s e it ERELELLE
[—] 0.001000 Avg. Disk Bytes/Read D: 1 LogicalDisk \CEREBELLUM |

Figure 2.7 Performance Monitor Chart view

You can report on a counter. A report shows the value of the counter. You can
create a report of all the counters in Performance Monitor. There are many; you’ll
have to scroll to see them all. Figure 2.8 shows a report.

Computer: \\CEREBELLUM
Object: System

% Total Privileged Time . 2224
% Total Processor Time ’ 2772
% Total User Time 0.556
Total Interrupts/sec : 85.152
Context Switches/sec 180.541
File Control Bytes/sec 113155
File Control Opetations/sec 1.340
File Data Operations/sec 17.538
File Read Bytes/sec 1077528.706
File Read Operations/sec) 17.538
File Write Bytes/sec 0.000

File Write Operations/sec

0
System Calls/sec

Figure 2.8 Performance Monitor Report view

Chapter2 Zen and the Art of Performance Monitoring 19

You can set an alert on a counter. This causes the display of an event when the

counter attains a specified value. You can monitor many alerts at one time.
Figure 2.9 shows some alerts.

_Eiie Edit View Options Help

RlaeE +FEX] Bk

[-1~

Alert Interval: E_[mo —I

Alert Log: : : . N

@& 7/30/93 2:52.6.9 PM 1.923 < 10.000 % Free Space, D:, 0, LogicalDisk, \\ZENM,
$ i 2 a Ty N eEMEE R

“Aleit Le'g‘end:' :) SRR Jat e LU LRI s
- Color~ ' Value Counter - Instance Parent Object Computer ~
SO > 90.0000 % Processor Time 0 Processor \\ZENMASTER

C: 0

LogicalDisk \\ZENMASTER i

{Data: Current Activity -

Figure 2.9 Performance Monitor Alert view

You can (best of all) log counters. Logging causes the counters to be recorded on
disk for further analysis. You can feed log files back into Performance Monitor to
create charts, reports, or alerts from the logged data—and that’s just the tip of the
iceberg. Figure 2.10 shows some data being logged.

20

Optimizing Windows NT

File Edit View

Options Help

+{EX

Obijects
System
Process

pegel
\\SETTER
\\pegetl
\\pegetl
\\pegetl

(5ot ConertActviy Save i st

Figure 2.10 Performance Monitor Log view

If this range of formats does not immediately meet your needs, you are a chronic
malcontent. In this case you can export Performance Monitor counter data to other
products such as spreadsheets and databases for further data reduction and analysis.
Figure 2.11 shows an Excel chart of exported performance data.

dig
Gallery

St
Chart Format

File Edit Macro Window Help

% Processor Busy and Interrupt Rate / 10

Figure 2.11 Excel chart of exported Performance Monitor data

Chapter2 Zen and the Art of Performance Monitoring 21

How Performance Counters Are Structured

If you’ve played around with Performance Monitor at all, you’ve noticed it has a
few counters. And a few more. And then some. To cope with this flood of data,

the counters are organized into a logical hierarchy. This hierarchy is defined by the
structure of the (measurable) hardware equipment and (measurable) software
elements.

At the top of the hierarchy is the Domain. Each Domain contains computers.

For our purposes, each computer has distinct elements called objects. There are
objects for physical components such as Processors, Physical Disks, and Memory.
There are other objects, such as Process and Paging File. Each object has a set of
counters defined for it. An object’s counters record the activity level of the object.
We use the following typographical convention to name a counter of a particular
object: object: counter.

Some objects have multiple instances. For example, a computer can have multiple
physical disk drives. Each such disk drive is an instance of the Physical Disk object.
Each such disk drive has a name; in the case of Physical Disks it is its physical unit
number. All the instances of a particular object have the same counters defined for
them. The % Disk Time counter is the main indicator of how busy a disk is. Each
physical disk drive has a counter that measures % Disk Time. We use the following
typographical convention to denote a particular counter of an object with instances:
object: counter[instance name]

This structure is used in the dialog box where you select counters for measurement.
This dialog box is shown in the following section.

22

Optimizing Windows NT

Selecting Computers

The first step in selecting a counter for measurement is to choose Add To Chart
from the Edit menu in Performance Monitor.

Computer: [\\ZENMASTER)

Object: |LogicalDi:k |!| Instance: [Ii -

Counter: |% Disk Read Time 4
sk g

% Disk Write Time
Z Free Space

Avg. Disk Bytes/I0 i
Avg. Disk Bytes/Read h

i L!j Scale: IDefaull I&i Eidlh:li

B swe——

Figure 2.12 Add To Chart dialog box

Each time you select a counter you must provide the name of the computer you
want to measure. By default, this is your local computer.

If you don’t want to look at an object on your local computer, you can enter the
name of another computer. You must have the Access This Computer From
Network right on that other computer, or you will be unable to monitor it. To
select the computer on which you want to monitor this counter, type its name in
the Computer box. If you type in the name of a Windows NT computer, be sure
to enter the leading backslashes (\\). These are not supplied automatically by
Performance Monitor because they might not be included in the name of foreign
(non-Windows NT) computers. (Extensible objects can be created for measuring
objects on foreign computers. For more details, see Chapter 13, “Adding
Application Performance Counters.”)

If you can’t remember the name of the Windows NT computer you want to
monitor, you can choose the ellipsis button to the right of the Computer box. This
brings up the Select Computer dialog box. The computers in your own domain are
automatically listed for selection. You can double-click icons representing other
domains to see a list of computers in those domains.

You can start Performance Monitor looking at a particular remote computer with
the following command syntax:

perfmon -c \\computername

Chapter 2 Zenand the Art of Performance Monitoring 23

Computer: |

Select Computer:

() PERFALPHA +
[&) PERFAMIGO
I PERFCURLY
() PERFGROUCHO

(1
M
o)
m
5
pu)
D
=
||

EPERFMIPS
tC) PERFMOE
[IPETEGNT ¥

Figure 2.13 Computer Selection dialog box

You can collect data simultaneously from as many computers as you want.

‘You must point at each computer to select the data you want to collect from it.
Obviously it can be a lot of work to perform this selection process. You can save
your selections in a settings file, and reload those settings later. We’ll go into that
in “Saving Settings,” later in this chapter.

The Add to Chart dialog remembers which computer you last selected so you will
not have to re-enter the computer name if you need to revisit the dialog.

Remote measurement does not carry a large overhead. Even better, you can
measure that overhead. You should do so to become aware of what you are doing
when you collect data from a remote computer. Each time interval, you will be
visiting that remote computer and gathering data on the objects that you specified.
We call each such visit a snapshot. You can use Performance Monitor to determine
the overhead of a snapshot. You can monitor the network protocol objects to
determine the number of bytes being transferred across the network, and the
processor overhead on each machine. See Figures 2.14 and 2.15 for examples of
overhead. '

24 Optimizing Windows NT

File Edit Vlew Optlons Help

eoEr1.0000 / Processor Time
"Dala Current Activity .~ - i s

Figure 2.14 Overhead of remote monitoring on the monitored computer

VFlle Edit Vlew Opunns Help

Figure 2.15 Overhead of remote monitoring on the monitoring machine

If a computer is shut down while you are monitoring it, Performance Monitor
receives a time-out while attempting to access that computer. Later, it will retry the
access. When the computer starts again, Performance Monitor succeeds during the
operation. During the initial failure, Performance Monitor stops data collection
while it times out. The time-out value defaults to 20 seconds. The time-out time is
also incremented by this amount for every five computers you monitor. The time-out
value can be changed, and is stored in milliseconds in the Registry location
HKEY_CURRENT_USER\Software\Microsoft\Perfmon\ DataTimeOut.

Chapter2 Zen and the Art of Performance Monitoring 25

Measuring Many Computers Without Affecting
Performance

When you measure data from many computers, Performance Monitor starts a
separate thread for each remote computer being measured. The threads concurrently
collect data from the various computers. The computers will most likely respond at
slightly different moments in time. Even though the data is shown as though it was
collected simultaneously, this is only approximately true. It’s a fine point, but that’s
why you’re reading this, right?

There are no intrinsic limits on the number of computers you can monitor
simultaneously, but limited hardware resources can make measuring too many at
once impractical. If you find you are clogging your computer or network with
measurement data, there are a number of tricks you can employ to reduce your
overhead. '

First, collect data less frequently by increasing the time interval of your data
collection. Overhead is inversely proportional to the time interval, so doubling the
time interval will halve the overhead. This relationship between time interval and
overhead is a basic design principle of Performance Monitor. You can make an
explicit trade-off between the overhead and the resolution of your measurement.
Greater resolution (smaller time interval) has greater overhead and thus affects the
measured system’s performance more. :

Next, reduce the number of objects you are monitoring. The Thread object is the
most expensive to monitor, because a plain vanilla Windows NT system has over
100 threads. Next in line in amount of data collected is the Process object. Remove
objects in a disciplined manner, watching the effect on your network protocol byte
counters. This tells you the impact of your changes.

This brings us to Rule #1. Along the way in this book, we have included a
lighthearted “10 Rules of Bottleneck Detection.” These rules are simple guidelines
or reminders about what you should do or watch out for when you hunt bottlenecks
on your computer systems..And Rule #1 is: When hunting for a bottleneck, make
only one change at a time.

26

Optimizing Windows NT

If the overhead of graphing counters on your system is too high, consider using
alerts instead of charts to monitor a large number of computers simultaneously. The
same amount of data is transferred across the network, but the local cost to display
is lower as long as the alert thresholds are not triggered too frequently. Again, by
measuring your overhead, perhaps with another copy of Performance Monitor, you
can determine the effects of your changes.

If you are charting data from many computers, you may find it useful to run more
than one copy of Performance Monitor. Each copy could be monitoring a particular
type of counter. One could monitor Processor: % Processor Time from each
computer, another could measure Memory: Pages/sec, and so on. This permits
deviant behavior to be spotted easily.

Last but far from least, you may wish to start a Performance Monitor service on
each remote computer. This limits network traffic to the times you desire. See the
section below on the Performance Monitor service for more information.

Selecting Objects

In the Add To dialog box, if you click the arrow to the right of the Objects box you
see an alphabetized list of the objects being measured on the computer you selected.
You will have to scroll up to see them all, because Processor is the default object
and it is fairly far down the list alphabetically. The Processor is the object selected
by default, because it is the most commonly selected object. Different computers
have different lists, depending on the hardware and software installed. All
Windows NT systems always have a core set of objects installed. These are

listed in Table 2.3.

Chapter2 Zen and the Art of Performance Monitoring 27

Table 2.3 Core Objects in Windows NT Performance Monitor

Object name Description

Cache File system cache used to buffer physical device data
Logical Disk Disk partitions and other logical views of disk space
Memory Random-access memory used to store code and data
Objects Certain system software objects

Paging File File used by system to back up certain virtual memory allocations
Physical Disk Hardware disk unit (spindle or RAID device)

Process Software object that represents a running program
Processor : Hardware unit that executes program instructions
Redirector File system that diverts file requests to network servers
System Counters that apply to all system hardware and software
Thread Software object inside a process that uses the processor

You use the Add To dialog box to select an object for measurement (see
Figure 2.18). .

Performance Monitor automatically displays any extended objects successfully
installed on your computer. These are objects added after Windows NT was
shipped to you. Extended objects for Performance Monitor are typically installed
automatically when the object manager software for the object is installed. The
ability to add new objects to Performance Monitor is one of its most powerful
features. In Chapter 13 we explain how to create extended objects for your own
applications.

If you are in the Log view you can select multiple objects for measurement (Figure
2.16). In the other views you can only select one object at a time. This determines
the contents of the Counter and Instance boxes so you can complete your selection.

28

Optimizing Windows NT

Computer: [\\BLAKERNT

Objects:

NetBEUI Resource
Objects
P"Qi’!,g»':“e VRO

Proce:s

R ednector
Server +

Figure 2.16 Selecting multiple objects for logging

Select‘ing Counters

If you are in the Chart, Report, or Alert view, you next designate a counter to
measure by choosing its name in the Counter box. For each object, what we
consider to be the most important counter is the default selection. The counters
are listed in alphabetical order.

Computer: | \\ZENMASTER]|

Object: |Mem0l_'.| . Lg_! Instance:

Counter:

Flee S pstem Page Table Entries 14
37

Page Head:l:ec
Page Writes/sec
Pages Input/sec
Pages Output/sec b

Color: |

gt (4] Scale: [Defaull [$] Width:

B sue[— T

Figure 2.17 Selecting a counter for measurement

If the name of a counter is longer than the box can accommodate, a horizontal scroll
bar appears so you can view the entire name. Once you have clicked anywhere in -
the Counter box, you can press the first letter of the counter name to move to its
name more rapidly. Repeatedly pressing a letter scrolls sequentially through
multiple counters that begin with that letter.

Chapter2 Zen and the Art of Performance Monitoring 29

You can select more than one counter at one time. Hold down the CTRL key and
click the counter names to select noncontiguous counters. Then use the Add button
to add them to your view.

Computer: |\\ZENMASTEFI

Cancel ;

Object: | Memory

| Counter:

fite
Pages Input/sec

Pages Output/sec
e IeRaTs e

Color: I :‘:; Scale: |Delau|t Ltj !I_idth:l

5 swe[—

Figure 2.18 Selecting multiple counters for measurement

We have said just a bit about selecting multiple counters. How certain options apply
to multiple counter selections is “intuitive,” which is a programmer’s word for “not
obvious, but easy to understand once you know it.” We’ll cover these details as we
explore the various views later on.

How do you know which counters to measure? Good question!

We’ll go into detail about the counters in the next few chapters. Each counter tells a
story about the system’s operation on your hardware. Once we understand that
story, selecting a counter is pretty easy.

Selecting the default counter for any given object is often an excellent idea. We
made each of these counters the default because it tells the most about the object’s
activity.

30 Optimizing Windows NT

Click the Explain button whenever you are looking at a new counter. This explains
the nature of the counter and its role in monitoring system activity. After you click
the Explain button once, you see the Explain text for every counter you select until
you close the dialog box. See Figure 2.19.

Computer: [\\ZENMASTER

Object: IMemmy I..g.! Instance:
Counter: [iipliaDllEva I+

Page Reads/sec !

Page Wirites/sec

Pages Input/sec : oo

Pages Output/sec L]

Pages/sec [+

Counter Definition

Page Faults/sec is a count of the Page Faults in the processor. A page fault occurs when a process
refers to a virtual memory page that is not in its Working Set in main memory. A Page Fault will not cause
the page to be fetched from disk if that page is on the standby list, and hence already in main memory, or if

Figure 2.19 Using the Explain text .

Appendix A contains a list of the objects, their counters, and their Explain text.
When all you want to do is peruse the names and Explain text of counters in the
system, you may find the appendix easier to use than scrolling through the counters
on-screen.

Sometimes it is desirable to select all counters for an object. It makes sense to do
this in the Report view. Looking at all the counters at one time in the Report view
can illustrate how the counters vary during an operation. To select all counters for
an object, drag all their names with the mouse, or press HOME and then SHIFT+END.

Chapter2 Zen and the Art of Performance Monitoring 31

==a[ho S H :V";:,Iviﬁ

File Edit View Options Help

BROE FEX Eh

Computer: WPERFCURLY
Object: System

% Total Privileged Time 7.735
% Total Processor Time 38.559
% Total User Time 30.824
Context Switches/sec 114.613
File Control Bytes/sec 176.504
File Control Operations/sec 4,293
File Data Operations/sec 38.538
File Read Bytes/sec 443394.748
File Read Operations/sec 38.495
File Wiite Bytes/sec 332.071
File Wiite Operations/sec 0.043
Processor Queue Length 0.000
System Calls/sec 125.036
System Up Time 5

Total Interupts/sec

Figure 2.20 Viewing all the counters for an object at one time

Selecting Instances

If you selected an object with instances, you’re not done selecting yet. Many
objects do have instances, which are individual occurrences of the object type. For
example, if you have more than one disk partition on your system, you will have
one instance of the Logical Disk object for each partition. Similarly, each running
program is represented by a Process instance.

Every instance has the same counters defined for it, but each instance has its own
private copy of those counters so you can observe their behavior individually.

In a few cases there are summary counters in another object giving a sum of the
collected instances’ counters. One example is the System: % Processor Time which
is an average of the Processor: % Processor Time for all processor instances on a
‘multiprocessor system.

Some instances have a parent instance that helps to identify them. The Logical
Disk instance has as its parent instance the Physical Disk on which it resides. Each
Process object has one or more threads of execution. Each Thread instance has as
its parent the Process instance that contains it. Instances with parents are denoted in
the list box by the following notation: parent instance ==> child instance.

32

Optimizing Windows NT

In the Instance box in the Add To dialog box, the default instance is the one that is
alphabetically first, because we just can’t guess which one you care most about.
You often may want to select a different instance, or multiple instances, to examine.
Do this just as you did for multiple counters, by holding down the SHIFT or CTRL
keys and clicking the contiguous or noncontiguous instances you want to select.
Once you have clicked anywhere in the Instance box, you can press the first letter
of the name of the instance you want to select to move there more rapidly.

If the name of the in_stanée is larger than the Instance box can display, a horizontal
scroll bar appears so you can view the entire name.

Instances are usually identified by name or, if there is a parent, by the
parent==>child name. This makes it impossible to successfully select more than
one instance of an object if there is more than one instance with the same name.
Suppose you have a program named SPLENDID.EXE. If you run two copies of
SPLENDID.EXE and attempt to select them both, Performance Monitor will get
confused about which one you mean. If you run into this relatively rare situation,
you will have to make a copy of the program and give it a different name; say,
EXCELLENT.EXE. Then you will have no difficulty dlstmgulshmg between them,
and neither will Performance Monitor.

Some instances are called mortal instances because they are born and then die
during system operation. Typical examples are processes and threads. A mortal
instance must be alive in order for it to appear in a menu and be selected. If you
want to measure your program, you must first start it up. How, then can you
measure startup behavior of a mortal instance? Well, once you have selected your
living mortal instance, it remains selected even if it dies. When dead, all counter
values go to zero. On each snapshot, Performance Monitor continues to look for
that instance. If you start another application with the same name, Performance
Monitor automatically begins measuring it on the first snapshot in which it appears.
There are cases when you may need to log the data in order to capture all the
instances you need to see. When an object is logged, all the instances of that object
occurring in any snapshot are logged. You can then explore the log file to find the
instances of interest. :

There are some special considerations for charting and reporting multiple instances.
We’ll discuss them as we explore the views in more detail later in this chapter.

Custom Displays

Read this section if you want to astound your coworkers with your Performance
Monitor expertise. Figure 2.21 shows Performance Monitor in Report view with its
several display options marked.

Chapter2 Zen and the Art of Performance Monitoring 33

Ctrl+0
v Menu and Title Ctrl+M

RETAui e
+ Status Bar Ctrl+S
Always On Top Ctrl+P

Data From...
Update Now Ctrl+U
Bookmark... Ctrl+B

Figure 2.21 Performance Monitor display options

Performance Monitor has a flexible display format you can customize to suit your
needs. These options are available in all views. The options permit you to reduce the
size of Performance Monitor to occupy just a small part of your screen. You can
keep an eye on performance activity while you are working on some other task.
Many of us place Performance Monitor in our Startup Group so it always starts in a
certain spot when we log on to Windows NT. For more details about this option, see
“Saving Settings,” later in this chapter.

Performance Monitor has a toolbar to speed execution of the most common
operations. Table 2.4 is a list of the toolbar icons and their equivalent menu
operations. You can remove the toolbar by choosing the Tool Bar command
from the Options menu. '

Table 2.4 Performance Monitor Toolbar Icons

Icon Equivalent menu command

Chart, from the View menu

Alert, from the View menu

Log, from the View rﬁenu

Report, from the View menu

Add To, from the Edit menu

Edit Chart Line or Edit Alert Entry, from the Edit menu
Delete, from the Edit menu

Chart, Alert, Log, or Report, from the Optioné menu

Update Now, from the Options menu

Bookmark, from the Options menu-

34 Optimizing Windows NT S

By default, there is a status bar at the bottom of the window. It displays a brief
explanation for each menu selection, including the current settings file you are
using and the name of the log file you are playing back, if any. If you are logging
data from real-time activity, the current log file size in kilobytes appears here. A
count of any alerts triggered since the last time you looked at the Alert view
appears here. You can remove the status bar by choosing the Status Bar

" command from the Options menu.

You can use similar commands from the Options menu to remove the title and
menu bars. You can get them back by double-clicking any portion of the dialog
box that is not otherwise responsive to the mouse. The various hot keys defined in
Performance Monitor menus are still active even if the menu bar is not displayed.
This permits ready access to most of the menu functions.

If you have removed the title bar, you can still move Performance Monitor by
dragging it. Hold the left mouse button down on the portion of the window that is
not otherwise responsive to the mouse and move it.

By removing all these options you can permit Performance Monitor to occupy the
minimum real estate on your display. Figure 2.22 shows two Performance Monitors

/

running with a minimal chart and report arranged on the screen for handy viewing.

v Rl s \Q{i
Format Data Options Macro

ile Edit
Co
i

Formula

e il B e T E|F
Example 1: Product mix problem with diminishing profit margin.
2 |Your company manufactures TVs, stereos and speakers, using a common paits inventory
3 Jof power supplies, speaker cones, etc. Parts are in limited supply and you must determine
the most profitable mix of products to build. But your profit per unit built decreases with
volume because extra price incentives are needed to load the distribution channel.

TV st Shea Soaster]
Hesmbrr 1 Beatts | 100 100 100

N Fant Name fvevy AN lised
L3 450 200 1 1 0
| Frotns Tedhe 250 100, 1 0 0
Soasbey Cove 800 500, 2 2 1

Computer: \\ZENMASTER
Object: Memory

Page Faults/sec

Object: System

% Total Processor Time

Figure 2.22 Minimal Performance Monitor chart and report arrangement

Chapter 2 Zen and the Art of Performance Monitoring 35

Always On Top is another Performance Monitor Option. It keeps Performance
Monitor visible even if you move to another application. This is useful for watching
the performance of full-screen applications. This uses the hot key CTRL+P, so you
can click out of this mode quickly when you need to see the whole display.

Now you’re an expert!

The Four Performance Monitor Views

We have already introduced the four Performance Monitor views. In this section
we discuss the details of each view and what each brings to the party. First we will
explore the views as we observe current activity in real time. Then we’ll note how
things change when the same views are applied to an existing log file.

The four views operate independently and concurrently, but you can only look at
one at a time. They each fetch data independently from the target computers, so
looking at a counter in-all four views is four times the overhead of looking at the
same counter in just one view. Luckily, this overhead is designed to be small, so
concurrent use of views is not a problem. Although this may seem like a design
flaw, in practice the views typically are looking at different computers or counter
instances so the practical savings of combining data retrieval are not typically
impressive. A

To switch between the different views, choose the view you want from the View
menu.

We discuss two other features of Performance Monitor in depth at the close of this
chapter, but we introduce them here briefly. These are the Settings Files and the
Export command, both of which are in the File menu.

When you use Performance Monitor, you choose which counters to look at. You
also make decisions about the features of the display, the frequency of counter
updates, even the position of Performance Monitor on your screen. All the attributes
of your measurements can be saved in settings files and opened later for instant use.
In fact, whenever you start to make choices in Performance Monitor, it is building
up a record of your selections that you can save at any time. You can save the
settings file of any particular view, such as a chart, independently of the settings

of your other views. You can also save the settings of all your views at once

in a special settings file called a workspace. You will find settings files to be an
important time saver when using Performance Monitor, and we discuss using

them in some detail in “Saving Settings,” later in this chapter.

36 Optimizing Windows NT

Chart View

We like to think Performance Monitor will provide an acceptable interface for
viewing data most of the time. But every tool has its limitations. We have therefore
included the capability for exporting performance data, as either tab- or comma-
separated ASCII files. You can then feed these files into spreadsheet or database
programs, as well as editors or custom programs you may want to write. Using
these other programs, you can decorate, analyze, and present the data in any way
you choose. Export capability helped us keep the Performance Monitor interface
relatively simple. We’ll discuss exporting in more detail in “Exporting Performance
Data,” later in this chapter.

In some sense, the Chart view is the most interesting view. Seeing the system
counters respond in real time as the computer operates is both educational and
visually interesting.

To select various options that govern how the chart appears on the screen, choose
Chart from the Options menu. This brings up the Chart Options dialog box. One
option you can choose here is to select between two basic modes: graph and
histogram. Graphs are useful for looking at a counter value over time. Histograms
lose the historical perspective but are useful for looking at many counters at one
time. First let’s take a look at a full-blown graph in all its glory.

Anatomy of a Graph

In Figure 2.23 we show a chart in graph mode. All chart display optlons are active.

Chapter 2 Zen and the Art of Performance Monitoring 37

L dxled

=\ TGRSR
Eile Edit View Options Help

#Ix] @[]

«

Last] © 1.495 Average| 14519 Min] 0,000 Max} 58514 Graph Time mcwu :
Color' . Scale Counter - ' "7 Instance Parent Object Computer

1.000 /ProcessorTlme 0 Processor \\ZENMASTER
—

P \WZENMASTER

[Data; Cunent Activity

Figure 2.23 All chart display options in graph mode of current activity

A Performance Monitor chart always displays between 0 and 100 data points for
each counter shown. This is a key attribute of these charts.

Notice the vertical line in the middle of the chart. This is the Time Line. It is always
red and it occupies a space just beyond the last observed value. It moves to the right
when the display is updated at the end of each Time Period. It wraps to the left edge
of the chart at the end of the Time Period following the 100th data point plotted.
This scheme is different from many performance monitors, which scroll the display
to the left on each data point. This scrolling is resource-intensive, adding to the
monitor overhead. Windows NT Performance Monitor works like a hospital’s heart
monitor, and causes much less overhead than scrolling.

38

Optimizing Windows NT

The vertical scale to the left of the chart is displayed by default. It always starts at
zero. If you want to have it start elsewhere, export the data to a spreadsheet for
analysis. By always starting at zero, this axis always has a clear meaning. The
default upper limit of this axis is 100, but you can change this by selecting Options
from the Chart menu, then typing a different number in the Vertical Maximum box.
For your vertical maximum, you can use any positive number from a decimal
number less than one up to about two billion.

You can add horizontal and vertical gridlines, if you want. You can choose one

or the other or both. They add to the cost of updating the display, and so are not
activated by default. The horizontal gridlines are sometimes useful, but the vertical
gridlines are rarely interesting. To add or remove gridlines, choose Options from
the Chart menu, and then check or clear the Vertical Grid and Horizontal Grid
boxes.

The legend below the chart is displayed by default, but you can remove it if you
want by clearing the Legend box in the Chart Options dialog box. The legend
describes each chart line. The legend shows the following pieces of information
about the line:

= Color and Width

= Scale Factor

= Counter Name

s Instance Name

= Parent Instance Name

= Object Name

= Computer

When you add a new counter to a chart, that legend item is automatically selected.

Note By pressing BACKSPACE you can highlight the chart line corresponding to the
current Legend selection. The selected line becomes a wide white line. If you
change your legend selection, the new selection is highlighted. You can change your
legend selection by scrolling with the arrow keys. HOME, END, PAGEUP, and
PAGEDOWN also work within the Legend window. Pressing BACKSPACE a second
time removes the highlight. This is extremely useful if you are charting multiple
lines.

For the counter currently selected in the legend (whether or not it is highlighted),
the counter’s last value, average, maximum, and minimum are shown in the value
bar. The value bar is displayed by default. Pressing the Delete key will delete the
counter currently selected in the legend.

Chapter 2 Zen and the Art of Performance Monitoring 39

The counter’s average, maximum, and minimum are calculated using only the
values currently shown on the chart. When you graph real-time activity, once the
Time Line wraps around and starts overwriting previous counter values, these
statistics reflect only the last 100 observations. If you need more history than this,
you should be logging the data (see “Log View,” later in this chapter).

If you add a counter while a chart of real-time data is displayed, the zero values up
to the first valid value are not counted in the value bar statistics. If a data value is
too large to fit in its value bar window, it is displayed in scientific notation.

You have to have the Legend displayed in order to display the value bar, because
the Legend is used to select the line displayed by the value bar.

If you make the Performance Monitor window small enough the Legend (and hence
the value bar) are not displayed. Increasmg the size again causes them to reappear.
Try it. Pretty cool, eh?

As you know, you can change the time interval at which the chart is updated. To
change the time interval, choose Chart from the Optlons menu, and then type the
interval in the Interval box. 4

Because there are at most 100 data points, you can multiply 100 times the time
interval to get the number of seconds displayed on the full chart. This product is
shown as the Graph Time in the value bar. Graph Time indicates the time span
(in seconds) the chart currently is capable of displaying.

In the Chart Options dialog box, you can select the Manual Update option instead
of specifying a time interval. In this case, the chart updates only when you specify
taking a snapshot. This is useful for observing counters during a particular event.
You take a snapshot of the counters, then cause the event of interest to occur. Then
take another snapshot. The counter values you observe apply to the event bracketed
by the snapshots. To take a snapshot, choose the Update Now command from the
Options menu, or click the camera icon on the toolbar, or use the CTRL+U hot key.

Even when you are charting data at a regular interval, you can also obtain manual
_ snapshots between the regular time interval snapshots. If you have time interval
currently set to one minute, for example, you might want to see data sooner if you
notice a particular slowdown.

You can clear the current chart data with the Clear Display command from the Edit
menu. This leaves your selections in place but starts the chart over again from the
left edge. You can clear all your selections and stop charting altogether by choosing
the New command from the File menu. This creates a new settings file and clears
your old settings.

40

Optimizing Windows NT

How Graphs Are Drawn Initially

Here’s a fine point for the record. When you add a counter to a chart, you’ll notice
a slight delay before the chart begins to draw. In order to display the first point on
the chart, two data snapshots are required. This is because most of the counters
are displayed as a rate or a percentage, as discussed in “What a Counter Counts,”
earlier in this chapter. To form a rate or a percentage, we need the value of the
counter at the start and at the end of a time interval: '

rate - counterfend] — counter{start]

timer[end] — timer[start]

What happens is this: you press the Add button and the first snapshot is taken at
the end of the first time interval. The second snapshot is taken at the end of the
second time interval. Thus the first data point requires two time intervals to elapse
before it can be displayed. After the first point displays, the start of the next time
interval is the end of the previous one. So a new data point displays when each time
interval elapses.

‘Anatomy of a Histogram

The other primary mode of looking at counters is a vertical bar chart, the histogram.
This is very useful for looking at many instances of a given counter at one time.
Take a look at Figure 2.24.

Chapter2 Zen and the Art of Performance Monitoring L3

File Edit View Options Help

B FEX] (@]

9
8
7
3
51
4
3
2
o __m . _
Color Scale Counter g Instance Parent Object © Computer
| . 1.000 % Processor Time PROBE Process \MEDULLA | 4}
E 1.000 % Processor Time ProbePic Process \WMEDULLA
1.000 % Processor Time progman Process \WMEDULLA
1.000 % Processor Time screg Process \\MEDULLA| -
1.000 % Processor Time smss - Process WMEDULLA
] % Processor Time spoolss Process MMEDULLA ||
o o hoieids i‘»?giﬁm
1.000 % Processor Time winlogon Process MMEDULLA | 3] |

Figure 2.24 Chart histogram mode: a view of many processes’ % Processor Time

In Figure 2.24 you see the % Processor Time of many processes. This might be
_something we would do if we wanted to see how much the various processes on our
computer were using the processor. What the histogram mode gives up in history, it
makes up for by clarifying the values of many similar counters.

An especially useful feature in histogram mode is the highlighting mentioned in the
previous section. By pressing BACKSPACE, you can turn the bar belonging to the
currently selected counter to white. Because this color is not otherwise used, it

will help you to locate the instance you’re interested in.

All the other display options for charts apply to both graph mode and histogram
mode. Mercifully, we won’t repeat our descriptions of them.

42

Optimizing Windows NT

Formatting Chart Lines

When you select a counter to chart, you can also specify how the line or bar
representing the counter displays. To do so, use the Color, Scale, Width, and
Style boxes at the bottom of the Add To Chart dialog box, which was shown in
Figure 2.12.

The Color box specifies the color representing the counter. When you add a counter
to the chart, the selection in the Color box automatically advances to the next color.
This lets you add several counters at once, and each is assigned a new color.

Tip If you are adding many counters at once, the color selection wraps and thus

is reused. Each time the colors wrap, the line width increases automatically.

So although there may be two red counters, the second one is thicker. This creates a
potentially annoying side effect: when you select the black color at the end of the
Color list box, the width will increment automatically for the next color.

To manually choose a counter line’s width, use the Width box.

If you have a line that is one pixel wide (the default width), you can assign a line
style to distinguish it from other lines.

Our stingy boss won’t buy us a color printer, so we have to print all the examples in
this book in black and white. I'm sure your boss is more magnanimous, but in the

~off chance that is not the case, you can use line style and width to great advantage

in preparing a chart for printing. You will notice us doing so throughout this text.

Line width and style are ignored in histogram mode. If you have multiple red”
counters, you will want to use the BACKSPACE hlghhghtmg feature mentioned
above to distinguish between them.

We’ve saved the best for last: the scale factor. Performance Monitor multiplies the
scale factor times the counter value and the resulting product is charted instead of
the original counter value. This applies to both graphs and histograms. The default
scale factor for a counter is assigned by the counter’s designer. This multiplier is
chosen so that typical values plotted lie between 0 and 100 and the counter can be
easily viewed on the default vertical axis. For example, Processor: Interrupts/sec is
typically a counter in the range from 125 to 1000. By having a default scale of 0.1,
this counter usually appears in the visible portion of the chart, from 12.5 to 100.
The default scale is only a guess, however, and you may need to adjust a counter’s
scale to your situation.

Chapter2 Zen and the Art of Performance Monitoring 43

Report View

The value bar data are not scaled, so you can always find the unscaled value of a
counter in the value bar. ' ‘

The scale factor selected when the Add button is pressed is applied to all the
counters currently selected. So if you are selecting multiple counters, the scale
factor is applied to all of them. If the Default scale is chosen, they are all charted
with their individual default scale factors.

The scale factor does not change after adding a counter to the chart. Therefore,
if you select a value of 0.001 for the scale of some counter, remember to change
it to something reasonable for the next counter you select.

The only way to determine the default scale factor for a counter is to chart it. Then
you can read the default value from the Legend. This is usually not a problem, but
in case it is, you can find the default scale factors for the counters included in
Windows NT in Appendix A. ‘ ‘

If you select a counter in the legend, you can alter its display properties by choosing
the Edit Chart Line dialog box from the Edit menu or the toolbar. You can only
alter the properties of one counter at a time.

You can delete a chart counter by selecting the line in the legend and then choosing
Delete from the Edit menu, or by pressing the Delete key.

The report is useful for observing the values of many counters at once. It is helpful
in deciding which counters to place on a chart. As an activity progresses, you can
see how the many values change and which ones are key to the activity you are
observing. Figure 2.25 shows a report with counters from multiple computers.

44

Optimizing Windows NT

s Perfo A 5 0 0 Pt Bt

Flle Edit Vlew Optmns Help

(ole] @&

Computer: \\AIRHEAD 0
Object: LogicalDisk C:
% Free Space i
Computer: \\ALIEN 0
Object: LogicalDisk C:
% Fiee Space 42,222
Computer: \\ASSET 0 0 1
Object: LogicalDisk C: F: G:
% Free Space 0.333 43.062 99.052

Figure 2.25 Report with counters from multiple computers

You can select multiple counters and multiple instances for a report just as you can
for a chart. But unlike charts, there are no special display features for reports. In
particular, there is no scale factor because you can always observe the entire
counter value.

As you add objects and counters, they are added to the bottom of the report. Very
soon they will extend beyond the windows, and you will get a vertical scroll bar
which you will have to use to see them. Instances are added to the right, with their
names (and, if present, their parent’s names) above them. When they will no longer
all fit in the window, you get a horizontal scroll bar. If you want to see many
instances at one time, you might have to start multiple copies of Performance
Monitor and watch several instances in each. At about this point you should
consider using logging, or exporting of the report data, but you’ll be sacnﬁcmg

the real-time view. Tradeoffs!

The only option in Report view is for the time interval. The default time interval is
five seconds. This gives you time to read several values before they change. You
can set this to any value you want, and as with the chart, you can choose Manual
Update mode. As always, there is more overhead if you update more often.

You may notice a delay before the first counter values appear. In the meantime, you
will see minus signs, indicating that data is missing. As with the chart, a report
needs the snapshot of the counters at the end of two time intervals before you see
any data. By default, it is 10 seconds before you see values. If you get impatient,
take a couple of snapshots with the camera icon on the toolbar to get some
preliminary data.

Chapter 2 Zen and the Art of Performance Monitoring 45

Alert View

All the counters for a particular computer are grouped together. Objects reported
for that computer are listed in the order you select them. Counters for each object
are listed from top to bottom in the order you select them. If you select multiple
counters of an object and then choose Add, they are listed in alphabetical order.
Instances for each object are listed in the order in which you select them for
measurement. Likewise, if you select multiple instances of an object and then
choose Add, they are added in alphabetical order.

By heeding these properties, you can arrange reports to your liking, If this lacks the
flexibility you need, you should choose the Export command from the File menu for
manipulation by a spreadsheet or database report writer (for details, see “Exporting
Performance Data,” later in this chapter).

You can delete a report counter by selecting it with the mouse and choosing Delete
from the Edit menu, or by using the appropriate toolbar icon. To prevent accidental
deletion, there is no hot key. If you delete all the counters for an instance, the
instance is deleted. But it is quicker to select the instance name and use the Delete
key to delete all its counters. If you delete all the counters for an object, the object
will be deleted. Again, it is simpler to select the object name and delete it. The same
is true for computer name. But there is no way to select multiple counters to delete.

You can clear the current report data by choosing Clear Display from the Edit
menu. This leaves your selections in place but starts the report over again from
the left edge. You can clear all your selections and stop reporting altogether by
choosing the New command from the File menu. This creates a new settings file
and clears your old settings.

The Alert view helps you keep an eye on many counters with minimal overhead.
This view is particularly useful for watching a large number of computers on a
network. '

You add counters in the Alert view much as you would to a chart or a report. But
the Alert view has a few unique attributes.

For each counter for which you want an alert, you must supply a threshold value.
For most counters, you want to be alerted if the counter becomes greater than
some value. For a few, you want to be alerted if the value falls below a certain
value. These are counters like Logical Disk: % Free Space, or Memory: Available
Bytes.

In Alert view, the alerts you have created are shown in the legend at the bottom
of the display. You can select an alert counter from the legend and change its
properties, or press the Delete key to remove it. Use CTRL+G to toggle visibility of
the legend.

46

Optimizing Windows NT

When an alert is triggered, it displays a line in the alert log explaining the condition
that caused the alert. The latest alert is at the bottom of the alert log, which can
contain up to 1000 entries. After 1000 entries are Iogged earlier entries are
discarded as new entries are added.

ptions Help

4:36:52.2 PM 95.210 > 90,000 X% Processar Time, 0, , Processor, \OB{:

) 4:36:57.2 PM 91.616 > 90.000 % Processor Time, 0, , Processor, \\O
- |©8/2/93 4:37:2.2PM 90.718 > - 90.000 % Processor Time, 0, . Processor, \\OB|.
- |1@8/2/93 4:37.32.3PM 623.913 > 600.000 Interrupts/sec, 0, . Processor, \NOBLO

. lo8r2/93 37:37.3PM £18.076
o|@8/2/93 : It 39

600.000 et : . Processo \'\DBLU

f Object
L /chessor Tnme i Processor:.
> 600.0000 Interrupts/sec Processor
< 10.0000 % Free Space : LegicalDisk
< 10.0000 % Free Space : LogicalDisk
< 10 UUOU /Free Space : LogicaDisk

Figure 2.26 Some common alerts and their alert logs

You can designate a program to be run either the first time or every time each

_different alert is triggered. This program receives the alert log entry on its command

line, and the alert log entry appears in a Unicode™ space-separated format. What
you have your program do at this point is quite open. It might log the data to some
special database, activate a program on a remote computer, or even start another
copy of Performance Monitor to monitor the condition more closely. For more
information, see “The GUI Batch Processor,” later in this chapter. (You should
avoid starting a command-line batch file from this dialog box, since the > and <
signs passed to the batch file will be interpreted improperly as a redlrectlon of stdin
and stdout.

You can also elect to have the alert placed in the system Application Event Log by
selecting the Application Log option.

The alert condition applies to the value of the counter over the time interval you
specify. The default time interval is five seconds. If you set an alert on Memory:
Pages/sec > 50 using the default time interval, the average paging rate for a 5-
second period has to exceed 50 per second before the alert is triggered.

Chapter 2 Zen and the Art of Performance Monitoring 47

If you select Manual Update mode instead of having data collected at intervals, the
alert is checked only when you take a snapshot of the data. The interval in this case
is the time since the last manual snapshot. As with the other views, you can take a
manual snapshot between time interval snapshots to see if any alert conditions have
been triggered. :

When you monitor a remote computer, the performance data traverses the network
each time interval, and the alerts are checked on the local computer. It would be
more efficient to have a remote agent checking the alerts, and only sending the data
if an alert condition occurs. To operate in this mode, use the Performance Monitor
Service discussed below.

If you are looking for alert conditions on a remote computer, you will get a special
alert should that computer cease to respond. You will get another alert when the
remote computer comes back online.

You should use another copy of Performance Monitor to determine the overhead of
your alert setup, and then increase your time interval until the overhead is
acceptable. -

You can configure your alerts to send a network message which will appear as a
pop-up window at a chosen location on the network. The destination can be the
name of a computer or the name of a user. If you choose the name of a user, the
alert appears on the first Windows NT computer that user has logged on to, because
the name must be unique in the network. Perhaps more practical is the use of an
arbitrary name. Suppose you choose the name “PerfAlert.” When you have chosen
the computer that should receive the alerts, you can enter the following command on
that system to receive the pop-up windows there:

net name perfalert

Caution Generating a large number of remote pop-ups is irritating to the recipient,
who must close each one manually. Furthermore, the alert log is a fairly processor-
intensive display to update because of the fancy spacing of the elements on each
line. You should select your alerts so that pop-up windows do not flood the alerted
computer, and so the alert log is not being updated rapidly, or you will be surprised
at the processor overhead of using the alert feature. Because alert values are chosen
precisely because they are urgent bottleneck indicators, this is not a real problem in
practice, but is still worth noting.

You can choose the color assigned to an alert. When an alert is triggered and you
are in another view, you can observe the colored alert icon in the status bar. The
count of alerts since the last visit to the Alert view is also shown, along with the
colored icon of the most recent alert. As you add alert conditions, the color
advances automatically as an aid in distinguishing multiple alert conditions.

48 Optimizing Windows NT

Log View

If you select multiple counters simultaneously, they must be similar in meaning
because the same alert condition will be applied to each of them. (To set alerts on
multiple counters with different thresholds, set the alerts one at a time.) It is,
however, reasonable to add multiple instances at one time. Setting an alert on all
Logical Disk: Disk Queue Lengths at one time is a reasonable operation, because
the threshold could meaningfully apply to all instances. See Figure 2.27.

Computer: |\\ZENMASTEB

Object: [LogicalDisk : Lg,! Instance:
Counter: Dlsk B ylesl:ec *
BEIaTe T en

gt
Dl:k Read Bytes/se
Disk Reads/sec
Disk Transfers/sec

Disk Write Bytes/sec ' . h
Alet If———] Run Program on Alert
® Over O Eirst Time
1| |l | & e T
O Under Every Time

Figure 2.27 Setting an alert on multiple instances

You can clear the current alert data by choosing the Clear Display command from
the Edit menu. This leaves your selections in place but starts the alert log over again
from the top. You can clear all your selections and stop alerting altogether by
choosing the New command from the File menu. This creates a new settings file.

When you really get serious about looking for bottlenecks, or doing anything about
capacity planning, or even looking closely at an application’s performance, you’re
going to be logging the data, possibly in addition to using the other views. The log
permits you to peruse the data at your leisure, rather than perform a complete
analysis before the data disappears from the screen in real time.

Figures 2.28 and 2.29 diagram how logging works. You ask Performance Monitor
to place data in a log file. When it is done writing data to the log, you can read that
log file back into Performance Monitor. Now you can chart, report, alert, and even
relog any portion of that log file. You can also export those views of the log file
data for further reporting.

Chapter2 Zen and the Art of Performance Monitoring 49

BEEE FEX] @)

Log File: {32\perform\amt Status:
File Size: (14.700.552 Log Intervat: E._—__—__l

Object Computer F—————p -
*

s)
et v Log file

LEE& Current Activity, Save File; amtestpml Q10vmM
Performance monitor

Figure 2.28 Creating a log file

Charts . Alerts
EETETRY 3 (DR e Ee @]

T Cw—
Alest Log: .

(@33 ITsTm Ty W Sheenty

Mw;«x%\ 0
e Doealln

Lo 7 55618 Avengel

Log file

X Piocesscs Tee:
Obiect: Momery
Page Fudi/iec 03

Daia Crant Aoy, Save Fio ameostprd TG T s Comerd Ay, Sovs Fl Sob 50 G T

Performance monitor

Figure 2.29 Analyzing data from a log file

To create a log file, switch to the Log view, and then choose the Add To Log
command from the Edit menu to select objects to log.

In the Add To Log dialog box, you can log data from many computers into a single
log file. This lets you see how the computers’ activities correspond. All you have to
do is enter the name of the computer you want to monitor. Choosing the ellipsis
button brings up a Select Computer dialog box to aid in browsing the network for
likely suspects: We discussed this earlier, as you may remember.

You can select one or more objects to log. Use the SHIFT and CTRL keys as you did
for selecting multiple counters or instances. All the counters for all the instances of
each selected object are logged. This means that you cannot log individual counters
or individual instances. Trust us, this is okay.

50

Optimizing Windows NT

Objects:
NetBEUI
NetBEUI Resource
Objects
Paging File
PhysicalDisk
Process
grbce
Redirector

Figure 2.30 Add To Log dialog box

Once you have selected the computers and their objects to log, you can choose the
Log command from the Options menu. This brings up the Log Options dialog box,
which you can use to specify the name of the log file. This can be on a local
computer or across the network. You can use the Network button to connect to a
remote computer for logging to a remote file. '

[Log File
File Name: Directories:
7-09-93.log I c:\peifilogs
7-06-93.tog 4 e it
7-07-93.log]
7-08-93.log %m':::;
3 -
Y
List Files of Iype: Drives:
IEQ Files [*.log) L!j [c: |_ij
Update Time Interval {seconds]):
@ Periodic Update Ii[ll]l] |
O Manual Update

Figure 2.31 Log Options dialog box

Chapter 2 Zen and the Art of Performance Monitoring 51

If you specify the name of an existing log file, the new data is appended to the end
of the log file. This is a powerful feature which permits the creation of long-term
archives. We’ll say more about this in Chapter 8, “Capacity Planning.”

You can use the Log Options dialog box to change the time interval, which has a
default of 15 seconds. You can also switch to Manual Update mode, but in this case
nothing is logged unless you choose the Update Now command from the Options
menu, or use the camera icon.

" You must remember to press the Start Log button to start logging. If everything is
set up right, the Log view then displays Status: Collecting. Otherwise, if you just
press OK, you return to the Log view, but the Status displays Closed. If the status
is closed, doing one or more of the following starts the logging process:
= Select at least one object to log
= Provide a log file name

= Choose the Start Log button

If your Start Log button is dimmed, go back and pick at least one object to log.
Once you do that, Start Log becomes active.

To stop logging, choose the Stop Log button in the Log Options dialog box.

Slalus. ‘(Collecting - { -

o Log Fﬁe 'lc;\nl\:yslemSZ\berfplm\amlest.Iogk, l

s ; Log Interval e

ze: [12359836 |

PeEg
Server ; \SETTER
Objects \\pegetl
System \\pegetl
Process \\pegetl

iQa‘ta:l Current Activity, Save File: amtestp

Figure 2.32 Log view during data collection

52

Optimizing Windows NT

The Log view shows the name of the log file and the log status. Although it looks
like an inactive window, you can click in the Log File box and use the HOME, END,
and arrow keys to scroll through the log file name, if it is too long to see at once in
the box. The Log view also shows the file size in bytes and the time interval in
seconds.

You can change the time interval during logging without stopping the log file. So if
you need to bump up the resolution, just do it! But remember, you are using more
disk space, so lower it when you are done.

Because the log file size is displayed in the Log view, you can quickly determine
how much data you are collecting on each snapshot. From the Options menu,
choose Log and then choose Manual Update. Return to Log view by choosing the
OK button. Click the camera a couple of times to take a couple of snapshots.
Record the file size. Click the camera again. Record the file size. The difference is
the amount of data collected in each snapshot. Now try it again to see if you get the
same answer. If it’s different, the reason is that Performance Monitor occasionally
writes out an index record which you may not want to include in the size of every
snapshot. This certainly occurs on the very first snapshot in the file, which is why

.we had you start with a couple of initial snapshots. (Counter names are also written

with the initial snapshot.) These index records are infrequent; one is written every
100 snapshots.

Other information, in particular counter names, also appears at the start of the log
file, and some new ones may appear when you add new systems to the log. We
mention these details just for completeness.

By adding and deleting objects, you can determine the byte cost of each. Fun and

games!

When you are logging data, you can use the Bookmark command from the Options
menu command and its equivalent icon from the toolbar. These allow you to insert a
comment into the Log File. Such comments can be used later as indexes to different
points in the file. They help you to locate the start or end of interesting events you
have logged. Use them freely, they are cheap. They automatically include the date
and time, so don’t bother to type those into your comment. If you append data to a
log file by supplying the name of a pre-existing log file when you start logging, an
automatic bookmark is placed at the start of the new data. It reads, “New set of Log
data.”

Chapter2 Zen and the Art of Performance Monitoring 53

The current log file size appears on the status bar if you are collecting data, no
matter what view you are in. Keep an eye on this. We're talking disk space here.

You can delete objects from the list of logged objects while you are logging. Select
the object in the Log view legend and use the Delete From Log command from the
Edit menu, or use the equivalent toolbar icon. After you do so, there will be no
more data on that object until you add it back in. It is not terribly likely that you
will need to delete an object, but you can.

Loading and Viewing Log Files

It’s sort of boring to log data, but it’s very exciting to play it back. To play back a
log file, choose Data From in the Options menu, then choose Log File and type the
log file name or choose the ellipsis button to access the Open Log File dialog box.

Note If you are monitoring current activity, switching to playing back a log file
causes the monitoring of current activity to stop. So if you have spent time setting
up your current measurements, be sure to save your workspace (as explained in
“Saving Settings,” later in this chapter) before viewing the log file. Or start another
copy of Performance Monitor to view the log file. Then you can watch the cost of
viewing log files. (Is there no end to this? Don’t worry, it’s job security.)

Viewing data from a log file is very similar to viewing current activity. You can
create charts, alerts, reports, and even new log files. But because the data already
exists, you don’t have to wait for it to materialize, and this changes the views in
subtle but important ways.

Graphing of Logged Data

You select objects, counters, and instances for charts of logged data just as you do
when charting current activity. But the display of time on the chart is different.

\

54

Optimizing Windows NT

- First consider charting in the graph mode. (We talk about histogram mode in

“Histograms of Logged Data,” later in this chapter.) There is no vertical time line
in charts of logged data. Instead, Performance Monitor attempts to graph 100
points, which fills the chart window. If there are fewer than 100 data snapshots in
the log file, you will see every point graphed, and the graph will not reach the right
hand edge of the window. If you look at the Chart Options dialog box, you will see
that the Update Time group is unavailable because it is not relevant when playing
back alog. ‘

Log files are self-contained. You can take them to any Windows NT machine for
viewing. However, there is no Explain text in the log file, a decision we made to
conserve log file space. To see counter explanations you have to use Performance
Monitor on Current Activity (or see Appendix A of this book).

File Edit Vie Options Help

A L EREEE Y
LogicalDisk \CEREBELLUM
1000.000 Avg. Disk sec/Read D: 1 LogicalDisk \\CEREBELLUM

Figure 2.33 Chart of a log file with fewer than 100 snapshots

If there are more than 100 snapshots in the log file, the graph fills the window.
Suppose you have a log file with 1000 data points; every tenth point will appear on
the graph. If you need to see every point, you can look at portions of the log file by
choosing the Time Window command from the Edit menu, or you can export the
chart. (For more information on exporting, see “Exporting Performance Data,” later
in this chapter.)

Chapter 2 Zen and the Art of Performance Monitoring 55

File Edit View Options Help

(+1EA[X] (@]t

3 U o ;
Last|

" D.000 Average| 451645813 Min| 0,000 Max| 841205625 Grph Time| 1476000
Color . Scale : Counter = Instance Parent Object Computer

— 1.000 % Processor Time 0 Pr \\PERFCURLY
=

Figure 2.34 Chart of logged data with more than 100 snapshots in the log file

Selecting the Time to View in a Log File

To move around in time in a log file, choose the Time Window command from the
Edit menu. This brings up the Input Log File Timeframe dialog box. Use the slider
bar in this dialog box to change the time window shown in the chart. You can
change the starting time and the ending time of the time window by dragging the
start and end panels of the slide bar. You can move the whole time window by
dragging the center section of the slide bar. You can also click the portions of the
slide control not covered by the current time window to page through the file. The
times above the slide bar are the start and end times of all the data in the log file.
The times below the slide bar are the current start and end times.

You can use the left and right arrow keys to expand the time window. By pressing
the SHIFT key and holding it down while pressing the arrow keys, you can contract
the time window. Even though the chart shows only (at most) 100 of the data points
in the current time window, the arrow keys move only one of the underlying data
points each time they are pressed. This permits precise control of the time window
endpoints.

56 Optimizing Windows NT

. 7Feb33 ' : 9Feb 93
11:15:06 pm 1:38:25 pm
7Feb 93 9Feb 93
11:22:52 pm 1:30:44 pm
Bookmarks

SN s
etl is slow

9Feb 33 1:38:23 pm Closing down after this

Figure 2.35 Anatomy of the Input Log File Timeframe dialog box

When you move the left end of the time window slide bar, you can see a gray bar
move across the chart. It shows the current location of the time window start that
will be set if you press OK. Set the end of the time window the same way.

Below the slide bar control is a box displaying any bookmarks you’ve placed in
your log file. You can select a bookmark and assign it to be the start or the end of
the current time window. You can’t set the end of the time window to be earlier
than the start. Magic it’s not.

The time window is very important because it determines the start and the stop
snapshots for all of the following:

w Charts

= Reports

= Alerts

= Relo ggéd data

This means that changing the time window on the chart is how you manipulate
which data is visible in all four views.

Chapter 2 Zen and the Art of Performance Monitoring 57

Gory Details on Charting Log Data

You’ll remember that some instances, like those of the Process or Thread objects,
are called mortal instances because they start and stop while the system is running.
Anyway, this can be a bit of a problem, because you need to have your time
window start while they are alive if you want to see them in the Add To dialog
boxes. This is one good reason to insert a bookmark saying “Application started” in
your log file. This will help you to set the time window to a period of time when the
application is running. You can also use the setedit utility discussed in “Saving
Settings,” later in this chapter. :

Once you have selected the application instance, you can move the time window
freely. Counters will appear to go to zero during those time intervals when the
application is not running.

Now we’re going to touch on an even more obscure point regarding the display of
logged data. As mentioned above, in those cases where there are more than 100
data points in the log file, you are missing some data in the initial chart because
some snapshots are skipped over and not displayed.

To be certain of what you are seeing, you will want to mentally separate counters
into two types: those which are averages over time, and those which are
instantaneous values. Most counters are time averages, such as Server: Bytes
Total/sec or Processor: % Processor Time (which is the ratio of time used to the
time interval, expressed as a percentage). Counters like these, that are an average
over time, continue to be proper averages over time even if some time intervals are
skipped. This is equivalent to smoothing the data by computing a simple average.
So if you have more than 100 data points, that is, your chart fills its window, you
can properly think of the chart as smoothing the data in the log file.

But there are a few counters, such as Memory: Available Bytes, that are not
averages, but instantaneous values. We call these instantaneous counters. We try to
be careful about noting that a counter is instantaneous in its Explain text. This fact

~ is also noted in Appendix A, where such counters have the counter type Raw Count.
An instantaneous counter is not an average over the time interval, but rather the
value of the counter at the end of the time interval. Therefore, skipping data points
can hide peaks and valleys that might be important. :

There are three things you can do about this. Number one is to just forget about it,
under the assumption you have enough real problems. Number two is to change the
time window you are viewing in the log file to see fewer than 100 data points.
Number three is to choose Export from the File menu to export the chart. When you
export a chart of logged data, all the data points inside the current time window are
exported whether they appear explicitly in the graph or not. More about this in
“Exporting Performance Data,” later in this chapter. :

58

Optimizing Windows NT

Histograms of Logged Data

As when viewing current activity, histograms of logged data are useful for looking
at the data from many instances. But the height of each bar in the histogram is a
function of the time window. If the counter is a time average, the height indicates
the average over the current time window. If the counter is an instantaneous value,
the bar height indicates the value at the end of the time window.

The value bar numbers pertain to the 100 or fewer data points you see when you
switch to graph mode. The histogram itself is based on the snapshots at the start and
end of the time windows. If there are more than 100 data points, and the counter is a
time average, the histogram displays the correct average, and the value bar displays
an estimate based on the 100 data points you see in graph mode. So if these differ,
don’t panic.

If you need to be picky about these numbers, you might want to export the data and
process the values in a spreadsheet. For more fine points on exporting data, see
“Exporting Performance Data,” later in this chapter.

Reports of Logged Data

Reports of logged data are the numerical form of histograms of logged data.

For time-average counters the counter value at the start of the time window is
subtracted from the counter value at the end of the time window, and the result is
divided by the time span of the time window. This means all of the considerations
just mentioned concemning histograms of logged data apply to reports of logged
data. Suffice it to say that the reported number is an accurate average, whereas the
graphed number and the value bar values can be estimates because of skipped data
points,

For the most part you can ignore these issues. Just set the start of the time window
on the start of the event of interest, and the end of it at the close of the event. Voila.

A comment was made in the earlier section “Gory Details on Charting Log Data”

~ about selecting mortal instances. That note applies equally to reports on mortal

instances. :

Chapter2 Zen and the Art of Performance Monitoring 59

Alerts of Logged Data

If you have a lot of logged data, you might want to find the hot spots quickly. You
can use alerts on logged data to do this. Usually, you would first chart the data, and
set the time window to some period of interest. Then choose Alert from the View
menu and set the alert condition you are concerned about. Perhaps this is some
indicator of heavy load, such as System: Processor Queue Length > 3. The logged
data is scanned and the alert conditions located and placed in the alert log on your
screen. You can export the alert log entries for further processing.

Unlike charts and reports, the time interval is relevant here. Suppose you have

- logged data at a 15-second time interval. You can look for an alert condition at, for
example, a one-minute time interval. In this case, the Alert view scans the logged
data looking for a snapshot that is at least one minute past the start of the time
window. It then computes the time average for the counter over that minute and
checks against the condition. Then, using the ending snapshot as the start of the next
time interval, it looks for another snapshot that is at least one minute later. This
continues to the end of the log file. If you have set an alert on an instantaneous
counter, the value at the end of each time interval determines if the condition is met.

Logging Logged Data

Once you have chosen a log file in the Data From dialog box, your data source is
that log file. You can then select the Log command from the View menu and relog
that data to a new log file.

Why on earth might you want to do such a thing? Actually, there are a number of
good reasons for relogging. The first is to create an archive. If you have a file of
logged data you really care about, you might want to append it to an archival log for
long-term storage. You can do this, as we mentioned, by supplying the name of the
archive file as the output log file. This keeps you from having to save lots of
individual log files, which can be a nuisance.

You can select a longer time window when you relog. This permits you to condense
your data. If you collect data at a one-minute time interval, and relog at a five-
minute time interval, you condense your data to use only 20% of the space. For this,
your boss should give you a bonus!

When you relog data, you can use the time window to limit the data. This means
that you can log a 24-hour period, but archive only that portion of the day that has
peak activity. Looks like another bonus!

A log file of relogged data is just like a log file of new data. Such a file can be
designated in the Data From dialog box, and can even be relogged itself.

60

Optimizing Windows NT

Saving Settings |

You’ve picked your way through all 400-plus counters and innumerable instances,
and configured your measurements with great care. Do you want to do it again
tomorrow? No way!

This is what the settings files are all about. You can save what you are measuring
and how you are measuring it in a settings file by choosing Save or Save As from
the File menu. The first time you save your settings, you are prompted to assign a
name to your settings file. The name of your settings file appears in the status bar.
You use Open from the File menu to install a previously saved settings file. The
name of your opened settings file appears in the status bar. You can remove all your
current settings by choosing New from the File menu.

Usually, you will save your current view. The following file suffixes are, by
convention, used for the settings files, but you can save and open settings files with
different extensions.

Table 2.5 Settings File Suffixes

Suffix Settings-file type
PMC Chart

PMR Report

.PMA Alert

PML Log

PMW Workspace

If you choose Save Workspace from the File menu, the current settings for all four
views are saved in the Workspace settings file. Opening this file restores all four
views. In addition to the four views, the current screen size and position of
Performance Monitor are saved in the Workspace. (Otherwise, Performance
Monitor starts up in the position it held when you last quit.)

You can move settings files from one computer to another. However, if the
computers have different hardware and software, the settings file might not apply
fully on the new machine. For example, if the original machine has one disk
partition, and the new one has two, the second disk partition is not in the settings
file. If you want it to be, simply add the second partition to the measurement and
choose Save from the File menu to save the settings file.

Chapter 2 Zen and the Art of Performance Monitoring 61

What if you now move the settings file back to the first machine? The second
partition will not be found, but it will still appear in the measurement. Because no
such object or instance could be found, the counters will all drop to zero just as
though it were a deceased mortal instance. The nonexistent object will remain in the
measurement and in the settings file even if the settings file is saved again on the
first computer. Thus you can build up settings files from multiple computers with
ghosts of mortal and even immortal instances, and share them around with your
friends. It’s like sharing a little bit of heaven. Sort of.

You can specify a settings file on the command line of Performance Monitor by
typing:

perfmon settings-file-name

Performance Monitor starts up with that settings file loaded. The appropriate view
or views start data collection as specified in the settings file.

If you specify a workspace on the command line, Performance Monitor loads the
settings for all four views.

If there is no settings file specified on the command line, Performance Monitor
searches its working directory for the file _'DEFAULT.PMC. If found, it loads this
settings file and it becomes the current view.

Tip Here’s a trick you can use: although the .PMC suffix is used, this file could
actually be from any view or even a workspace. This is one reason why we do not
enforce the suffixes: there are times like this when you want to fake them out.

You can modify computer and instance names in a chart settings file using the
setedit.exe utility on the diskette or CD-ROM included with this book. The setedit
utility displays the settings file entries in the chart legend. You select the legend line
you want to change and double-click, or select Edit Chart Line from the Edit menu.

If you have a settings file that you can see in File Manager, you can drag it to a
running copy of Performance Monitor and it will start running. This clears out the
current settings file in that view (or in all four views for a workspace), so be sure to
save your current settings if necessary.

62

Optimizing Windows NT

Here is another neat thing you should try once you have a few settings files created.
Start File Manager from Program Manager’s Main group, and then select the
Associate command from the File menu. Press the New Type button. In the File
Type box, type Performance Monitor Charts. In the Command box, type
perfmon.exe. In the New Extension box, type PMC, and then press the Add
button, and the OK button. Do the same for alerts, reports, logs, and workspaces,
using appropriate file types and extensions. Once this is done, you can double-click
a settings file in File Manager, and Performance Monitor starts, executing that
settings file.

Now some more legerdemain: go back to Program Manager and create a new
program group called PerfMagic using the New menu command on the File
menu. (It can be either a personal or common program group. If you want other
people to be able to use it, it must be a common program group. You must be an
administrator on your computer to create a common program group.) Now restore
File Manager and Program Manager so that you can see your settings files in File
Manager, and your new PerfMagic Group in Program Manager. Now you can
drag your settings files to the PerfMagic Group from File Manager. They are
Performance Monitor icons and you can double-click them to execute them. Now
that’s cool! ‘ :

Exporting Performance Data

Data export is the Performance Monitor general purpose escape hatch. Just about
every time we run into a limitation of Performance Monitor, we tell you to export
the data and use some other tool to format or analyze it.

This is not necessarily bad. The ability to use software as building blocks was one
of the fundamental principles in the construction of the very successful UNIX
operating system. We have used that concept here, and it will serve you in good
stead. Examining or analyzing the standard deviation of the numerical values of
many chart points, printing lots of alert log entries or a large report, and making a
list of all the computers being logged in a large network all rely on data export.
These are normal activities of performance monitoring, and it is the explicit design
of Performance Monitor that you export the data to accomplish these activities. So
don’t struggle, export!

Chaptér 2 Zen and the Art of Performance Monitoring 63

The Export command on the File menu permits you to create either tab-separated or
comma-separated ASCII files for use by other applications. Which you choose
depends on which format your other application will best accommodate. If you want
to look at the data with a simple text editor, tab-separated (the default) is the easiest
to read.

Note It’s worth repeating that the export of a chart of a large log file does include ™
every data point in the time window, even though the visible chart displays only 100
data points. If you want to export the data in a log file, you must first chart that

data. Once you have set up a complex chart for export, consider saving your

settings in a settings file so you can reuse them.

Performance Monitoring Service

If you want to automatically watch for alerts or log data to a log file, you can
establish Performance Monitor as an unattended service on the computers you want
to monitor. The Performance Monitor service can be set up to start automatically
when the computer is started.

The Performance Monitor service, DATALOG.EXE, runs on the computer on
which it is started. Alerts are watched locally on that computer, so no data needs to
travel across the network. You can also set up logging on any computer running the
‘service, and the log file is usually located on the same computer. The data can
remain there until you want to scan the data using Performance Monitor, or move it
to another computer when the network is not busy.

There is no direct graphical user interface to the Performance Monitor service.
Instead, you control the service using the monitor.exe utility. The activity being
monitored is described in a workspace settings file that you create using
Performance Monitor. You use monitor.exe to start, stop, and to establish a
particular workspace settings file describing the measurement. You can run
monitor.exe from a remote computer, so complete control of all your Performance
Monitor services is available from any Windows NT computer on the network.

The Performance Monitor service utilities are included on the floppy disk or
CD-ROM provided with this book. For more information on running Performance
Monitor as a service, see Chapter 8, “Capacity Planning”.

64 Optimizing Windows NT

Performance Monitor Limitations

As with any real product, Windows NT Performance Monitor has a few, well,
-warts, We can explain, justify, and rationalize until we’re blue in the face, but this
does not make the warts disappear. We might as well talk about them, or you’ll get
even more annoyed with us. Anyway, we hope you’ll forgive us.

Why You Don’t See Any Disk Data

The disk utilization on Windows NT is measured by measuring each disk

transfer with a high-precision timer. This gives very accurate results, but does

have some overhead associated with it. In addition to the calls to the timer routines,
measurement of disk activity involves adding an extra disk driver to the I/O system.
All this spells overhead. On a 20-MHz 386 this was observed to cost up to 1.5% of
the disk throughput. On a 33-MHz 486 there is no measurable impact.

We decided not to burden the system with disk performance measurement unless
you really want it. Which, believe me, you do. So right away you should activate
disk performance measurement on your computer of interest by executing the
following command:

diskperf -y
If you need to look at a remote system named, say, \\cerebellum, try
diskperf -y \\cerebellum

Unfortunately, that’s not the end of the cure. You must now shut down
Windows NT on the system you are measuring. Next time you start it, you will
have operational LogicalDisk and PhysicalDisk counters.

Why the Processor Queue Is Always Empty

We haven’t talked about all Processor counters yet, but if we’re going to talk about
gotchas, we might as well come clean now. The Processor Queue Length is a
measure of the number of threads ready and waiting to execute program instructions
when there is no free processor. Because there is only one such queue, the counter
belongs to the System object (as opposed to each processor object).

You might be watching a uniprocessor system with lots of threads running and be
disappointed to see that the Processor Queue Length counter is always zero. The
reason is that in Windows NT, this counter is measured by counting ready threads.
This cannot be done unless you also select at least one thread for measurement.
Once you include some counter from some thread in your measurement, the count
for the Processor Queue Length will be valid. This is mentioned in the Explain text
for the Processor Queue Length, but this is a very important counter and a pretty
subtle wart, so we thought we’d better tell you.

Chapter 2 Zen and the Art of Performance Monitoring 65

Ways to Print Performance Data

Can’t find a Print command on the File menu? That’s because it isn’t there! All of
the screen shots of Performance Monitor that you see in this book were made by
pressing the SHIFT+ALT+PRINT SCREEN key on the keyboard. This places the screen
image of the active application in the clipboard. You can then start Paintbrush (it’s
in the Accessories Group) and choose Paste from the Edit menu. Then you can
save the image as a file or print it directly.

Pressing ALT+PRINT SCREEN places the entire screen’s contents into the clipboard
for similar processing.

You may not be happy with this clever trick. In that case, you might consider
exporting Performance Monitor data using the Export command on the File menu.
The resulting file can be printed by your favorite spreadsheet program.

" The GUI Batch Processor

You may want to automate use of Performance Monitor beyond what is possible in
settings files. If this is the case, we direct your attention to a product known as
Microsoft Test, known affectionately around here as MS Test. MS Test records
your keystrokes and mouse movements to drive GUI applications like Performance
Monitor.

You need to use the 32-bit version of MS Test to drive Performance Monitor,
because the latter is a 32-bit application. This is provided in the latest release of the
Microsoft Test product.

There is really no limit to what you can do now. You.can use MS Test to start and
stop Performance Monitor at particular times of the day or week, or to change the
time interval of observations as the day progresses. It can start multiple copies of
Performance Monitor, setting up measurements for a whole network with ease.
Each copy of Performance Monitor contains the name of its settings file in its title
bar. MS Test can use this name to select the various copies for control.

As we promised, you’ll be daﬁgerous!

66 Optimizing Windows NT

TCP, SNMP, and Thee

There are a number of objects associated with the TCP/IP protocol. The SNMP
protocol routines are used to retrieve the statistics for the TCP/IP objects. To see
any of them, you must install the SNMP protocol as well as the TCP/IP protocol.
Use the Network option in Control Panel to install SNMP.

Crucial Hot Keys

There are a few hot keys that make using Performance Monitor a breeze.

Hot Key

Function

BACKSPACE
CTRL+P
CTRL+U
CTRL+E
TAB

Highlight current selection in legend
Always on top

Update now

Bring up time window

Add To command from the Edit menu

Here is a list of the remaining hot keys.

Hot Key Function

CTRL+C Switch to Chart view
CTRL+A Switch to Alert view
CTRL+L Switch to Log view

CTRLAR Switch to Report view
CTRL+O Bring up Options dialog box
CTRLAW Save workspace

CTRL+B Create bookmark

CTRL+M Display or hide menu and title bars
CTRL+T Display or hide toolbar
CTRLA+S Display or hide status line
CTRL+F12 Open file

SHIFT+F12 Save file

F12 Save As file

F1 Help

67

CHAPTER 3

Detecting Processor Bottlenecks

If you’ve read the first two chapters, you should be an expert on the use of
Windows NT Performance Monitor. It’s time to go out and slay those bottleneck
dragons!

There is never a shortage of dragons—every computer doing any work at all
always has a bottleneck. You can see this if-you review the definition of bottleneck
presented in Chapter 2. The device for which there is the greatest demand is the
bottleneck. This is the device with the greatest utilization during an activity’s
execution. ’

Ttisn’t hard to see that there is frequently a second bottleneck lurking beneath the
first. This is usually the device with the next lower utilization. We say “usually”
here because if you remove the first bottleneck, the one to surface could change,
depending on how the first one is removed. The important thing to remember is
that just removing one bottleneck does not always turn the dragon’s lair into a
palace. You sometimes have to slay another dragon.

This leads us to our second rule of bottleneck detection.

68 Optimizing Windows NT

Bottlenecks Are Moving Targets

The other thing to keep in mind is that during processfng, the bottleneck may shift
around from one piece of equipment to another. Each second of operation might
yield a different bottleneck if looked at in isolation. If you want to improve the
situation as a whole, you’ll need to look at the big picture. And even then the
situation can be tricky. Let’s take a look at a real example to illustrate these points.

The first thing we have to do is run the diskperf -y command to enable disk
performance counters, as discussed at the end of Chapter 2. (You did read
Chapter 2, didn’t you?) After running diskperf, you’ll have to reboot the
computer being monitored before the disk performance counters can be activated.

=

Eiie Edit View Oplions Help ;
(2RsE [FHEX] @b &)

: U s SR |
— 1.000 % Disk Read Time LogicalDisk \AMEDULLA il

Figure 3.1 Chart of processor and disk usage

In Figure 3.1 we have charted data from a Performance Monitor log file. The black
line is the Logical Disk: % Disk Read Time, and the highlighted, white line is the
Processor: % Processor Time. Activity is divided into two distinct phases. During
the first phase, the disk is clearly the bottleneck, with the processor a somewhat
distant second. During the second phase, the processor becomes the bottleneck,
with the disk even less in use. The overall data is provided in Figure 3.2.

! Chapter 3 Detecting Processor Bottlenecks 69

t ﬁl'i‘

File Edit View Options Help

EENE

Computer: \\MEDULLA

Object: Processor 0
% Processor Time 53.290
Object: LogicalDisk C:

% Disk Read Time

Figure 3.2 Report of processor and disk usage

This disk is utilized at 52.8% and the processor at 53.3%. Because the time
window is 44 seconds, this means we used 23.23 seconds of disk time (this is
demand(disk]) and 23.45 seconds of processor time (demand[processor]). In
the formal terms of the last chapter, the maximum throughput at which the disk
can accomplish this task is 1/23.23 * 3600 = 155.0 times per hour, and for the
processor 153.5 times per hour. Technically, the processor is the bottleneck. In
reality, both components are nearly equally to blame.

One way to think of this is to imagine how much faster this task would go if either
component were infinitely fast. In this case, the activity would be accomplished in
half the time if either component were blindingly fast. Is there a bottleneck? Yes, it
is the processor. Could you improve performance by attacking either component?
Yes. But you could only improve the first phase if the disk were improved, whereas
in this case a faster processor would help the second phase a lot, and the first phase
a little bit. Which brings us to Rule #3 of Bottleneck Detection.

70 Optimizing Windows NT

Getting Started: Making an Overview Settings File

Before diving in to understand any performance problem it is always best to take a
step back and get the broad picture. When we first see a problem, we tend to try to
solve it instantly. A common failing is to dive too deeply, too quickly, and thus miss
the real problem altogether. We might backtrack and find it eventually, but we’ll
waste time. This gives us Rule #4.

Chapter3 Detecting Processor Bottlenecks n

On computers running Windows NT, there are a number of essential objects and
counters for those objects you should check out first for any problem. We’ll go into
detail about these counters later, saying just enough here to provide an overview.

Consider building an OVERVIEW.PMW workspace settings file for each
computer. In the following paragraphs we discuss useful counters to include

in this file to monitor the computer’s basic hardware components. To have
Performance Monitor start up automatically using OVERVIEW.PMW whenever
anyone logs on at the computer, do the following steps.

1. Create a Startup group in Program Manager, if there isn’t already one.
2. With the Startup group selected, choose New from the File menu.

3. Type a description in the Description box. In the Command Line box, type
perfmon overview.pmw. In the Working Directory box, be sure to specify
the directory containing the OVERVIEW.PMW file.

4. Choose OK.

In the overview settings file, measure Processor: % Processor Time. This tells you
how much processing is happening. If there is work being done and the processor
is idle, you can be sure there is some other object causing delays. If you have a
multiprocessor system, you might want to measure System: % Total Processor
Time. This combines the average processor usage of all processors into a single
counter. If you have many processors, this is the way to go.

You may want to measure System: Processor Queue Length. This is a key measure
of processor congestion. We mentioned in the last chapter that you must include
the measurement of at least one thread in order for this counter to operate. (Stop
complaining: this is the type of knowledge that makes you an expert.)

72

Optimizing Windows NT

The next counter to include in your OVERVIEW.PMW is Memory: Pages/sec. This
tells you how many pages are being moved to and from the disk drives to satisfy
virtual memory requirements. If the computer does not have enough memory to
handle its workload, this counter will be consistently high. You will learn later how
to distinguish between paging activity caused by program code and data accesses
and paging caused by file accesses. Few computers have room for all their disk

files in RAM, and paging allows code and data to get into memory initially. But
sustained paging of code and non-file data because of a memory shortage yields
particularly poor performance.

The next counter to include is Physical Disk: % Disk Time, for each physical

disk unit. This will tell you how active the disk subsystem is. If there is excessive
paging, it will show up as high disk utilization. General disk activity will also show
up here.

Next to consider is networking. Here, what you measure depends on what
protocol(s) you have installed on your system. It also depends on whether the
computer is primarily a client, a server, or both.

If you are measuring a client and have NWLink installed, you can look at NWLink
NetBios: Bytes Total/sec. If you have TCP/SNMP installed, you can look at
Network Interface: Bytes Total/sec. If you have extended object counters for other
protocols, they will probably have counters indicating total throughput. If you have
extended object counters for your network adapter cards, you can look at byte
transfer rates on those objects.

What you are looking for here is an indication of network activity, because on a
client you usually deduce a network bottleneck rather than see it. For example, -
suppose that on a client, the processor and disk are not busy and the network is
active. You are probably waiting for the network. If the problem is out on the

* network rather than in the local computer, it could be just about anywhere in the

world, depending on your network. So let’s try first to make the decision about
local versus remote problems when we get the overview. We can search-out the
real culprit later.

Chapter3 Detecting Processor Bottlenecks 73

If the computer is primarily a server, you might want to use Server: Bytes Total/sec
to monitor your network activity. This will give you a single counter that shows
most of your significant network activity. You will want to know how close the
server’s adapters are to being fully utilized. We’ll discuss how to determine this

below. It is also useful to watch Context Blocks Queued/sec and System: Total
Interrupts/sec.

There are many other counters you could look at, but this set makes a pretty strong
OVERVIEW.PMW. You don’t want too many counters here because you want to

get the broad picture. Once you have that, your chances of running off in the wrong
direction are greatly reduced.

File Edit View Options. Help

SRR |+1@1x§]zzzitrsi

0,000 Max[100,000 Graph Time|

. Instance ~ Parent - Object
0 Processor
i DEL
] 1.000 % Disk Time D: 1 LogicalDisk \\OBLONGATA
i | 0. 0001 00 Frame Bytes/sec » NetBEUI \\OBLDNGATA ;

mData cﬁent dog

Figure 3.3 Overview of a busy client

74 Optimizing Windows NT

What a jumble! Can we make sense of such a mess? (Yes, we can, as you’ll see.)

Counter. stance rent - Objec Computer
% Processor Time Processor MNTX861
Pages/sec - Memorty \WNTX861
% Disk Read Time D: 1 LogicalDisk MNTX861
Bytes Total/sec \Device\Nbf L - NetBEUI \NTX861

- Context Blocks Queued/Sec¢ - ery i

Figure 3.4 Overview of a busy server

That’s one busy server! There is a memory bottleneck to the right of center on the
display. Can you see it? Maybe not yet. This is the kind of problem we will learn
how to solve. '

These pictures can get pretty confusing, as even the simple example that opened
this chapter showed, never mind these spaghetti charts. To get a better idea of how
to approach more complex issues, let’s look at each system component in turn,
exploring how the counters behave under known, well-defined workloads. This will
help us view the complexities of the real world from a platform of knowledge.

Chapter 3 Detecting Processor Bottlenecks 75

Charting the Response Surface

Computers are only one kind of system; there are many other electrical, mechanical,
biological, and social systems around us. One favorite method of characterizing
systems is called the Stimulus-Response model. The system is treated as a black
box, and stimulated in a known way. The resulting response is noted, and a new
stimulus is tried. In this way you gradually chart what is called the response
surface.

We can do this with the computer. By applying known workloads and observing the
response, we can learn about the system, and also about how it is viewed by the
measurement tool. The program we use to apply known workloads to the computer
system is called Response Probe.

We have included a copy of Response Probe on the floppy disk that accompames
this book. Appendix C explains how to use Response Probe.

Analyzing Processor Performance

Let’s first take a look at a simple processor bottleneck. Figure 3.5 shows a
processor being used to maximum capacity for a while.

File Edit View Options Help

1.000 % Processor Time 0 - Processor \\MEDULLA
1.000 Pages/sec - Memory \\MEDULLA

1.000 % IV)isk Time C: LogicalDisk \'\MEDU”L“EC\
OO PERRE ABENEE MEDUITS

Figure 3.5 Bottleneck on processor utilization

76

Optimizing Windows NT

Processor utilization is 100%. Most of our other overview counters are percolating
at a low level. Why? Because we are logging the data, in this case at the rather
rapid rate of once per second. The paging and disk activity is to the Performance
Monitor log file. Later we’ll discuss how to determine this. If we do not want

this disk activity to interfere with the data, we could log over the network (then
NetBEUI: Frame Bytes/sec would be non-zero), but because the disk activity is not
really interfering much here, we won’t bother this time. Chapter 2 discussed some
other ways to reduce interference.

This interference is just the performance monitoring embodiment of the Heisenberg
Uncertainty Principle: if you measure it, you change it. To make sure you don’t
forget this, we’ll make it Rule #5!

We do not prevent you from collecting lots of data at a very high rate. There are
occasions when you may legitimately need to look at something at very high
resolution. But if you use Performance Monitor in such a way that it becomes
your bottleneck, we’ll tell your boss.

When we uncover a processor bottleneck, we always want to find out more. Is this
just one process, or several? If one process, which one? And does it have just one
thread, or several? Answers will tell us what we can do to solve the problem. This
leads us to Rule #6.

Chapter 3 Detecting Processor Bottlenecks I

Rule 6

Any dlscovery ralses
new questmns. |

So the next step is to look at System: Processor Queue Length to determine how
many threads are contending for the processor. Luckily we logged the Thread as
well as the System object, so we get the picture in Figure 3.6.

ptions Help

1, IJDU / Processor Time

O o ek gt

Figure 3.6 Processor Queue Length with a processor bottleneck

The Processor Queue Length here is scaled by 10 so we can see it better. It looks
like it has a base of two, which alternates with three, with a peak at four. What are
these threads? Figure 3.7 shows a chart in histogram mode, selecting the Processor:
% Processor Time for all processes.

78 Optimizing Windows NT

File Edit View O

% Processor Time PROBE Process ULLA
% Processor Time ProbePic - Piocess \\MEDULLA
% Processor Time progman Process \\MEDULLA
% Piocessor Time screg Process \MEDULLA
% Pracessor Time smss - Process \\MEDULLA
I \\MEDULLA

%mm

1.000 M/ Processor Time winlogon Process \\MEDULLA |

Figure 3.7 Processes active during a processor bottleneck

The culprits are cast appropriately in black. Here we have changed the Vertical
Axis Maximum to 10. If we had left it at 100, you would have seen that the tall

bar has 96.34% of the processor. So using this axis maximum lets us look at the
remaining amount. On the left is the system graphics process, the Client-Server
Runtime Subsystem (CSRSS) which has 1.408%. The bar to the left of the tall one
is perfmon, the Performance Monitor executable, with 1.99%. The one on the far
right is the System process, with 0.253%. It handles the lazy writing of data from
the file system cache to the log file and other system functions. These processes

are all involved in writing the log file. Heisenberg rides again! The overhead would
have been lower if we had followed our own advice and minimized Performance
Monitor while logging this data. You should try this and see if you can measure the -
improvement.

These values total 99.991% of the processor usage. The main culprit, of course, is
the Response Probe process called ProbePrc, with 96.34% of the processor. If it
were a real application, we’d rewrite it to use less processor time. Next we see
perfmon, CSRSS, and finally the System process.

Chapter3 Detecting Processor Bottlenecks 79

But Figure 3.6 has a strangely periodic, sawtooth flavor. In order to understand
what we are seeing here, we need to digress for a moment and discuss how the %
Processor Time is measured on Windows NT, and how the processor is scheduled.
Then we’ll know enough to pursue the Mystery of the Sawtooth Queue Length.

Why Performance Monitoring Is Free (Not!)

One design goal of software performance monitors is to keep their overhead low.
Figure 3.8 shows a chart of the processor used by Windows NT Performance
Monitor observing an idle system. Look at the value bar. Because the graph time is
100 seconds, we know the time interval is one second, so the chart is being updated
every second.

=]

File Edit View Options Help

2| e &

Figure 3.8 Windows NT Performance Monitor overhead (not!)

80

Optimizing Windows NT

Notice how the value bar entries are zero. Wow, no overhead! What a tool! Do we
think Windows NT Performance Monitor is free? Fat chance! It is good, but it is
not free. It does have very low overhead, because it was used to tune itself, and

we also followed all the guidelines we will mention in later chapters about how to
write fast Windows NT applications. But it is also true that processor utilization

on Windows NT 3.1 is sampled, not measured; the sample rate depends on the
hardware platform. Sampling whether the processor is busy is much less expensive
than timing every processor thread dispatch, because only more advanced
processors include cheaply readable timers. On the 486 and earlier processors, time
must be obtained from a relatively slow outboard Timer (See Figure 2.1.)

Anyway, what sampling means to you is that a process can execute a few
instructions and stop—all in between samples—and thus not be observed. This
places a lower bound on the resolution of this counter. On both 486 systems

and MIPS systems, the sample rate is once every 10 milliseconds. When the timer
ticks, the interrupt looks to see what the current process and thread are, and then
effectively bills them for a sample interval’s worth of time as though they had
executed for the entire sample interval. Clearly, this scheme can overcharge if

the thread started just before the interrupt, or undercharge if the thread stops just
before the sample interrupt (as is the case repeatedly in Figure 3.8). Programs (like
Performance Monitor) that are launched by the same interrupt used to sample
processor usage are particularly difficult to measure perfectly. The utility TotlProc
included with this book exports a counter for measuring this sort of deviant
behavior. In almost all cases, the counter will be correct. The counter is designed
to tell us about which processes and threads dominate the processor;, and it can
certainly do that with low overhead using this scheme. But if we try to look too"
closely at deviant or unusual thread behavior, we will see the limits to the resolution
of this counter. o

Processor Scheduling on Windows NT

In order to understand how processors are used in Windows NT you need to
understand how they are scheduled. This is typical of what we will find throughout
this book: we need to know how the system works and how it is measured to
properly interpret the data. Otherwise, we’re just guessing. Let’s avoid that, it’s
what our boss does!

Chapter 3 Detecting Processor Bottlenecks 81

Windows NT schedules processors using symmetric multiprocessing with soft
affinity and preemptive multitasking. What a mouthful! Read on to find out what it
means;

Let’s look first at a single-processor computer, which is scheduled by preemptive
multitasking. This means that the highest priority thread that is ready to run will
execute processor instructions. If another thread is waiting, what happens depends
on its priority. If it is a lower priority than the executing thread, it will mostly wait,
only occasionally getting processor time to prevent total starvation. If it has the
same priority as the executing thread, the two will share the processor. The system
will periodically switch from one thread to the other in order to let them both have
processor access.

Priorities are assigned at two levels. The process is assigned a priority class based
on how the user starts and interacts with it. Then, within the process’s priority
class, its threads are assigned priorities that can change depending on requests

by the thread itself, or because of interactions with peripherals or with the user.
When the thread uses the processor, its priority is lowered; when it accesses
peripherals, it is raised, and when it accesses such peripherals as the keyboard

it is boosted even more. But to gain this boost, peripheral access must be through
direct communication with Windows NT Executive. Windows applications are
treated somewhat differently, as described shortly.

If a computer has multiple processors, a ready thread can run on any of them.
The system attempts to run a thread on the same processor it last ran on, all other
things being equal. (This is soft affinity.) This helps reuse data left in the
processor’s memory caches from the previous execution of the thread. A thread
could be restricted to run on only certain processors, but this is uncommon.

Most applications started by users during system operation run in the Normal
Priority class. When a user is interacting with an application using the keyboard
and mouse, that application is in the foreground. The foreground application
processes get an elevated base priority of nine instead of the level eight assigned to
other Normal Priority class processes. (A higher number has higher priority.) When
an application relinquishes the foreground, it becomes a background process and is
given a base priority of seven.

82

Optimizing Windows NT

‘What all this means is that when the foreground application uses the processor
heavily, it can lock out all lower priority processes from execution. Because
responding quickly to the user is usually the goal of the system, this is the
chosen default for Windows NT operation. If you want to alter this behavior,
choose the Tasking button in the System option in Control Panel. The setting of
Best Foreground Application Response Time is the default. If you change this
to Foreground Application More Responsive Than Background, foreground
processes will be given a priority of eight. Setting this to Foreground And
Background Applications Equally Responsive assures that both foreground

and background processes get priority level seven.

The following table lists all possible thread priorities.

Table 3.1 Thread Priorities in Windows NT

Base Priority class Thread priority

31 Real-time THREAD_PRIORITY_TIME_CRITICAL
26 Real-time THREAD_PRIORITY_HIGHEST

25 Real-time THREAD_PRIORITY_ABOVE_NORMAL
24 Real-time THREAD_PRIORITY_NORMAL

23 Real-time THREAD_PRIORITY_BELOW_NORMAL
22 Real-time . THREAD_PRIORITY_LOWEST

16 Real-time THREAD_PRIORITY_IDLE

15 Idle, Normal, or High THREAD_PRIORITY_TIME_CRITICAL
15 High THREAD_PRIORITY_HIGHEST

14 High THREAD_PRIORITY_ABOVE_NORMAL
13 High THREAD_PRIORITY_NORMAL

12 High THREAD_PRIORITY_BELOW_NORMAL
11 High THREAD_PRIORITY_LOWEST

11 Foreground normal THREAD_PRIORITY_HIGHEST

10 Foreground normal THREAD_PRIORITY_ABOVE_NORMAL
9 Foreground normal THREAD_PRIORITY_NORMAL

9 Background normal THREAD_PRIORITY_HIGHEST

8 Foreground normal THREAD_PRIORITY_BELOW_NORMAL
8 Background normal THREAD_PRIORITY_ABOVE_NORMAL

Chapter3 Detecting Processor Bottlenecks 83

Table 3.1 Thread Priorities in Windows NT (continued)

Base Priority class Thread priority

7 Foreground normal THREAD_PRIORITY_LOWEST

7 Background normal THREAD_PRIORITY_NORMAL

6 Background normal THREAD_PRIORITY_BELOW_NORMAL
6 Idle . THREAD_PRIORITY_HIGHEST

5 Background normal THREAD_PRIORITY_LOWEST

5 Idle THREAD_PRIORITY_ABOVE_NORMAL
4 Idle THREAD_PRIORITY_NORMAL

3 Idle THREAD_PRIORITY_BELOW_NORMAL
2 Idle THREAD_PRIORITY_LOWEST

1 Idle, Normal, or High THREAD_PRIORITY_IDLE

The Mystery of the Sawtooth Queue Length

Now let’s go back to the sawtooth behavior of the processor queue length. Now we
know enough to understand that % Processor Time may not show the bottleneck.
One reason is that some of the processes might be so quick that they do not register
any processor usage. Another reason is that a process in the queue might never
execute because higher priority processes are dominating the processor. The
Processor Queue Length counter’s Explain text tells us that this counter tracks the
threads in the Ready State. If we want to know what is in the processor queue, we
need to look directly at the threads and their thread states. All the possible thread
states are listed in the following table.

Table 3.2 Thread States in Windows NT

Thread state Meaning

0 Initialized
1 Ready

2 Running

3 Standby

4 Terminated
5 Wait

6 Transition
7 Unknown

84

Optimizing Windows NT

The easiest way to analyze what is happening in Figure 3.6 is to first bracket the
time period of interest with the time window. Then add the counter Thread: Thread
State for all threads in the system. This will take a while for Performance Monitor
to draw, and the resulting picture is not too illuminating. However, we can now
export the data and use a spreadsheet to analyze it. We look at the thread states of
all the threads, and eliminate those threads that never have Thread State = 1 (that is,
ready on the processor queue). We change all the thread states that are not 1 to 0,
so the remaining thread state 1s really stand out. Now we can really see what’s
happening, looking at Figure 3.9.

ry L t Macro Window Help al
[=SERIES('03EX004AXLS'1C10..'03EX004AXLS'1C11:C70.1)

[csrss

O System

M Imsves
El ProbePrc
CONTROL

Figure 3.9 Components of processor queue length

The ProbePrc process is our processor hog. The Control process is Control

Panel, which attempts to wake up and do housekeeping about six times per second.
Because it is in the background, it virtually never executes—it is not getting enough
of a priority boost to get much processor time—but it sits on the processor queue
trying to run. The System process is rarely queued, mainly because it runs briefly
when it runs. CSRSS is rarely active when Performance Monitor is actually
retrieving data. It updates the log file size after the data is written to the log file,
and that is way after the data is collected and the Processor Queue Length is
observed. '

Chapter 3 Detecting Processor Bottlenecks 85

We can now see quite clearly that the sawtooth queue length is caused by the
periodic nature of the LAN Manager Services (LMSVCS) process. LMSVCS
handles the Server, the Redirector, the Browser, some TCP/IP functions, and so
on. This process has a thread that wakes up to do housekeeping once per second. If
it cannot run right when it wakes up, it goes into the processor queue. Now that we
know what to observe, we can look at this thread in more detail.

oG
File Edit View Options Help

EX] [=lw]

=

Last| . 0.000 Average| . ‘Max]

, T 0o Graph Time
Color .. Scale Counter. = -~ Instance = Parent Object s
1.000 Priority Current 1 Imsves Thread \AMEDULLA ‘
1000 Priority Current T Bichebic . Thiead . SMEDULLA |
----- 1.000 Context Switches/sec 1 Imsves Thread \MEDULLA
— 1.000 Thread State 1 Imsves Thread \MEDULLA

Figure 3.10 Anatomy of a periodic, blocked thread

Figure 3.10 shows where the sawtooth comes from. The heavy black line is the
Thread: Current Priority of LMSVCS thread 1. It starts at 8, below the highlighted
foreground priority 9 of the Response Probe process, ProbePrc. It is in Thread State
1, Ready. After a while, the system boosts the priority LMSVCS thread 1 to 11 so it
can get some processor time. At this point several things happen at once. The thread
state switches to 5, because the thread is usually idle when the snapshot is taken.
The Thread: Context Switches go from 0 to 1 per second. (A context switch is when
the processor switches from executing one process or thread to another.) After some
of this level of activity, the thread is returned to its base priority of 8. The next time
it tries to wake up, it goes onto the processor queue, and the cycle repeats. We have
solved the mystery of the sawtooth.

The threads that are observed to be busy when there is a long processor queue may
not be the ones that are in the queue. This may be because they are too quick to be
seen by the timer interrupt that is sampling the processor usage, or they may be at
too low a priority to capture any processor cycles, in spite of any priority boost.
The next figure shows the threads that are observed to be getting processor cycles
during this experiment. Note the use of scale factors to show all these threads on
one chart. :

86

Optimizing Windows NT

10.000 Context Switches/sec 79 Thread \\MEDULLA
10.000 Context Switches/sec CONTROL Thread \\MEDULLA
1.000 Context Switches/sec 14 csrss Thread \\MEDULLA
0.100000 Context Switches/sec 18 csrss Thread \\MEDULLA
10.000 Context Switches/sec 21 csiss Thread \WMEDULLA
0.100000 Context Switches/sec 7 csrss Thread \\MEDULLA
10.000 Contest Switches/sec 9 csss Thread \WMEDULLA [43

AN A e . o . '

Figure 3.11 Threads active during a processor bottleneck

User Mode and Privileged Mode

Windows NT uses a couple of different protection mechanisms, and at the root of
them all is the distinction between user mode and privileged mode. In user mode,
the application is restricted in a number of ways. It cannot access the peripherals
directly, but must call Windows NT to get or change peripheral data. This lets
Windows NT assure that one application will not destroy data for another. When
an application is in user mode, it also cannot read or change data maintained by
Windows NT itself. This prevents applications from corrupting Windows NT
either inadvertently or intentionally. When an application needs Windows NT to do
something, it calls one of the system routines. Many of these make the transition
into privileged mode, perform the required operation, and return smoothly to user
mode.

Other protection mechanisms in Windows NT, such as the subsystem model, are
built on the transition between user and privileged mode, and we’ll explore that
shortly. The highest level of protection is provided by the Windows NT security
model. We measure it when necessary by looking at these lower levels on which it
is built.

Chapter3 Detecting Processor Bottlenecks 87

Figure 3.12 shows the processor modes in the previous example. The dotted line is
Processor: % User Time, or the percentage of time spent in user mode. The thin
black line at the bottom of the chart is Processor: % Privileged Time. Almost all of
the processor time is being spent in user mode, and there is very little privileged
mode activity. This apphcauon is chewing up the processor in user mode and
requires very few system services.

'='[JEfOrmance Man
File Edlt View Options Help

.QJ.@J@ EX) [@le] &

YENTERER
.y ALY “. ll
. . . HER I e ~\,~ K

Ti-

D]
. LN T v men,t R
Sl S BV

:7, ol
oLl PR
80 SRR R e L
wlf

Processor \\MEDULLA

Figure 3.12 A self-absorbed application obsessed with user-mode processing

Figure 3.13 tells a different tale. Here we have measured a single process that is
retrieving file data, and consequently spending most of its time in privileged mode.
This is not necessarily bad, it just means that the application is getting its work
done by calling the operating system. When user mode time goes up, privileged
mode time goes down. Together they add up to all the processor time being used, if
we got our arithmetic right when we built Performance Monitor. (And we did; we
checked.)

88 Optimizing Windows NT

File Edit View Options Help

Computer

Processor \\CEREBELLUM .
Processor MCEREBELLUM |
SR e

Figure 3.13 A process wisely using Windows NT to get its work done

Performance Monitor enables you to get an overview of a few basic areas where an
application might be spending its time when it is using the system in this fashion.
Figure 3.14 shows some of the key counters to note in this situation.

You may notice that % Processor Time appears in the report before % Privileged
Time. This is logical, which is why we have done it here, but it is not what you get
if you just select all Processor counters and add them to a report. Report counters
appear in the order selected. If you select all counters at once, they appear in
alphabetical order. By first selecting % Processor Time, adding it, and then
selecting all Processor counters and adding them, you will get the report shown
here. Adding the % Processor Time a second time has no effect because duplicate
additions are ignored.

Chapter 3 Detecting Processor Bottlenecks 89

=]
File Edit View Options Help

BREE FEX (@] @

viA

Computer: \\CEREBELLUM
- Object: Processor 1]

% Processor Time i 1
% Privileged Time 71.714
% Uset Time 28.285
Interrupts/sec 101.057

Object: System

Contest Switches/sec 107.632
File Control Bytes/sec 557.211
File Control Operations/sec 4,975
File Data Operations/sec 0.024
File Read Bytes/sec 0.000
File Read Operations/sec 0.000
File Write Bytes/sec 599.827
File Write Operations/sec 0.024
System Calls/sec 4327.508
Dbject: Cache
Copy Read Hits % 100.000
Sync Fast Reads/sec - 2116.964

Figure 3.14 Some key indicators of system call activity

The Processor: Interrupts/sec counter is near its rest state of 101.057 on the x86
processor. (This rate reflects the rest state because the processor clock interrupts
every 10 milliseconds on x86 computers.) It is a bit higher because we are logging
performance data once each second. A large number of interrupts could press
privileged time up, but that is not happening here. Windows NT is capable of
sustaining thousands of interrupts per second; that’s how we know this number
near 66 is low.

The Context Switches/sec rate is quite low, so the application is not switching to
another process, or switching among multiple threads within itself. This is another
counter capable of being in the thousands; we’ll see examples of this later.

90

Optimizing Windows NT

All the file operation counters are very quiet as well, so we’re not beating on the
Windows NT file system for data. (How could that be, when we were getting file
data? Hang on and you’ll see.) System: System Calls/sec measures the number of
times the application is calling Windows NT, and thus counts the transitions into
and out of privileged mode from user mode. We can compute the amount of time
between each call: \

Time / System Call = 1 / (System Calls/sec) = 1/4327.508 = 0.000231

or 231 microseconds. User time per system call is the ratio of % User Time
(expressed as a number from 0 to 1, this is the fraction of each second in user
mode) to System Calls/sec

User Time / System Call = 0.28285 / 4327.508 = 0.000065

or, 65 microseconds. And, finally

Privileged Time / System Call = 0.71714 / 4327.508 = 0.000166
or, 166 microseconds.

All this tells us that the application is making a very large number of system calls
each second (on average), and each one is quite fast.

We turn our attention to another key Windows NT component, the file system
cache. Windows NT uses a single cache for all file systems. Before going to fetch
the data from disk or LAN, the file system first asks the Windows NT I/O Manager
if the data is in the cache. If it is, the file system bows out and the request is fielded
by the cache manager. We’ll say more about all this later, primarily in Chapter 6,
“Detecting Cache Bottlenecks.”

What we see here is a 100% hit rate in the cache for copy reads, meaning every
time the cache manager is asked for such data, it is there. Copy reads are those in
which the cache manager is directed to satisfy the request by copying the data from
the cache to the application’s buffer. (Reminder: this sort of information is in the
Explain text for the counter.) We also see a high rate of Sync Fast Reads/sec. This
is the key to the absence of file system activity in the file counters. Sync here means
the application will wait until the request is finished. Fast reads are special /O
Manager operations which bypass the initial call to the file system and go directly
to the Cache manager. So the file system never got called, and never had a chance
to bump its File Read Operations/sec counter.

Chapter 3 Detecting Processor Bottlenecks 91

We can see how these cache requests relate to the overall system calls by forming
another ratio:

System Calls / Cache Request = 4327.508 /2116.964 = 2.04

Just about every other call is a call to get data from the cache. To get more detail on
the calls and the amount of time spent in them, you would use the Call/Attributed
Profiler (or a similar tool), which is described in Chapter 10, “Tuning Windows NT
Applications.”

We’ve gotten a pretty good idea what is going on here, and we know what tool to
use to get more information. We’ve also exposed another important Rule:

What Multiple Processes and Threads Look Like

In this last example, we saw what the system looks like when we have a single
process that is hogging a single processor. What if we had more than one process
active? This is visible in the next few figures, starting with Figure 3.15.

92 Optimizing Windows NT

Options elp

FX] [=]E]

File Edit View

Object omp
Processor MMEDULLA
Memory \MEDULLA
LogicalDi MMEDULLA
RO

Figure 3.15 Multiple processes in a processor bottleneck

Contrast this with Figure 3.5. The only change is in the background activity, and
this is different because we have decided to place the log file on a remote computer,
instead of on the local disk. We thought you would like to see the difference in
usage this would cause. After some initial activity, the disk becomes quiet, and you
see a steady stream of NetBEUI Frame Bytes/sec (the white line at the bottom). We
are still logging this data at a one-second time interval. (This is a very high rate for
logging. Except for making illustrations like this, we do not recommend it.)

To see how this situation is really different from Figure 3.5, we can compare *
Figures 3.6 and 3.16, which show the processor queue length.

Chapter 3 Detecting Processor Bottlenecks 93

T~

=| ST (i
File Edit View Options Help

_ B X (@]

'so
80
éu
50
wp

Scale Counter . . Instance = Parent Ukbié'ctk‘ e Co:ﬁlb;xter i :
1.000 % Processor Time 0 Processor \\MEDULLA

Figure 3.16 Processor queue length with multiple processes consuming the
processor

The highlighted queue length in Figure 3.16 is much longer than the one in Figure
3.6. It goes as high as 7 and never drops below 5. Suppose we find the average
queue length in each case. Let’s start two copies of Performance Monitor, each
looking at its own log file. We move the time window in on each one to bracket the
time when the processor is 100% utilized. Then we select the Processor Queue

- Length in the legend, and note the average value in the value bar. See Figure 3.17.
The average values are 2.5 in one case, and 5.5 in the other. So we would guess
there are three more processes in Figure 3.15 than in Figure 3.5.

94 Optimizing Windows NT

Scale Counter
1.000 % Processor Time

Lountel stanc Lbje omputer
1.000 ZProcessmng imeu . - \MEDULLA
mpiREColERT S

Figure 3.17 Comparing processor queue lengths

This is a certain clue that there is more than one culprit hogging the processor.
What are these masked processes? We expose them in Figure 3.18.

> o Instance are Object
.000 % Processor Time progman Process
1.000 % Processor Time screg Process
1.000 2 Processor Time smss Process

1.000 *% Processor Time spoolss Process
1.000 % Pr 1 Time System P

7 Proces: LLA
1.000 % Processor Time thought Process \WMEDULLA[4
1.000 % Processor Time winlogon Process WMEDULLA [

Figure 3.18 Which processes are eating the processor

Chapter 3 Detecting Processor Bottlenecks 95

Clearly, four processes are consuming the processor in this case. They are sharing it
equally. We see minor usage by two others, the CSRSS and Performance Monitor.
So, we have found the bottleneck!

How would this look different if we had just one process, but with multiple threads?
At this point you can probably guess. Take a look at Figures 3.19 through 3.22.
This time we have placed Performance Monitor on a remote system. You see the
same network traffic in the background that you saw last time. But Performance
Monitor is remote. We can see the consequence of this indirectly in Figure 3.20.

i|'v|;

0

! “Object - Computer-

I 1.000 % Processor Time 0 Processor \\MEDULLA
== 1.000 Pages/sec Memory \\MEDULLA
== 1.000 % Disk Ti LogicalDisk \\MEDULLA

Figure 3.19 Processor consumption by multiple threads

96

Optimizing Windows NT

Figure 3.20 Processor time and queue length with multiple threads (remote
measurement)

The Processor Queue Length is more erratic and longer than before. We can
analyze this as we did previously, by exporting the Thread: Thread State for all
threads, and finding those with Thread State 1 (Ready). What we see is that

there are two new, multithreaded processes participating when we do remote
measurement. The first is the Network Server, which lives in the services process.
The second is the Windows Logon process (WINLOGON). Both participate in
handling the remote request for performance data, and both have multiple
asynchronous threads that contribute erratically to the queue length.

So we’ve muddied the waters a little by changing both the way we are collecting
the data as well as the experiment itself, in violation of Rule # 1 of Bottleneck
Detection. But this way we’ve convinced you of the value of Rule #1, right?

You can look at Figure 3.21 to see which processes are participating in this
bottleneck, and you can see from Figure 3.22 that the Thinker process has four
active threads. '

Chapter 3 Detecting Processor Bottlenecks

97

File Edit ¥ Options Help
HX] (=[]
Calor Scale Counter . Instance © Parent Object Computer
% Processor Time PROBE Process MMEDULLA | +
— % Processor Time progman - Pracess \\MEDULLA
% Processor Time screg Process \\MEDULLA
% Processor Time services Process \WMEDULLA
% Processor Time spoolss Process \\MEDULLA
ED]
o 1030 W Ji;rogon Process N |

Figure 3.21 Processes in a multithreaded processor bottleneck

==

File Edit View QOptions Help

[=l=] @]

“Parent Oblect Ay ;'Comphlét,

. % Processor Time System Thread \WMEDULLA
% Processor Time thinker Thread MMEDULLA
sehies S i
% Processor Time 2 thinker Thread \AMEDULLA
% Processor Time 3 thinker Thread MMEDULLA
% Processor Time 4 thinker Thread MMEDULLA
% Processor Time 0 winlogon Thread MMEDULLA]
Y . % Processor Time 1 winlogon Thread \AMEDULLA

Figure 3.22 Threads in a single process in a multithreaded processor bottleneck

98

Optimizing Windows NT

What you want to remember is that although we tend to think of processes as the
executing programs on a system, it really is the threads that use the processor. The
process is the address space, and the threads inside that process share that address
space and actually execute the instructions.

Bottlenecks at Lower Utilization

Does a device have to be at 100% utilization to be the bottleneck? Unfortunately,
no, or our lives would be much simpler.

Two important issues contribute to the relationship between queue lengths and
utilization. The first is the arrival patterns of requests for the device service, and
the second is the amount of work the device is requested to do on each arrival.

Suppose we had ten threads that each wanted exactly 0.9 seconds of processor time
in a continuous block, just once every 10 seconds. Further imagine that exactly 1
second after the first one arrived to ask for its 0.9 seconds, the second one arrived,
and in the next second the third one arrived, and so on. The processor would be
90% busy, and there would be no queue. If each thread needed precisely 0.95
seconds of processor time, the processor would be utilized at 95%. If 0.999, then
99.9%. Note there is no queuing in this situation, and no interference between the
threads.

In queuing theory this is called a constant arrival and constant service distribution.
In a carefully engineered situation, a device can be nearly 100% busy without
creating a queue. How delicate the balance between arrivals and service to achieve
this state! '

It is not hard to see that, if the second thread arrives just a little bit early, it has to
wait for the first one to at least complete a time slice before it can run. Likewise, if
the first thread requires just a little more than a second of processor time, it will get
in the way of the next thread. A processor queue will start to form. Once arrival
rates and service requests become unpredictable, a queue can build up, and there
can be delays.

Chapter3 Detecting Processor Bottlenecks 99

R e
Macro Window Help

e QitERCE
Chart Format

= File Edit Gallery

4

Response Time vs. Number of Threads
Processor-Only Workload

150 1
140 4
130 4
120 1
110 1
100 1
90 1
80 1
70 1
60
50

Average Response
Time (seconds)

0 5 0 5 20 25
Number of Threads

Ready oo e e

Figure 3.23 Response time to a randomized processor load

Figure 3.23 shows how the response time can grow for a number of threads if the
arrivals and service requests are less regular. These threads ask for a somewhat
random amount of processor time after an irregular delay. The utilization of the
processor in the 25 threads on the right was 76%. Yet the delays experienced
were almost three times that of the stand-alone thread. This means the length of
the processor queue was almost 2.

According to queuing theory, if the arrival pattern is random and the service

pattern is random, the length of the queue is 2 when the device utilization is 66%,
or two-thirds utilized. We are using the word “random” somewhat loosely to mean
unpredictable. For example, in a large telephone exchange, the length of the phone
calls is found to be random in this way. (In fact, what we mean is that interarrival
and service distributions are exponential, but that is more formal than we need to be
here.)

Distributions can be worse than this, in the sense that queues can form at even
lower utilizations. The most commonly occurring situation like this is a bimodal
distribution of service, when most requests are very short or long with few that
are medium length. We don’t see these too often in computer systems, but they
do occur. If your queue length is large and the utilization is low, you may be
experiencing this type of usage pattern. If you want to impress your boss, say
that your device is experiencing hyper-exponential service distributions.

100 Optimizing Windows NT

So how a device is used determines the length of the queue that will form for a
given utilization of the device. When looking for bottlenecks in real systems, you
must be aware of this. It won’t be hard to remember because it will apply at the
bank and the supermarket as well as on your computer. So next time you are
standing in line somewhere, you can quote Rule #8:

How the Graphics System Uses the Processor

We mentioned in passing that the client-server runtime subsystem, affectionately
~ known as CSRSS, handles graphics on Windows NT. Actually it handles all

window manipulation as well as graphics, and thus makes up an important portion

of processor activity on the system. This architecture is illustrated in Figure 3.24.

Application process ‘ CSRSS process

Windows
and graphics

Application Privileged Privileged

mode
Graphical
device driver

R S TR

Y ' Y
User mode Privileged mode User mode

Figure 3.24 Graphics architecture on Windows NT

Chapter 3 Detecting Processor Bottlenecks 101

The Windows NT SDK contains a graphical device interface demonstration
program called Gdidemo. As shipped in the SDK, Gdidemo pauses between
drawings. For this experiment, we modified the Gdidemo program to remove

that pause so that it will spend all its time drawing. Figure 3.25 shows processor
utilization for the processor, the modified Gdidemo program bouncing balls around
the screen, and the CSRSS process.

Eile Edit ptions Help

' ' AN
80|

|
60

50

40

“""Instance | Parent’ - Dbject
0

Scale Counter
1.000 % Processor Time

Com‘pul:el“

Processor

Process

1.000 * Processor Time GDIDEMO

Figure 3.25 Processor utilization by a graphics program pumping pixels

The processor is 100% busy, and most of the time is in CSRSS, which makes

sense because it is doing most of the work. On Windows NT you need to think
beyond the application process itself and look at other processes in the system

that the application may be using. CSRSS is a primary candidate for consuming
processor cycles on behalf of an application. Usually this is pretty obvious, because
the display changing rapidly is a primary clue. But some tasks that manipulate
windows do not change the visible display: they may be operating on windows

that are hidden behind others. So taking a look at CSRSS is a good basic policy.

102

Optimizing Windows NT

The graphics application communicates with CSRSS using a fast form of the local
interprocess procedure call. What makes it fast is dedicating one thread in CSRSS
for each application thread that communicates with CSRSS. So you’ll see lots of
CSRSS threads. An application sends graphics commands to CSRSS in batches to
amortize the cost of the process switch over a number of graphical operations. Each
such context switch is counted by System: Context Switches, and by Thread:
Context Switches as well. You can see from the report in Figure 3.26 that the
context switches between Gdidemo and a thread in CSRSS account for nearly all
the context switches in the system. (Remember Heisenberg: Performance Monitor
is logging at one-second intervals here. You can see its communication with CSRSS
in the two threads at the right of Figure 3.26.)

Flle Edit View Options Help

Computer: \\MEDULLA
Object: System

% Total Processor Time
Contest Switches/sec

csiss csrss csiss
Object: Thread 20 7 18 PERFMON
% Processor Time 17.000 79.786 . 0.000 0.845 2206
Context Switches/sec 650.773 691.286 £69.980 40.468 40.326

Figure 3.26 Thread context switching during graphics processing

Thread 7 of CSRSS is waking up about 70 times per second to do some
housekeeping, but shows no processor activity. This thread is slipping through our
processor usage sampling crack. Context switches are a more positive indication of
activity than processor utilization because they are always counted. Look at them if
you want to know for certain whether a thread is active. We used this technique in
Figure 3.11. :

Chapter 3 Detecting Processor Bottlenecks 103

Processor Usage by 16-bit Windows Applications

All of the 16-bit Windows applications are run by default as separate threads in a
single process named NTVDM (NT virtual DOS machine.) This process is known
as the WOW subsystem, which stands for Windows-16 on Windows-32. This
architecture permits 16-bit applications to share the address space the same way
they did under 16-bit Windows. It is illustrated in Figure 3.27.

WOWExec NTVDM process CSRSS process
16-bit O :]
h Windows ;
OW".'dO.WS 1 and graphics {1
applcations Privileged || Privileged ;
0 1632 | node | mode g
Worker bits Graphical
threads device driver
O 0O .,
Y ' YV
User mode - Privileged mode User mode

Figure 3.27 16-bit Windows applications on Windows NT

If you want to run a 16-bit application in its own address space, you can use
Program Manager to set the application to “Run In a Separate Memory Space,” or
you can start the application using the /separate option on the start command.

The default single address space architecture obscures Performance Monitor’s
measurement of these applications in two ways. First, the name of all such
applications is that of the single process, NTVDM. Second, if you have two or
more such applications running, it is hard to tell them apart because they are
identified only by thread number inside that NTVDM.

It can require a little disciplined experimenting to determine which thread is which
application. The NTVDM process that handles 16-bit Windows applications is
started automatically when Windows NT starts. Before starting any 16-bit
applications, use Performance Monitor to look at the NTVDM to see how many
threads it has initially. Figure 3.28 shows such a report.

104

Optimizing Windows er/"

Computer: \\MEDULLA ntydm ntvdm ntvdm ntvdm
Object: Thread 1] 1 2 3
% Privileged Time 0.000 0.000 0.000 0.000

% Processor Time 0.000 0.000 0.000 0.000

% User Time 0.000 0.000 0.000 0.000
Context Switches/sec 0.000 0.000 0.000 - 0000
Elapsed Time 178.020 177.300 176.640 170.790

ID Process 85.000 §5.000 85.000 85.000

ID Thread 126.000 167.000 166.000 121.000
Priority Base 7.000 7.000 15.000 9.000
Priority Current 0.000 0.000 0.000 0.000
Start Address 2003979228 200397821 6 2003979216 2003979216
Thread State 5.000 5.000 5.000 5,000

Thread Wait Reason 7.000 6.000 6.000

Figure 3.28 16-bit Windows NTVDM before application execution

Now let’s start another thread, 16-bit Excel. Here’s what we see as a result:

Computer: \\MEDULLA ntvdm ntydm ntvdm ntvdm
Object: Thread : 2 3 4 5
% Privileged Time 0.000 0.000 13.477 0.000

% Processor Time 0.000 0.000 70.082 0.000

% User Time 0.000 0.000 56.605 0.000
Context Switches/sec . 29.151 0.000 386.945 0.000
Elapsed Time 293.730 287.880 71.820 66.810

ID Process 85.000 85.000 85.000 85.000

ID Thread 166.000 121.000 114.000 43,000
Priority Base 13.000 9.000 7.000 13.000
Priority Current 0.000 0.000 0.000 0.000
Start Address 2003979216 2003979216 2003973216 2003979216
Thread State 5.000 5.000 1.000 5.000

Thread Wait Reason - 6.000 6.000 7.000

Figure 3.29 16-bit Excel in the WOW NTVDM

Chapter 3 Detecting Processor Bottlenecks 105

There is not room in the illustration for all the threads, so we show the last four.
The last two are new. Thread 4, with ID Thread 114, is actually Excel. We can tell
this because it is looping. We might as well ’fess up now: this is a bug (oh, no!) in
16-bit Excel 4.0, which causes it to consume processor cycles needlessly under
some conditions, one of which is startup. (Because of the Windows NT preemptive
multitasking ability, this looping activity is not a problem. Just put Excel in the
background and carry on.) Notice the high Context Switch rate of Thread 4. Excel
is talking to CSRSS (which is not shown here). Moving the focus to Excel and
away again removes the loop. Figure 3.30 shows Excel in the NTVDM after it has
stopped looping. (Of course the next version of Excel will not do this. By the way,
this bug in Excel was discovered with Windows NT Performance Monitor.)

Computer: WAMEDULLA ntvdm ntydm ntvdm ntvdm

Object: Thread 2 3 4 5

% Privileged Time 0.000 0.000 0.000 0.000

% Processor Time 0.000 0.000 0.000 0.000

% User Time 0.000 0.000 0.000 0.000

Context Switches/sec 36.101 0.000 0.000 0.000

Elapsed Time 393.930 388.080 172.020 167.010

ID Process 85,000 §5.000 85.000 85.000

ID Thread 166.000 121.000 114.000 49.000

Priority Base 13.000 9.000 7.000 13.000

Priority Curtent 0.000 0.000 0.000 0.000

Start Address 2003979216 2003979216 2003979216 2003979216

Thread State 5.000 5.000 5.000 X
Thread Wait Reason 6.000 6.000 7.000

Figure 3.30 16-bit Excel has calmed down now

Looking at Figure 3.30 you can see that the elapsed times for Threads 4 and 5 are
shorter than those of 2 and 3 because the application was started after WowExec
was executed. This is another clue about which application thread is which in the
WowExec NTVDM. Now let’s stop Excel and look at what changes.

106

Optimizing Windows NT

View

Computer: WAMEDULLA ntvdm ntvdm ntvdm ntvdm
Object: Thread 2 3 4 5
% Privileged Time 0.000 0.000 0.000
% Processor Time 0.000 0.000 0.000
% User Time 0.000 0.000 0.000
Context Switches/sec - 0.000 0.000 0.000
Elapsed Time 464.145 458.295 237.225
ID Process §5.000 85.000 85.000
ID Thread 166.000 121.000 49,000
Priority Base 13.000 9.000 13.000
Priority Current 0.000 0.000 0.000
Start Address 2003973216 2003979216 20033979216
Thread State 5.000 5.000 5000
Thread Wait Reason 6.000 6.000 6000 !

“Figure 3.31 16-bit Excel has stopped

Can you see that ID Thread 114 is gone now? Notice that Thread 4 is still there,
but it is now the thread that was Thread 5 before (its ID Thread is still 49). In
Performance Monitor, threads are named sequentially, starting with 0. If one in
the middle disappears, the numbers of following threads decrease. So you should
use ID Thread to make a positive identification. Because ID Thread numbers get
reused, they won’t be proof positive, but they do last for the life of the thread, at
least. In this example, there is no longer a Thread 5, as indicated by its zeroed
counters. Performance Monitor continues to search for any instance selected for
measurement, but if an instance cannot be found, its counters are all set to zero.

You can use the PView tool to stop the WowExec NTVDM if you want to get a
fresh start on identifying 16-bit Windows applications. Be sure to stop the NTVDM
with at least 4 threads! Other NTVDMs run separate 16-bit Windows or non-
Windows MS-DOSe applications, as we’ll discuss shortly. You can restart the
WowExec NTVDM by using CTRL+ESC to bring up Task Manager, pressing
TAB to get to the Run box, and entering wowexec. WowExec will also start
automatically when you run the first 16-bit Windows application.

Chapter 3 Detecting Processor Bottlenecks 107

In Figure 3.32 we show what happens if we start 16-bit Excel again. Here you’ll
see a new Thread 5 with ID Thread 163. Notice that the ID Thread is not 114 as

before. The ID Thread assignments appear somewhat arbitrary. But here, as long
as we keep Excel alive, it will retain the ID Thread 163.

Tela

: Hifnanee Moni
File Edit View Options Help)

<] (@)

Computer: \\MEDULLA ntvdm ntvdm ntvdm atvdm

DObject: Thread 2 3 4 5

% Privileged Time 0.000 0.000 0.000 0.000

% Processor Time 0.000 0.000 0.000 0.000

% User Time 0.000 0.000 0.000 0.000

Context Switches/sec 36.514 0.000 0.000 0.000

Elapsed Time 519.255 513.405 292.335 26,745

ID Process 85.000 85.000 85.000 85.000

ID Thread 166.000 ©121.000 49.000 163.000
Priority Base 13.000 9.000 13.000
Priority Current 0.000 0.000 0.000
Start Address 20033979216 2003979216 2003979216
Thread State 5.000 5.000 5.000
Thread Wait Reason 6.000 6.000 6.000

Figure 3.32 WowExec NTVDM threads after restarting 16-bit Excel

Okay, let’s start another application. We have a copy of 16-bit Word for Windows
handy, so we’ll fire that up.

108

Optimizing Windows NT

Computer: \\MEDULLA
Object: Thread

% Privileged Time
" % Processor Time
% User Time
Context Switches/sec
Elapsed Time
ID Process
ID Thread
Priority Base
Priority Current
Start Address
Thread State
Thread Wait Redson

0.000
2003979216
5.000
6.000

ntvdm
4

0.000
0.000
0.000
0.000
750555
85.000
49.000
13.000
0.000
2003979216
5.000
6.000

ntvdm
5

0.000
0.000
0.000
0.000
484.965
85.000
163.000
7.000
0.000
2003979216
5.000
7.000

ntvdm

0.000

0.000

0.000

0.000
63.900
85.000
114.000
7.000

0.000
2003978216

Figure 3.33 WowExec NTVDM threads after starting Excel and Word for

Windows

So we see the new Thread 6 with ID Thread 114. This must be Word for Windows.
By looking at Thread: Elapsed Time, we can tell which thread belongs to which

application.

You get the idea. By executing or stimulating the application of interest and

watching the reaction in Performance Monitor, you can isolate which WowExec
NTVDM thread is executing its code. From that point until you exit the application,

you have a positive identification of the thread.

Chapter 3 Detecting Processor Bottlenecks 109

Processor Usage by 16-bit MS-DOS Applications

Each MS-DOS application runs in its own NTVDM process on Windows NT. If
you have been following along carefully you will realize that this creates a bit of a
challenge for us, because we can only monitor one program of a given name at a
time. Not only are all MS-DOS applications given the same name, they have the
same name as the process running all the 16-bit Windows applications. Could it
get any worse than this?

MS-DOS application #1 NTVDM process

16-bit ©
MS-DOS
application y ,
1g—ap | Fvieged |

O ;
Worker bits

threads
|

CSRSS process

Windows
and graphics

Privileged
mode

Graphical
device driver

MS-DOS application #2 NTVDM process

O 16-bit il
MS-DOS :
application
16 — 32
(@] .
Worker bits
threads

Privileged
mode |

Y : " \'s
User mode Privileged mode User mode

Figure 3.34 16-bit MS-DOS applications on Windows NT

Yes, it could, because this isn’t really so bad. What we can do is change the
name of the program used to execute MS-DOS applications. Go to the directory
%SystemRoot%\SYSTEM?32 on the volume holding your copy of Windows NT.
Copy NTVDM.EXE to a file name of your choice. (Be sure to copy it to another
filename instead of renaming it, because you want to leave NTVDM.EXE around
for WowEzxec to work with.) You then tell Windows NT to use the new program
copy for executing MS-DOS programs. You do this by making a slight change in
the Configuration Registry using the Registry Editor, REGEDT32.EXE. You can
do this between starting the applications, and you do not have to shut down the
system to have this change take effect. The value to change is

110

Optimizing Windows NT

HKEY_LOCAL_MACHINE

SYSTEM
CurrentControlSet
Control
WOW
cmdline:

Double-click the cmdline entry to change it. Modify the spelling of NTVDM.EXE
to that of your copied NTVDM.EXE. Then start an MS-DOS application. If you
need to start another one and measure it separately, you can repeat this process.
You can leave the Registry Editor running and positioned at the cmdline value to
make repeated changes easy. Figure 3.35 shows the Registry Editor in this position.

=| Registry Edit Tree View Security Options Window Help 4
L= SYSTEM 4{lcmdline : REG EXPAND SZ : 2%SystemRoot2f\system3
-2 Clone
-G ControlSetd01
(X ControlSet002
-1 CurrentControlSet
|- 21 Control ,
-1 BootVerifil:
- (3] Computer]
2 DisplayDn

=] Registry Editor - [HKEY_ LOCAL MACHINE on Local Maching] = = [+ Ai‘

|[KnownDLLs : REG_SZ : shell.dll commdIg.dll mmsyste
LPT_timeout: REG_SZ: 15

size : REG_SZ: 0

wowcmdline : REG_EXPAND_SZ : ntvdm -m -w -f26Syst
wowsize : REG_SZ: 0 '

§ String:
j% IZSyslemRoOIZ\s}-stemSZ\&m -f%SystemRootZ\system32 -a |

] [cancel] [Hew]

(] ServiceGry.
— (3 Session M.
-2 Setup
—C TimeZone|
-1 VirtualDey
] Windows |
L WOow! T

h el

Figure 3.35 Registry Editor set to change name of NTVDM for running MS-DOS
programs _

Note We recommend that you set cmdline back to NTVDM.EXE when your
experiment is over. If you are very ambitious and this is a big issue for you, you
might want to write an application to perform these changes before and after the
execution of your MS-DOS applications.

Chapter3 Detecting Processor Bottlenecks 11

Figure 3.36 shows two MS-DOS applications being monitored concurrently by
Performance Monitor using this technique. The threads in one of them are shown
in Figure 3.37. There are two worker threads and one for the application. By
stimulating the application you might be able to distinguish between them, but this
is not really crucial because unlike in WowEzxec, there is only one application per
process, and you know what the process is.

= L it e
File Edit View Options Help
B@oE [+ [k
Computer: \\MEDULLA .
Object: Process edit16 xferl6
% Privileged Time 0.000 0.000
% Processor Time 0.000 0.000
% User Time 0.000 0.000
Elapsed Time 73.260 347.340
File Control Bytes/sec 0.000 0.000
File Control Operations/sec 0.000 0.000
File Read Bytes/sec 0.000 0.000
File Read Operations/sec 0.000 0.000
File Wiite Bytes/sec 0.000 0.000
File Wiite Operations/sec 0.000 0.000
ID Process 161.000 148.000
Page Faults/sec 0.000 0.000
Page File Bytes 1593344.000 1593344.000
Page File Bytes Peak 1593344.000 1593344.000
Pool Nonpaged Bytes 74914.000 77510.000
Pool Paged Bytes 49347.000 57539.000
Priority Base 7.000 7.000
Private Bytes 1413120.000 1413120.000
Thread Count 3.000 3.000
Virtual Bytes 29446144.000 29446144.000
Virtual Bytes Peak 29446144.000 29446144.000
Working Set 1134592.000 1257472.000
‘Working Set Peak 1626112.000

Figure 3.36 Two MS-DOS applications monitored using renamed NTVDMs

112 Optimizing Windows NT

Edit View Options
DoE FEE

Computer: \\MEDULLA xferlb xferl6 xferl6
Object: Thread 0 1 2
% Privileged Time 0.000 0.000 0.000
% Processor Time 0.293 0.000 0.000
% User Time 0.293 0.000 0.000
Context Switches/sec 15.966 0.000 18.361
Elapsed Time 496.845 496.260 495.630
ID Process 148.000 148.000 148.000
ID Thread 152.000 146.000 145.000
Priority Base 7.000 7.000 13.000
Priotity Current 0.000 0.000 0.000
Start Address 2003979228 2003973216 2003979216
Thread State 1.000 5.000

Thread Wait Reason 6.000 6000

Figure 3.37 Threads in a renamed NTVDM executing an MS-DOS application

See? Piece of cake.

Who Started All These Processes?

Maybe you thought all you wanted to do was run a program, but Windows NT
starts many processes as a normal matter of doing business. Few of these ever
become a system bottleneck because all they do is provide numerous housekeeping
and bookkeeping functions in the background. Figure 3.38 shows the number of
each of several important object types, as counted in the Object object.

Chapter 3 Detecting Processor Bottlenecks 113

==}<

i = I
File Edit View Options Help

Computer: \\WALKINGDOG
Object: Objects

Events 143.000
Mutexes 6.000
Processes 14.000
Sections 178.000
Semaphores 00
Threads

Figure 3.38 Object counts on a Windows NT system

Here’s a brief introduction to those objects not already mentioned. Event objects
are used by Windows NT and its applications to synchronize operations by
permitting a thread to suspend execution until an anticipated event occurs, such

as the completion of an asynchronous file operation. Mutex objects are used to
assure that only one thread is executing a particular piece of code at a time, such as
updating a common data structure. Section objects are areas of memory that can be
viewed as a contiguous sequence of addresses. A semaphore object grants a limited
number of threads concurrent access to a shared resource, such as a buffer pool
with limited entries; if more threads than the specified limit try to access the
resource, they are automatically suspended until a resource becomes available. If
these objects are given a name when they are created, they can be shared by
multiple processes.

Object counts are important because each object takes space in nonpaged memory,
which we’ll talk about more in Chapter 5, “Detecting Memory Bottlenecks.” Also,
we unfortunately don’t have a counter for Open File objects. However, the Server
object does have an Files Open counter, and we have a tool which monitors
application file activity. We’ll discuss that tool in Chapter 10, “Tuning

Windows NT Applications.”

There are 14 processes and 88 threads in Figure 3.38. That’s just about as few as
you can get, because this snapshot is taken on a laptop that is not connected to a
network. One of these processes is Performance Monitor, so let’s be sure we
understand who the others are, and what role they play in the operation of
Windows NT. '

114 Optimizing Windows NT

Table 3.3 Processes.in Windows NT with No Network Connection

Process name Function

clipsrv Clipbook Server*

CSISS Client Server Runtime Subsystem, handles windows and graphics
functions for all subsystems

EventLog Fields all requests to enter events into the system event log

Idle Provides an idle thread for each processor that gets control when
the processor is not executing programs

Isass Local Security Administration Subsystem, handles certain security
administration functions on the local computer

nddeagnt Network DDE Agent, handles requests for network DDE services

netdde Handles requests for network DDE data

progman Program Manager handles application startup, switching, and
termination functions

screg Service Controller/Registry, handles network API service control
functions and remote Registry requests

spoolss Spooler Subsystem handles despooling of printer data from disk to
printer

System Contains system threads that handle lazy writing by the file system
cache, virtual memory modified page writing, working set
trimming, and similar system functions

winlogon Handles logon and logoff of users and remote Performance Monitor

data requests

When connected to a network there are additional processes. The number varies
from system to system.

Getting Rid of a Processor Bottleneck

What can you do once you determine you have a processor bottleneck? The answer
depends partly on the context.

You can try to fix the application, using the tools we discuss in Chapter 10. Let’s
assume you’ve already done this.

If you have an 386 processor, you can upgrade the computer to one with a 486,
Pentium, or RISC processor.

Chapter 3 Detecting Processor Bottlenecks 115

Assuming you have at least a 486, if you are in a server environment, part of your
problem may be the network or disk adapter cards you have chosen. 8-bit cards use
more processor time than 16-bit or 32-bit cards. The number of bits here refers to
the amount of data moved to memory from the adapter on each transfer. The most
efficient cards use 32-bit transfers to adapter memory or direct memory access
(DMA) to move their data. Adapters that don’t use memory-mapped buffers or
DMA must use processor instructions to move data, and that makes the processor
busy. DMA uses the memory, and that can slow the processor down, but it is still
more efficient than individual instructions. Also, some inexpensive disk controllers
do not support DMA.

If you have fixed the adapters and you still have a problem, you might be able to
increase the processor clock speed. One method is to multiply the processor clock
speed while leaving the rest of the memory and I/O bus speeds alone. Clock doubler
and tripler processors do this. This can be very beneficial, although the results in
practice are usually less than the multiplier, because real applications do more than
just use the processor.

Another thing you can do is increase the size of your secondary cache. Many
computers accept a range of secondary cache sizes, and those that do so seldom
ship with the maximum installed.

Adding memory without upgrading the secondary cache size sometimes degrades
processor performance. This is because the secondary cache now has to map the
larger memory space, usually resulting in lowered hit rates in the cache. This slows
down processor-bound programs because they are scattered more widely in memory
after memory has been added. If you suspect such a slowdown, create a processor-
bound test with Response Probe that touches a lot of memory, but fits in the original
memory size without sustained paging. Run this test before and after adding the
memory, and you may well see that the test is slower with more memory. Disable
the secondary cache using the BIOS setup utility, and repeat the experiment with
both memory sizes. They should now perform the same. If they do, you have
isolated the problem to the secondary cache design.

Finally, you might benefit from adding additional processors. This will help only if
you have a bottleneck involving more than one thread capable of asynchronous
execution. To the extent that threads can execute in parallel, adding processors
provides relief.

116 Optimizing Windows NT

Monitoring Multiple Processors

In the previous chapter we illustrated multiple processors as just additional
hardware resources, and so they are. If you are a product of the personal computer
era, thinking of multiple processors as you think of multiple disk drives might be a
bit of a strain at first, but you’ll get used to it. In the next example we are running
eight processes on an eight-processor system, which we started artificially with only
one processor running, and we see the expected contention.

File Edit View Options Help

bjec
Processor

Figure 3.39 Eight processes in one processor

Chapter 3 Detecting Processor Bottlenecks

We see the processor utilization at 100% in black and the highlighted queue length

in white. In the next figure, we see the processor is indeed shared equally among the

eight processes. Unfortunately they are all running at about 12.5% of full speed,
and if we were waiting for them we’d probably be complaining about how slow
they were. The output from Response Probe tells us that on average they are taking
8.05 times longer than the response time of a single process running in a single
processor doing the same amount of work.

ShcHarmanceMoniog

File

Edit View Options H

elp

Color . ~_~S,cal¢i: ka]uuntel,

" Instance- . [

i Object’ > . Computer. =
 — 1.000 % Processor Time progman Process \\BEHEMOTH #{
k 1.000 *% Processor Time scieg Process \\BEHEMOTH -

1.000 % Processor Time smss Process \\BEHEMOTH . |
1.000 % Processor Time spoolss Process \\BEHEMOTH -
1.000 % Pro i _System P MBEHEMOTF i
= ; SRR LI] : AHEHEREHE |
— .000 % Processor Time THOUGHT Process \\BEHEMOT
1.000 % Processor Time ubnbsve Process \\BEHEMOTH ¥

Figure 3.40 Processor time distribution among eight processes in one processor

118

Optimizing Windows NT*

Let’s restart the same system with all eight processors active and redo the
experiment.

Pracessor Time Processor
Processor Time Processor
Processor Time Processor
Processor Time Pracessor
rocessor Time - Processor
rocessor Time E Processor

‘Figure 3.41 Eight processes on eight processors

The first processor busy at 100% is a single processor handling Response Probe
while it is doing its processor calibration. During this phase, Response Probe
determines the number of times it must execute its basic computation loop to use up
one millisecond of processing time. Later it will use this information to apply the
amount of processing you request. Once it has calibrated, the probe starts the eight
processes. Each one starts executing. The processor queue length (the dotted line)
goes way down from our last example. On closer inspection, we’d find that the
threads waiting in the processor queue are system processes waiting to complete
housekeeping functions at a lower priority.

Chapter 3 Detecting Processor Bottlenecks 119

File Edit View Options Help
EREE FER] @k @]
100 — g

90
80
70
60
50
40
20

{oimance MonltopRaEe

S
-
|

Parent - Object Computer
Process \\BEHEMOT

P \\BEHEMOT
heintal

Counter- [Instance

% Processor Time
%P Ti

EventLog

e
L

1.000 % Processor Time Process \\BEHEMO

1.000 % Processor Time Imsves Process S\\BEHEMOT

1.000 % Processor Time lsass Process \BEHEMOT

=4 1.000 % Processor Time MCSKNSYC Process \\BEHEMOT
= 1.000 % Processor Time MsgSve Process \\BEHEMOT
=

Figure 3.42 Processor use by eight processes on eight processors

Figure 3.42 shows that each process is using 100% of a processor. This time the
output of Response Probe tells us that each one is getting exactly the same response

time as a single process running on a single processor. We are getting eight times
the work done.

For each processor we added, we got 100% of a processor’s worth of work done.
Life is not always this rosy in multiprocessor land. There are a number of reasons
why adding processors might not yield the response time improvements we see in
this idealized experiment. For example, if the bottleneck is not in the processors at
all, adding more does not help. If the disk subsystem is maxed out, adding a
processor does not increase work done. (If this isn’t obvious to you, it’s time to
reread the beginning of this chapter.)

120 Optimizing Windows NT

More subtle problems can occur. These all revolve around the contention for shared
resources. The processes in the example above were selfish in the extreme: the only
thing they shared was their code. Because code is only read and not written, each
processor can have a copy of the code in its primary and secondary memory caches;
as they execute they don’t even have to share access to the RAM that holds the
code. Programs frequently operate independently like this, but unlike this example
they tend to use shared system resources and thus mutually develop bottlenecks as
they contend for those resources.

Here’s a different example that quickly illustrates the contention for shared
resources. We again use our modified copy of Gdidemo that draws balls
continuously on the screen. This program does minimal computation and maximal
drawing. Because there is only one display subsystem, contention develops for
resources surrounding writing on the display. We'll start eight copies of this
program, one after the other, and see how they fare on the eight-processor
computer. But let’s be clear: eight-processor computers do not normally sit on a’
desktop and get used for drawing pictures. This is not something you’ll normally
do but it serves to illustrate the conflicts that can arise.

% Processor Time 0 Processor
% Processor Time 1 Processor
% Processor Time 2 Processor
% Processor Time 3 Processor
% Processor Time 4 Processor
% Processor Time 5 Processor \MBEHEMOT
PR T e S D LR
1.000 * Processor Time 7 Processor \\BEHEMOTH_ ¥,
=

Figure 3.43 Resource contention by eight graphics programs on an eight-processor
computer

Chapter 3 Detecting Processor Bottlenecks 121

Spaghetti? No, poetry! The thin black lines are the utilizations of the eight-
processors. The high black dotted line is the processor utilization of CSRSS, the
graphics subsystem process. The first program starts and two processors leap into
action, with a third contributing a little effort, around 8 to 9%. When the second

_program starts, the third processor picks up considerably. Now CSRSS is using
100% of a processor. As each program gets going, another processor kicks in,
although at decreasing utilization.

The next figure shows that by the time we have four drawing programs running,

we have reached ¢ firm bottleneck. The heavy black line is the System: % Total
Processor Time. This is the aggregate sum of processor utilizations. By the time the
third program starts, we are nearly maxed out. With the fourth program, it’s the end
of the line. The highlighted line is System: Context Switches/sec. This reaches a
maximum (see value bar) of 14,256 switches per second. Because there is a context
switch each time a program sends a batch of drawing commands to CSRSS, this is
a pretty good measure of drawing throughput. It is not quite as jittery as the total
processor utilization, and shows the bottleneck very clearly. After the fourth
program, even though we are adding more processors, there is no more work getting
done. Bottleneck defined. Once we get to this point we could add processors all day.

E |t Vlew Optlons‘

2] l@, 2] '@_@3 I

Figure 3.44 After the fourth process is added, no more work gets done

What is the cause of this bottleneck? CSRSS has to protect the common data
structures that surround drawing on the display. This includes the video RAM itself
which holds the drawn images for the display, but also numerous internal structures
involved in drawing. Once these are 100% in use, we’re at maximum throughput.

122

Optimizing Windows NT

\

‘We noted that when the second drawing program started, CSRSS jumped to

using 100% of a processor. Untrue. Actually, it is using more. On a multiprocessor
computer, 100% is not really the maximum percentage of processor time that a
process can have, but Performance Monitor artificially restricts the value to 100%
anyway. It takes the meaning of “percent” a bit too literally. Are we embarrassed?
A little. Will we survive? Probably. Anyway, to see how busy such a process really
is on a multiprocessor system, you have to look at the utilization of processors by a
process’s individual threads. This we do in the next figure.

File Edit View Options Help

| eleix] flia]

cale Counter © © 18 L ’
% Processor Time Thread

1.000 % Processor Time 21 csiss Thread \\BEHEMOTH

1.000 % Processor Time 22 csrss Thread \\BEHEMOTH

1.000 % Processor Time 23 csrss Thread \\BEHEMOTH

1.000 % Processor Time 24 csrss Thread \\BEHEMOTH

1.000 % Processor Time 25 csiss Thread \\BEHEMOTH
—] 1.000 % Processor Time 26 csrss Thread \\BEHEMOTH

£l

ﬁiiwh;ii?i{h\

Figure 3.45 CSRSS threads with eight graphics programs and eight processors

This shows thread 7 highlighted and solves the minor mystery of who it was that
used the 8 to 9% of a processor when we first started. This is a CSRSS
housekeeping thread doing background work as a result of the primary activity.

Now when the second drawing program starts, we see two CSRSS threads equally
active at about 72.5% processor utilization. That’s almost 150% for the CSRSS
process as a whole even if we ignore thread 7. We know the bottleneck is at four
programs, and at that point the four CSRSS threads are at a little over 50%
utilization, or 200% for CSRSS as a whole.

This shows that system hardware or software resource contention can lead

to a bottleneck in a multiprocessor system. To understand what is going on you
need knowledge of the application, the hardware, and the operating system.
Unfortunately, there is no substitute for this knowledge. If you don’t know what’s
going on inside, all guesses are equally poor.

Chabter 3 Detecting Processor Bottlenecks 123

Here is another example of how contention can arise in multiprocessor systems.
This example is extreme but again illustrates the point nicely.

g
o Window Help

=| File

<

Response 3000
Time
{milliseconds) 2000

8-Processor Computer

Number of threads in a single process W 2-Processor Computer

Figure 3.46 Memory contention in multiprocessor systems

This figure shows the output of Response Probe in two different computers: a
two-processor system and an eight-processor system. Each thread of the probe is
being asked to compute for one second, with no file or special memory activity, and
to measure the time it takes to do that one second of computation. Remember that
the number of instructions the probe needs to execute to use up a second of
computation is determined by the main probe process before starting the child
process that applies the load. This number is then communicated to its children.

In this experiment there is only one process. In successive trials, a thread is added
to the process. The response time is observed each time.

In the first experiment in this section, we saw that eight probe processes doing this
same workload got the same response time on eight processors as one process did.
Here, this is not so. Each thread added slows the aggregate down. The response
time grows. Moreover, it degrades more on the two-processor computer than on
the eight-processor.

124

Optimizing Windows NT

Why are the results for multiple threads in one process different from multiple
threads in separate processes? Because they are in the same process, these threads
are sharing the same address space. They are writing frequently to the same
memory location. This is a big bummer for multiprocessor systems.

First let’s take a brief look at how Response Probe works and the source of all this
contention. Response Probe is basically in a loop trying to determine how much of
what load to place next on the system. It uses a normal number generator to find out
how much processor load is being requested. The normal number generator returns
a number which, over a sequence of calls, will be normally distributed (on a bell-
shaped curve) with the mean and standard deviation you supply (see Appendix C
for details). Inside the processor load loop, Response Probe looks at where in the
pseudo-code space the next read from “code” memory is to take place. Then it
generates another normally distributed number and looks at where in its data space
you want the next words to be written. This causes yet another call to the normal
number generator. Each call to the normal number generator causes seven calls to a
random number generator. And each call to the random number generator returns a
random number which, as a side effect, is stored in a global cell of memory for use
on the next call. This memory cell is the spot where all the contention takes place.

When a memory cell is written in a multiprocessor system, care must be taken to
make sure that cell is kept consistent in the memory caches of each processor. This
is done by the cache controller hardware in the multiprocessor computer. A number
of algorithms can do this, and they vary in cost of implementation. The idea is the
same in each, however: when a processor needs to write to memory, the hardware
must determine whether that memory location is in the cache of some other
processor(s). If so, the other caches must be invalidated (cheap solution) or given
the new data (expensive solution).

At this point, the cache controller writing the data may update main memory so that
other caches will get the updated data from memory if they need that word in the
future; this is called write-through caching. Alternatively, the cache controller can
wait to update main memory until it needs to reuse the cache location. This is called
write-back. If the location is rewritten frequently, write-back caching obviously can
cause fewer writes to main memory, and thus less contention on the memory bus.
But if another cache needs the data (as is increasingly likely as we add threads in

. this case), it must have the logic to get the data from the other cache instead of from

main memory. In this case, the original cache must listen in on bus requests and
respond before main memory to requests for data which it has but which is not yet
valid in main memory.

Chapter 3 Detecting Processor Bottlenecks 125

This is the briefest possible introduction to the rich and interesting topic of
multiprocessor cache coherency. There are lots of schemes with varying tradeoffs in
cost and performance. Obviously, two quite different schemes were used in the two-
processor and the eight-processor computers measured here. In fact, we get no
particular benefit from adding the second processor in the two-processor system for
this test. That does not mean that this is a bad implementation of multiprocessors,
although it is likely a cheap one. You need to keep in mind that this is an extreme
example. The test of multiple drawing programs ran quite well on this two-
processor computer, and because it was designed more to handle this sort of desktop
application, all is well. But this example illustrates that the investment in more
sophisticated hardware in the eight-processor system paid off in improved
performance when memory contention is a big factor. It also shows that Response
Probe is a pretty brutal test of cache coherency hardware designs.

It is quite difficult to see cache and memory contention with Performance Monitor
because the conflicts are in hardware at a level where there are no counters visible.
It just looks like the processors are busy. It is not possible to see that they are being
stalled on cache and memory accesses. The only test that works is the addition of a
processor and the observation of throughput or response time. And being sure

the problem is cache/memory and not some other resource is also tricky. There

is just no substitute for doing controlled experiments like those in this section to
characterize the system. Alternatively, you can buy another processor and hope for
the best. .

127

CHAPTER 4 » .'

Detecting Disk Bottlenecks

Disks store programs and the data that programs process. When you are waiting
for your computer to respond, it is frequently the disk that is the bottleneck. And if
memory is tight, it is the disk that takes the beating. In this chapter, we’ll take a
look at how disks behave when they are used heavily, and how you can spot a disk
bottleneck.

128 Optimizing Windows NT

Making Sure Disk Performance Statistics Are Collected

First let’s review the important point we covered briefly in Chapter 2: you must run
the diskperf utility to activate disk performance statistics on your computer. To
activate disk performance statistics on the local computer, type the following, and
shut down and restart the computer.

diskperf -y

To activate disk performance statistics on a remote computer, specify the computer
name when you start diskperf; for example, to collect statistics on a computer
named AARDVARK, you would type:

diskperf -y \aardvark

After typing this, you must restart the remote computer before disk statistics are
collected. .

You must be a member of the Administrators local group on a computer to run
diskperf on it.

The diskperf utility installs the disk pérformance statistics driver,
DISKPERF.SYS, in the I/O Manager’s disk driver stack. See Figure 4.1, showing
the stack with the disk performance statistics driver installed.

File system driver

A,

Disk performance statistics driver

A

Fault-tolerant disk driver

Disk driver

Unito Unitt © Unit2

Figure 4.1 Disk driver stack with disk performance driver installed

Chapter 4 Detecting Disk Bottlenecks 129

The reason we put you through the bother of installing diskperf manually is
because it causes a little performance-degrading overhead that you may not always
want. Let’s use Response Probe to do a quick experiment to see if it’s worth it.

Note By the way, be sure when doing these experiments to let your Windows NT
computer settle for a while after logging on. Various background startup activities
can interfere with your experiment. You might also want to disconnect the network
if it is not involved in the experiment. Network drivers may respond to network
events even if they are not directed to your computer.

By setting the FILEACCESSMODE parameter in Response Probe to UNBUFFER,
we are guaranteed to bypass the cache and go directly to disk. (For more
information about Response Probe and its parameters, see Appendix C, “Using
Response Probe.”) We’ll set up Response Probe to do 100 reads of 512 bytes

from a file. We want to transfer a small amount of data because we want to see the
maximum distortion caused by the diskperf overhead. Unbuffered access to disk
must be a multiple of a sector in size, so 512 is as small as we can go.

We’ll use a file that is 100K in length. To create the file, we’ll use the createfil
utility, which is on the floppy disk provided with this book. To create a 100K file
with the name FILENAME.EXT, type:

createfil filename.ext 100

We’ll set the Response Probe FILESEEK to a mean of 100 and a standard
deviation of 30. Because this is in units of 512-byte records, it means our accesses
will be normally distributed around a point near the middle of the file. It is a
property of normal distributions that about 99% of the access will be within plus-
or-minus 3 standard deviations, so we should get a nice bell-shaped distribution of
accesses across the length of the file. (For more information about using bell-
shaped distributions in Response Probe experiments, see Appendix C of this book.)

On our 486 computer with a 50 MHz clock, we get consistent average times from
Response Probe of 1666 milliseconds for the 100 reads, or 16.66 milliseconds/read,
with diskperf enabled. This is probably close to the rotation time of the disk. The
standard deviation of the response time to the 100 reads is 1 millisecond, so this is a
very repeatable experiment. With diskperf disabled, we get the same number:
1666 milliseconds. There’s no visible degradation in performance! So why did we
make diskperf optional? Because if you do this same experiment on an 386 20
MHz computer, you see a degradation in disk performance of about 1.5%. On a
386/255X laptop computer we observe a 0.9% (nine-tenths of 1%) degradation in
disk throughput. Because we don’t know what sort of system you are going to place
Windows NT on, we prefer that you elect whether to collect disk performance
statistics, rather than force you to do so by default.

130

Optimizing Windows NT

Busy Disks Are Happy Disks

Let’s take a look at the damage we inflict on a disk with the preceding Response
Probe experiment. Naturally, we crank up Performance Monitor, and we’ll set up
Performance Monitor to write its log file on another disk, to minimize the
interference it might cause.

Figure 4.2 shows Processor: % Processor Time as a thin black line, and Logical
Disk: % Disk Time as a thick black line during the above experiment. To get this
data, you must have installed diskperf, or the % Disk Time will remain at zero.

What is the difference between a physical disk and a logical disk? A physical disk
is the unit number of a single physical disk unit, while a logical disk is the drive
letter of a disk partition. (For example, a single disk drive with two partitions would
be a single physical disk instance, such as 0, with two logical disk instances, such
as C and D.) The parent instance of a logical disk is the unit number of the physical
disk on which it resides.

_ Computer
\\CEEEBELLUM |

HEREUE I

Figure 4.2 Processor and disk behavior during disk bashing

One thing that is pretty clear is that the processor is no longer the bottleneck,
and the disk certainly is. Boy, this is easy!

Chapter 4 Detecting Disk Bottlenecks 131

In Figure 4.3 we show a bit more detail about overall performance. Average
Processor utilization is only 7.2%, but the interrupt rate is well above the 100
Interrupts/second we expect from the clock on an idle system isolated from the
network. We see an additional 60.194 Interrupts/sec. Could they be from the disk?
Let’s find out.

=
File

cla [+

Computer: \\CEREBELLUM

Object: Processor 1]
% Privileged Time { i7i
% Piocessor Time 7.222
% User Time 1.525
Intertupts/sec 160.194

Object: System

Context Switches/sec 281.978
File Control Bytes/sec 557.216
File Control Operations/sec 4.975
File Data Operations/sec 58.910
File Read Bytes/sec 30140.008
File Read Operations/sec 58.867
File Write Bytes/sec 562,865
File Write Operations/sec 0.043
System Calls/sec 427.435

Figure 4.3 Processor and system activity when reading small records from disk

If we divide File Read Bytes/sec by File Reads/sec, we get 30140/58.867 = 512
bytes per read, which is what we told Response Probe to do, so this is good. Other
than the elevated system call rate, the remainder of the System counters show a
small amount of background activity, which we shall not explore further.

132

Optimizing Windows NT

Figure 4.4 contrasts the activity on drive D, from which we are reading the 512
byte records, and the C drive, on which we are logging the Performance Monitor
data. (We omitted the % Free Space and Free Megabytes counters because thcy
don’t play a role here.)

Computer: \\CEREBELLUM 1 0
Object: LogicalDisk D: C:
% Disk Read Time 94.852 0.049
% Disk Time 95.876 2619
% Disk Write Time 0.984 2569
Avg. Disk Bytes/Read 512.000 4096.000
Avg. Disk Bytes/Transfer 617.144 13132.351
Avg. Disk Bytes/White 46080.000 13212.319
Avg. Disk sec/Read 0.016 0.047
Avg. Disk sec/Transter 0.016 0.022
Avg. Disk sec/wirite 0.072 0.022
Disk Bytes/sec -36417.978 15680484
Disk Queue Length 1.000 ¢
Disk Read Bytes/sec 30143.640
Disk Reads/sec 58.874 0010
Disk Transfers/sec 53.010 1.194
Disk Wiite Bytes/sec 6274.339 15637.583
Disk Wiites/sec 0136 1.184

Figure 4.4 Disk activity while reading short records, logging elsewhere

Drive D is, basically, pegged to the wall and preoccupied with reading. Drive C is
barely perturbed and focused on writing. What a grand study in contrasts! There’s
really quite a lot to look at here. In both cases, we see that % Disk Read Time and
% Disk Write Time sum to % Disk Time. You might have expected this but it is not
always true, as we will see shortly.

Remember the 60.194 extra interrupts discovered in Figure 4.37 If we add the
Transfers/sec from Drive D and Drive C, we get 60.204. This is close enough
that we should suspect more than a coincidence. Why aren’t they identical? When
collecting data, the system polls each object manager in turn for its statistics.
Because the system is still running during this process, we might expect System
counters to be off slightly from Disk counters. So now you know a new Rule.

Chapter4 Detecting Disk Bottlenecks 133

Rule).

Close counts in
“horseshoesand
| bottleneck detection.

Average Disk Bytes/Read on drive D are 512 as expected in this experiment. On
drive D we see an Avg. Disk sec/Read of 0.016, quite near the 16.85 milliseconds
observed by Response Probe in this case. This means Performance Monitor
interferes with the experiment only 1.1% as measured by the time to do the 100
unbuffered disk reads. Because we were logging at a one-second time interval,
this is impressively low.

This number of 0.016 Avg. Disk sec/Read is bothersome. Because the counters

of average disk transfer times (such as Avg. Disk sec/Read) are rounded to the
millisecond, some interesting details may be omitted. What can you do? Remember
that the % Disk Read Time is 100 times the average number of milliseconds the
disk was busy during a second. So we can eke out a few more digits of precision:

Avg. Disk sec/Read = % Disk Time / Disk Reads/sec = .94892 / 58.874 = 0.016118

So we were quite close to 16 milliseconds after all. There are times when it is worth
‘checking. But a word of caution is definitely in order: this calculation only works
when the queue length is one or less, as we see shortly.

Reversing our perspective for a moment, we see a very small Disk Writes/sec on
drive D (0.136), but a very large Avg. Disk Bytes/Write (46080). We don’t write
very often, but when we do, it’s a whopper! This gives an Avg. Disk sec/Write of
0.072 (72 milliseconds), much larger than the 0.016 Avg. Disk sec/Read. This
activity is due to system directory maintenance. It’s unclear whether this large 72
millisecond transfer time is due to the large transfer size or to the disk having to do
a seek operation away from our experimental file. How could we find out?
Construct a quick experiment to read 46080 bytes repeatedly.

134

Optimizing Windows NT

Let’s look into this a little further, because we sense another Rule about to emerge.
Let’s plot the Avg. Disk Bytes/Write on drive D and see what is happening here.
Take a gander at Figure 4.5.

1.Ut|U % Prﬁcessor Time S Procéﬁsor \\C‘EFIE‘BELLUM
mw]w.'UUEAI ":/:”Q‘isklime - : 1 ngigg!pisk \\CEREBELLUM
001000 AV DIREIE AV g

EE

Figure 4.5 Background disk writing while reading short records

The 40K number reported in Figure 4.4 did not give us much of a clue. Now we
can see that what is really happening here is that 65K writes are taking place, along
with some smaller ones. The file system is updating its directory information during
our experiment, and there’s really no stopping it. This is not significant, as far as
interference with our experiment goes. But the 40K number is a bit misleading, and
the rate of 0.136 writes/sec contains no clue that this is really a few isolated large
writes instead of a steady stream of writes of various sizes. Because Performance
Monitor is built on lots of averages, it is wise to remember Rule # 10:

’

Chapter 4 Detecting Disk Bottlenecks - 135

{~ Rule 10. |
Averages reveal basic truths
while hiding crucial details.

T

You can divide Disk Read Bytes/sec (30143.640).by Disk Reads/sec (58.874) to
get the Avg. Disk Bytes/Read of 512.002. This differs from the 512.000 reported,
because the reported numbers are truncated to 3 decimal digits. There’s no point in
getting bogged down in the fine print—what’s 0.002 bytes among friends?

There is an interesting difference between the data on drive D and that on drive C.
Look at Figure 4.6, which isolates the issue.

File Edit Yiew Options Help

ERRE FEE =R E

Computer: \\CEREBELLUM 1 0
Object: LogicalDisk D: C:

% Disk Time 95.876

Avg. Disk Bytes/Transfer 617.144

Avg. Disk sec/Transfer 0.016

Disk Bytes/sec 36417.979

Disk Transfers/sec 53010 i

Figure 4.6 Study in contrasts: disk transfer rates

136

Optimizing Windows NT

Drive D is 96% busy, doing 59 transfers and moving 36K a second. Drive C is
2.6% busy, doing 1.1 transfers a second, and still moving almost half as many bytes
per second. Clearly drive C is operating more efficiently. The reason is that Drive C
has a higher value for Avg. Disk Bytes/Transfer, 20 times higher. Yet each transfer
is taking only 6 milliseconds more time. When you try to locate a disk bottleneck,
after noting that the disk is busy, look at the average transfer size. It is a key to
efficient use of the disk.

Looking again at Figure 4.4, the Disk Queue Length on drive D is 1. This is an
instantaneous count—ijust the value at the endpoint of the time interval of the report.
But the probability that there is someone in the disk queue is 95.876%, the same as
the disk utilization. Unlike System: Processor Queue Length, the Disk Queue
Length counter includes the request in service at the disk as well as any requests
that are waiting. In fact, all the disk statistics are collected by the DISKPERF.SYS
driver, which is located above the normal disk driver in the driver stack. When a
file system request comes into DISKPERF.SYS, it gets a time stamp and is added
to the queue count. Then it gets handed to the next level of driver. This may be a
fault tolerant (software RAID) disk driver, or the “real” disk driver. Any processor
cycles consumed by the drivers go into % Disk Time.

Given the low processor utilization shown in Figure 4.2, it seems obvious that
we have plenty of spare horsepower to drive the queue length up. Let’s get five
processes to do the same experiment at once and see what happens to the disk
statistics.

Figures 4.7 through 4.9 show five processes doing the same thing the one did
above: unbuffered reading of 512 byte records from a small file. Figure 4.7
includes the Disk Queue Length, which varies between 4 and 5, depending on
when we take the snapshot. The % Disk Time is now pegged to the max.
Comparing Figures 4.3 and 4.8 shows they are remarkably similar.

We have chosen to use the System counters instead of the Processor counters in
Figure 4.8, but because this is a single processor system the processor statistics for
processor 0 are the same as those for the system overall. In a sense Figure 4.8 is the
“correct” style, because if we had a multiprocessor system Figure 4.3 would be
showing the data for just one of the processors. And yes, we have manually placed
Total Interrupts/sec out of order to make comparing these two figures easier.

Chapter 4 Detecting Disk Bottlenecks

137

=

File Edit View Qplion's Help]

Color Scale Counter : Instance . - Parent l'fbiect Computer
1.000 % Processor Time 0 - Processor \\CEREBELLUM
00 % Disk Ti LogicalDi

Figure 4.7 Five processes reading small records at once, or trying to

; Jﬁu
File Edit View Options Help

[~]-

BRee (] e &

Computer: \\CEREBELLUM
Object: System

% Total Privileged Time
% Total Processor Time
% Total User Time
Total Interrupts/sec
Context Switches/sec
File Control Bytes/sec

File Control Operations/sec 5.098
File Data Operations/sec 59.301
File Read Bytes/sec 30341.329
File Read Operations/sec 53.260
File Write Bytes/sec 559.840
File Write Qperations/sec 0.041
System Calls/sec . 430.979

Figure 4.8 System overview of five processes reading small records at once

138

Optimizing Windows NT

Eile Edit View Options Help

Computer: \\CEREBELLUM
Object: LogicalDisk

% Disk Read Time

% Disk Time

% Disk Wiite Time
Avg. Disk Bytes/Read

Avg. Disk Bytes/Transfer 647.932
Avg. Disk Bytes/Wiite 49728,000
Avg. Disk sec/Read 0.0

Ava. Disk sec/Transfer 0.084
Avg. Disk sec/Wiite 0.209
Disk Bytes/sec 38503.078
Disk Queue Length 5.000
Disk Read Bytes/sec 30341.329
Disk Reads/sec 59.260
Disk Transfers/sec 59.425
Disk Write Bytes/sec 8161.749
Disk Wiites/sec 0.164

Figure 4.9 Disk behavior of five processes reading small records at once

But we digress. The main point here is that the statistics are nearly identical, even
though we have added four more processes to the mix. But this should not surprise
you. This is what we mean by the word bottleneck! The disk statistics don’t change
because the disk was already maxed out. All we have really done is dumped these
poor processes into the disk queue. Figure 4.7 shows that this has taken up the
remaining 4% slack in disk utilization, yielding about 1/2 more transfer per second.

So we see pretty much what we might expect in Figure 4.9, except for one thing.
The sum of the % Disk Write Time and the % Disk Read Time exceed the % Disk
Time. This is because DISKPERF.SYS begins timing a request when the request is
delivered to the next driver layer. You can see this pretty clearly by comparing
Avg. Disk sec/Read in Figure 4.9 to that in Figure 4.4. Let’s use the trick we
learned above to get a more accurate number for read transfer time:

Avg. Disk sec/Read = % Disk Time / Disk Reads/sec = 1/59.260 = 0.016875

Chapter 4 Detecting Disk Bottlenecks 139

Wow, this result of 16.875 milliseconds is very different from the Figure 4.9 Avg.
Disk sec/Read of 0.083. What’s going on? The 16.875 millisecond number is the time
it is taking us to get each request from.the disk. But the reported 0.083 number is the
time spent in the queue plus the time to get the data from the disk. Dividing 0.083 by
0.016875 gives 4.9, which is an excellent measure of average queue length, and a
better one than the instantaneous counter value Disk Queue Length.

Uncovering High Disk Throughput

To tell you the truth, we’ve been slacking. This disk is capable of much more than this
level of throughput. Let’s build a large file so we can simulate a more realistic load
with more seek operations. We’ll use createfil to make a S00-MB sandbox for us to
play in. We’ll turn on Performance Monitor while we’re at it to see what createfil is
doing.

Figure 4.10 was logged at five-second intervals while we created the 500 MB file.
Obviously the disk was quite busy, and the processor was loafing. Must be its day off.

ES|
Options Help

Exl e e

Figure 4.10 Creating a 100-MB file

140 Optimizing Windows NT

The system overview in the next figure reveals a rather surprising lack of file
activity. File bytes are being written at about 51K per second. We knew from the
Graph Time on the value bar in the chart represented by Figure 4.10 (value bar not
shown) that it takes about 722 seconds to create this file. (We subtracted one time
interval, or five seconds, from each end because the chart starts before and ends
after the file is created.) Multiplying the File Write Bytes/sec times 722 seconds
give us a result of only around 37 million bytes. But the file is over 524 million
bytes in length. We’ve seen this before, right? This must be the old fast path to the
cache that bypasses the file system altogether. While we can tell Response Probe to
use unbuffered access, createfil always uses buffered file system calls. In fact this
is the default, and because it is almost always faster, almost all applications use
buffered file access. The principal exceptions are network server applications which
do their own caching.

File Edit View Options Help

&) FER] @) &

Computer: \\CEREBELLUM
Object: System

% Total Privileged Time .
% Total Processor Time
% Total User Time 0.551

Total Interrupts/sec , 90,337
Context Switches/sec 77135
File Control Bytes/sec 112.032
File Control Operations/sec 1.034
File Data Operations/sec - 10295
File Read Bytes/sec 1.076
File Read Operations/sec 0030
File Write Bytes/sec 52609.462
File Write Operations/sec 10.265
System Calls/sec 159.266

Figure 4.11 System overview of creating a 100-MB file

Chapter 4 Detecting Disk Bottlenecks 141

Al WOGHE vi-

File Edit View Options Help

BlEsE] [+ (@l

I".",.; e ——

Computer: \\CEREBELLUM
Object: Cache

Data Flush Pages/sec 167.382
Data Flushes/sec 14.839
Lazy Wiite Flushes/sec 11.869

Lazy Write Pages/sec

Figure 4.12 Cache behavior when creating a large buffered file

The cache statistics in Figure 4.12 show that the lazy writer is launched frequently to
help clear the cache, and in addition the cache is rapidly flushing dirty pages to make
room for new ones. (Lazy writes and data flushes have an interesting relationship,
detailed in Chapter 6, “Detecting Cache Bottlenecks.””) Multiplying the number of
Lazy Write Pages/sec times the page size (4096 bytes on this machine), we see a byte
rate of 746,275 bytes/sec. This is close to the disk transfer rate we see on drive D in
the next figure.

E kr_\fie\’rl k Q pti nks'

EREE *

Computer: \\CEREBELLUM 1
Object: LogicalDisk D:
% Disk Read Time 13.926

% Disk Time 100.000

% Disk Wiite Time 100.000
Avg. Disk Bytes/Read 40396.000
Avg. Disk Bytes/Transfer 34549.716
Avg. Disk Bytes/Write 37992.947
Avg. Disk sec/Read 0.062
Avg. Disk sec/Transfer 0.061
Avg. Disk sec/white 0.061
Disk Bytes/sec 762317.107
Disk Queue Length 1.000
Disk Read Bytes/sec 9180.298
Disk Reads/sec 2.241
Disk Transfers/sec 22.064

Disk Wiite Bytes/sec
Disk Wiites/sec

753136.810

Figure 4.13 Disk behavior when creating a large buffered file

142

Optimizing Windows NT

Now we’ve got a disk really pumping bytes. Compare this to the rate achieved by
reading small records in Figure 4.7. The large transfer size here, 37993 bytes per
write, is the key to'the high efficiency the system achieved. And we can do even better
than this.

Uncovering Even Higher Disk Throughput

Let’s try to discover the maximum rate at which we can get data from this disk. We’ll
read the same record over and over, increasing its size, until we maximize throughput.
We’ll read from the beginning of the file so we know we will be starting at the same
point on the disk every time. We’ll start by reading 1 page, and increase the size of the
read 1 page at a time until the reads reach 64K. The results appear in Figure 4.14. The
highlighted (white) line is the disk throughput in Disk Bytes/sec, while the black line is
the size of the record that is read. This goes from 4096K per read (1 page) to 65536K
per read (16 pages).

Figure 4.14 Transfer rates achieved by various-sized reads

Its not hard to see the highest transfer rate occurs in the case of 12-page records. As
the size of the read operations grows, the transfer rate climbs, but something happens
between the record size of 5 pages and that of 6 pages. Then it rises to a peak at 12
pages, and falls again for 13. It rises thereafter until the final fall at 16 pages. Very
suspicious. Anyway, the maximum throughput we have achieved (see the value bar) is
1.4 MB per second. Finally, some decent throughput! '

Chapter 4 Detecting Disk Bottlenecks 143

Now let this sink in: in this situation the disk is nearly 100% busy and transferring

1.4 MB/sec, while in Figure 4.2 the disk is nearly 100% busy and transferring
36K/sec. You may be able to tell how busy the disk is by looking at the utilization, but
you don’t know how much work it is doing unless you look at the transfer rate. In this
respect, disk performance isn’t that different from employee performance. We all have
a coworker or three who is frantically busy all the time but doesn’t get much actual
work done. How hard a disk or person labors and how much they achieve are not
always directly related.

The next figure shows pretty clearly why our transfer rates are not increasing
monotonically.

T

=/

Eile Edit View Options Help

X k) @ 0

Figure 4.15 Transfer rates and transfer times achieved with various-sized reads

Aha! The transfer times are jumping just when the transfer rates fall off. And if
you look closely you can see that they jump by 16.7 milliseconds each time. We’ve
seen this number before, and here’s why. Many disks rotate at 3600 rpm, or 60
revolutions per second. That’s one revolution every 16.666 milliseconds. When we
go from 5 to 6 page records, we suddenly need an extra revolution to read the entire
record. This is quite damaging to our transfer rate.

The next two figures show the system overview and disk data for the read operation
using 12-page records. We got this data by shrinking the time window to the case of
interest, then viewing the report. The system data shows that all the bytes are going
through the file system because we are unbuffered. The results are quite a contrast
to those in Figure 4.3.

144 Optimizing Windows NT

ptions Help
a a1 B I B |

Computer: \\CEREBELLUM
Object: System

Total Interrupts/sec {

Context Switches/sec 203.768
File Control Bytes/sec M1.777
File Control Operations/sec 0.998
File Data Operations/sec 29,491
File Read Bytes/sec 1448320.099
File Read Operations/sec 29,466
File Wiite Bytes/sec 324.053
File Write Operations/sec 0.025

Spstem Calls/sec 340670

Figure 4.16 System overview during maximum disk throughput

The file statistics are just about as good as they get on this computer. Transfer size
is exactly 48K per second, giving throughput of 1.4 MB per second. This puppy is
hummin’!

But is this realistic? Recall that we are reading the same record over and over
again, something we’re not likely to see in the real world. Let’s take another look at
maximizing disk throughput, but this time let’s use all of the 500 MB file we took
so much time to create.

Chapter 4 Detecting Disk Bottlenecks

145

HdrianceMotil

'iz‘viA

File Edit View Options Help

&) (@)

FEX]]

[15t0m0

- Computer

0.001000 Avg. Disk Bytes/Read D: 1 LogicalDisk \\CEREBELLUM
~~~~~ 1000.000 Avg. Disk sec/Read D: 1 LogicalDisk \CEREBELLUM
Figure 4.17 Randomly reading successively larger records of a 500-MB file

Now when we integrate seeking across the disk we see a linear increase in disk
throughput as a function of record size, until we reach 64K. In this case, we lose
another rotation every time, and throughput falls off accordingly. If we are not
forcing a rereading of the same record over and over, we do not have to wait for
the disk to rotate around to the start of the record each time. By accessing more
randomly, the cost of the extra rotations that do occur is too small to notice.

In Figure 4.18 we narrow the time window to the case where throughput is

maximum. Now we see all the data points collected during this time, and a slightly

higher maximum is uncovered. If you really care about the details, be sure to
narrow your time window to fewer than 100 data points so you don’t skip any
data points.



146 Optimizing Windows NT

File Edit View Options Help

Ml
LogicalDisk \\CEREBELLU
i 1000.000 Avg. Disk sec/Read D: 1 LogicalDisk \\CEREBELLUM |

Figure 4.18 Narrowing down to the case of maximum throughput

Now we’ll reveal a step we have been doing in many of these experiments,
especially when we’ve shown you reports. This step is the further narrowing of the
time window to include only the data of interest: the actual transfers themselves. If
we fail to do this, the next few figures would include the end regions of Figure 4.18,
and the averages would be lower. Worse, any instantaneous counters would show
their idle values corresponding to the final data point in Figure 4.18. Always be
careful to set the time window to include only the data of interest before looking at
your detailed reports.



Chapter 4 Detecting Disk Bottlenecks

147

=

e I':l‘.

Hini

File Edit View Options Help

FEX] @)

200
180
160
140
120
100
80
B0 s
40
20
Last| 736571438 Average| 1077889 Min| 736571.438 Max[ - 1116688 Graph Time[ _ 35.000

Color Scale Counter

Instance ' Parent

13

e 0.001000 Avg. Disk Bytes/Read D: 1 LogicalDisk \\CEREBELLUM '

1] 1000.000 Avg. Disk sec/Read D: 1 LogicalDisk \CEREBELLUM

Figure 4.19 Setting the time window to exclude extraneous data points

Now we are set up to produce the usual detailed reports.

ptlon's ﬂelp

File Edit Vi

ElX] @)

Computer: \\CEREBELLUM
Object: System

% Total Privileged Time 2.224
% Total Processor Time 2.772
% Total User Time 0.556
Total Interrupts/sec 85.152
Context Switches/sec 180.541
File Control Bytes/sec 113,155
File Control Operations/sec 1.340
File Data Dperations/sec 17.538
File Read Bytes/sec 1077529.706
File Read Dperations/sec 17.538
File Write Bytes/sec 0.000

File Wiite Operations/sec
System Calls/sec

Figure 4.20 System overview reading across a 500-MB file with 60K records



148

Optimizing Windows NT

Computer: \\CEREBELLUM 1
Object: LogicalDisk D:
% Disk Read Time 100.000
% Disk Time 100.000
% Disk Write Time 0.136
Avg. Disk Bytes/Read 53424.201
Avg. Disk Bytes/Transfer 59337.344
Avg. Disk Bytes/wiite 4036.000
Avg. Disk sec/Read 0.056
Avag. Disk sec/Transfer 0.056
Avag. Disk sec/write 0.048
Disk Bytes/sec 1077880.122
Disk Queue Length 1.000
Disk Read Bytes/sec 1077763.317
Disk Reads/sec 18.137
Disk Transfers/sec 18.165
Disk Write Bytes/sec . 116.805
Disk Writes/sec i 9

Figure 4.21 Disk statistics reading across a 500-MB file with 60K records

What do we learn from all this? This tells us that 56 milliseconds is a reasonable
transfer time for large records with fairly substantial seek activity. Because
Response Probe distributes access normally (a bell-shaped curve) across the

500 MB file, this might be considered an easier task than real random seek activity.
We could repeat the experiment with real random seek activity, but by now you get
the idea. You need to characterize the performance of your processor/disk
adapter/drive subsystems in this sort of controlled fashion if you want to understand
the bottlenecks on your systems. Response Probe permits the construction of a wide
range of access patterns, as this and the previous example show. You can use these
controlled experiments to understand observations from real-life systems.

Let’s try one more experiment to make this point clear. We’ll set up an experiment
that does read operations in 60K chunks, but instead of distributing the read
operations normally across the 500 MB, we’ll distribute them randomly. We do

this by increasing the standard deviation of the file seek position in Response Probe,
making it equal to the mean. (Response Probe folds any attempts to access the disk
beyond the end of the file back into the file. For more information on this, see
Appendix C, “Using Response Probe.”) The result of this change is displayed in
Figure 4.22.



Chapter 4 Detecting Disk Bottlenecks 149

= v[a

File Edit View Options Help

BRRE +E=

Computer: \\CEREBELLUM 1
Object: LogicalDisk D:

% Disk Read Time
% Disk Time
% Disk Wiite Time .
Avg. Disk Bytes/Read 538597.601
Avg. Disk Bytes/Transfer 53309.655
Avg. Disk BytesAWiite 4036.000
Avg. Disk sec/Read 0.059
Avg. Disk sec/Transfer 0.059
Avg. Disk sec/Wirite 0.067
Disk Bytes/sec 1014214.243
Disk Queue Length 1.000
Disk Read Bytes/sec 1013850.856
Disk Reads/sec 17.012
Disk Transfers/sec 17.100
Disk Wiite Bytes/sec 363.387
Disk Writes/sec 0.083

Figure 4.22 Disk behavior reading 60K records more randomly

The average time per read operation has gone from 56 to 59 milliseconds, and the
throughput has fallen from about 1.08 MB per second to about 1.01 MB per second.
That’s a pretty substantial loss of throughput—about 6%. If we were to increase the
file size, we would see more erosion in throughput as the disk spends more time
seeking. Keep up this sort of nonsense, and you’ll really know your disk!

Getting Rid of a Disk Bottleneck

If you discover a disk bottleneck, what can you do? The first thing you need to
determine is whether it’s really more memory that you need. To restate a critical
truth, if you are short on memory, you will see the lost performance reflected as
a disk bottleneck. We’ll take a look at that issue in the next chapter.

If memory isn’t the problem, there are a number of possible avenues to pursue to
improve disk throughput. First, think about your controller card. Find out from
the manufacturer if it does 8-bit, 16-bit, or 32-bit transfers. The more bits in the
transfer operation, the faster the controller moves data.



150

Optimizing Windows NT

Your I/O bus architecture comes into play here. EISA and MCA buses transfer data
at much higher rates than ISA buses. Some computers also have a “turbo switch”
that affects bus speed. Make sure it is set to on if you have such a switch. ISA buses
cannot see above 16 MB of RAM. To place data above 16 MB of RAM, the driver
must arrange a copy of the data from the area below 16 MB. This can slow you
down. Changing the bus within a computer is usually not an option. But it’s about
time you got that new computer anyway, and now if you’ve isolated your
performance problems to the bus, you have a reason!

Also determine if your disk adapter uses direct memory access (DMA) or not.
DMA can noticeably improve transfer speeds.

Some disk adapters feature built-in caches. The benefit of this depends a lot on the
access patterns of your system. If you are going to purchase the RAM anyway,
you might want to consider putting it in the computer’s main memory instead of

on the adapter card. Because Windows NT features adaptive disk cache size, when
memory is needed for something besides disk caching, it is available. It is also
available to disk drives on other adapters, as well as to the LAN file systems. But
some computers are limited on the amount of main memory they can use, in which
case adding memory to a disk adapter may be just the ticket.

If you’ve done the best you can with your adapter, you might want to think about
your disk subsystem configuration. If you have all your activity focused on one disk
and one adapter, consider getting a second disk and even a second adapter. Try to
spread the load across them. This idea segues into our next topic.

Looking at Redundant Arrays of Inexpensive Disks

What we touch on here is how Performance Monitor sees various redundant

arrays of inexpensive disks (RAID) and fault-tolerant disk configurations. We’ll
also mention some issues relating to their relative performance as observed on one
computer, but it would be an error to extrapolate these results to some other system.
You need to perform these experiments on your own configurations and under your
own real or anticipated workloads to make judgments about optimal disk
configuration.



Chapter4 Detecting Disk Bottlenecks 151

In our example, we have (as physical unit 0) a hardware RAID array of 4 spindles
and 800 MB capacity. We partitioned this into drive C (300 MB), and drives Fand
G, which are 250 MB each. We also have three other disk units with about 340 MB
capacity each to play with. We created a 200 MB file on a single partitioned drive
D, and another one on a mirrored partition on the other two disks, drive E. After we
finished the experiments on drives D and E, we rearranged those three spindles as a
single striped partition for drive D (no parity) and created a 200 MB file on that.

We had two disk controllers, one for the hardware RAID array, and another for all
three of the other disk units.

All the 200-MB file creation times were 420 seconds, except for the striped
partition on drive D which created itself in 314 seconds. In the next two figures we
show the difference in behavior of drive D as a single drive and as a striped volume.

o
File Edit View Ip

[ElIRIEIE EIEIRE
Computer: WSTEVEKOS 1
Object: LogicalDisk D:

% Disk Read Time 0.258

% Disk Time 100.000

% Disk Wiite Time 100.000

% Free Space . 38.080

Avg. Disk Bytes/Read 4096.000

Avg. Disk Bytes/Transfer 33853.354

Avg. Disk BytesAwiite 33910.903

Avg. Disk sec/Read 0.030

Avg. Disk sec/Transfer 0.081

Avg. Disk sec/Write 0.081

Disk Bytes/sec 4399259,920

Disk Queue Length 0.000

Disk Read Bytes/sec 116.596

Disk Reads/sec 0.028

Disk Transfers/sec 14.748

Disk Write Bytes/sec 499143.323
Disk Writes/sec 14.719
Free Megabytes 0:

Figure 4.23 File creation on a single spindle



152 Optimizing Windows NT

Vlew Options
Computer: \\STEVEKOS 1
Dbject: LogicalDisk D:
% Disk Read Time 0.077
% Disk Time 100.000
% Disk Write Time 100.000
% Free Space 79.403
Ava. Disk Bytes/Read 4096.000
Avag. Disk Bytes/Transfer 36122.619
Avg. Disk Bytes/Wiite 36155.625
Avg. Disk sec/Read 0.044
Avag. Disk sec/Transfer 0.061
Avg. Disk sec/Wiite 0.061
Disk Bytes/sec 611435923
Disk Queue Length 0.000
Disk Read Bytes/sec 71.378
Disk Reads/sec 0017
Disk Transfers/sec 16.927
Disk Wiite Bytes/sec 611364.545
Disk Wiites/sec 16.909
Free Megabytes i

Figure 4.24 File creation on a three-spindle striped volume without parity

Notice the Avg. Disk sec/Write is 0.081 for the single unit and 0.061 for the striped
set. This results in higher Disk Bytes/sec. Stnpmg reduces seeking and therefore
improves performance.

In Figure 4.24, drive D is stripéd across units 1, 2, and 3. Let’s look at the
performance of the Physical Disks.



Chapter 4 Detecting Disk Bottlenecks 153

| M

File

EcHoanante

Edit View Options Help

Computer: \ASTEVEKOS

Object: PhysicalDisk 1 2 3
% Disk Read Time 0.077 0.000
% Disk Time 100.000 0.000
% Disk Write Time 100.000 0.000
Avg. Disk Bytes/Read 4036.000 0.000
Avg. Disk Bytes/Transfer 36122.618 0.000
Avg. Disk Bytes/Wiite 36155.625 0.000
Avg. Disk sec/Read 0.044 0.000
Avg. Disk sec/Transfer 0.061 0.000
Avg. Disk sec/Wiite 0.061 0.000
Disk Bytes/sec 611435.923 0.000
Disk Queue Length 0.000 0.000
Disk Read Bytes/sec 71.378 0.000
Disk Reads/sec 0.017 0.000
Disk Transfers/sec 16,927 0.000
Disk Wiite Bytes/sec 611364.545 0.000
Disk Wirites/sec 16.909 0.000

Figure 4.25 Physical disk statistics for a striped volume

Whoops. What happened to units 2 and 3? Well, DISKPERF.SYS cannot see
which physical volume the write operation executes on. This is because
DISKPERF.SYS is located above the fault-tolerant disk driver FTDISK.SYS in the
driver stack, as shown in Figure 4.1. The decision as to which spindle will get the
data is made by FTDISK.SYS and therefore is invisible to DISKPERF.SYS. The
only way to get visibility would be to add another measurement driver below
FTDISK.SYS on the stack. But this would increase the overhead, and we elected
not to do it. The additional information is not important enough to warrant the
overhead.

Mirrors, stripes, and hardware RAID devices all share this Performance Monitor
characteristic: Performance Monitor summarizes all Physical Disk statistics under
the first unit assigned to the disk array.

The next experiment was to read 100 unbuffered (with no file system cache),
normally distributed records of 8192 bytes from the file on each drive type.



" 154

Optimizing Windows NT

Edit View Options Help

+[EX] (@]

Computer: \\STEVEKOS
Object: LogicalDisk

% Disk Read Time

% Disk Time

% Disk Wiite Time

% Free Space

Avg. Disk Bytes/Read
Avag. Disk Bytes/Transfer
Avg. Disk Bytes/wiite
Avg. Disk sec/Read
Avg. Disk sec/Transfer
Avg. Disk sec/Wiite
Disk Bytes/sec

Disk Queue Length
Disk Read Bytes/sec
Disk Reads/sec

Disk Transfers/sec
Disk Wiite Bytes/sec
Disk Wiites/sec

Free Megabytes

1
D:

95.509
95.509
0.000
78.403
8132.000
8192.000
0.000
0.025
0.025
0.000
318531.195
1.000

318531.195
38.883
38.883

0.000

Figure 4.26 Reading from three-spindle striped volume

Computer: \\STEVEKDS
Object: LogicalDisk

% Disk Read Time

% Disk Time

% Disk Write Time

% Free Space

Avg. Disk Bytes/Read
Avg. Disk Bytes/Transfer
Avg. Disk BytesAwrite
Avg. Disk sec/Read
Avg. Disk sec/Transfer
Avg. Disk sec/white
Disk Bytes/sec

Disk Queue Length
Disk Read Bytes/sec
Disk Reads/sec

Disk Transfers/sec
Disk Write Bytes/sec
Disk Writes/sec

Free Megabytes

97.486
97.486
0.000
19.679
8134.935
8134.995
0.000
0.033
0.033

0.000
241676.677
1.000
241676.677
28,708
29,708

0.000
0.000

Figure 4.27 Reading from four-spindle hardware RAID




Chapter 4 Detecting Disk Bottlenecks " 155

The hardware RAID is slower at this, for some reason. Perhaps its physical drives
are slower. The next two figures show our old test of rereading records of various
sizes to determine maximum disk throughput. The first figure shows the striped
volume, the next one shows the hardware RAID.

File Edit View Options Help

BREE FEX E4)

250
225
200
175

150 rl
125

100 — ‘ AR | U SRR W | ,
75 ~ ,

ar ~ 1A A I
Color i+, Scale Counter . Instance ;. Parent  ~ Object . . Computer - .

== 0.000100 Disk Bytes/sec D: 1 LogicalDisk___ \\STEVEKO5
i 1000.000 - Ava, Disk sec/Read . .. D: Y - LogicalDisk MSTEVEKOS |

B

Figure 4.28 Disk throughput test for a three-spindle striped volume

File Edit View Options Help

Figure 4.29 Disk throughput test for a four-spindle hardyvare RAID



156

Optimizing Windows NT

Well, now isn’t that interesting! The RAID device is quite impressive at higher
transfer sizes, and increases monotonically in performance as the transfer size does.
The striped volume is not so pretty. It has spots where the performance degrades
due to missed revolutions. (Because we are rereading the same record over and
over, only one spindle participates in this test.) But there is a serendipitous node at
the 8192 transfer size, which just happened to be the size in our test case. ‘

Which of these two technologies would you rather spend your money on? You
need to understand the transfer size characteristics of your traffic to be sure. For
4096- or 8192-byte transfers, the striped volume wins; for transfers larger than

5 pages, the hardware RAID is the clear winner. Now don’t get us in trouble by
trying to use these results directly in your shop. There are a lot of variables. With a
different controller, drive, or processor you get different results.

Another way to alter the outcome is to try writing instead of reading. When we
substitute writing for reading in the above test, we get 0.016 seconds per record for
the striped volume, 0.028 for the single spindle, 0.030 for the hardware RAID, and
0.041 for the mirror. Writing is slower on the mirror because both spindles must be
written. If we had another controller for one half of the mirrored pair we would
have possibly seen an improvement, not to mention better fault tolerance.

For detailed information on configuring your hardware for RAID access, refer to

_the RAID.DOC file on the floppy disk included with this book. -



157

CHAPTER 5 T

Detecting Memory Bottlenecks

Memory shortage leads to poor performance faster than any other single resource
shortage. Why? Memory shortages can cause the computer to have to read and
write from the disk more often, and accessing the disk is much slower than just

o executing instructions in the processor.

We briefly mentioned in Chapter 2 that Windows NT is a virtual-memory system
and uses paging so when it executes a program it doesn’t have to store the entire
program in memory at one time. Instead, only part of the program, divided into
chunks of memory called pages, is in memory at any one instant. When the
program instructions call for a page of code or data that is not currently in memory,
Windows NT must bring in that page from somewhere, usually a disk. It is possible
that a single instruction execution can cause one, two, or more page I/O operations.

The average instruction in today’s computers takes something in the order of a
hundred nanoseconds to execute. (A nanosecond is one-billionth of a second.) We
saw in Chapter 4 that disk accesses range in orders around tens of milliseconds.
'Even one missing page per instruction would make the machine run 100,000 times
slower than normal. Now that would be the mother of all bottlenecks!

Things do not usually get that bad. But they can get very bad, and when they do you
need to know what you can do about it. (Besides find another job; our boss calls
this Option 7, because if we haven’t solved a problem in six tries, we’re told that
Option 7 is no longer optional.)



%
158 Optimizing Windows NT

How the Windows NT Virtual Memory System Works

You probably know that Windows NT is a 32-bit operating system that runs both
16-bit and 32-bit applications. Even the system calls of 16-bit applications are
translated to 32 bits.

What does this mean? A program can see 32 bits worth of address space. This
translates to 4 gigabytes (4 billion bytes) of virtual memory. The upper half of this
is devoted to system code and data and is only visible to the process when it is in
privileged mode. The lower half—2 billion bytes—is available to the user program
when it is in user mode, and to those user-mode system services called by the
program.

Furthermore, the RAM on your Windows NT computer is divided into two
categories: nonpaged and paged. Nonpaged code or data must stay in memory

and cannot be written to or retrieved from peripherals. Peripherals include disks,
the LAN, a CD-ROM, and other devices. Paged memory is RAM which the system
can use and later reuse to hold various pages of memory from peripherals. Paged
memory is divided into page frames, that hold various pages from time to time
much as a picture frame can hold various pictures.

Page size varies with the computer’s processor type. Page size is 4096 bytes (4K)
for 386, 486, and Pentium processors, the same for MIPSe processors, and

8192 (8K) for DECe Alpha processors. Varying page size is the reason many
Performance Monitor counters are in bytes: 100 pages of data is not the same
amount of data on all computers.

When a page of code or data is required from a peripheral, the Windows NT
memory manager finds a free page frame in which to place the required page. The
system transfers the required page, and processing can continue. If no page frame is
free, the memory manager must select one to reuse. The memory manager tries to
find a page frame whose contents have not been referenced for a while. When the
memory manager finds a suitable page frame, it discards the page in it if that page
has not been modified since it was placed into RAM. Otherwise, the changed page
must be written back to its original location on the peripheral before the new page
can replace it. The memory manager has lots of tricks to minimize and anticipate
the flow of pages and thus reduce the possibility that paging traffic will beat the
peripherals into abject misery. We’ll discuss a few of these as we go along.

Normally, programs execute by fetching one instruction after another from a

code page (a page that contains program instructions) until they call or return to a

routine in some other code page, or make a jump to code in another page. Or, they

can simply run off the end of the current page and need the next one. Such a transfer

of instruction control to a new page causes a page fault if the needed page is not

currently in the working set of the process. The working set of the process is the set
° of pages currently visible to the process in RAM.



Chapter 5 Detecting Memory Bottlenecks 159

A page fault can be resolved quickly if the memory manager finds the page
elsewhere in RAM. It might be in the working set of some other process or
processes, or it might have been removed from this process’s working set by the
memory manager in an overzealous attempt to keep the process trim and fit. The
memory manager places such pages on a list of page frames called the standby list,
and they can be reinserted into a process’s working set lickety-split. But if the page
is not in RAM somewhere, the memory manager must find a free page frame, or
make one free as described above, and then fetch the required page from the
peripheral. One characteristic of code pages is it isn’t normal for code to be
modified while in RAM, so code pages can be discarded without being written back
to disk.

Data pages, which contain data used by a program, are accessed in a somewhat
more random fashion than code pages. Each instruction in a program can reference
data allocated anywhere in the address space of a process. The principle, however,
is much the same. If an attempt is made to access a data page not in the working

set of the process, a page fault occurs. From that point on, the process is just as
described for code pages. The only difference between data pages and code pages is
that data pages are frequently changed by the processes that access them, and so the
memory manager must take care to write them on the peripheral before replacing
them with another page. A general page fault handling diagram appears in Figure
5.1.

Page fault trap.

Enter privileged mode.

No Is page

Get page from disk or LAN. Nﬂmm

Yes

Add page to working set
of faulting process.

Return to process to retry instruction.

Figure 5.1 Handling page faults on Windows NT



160 Optimizing Windows NT

Configuring Available Memory in Windows NT

[boot loader]
timeout=30

To see how much RAM Windows NT thinks your system has, switch to Program
Manager and choose About Program Manager from the Help menu. For testing
purposes, you can reduce the amount of memory that Windows NT thinks you have
by modifying the BOOT.INI file. This file has protected attributes. If you want to
modify it, make a copy of BOOT.INI first, and then use attrib to turn off the Read

Only, Hidden, and System attributes for BOOT.INL.

Caution By turning off the protected attributes, you can now overwrite BOOT.INL
Some mistakes written to BOOT.INI can prevent Windows NT from starting.

To observe paging in action, it’s useful to fool your system into thinking it has less
memory. This forces the memory manager into more activity that we can easily
observe. Find the line indicating the Windows NT operating system you want to
boot with. We’ll add a /MAXMEM=xn parameter to the end of your Windows NT
version line. The # is the number of megabytes you want to test. It is important that
you do not make this less than eight. Following is an example of a BOOT.INI file
set up with four versions of Windows NT, each configured to use different amounts
of memory.

default=multi(0)disk(@)rdisk(0@)partition(l)\winnt

[operating systems]

multi(0)disk(@)rdisk(@)partition(1l)\winnt="Windows NT Version 3.5"
multi(0)disk(@)rdisk(@)partition(1)\winnt="Windows NT 3.5, 12Mb" /MAXMEM=12
multi(@)disk(@)rdisk(@)partition(1)\winnt="Windows NT 3.5, 10Mb" /MAXMEM=10
multi(0)disk(@)rdisk(@)partition(1)\winnt="Windows NT 3.5, 8Mb" /MAXMEM=8

c:\="MS-D0OS"

Examples of Memory Activity and Paging

This has been a fairly abstract discussion, so let’s look at some concrete examples.
We'll start Clock, a Windows NT accessory, and see what kind of memory activity
occurs. Starting applications is relatively quick, so we’d better log at one-second
intervals if we want to see what’s happening. We’ll let the system settle down for a
few seconds, and then choose Clock from the Accessories Group.



Chapter 5 Detecting Memory Bottlenecks 161

File Edit View O

[]-

_ptions' Help

BREE FEX] @]

100
90
80
70
60
50
a0
3
20
10

" Instance -

Color Scale tounler' ’ “Palel‘-'ul ' Object Computel'

==

Figure 5.2 Processor activity while starting Clock

Now let’s add Memory: Page Faults/sec to the picture in Figure 5.3, it’s the thick
black line. There are two bursts of page faulting, a large one followed by a small
one.

Eilé Edlt _\_{lew ‘gpli‘or‘ls Help

= ‘*‘IH!Xi:?I@iWa”

_Computer
\\CEREBELLU
i S 1

Figure 5.3 Page faults while starting Clock



162 Optimizing Windows NT

Because page faults may not involve peripheral activity, it is important to look at
how miany of these pages faults actually resulted in pages coming in from the disk.
In the next figure we have Page Faults/sec in a solid black line, and Pages Input/sec
in a dashed line. During the first peak of activity, there is a lot of page fault action
that does not result in disk activity. In the second peak however, every page fault
seems to need a new page from disk.

File Edit View Options Help

T \\CEREBELLUM |

Figure 5.4 Pages input while starting Clock

In the next figure, we can see how many times per second the memory manager
asked the disk driver for pages. We can see that this is less than the number of

pages input. The memory manager is asking for multiple pages on each request
to the disk driver. We told you the memory manager was tricky!



Chapter 5 Detecting Memory Bottlenecks 163

File Edit !ikew Options Help

EYNETEIES

V!A

prance Mot

gl Ly A

Last| 0000 Average| 0899 Min| D,UUU,MaxE . 20A899'GraphTimeri 52,000

Color -~ Scale Counter "~ . - Instance ' Parent Dbject . Computer

Figure 5.5 Page reads while starting Clock

Presumably Clock causes all this activity, but we’d better check. We can switch
over to Report view and look at page faults committed by all the processes. When
we do this we see there are three processes that have page faults during this time:
Program Manager, Clock, and our old buddy CSRSS. Their faults are charted in
Figure 5.6. Clock is highlighted, Program Manager is the thick black line, and
CSRSS is the thin black line.



164

Optimizing Windows NT

Scale Counter ! ren ;
1.000 Page Faults/sec - Process \\CEREBELLUM |
1.000 Page Faults/sec Process \CEREBELLUM ¢

Figure 5.6 Page faults by process while starting Clock

Now we are getting somewhere, First, the little blip on the left is CSRSS. These
page faults occurred when we switched focus to Program Manager to get ready to
select Clock. Apparently not all the pages needed to perform this action were in the
CSRSS working set at that point. It is also clear that the first peak of page fault
activity was caused by Clock and to a much lesser extent, Program Manager.
During this period we saw that most of the pages faulted were already in memory
and we did not have to go to disk for them. How can that be? Clock is likely to use
a lot of system windows and graphics routines which are already in use by other
processes. These get put into the Clock working set through the page fault process,
but they are probably already in memory because other processes are using them.

CSRSS is generating a few page faults during the first peak, but it is largely
responsible for the second peak. Because we saw that page faults and pages input
were closely correlated during the second peak, we can deduce that the pages that
CSRSS needed to bring in to handle the Clock startup were not in memory. This
makes sense, really, because Clock uses a very large font for its digits, and such
a large font is not likely to be lying around in memory.

Now let’s look at the disk activity this set of actions causes. We’ll narrow our focus
to the period of active paging, and look at some memory and disk statistics.



Chapter 5 Detecting Memory Bottlenecks 165

.=.[‘ R LR bedunn

File Edit View Options Help

BREBE [+ [&k)

st o o e ]a

Computer: \\CEREBELLUM
Object: Memory

Pages Input/sec 21.685
Page Reads/sec 8.953
0 1
Object: LogicalDisk C: D:
Avg. Disk Bytes/Read 12024242
Disk Reads/sec 6565 (..

Figure 5.7 Memory and disk reports when starting Clock

By adding the values of LogicalDisk: Disk Reads/sec from the two drives involved
we see their sum is just a little higher than the value of Memory: Page Reads/sec.
On drive C we are reading almost 3 pages (12K) on every read request. Multiplying
three times the Disk Reads/sec and adding the drive D Disk Reads/sec, we get the
total Pages Input/sec of 21+. So the paging statistics from the disk and memory are
pretty closely related. Close enough for bottleneck detection, according to Rule #9.
We had narrowed the time window down to five seconds here, so we have brought
in about 105 pages.

But we’re just getting started! Let’s take a look at the working set sizes of these
processes. If they are faulting in a lot of pages, they are probably increasing their
working sets. Figure 5.8 shows the working set sizes for each process that is
causing page faults.



166

Optimizing Windows NT

Options Help

[EX) @] @

' Dbject. . Computer -
Process \CEREBELLUM |
MCEREBELLUM |

e

—
—

Figure 5.8 Working set size growth when stai‘ting Clock

Pay close attention to the scale factors used in this chart. Both Program Manager
and Clock have working sets that rise to about 600K, but CSRSS is up to nearly 3
MB. Sure enough, the working set sizes rise just as one might expect. At the start
of the test, Program Manager has a fair number of pages lying in memory. The first
thing that happens in our experiment is Program Manager brings into its working
set whatever pages are required to launch Clock. Total growth in working set is
84K (21 pages), which we can calculate by subtracting the Minimum from the
Maximum on the value bar when selecting Program Manager.

Then Clock, starting at ground zero, brings in its working set. A lot of these pages
were already in memory, and are just being added to the Clock’s working set so
Clock can share them. Or perhaps they are fresh data pages that Clock needs, in
which case the memory manager will provide Clock with a zeroed page frame,
which also does not require disk input.

As soon as Clock starts to use CSRSS to draw the large numerals on the clock face,
CSRSS starts to bring in its pages. Although it looks like CSRSS has not increased
much here, in fact it looks that way because its scale factor is ten times smaller; it
has grown here by 88K, or 22 pages. Recall from Figure 5.4 that most of the
CSRSS fault activity resulted in real pages from disk. Because we faulted in a total
of 105 pages and we know that 22 went into CSRSS, we calculate that 83 went

in to Clock and Program Manager. Because we know that Program Manager’s
working set grew by no more than 21 pages, that leaves at least 62 pages brought
in from the disk by Clock itself.



Chapter 5 Detecting Memory Bottlenecks 167

Can these processes really need all this space? Perhaps not all at once. The memory
manager lets processes grow their working sets until memory pressure develops.
This is indicated by the decline of another key counter, Memory: Available Bytes.
In the next figure we add Available Bytes to the above chart to see how much free
memory we have before and after the test.

=|lE e R [~1~]
File Edit View Options Help
8] [+EX] (@]
S0
80
70 P
B0 e e e
40
30
20} ;
Last] 1044480 Average| 1446970 Min| 1044480 Max| = 1757184 GiaphTime| 53000 .
Color, .+ Scale Counter. -~~~ - " Instance. Parent ' Dbject '~ Computer | .-
— 0.000100 Working Set progman Process WCEREBELLUM:
0.000010 Working Set csiss Process \\CEREBELLUM ;
0.000100 Working Set CLOCK Process MCEREBELLUM

Figure 5.9 Available bytes decline when Clock starts

From the value bar you can see that Memory: Available Bytes starts at about 1.7
MB and ends right near 1 MB. When Memory: Available Bytes gets too low, the
memory manager begins to take pages more aggressively from the working sets
of inactive processes. It also makes different choices in which pages it replaces.
Instead of allowing the working set of a process to grow and use up the remaining
free memory, it takes pages from other parts of the working set of that process.

This is a change from a global page replacement policy to a local one. When
enough space becomes available, the memory manager again reverts to global
replacement. On a Windows NT Server computer, you can fine-tune at which point
this transition occurs. To do so, choose the Network option in Control Panel, and
then select Server in the Installed Network Software list and choose Configure. You
can play with the various options, but for normal system use we recommend using
the Balanced option. We ran this experiment on a server system tuned to Maximize
Throughput For File Sharing. We’ll discuss the implications of the settings when
we cover cache behavior in the next chapter..



168

Optimizing Windows NT

N

Until memory pressure is significant, working sets grow and you can’t tell by
looking at them how much space they actually need. But we can create memory
pressure, and we can empty memory fairly effectively with a little utility we call
clearmem. The clearmem utility, which is on the floppy disk provided with this
book, determines the size of your computer’s RAM and allocates enough data to fill
it. It then references all this data as quickly as possible, which will toss most other
pages out of memory. It also accesses files to clear the cache, in case that is
important to you. Let’s run clearmem on a system after we start Clock and see
how large the working sets are after we have taken away all the unused pages.

0.000010 Available Bytes I Memory “\CEREBELLUM

| | s 0.000010 Working Set pragman Process \\CEREBELLUM
. 0.000010 Working Set ) csiss - \WCEREBELLUM
Ty TP o SO e

Figure 5.10 Working sets reduced to operating minimums by the clearmem utility

You can see Available Bytes, the thick black line, really climb as a result of
clearmem. Clock, highlighted, is reduced from its initial 648K to 224K. That’s
quite a difference. Program Manager has followed a parallel path. CSRSS has
dropped back to 1.7 MB, about half the space it occupied previously.

So we can see that the working sets were much larger than they needed to be to

run Clock (and Performance Monitor). Isn’t all this inefficient? No, it’s not. The
memory manager constantly makes tradeoffs between using the processor cycles to
keep working sets trimmed up, and not using those cycles when it is not necessary.
If there is plenty of memory, there is really no point in consuming processor time to
trim working sets. You can see from this figure that, when memory is in demand,
the trimming process occurs in high gear.



Chapter 5 Detecting Memory Bottlenecks 169

Let’s return to the issue of starting Clock. We have left something out. We brought
in a bunch of pages. It looked like they went into free page frames, because we saw
the Available Bytes drop. But we have looked only at pages brought in to memory.
What about the pages memory manager ejects? Figure 5.11 shows all page traffic,
in and out, during and around the startup of Clock.

=1 T b o - "Ir:‘»{’}/mwﬁ},‘m‘,w:ué:‘gmm“i; e T T e o ’ '1‘
File Edit View Options Help
BROE FEX EH)
100
90
20
70
60
50
401
30
a0 : : . . o
Color Scale Counter Instance Parent Object Computer
] 1.000 Pages Input/sec Memor: \\CEREBELLUM

Figure 5.11 Both input and output page traffic during the startup of Clock

The input pages are the wide black line and the pages being written are the
highlighted white line. It looks like some pages were written in response to our
starting clock, right in the center of the figure. But it also looks like some were
written both before our activity and after. What’s going on? Pages that have been
changed in RAM but are not yet updated on the peripheral they came from are
called dirty pages. When changed pages are removed from a working set when
there is not much memory pressure, the memory manager may not write those pages
back to disk right away. Instead they are placed on a modified page list maintained -
by the memory manager. Periodically a thread in the System process, called the
modified page writer, examines the modified page list and writes some of the pages
out to free up the space. This strategy prevents excessive writing of pages that are
removed from working sets, only to be quickly reclaimed by the process using them.
As free space becomes scarce, the modified page thread is awakened more often.



170 Optimizing Windows NT

We went through the working sets of all the processes in the system during this test.
We found only one that had been trimmed during the test: the Imsvscs process. This

-process controls LAN Manager services such as the Workstation service, and is the
agent for starting, stopping, and querying the status of such beasties. It has been
idle on this system for quite some time, and the memory manager has removed a
few pages from its working set just as we started logging activity. Clean pages
went to the standby list, from which Imsvcs could retrieve them if they were
needed. Those which are dirty go to the modified page list. When free page frames
become scarce, pages on the standby list are cleared and added to the free list. If
they are needed after that, they must come from the peripheral source. When the
writing of a modified page is completed, the page—now clean—goes onto the
standby list.

=
File Edit View Options Help

EIEIE X] =[] &)

7.000 Pages Input/sec T - Memow \\CEREBELLUM

BRI E e ol el SCEREEELEHGES
0.000100 ‘Working Set Imsves Proces: \CEREBELLUM Al

Figure 5.12 A working set is trimmed because it is inactive

To see all the page traffic in both directions, use the Memory: Pages/sec counter.
This counter indicates the overall level of paging activity. It is important to watch
both input and output pages, even though a page fault only results directly in page
input. This is because a process could be flooding the system with dirty pages
(which is what clearmem does to the extreme) and this can cause the memory
manager to trim the working sets of lots of other processes.



Chapter 5 Detecting Memory Bottlenecks 17

Paging with Lots of Processes

When we start Clock, it has to get into memory somehow (assuming it is not
already there). When not in use, the program and those mondo fonts it uses are
certainly better left on disk. Paging is the price we pay for being able to execute and
address much more memory than will fit in RAM at one time. Usually, the price is
quite reasonable, as in this case. Where is the bottleneck? Take a look at the next
figure, where we’ve narrowed the time window to the three seconds of Clock
startup activity.

fusnee WHnen
File

p ;Jns Heli;

Flx) [ele] G

Computer: \\CEREBELLUM
Object: Processor 0

% Processor Time

Object: LogicalDisk C: ' D:
Z Disk Time ‘ 33.833 16.836

Figure 5.13 Nested bottlenecks during the startup of Clock

The combined disk activity is 50.669%, while the processor is a close second at
nearly 41.303%. The disk is the bottleneck. The system is fairly balanced, and if
we got a faster disk subsystem we would quickly hit the processor bottleneck. We
use 3 * 0.50669 = 1.520 seconds of disk time and 3 * 0.41303 = 1.239 seconds of
processor time. The real elapsed time for Clock to start is the sum of these, or 2.759
seconds. A bit more than half of that is disk time. Paging has certainly cost us
something here but we’re not going to hit the boss up for a new disk drive to solve
this particular bottleneck.

This is an important point. Paging is not inherently evil. It provides a very flexible
system that uses memory in a reasonable way. It relieves the programmer of lots
of memory management tasks—tasks which, if not performed carefully, can lead
to unreliable programs that are difficult to maintain. But there are times when the
computer simply does not have enough memory for all the necessary pages. Then
we're in trouble.



172 Optimizing Windows NT

Let’s take a look at a more extreme case. We’ll crank up the old Response Probe
and start adding processes to the mix. We’ll set up each one to write to one
megabyte of memory in a bell-shaped distribution of references. This should give
us some idea of what things look like when life is not so rosy. Figure 5.14 shows
processor usage and page traffic during this experiment.

ptions Help

~ Scale: Counter e . Parent. . Object ' Computer: =
1,000 % Proc ! WCEREBELLUM
e T EEGER TN

Figure 5.14 Processor usage and page traffic under increasing memory pressure

As the experiment proceeds, we see processor usage start to fall and Memory:
Pages/sec start to rise. These trends are not even because if a process can get
enough pages into memory to make some progress it will grab the processor and
execute for a while. Overall, however, things are going from fine on the left to
awful on the right.

But there’s something else going on here which we should mention. On the right
you can see some downward spikes in paging traffic. In the next figure we focus
in on this section of activity.



Chapter 5 Detecting Memory Bottlenecks 173

L oo R
File Edit Yiew Options Help

] (@]

=121

Color Scale Counter i Instance ~ Parent - - Object Computer
1.000 % Processor Time 0 \\CEF!EBELLUMe
T

Processor

ope

Figure 5.15 System usage at the onset of paging

The downward spikes in paging activity are accompanied by periods of full
processor utilization. This is where a new copy of Response Probe is starting and
calibrating the processor. Because this occurs at High Priority class, the other probe
child processes are pretty much brought to a halt and their paging activity stops.
When calibration completes, the child processes begin to compete for pages again.

In the next figure we show the working sets of these processes as they apply
increasing pressure on the system. By the time the third process has entered the mix,
it looks as though they are settling down at their desired working sets, which seem
to be at about 1.2 MB. Things go pretty well until the eighth process enters the mix,
and then they degrade badly. To the right of the chart some processes are being
forced out of memory for a while, and others are taking over. If we let them fight it
out they would equalize to some extent, but the fact is there is just not enough room
for everybody. From the previous chart we see that Pages/sec winds up in the 70s
for sustained periods; that’s just about as fast as this machine can execute page
transfer.



174 Optimizing Windows NT

File Edit Yiew Options Help

EEIER By

‘Scale Counter ¢ ‘Parent: ©  Object-
0.000010 ‘Working Set PROBE2 Process \CEREBELLY #
0.000010 Working Set PROBE3 Process \\CEREBELLY .
0.000010 Working Set PROBE4 Process \\CEREBELL
0.000010 Working Set PROBES Process \\CEREBELLI

0.000010 Working Set PROBEG Process \\CEREBELL

0.000010 Working Set PROBE? Process \\CEREBELL

0.000
0

Figure 5.16 Response Probe working sets as memory pressure increases

We need to focus on some of the activity on the right of the chart and look at the
Memory object data that indicates excessive paging.

ptions Help

] []s]

Computer: \\CEREBELLUM
Object: Memory

Available Bytes

Demand Zero Faults/sec 2.616
Page Faults/sec 180.498
Page Reads/sec 25,824
Page Wirites/sec 9.963
Pages Input/sec 29.793
Pages Output/sec ’ 35.551
Pages/sec 65.345
Pool Nonpaged Allocs 5696.000
Pool Nonpaged Bytes 1204224.000
Pool Paged Allocs 2929.000
Pool Paged Bytes 1916928.000
Transition Faults/sec 151.732

Figure 5.17 Memory statistics when paging is excessive



Chapter 5 Detecting Memory Bottlenecks 175

We’ve already said that Pages/sec is a key indicator and here we see 65 per second

moving to and from the disk. Paging rates like this, when not due to file activity, are
more than a system can sustain and still perform well. Available Bytes are down to

400K. Because the memory manager likes this number to hover in the 4-MB range,

this is another indicator that we are extremely short of memory.

There are 180 Page Faults per second. Notice that there are 151 Transition Faults
per second. This means that most of the page faults are being resolved by retrieving
a transition page—a page that is in memory but is being written to disk to update
the disk copy at the time of the fault. Why does this happen here?

Each probe process writes to a 1 MB data space with a normal distribution of
references. As the memory manager attempts to retrieve space from the probe
processes, it trims some pages from their working sets and, because the pages are
dirty, the memory manager puts them on the modified page list. Because memory is
so tight, it starts to write them to disk right away in hopes of freeing the frames
holding them and satisfying the backlog of page faults. Once a write starts on a
page it becomes a transition page. But the probe processes quickly re-reference
many of the pages, because the bell-shaped reference pattern causes many pages

in the middle of the curve to be touched repeatedly. A re-reference of such a page
causes a page fault, because the page was trimmed from the working set. The page
is found by the memory manager on the transition list, and replaced in the process’s
working set. The disk write process may stop if caught in time; in this case, most of
them are caught in time, as we’ll see shortly. This is why the modified page writer
tries to delay the writes, so it doesn’t have to rewrite the pages, but when there is so
little free memory it has no chance to delay. It must write pages to free up space as
quickly as possible.

Of the 180 Page Faults/sec, 151 are satisfied by these Transition Faults/sec, and 29
of them are satisfied by Pages Input/sec. This is close enough to count in horseshoes
and bottleneck detection.

The demand zero faults come from the startup of new processes which require new
cleared memory pages for their stacks and global data areas. These are satisfied by
finding free page frames and filling them with zeros. We see that Page Reads/sec
and Pages Input/sec are about equal, which means the memory manager is not
having much luck bringing in multiple pages on a page fault. On the output side,
however, the Page Writes/sec of 9.9 is causing Pages Output/sec of 35.5, or about
3.5 pages on each page write.



176

Optimizing Windows NT

Monitoring the Nonpaged Pool

Pools are where the operating system and its components obtain data storage, and
we need to divert our attention to them for a moment. The data structures that
represent system objects created and used by applications (and by the system itself)
reside in these pools. Pools are accessible only in privileged mode, so you must
transition to the operating system to see the objects stored in the pools.

The paged pool is where the system allocates data that can be paged out to disk. In
the nonpaged pool, pages do not leave memory. Space is obtained here if the data
structures stored there can be touched by interrupt routines or inside the spinlock
critical sections which prevent multiprocessor conflicts within the operating system.
These pages must remain in memory because page faults are not permitted within
interrupts or spinlocks.

Uncontrolled growth in nonpaged pool space is a bug which you must watch for. If
a computer is short of memory, you should check nonpaged pool size. This can vary
quite a bit from one computer to the next, depending on the use of system services.

" You should note the nonpaged pool size at system startup, and compare that to its

present value. It should not grow spontaneously during system operation, although
each new object a program creates will use some nonpaged pool space. Gradual
growth of nonpaged pool space is called a pool leak but, unlike pool leaks in the
backyard, these pools get larger if there is a leak: stuff leaks in instead of out. A’
typical cause for a pool leak is an application’s repeated inadvertent opening of a
file or some other object.

The Memory: Nonpaged Pool Allocs indicate the total number of allocations
currently in the pool. A division indicates the average size of the allocations, 211
bytes in this case. This quotient trends in the direction of the size of a leak if there
is a pool leak. If there is a pool leak, the current number of allocations rises. Total
allocations will certainly grow. You may have to watch these values for hours
before you catch a pool leak.

Luckily, each process also has counters for Pool Nonpaged Bytes and Pool Paged
Bytes. These are not precise counts, but rather estimates by the system Object
Manager, which bills for pool usage based on object addressability rather than
creation and destruction. In other words, a process is billed for the space to hold

a thread object when the object is created and also when the handle to the object is
duplicated. So process pool statistics tend to be overestimates, which we tell you

so that you don’t expect them to add up to the totals of the pool counters in the
Memory object. The important thing is that if you have a pool leak you probably are
able to discover which process is leaking by looking at the Process pool statistics.



Chapter 5 Detecting Memory Bottlenecks - 177

As well as watching for leaks, we recommend you don’t add protocols and drivers
to your computer unless you need them. Windows NT is so easy to configure it is
sometimes tempting to start everything possible. But there’s no free lunch. Even
idle protocols use pool space.

Lack of Memory Causes Disk to Suffer

When your computer is memory poor, it’s the disk that pays. Look at the poor C
drive in the next figure.

File Edit View Options Help
BRRE FEM] @
Computer: \\CEREBELLUM
Object: Memory

Page Faults/sec .

Page Reads/sec .824

Page Writes/sec 9.963

Pages Input/sec 29.793

Pages Output/sec 35.551
Pages/sec 65.345
Transition Faults/sec 151.732
0

Object: LogicalDisk C:

% Disk Read Time 100.000

% Disk Time 100.000

% Disk Wiite Time 100.000

Avg. Disk Bytes/Read 4703.836

Avg. Disk Bytes/Transfer 7445.408

Avg. Disk BytesAwrite 14536.725

Ava. Disk sec/Read 0.235

Avg. Disk sec/Transter 021

Avg. Disk sec/Write 0.151

Disk Bytes/sec 267829.342

Disk Queue Length 6.000

Disk Read Bytes/sec 122030.276

Disk Reads/sec 25.943

Disk Transfers/sec 35972

Disk Wiite Bytes/sec 145799.066

Disk Writes/sec 10.030

Figure 5.18 Lack of memory causes excessive disk usage

Did your eyes snap first to the disk utilization, then to the queue length? This disk
is maxed out. And look at those transfer times. Almost a quarter of a second on
average. This disk is seeking its brains out.

There are 9.963 Page Writes/sec, and 10.030 Disk Writes/sec. Once again, values
this close are good enough for bottleneck detection. Similarly we see 25.824 Page
Reads/sec and 25.943 Disk Reads/sec. Looks like the memory manager is certainly
dominating the use of this disk drive, and that all its-activity is directed to this
volume. This situation would be a good candidate for splitting the paging file onto
separate volumes, to reduce the excessive seeking that we see.



178 Optimizing Windows NT

There are some related figures. Dividing the value of Pages Output/sec by Page
Writes/sec gives 3.578 pages per write. Multiplying that by 4096 bytes per page
gives us 14655 bytes per disk write, which is remarkably close to the 14537 value
of Avg. Disk Bytes/Write. You can’t expect these to match perfectly, because
Performance Monitor is writing to this disk once every ten seconds. Similarly,
dividing Pages Input/sec by Page reads/sec yields a result of 1.154 pages per read.
Multiplying this by the bytes per page gives us 4726 bytes per read, which is very
close to the 4704 value for Avg. Disk Bytes/Read.

What a Memory Hog Looks Like

A memory hog is an application that either through self-indulgent design or sheer
complexity of mission, absorbs large amounts of memory. Let’s take a look at a
memory hog application, in Figure 5.19. There is a little paging activity on the left
(highlighted in white) and then the processor (thin black line) saturates for a bit,
and then kablooey, the disk is pegged and Pages/sec goes crazy, while the processor
is suppressed and only gradually regains some ground as paging subsides a bit.

Processor

Figure 5.19 Overview of memory hog activity

We know enough already to know that this system is memory bound. The sustained
high paging rate is the only clue we need. But who’s the culprit? Let’s take a closer
look.



Chapter 5 Detecting Memory Bottlenecks 179

File Edit View Options Help
@@ola [+eAx] [l
90 : G o

70 ‘ : L LR it ;f J ]

50
40
30
20

Ern

100 e N Y 8

g R B s e S B ;,”":"f‘"t- -“,,-«"“ e — — - -“
Last| 0000 Average| 53058 Min| 0,000 Max| 305308 GraphTime| 156,000
Color - Scale Counter " " Instance ' Parent Object ' Computer =

o,

o
T

0.000010 Available Bytes E Memory \\CEREBELLUM
i 0.000010 Working Set MEMHOG Process \\CEREBELLUM -
----- 0.000010 Working Set ntvdm Process \WCEREBELLUM :
— -1 0.000010 Working Set CALC Process \CEREBELLUM

Figure 5.20 Memory hog innards exposed

On the left we see the processor utilization (thin black line) shoot up to the max
during Response Probe calibration.. There is some paging activity (highlighted) as
Response Probe is first brought into memory. The NTVDM running Word for
Windows loses a bit of its working set at this time as indicated by the black dotted
line. During calibration there is some more paging activity as the memory manager
seeks to get back to 4 MB of free space. The NTVDM loses a bit more, and
presumably some other process not shown because we see a nice gain in Available
Bytes (thick black line). Things are pretty quiet during calibration, but when the
probe starts the MemHog process, life gets exciting.

Pages/sec goes wild, up to 305 as the value bar indicates. The rising thick black line
of the MemHog working set creeps up across the display, destroying everything in
its path. The working sets of NTVDM and Calc get trimmed, as well as those of
other processes not shown. This causes some momentary increases in Available
Bytes (the other thick black line), which are short lived as the counter eventually
succumbs to memory demands and yields most of its gains to the MemHog. In the
face of all this paging activity, the processor usage has dropped quite low. This is
more typical of severe paging than the previous example, where some of the probe
processes were able to make some processor headway in between page faults. This
example illustrates the inability of the applications to use the processor in the face
of the heavy disk demands imposed by excessive paging.



180

Optimizing Windows NT

Calc has the working set indicated by the dashed black line. Notice that it is level
until about halfway across the screen. Why? Because Calc was in the foreground
before the test started. The memory manager favors the working set of the
foreground process. Both Program Manager and, in particular, CSRSS get favored
treatment also. The memory manager waits until things are quite desperate before
trimming pages from the working sets of these favored processes. In this case, the
memory manager is forced eventually to abandon this policy and give the memory

" used by the Calc working set to MemHog. Bummer. Now when you switch back

to Calc, expect a delay and some disk rattling.

As MemHog builds up its working set, paging softens a bit and the processor
utilization improves. But there is no real relief until the MemHog program ends.
Then Available Bytes soars as all that memory is returned for other uses. What a
relief!



181

CHAPTER 6

Detecting Cache Bottlenecks

On MS-DOSe systems, the primary tuning parameter in the system is the size of
the disk cache. Recent versions of MS-DOS and Windowse have reduced the need
for you to tweak this parameter because they adapt a bit to the memory size of the
machine. Still, few users of those systems can resist the temptation to display their
computer prowess by tuning the cache size.

As we shall see shortly, the Windows NT cache adapts itself automatically to
memory size and pressure in the computer and has few tuning controls. In this
chapter we’ll explore how the file system cache works on Windows NT and
show how you can determine if it is the primary focus of system activity.



182

Optimizing Windows NT

File System Cache Overview

The file system cache is a buffer that holds data coming from or destined for disks,
LANS, and other peripherals (such as CD-ROM drives). Windows NT uses a single
file system cache for all cachable peripheral devices. For simplicity we’ll refer
primarily to the disk as the source of data, but keep in mind this is a simplification,
and any time we use the word “disk™ in this chapter you may substitute LAN or
CD-ROM or the high speed peripheral of your choice.

Unless an application specifies the FILE_FLAG_NO_BUFFERING parameter in
its call when opening a file, the file system cache is used when the disk is accessed.
On reads from the device, the data is first placed into the cache. On writes, the data
goes into the cache before going to the disk.

Unbuffered I/O requests have a quaint restriction; the I/O must be done in a
multiple of the sector size of the disk device. Because buffering usually helps
performance a lot, it is rather unusual for a file to be opened without buffering
enabled. The applications that do this are typically server applications (like SQL
Server, for example) that manage their own buffers. For the purposes of this
chapter, we will consider all file activity to be buffered by the file system cache.

When Windows NT first opens a file, the cache maps the file into its address
space, and can then read the file as if it were an array of records in memory. When
an application requests file data, the file system first looks in the cache to see if the
data is there, and the cache tries to copy the record to the application’s buffer. If
the page is not in the working set of the cache, a page fault occurs, as shown in
Figure 6.1.



Chapter 6 Detecting Cache Bottlenecks

183

Get page from disk or LAN.

Application makes file system request.

Page fault trap.

Enter privileged mode.

No Is page
inmemory?

Yes

Add page to working set

Figure 6.1 Cache references to absent file pages are resolved by the memory

manager

If the page is in memory, it is mapped (not copied) into the cache’s working set.
This means a page table entry is validated to point to the correct page frame in
memory. If the page is not in memory, the memory manager gets the page from

of file system cache.

Cache Manager attempts to

access file data in cache.

Page in
cache’s
working set?

Copy data to application's buffer.

the correct file on the peripheral. This is how the cache manager uses the memory
manager to do its input. The cache is treated much like the working set of a process.
It will grow and shrink as demand dictates.

Let’s see how this looks to Performance Monitor.



184 Optimizing Windows NT

- Basic Cache Experiments

The experiments in this chapter were done on a 386SX/25 laptop with 12 MB
RAM and a 120-MB hard drive. The first thing we do is see how the disk performs.

‘ File Edit View Options Help

B FEX] Bk &

~Scale Counter
0.000100 Disk Bytes/sec

Figure 6.2 Disk performance of an example 386SX/25 laptop

Hey, that’s not bad performance for a carry-on.

Let’s take a quick look at why we might want to use caching in the first place.
We’ll do some tests, and run clearmem before each trial to make sure the cache

is clear of file data before the test begins. In the first, we’ll read a 1 MB file
sequentially using 4096 byte records. In the second, we’ll write the same file
sequentially. (When Response Probe reaches the end of the file while doing
sequential disk access, it restarts at the beginning.) In the third test, we’ll read the
file randomly with our usual bell-shaped normal distribution. In the last we’ll read a
record under normal distribution, and then write that record. In the next table we
see the results of these tests, expressed as the response time to do one file operation
of the type specified.



Chapter 6 Detecting Cache Bottlenecks

185

Table 6.1 Cached vs. Non-cached File I/O Times in Milliseconds per Record

Type of file access  Operation Non-cached time Cached time
Sequential Read 6.58 1.32
Sequential Write 2291 1.70
Random Read » 20.45 151
Random Read/Write 40.66 3.16

Okay, you were probably convinced anyway, but now we know for sure. Caching

is good for performance.

So now let’s take a look at what’s going on inside. We’ll create a 10 MB file and
we’ll read from it 8192 byte records spread over about 4 MB in the middle of the
file in, you guessed it, a normal distribution. The following picture emerges.

ptions

elp ‘

o~

3 0

Last| 688128,000 Average

Color:  Scale C :

1.000 % Processor Time
0.000010 Avaisble8

1.000 % Disk Read Time

Figure 6.3 System behavior during cached reading of a large file

At the beginning, the processor utilization goes way down and the disk utilization
goes way up, while the cache (highlighted in white) grows. When the cache gets to
about 3 MB, the disk and processor utilization lines cross, disk activity drops off,

and the processor activity picks up.



186

Optimizing Windows NT

The dark black line is Memory: Available Bytes. There is meaning behind the .
sawtooth in this line. When Available Bytes drops below 4 MB, the memory
manager wanders about the system trimming working sets in the off chance that
some pages are not in active use. You can see the cache is also trimmed. Available
Bytes jumps as a result of the trimmed pages becoming available. The cache
quickly recovers its trimmed pages because they are in active use. It continues to
expand and takes more of the Available Bytes as it does. As the cache settles to its.
necessary size, it has suppressed Available Bytes to about 2.75 MB, and the system
stabilizes here until the experiment ends.

The next figure shows the cache statistics for this test case. Starting at the top, the
asynchronous counters show activity for asynchronous I/O requests (you could have
guessed that, right?). When it does asynchronous I/O, an application fires off a file
request and keeps on processing other stuff, checking the status of an event to
determine completion of the request. This permits applications to overlap file
operations with each other and with other processing. This could also be done by
assigning a separate thread to handle the file operation, but that is quite expensive
in terms of memory used compared to asynchronous I/O. Many applications do
synchronous file operations, in which case the application waits until input data is
available.

File Edi iew Options ’ tl_elp

e HEX] Bl

Computer: \\WALKINGDOG
Object: Cache

Async Copy Reads/sec 0.000
Async Data Maps/sec 0.000
Async Fast Reads/sec 0.000
Async MDL Reads/sec 0.000
Async Pin Reads/sec 0.000
Copy Read Hits % 95.598
Copy Reads/sec 423.046
Data Flush Pages/sec 5.935
Data Flushes/sec 1137
Data Map Hits % 90.909
Data Map Pins/sec 0.000
Data Maps/sec 0195
Fast Read Not Possibles/sec 0.000
Fast Read Resource Misses/sec 0.000
Fast Reads/sec 422.957
Lazy Wiite Flushes/sec 1137

Lazy Wiite Pages/sec
MDL Read Hits %
MDL Reads/sec

Pin Read Hits %

Pin Reads/sec

Sync Copy Reads/sec
Sync Data Maps/sec
Sync Fast Reads/sec
Sync MDL Reads/sec
Sync Pin Reads/sec

Figure 6.4 Cache statistics during the reading of a large file



Chapter 6 Detecting Cache Bottlenecks 187

The first counter with activity is the hit ratio for copy reads, Copy Read Hits %.
This is the normal file system read. It causes data to be copied from the cache to
the application buffer. A hit occurs when a request is made by the file system for
data and the data is already in the cache. We see a high hit rate and an impressive
number of operations per second. We’ll take another look at this.

There is a little bit of file output activity, indicated by the two Data Flush counters
monitoring cache output. Data flushing occurs when the cache manager is told to
make room by writing some modified pages out to the peripheral(s). There are a
number of code paths that can trigger a data flush:

=  The cache manager’s lazy writer thread (in the System process) wakes up
periodically looking for modified cache pages to flush to disk. The two lazy
writer counters reflect this activity.

s The memory manager’s mapped page writer can cause data flushes if memory
becomes tight or if the number of modified pages mapped into the cache’s
address space becomes large. (The mapped page writer is a System process
thread that handles dirty file pages mapped into the address space of some
process or the cache. The mapped page writer thread is kin to the modified page
writer mentioned in the previous chapter. The difference is the modified page
writer writes dirty pages only for the paging files. We’ll say more about mapped
files shortly.)

= An application can instruct the file system to flush the cache for a particular file.

All of these actions call the data flush operation, which in turn invokes a memory
manager routine to build an output request for the file system to actually place the
data onto the peripheral(s). By the way, it’s Performance Monitor that is writing the
data here. Heisenberg in a laptop!

Look at the high percentage of Data Map Hits. Wow, what a great cache hit rate!
Wrong! True enough, the hit rate is high, but the operation count as measured by
Data Maps/sec is small. It is very important to watch the operation counts when
trying to interpret the hit rates. Data maps are used to map in file system meta-data
such as directories, the File Allocation Table in the FAT file system, Fnodes in
HPFS, or the Master File Table in NTFS. If this count is high, you are burdened
with directory operations and the like. This may indicate the copying of many small
files, for example. You’ll see Data Map Pins when the mapped data is pinned in
memory preparatory to writing it, indicating the system is making changes to file
system data structures.



188 Optimizing Windows NT

To emphasize the importance of looking at both the hit rate and the operation

frequency, in the next figure we illustrate the relationship between Copy Read

Hits % and Copy Reads/sec. On the far left there is a spike in Copy Read Hits % -
“but the low operation rate renders this unimportant. Then, as the cache grows in

size to accommodate the file, the counters rise together. The result is the lower disk

traffic and better processor utilization numbers se¢n on the right half of Figure 6.3.

=

N ani

File Edit View Options Help

9 (X B @

WWALKINGDOG
SV AEKINB O
\WALKINGDOG |

i
Memory

0.000010 Cache Bytes

=
=

Figure 6.5 Copy Read Hits % and Copy Reads/Sec during reading of a large file

We mentioned in an earlier chapter that Fast Reads are the I/O manager look-aside
mechanism which can bypass the file system and obtain data directly from the
cache. Ideally, most application file requests are handled in this fashion because it
is very efficient.



Chapter 6 Detecting Cache Bottlenecks 189

A multiple data list (MDL) request is a way for a file system to deliver large blocks
of cache data using direct memory access (DMA). The MDL provides a physical
memory address for each page involved in the transfer. The Windows NT server
process sometimes uses this method for large transfers of data from cache.

In a Pin Reads operation, the cache is reading data with the objective of writing it.
To do the write to a partial page, the cache must first read the entire page off the
peripheral. The page is “pinned” in memory until the write takes place. The hits
occur when the data is already in the cache at the time of the read request.
Because of pinning, writes always hit the cache, or else go into new page frames
materialized for the purpose when written to new space.

The Sync counters exist just to break out which requests are synchronous versus
which ones are asynchronous, as described previously. This breakdown is not going
to be of vital concern to you often. If you have a lot of cache activity and you have
an application mix that uses these two different access modes, the hit rates of the
two might give you a clue as to which applications were hitting the cache and which
were missing. Usually your powerful server application will be using asynchronous
file access to get the best concurrency for the least system cost, and you will be able
to determine if that application is the one that is getting the cache hits (or misses).

The upshot of all this is that for normal file read operations you watch Copy Read
counters to judge activity. For normal file write operations you watch the Data
Flush counters to judge activity. Data Map operations generally indicate directory
activity, or activity on lots of files. It’s really not as complicated as it looks.



190 Optimizing Windows NT

Sequential Reading and Writing

Let’s take a look at another very common case. Let’s process this file sequentially,
first reading a record and then writing it. We’ll set the record size to 512 bytes this
time. We still have a 10-MB file. The next figure tells the tale.

Flle Edit Vlew Opuons Help

Processor \\WALKINGDOG |
Memory \WWALKINGDOG
i TR LWALKINERAE
X 1. IJUCI % Disk Read Time [ i LogicalDisk \WALKINGDOG !
] 1.000 % Disk Write Time C 0 LogicalDisk \WWALKINGDOG

Figure 6.6 Cache and disk activity while reading and writing a large file
sequentially

Processor utilization is the heavy black line at the top of the chart: it’s pinned at
100%. The disk is quite busy both reading (dotted line) and writing (thin black
line). The cache does not grow as large even though we are processing the entire

10 MB file, much more data than in the last example. Why? The cache manager
detects that the file is being read sequentially and realizes that retaining lots of file
data in the cache will not help much, because it is probably not being re-referenced.
The next figure shows the cache statistics for this case.



Chapter 6 Detecting Cache Bottlenecks 191

R

Computer: \\WALKINGDOG
Object: Cache

Async Copy Reads/sec 0.000
Async Data Maps/sec 0.000
Asyne Fast Reads/sec 0.000
Async MDL Reads/sec 0.000
Async Pin Reads/sec 0.000
Copy Read Hits % 99.945
Copy Reads/sec 338.329
Data Flush Pages/sec 45433
Data Flushes/sec 2.964
Data Map Hits % 0.000
Data Map Pins/sec 0.000
Data Maps/sec 0.000
Fast Read Not Possibles/sec 0.000
Fast Read Resource Misses/sec 0.000
Fast Reads/sec 338.329
Lazy Wiite Flushes/sec 2944

Lazy Wiite Pages/sec
MDL Read Hits %
MDL Reads/sec

Pin Read Hits %

Pin Reads/sec

Sync Copy Reads/sec
Sync Data Maps/sec
Sync Fast Reads/sec
Sync MDL Reads/sec
Sync Pin Reads/sec i

Figure 6.7 Cache statistics for read/writing a large file sequentially

The high Copy Reads/sec of the example in the previous section are lower here
because now we are writing the data as well as reading it. There are 45 Data Flush
Pages/sec, but the flush is only occurring 2.9 times per second. This means we
are sending out 45/2.9 or-about 15 pages on each flush. This also tells us that
the cache manager has discovered the sequential nature of our file access and

is grouping together lots of pages to expel at once. As we have seen previously,
large transfer blocks are very efficient. The lazy writer would like to write

the sequential data in 64K chunks, However, the lazy writer is not doing all the
writing here because there are just a few more Data Flushes/sec than Lazy Write
Flushes/sec. This means the mapped page writer has become concerned about
memory from time to time and does a little page output of its own. This can
interfere with the sequential nature of the lazy write output and slightly reduce
the number of pages per write.



192

Optimizing Windows NT

it
Edit View Options Help

AslE +EE] (=] @&

Computer: \A\WALKINGDOG
Object: Cache

Copy Read Hits % 99,942
Copy Reads/sec 337.865
Data Flush Pages/sec 45.761
Data Flushes/sec 2.984
Fast Reads/sec 337.887
Lazy Wiite Flushes/sec 2.963
Lazy Wiite Pages/sec 46.583
Pin Read Hits % 100.000
Pin Reads/sec 0.130
Sync Copy Reads/sec 337.865
Sync Fast Reads/sec 337.887
Sync Pin Reads/sec 0.130

Object: System

Context Switches/sec 48.897
File Control Bytes/sec 119.376
File Control Operations/sec 2.984
File Data Operations/sec 0.130
File Read Bytes/sec 0.000
File Read Operations/sec 0.000
File Wiite Bytes/sec 2978.698
File Write Operations/sec 0.130
Processor Queue Length 1.0

System Calls/sec

Figure 6.8 Cache and system statistics for read/writing a large file sequentially

We can tell for sure from Figure 6.8 that we are on the fast read path because the
file operation counts in the System object are nearly all zero. This means the I/O
manager is diverting requests to the cache and it rarely needs to get the file system
involved in data retrieval or deposit. We see 1405 system calls for every 338 reads,
for four system calls per read. We happen to know that there is a write for every
read because that is what we told the probe to do, and we’ll get a seek for every
read because that’s what the general algorithm in the probe does.

The system needs to perform a seek for the write to get back to the start of the latest
read so we can rewrite the record. It’s not hard to see why there are four system
calls per read. The WAP tool we discuss later in Chapter 10 would be a more direct
way to determine application file activity.



Chapter 6 Detecting Cache Bottlenecks

193

Look at how efficient data flushing is. Although we are doing almost 338 reads per

second and the same number of writes, the lazy writer is only waking up about 3
times per second and writing 15 pages each time. The System process is only

using 3.3% of the time to do all this. The following figure shows the threads of the
System process. That process is using very little processor time to eject these pages.
The threads most involved here are the lazy writer thread, the mapped page writer
thread, and the modified page writer thread (clearing memory for the cache). If the
system is creating a file, the demand zero thread works to create page frames filled

with zeros. If memory is tight, the working set manager thread works to trim

working sets to make space.

File Edit View Options Help

Computer: \\WALKINGDOG
Object: Process

% Privileged Time

% Processor Time

% Usert Time

Elapsed Time

File Control Bytes/sec
File Control Operations/sec
File Read Bytes/sec

File Read Operations/sec
File Wiite Bytes/sec

File Write Operations/sec
ID Process

Page Faults/sec

Page File Bytes

Page File Bytes Peak
Pool Nonpaged Bytes
Pool Paged Bytes

Priority Base -

Private Bytes

Thread Count

Virtual Bytes

Virtual Bytes Peak
Working Set

Working Set Peak

System
3.309

98304.000

194676.000

61746.000
8.000
32768.000
15.000

516096.000
5839824.000

12288,000

Figure 6.9 Lazy writing by the System process is truly lazy



194

Optimizing Windows NT

File Edit View O

BRsE

ptions Help

Computer: WWALKINGDOG System System System System System
Object: Thread 1 2 3 8 9
% Privileged Time 1.103 . 1.103 0714 0227 0195
% Processor Time 1.103 1.103 0.714 0.227 0.195
% User Time 0.000 0.000 0.000 0.000 0.000
Context Switches/sec 2.855 3178 2.984 0.800 1.146
Elapsed Time 2655.600 2655.600 2655.600 2655570 2655.570
1D Process 7.000 7.000 7.000 7.000 7.000
1D Thread : 6.000 5.000 4.000 39.000 38.000
Priority Base 8.000 8.000 8.000 8.000 8.000
. Priority Current 16.000 16.000 16.000 17.000 16.000
Start Address 2148793542 2148793542 2148793542 2148840710 2148852502
Thread State 5.000 5.000 5.000 5.000 )

Thread Wait Reason 0.000 0.000 0.000 7.000

Figure 6.10 System process threads divide the lazy work up

Let’s see how the disk fares under all this pressure. Figure 6.11 shows disk
behavior and how that behavior relates to cache and virtual memory activity. Let’s
continue to look at the output side. If we add Cache: Data Flush Pages/sec and
Memory: Pages Output/sec we get 50.605 per second. Multiplying by 4096
bytes/page gives 207208 bytes per second, quite close to the 210955 Write
Bytes/sec the disk drive is seeing. The reason the lazy writer thinks more pages are
written is that after they have been handed to the data flusher, they are handed to
the memory manager. It’s the memory manager that makes the ultimate decision
about whether the page is still dirty or not. So some lazy write flushed pages may
already have been written by the memory manager by the time the data flusher tries
to write them.



Chapter 6 Detecting Cache Bottlenecks 195

SEMonior

File Edit View 'thions ﬁelp

BREE +HEX (e

D

Computer: \\WALKINGDOG 0
Object: LogicalDisk C:
% Disk Read Time

% Disk Wiite Time 160000

Avg. Disk Bytes/Read 52051.117
Avg. Disk Bytes/Write 42045.793
Avg. Disk sec/Read 0141
Avg. Disk sec/Wiite 0.207
Disk Read Bytes/sec 173352.368
Disk Reads/sec 3330
Disk Transfers/sec . 8.348
Disk Wirite Bytes/sec 210954.862
Disk Wiites/sec 5.017

Object: Memory

Page Reads/sec 2790
Page Wiites/sec 0.303
Pages Input/sec 42322
Pages Output/sec 4.844
Pages/sec 47.167

Object: Cache

Data Flush Pages/sec 45.761
Data Flushes/sec 2.984
Lazy Wiite Flushes/sec 2.963
Lazy Wiite Pages/sec 46.583

Figure 6.11 Disk response to cache activity during sequential read/writing

On the read side of the fence, we see the Memory: Pages Input/sec = 42.322, which,
multiplied by the page size, gives 173392 bytes input per second. This is so close to
the 173352 Disk Read Bytes/sec that we are in ecstasy (recall the 9th Rule of
Bottleneck Detection). ‘

Looking at Avg. Disk Bytes/Read and Avg. Disk Bytes/Write we see fairly high
numbers, which is good. But because the lazy writer is trying to write 64K chunks
on sequential output, it’s a shame the Avg. Disk Bytes/Write are not that high.
What'’s going on here? The next figure really tics a bow around this issue.



196

Optimizing Windows NT

Computer
\WALKINGDOG

1.000 Pages Output/sec
1.000 Data Flush Pages/sec MWALKINGDOG
011 ilable Bytes MWALKINGDOG -

T

Figure 6.12 Memory manager and cache manager make sweet music together

The memory manager’s work is shown as Memory: Pages Output/sec in the thin
black line. Notice how it has five spikes. Let’s consider them one at a time, moving
from left to right. The first spike emits 48 pages (in three writes but we can’t show
everything on one chart), adds to Available Bytes, and takes little from the cache.
The cache manager is trying to write 48 pages each second (also in three data
flushes, as we have seen) but right after the memory manager writes its 48 pages,
the cache manager backs off to 30 pages for a second. In the next spike, the memory
manager writes some more data, this time having taken some pages from the cache
(white line). But we know it took pages from other working sets as well because the
increase in Available Bytes is greater than the decrease in Cache Bytes. In reaction
the cache manager again writes fewer than the normal 48 pages as a net result of
the next three seconds of activity.

In the third output, the memory manager backs off to writing out only 32 pages.
This time the cache supplied most of the Available Bytes. In the fourth spike of 32
pages, nearly all of the memory taken comes from the cache. The memory manager
sees that it is not making headway, but gives it one last try, extracting 16 pages
from the cache, and a few seconds later the cache manager again writes fewer pages
to the disk in its flush.



Chapter 6 Detecting Cache Bottlenecks

197

Reading and Writing Randomly

So much for sequential file processing, now that we understand its cache behavior
better than we ever wanted to. Let’s look at how the cache behaves when we access
about 3 MB of this file with a normal distribution, first reading a 4096 byte record

and then writing it. This wreaks the havoc shown in Figure 6.13.

File Edit View Options Help
@@eE +EX] @)
100 ¥
wf 4
gof ;| P
ol ;
)|/ 5
sl |
0 }'"‘:."‘ : i
Last| 2555904 Average| - 2157476 Min| 1015808 Max| ~ 2883584 GraphTime|[  117.000°
Color .~ - Scale Counter - .. Instance . Parent Object Computer
— 1.000 % Processor Time 0 Processor \\WALKINGDOG
UDQQU_‘IU Available Byt M \\WALK[NGQQ@
i (ATERREAE
1.000 % Disk Read Time [ 0 LogicalDisk \WWALKINGDOG
1.000 % Disk Write Time C 0 LogicalDisk MWALKINGDOG

Figure 6.13 Havoc reigns over random read/writing



198

Optimizing Windows NT

The scary thing is that Figure 6.13 might make sense to you now. The highlighted
line is Memory: Cache Bytes and we see the cache growing as the test case
proceeds. The dotted line is % Disk Read Time. It starts out at a quite busy level
and, as the cache is filled with data, it drops off. The thin black line is % Disk
Write Time. It spends more time near 100% as the cache is filled with data. This is
because the less time we spend going to disk to read the data (because it is in the
cache), the more rapidly we write the records, and the more output activity we
create. The heavy black line measuring % Processor Time increases steadily as we
fill the cache and we wait less for the disk. The other heavy black line measuring
Available Bytes stays relatively level, indicating the cache is getting its new space
from inactive working sets, as shown in the next chart.

File Edll Vlew Oplmns Help
2| [(HEX] (=

\\WALKINGDU |
i e U
] 0. 000010 Working Set csiss \\WALKINGDDB
— 0.000010 Working Set PERFMON Process \WALKINGDOG |
= 0.000010 Working Set PROBE - Process \WWALKINGDOG id

Figure 6.14 The cache steals much needed pages from other working sets



Chapter 6 Detecting Cache Bottlenecks 199

In Figure 6.14 it is clear where the cache is getting its space. You can see that each
time space is trimmed from the working sets, it is added to Available Bytes. The
CSRSS working set is reduced in size until it is held by the memory manager at
about 2 MB to assure some screen responsiveness. The working set of Performance
Monitor is reduced until it reaches the level it needs to maintain logging. The
working set is trimmed a bit too far, and you can see a little blip where a few pages -
are retrieved (by a soft fault) back into the working set. Pages trimmed after that
are immediately retrieved so we see no further trimming. The Probe process is the
master process controlling Response Probe, and is inactive during the test, so it
completely loses its page allocation. We see the process wake up and bring them
back in (causing page faults) at the end of the test on the right of the chart.

1-1-

File Ed|t Vlew 0
.@% L___ fj!}{]lwi’:a!

Computer: \WWALKINGDOG
LObject: Cache

=[ , Hain
ptmns Help

Async Copy Reads/sec

Async Data Maps/sec

Async Fast Reads/sec

Async MDL Reads/sec

Async Pin Reads/sec

Copy Read Hits %

Copy Reads/sec

Data Flush Pages/sec

Data Flushes/sec

Data Map Hits %

Data Map Pins/sec

Data Maps/sec

Fast Read Not Possibles/sec
Fast Read Resource Misses/sec
Fast Reads/sec

Lazy Wiite Flushes/sec

Lazy Write Pages/sec

MDL Read Hits %

MDL Reads/sec

Pin Read Hits %

Pin Reads/sec

Sync Copy Reads/sec

Sync Data Maps/sec

Sync Fast Reads/sec

Sync MDL Reads/sec .
Sync Pin Reads/sec i

Figure 6.15 Cache statistics for normally distributed read/writing



200

Optimizing Windows NT

The next two figures display cache statistics. We see a lower Copy Reads/sec in
this case than during sequential reading, because the cache manager can anticipate
sequential read requests more effectively than this normal distribution. Figure 6.15
is also a strong exemplar of the 10th Rule of Bottleneck Detection: Averages reveal
basic truths while hiding important details. Figure 6.16 shows why.

7000 Copy Read Hits % . Cache \WALKINGDOG

For-] 0100000 Copy Reads/sec Cache \\WALKINGDOG
1 DEII] Data FIushes/sec Cache \\WALKINGDEIG%

s 5 e Ve

Figure 6.16 Cache statistics during normally-distributed reading and writing

Here we can see the heavy black line of the Copy Read Hits % rising nicely as the
experiment progresses. The Copy Reads/sec starts out quite low, but rises as the hit
rate improves. Likewise, the Data Flush Pages/sec (in white) rises on the right side
of the chart. They also continue beyond the end of the experiment as the lazy writer
clears the cache of dirty data.



Chapter 6 Detecting Cache Bottlenecks 201

File Edit View Options Help
BREE FEX @ @&

Computer: \\WALKINGDOG
Object: Cache

=T

hﬁ(*{ﬁf

Copy Read Hits % £

Copy Reads/sec 157.570
Data Flush Pages/sec 42.346
Data Flushes/sec 9101
Data Map Hits % 94.872
Data Maps/sec 0.377
Fast Reads/sec 157.541
Lazy Wiite Flushes/sec 9101
Lazy Write Pages/sec 42569
Pin Read Hits % .. 97.403
Pin Reads/sec 0.744
Sync Copy Reads/sec 157.570
Sync Data Maps/sec 0.377
Sync Fast Reads/sec 157.541
Sync Pin Reads/sec 0.744

Object: Memory

Cache Faults/sec 38.839
Page Faults/sec 44,791
Page Reads/sec 8.019
Page Wiites/sec 0.193
Pages Input/sec 8.406
Pages Output/sec 3.092
Pages/sec 11.497
Transition Faults/sec 8.019

Figure 6.17 Memory manager and cache during normally-distributed reading and
writing

Figure 6.17 shows how the memory manager’s statistics compare to those of the
cache. Cache Faults/sec are a subset of the Page Faults/sec. You can tell the bulk
of the memory management activity is due to the cache activity because the Cache
Faults/sec at 38.8 account for most of the 44.8 Page Faults/sec. Obviously, quite a
few of these are soft faults, because the number of Page Reads/sec is only 8.0.
Furthermore, we can see the lack of sequentiality in the read operation because
there are 8.4 Pages Input/sec. Not many pages are being acquired on each read.



202

Optimizing Windows NT

Looking at the output side, because Data Flush Pages/sec is at 42.3 and Pages
Output/sec is at 3.1, the cache is clearly doing almost all the output. In fact, we
have seen this pattern before: because Page Writes/sec is only 0.2 and Pages
Output/sec is 3.1, there are really 3.1/0.2 or 15.5 pages written on each memory
management output. The memory manager is getting in there and occasionally
trimming working sets again, and getting almost 16 pages to write each time to disk.

File Edit View Options el
BABE FEX] |[=[s)

Computer: WWALKINGDOG
Object: Cache

Data Flush Pages/sec 42.346
Data Flushes/sec 9.101
Lazy Wiite Flushes/sec 3101
Lazy Wiite Pages/sec 42.569
Object: Memory
Cache Faults/sec - 38.839
Page Faults/sec 44791
Page Reads/sec 8.019
Page Wirites/sec 0.193
Pages [nput/sec 8.406
Pages Output/sec 3.082
Pages/sec 11.497
Transition Faults/sec 8.018
0
Object: LogicalDisk C:
% Disk Time 100.000
Avg. Disk Bytes/Read 4176.290
Avg. Disk Bytes/Wiite 17544.502
Avg. Disk sec/Read 0.069
Avg. Disk sec/Wiite 0.119
Disk Bytes/sec 219737.483
Disk Reads/sec 8.009

Disk Wiites/sec

Figure 6.18 Disk statistics during normally-distributed reading and writing

Disk statistics for this test are illustrated in Figure 6.18. Notice the relatively long
Avg. Disk sec/Write. Hey, it’s just a laptop, remember? But looking back to Figure
6.2, when we characterized the disk speed by reading a single record, we can see
that simple read time is not bad. Looks like it’s seeking that slowed us down here.
In the design of this laptop, the manufacturer made a tradeoff to seek a little less
quickly than on desktop systems. Just think of all those extra hours of battery life
they got in return for this decision!



Chapter 6 Detecting Cache Bottlenecks 203

Mapping Files Into Memory

There is a way for applications to access file data that is even faster than using the
file system cache. By mapping a file directly into its address space, an application
can access the data in the file like an array and need never call the file system at all.
This avoids all the overhead associated with the file system call and the search of
the cache. The next table shows our little laptop’s performance while accessing the
file as we did earlier in the chapter, this time adding memory mapping as an access
mode. The times shown are

Table 6.2 Memory Mapped vs. File I/O Times in Milliseconds per Record ‘

Type of Non-cached

file access Operation time Cached time Mapped time
Sequential Read 6.58 1.32 0.75
Sequential Write 2291 1.70 0.64

Random Read 20.45 - 151 _ 0.97

Random Read/Write 40.66 3.16 1.31

File activity just doesn’t get any faster than that! But memory mapping of files is
not always advisable. For one thing, you’d have to recode an existing application
to get rid of all those old-fashioned file system calls. Although the resulting code
would be simpler, you must weigh this against taking the time and effort to recode
an existing application. Another tricky tradeoff occurs when access is strictly
sequential; the cache uses much less memory to read the file, as we have seen.
Also, using memory mapping means that you lose access to the file system
synchronization modes such as file locking or the more exotic opportunistic locking.
This means that any multiple writers of the file, whether they be threads inside a
process or multiple processes sharing the file, must coordinate their access using
mutexes. And if there is any possibility that the file might be remotely accessed by
multiple processes which are writing to the file from different computers, you must
invent an inter-process synchronization mechanism which might obviate the
performance advantage you got from memory mapping in the first place.

In cases where you decide to map files into memory, it’s a clear winner in speed.
Performance Monitor uses memory mapping for accessing the log file when it is
reading it for reprocessing. Because access to the file might be random, this is just
the sort of task which benefits from memory mapping. Conversely, output of log
files is done through the normal file system calls because the cache can detect the
sequential nature of the output and can therefore use memory more efficiently
writing files created in this fashion.



204

Optimizing Windows NT

The principal difference in the behavior of the system between using mapped and
unmapped files is that mapped files go directly into the working set of the process,
while, as we have seen, buffered files go into the “working set” of the file system
cache. When a process maps a file into its address space, it might use quite a bit of
RAM to hold the file. But from the memory manager’s viewpoint, it really doesn’t
make too much difference whether the working set of the process or the working
set of the cache gets the page that’s faulted in. The real elegance of the memory
management scheme on Windows NT is exemplified in this point, which is
illustrated by the next experiment.

We start two processes, each accessing a file with normally distributed record
access. First the distribution covers 1 MB, then 2 MB, 3 MB, and so on up to 8
MB. One process reads the file using the file system calls, and the other maps the
file into its address space. The results are displayed in the next two charts. The first
four trials with working sets from 1 to 4 MB are shown in Figure 6.19, and the next
four trials with working sets from 5 to 8 MB are shown in Figure 6.20.

Flle Edit View Options Help

(= U 00001 0 Worklng Set GENIUS - Process MWALKINGDOG !
— EI 00001 0 Avaxlable Bytes Memory MWALKINGDOG |
peser] 1.000 Pades/sec Memory MWALKINGDOG |

Figure 6.19 Competing processes using mapped and file system reads



Chapter 6 Detecting Cache Bottlenecks 205

ﬁ!‘ '1 ‘_]

i

(o]
Q
£

skm-

[ R B

]

ST TS SN

g g
L

3 ' 3 : “. , f \ !
e et o A > I //’ : o 7
30 —M‘j_l;«” SRR A \ / b \-. AR NE ;\vzr Y
20— ILENS Ja\ - A A -
S AN U L g i
0 o “ _ ;\'.. o i o o \:'—‘
Color . Scale Counler, G ... Instance Parent . Object Computer
rm—— 000010 Working Set GENIUS Process \\WALKINGDUG
t— 0.000010 Available Bytes Memory \\WALKINGDUG
----- 1.000 Pages/sec Memory \\WALKINGDOG

J

Figure 6.20 More competing processes using mapped and file system reads

In the beginning, the highlighted cache has a slight size advantage, but as the
working sets get larger, the process in heavy black begins to get ahead. The
thin black line shows Available Bytes declining, and the dotted line shows that
Pages/sec are rising as the experiment progresses. By the time the normal
distribution covers 8 MB, the paging rate on this laptop is shaking it nght off
your lap.

These charts seem to indicate that the memory manager is favoring the process’s
working set over that of the cache. To some extent this is true. In general, the
code and data referenced directly by processes is more crucial to good application,
performance than the file data in the cache. The cache tends to get the space not
needed by processes. It certainly gets any unused space, as we saw when it took
pages trimmed from inactive working sets. When processes are active, however,
they tend to do a bit better than the cache, as in this case. But the result is not
overwhelmingly in favor of the process, as the next figure shows.



206

Optimizing Windows NT

SaiE

24l Mk e
Edit Gallery Chart Format Macro Window Help

ol

Response Time vs. Working Set Size

700

600

500

Time 400
(milliseconds) 300 I

Mapped
M Buffered

1 2 3 4 5 6 7 8
Normal Distribution (megabytes)

Figure 6.21 Response time for mapped and buffered competing processes

Figure 6.21 shows each process’s response time as measured by Response Probe
during this experiment. The mapped access is faster in the beginning, as we saw in
Table 6.2. Then, as the paging increases, and disk access time becomes a significant
component of the response time, the two processes’ performance evens up. The

fact that the working set of the process doing mapped access is a bit larger is not a
significant advantage. This indicates that the policy of the memory manager is
perfectly balanced.

In the next chapter we discuss how you tune memory manager to favor either the
cache or the application in specific circumstances.

Tuning the Cache

If you are running Windows NT Server, you can tune cache vs. process working set
behavior by using the Network option of Control Panel. After choosing the Network
icon, in the Installed Network Software list box select Server and choose the
Configure button. In the Server dialog box, select Maximize Throughput for File
Sharing, to favor the cache. To favor process working sets, select Maximize
Throughput for Network Applications.



207

CHAPTER 7

Detecting Network Bottlenecks

‘When Pandora opened her box, the first form of Chaos to emerge was the computer
network. To begin with you’ve got your client and your server, or possibly hundreds
or thousands of them. To this you add the transmission media, the network adapter
cards, and possibly multiple network protocols. Inside this complex mixture of
equipment and logic lurks the bottleneck.

One good thing about searching for network bottlenecks is that everything we have
covered in the previous chapters of this book still applies. A server that has a disk
bottleneck because memory is too tight is still a computer that has a disk bottleneck
because memory is too tight. The fact that it is a server just makes it more annoying
because more people are affected. So what you’ve learned thus far is not wasted,
we just have to add a bit more knowledge. We need to look at the counters that
reflect on network traffic and gain some understanding of their capacities under
various configurations. Only then can we submit our application for the Nobel Prize
for Bottleneck Detection.

We are limiting the scope of this chapter so it does not become a book in itself
(which it easily could be). We want to cover the principles and techniques of
network bottleneck detection for a few common cases so that you will be able

to apply these techniques in your own case. For example, we won’t be trying to
cover wide-area networks (WANS). The analysis of WANSs is much the same as the
analysis of local-area networks (LANS), although the choice of a protocol’s window
sizes (the number of packets within which a response is expected) is a crucial
determinant of performance when crossing from LANSs to lower-bandwidth WANs.



208 . Optimizing Windows NT

The most common transmission media of LANSs are Ethernet and token ring. We’ll
only look at Ethernet here but the principles also apply to token ring.

In Appendix B we list the Configuration Registry parameters that control many
details of how the network runs. These are only provided for reference. In general
you will never have to change these values. If you suspect you might want to adjust
a value listed there, we urge you to experiment with your configuration using the
techniques and tools presented here.

Windows NT ships with a number of protocols. The ones with counters in
Performance Monitor include NetBEUI, TCP/IP, AppleTalk, and a Novelle
NetWaree-compatible protocol providing NWLink IPX/SPX capabilities. Mostly
we’ll be using NetBEUI for illustration but we’ll glance briefly at the counters used
by TCP/IP and NWLink. You may even be using a protocol that had extended
object counters added into Performance Monitor when it was installed. If so, you
will undoubtedly find that the guidelines discussed here apply to your situation.

We also cannot possibly discuss all the counters in all the network protocols.
We will try to expose the essential counters. Then you will be able to solve the
important problems, and become familiar with the other counters over time as
they vary in your environment.

A Profile of Network Throughput

First, let’s see how the client and the server look when we have an isolated network
with just the two computers connected. We want to use unbuffered reads from a file
so we can bypass the cache on the client side. This will not bypass the cache on the
server, however, so if we reread the same record over and over, we’ll hit the cache
on the server side every time. By increasing the record size we can get a pretty clear
view of how much data a single client can pump across this isolated network. The
server is a 66-MHz Intel Pentium with 32 MB of RAM, and a Novell NE3200
Ethernet controller on the motherboard. The client is a 486/33 with 16 MB of RAM
and a Novell NE3200 network adapter. The media is thin cable Ethernet. We’ve
selected the NetBEUI protocol for now. .



Chépter 7 Detecting Network Bottlenecks 209

Since we are doing unbuffered reading, we must read in multiples of our disk sector
size. We'll start with 512-, 1024-, 2048-, and 4096-byte reads, and then increase in
4096-byte increments up to 64K records. The resulting NetBEUT: Bytes Total/sec

from the client’s side is shown in Figure 7.1.

R

<[ b Dt

File Edit View Options Help

FER] (=]

. Parent "

Object -

Figure 7.1 Client’s view of a network throughput test

T Scale’ Counter PR Instance
| ~0.000100 Bytes Total/sec \Device\Nbf_NE: -~ NetBEUI I
=l .....1.000 %Pivieged Tme O e PIOCESSOE - AMERCURY
ey

The throughput as measured by NetBEUI: Bytes Total/sec climbs as we increase
the record size. (If we had multiple network cards installed, each would be an
object instance and we would see a different such value for each card.) We have
charted % Privileged Time, which we shall see accounts for nearly all the processor
time. During application of the test cases, the processor usage rises to a plateau.



210

Optimizing Windows NT

Before we take a closer look at what is going on here, let’s see how the server fares.

Figure 7.2 Server’s view of a network throughput test

Notice the throughput matches the client side (it had better!), but the processor
utilization is much lower on this side. Unlike on the client, the processor utilization
on the server is pretty constant.

Let’s begin by explaining what is in these throughput charts. The throughput rises
in an almost linear way up to a record size of 4096 bytes. Then at 8192 bytes we
get just little more throughput than at 4096 bytes. This is because the Redirector
file system treats a request of 8192 bytes as two 4096-byte requests. Since we don’t
have to go back through the application program and the I/O system for the second
4096 bytes, we get only a very slight boost over the 4096-byte case. But with 3-
page transfers we get a significant jump, because the protocol switches to what are
called large reads. This is a more efficient protocol as long as the server has buffer
space to handle the request, which is surely the case 1n this test. We’ll look closely
at a case of large reads later in this chapter.



Chapter 7 Detecting Network Bottlenecks 21

First let’s look at the 2048-byte transfer. We narrow the time window to focus in on
the 2048-byte case. In the next two figures we present first the client’s view of this
activity, then the server’s view.

Note For NetBEUI we are showing only the non-zero counters in these
illustrations. This does not mean the other counters are not useful. In fact, knowing
that the failure counters are zero removes an important potential bottleneck source
from consideration. It just means these counters are not useful for the analysis of
this rather sterile environment test case.

NetBEUI: Bytes Total/sec normally includes both frame-based activity and
datagram activity. (When frames are sent across the network, they are expected

to be acknowledged by the receiver, and are re-sent by the sender if not
acknowledged, while datagrams are just sent with no expectation of an
acknowledgment and no retransmission in case of failure.) Datagram counters can
be a major indicator of activity. By knowing which applications use datagrams, you
can get a clue about which ones are causing the majority of your network activity.
Because no process is sending datagrams in our example, we omitted the datagram
counters from Figure 7.3.

File Edit View Options Help

B@clg] =l (&) e e
Computer: WMERCURY 2]
Object: NetBEUI \Device\Nbf_NE20001 :

Bytes Total/sec

Connections Open 1.000
Frame Bytes Received/sec 411345.938
Frame Bytes Sent/sec 11709.636
Frame Bytes/sec 423055.563
Frames Received/sec 390.271
Frames Sent/sec 195.161
Frames/sec 585.432
Packets Received/sec 330.471
Packets Sent/sec 195,186
Packets/sec 585,657
Piggyback Ack Queued/sec 195.211
Pigayback Ack Timeouts 53.000

Object: Cache

Copy Reads/sec v 0.000
Object: Processor 0
% Privileged Time 36.338
% Processor Time 37.678
[nterrupts/sec 512141

Object: System
File Read Operaticns/sec 195.560 e

Figure 7.3 Ciient’s view of unbuffered reading of 2048-byte records



212

Optimizing Windows NT

ek
File Edit Yiew Options Help
8 X (@i
. 2
Computer: \\SOL

Object: NetBEUI \Device\Nbf_NE32001
Bytes Total/sec
Connections Open
Frame Bytes Received/sec 11718.122
Frame Bytes Sent/sec 411731.813
Frame Bytes/sec 423450.938
Frames Received/sec 195.313
Frames Sent/sec 390,637
Frames/sec 585.956
Packets Received/sec 195.394
Packets Sent/sec 390.712
Packets/sec 586.106
Piggyback Ack Queued/sec 195.319
Piggyback Ack Timeouts 9.000
‘Window Send Average 1.000
‘Window Send Maximum 10.000

Object: Cache
Copy Read Hits % 100.000
Copy Reads/sec 195.319

Object: Processor 0
% Privileged Time 7.950
% Processor Time 7.950 5
Interrupts/sec 795.779 .-:

Figure 7.4 Server’s view of unbuffered reading of 2048-byte records

NetBEUI: Bytes Total/sec is a key indicator of network throughput. This only
includes bytes in data frames and not other bytes sent as part of the protocol,

such as stand-alone acknowledgments (called ACKs). Bytes Total/sec includes both
incoming and outgoing data frame bytes. As an average, it’s a victim of Rule #10:
it reveals basics while hiding details.

Since the Response Probe does not use the cache on the client side, the System:
File Read Operations/sec value gives us a clear indication of the file read activity.
This is nearly identical to the Frames Received/sec. Dividing Frame Bytes Sent/sec
by the Frames Received/sec we get 59.9999; perhaps we can take a risk and invoke
Rule #9 and call that 60. This is the basic minimal data frame for NetBEUL This
frame holds the entire request for our data. Similarly, dividing Frame Bytes
Received/sec by Frames Received/sec we get 2107.7, which is 2047.7 + 60, or
within Rule #9 of our requested record size of 2048 plus the basic frame size.



Chapter 7 Detecting Network Bottlenecks 213

There is one packet sent for each frame sent, but there are two packets received
for each read request (390.471/195.560 = 1.9967). That’s because Ethernet has a
maximum packet size of 1514, so it takes two packets to send the 2108 bytes back. -

Average packet size received is Frame Bytes Received/sec divided by Packets
Received/sec, or 1053.46, or about half of the 2108 as we might expect for an
average. We can also see that we are not hitting the cache on the client at all,
which is good, because that is what we want to do in this experiment. We are using
37.678% of the client processor to do all this, and have a pretty healthy interrupt
rate (the at-rest interrupt rate on this system with Performance Monitor running at
five-second intervals is 114 interrupts per second). We'll get back to the issue of
interrupts in a moment. It turns out to be a key point.

Let’s take a look at the server. The server side is a close mirror of the client side.
We did not collect both systems’ data into one log file because we did not want to
add to the network traffic during this test, so the two time windows do not coincide
precisely. (Even if we had, exact synchronization of Performance Monitor data
from two computers is not possible, as we noted in Chapter 2.) Nonetheless, we
see pretty good agreement between the client and the server, as we expect in such a
steady-state test. The server is hitting the cache on every read request. It is getting
just a few more interrupts but has significantly lower processor utilization.

The next two figures show how the redirector and the server software see this
activity. On the client side we divide the Redirector: Bytes Received/sec by
Redirector: Packets Received/sec and get 2108, which must be the 2048 bytes

we are requesting plus the 60-byte basic frame. The redirector considers the whole
request and the whole reply as a single “packet.” This is obviously not a packet in
the NetBEUI sense. Keep this in mind when looking at these statistics.



214

Optimizing Windows NT

The redirector is also not a separate process. Very nearly all the % Processor Time
spent in processes is accounted for by the Ideagen process, which is the name of our
probe application process reading the records. The redirector is just a file system
invoked by the I/O manager inside the address space of Ideagen. Yet there is a large
gap between the Processor: % Processor Time and the Process: % Processor Time
of Ideagen. We’ll have to come back to this, but let’s take a look at the server

software’s view first.

file

EBluial

Computer: \\MERCURY
Object: Redirector

Edit View Options Help

Bytes Received/sec

Bytes Total/sec

Bytes Transmitted/sec
Connects Windows NT
Cunent Commands

File Data Operations/sec
File Read Operations/sec
Packets Received/sec
Packets Transmitted/sec
Packets/sec

Read Bytes Network/sec
Read Bytes Non-Paging/sec
Read Dperations Random/sec
Read Packets/sec

Server Sessions

Object: Processor
% Privileged Time
% Processor Time
% User Time

Object: Process
% Piivileged Time

% Processor Time
% User Time

411398.563

390.321
399688.906
399688.906

195.161

36.398
37.678
1.275

ideagen
10.275

11.200
0.925

PERFMON

0.275
0.475
0.200

Figure 7.5 Redirector’s view of reading 2048 bytes




Chapter 7 Detecting Network Bottlenecks 215

=

Eile Edit View Options uel;

+
Computer: W\SOL B
Object: Server .
Bytes Received/sec 11719122
Bytes Total/sec 423450938
Bytes Transmitted/sec 411731.813
Context Blocks Queued/sec 195.319
Files Open 5.000
Files Opened Total 768.000
Pool Nonpaged Bytes 178436.000
Pool Nonpaged Peak 183108.000
Pool Paged Bytes 11246.000
Pool Paged Peak 31468.000
Server Sessions 1.000
Object: Processor 0
% Privieged Time 7.950
% Processor Time 7.950
% User Time 0.000
Object: Process System PERFMON setvices
% Privileged Time 0.225
% Processor Time 0225
% User Time 0.000 g
Object: Network Segment "“
Total byt ived/second
al bytes received/secor rE
3 D

Figure 7.6 Server’s view of reading 2048 bytes

The server’s side of things holds no surprises. As we noted in an earlier chapter,
the server process has the name System. Dividing the Bytes Transmitted/sec by the
Context Blocks Queued/sec gives the number 2108. By now, this is a familiar
number. The Processor: % Processor Time is over 50% higher than that of the
server process, so we see a gap similar to the one we saw on the redirector side.

The Network Segment object measures all traffic on the segment of the network
attached to the indicated adapter, independent of which system sends or receives it.
This object can be monitored from any computer on the segment. The Network
Segment Object measures the effects of all packets. Network Segment: Total
Bytes/sec is a bit higher than Server: or NetBEUI: Total Bytes/sec, because ACK
(acknowledgment) packets are included.



216 Optimizing Windows NT

A Simple Model of a Network Bottleneck

Figures 7.3 and 7.4 correspond to the third peak on the left of Figures 7.1 and 7.2.
(The first two were for 512 and 1024 bytes, respectively, and this one is for 2048
bytes.) Clearly, if we increase the record size requested, throughput increases. Can
we determine what the bottleneck is from this data? Let’s give it a try. (If you
thought Rule #7 about counter ratios wasn’t important before this, just wait!)

Let’s define our interaction as one read. The time fof this read is one divided by
the System: File Read Operations/sec, or 0.005114 seconds. A simple model of this
interaction would be:

= Some processor time on the client

= Some media time to transmit the data request to the server
= Some processor time on the server

= Some media time to transmit the 2108 bytes back

»  Finally, some processor time on the client to get the data into the application’s
buffer.

Assuming for the moment there is no overlap between media transmission and
processor time, this reduces to just (client processor time) plus (media time) plus
(server processor time).

The server processor time used in one second is just the Processor: % Processor
Time expressed as a number between O to 1, or 0.07950 seconds. On the client this
is 0.37678 seconds. Dividing each of these by the number of reads per second gives
the server and client processor time per read as 0.0004065 seconds and 0.0019267
seconds, respectively.

Each read transfers 2266.793 bytes, (we get this by dividing Network
Segment:Bytes Total/sec by Frames Total/sec). The media (Ethernet in this case)
transmits at 800 nanoseconds per byte, so we multiply that by the number of bytes
per read and get 0.001813 seconds per interaction. Now, summing server processor
time, client processor time, and media time, according to our simple model, we get
0.004147.

This 0.004147 is 0.000967 or 967 microseconds less than the 0.005114 seconds
for each file read operation. We must conclude that our simple model is a bit

too simple. It seems that we forgot the network adapter cards. Since these are
identical on both client and server systems, we can assume each takes half of 967
or 483.5 microseconds to process the packets for each record. By doing a similar
computation on 512-byte records and fitting a line to the result using linear
regression (for once we won’t bore you with the details) we determine that the
network adapters are taking 50 microseconds per packet and 216 nanoseconds for
each byte in the file operation.



Chapter 7 Detecting Network Bottlenecks 217

The Mystery of the Missing Time

This is all well and good, but we don’t yet know who is really using all that
processor time. We can see that it is used, but we can’t see it all in any process.
The answer is in the high interrupt rates observed during network or serial data
communications activity. Time in interrupts is not billed to the thread or process
that is running, but it is counted in overall processor usage. When there are lots of
interrupts, this can grow to be the majority of the Processor: % Processor Time. In
the following figure we show the relationship between overall processor usage and
time in the user process, as well as interrupt rate. Since most of the time is in
privileged mode, we can chart privileged mode time, and thus avoid some annoying
user mode spikes caused by the Response Probe calibration.

‘ File Edit View Options Help

— 1.000" % Privieged Time
—— 1.000 % Privileged Ti
i/ 0.010000 Intenupts/sec

Processor
Process

Figure 7.7 Processor usage on the client side while reading

We see the Ideagen privileged mode processor time (thick black line) fall off as the
record size increases. But overall processor utilization increases. We can conclude
from this that we are spending more and more time in each interrupt. Why? The
larger records must be copied to Ideagen’s buffer, and this is done at interrupt time.
As the average transmission size increases, so does the amount of time in the
client’s interrupt handler. The Interrupts/sec declines slightly until we start doing
the large read protocol, at which time it levels off. Now let’s take a look at the
server to see what’s happening there.



218

Optimizing Windows NT

1.000 %PloéessovTime L ' ] Prﬁc'e:sor“
1.000 % Processor Time Process
- 0.100000 Intennupts/sec 0 Progessor

Figure 7.8 Processor usage on the server during client reads

In this chart we changed the scale factor for Interrupts/sec to 0.1 from the

default value of 0.01, or it would have blocked the % Processor Time line. ?
Qualitatively, the picture is similar to the picture of the client side; more work in the
interrupt handler when the records are longer. But especially at the larger transfer
sizes, the work split is not quite so dramatic.

Where is the bottleneck here? The definition of bottleneck is the device with the
most demand during the interaction. In this case, the bottleneck is the client

processor with 0.0019267 seconds per interaction. It is not, however, utilized
100%, but only 37.678%.

Why? Its activity is in sequence with the media, the adapter cards, and the

server. Sequencing is an important limitation on the utilization rate of hardware
components. When devices operate in sequence, they cannot be fully utilized.

Or, looking at it another way, 37.678% is in this case fully utilized if the other
devices are held constant, because the other two devices take 1 - 0.37678 =
0.62322 seconds out of every second. And until they finish, the client is in a forced
idle state. When there is sequencing, the bottleneck is still the device with the
greatest demand. Making one of the other devices faster can improve throughput,
but to a lesser degree than improving the bottlenecking device.



Chapter 7 Detecting Network Bottlenecks 219

Generallzmg Network Bottleneck Detection

Stay with us for a moment longer and we’ll get the rest of this network bottleneck
detection sorted out. Let’s take a look at those interrupt rates. Let’s assume for a
moment that the interrupts always occur when the processor is idle. This is not a
good assumption in all cases, but it mostly holds in this experiment.

On the server side we have total processor utilization of 7.950%, and processor
utilization by the System process of 3.550%. Subtracting the utilization by the
server process from the total processor utilization tells us that the interrupts

took 0.04400 seconds. When the system is at rest logging at 5-second intervals, the
interrupt overhead is negligible. So let’s subtract the at-rest interrupt rate

of 106 interrupts/sec on the server from the interrupt rate of 795.779, giving
689.779 interrupts/sec due to the experimental activity. Since there were 689.779
interrupts per second, we can divide 0.04400 by this amount and get 0.000063789
seconds, or 63.789 microseconds per interrupt.

On the client side we saw 37.678% processor utilization with 11.200% in the
Ideagen process, giving us 0.26478 seconds of interrupt time. Again subtracting an
at rest interrupt rate of 114 from 512.141 gives 398.141 interrupts per second from
the experiment. Dividing 0.26478 seconds of interrupt time by 398.141 client
Interrupts/sec gives us 665.051 microseconds per interrupt. The reason

this is so much larger is because on the client side the data must be copied to the
application’s buffer, whereas on the server side the data can be read onto the
network directly from the file system cache. They are also different processors,
which is something we want to revisit in a moment.



220 Optimizing Windows NT

It’s worth mentioning that most of this interrupt time does not actually occur

in the interrupt handler itself. That would delay lower-priority interrupts for a
prohibitively long period of time. The Windows NT interrupt architecture permits
the bulk of work normally done in an interrupt handler to be handled instead at a
level just between interrupts and threads called the deferred procedure call or DPC
level. The interrupt handler puts into a queue a DPC packet that describes the work
to be done and then exits. When there are no more interrupts to service, the system
looks for DPCs to execute. A DPC executes below interrupt priority and thus
permits other interrupts to occur. No thread executes any code until all the pending
DPCs execute. This design gives Windows NT an extremely responsive interrupt
system capable of very high interrupt rates.

Let’s now take a look at a case on the right hand side of Figure 7.1 and see how the
result changes. We’ve chosen the 14-page transfer because it is in fact the one with
the greatest throughput, although all the cases on that side of Figure 7.1 are pretty

near the maximum.
File Edit View Options Help
B@oE +HEX [=k) .
Computer: \A\MERCURY . 144
Obiject: NetBEUI \Device\Nbt_NE20001 n
Bytes Total/sec 968399.125
Connections Open 1.000
Frame Bytes Received/sec 967469.500
Frame Bytes Sent/sec 928.007
Frame Bytes/sec 968397.500
Frames Received/sec . £657.982
Frames Sent/sec 16.873
Frames/sec 674,855
Packets Received/sec 658.071
Packets Sent/sec 84.360
Packets/sec 742432
Piggyback Ack Queued/sec 0.000
Piggyback Ack Timeouts 150.000
Object: Cache
Copy Reads/sec 0.000
Object: Processor 0
' % Privileged Time 81.517
% Processor Time 82.148
[nterrupts/sec 813.874 .
Object: System
File Read Uperations/sec ;

Figure 7.9 Client’s view of 14-page reads



Chapter 7 Detecting Network Bottlenecks 221

File Edit View Qptions Help
Computer: \\SOL 12
Object: NetBEUI .
Bytes Total/sec I
Connections Open 0
Frame Bytes Received/sec 927.907
Frame Bytes Sent/sec $673397.250
Frame Bytes/sec 968325.125
Frames Received/sec 16.871
Frames Sent/sec 657.933
Frames/sec 674.804
Packets Received/sec 84.407
Packets Sent/sec 857.950
Packets/sec 742.357
Pigayback Ack Queued/sec 16.871
Pigayback Ack Timeouts 18.000
‘Window Send Average 1.000
Window Send Maximum 10.000
Object: Cache
MDL Read Hits % 100.000
Sync MDL Reads/sec 236.194 3
Object: Processor 0 ]
% Privileged Time ) 8415
% Processor Time 8.529
Intertupts/sec 850.803
Object: Network Segment A\Device\bh_NE32001
Total bytes teceived/second 994847083 [+

Figure 7.10 Server’s view of 14-page reads

Looking at client File Read Operations/sec, we are getting 17.276 reads per second.
The inverse, which is the time per read, is therefore 0.05788 seconds. Can we
account for the time?

On the server side we are using 8.529% of the processor, so dividing this by the
client’s File Read Operations/sec gives us 0.004937 seconds per read. On the client
we are using 82.148% of the processor or 0.04755 seconds per read. Accounting
for the network media, we divide the Network Segment: Bytes Total/sec by 17.276
to get 57585 bytes per read, which is only 241 bytes over the 57344 requested per
read. (You might recall that at 12K we saw a shift to a more efficient protocol for
large transfers.) And multiplying 57585 by the Ethernet transmission time we
mentioned previously gives 0.046068 seconds per read. The adapters should now
account for .012488 seconds each if we use the formula we derived for adapter
overhead in the last example. Adding client, server, and media gives 0.123523
seconds.



222

Optimizing Windows NT

Whoops. This is much larger than the time per read of 0.05788 we computed by
simply inverting the read time. Why? Our more efficient protocol combined with
the fact that we have many packets per read is now permitting an overlap of
processing time on the server with transmission and processing time on the client.
The data transfer is now broken up into 657.933 / 17.276 = 38.08 frames. (Be
generous, invoke Rule #9, and call it 38 frames.) And 57585/ 38.08 = 1512, just
two bytes short of the maximum Ethernet packet size. So transmission of these
frames on the server is overlapping with receipt on the client side using a very
efficient protocol.

Now let’s take a look at how this larger transfer size affects time per interrupt.
Continue to assume the interrupts occur when the server and Ideagen processes are
idle, although the assumption is becoming dubious. On the server, we see 850.803
interrupts per second. We should subtract the at-rest interrupt rate of 106/sec,
giving 744.803 interrupts/sec due to the transfer. Knowing we are using 8.529% of
the processor, and subtracting 1.604% spent in the System process (not shown),
gives us 6.925% in the interrupts. Dividing that number by interrupts per second
gives us 0.00009298 seconds, or 92.98 microseconds. This is almost 50% more
than the 63.789 microseconds for the time per server interrupt during the 2048-byte
transfer.

On the client side we have 82.148% of the processor with only 1.774 % of the
processor time in Ideagen (not shown). This means 0.80374seconds of each second
are in the interrupt handler. Since the client is seeing 813.874 - 114 or 699.874
interrupts per second from the experimental activity, the same calculation that we
performed for the server side gives us 0.0011484, or 1.148 milliseconds/interrupt.
This is almost double the 665.051 microseconds per interrupt we saw in the 2048-
byte case. In addition there are almost twice as many interrupts per, second in the
14-page case.

As these cases illustrate, there is no “good” or “bad” interrupt rate or time per
interrupt. By now it should be obvious: in order to understand the performance
counters of your various systems in real working situations, you must first establish
a clear picture of their operating characteristics under these types of pure
workloads.



Chapter 7 Detecting Network Bottlenecks 223

Using Role Reversal to Compare Platforms

Let’s take a step back for a moment. We see a big difference in the processor usage
on the client and the processor usage on the server. This is reflected in overall
processor usage as well as in such details as the calculated time in the interrupt
handler. There are two fundamentally separate sources for this difference, and we
should try to separate them. One is that the client and the server are not doing
exactly the same work. The other is that they have different hardware: one
computer has an Intel Pentium, and the other is an Intel i486™.

One way to get a handle on how these separate factors influence what we are seeing
is to reverse their roles. Windows NT is pleasantly flexible in this regard. We can
make the i486 computer be the server and the Pentium computer be the client with a
couple of mouse clicks in File Manager.

The next figure shows the client side of the 2048-byte read case when the client is
the Pentium computer. It is followed by the server’s view of the same case with the
server being the i486 computer.

File Edit ew Options Help

Computer: \\SOL

Object: NetBEUI \Device\Nbf_NE32001
Bytes Total/sec {....
Frame Bytes Received/sec 475779.031
Frame Bytes Sent/sec 13542.098
Frame Bytes/sec 483321.126
Frames Received/sec 451.403
Frames Sent/sec 225.702
Frames/sec 677.105
Packets Received/sec 451.543
Packets Sent/sec 225702
Packets/sec 677.245

Object: Processor 0
% Privileged Time 19.793
% Processor Time 21.180

. Interupts/sec 837.934

Object: Process IDEAGEN
% Privileged Time 10847 )
% Processor Time 12007
% User Time 1.1680

Object: System
File Read Operations/sec 226.108

Figure 7.11 Pentium client statistics for 2048-byte reads



224

Optimizing Windows NT

Looking at NetBEUI: Bytes Total/sec, we see an increase of about 70K per second.
Sure, you say, because the bottleneck was the client processor and we replaced it
with a faster one. But we also violated Rule #1 because we changed the server at
the same time. To some extent, we just got lucky with this guess, as we shall see.

What we wanted to do was distinguish between the change in the roles of client and
server and the different processor types. How can we do this? When the Pentium
computer was the server, we saw that it handled 195.560 reads per second using
7.950% of the processor, which gave 460.5 microseconds per read. Now that it’s
the client, we are doing 226.108 reads using 21.180% of the processor, or 936.7
microseconds per read. We have two times the number of processor cycles being
used on the client side of the transaction. Clearly it is more expensive for the
Pentium to be a client than to be a server. Let’s double-check this on the other

side of the fence.

ElIEdit View Options Help
BRolE [FEX] (@l

Computer: WAMERCURY
Object: NetBEUI \Device\Nbf_NE20001

Bytes Total/sec )
Frame Bytes Received/sec
Frame Bytes Sent/sec 476091.563

Frame Bytes/sec 483642.563
Frames Received/sec 225.850
Frames Sent/sec 451.700
Frames/sec 677.550
Packets Received/sec - 225987
Packets Sent/sec 451.743
Packets/sec 677.731
Dbject: Processor 1]
% Privieged Time 45.075
% Processor Time 45419
Interrupts/sec 793.938
Object: Process System services
% Privileged Time 34.881 0.163
% Processor Time 34.881 0.225
% User Time 0.000 0.056

Figure 7.12 Server statistics when the server is an i486/33



Chapter 7 Detecting Network Bottlenecks 225

On the i486 it looks like the situation is reversed. Unlike the Pentium there has been
an increase in processor usage as we switched from client to server. But we need to
invoke Rule #7 and look at the counter ratios before leaping to a conclusion. As we
switch from client to server on the i486, the processor utilization has increased from
37.678% to 45.419%, but the number of reads per second has also increased. The
server per read processor time is 2009microseconds. The client per read processor
time is 1927. Unlike the Pentium, it is almost the same being a client or a server on
the 1486. .

What can we say about the relative behavior of the two processors?

The Pentium is 2 times faster at doing the client work because it uses 0.9367
milliseconds per read, versus 1.927 on the 486/33. And the Pentium is over 4 times
faster at doing this simple server work than the i486/33 (0.4605 milliseconds versus
2.009 milliseconds for the I486/33). It appears that the Pentium is better at both
workloads, but is much better at handling the server workload. Since the Pentium is
running at twice the clock rate of the i486, we might expect it to be about twice as
fast, all other things being equal. We might conjecture that the larger cache of the
Pentium accommodates this simple server test case more easily than it can handle
the client workload.

This leads to an important lesson that is well illustrated here. Relative processor
performance—or relative computer hardware performance in general—is
extremely sensitive to the workload applied. Here we are using a simple synthetic
workload, so generalizing it to a real application workload would be improper.
Once you get your own applications running on these servers, you can compare the
processors in the way we have here. At that point other important mitigating factors
like disk subsystem performance will enable you to get a realistic picture of relative
platform performance. What we’ve tried to do here is make sure that when you get
to that point, you’ll know precisely how to proceed.

And finally, where is the bottleneck now? Well, the media time hasn’t changed; it is
still taking 1.734 milliseconds per read plus adapter time. We have shifted the
bottleneck over to the server, or left it on the i486/33, depending on how you want
to look at it.



226

Optimizing Windows NT

Adding Clients to a Test Server

Let’s have several clients simultaneously access our server to test its mettle. We’ll
revert to the 2048-byte transfer case, since it seems a bit more realistic for normal
network traffic than the 14-page transfer. But it’s not entirely realistic, because all
the clients will simultaneously try to copy the same record from the server, over and
over, without causing any server disk activity or doing any processing on the client
side. So we’ll be hammering the server in an unrealistic manner, but we’ll see how
the additional clients affect overall performance. We’ll add two, three, four, and
then five clients, each doing the above unbuffered read over NetBEUI on the

Ethernet network.

File Edit View Options Help

[EOEER

Computer: \\SOL
Object: NetBEUI

Bytes Total/sec

Frame Bytes Received/sec
Frame Bytes Sent/sec
Frame Byles/sec

Frames Received/sec
Frames Sent/sec
Frames/sec

Packets Received/sec
Packets Sent/sec
Packets/sec

Object: Processor

% Privileged Time
% Processor Time
% User Time
Interrupts/sec

Dbject: Process
% Privileged Time

% Processor Time
% User Time

RIS

\Device\Nbf_NE32001

792053875
21926.922
770126.938
792053875
365.410
730736
1096.146
365.507
730839
1096.346

Figure 7.13 Two clients on a server, NetBEUI view from the server’s perspective




Chapter 7 Detecting Network Bottlenecks 227

Computer: \\SOL
Object: Server

Blocking Requests Rejected 0.000
Bytes Received/sec

Bytes Total/sec

Bytes Transmitted/sec
Context Block Queue Time
Context Blocks Queued/sec
Enors Access Permissions
Enors Granted Access

Errors Logon

Errors System

File Directory Searches

Files Open

Files Opened Total

Pool Nonpaged Bytes 180036.000

Pool Nonpaged Failures 0.000

Pool Nonpaged Peak 184547.000

Pool Paged Bytes 15028.000

Pool Paged Failures 0.000

Pool Paged Peak 31572.000

Server Sessions 3.000

Sessions Erored Out 0.000

Sessions Forced Qff 0.000

Sessions Logged Off 0.000

Sessions Timed Out 0.000 =
Work ftem Shortages 0.000 e

Figure 7.14 Two clients on a server, Server statistics

Let’s look first at the two-client case. What we see is nearly double the throughput
of the single client case. Boy, how we love these controlled experiments! Actually,
both number of reads as counted by Frames Received/sec and Total Bytes/sec have
increased by about 87%. Interrupts have only increased by 66%, however, so the
server is handling more work on each interrupt. The interesting thing is that the
processor usage is up over a factor of three from the single-client case from 7.950%
to 26.780%. Most of this increase is in the System process’s processor usage,
which rose from 3.55% to 15.755%, so having multiple concurrent clients must
complicate System’s life quite a bit.

Let’s take a closer look at this. System process processor time has gone from

182 microseconds per read to 431. This is a 137% increase. Interrupt time was
calculated above as 64 microseconds per interrupt in the single client case, and
since there were just over four interrupts per read this was 260 microseconds per
read. In this 2-client test case it is 84 microseconds/interrupt, and with 3.61
interrupts per read, this gives us 303 microseconds of interrupt time per read. So
while System process tie is up 137% from the single client case, interrupt time is up
only 17%. Between these two sources of delay, there are 292 new microseconds in
the server on each request. The single client response time is 1/ 195.550 = 0.00511
seconds per read, while for each of the two clients we get 1/364.41 /2 = 0.00547
for a difference of 360 microseconds. So we conclude the other 68 microseconds of
delay must be in the line and the server adapter card. Clearly most of the new delay
is in the server processor.

Let’s add another client.



228

Optimizing Windows NT

File Edit View Options Help

EIPEIE

Computer: \\SOL

Object: NetBEU1 \Device\Nbf_NE32001
Bytes Total/sec
Frame Bytes Received/sec
Frame Bytes Sent/sec 897457.813
Frame Bytes/sec 1025869.875
Frames Received/sec 473437
Frames Sent/sec 946.606
Frames/sec 1420.043
Packets Received/sec 473,606
Packets Sent/sec 946.668
Packets/sec 1420.274

Object: Processor 0
% Privileged Time 27.475
% Processor Time 27.606
% User Time 0.131
Interrupts/sec 1643577

Object: Process System
% Privileged Time 14150
% Processor Time 14150
% User Time 0.000

Figure 7.15 Three clients pile on, NetBEUI statistics on the server

File Edit View Options Help

Computer: \\SOL
Object: Server

Blocking Requests Rejected 0.000
Bytes Received/sec

Bytes Total/sec

Bytes Transmitted/sec
Context Block Queue Time
Context Blocks Queued/sec
Files Open

Files Opened Total

Pool Nonpaged Bytes

Pool Nonpaged Peak

Pool Paged Bytes

Pool Paged Peak

Server Sessions

Figure 7.16 Three clients pile on, Server statistics



Chapter 7 Detecting Network Bottlenecks 229

We already see something interesting with just three clients. Note that the
NetBEUI: Bytes Total/sec is not three times the individual client transfer rate of
423461.250 we saw in the single-client case. As an increment over the 2-client
case it is only about 20%. Also, the increase in processor usage is actually rather
modest. Yet we have three clients each getting 1/3 of the 473.437 requests/sec, or
157.812 each, for 0.00634 seconds per read. That’s an additional 867 microseconds
of delay per request. There must be some new source of conflict. Where is it?

Let’s look first at the server’s processor usage. The processor itself is now 27.606%
busy handling the server work. This is quite a bit more than we had in the single-
client case, but only a shade more than we had in the 2-client case, and is
furthermore unlikely to be the bottleneck. Why? Because the more concurrency we
have, the less sequencing we have, and the utilization of the bottlenecking device
should be closer to 100%. And we now have 27.606 % processor usage handling
473.437 requests per second, giving 583 microseconds of processor per request.
That’s noticeably less than the 734 microseconds per request we saw in the 2-client
case, indicating that an economy of scale is building up: we must be getting more
work done on a thread dispatch or a DPC call as concurrency increases, since more
work is pending in our queues.

Now let’s take a look at four clients.

Computer: \\SOL

Object: NetBEUI \Device\Nbf_NE32001
Bytes Total/sec {_ i
Frame Bytes Received/sec 30763.979
Frame Bytes Sent/sec 1080841.125
Frame Bytes/sec 1111605.125
Frames Received/sec 512733
Frames Sent/sec 1025.466
Frames/sec 1538.193
Packets Received/sec 512.852
Packets Sent/sec 1025.505
Packets/sec 1538.457

Object: Processor 0
% Privileged Time 30.529
% Processor Time 30.755
% User Time 0.226
Interrupts/sec 1761.317

Object: Piocess System
% Privileged Time 17.633
% Processor Time 17.633
% User Time - 0.000

Figure 7.17 Four clients pile on, NetBEUI statistics on the server



230

Optimizing Windows NT

Computer: \\SOL
Dbject: Server

Bytes Received/sec
Bytes Total/sec H
Bytes Transmitted/sec 1080841.125

Contest Blocks Queued/sec 512.707
Files Open 15.000
Files Opened Total 560.000
Pool Nonpaged Bytes 183172.000
Pool Nonpaged Peak 187844.000
Pool Paged Bytes 26416.000
Pool Paged Peak 46482.000
. Server Sessions 5.000

Figure 7.18 Four clients pile on, Server statistics

The total byte throughput is up somewhat, although certainly not by another 423461
bytes per second, which is what our new client would like to be doing. The %
Processor Time is within a Rule #9 of being unchanged from the 3-client case, and
the interrupt rate has not increased much either. We have not been able to add a lot
of work to this mix, even though we have added more clients. Dividing the Frames
Received/sec by 4 clients, and then inverting, we see each request is taking
0.007801 seconds, or 1.48 milliseconds more than in the 3-client case. Delays are

. increasing, but we don’t see much more work being done inside the server. By now
it should be dawning on us that the queue might be forming outside the server.



Chapter 7 Detecting Network Bottlenecks 231

File Edit View Options Help
EIEIRIE] EIET}
Computer: \\SOL

Object: NetBEUI \Device\Nbf_NE32001
Bytes Total/sec L :
Frame Bytes Received/sec 30855.143
Frame Bytes Sent/sec 1084031.250
Frame Bytes/sec 1114886.375
Frames Received/sec 514.252
Frames Sent/sec 1028.433
Frames/sec 1542.745
Packets Received/sec 514.343
Packets Sent/sec 1028.523
Packets/sec 1542.872

Object: Processor 0
% Privileged Time 29.842
% Processor Time 30.152
% User Time 0.308
Intenrupts/sec 1764.916

Object: Process System
% Privileged Time 17.018
% Processor Time 17.018
% User Time 0.000

Figure 7.19 Five clients pile on, NetBEUI statistics on the server

Computer: \\SOL
Object: Server

Bytes Received/sec 30854.779
Bytes Total/sec 1114898.7650
Bytes Transmitted/sec 1084044.000
Context Blocks Queued/sec 514.264
Files Open 21.000
Files Opened Total 631.000
Pool Nonpaged Bytes 184788.000
Pool Nonpaged Peak 189099.000
Pool Paged Bytes 34068.000
Pool Paged Peak 45482.000
Server Sessions 5.000
Object: Network Segment \Device\bh_NE32001

Total bytes received/second

Figure 7.20 Five clients pile on, Server statistics



232

Optimizing Windows NT

Now we see a very slight increase in byte throughput. The % Processor Time

and the interrupt rate are essentially unchanged, and more importantly the Frames
Received/sec are also unchanged. Since this request rate is now divided between 5
clients, we observe that 1/ (514.252 /5) = 0.009723 tells us that each request is
now taking 9.72 milliseconds, or 1.93 milliseconds more than each 4-client request.
Notice how each additional delay is escalating at a rate greater than the linear rate
of increase in number of clients, as we illustrated in our discussion of Rule #8.
Have you figured out the truth yet?

What is happening here is we have saturated the network media. How can that
be, you say? We are not yet transmitting 1.25 million bytes/second, which is the
capacity of an Ethernet network. Well, we are pretty darn close. There are two
reasons why we are not reaching the theoretical maximum.

= Frame Bytes/sec does not include all the bytes on the wire. Performance
Monitor doesn’t count low level protocol bytes, just the bytes in frames
associated with data transfer. Look at the Network Segment: Total Bytes
received/second to see a number closer to the maximum.

= We are starting to experience collisions on the wire, which the adapter cards
detect. A collision on Ethernet causes the adapter to retry the transmission after
a random delay. Lore has it that Ethernet networks start to have significant
collisions at about 66.67% utilization, or 833375 bytes per second. This is
derived from the same considerations from queuing theory that we discussed
early in Chapter 2. Our network throughput is quite a bit higher than that here,
but our traffic pattern is quite regular so we can do a bit better than one might
expect in the general case. (Recall Rule #8: if our traffic were random instead
of regular, there would be trouble.)



Chapter 7 Detecting Network Bottlenecks 233

Server Disk Activity

Up to now we have looked at some pretty simplistic stuff, Now let’s add some
serious server disk activity. Let’s get Response Probe to read a large file, say

40 MB, using the normal distribution on 512-byte records to span the file. The
reason we choose this file size is that our server has 32 MB of RAM and we would
like to keep the experiment from fitting the whole file into the file system cache in

Elie Edlt ylew Options Help

mwl

Last| 204854 469 Aveiage| 68100313 Min| 0,000 Mex| 205358703 Graph Time| . 506,000

Colol i Scale’ Counter . - -7v Instance - . Parent .. Object . . Computer. :; -
. 0.000100 B_ﬁesqulal/sec e ADeyiceANBE NE - " ot NetBEUE Lo e WSEL e
1.000 % Disk Time D: 1 LogicalDisk \WSOL

----- 0.000001 Cache Bytes Memory \SOL

Figure 7.21 Server activity while reading a large file



234 Optimizihg Windows NT

The heavy black line shows the % Disk Read Time, while the highlighted white line
shows NetBEUI: Bytes Total/sec. At the left of the figure, the disk is quite busy,
but as the cache (the dotted line) fills, the disk activity falls off and the NetBEUI:
Bytes Total/sec rises parallel to the increase in cache size to a maximum near
205,000 bytes per second. Referring to Figure 7.1, we can see the 512-byte read
case gives a maximum of about 206,000 bytes per second. Disk activity never quite
dies out, but it does taper off as the cache fills with the center records of the file
where the normally distributed access is concentrated.

Let’s focus on the 20 second period of heavy disk usage on the left of the chart. The
next two figures display the statistics during this phase.

I:

ERRE FEX = 5

Computer: \\SOL

Object: NetBEUI \Device\Nbf_NE32001
Bytes Total/sec
Frame Bytes Received/sec
Frame Bytes Sent/sec 563917.875
Frame Bytes/sec 62888.281
Frames Received/sec 93,507
Frames Sent/sec 99.507
Frames/sec 199.014
Packets Received/sec 100.056
Packets Sent/sec 102.403
Packets/sec 202.458

Object: Processor 0
% Privileged Time 8.100
% Processor Time 8.100
Interrupts/sec 672832

Object: Process System
% Privieged Time 4100
% Processor Time 4100
% User Time 0.000

Figure 7.22 NetBEUI view of disk access on the server



Chapter 7 Detecting Network Bottlenecks 235

We are getting only one-third of the NetBEUI throughput possible at this record
size from this client. The processor is not very busy, and the interrupt rate is
moderate.

BRoE =X @l

Computer: \\SOL
Object: Server

Bytes Received/sec 5376.337
Bytes Total/sec 62951.391
Bytes Transmitted/sec 56974.992
Context Blocks Queued/sec $9.856
Files Open 26.000
Files Opened Total 772.000
Pool Nonpaged Bytes 186268.000
Pool Nonpaged Peak 181004.000
Pool Paged Bytes 40722.000
Pool Paged Peak 61106.000
Server Sessions 5.000
- 1
Object: LogicalDisk D:
% Disk Read Time 67.432
Avg. Disk Bytes/Read 4058.856
Avg. Disk sec/Read i
Disk Bytes/sec 256577.891
Disk Queue Length 1.000
Disk Read Bytes/sec 245815.781
Disk Reads/sec 60.563

DObject: Cache

Copy Read Hits % 39.749
Fast Reads/sec 99.607

Figure 7.23 Server and disk view of disk access on the server

We can see that every record goes through the cache (NetBEUI: Frames
Received/sec = Cache: Fast Reads/sec). The cache hit rate is 39.749%. So the miss
fraction is 0.60251, and 0.60251 times the Cache: Fast Reads/sec rate gives us

. 60.014, which is within Rule #9 of Disk Reads/sec. In other words, when we miss
the cache we go to disk. This is not a surprise. We are getting full pages off the
disk, and we can tell we are reading randomly because the memory manager cannot
find any opportunity to do sequential input. Let’s take a quick look at the memory
manager’s statistics, too.



236

Optimizing Windows NT

File Edit View Options Help

EIX] wle)

Computer: \\SOL
Object: Cache

Copy Read Hits % 39.743
Fast Reads/sec 99.607
Object: Memory
Cache Faults/sec
Demand Zero Faults/sec 99
Free System Page Table Entiies 9278.000
Page Faults/sec 62.560
Page Reads/sec 60.014
Page Wiites/sec 0.000
Pages Input/sec 60.014
Pages Output/sec 0.000
Pages/sec 60.014
Transition Faults/sec 0.000
Wiite Copies/sec 0.000

Figure 7.24 Memory manager’s view of disk access on the server

All page faults are for cache activity, and the number of Pages Input/sec matches
the Disk Reads/sec. At this point, while the cache is first being filled, only a few

cache faults are satisfied by soft faulting an existing page in memory; most cache
faults have to go to disk for the data.

What about the bottleneck? Well, the disk is busy 67.492% of the time, or 0.67492
seconds out of each second. If we divide this by the number of reads from the client
each second, we get 0.006819 seconds of disk activity per interaction. The inverse
of the interaction rate is 1 divided by Cache: Fast Reads/sec, or 0.010039, so we
already have over half of the time spent going to disk. This makes the disk the
bottleneck, even without going into all the other pieces of this particular puzzle.

But we can only make this declarative statement because all the pieces of the puzzle
are in sequence. Because of sequencing, once we find a device with over half the
time, we know no other device can have more than half. If there were any chance of
parallelism among the processors, media, network adapters, and disk, then we
would have to look more closely at the demand for each device.



Chapter 7 Detecting Network Bottlenecks 237

Copying a Directory from Server to Client

‘We have explored processor, network, cache, and disk behavior using controlled
experiments. Now we are prepared to look at a more realistic case. We’ll have a
client copy the %SystemRoot%\SYSTEM32 directory from the Windows NT
server, and see what the result looks like. The first three figures are for the server
side, and the next three are for the client side.

+EX] [l
+
Computer: \\SOL -
Object: NetBEUI \Device\Nbf_NE32001
Bytes Total/sec
Connections No Retries
Connections Open
Expirations Ack
Failures Not Found
Fiame Bytes Received/sec
Frame Bytes Sent/sec 352175.438
Frame Bytes/sec 359664.875
Frames Received/sec 110731
Frames Sent/sec 294.868
Frames/sec 405.533
Packets Received/sec 119.623
Packets Sent/sec 295.527
Packets/sec 415156
Piggyback Ack Queued/sec 110.741
Window Send Average 1.000
Object: Processor 0
% Privileged Time 12.880
% Processor Time 13129
% User Time 0.250
Interrupts/sec 685.169
DObject: Process System g
% Privileged Time 7.430 ¢
% Processor Time 7430 B
% User Time 0.000 o

Figure 7.25 NetBEUI on the server during directory copy

The first thing to note is the number of bytes sent per frame is 1220, which (you
know by now) we get from dividing the Frame Bytes Sent/sec by the Frames
Sent/sec.

The observable processor time is low, and the value of Interrupts/sec is moderate.
Whatever else we have done, we have not saturated the server’s processor.



238

Optimizing Windows NT

FiEX] |

- Computer: \\SOL
Object: Cache

Copy Read Hits %
Copy Reads/sec
DataMap Hits %

Data Map Pins/sec
Data Maps/sec

Fast Read Not Possibles/sec
Fast Reads/sec

Lazy Wiite Flushes/sec
Lazy Write Pages/sec
MDL Read Hits %

MDL Reads/sec

Pin Read Hits %

Pin Reads/sec

Sync Copy Reads/sec
Sync Data Maps/sec
Sync Fast Reads/sec
Sync MDL Reads/sec
Sync PinReads/sec

Object: Memory

Cache Faults/sec 95.913
Demand Zero Faults/sec 6.850
Page Faults/sec 96.272
Page Reads/sec 14,699
Page Writes/sec 0.000
Pages Input/sec 87.225
Pages Output/sec 0.000
Pages/sec 87.225 4
Transition Faults/sec 0.040 -;

Figure 7.26 Cache and memory on the server during directory copy

The cache statistics show something we have not seen before. The bulk of the
activity is in multiple data list (MDL) reads. MDL reads use the physical memory

locations of cache pages to obtain multiple disk pages from disk in one operation.

The server used MDL reads to get data from the disk. Nearly all of these requests
are satisfied by data already in the cache, as indicated by the 98.779 MDL Read
Hits %. The Data Map Hits % is high at 99.744%, for 23.387 Data Maps/sec.
These are probably directory operations, which is not surprising since we are
reading a large directory that contains many small files. You can also see the
interaction of the cache with the memory manager. Nearly all of the Page Faults/sec
are Cache Faults/sec. Many are resolved in memory with soft faults, but some
14.699 Page Reads/sec result from the 96.272 Page Faults/sec. Dividing the Pages
Input/sec by the Page Reads/sec shows 5.934 pages are being read each time the
memory manager goes to disk. This accounts for the high cache hit rates: the
mermory manager is reading ahead of requests effectively. Let’s take a look at the
disk.



Chapter 7 Detecting Network Bottlenecks 239

EIEIEE

Computer: \\SOL
Object: LogicalDisk C:
% Disk Read Time

% Disk Time
. %Disk Wiite Time

% Fiee Space .

Avg. Disk Bytes/Read 20952115
Avg. Disk Bytes/Transfer 20815.713
Avg. Disk Bytes/Wiite 4681.143
Avg. Disk sec/Read 0.010
Avg. Disk sec/Transfer 0.010
Avg. Disk sec/Wiite 0.018
Disk Bptes/sec 347125438
Disk Queue Length 0.000
Disk Read Bytes/sec 346471.000
Disk Reads/sec 16.536
Disk Transfers/sec 16.676
Disk Wiite Bytes/sec 654.423
Disk Writes/sec 0140
Free Megabytes 43.000

Figure 7.27 Disk activity on the server during directory copy

We see right away that there are 16.536 Disk Reads/sec, 1.837 reads per second
over the Memory: Page Reads/sec. Also Avg. Disk Bytes/Read are 5.1 times the
page size which the memory manager was reading. The extra reads are probably
for directory information, bringing down the average number of pages read per
disk access.

To make our bottleneck detection a little less painful, let’s just see how much of
each resource is used per second. For the processor we saw 0.13129 seconds, for
the disk it’s 0.17235, for the media we multiply the media transmission speed by
Bytes Total/sec to get 0.28773 seconds, and for the adapter we have 0.077739. So
far, the vote is for the Ethernet. But that’s just the server side. Let’s take a look at
the client, too.



240 Optimizing Windows NT

Computer: \\MERCURY

Object: NetBEUI \Device\Nbf_NE 20001
Bytes Total/sec
Frame Bytes Received/sec 350953.969
Frame Bytes Sent/sec 7515.464
Frame Bytes/sec 358469.438
Fiames Received/sec 234152
Frames Sent/sec 111.098
Frames/sec 405.250
Packets Received/sec 294.761
Packets Sent/sec 119.256
Packets/sec 414017

Object: Processor 0
% Privileged Time 69.839
% Processor Time 72910
% User Time 3.070
Interrupts/sec 1067.106

Bbject: System .
File Control Bytes/sec 2598.985

File Control Operations/sec 149,622
File Read Bytes/sec 17452.930
File Read Operations/sec 6.660

Figure 7.28 NetBEUI on the client during directory copy

These statistics naturally mirror the ones on the server side. There are some slight
differences since we are not looking at precisely the same time intervals. The
interrupt rate is a quite a bit higher here, and the processor usage is right up there at

72.910%.



Chapter 7 Detecting Network Bottlenecks 241

e
HERE ails]
Computer: \\MERCURY +
Object: Cache . ]
Copy Read Hits % 4.049
Copy Reads/sec 29597
Data Flush Pages/sec 88.531
Data Flushes/sec 9,686
Data Map Hits % 99.900
Data Maps/sec 49.817
Fast Reads/sec 23.855
Lazy Write Flushes/sec 9.686
Lazy Write Pages/sec 88.591
Pin Read Hits % 99.765
Pin Reads/sec 42.578
Sync Copy Reads/sec 29597
Sync Data Maps/sec 49.817
Sync Fast Reads/sec 23.855
Sync Pin Reads/sec 42.578

Object: Memory

Cache Faults/sec
Demand Zero Faults/sec
Page Faults/sec

Page Reads/sec

Pages Input/sec
Pages/sec

Transition Faults/sec

Object: Process

% Privileged Time 23530
% Processor Time 25.180 -
Page Faults/sec 63.710 hA

Figure 7.29 Cache and memory on the client during directory copy

On the client side, the cache- and memory-management story is a bit more complex.
That is because we are reading into the cache across the network, copying from

the cache into the application (in this case, CMD.EXE for the copy command),

and then writing the data back into the cache to get it on the disk. This involves
directory operations (Data Maps/sec) for both the server’s-directory and the
client’s, and we see the client rate is about double that of the server’s. The hit rate
on these directory operations is within Rule #9 of 100%.

There are 29.597 Cache: Copy Reads/sec by CMD.EXE. Very few hit the cache,
which means one or more cache page faults are taken to resolve them. It looks like
more than one, because the Memory: Cache Faults/sec is quite high at 118.757. The
other Page Faults/sec are coming from CMD.EXE. A little careful thought sorts this
all out. Many of the-faults are resolved by mapping in existing page frames into the
cache’s working set, since they result in only 67.352 Page Reads/sec. This is

because the memory manager and the cache manager are working together to bring
sequential groups of pages into memory in single operations. It is also because

many of the faults, 21.628/sec, are being resolved by transition faults, meaning they
are pages which had been flushed from the cache and were being written to disk.



242

Optimizing Windows NT

The 67.352 Page reads/sec result in.88.331 Pages Input/sec, which when multiplied
by the page size is 361804bytes/sec, very close to the input NetBEUI data rate of
359665bytes/sec. These 67.352 Page Reads/sec turn into 111.098 NetBEUI Frames
Sent/sec since directory operations are intermingled with the requests for file data.
We conclude that only a few of the pages are coming from the client’s disk. We see
that CMD.EXE is generating soft faults at the rate of 68.710 Page Faults/sec,
accessing buffers allocated and deallocated for the transfer of each file in the
directory. This is also nearly equal to Page Faults/sec — Cache Faults/sec, so
CMD.EXE accounts for all the page fault activity outside the cache.

Computer: AMERCURY
Object: LogicalDisk

% Disk Read Time

% Disk Time

% Disk Write Time

% Fiee Space

Avg Disk Bytes/Read
Avg. Disk Bytes/Transfer
Avg. Disk Bytes/Awrite
Avg. Disk sec/Read
Avg. Disk sec/Transfer
Avg. Disk sec/write
Disk Bytes/sec X
Disk Queue Length
Disk Read Bytes/sec
Disk Reads/sec

Disk Transfers/sec
Disk Write Bytes/sec
Disk Writes/sec

Free Megabytes

Eigure 7.30 Disk activity on the client during directory copy

The disk itself on the client side is rather busy at 69.595 % Disk Time. Virtually all

of this activity is writing.



Chapter 7 Detecting Network Bottlenecks 243

The 35868.676 Avg. Disk Bytes/Write is quite high, and the 9.806 Disk Writes/sec
come from the 9.686 Cache: Data Flushes/sec. The values of Disk Write Bytes/sec
and NetBEUI: Frame Bytes Received/sec are almost identical. This disk is a lot
busier than the one on the server side because the Avg. Disk sec/Write is 0.070
compared to an Avg. Disk sec/Read of 0.010 on the server. Even though there are
more reads on the server per second, its overall access is more efficient. This may
be for a variety of reasons: disk layout of the files, disk hardware, controller
hardware, and who knows what all else. To isolate the issues, we’d have to study
the disk subsystems as we did in Chapter 4, “Detecting Disk Bottlenecks.”
Alternatively we could just accept the fact that we paid a lot more for the server
and, for once, we got what we paid for. Better tell the boss!

What about bottleneck detection on the client side? We’ve got processor utilization
of 72.910%, and disk utilization of 68.164%. In a second of activity this means
0.72910 seconds of processor and 0.68164 seconds of disk. The processor wins the
bottleneck award by a small margin. A classic case of one bottleneck masking
another (remember the 2nd rule of Bottleneck Detection?) In both cases the device
demands are larger than the demands on those devices on the server. This is as one
might hope, since the server clearly has bandwidth to serve other clients
simultaneously. Notice in passing the excellent overlap of processor and disk
activity, since the sum of these device demands is just about 1.5 seconds/second.

Let’s pause for a moment and regroup. We are now able to look at real

systems doing real work and identify the bottleneck in a simplified client-server
environment. We see it is not a foregone conclusion that the media is the bottleneck.
‘We have found we must keep an eye on the disk and on the processor. We have
learned when disk activity is the result of cache activity and we can recognize when
it is not. We know enough to be able to look at statistics on a server and determine,
by looking at processor, disk, protocol bytes, and interrupt rate, whether it is
creating a bottleneck. We have reached one of those rare, hard-fought pinnacles of
analysis from which we can leisurely survey the magnificent landscape. What a
view!

Monitoring TCP/IP Performance

Lest we wax overconfident, let’s take a quick look at how life might change if the
protocol were different—TCP/IP, for example. (Recall that we must have SNMP
installed to see the TCP/IP counters in Performance Monitor.) If there are multiple
protocols installed, the client must have TCP/IP as the highest priority protocol, or
it must be the only one available on the server. The highest-priority protocol is the
first protocol the workstation uses when it attempts to make a connection.



244

Optimizing Windows NT

To set protocol priority

1.
2.
3.

4.

5.

In Control Panel, choose the Network option.
In the Network Settings dialog box, choose Bindings.

In the Network Bindings dialog box, choose Workstation in the Show Bindings
For box.

The protocols currently being used on the workstation are listed in the large box.
The one on top has the highest priority.

To change the priority of a protocol, select it and use the arrow buttons at the
right of the dialog box to move it up and down in the list.

When finished, choose OK.

In Figure 7.31, we show the throughput chart for TCP/IP from the client’s
perspective. Again we are bypassing the cache on the client side and are reading
512-, 1024-, 2048-, and 4096-byte amounts, and then page size increments of
record sizes up to 16 pages. We’ve changed the Vertical Maximum to view all the
chart values,

Network Interface \\MEF!CUHY
MERCURY

Figure 7.31 Throughput chart for TCP/IP

© We get similar throughput with TCP/IP as we did with NetBEUI in Figure 7.1. At
higher record sizes the TCP/IP throughput is actually a bit higher than what can be
achieved with NetBEUL



Chapter 7 Detecting Network Bottlenecks 245

The TCP/IP counters in Performance Monitor implement Management Information
Base IT (MIB-II) for use with protocols in TCP/IP-based internets. So we can get
some idea of what is happening here, let’s look more closely at the 2048-byte read
(like we did for NetBEUI). First we look at the Network Interface level. This is the
closest to the media that we get with the TCP/IP counters.

File Edit View Options Help
+
Computer: \\SOL FJ
Object: Network Interface 5
Bytes Received/sec 25928.459
Bytes Sent/sec 383583.563
Bytes Total/sec 409512.000
Current Bandwidth 10000000.000
Output Queue Length 0.000
Packets Outbound Discarded 0.000
Packets Outbound Errars 0.000
Packets Received Discarded 0.000
Packets Received Enors 0.000
Packets Received Non-Unicast/sec 0.000
Packets Received Unicast/sec 345.571
Packets Received Unknown 441.000
Packets Received/sec 345.637
Packets Sent Non-Unicast/sec . 0.000
Packets Sent Unicast/sec 345.571
Packets Sent/sec 345.571
Packets/sec 691.208
Object: Processor o
% Privileged Time 10.133
% Processor Time 10.466
Interrupts/sec 797.789
Object: Process. System
% Privileged Time =
% Processor Time e

Figure 7.32 Network Interface of TCP/IP doing 2048-byte reads, server side

Dividing both Bytes Received/sec by Packets Received/sec and Bytes Sent/sec by
Packets Sent/sec, we find that the packets are 75 bytes each on the receiving side
and 1110 bytes on the send side. The value of Bytes Total/sec is slightly below the
comparable value for NetBEUI. The Current Bandwidth is a constant for Ethernet
measured in bits per second. The term “Unicast” means the packets were addressed
to this particular computer (as opposed to “broadcast to all on the subnet” or
“multicast to several on the subnet”). The other packet categories refer to
undelivered packets. Protocols sometimes discard packets even if there are no
errors; for example, to free up buffer space. Errors indicate the packet contained
problems that prevented the delivery to a higher level protocol (meaning IP). The
Output Queue Length refers to the current number of packets pending output and is
an instantaneous counter.

As you can see from Figure 7.31, processor usage for TCP/IP is higher than it is
for NetBEUI, as we would expect for this more complex, layered, routing protocol.
~ Interrupt rate is almost identical to the NetBEUI case.



246

Optimizing Windows NT

“File Edit Yiew Options Help

Computer: \\SOL

Object: TCP
Connection Failures
Connections Active
Connections Established
Connections Passive
Connections Reset
Segments Received/sec
Segments Retransmitted/sec
Segments Sent/sec
Segments/sec

Object: IP
Datagrams Forwarded/sec 0.000
Datagrams Outbound Discarded 0.000
Datagrams Outbound No Route 0.000
Datagrams Received Address Erors 2.000
Datagrams Received Delivered/sec 345.571
Datagrams Received Discarded + 0.000
Datagrams Received Header Enrors 988.000
Datagrams Received Unknown Protocol 0.000
Datagrams Received/sec 345571
Datagrams Sent/sec 345571
Datagrams/sec 691.142
Fragment Re-assembly Failures 0.000
Fragmentation Failures 0.000
Fragmented Datagrams/sec 0.000
Fragments Created/sec . 0.000
Fragments Re-assembled/sec 0.000
Fragments Received/sec 0.000

Figure 7.33 Server TCP/IP counters during 2048-byte reads

The next layer above the Network Interface is the IP (Internet Protocol) layer. This
layer sees only datagrams. Higher-level protocols (TCP in this case) supply the

_ end-to-end integrity to assure there are no out of sequence or missing packets. At

this level, a variety of different dispositions of datagrams are counted. If there are
data integrity problems you can often detect them here.

Datagrams Forwarded/sec is the rate at which this node is acting as an IP gateway,
forwarding packets received by, but not addressed to, this node. This includes any
for which No Route could be found and so were discarded (DataGrams Outbound
No Route.) The IP layer can reassemble long transmissions sent as fragments, and a
number of counters are devoted to tracking this activity. Reassembly can fail due to
errors or time-outs,

The Transmission Control Protocol (TCP) supplies end-to-end connections using IP

- and assures all packets are delivered. If they are not, retransmission is invoked.

This object provides a simple high-level view of the number of packets sent and
received.

The User Datagram Protocol (UDP) provides a direct, rapid interface to IP without
the need to first establish a connection with the recipient. However, the delivery of
packets can be out of sequence or duplicated, or packets can be dropped. Usually a
given application will use either TCP or UDP to communicate with IP. So these
counters were all zero in this test case.



Chapter 7 Detecting Network Bottlenecks 247

The Internet Control Message Protocol (ICMP) is an ancillary protocol layer
attached just above IP. It handles a number of special internet message tasks:

» Echoing messages to verify that communication is possible (used by the ping
utility)
» Redirecting a node to use a preferred route

» Directing a node to lower the transmission rate to relieve network congestion
(source quench)

= Sending Destination Unreachable messages if a datagram cannot be delivered as
requested.

These counters are also all 0 in this case, so they are not shown.

Eile Edit View Options Help

BhpE FEl B &m0

Computer: \\SOL

© Object: NBT Conneclion MERCURY Total
Bytes Received/sec 10367.123 10367.123
Bytes Sent/sec 364922.713 719

Bytes Total/sec 375289.844

Figure 7.34 Server NBT statistics during 2048-byte reads

The NetBEUI TCP/IP Connection (NBT Connection) object individually records
transmissions to all connection points and is an extremely useful item on congested
servers. NBT Connection resides on top of the TCP layer in the protocol stack.
NBT counts inbound and outbound byte rates, and has an instance for each open
connection and a total for all connections. You can use it to determine which of
several connections is sourcing a load, and in which direction. It’s handy, handy,
handy. We wish every protocol had it.



248

Optimizing Windows NT

We generated a little UDP traffic so that it wouldn’t be left out. UDP always gets a
bum rap because its known in Internet circles as being unreliable. Imagine, value
judgments on protocols. Anyway, the next few figures show some UDP action from
the server’s perspective. We are sending 1024-byte writes from a process on the
client to a process on the server using Windows Sockets (WinSock) to connect to
UDP. In this case WinSock provides the end-to-end packet integrity and so can use
the “unreliable” UDP. This does not invoke the server process on the server at all,
but acts more like an application such as SQL server might.

igla FEEx] [=lu] &
Computer: \\SOL

Object: Network Interface 5
Bytes Received/sec .
Bytes Sent/sec 0.000
Bytes Total/sec 892436.813
Current Bandwidth 10000000.000
Output Queue Length 0.000
Packets Outbound Discarded 0.000
Packets Outbound Errors 3.000
Packets Received Discarded 0.000
Packets Received Erors 0.000
Packets Received Non-Unicast/sec 0.000
Packets Received Unicast/sec 848.324
Packets Received Unknown 298.000
Packets Received/sec 848.324
Packets Sent Non-Unicast/sec 0.000
Packets Sent Unicast/sec 0.000
Packets Sent/sec 0.000
Packets/sec 848,324

Object: Processor 0
% Privileged Time 28.891
% Processor Time 33618
% User Time 4727
Interrupts/sec 956.042

Object: Process TTCP System
% Privileged Time 11.127 0018
% Processor Time 15.018 0.018
% User Time 3831 0.000

Figure 7.35 Server’s Network Interface statistics during 1024-byte writes to the
server

Now that’s one cookin’ protocol. That is as fast as we have seen bytes fly for
this record size. And that’s as high an interrupt rate as we have seen, too. It has
resulted in a correspondingly high processor usage. All just as pretty as can be!



Chapter 7 Detecting Network Bottlenecks 249

Monitoring

LGE0HUTIoN
File Edit View Options Help
BRBa FEx] ) @
|21
Computer: \\SOL :
Object: UDP
Datagrams No Port/sec
Datagrams Received Enors
Datagrams Received/sec
Datagrams Sent/sec
Datagrams/sec
Object: IP
Datagrams Foiwarded/sec 0.000
Datagrams Qutbound Discarded 0.000
Datagrams Outbound No Route 0.000
Datagrams Received Address Errors 42.000
Datagrams Received Delivered/sec 848 342
Datagrams Received Discarded 0.000
Datagrams Received Header Enors 15212 UDD
Datagrams Received Unknown Protocol 000
Datagrams Received/sec 848 342
Datagrams Sent/sec
Datagrams/sec 848.342
Fragment Re-assembly Failures 0.000
Fragmentation Failures 0.000
Fragmented Datagrams/sec 0.000
Fragments Created/sec 0.000
Fragments Re-assembled/sec 0.000
Fragments Received/sec 0.000 ry

Figure 7.36 Server’s UDP/IP statisticé during 1024-byte writes to server

After all that blazing speed, the UDP counters are a little anti-climactic. Don’t
worry about those 42 IP: Datagrams Received Address Errors. They all occurred
during the setup of the test. Since this is an instantaneous count of the current total
number of such errors, we just have to chart it during the test. If it does not change
while we are testing, then all the errors occurred before the test. We checked, and
they did.

Anyway, there’s a brief rundown of the TCP/IP counter set. You can get all the
basic throughput information you need to determine your throughput ceilings. And
you get that wonderful NBT Connection object thrown in, not to mention some
pretty special performance from the WinSock/UDP/IP protocol stack.

NWLink Performance

The NWLink protocol stack provides Windows NT with a method of
communicating on Novell NetWare-compatible networks. Much like the
NBT/TCP/UDP stack, NWLink provides analogous NWLink NetBIOS, NWLink

IPX, and NWLink SPX services. The first figure shows our throughput test where

the client is reading unbuffered data from the server’s cache for a variety of record
sizes, starting at 512, 1024, and 2048 bytes and then proceeding in 4096-byte page
multiples.



250

Optimizing Windows NT

Figure 7.37 Client’s throughput for unbuffered reading with NWLink NetBIOS

NWLink NetBios has throughput and processor overhead much like NetBEUI in
the smaller record sizes, but at larger record sizes it has a lower maximum
throughput than the other two protocols we have considered.

Let’s take a look at the counters for NWLink NetBIOS. Here we have to make
something of an apology, because the fact is we used the counters that were already
defined by the NetBIOS protocol. The minor crime we committed here is that if you
are used to using the IPX/SPX protocol in another context, the labeling of the
counters will be quite strange to you. Cut us a little slack on this one. We figured
providing the data was more important than getting the nomenclature just so.



Chapter 7 Detecting Network Bottlenecks 251

o
BEoE FEX] (@)
+
Computer: \MERCURY
Object: NWLink NetBIOS \Device\NwinkNb
Bytes Total/sec o
Connections No Reties
Connections Open
Expirations Ack
Expirations Response
Frame Bytes Received/sec
Frame Bytes Sent/sec 11726.641
Frame Bytes/sec 423652.375
Frames Received/sec 390.821
Frames Sent/sec 195.444
Frames/sec 586.265
Packets Received/sec 390.488
Packets Sent/sec 195.244
Packets/sec 585.732
Piggyback Ack Queued/sec 195.244
Piggyback Ack Timeouts 4.000
Window Send Average 4.000
Window Send Maximum 4.000
Object: Processor 0
% Privileged Time 49.482
% Processor Time 61.319
% User Time 1.835
Interrupts/sec 438.633
Object: System
File Read Operations/sec 195.444 -‘-

Figure 7.38 Server’s NWLink NetBIOS statistics for 2048-byte reads

In the 2048 size transfer, the NWLink NetBios statistics are amazingly similar to
the data in Figure 7.3. There is a bit more processor usage, but network throughput
and record rates are virtually identical.

Let’s generate some random NWLink IPX activity. We have a test program that
uses multiple threads communicating with another computer in which a receiving
process resides. These threads send and receive data simultaneously and also
connect and disconnect from the other computer. This tweaks just about all the
counters active from IPX, which gives the data you see in Figure 7.39.



252 Optimizing Windows NT

File Edit View Options Help

FEX B

Computer: \\SOL

Object: NWLink IPX \Device\Nwinkipx
Packets Received/sec 58.858
Packets Sent/sec 58.802
Packets/sec 117.660

Object: Network Segment \Device\bh_NE32001
Total bytes received/second 174466.563
Total frames received/second 118,545

Object: Processor Ov
% Piivileged Time 31.915
% Processor Time 93954
% User Time
Intenupts/sec

e ]

Figure 7.39 General IPX activity as seen by Performance Monitor

The processor is saturated, spending most of its time in User Mode as the

application generates the workload. Since the IPX exerciser had multiple threads,

sequencing has disappeared. They’re sure talking a lot, although they’re not moving
“a lot of data. Sounds like some people we know!

We can generate some similar NWLink SPX traffic with a WinSock utility. WASP
is a little exerciser for applying a workload using the SPX protocol.



Chapter 7 Detecting Network Bottlenecks 253

= AL T

Eile Edit View Options tl_élp

X (@]t]

Computer: \\SOL

Object: NWLink IPX \Device\Nwinklpx
Packets Received/sec 439,843
Packets Sent/sec 433652
Packets/sec 873.435

Object: Network Segment \Device\bh_NE32001
Total bytes received/second 570095.438
Total frames received/second

Object: Processor 1]

% Privileged Time 32.784
% Processor Time 65.118
% User Time 32.324
Interupts/sec 987.454

Object: Process

% Privileged Time 14.812
% Processor Time 36.441
% Uset Time 21.629

Figure 740 Connection and disconnection between NWLink SPX partners

WASP generates a lot more network traffic. Processor usage is evenly split between
User Mode and Privileged Mode. But wait a minute, the WASP program is only
spending 21.629% of the time in User Mode. Yet 32.324% of the overall system
time is in User Mode. Who is using the rest of those cycles?

The next Figure shows that most of the remaining cycles are being used by CSRSS,
the Client-Server Run Time Subsystem. You may recall from an earlier chapter that
this is the process that handles graphics and windows on behalf of applications
running on Windows NT. This is client-process in the interprocess sense, not in the
inter-system sense. With this clue we observe that WASP is continually updating
the screen with status information during its test, and this involves the graphics
process. A graphics process sapping server horsepower? Well, life’s just like that
sometimes: it’s not always fair but it beats the alternative.



254 Optimizing Windows NT

Computer: \\SOL

Object: NWLink IPX \Device\Nwinklpx
Packets Received/sec 439,843
Packets Sent/sec 433.652
Packets/sec 873.495

Object: Network Segment \Device\bh_NE32001
Total bytes received/second 570035.438
Total frames received/second 875.357

Dbject: Psocessor 0
% Privileged Time 32.794
% Processor Time 65.118

© %User Time 32.324
Intertupts/sec 987.454

Object: Process WASP csIss PERFMON
% Privileged Time 14.812 2194 0.765
% Processor Time 36441 7 1.429
% User Time 21.629 0.665

Figure 741 SPX exerciser inadvertently exercises the graphical subsystem

So don’t pass over those other innocuous counters hanging around. Look at
everything; ignore nothing. Only you can determine what is important for your
application environment. Just try to imagine what those programmers have done to
your system! That ought to scare you. No counter is irrelevant when hunting
bottlenecks. The fact that a counter is not changing can be just as important as the
fact that it is. In the past few chapters we have focused on a few of the critical
issues surrounding the hunting of bottlenecks. If you deal with this issue in the real
world you know we have but scratched the surface. Don’t oversimplify. Be patient.
Be suspicious. Be fearless. Be relentless. And happy hunting!

.



255

CHAPTER 8

Capacity Planning

You might think that capacity planning is something that only large Information
Systems organizations need to do, but actually all of us change our work habits
over time as we acquire new software. It can be fascinating to watch the computer
system become taxed over time. But this fascination has its practical side—if we
watch closely enough, we’ll know exactly what to do to improve the performance
of the system as the demand for it increases.

In this chapter, we’ll give you some tips on how to stay one step ahead of the
demand for your system, whether it’s a network server or a desktop computer.
Capacity planning begins with keeping records of the performance of your system
over time. These records can become so huge as to be practically useless if you’re -
not careful, so a significant part of capacity planning is thoughtful and organized
record keeping. Once you have good records to sift through, you can get to the
analysis of those records.

The analysis is really just the application of the concepts of bottleneck detection we
have explained in Chapters 3 through 7, from the perspective of watching how your
computer usage habits have changed in the past, and where they are heading.
Mercifully, we will not repeat those chapters here.

As a fringe benefit, the whole task of bottleneck detection is greatly simplified with
even a little capacity planning. It’s easier to see what’s changed than to start from
scratch to determine what’s wrong. That Memory: Non-Paged Pool Bytes, didn’t
that used to be lower? Was it that new application we got, or was it adding TCP/IP
to the network protocols? Just a little history is worth its weight in charts here.



256

Optimizing Windows NT

Performance Monitoring Serwce

In Chapter 2 we introduced the facility for establishing Performance Monitor as a
service running on any computer. This keeps network traffic for performance
monitoring to a minimum, allows unattended automatic alerting and logging, and

" permits you to control when log or alert data move across the network. A principal

feature of this approach is that data from each computer will appear in its own log
file and application event log.

The utilities for establishing the Performance Monitor service are included on the
floppy disk or CD-ROM provided with this book. Let’s take a quick look at how we
set up the service on some computer, which we’ll call the “target” computer, named
WTARGET.

First you need to determine what counters you want to set alerts on, if any, and
what events you want to trigger when those alerts occur. You do this using our good
old friend Performance Monitor, and selecting the target computer in the Add to
Alert dialog. You may also elect to log certain objects, again pointing the Add to
Log dialog at the target computer. Be sure the path that you set up for the log file
exists on the target computer. Set your time interval for logging by the service, but
don’t start logging. You may then save your settings in a workspace settings file,
which we’ll call TARGET.PMW.

You’ll need to copy both DATALOG.EXE and TARGET.PMW to the
%SystemRoot%\System32 directory on \TARGET. You can then use the
monitor.exe utility to control the service. The monitor.exe utility is a command
line application created just for this purpose. It has the following syntax:

monitor [\\computername] [command]

If \\computername is omitted, the local computer is assumed. If command is
omitted, the current setup and status of the service are reported. The following list
shows the commands you can use as a command in the monitor command line:

setup Sets up the Performance Monitor service registry variables and installs
the service in the Service Controller

filename.pmw Establishes the file as the current workspace settings file

start Starts the service

stop Stops the service

pause Sends a pause control to the service, and data collection is suspended

continue - Sends a continue control to the service, and data collection is resumed



Chapter8 Capacity Planning 257

automatic Sets the service to start automatically when the computer starts

manual Sets the service to require a manual start using the Control Panel’s
Services applet or the monitor START command (this is the default)

disable Disables the service: commands like start will be ignored; reset this
mode by using automatic or manual

If you want to watch for alerts or log data to a log file automatically, you can
establish the Performance Monitor as an unattended service on the computers you
want to monitor. The Performance Monitor service can be set up to start
automatically when the computer starts.

The Performance Monitor service, called DATALOG.EXE, always runs locally
on the computer on which it is started. Alerts are watched locally on that computer,
so no data needs to travel across the network. You can also set up logging on any
computer running the service. The log file is usually located on the same computer.
The data can remain there until you wish to scan the data using the Performance
Monitor, or pull it to another computer when the network is not busy.

You can enhance your control of the service with the use of the at command. (For
the at command to operate, you must first start the Schedule service using the
Control Panel’s Services applet.) For example suppose you only want to log data
during the morning hours of peak usage. You might issue the following commands:

at \WTARGET 9:30 /date:M,T,W,Th,F “monitor START”
at \TARGET 11:00 /date:M,T,W,Th,F “monitor STOP”

Of course you can scale this up to handle many computers instead of just one. The
thought of all those computers automatically filling their disks with data just makes
us giggle. Until the boss gives us the bill for a new disk drive for each one. So let’s
take a look at managing all this performance data. It won’t really matter whether
it’s gathered by the Performance Monitoring Service or the actual Performance
Monitor: the log file is the same, and manage it we must.



258

Optimizing Windows NT

Monitoring Multiple Servers

First, let’s take a look at a few ways to monitor multiple servers. This is a common
need for keeping records of performance on computer networks. (In “Monitoring
Desktop Computers,” later in this chapter, we’ll discuss what you should do
differently when you monitor workstations.)

It’s usually easier to log the servers’ performance data. If you don’t log, you have
to be pretty quick on the PRINT SCREEN key. If you’re not using the Performance
Monitoring service, you can log from multiple servers into a single log file. How
many servers? That depends on how much data you collect from each one and how
often you collect it. '

Typically, you’ll be doing bottleneck detection on your servers on a daily basis
anyway. It’s actually quite easy to take the information you’re gathering for
bottleneck detection and use it later for capacity planning.

Let’s talk about what data you want to collect from your servers for bottleneck
detection. At first, you might want to log just the following objects: Processor,
System, Memory, Cache, Logical Disk, and the protocol at the adapter card level if
possible. You’ll want to log the Network Segment object from one server on each
segment. This is quite economical, and it is very easy to see exactly how much disk
space this costs you. Switch Performance Monitor to Log view, set up to log these
objects, and set logging to manual update mode. Then click the camera icon a few
times. Note the file size. Click again. Note the new size. The difference is the cost
of logging this data on that system. On a typical system, this is under 7K. If you
have 10 such systems you have 70K, and if you have 100 systems, you have 700K
(ouch).

Now, how often should you collect data? Let’s suppose we have 25 servers so we
are collecting 175K with each snapshot of the data, and that we collect data every
minute. At the end of an eight-hour shift we’ll have about 84 MB of data. As long
as you reduce the data as described below so you don’t have to save this much after
each day’s activity, it might not be considered prohibitive. But we aren’t the ones
buying the disks, so you might want to collect a little bit less. If you know how
much disk space you can use for this each day, you can use the procedures we’ve
just outlined to determine which objects to monitor, and at what time interval.

If you have an application server, you might want to collect some additional objects
such as processes or even threads (so you can see the critical System: Processor
Queue Length counter). The application itself might provide some extended object
counters for Performance Monitor. If so, these might be worth keeping an eye on.



Chapter 8 Capacity Planning 259

Another way to watch lots of systems is to use the Alert view. We’ve said little
about alerts so far in this book, but nothing handles the monitoring of lots of
systems (without taking up lots of disk space) quite as well. And your own
creativity is the limit. That’s because, as we mention in Chapter 2, you can use
‘Microsoft Test or a similar product to change Performance Monitor’s settings in
response to an alert. You can reduce the time interval, add objects, and start or stop
logging, all in response to alerts.

You can have the alert messages sent to you anywhere on the network just by
adding a special name to the system you are using. For example, typing net name
wizard /add adds the name “wizard” to the system you are on. If you then direct
the alert to send a message to “wizard,” it will find you no matter where you
-are—even out on a RAS client laptop somewhere over the South Pole.

One thing you will surely want to do is set an alert on the % Free Space on your
file server logical drives. You do not have to enable DISKPERF.SYS to see the
free space on your logical drives, but you already have DISKPERF.SYS enabled
on all your servers because you ran some experiments after reading the previous
chapters (right?), so this is not an issue. The next figure shows how you can set an
alert on several drives at once. After setting this alert, we will get an alert as soon
as the free space on any of the logical disk drives falls below five percent.

Computer: I\\DBLDNGATA

0 ]

. Cancel .

DObject: |LogicalDisk Bj Instance:

Counter: |% Disk Read Time Explain>> |
% Disk Time

Z Disk Write Time
% Free Space,
Avg. Disk Bytes/Read
Avg. Disk Bytes/Transfer ¥

! 9‘"

Alet If— Run Program on Alert
ol O Over |5 | |buyadisk.exe | @ Y
@ Under O Every Time

Figure 8.1 Setting alerts on disk free space for multiple drives



260 Optimizing Windows NT

Archiving and Storing Performance Data

Let’s continue with the example we started in the previous section. We collected
data on 25 servers using a one-minute time interval. Most server bottlenecks can be
found at this resolution. After all, if the server is slow only for a minute or less, it’s
not that inconvenient for the server’s users.

Once the day is over, or perhaps the week, we no longer need that much detail.
Now it’s time to relog the data to a Performance Monitor archive. An archive is just
a log file with data from multiple days that we’d like to keep around for a while.
Internally it has the same format as the original log file.

Suppose we use Performance Monitor to open the first daily log file. The sensible
thing to do here is to set the time window on a couple of busy periods of the day,
such as mid-morning and mid-afternoon. (Alternatively, you might want to chart a
key value such as System: Total Interrupts/sec to find where to set the time
window.) If you are collecting from multiple servers, it is usually better to collect
the data from them all at the same time of day.

After you’ve set the time window, open the log settings file with which you created
the original log (here’s where you’re glad you saved that settings file). The settings
file selects all the computers and objects you logged the first time. An alternative is
to have a separate settings file for archiving the logged data, in which only a subset
of the original objects are logged. For example, you probably don’t need the Cache
object in the archive, and you might not need all levels of the TCP/IP protocol if
you logged them originally.

Having selected the objects to archive, use the Log Options dialog box to name the
archive file. In this file you are building up a history of network activity during peak
hours. Each day’s peak activity is appended to the end of this file when-you relog it,
as shown in Figure 8.2.

Figure 8.2 Creating an archive log file from daily logs



Chapter 8 Capacity Planning 261

Before you append today’s data to the archive, change the time interval to
something like 600 seconds or whatever suits you. This reduces the data to one-
tenth its original size (assuming the original log was made with a one-minute time
interval). If you also archive only half of your workday (such as two hours of

peak activity in the morning and two more in the afternoon), the size of the data is
reduced to 4.2 MB from your original 84 MB, assuming we keep all those original
objects in the archive. This is not an outrageous amount of data for a daily record of
25 systems. This is about 20 MB per work week, or one gigabyte for the year.

One gigabyte is not to be sneezed at, and Performance Monitor would be slow

(to say the least) to process such a large file. So once a month we should engage

in some further data reduction. You will want to browse through the counters to
determine the ones you think best indicate system usage growth. System: % Total
Processor Time, System: Total Interrupts/sec, Total Bytes/sec of the protocol, %
Disk Time, and % Disk Free Space suggest themselves immediately. Number of
connections and files open might also be interesting. To monitor system memory,
you’ll want to watch Pages/sec, but also keep an eye on Page Faults/sec and Cache
Faults/sec so you can determine whether your paging is due to disk file activity or
too many large processes.

You then chart the counters you selected over the month’s time. At this point, we
have 4 hours per day times 6 observations per hour, or 24 data points per day. With
22 working days in a month, this gives 528 data points for the month for each chart
line. Of course, on a Performance Monitor chart you will see only 100 points, but
as they say Down Under, no worries.

Analyzing Trends

Continuing our example, the next thing you’ll do is export the chart. Now you have
all 528 data points in a format suitable for a spreadsheet or database application.
It’s trend analysis time! Once you import this file into your application, you will get
another huge reduction in data storage requirements. You are now in a position to
plot 3-D charts, annotate them with sound and videos of your network humming
along, and so on.



262 Optimizing Windows NT

The next figure is an example showing the growth in processor utilization and
interrupt rate on a server over a period of several months. The processor usage

has climbed to near 75% at the right of the chart, and the interrupt rate is 1,180 per
second. Time to order that second processor!

Figure 8.3 Processor-usage growth on a server over several months

You can automate a lot of this using Microsoft Test for Windows NT or a

similar tool. If you do this by recording your actions, then wherever you can, use
keystrokes instead of mouse movements to navigate. This makes the MS Test script
more readily portable to different display resolutions. ‘



Chapter 8 Capacity Planning 263

Monitoring Desktop Computers

On clients, we recommend collecting less data. The same objects could be collected,
but an hour’s activity each day should be enough. Use the at command to schedule
the monitor utility to log the data each day. You can skip a step by recording at
6-minute intervals initially. This gives ten data points, or 70K, per day. Use an MS
Test script to append these directly to your archive. This will grow to 1.5 MB in a
month, which could be compressed and placed on a floppy disk after it is exported,
50 it can be used by a spreadsheet or database application. (Utilities to compress
and expand files are shipped on the Windows NT SDK.) Log files compress to
about 30-40% of their original size. Again, all of this can be automated with MS
Test with a little effort.

Once you have all this data, the chances that you will be able to get that next piece
of equipment when you need it are greatly improved. Bosses are easily swayed by

3-D charts. If that doesn’t work, add music, or a full-motion video of you working

in slow motion. On second thought, maybe that last idea wasn’t so great.






265

CHAPTER 9

Writing High-Performance
Windows NT Applications

It’s time to talk about how to avoid lots of problems. An ounce of prevention is
worth a pound of charts. (Catchy phrase, isn’t it?)

In this chapter, we go over some guidelines and hints to help you write high-
performance Windows NT applications. For years, a body of lore has accumulated
surrounding the creation of high-performance and well-behaved 16-bit Windows
applications. However, Windows NT is a completely new operating system, and the
rules have changed. (For example, the constraints of a 16-bit address space have
been removed within the operating system, so there are fewer limits on internally
stored objects.) '

The sophisticated virtual memory manager in Windows NT permits applications

to have direct access to very large data structures. Increased protection permits
applications to be less concerned about cooperating with other applications, and
more focused on being responsive to the user. But costs associated with increased
protection and with portability to multiple processors necessitate a rejection of some
coding styles of the past.

If you think this chapter is only for programmers, think again. There is nothing
more satisfying than going to your lead programmer and pointing out a more
efficient way to do something. So if you’re a programmer you’d better read this
in self defense, and if you’re not, this is your chance to get even.



266

Optimizing Windows NT

Managing Memory

You have at your disposal a large virtual address space and probably more physical
memory than in the old days, too. With 32 bits of address space, you can address 4
gigabytes. Each application program on Windows NT has the lower 2 gigabytes

of linear virtual address space at its disposal. You don’t get quite all of it, of course.
If you have a console application, the system will use 5.5 MB of that lower 2
gigabytes to permit you to view portions of the system that reside elsewhere. If

you have a Windows application, that number rises to 9 MB. But these are small
potatoes compared to 2 gigabytes, so think of yourself as owning it all.

If your application is being ported from another operating system or from an earlier
version of Windows, you might have developed a special virtual memory scheme
for your own private use. Get rid of it. Otherwise you will be paying the price of
having two virtual memory systems operating at one time, and believe me, one is
enough. '

You should consider using memory mapped files under certain conditions. Do this
if you are going to randomly access the file read-only or read-share write-exclusive.
Shared writing to memory-mapped files from multiple processes requires quite a bit
of internal system structure and does not work well if the file is remote, because you
will have to manage your own remote synchronization. There are better ways to
spend your time, because this problem is automatically solved by facilities in each
of the various file systems.

For sequential file access, memory-mapped access is a bit faster but uses more
memory than does access through the file system cache. And if you are going to
access a file sequentially, be certain to tell that to the file system in the CreateFile
call by setting FILE_FLLAG_SEQUENTIAL_SCAN. (In general, use CreateFile
instead of the obsolete OpenFile call.) This increases the size of the read-ahead by
the cache manager. If, however, you are going to access the file randomly and
sparsely, you definitely should use file mapping. You do this by first calling
CreateFile to open the file, and then CreateFileMapping to place it directly into
your address space. This is what Performance Monitor does when reading in log
files, because sparse random access to a log file is common.

You should also get rid of your temporary files if you know their maximum size.
You can map a large temporary space which is backed by the system paging files
instead of by a pre-existing file. Simply pass Oxffffffff as the file handle to
CreateFileMapping, and specify the size you need.



Chapter 9 Writing High-Performance Windows NT Applications 267

You can also create large tracts of space to play in with the VirtualAlloc call. This
is space backed by the paging file(s), but because it has no name it is not sharable
with another process, so it’s a little different from CreateFileMapping. You can
form some really large private data spaces backed by the paging file with this much
address space, but it may not be wise to reserve disk space for all that area. You
may need your application to run on machines that are short on disk space. There’s
no point in taking more than you need.

What you can do is tell the system how much you might need in the worst case,
and have it reserve that amount of linear address space. Then you can commit only
those pages which you actually need to use as you go along. The reserved virtual
space will be contiguous, but disk space will only be obtained in the paging file
for the committed bytes. To reserve memory, call VirtualAlloc specifying the
MEM_RESERVE flag, and later you can commit the memory with another call to
VirtualAlloc, specifying MEM_COMMIT.

‘One useful thing about the CreateFileMapping call that we alluded to above is you
can share the memory section you create or map with other processes on the same
computer. All they need to do is a CreateFileMapping on the same filename. This is
a much faster way to share information between multiple processes than named
pipes, RPC, or shared file access. For example, it is how Performance Monitor
would prefer to get its data from extended objects. You might need a mutex to
protect access to the shared section, but hey, we got those too, and they’re priced
at a bargain.

Using the Kernel Wisely

If you decide to use the file system to access your file data, get a reasonable chunk
of data at a time. If you are processing a file sequentially, get 4K or 8K at a time to
reduce the number of calls you have to make to the file system. There is no point in
crossing the boundary between user mode and privileged mode and going through a
slew of protection and security checks unnecessarily. Of course, if you randomly

~ access small amounts of data, you are probably better off not reading or writing -
large numbers of bytes you don’t need. In that case try to map the file.

Think about using multiple threads to improve your performance on multiple
processor computers. Just because you have a desktop application does not mean
you cannot take advantage of multiple threads. First, you can use multiple threads
as a technique to get back to the user quickly when the user has requested a task
that takes a little time. Second, the day is not far off when we will see multiple
processors on the desktop.



268

Optimizing Windows NT

If you are working on a server application, you certainly want to use multiple
threads, because multiprocessor servers will soon be commonplace.

Note It may not be wise to use multiple threads to get lots of concurrency in your
file access. Be aware that Windows NT supports asynchronous file access. This
means you can fire off many file requests, and the system will notify you when they
complete. This is much more efficient than having a separate thread for each
concurrent file request that you might have outstanding.

In MS-DOS systems, there was a limit on the number of files the system could have
open at one time. This led to a coding style of opening and closing files frequently.
Because of the additional protection and security in Windows NT, the action of
opening a file uses more resources, and we don’t encourage this coding style. Open
files and leave them open for access. There is no limit on how many can be opened
at one time, other than the size of non-paged pool; it cannot be allocated so large as
to take all of physical memory. But we are talking many thousands of files before -
this is a consideration. So don’t be afraid to leave your files open.

In Windows there was a distinction between memory obtained using LocalAlloc
versus memory obtained with GlobalAlloc. Windows NT supports both allocation
calls to make porting to Windows NT easier, but for 32-bit applications they
execute the identical underlying code. The memory allocated is local to your
process, and will be deleted by the system when your process dies. You cannot
share it with another process; that’s what CreateFileMapping is for. The one place
where this is not true is when the memory is flagged as GMEM_DDESHARE,
which Windows NT handles differently. Only applications using dynamic data
exchange (DDE) or the clipboard will specify this flag. For 16-bit applications the
calls appear to work as they did on 16-bit Windows, because these all execute in
the NTVDM process.

If you’re looking for the acme of performance on short bursts of activity, use the

. Real-Time Priority class. It’s most useful for an application which is processing

data in real time or doing time-sensitive communication with an external device.
Your application must run in short bursts and not keep the processor for very long
before waiting for the device to deliver more data. This is because you will be
preempting all activity on the system, including the work of Windows NT system
processes.



| .

Chapter 9 Writing High-Performance Windows NT Applications 269

Another useful facility for development of real-time applications is the VirtualLock
call. This permits you to identify a small number of pages to retain in memory so
you will not have to wait for pages to come in from the disk when attempting to
respond to a real-time device. You should implement a design that minimizes the
amount of code that executes in the Real-Time Priority class with locked pages.
You can use Event objects and shared named memory to exchange information
with processes running at normal priority and thus minimize the real-time code.

One way to improve your performance when storing and retrieving data from the
Configuration Registry is to use the new data type MULTI_SZ. This data type
permits you to store a set of data values under the name of a single value by
concatenating the strings into a single “multistring.” A multistring has multiple
individual strings separated by TEXT(‘/0’), with the last one followed by an
additional TEXT(‘/0’). One call to the registry will retrieve all the strings. This is
very efficient, especially if the value is accessed remotely. Performance Monitor
counter names and Explain text are stored in two giant MULTI_SZ multistrings.
Performance Monitor retrieves them all with just two RPC calls to the remote
registry during remote monitoring.

This touches on another point. Internally, Windows NT uses Unicode™. (Unicode
is a 16-bit character-coding standard which includes symbols for all international
languages.) When an application passes ASCII text strings to the system (to be
stored in the Configuration Registry for example), they are translated to Unicode
right off the bat. They must be translated in the reverse direction if the application
is coded to deal with ASCII. So the obvious right thing to do, at least from a
performance viewpoint, is to write the application to work with Unicode. This will
avoid some unnecessary overhead and make the application easier to port to foreign
languages, especially in the Far East. So if you want those trips to the Far East to
work on the Asian versions of your application, use Unicode.

Grappling with Graphics

In Chapter 3 we discussed the graphics architecture of Windows NT. The
illustration is reproduced here to jog your memory. When an application wants to
write to the display it must send its request to the Client Server Runtime System
(CSRSS). (This is called a client-server architecture because it mimics the network
client-server model we covered in detail in Chapter 7. However, the client and the
server for graphics in Windows NT must be on the same computer because, as

we shall see, they share common data.) This provides a high degree of portable
protection to the windowing and graphics managers, but there is a cost of about a
thousand instructions for each call. This fact dominates life in graphics land on
Windows NT and has important implications for how you code your application.



270

Optimizing Windows NT

Application process CSRSS process

Windows
and graphics

Application Privileged | Privileged
code mode | mode

: Graphical

device driver

T

Y

User mode Privileged mode User mode

Figure 9.1 Windows NT client-server graphics architecture

You might wonder why we did not just use another protection ring and place the
windowing system there. This would have kept it out of privileged mode and still
protected it from the applications. The reason is that many machines only have the
two protection levels: user and privileged modes. If we had tried to use a third
level, Windows NT would not have been portable.

One way the system improves on the effective per-call cost of the client-server
transition is to batch up calls and send them together. This gets them over to CSRSS
at a “bulk rate.” Several events can trigger the release of a batch of calls to CSRSS.
If too much time passes between calls, the current batch is released. If too many
calls pile up, the batch is released (ten is the default batch limit). And certain calls
(those that require the graphics display to be updated in order to return their values)
will “flush the batch.” We’ll discuss these in a moment.

In order to minimize the number of transitions to the CSRSS process, the system
caches quite a bit of information in the application process For example, the first
time the application requests font metrics much of the information for responding |

to questions about the metrics on the font is copied to the application process for
further reference. Another thing that applications do a lot is compute transforms
between the logical and physical display coordinates, so the information for these
transforms is cached in the application. Basically, anything frequently used that can
be changed only by the application is cached. Anything that other applications using
the windows and graphics subsystems can change cannot be cached in the
application, but must be retained in CSRSS.

Another thing Windows NT does to minimize the need to cross over to CSRSS is

to share, as read-only, some of the CSRSS address space with the application. This
permits windows calls which need to read information in CSRSS data structures to
do so without having to transfer to the CSRSS process to look at the data. An
example here is the application’s message queue. By mapping it to the address
space of the application, the system can avoid a transition to CSRSS to determine if
a message is waiting in the queue, as is done in a PeekMessage call. The system
also maps data about such commonly-referenced items as existing windows, menus,
and system colors.



Chapter 9 Writing High-Performance Windows NT Applications 21

Batch Processing for Graphics

You can see why effective Windows NT programming largely is about managing
the batch of calls routed to CSRSS. Making sure this batch is as large as possible,
when appropriate, is the goal.

When is it not appropriate? When you need the display to immediately reflect the
drawing you do, you want to flush the batch explicitly no matter how large or

small it is. Performance Monitor does this as soon as it has updated the display
with a new chart data point. Failing to do this causes the data to be updated

with noticeably odd timing. Also, you want to minimize the batch when you are
debugging your application. Otherwise, an error returned to an application
programming interface (API) call in the middle of a batch may not be returned until
some other call flushes the batch; it will appear then that the wrong call failed. This
seems pretty serious until you learn that debugged applications cannot get failures
on API calls which can be batched. This is one of the criteria the system designers -
used for determining if an API can be batched. Finally, if you are doing certain
performance measurements on your application, you will want to set the batch to
one. We’ll discuss this in the next chapter.

In general, you can batch graphical output functions that return a Boolean value
indicating success or failure. A few frequently used APIs that return non-Boolean
results which were seldom used have new replacement calls that just return Boolean
results. SetPixelV and MoveToEx are the new calls in two important cases.
(Remember this: there will be a test later.)

Three new API calls help you manage the batch. They are all optional; the default
works fine except in rather odd cases, such as Performance Monitor updating a
display in real time. GdiSetBatchLimit allows you to raise and lower the batch limit
which, as we mentioned, defaults to ten. For best performance, you should set the
limit as high as possible while avoiding jerky drawing on the display. You will
want to test any changes to the batch limit on a very slow machine and a very fast
one to be sure you have not introduced a problem which will only appear in one
environment or the other. You can call GdiGetBatchLimit to determine the current
limit. And you can call GdiFlush to flush the batch to CSRSS at the end of an
operation you would like to see displayed immediately.



272

Optimizing Windows NT

Most calls that manipulate the window system flush the batch. One reason is

that much of the window system is visible to all processes on the desktop and

so the central data repository for the common information is within CSRSS. We
mentioned that PeekMessage does not flush the batch, but GetMessage does. So

do graphics calls that return a handle or a number. An important exception to this is
the group of calls for selecting fonts, brushes, and pens. These are batched. But
selecting bitmaps and regions flush the batch. So do SetWorldTransform and
SetMapMode. We are telling you all this so that (when possible) you will try to
organize your code to group graphical calls together, and then make the calls that
flush the batch.

Another way to reduce the overhead for the client-server architecture is to write
your application to take advantage of the several calls beginning with “Poly.” These
exploit the fact that many drawing calls use identical attributes, and so multiple
items can be drawn in a single call once the brushes, pens, colors, and fonts have
been selected. Whenever possible be sure to use PolyTextOut, PolyPolyline,
PolylineTo, PolyDraw, PolyBezier and PolyBezierTo. The Windows NT console
window uses PolyTextOut. This change reduced scrolling time in a console window
by 30% when it was implemented during the development of Windows NT.

High Performance Graphics

If you are writing an application that draws on the display, then there is a new
facility in the Win32e API set which can really speed things up. We’re talking
about the CreateDIBSection call. (The DIB here stands for “Device-Independent”
bitmap.) This allows you to share a memory section directly with CSRSS, and thus
avoid having it copied from your process to CSRSS each time there is a change. In
the old days you might have called GetDIBits, made the required changes, then
SetDIBits. You might have had to do this several times on different scan lines of the
bitmap before the image was ready for updating. The new call-avoids all that. You
will first need to call CreateCompatibleDC to get a Device Context to select it into
in order to access it with the GDI API’s. You can then make the changes directly in
the memory section holding the bits, and then call BitBlt or StretchBlt to transfer
the changes to the display.

One word of caution if you decide to use CreateDIBSection. You need to be sure
that any calls that might affect your bitmap have completed before you start to draw
in it. This is because the batching of GDI calls may cause their delayed execution.
Suppose you make a PatBlt call to clear your bitmap. Then you start to change the
bits in your DIB section. If the PatBIt call was batched it might not actually get to
CSRSSuntil after you start to make the bitmap changes. So, before you start to
twiddle the bits on your own side of the fence, be sure to call GdiFlush if you have
made changes to the bimap with earlier GDI calls.



Chapter9 Writing High-Performance Windows NT Applications 213

Managing the Device Context

Windows NT provides a veritable sea of memory. Boy, this feels different
compared to 16-bit Windows. Not only can our applications stretch their legs,

the system itself no longer has to fit inside 16-bit-addressable blocks, and we have
room for lots and lots of pens and brushes and fonts. In the 16-bit Windows
programming environment, it was important to conserve the use of drawing objects.
In the 32-bit world we have to have richer data structures to hold this new wealth of
data. And that means it takes longer to look things up.

The old limitations gave rise to a coding style which created, selected, used, and
destroyed objects (like pens and brushes) constantly. Create, select, use, destroy;
create, select, use, destroy. This limited the number of objects in the system and
kept the application from bouncing into the address space walls, or worse, forcing
another application into them. Because of the client-server transition, object
creation and destruction are much more expensive on Windows NT. Because of the
new capacity for large numbers of objects, selecting objects is a bit slower too. So
create all your objects when you first need them. Then try to.get into the pattern of
select, use, use, use; select, use, use, use. Don’t destroy them at all until you really
are done with them.

Let’s take an example from real life. We had someone porting to Windows NT
complaining that their graphics were slower than before, We had them use the API
logger (which we’ll cover in the next chapter) to see what was wrong. We found
them using the following pattern: select(grey); patblt(...); select(black); patblt(...);
select(grey); patblt(...); select(black); patblt(...).

We had them change this to select(grey); patblt(...); patblt(...); patblt(...);
select(black); patblt(...); patblt(...); patblt(...). This solved the problem because it
avoids the repeated lookups in the new data structures. This technique is applicable
to pens, fonts, colors, palettes, and brushes.

While we’re on the topic of graphical device contents (DCs), into which we’ve
been selecting these objects, let’s blow away another piece of lore. If you were a
16-bit Windows programmer, you were told to avoid the use of your own DC’s
because the system could only support a few. This is not true on Windows NT. Use
the creation style CS_OWNDC as much as you can in your RegisterClass API call.
This avoids repeated use of the relatively expensive GetDC and ReleaseDC calls
every time you have to draw. It also preserves the selected objects in your own DC
in between calls, eliminating the need to select them again after each call to GetDC.



274 Optimizing Windows NT

- Asynchronous Input and the Window Manager

The elimination of address space constraints permeates many aspects of the
windows environment as well. For example, timers are no longer precious objects.
Feel free to create and use as many as you like (but be aware that they are a poor
man’s substitute for threads in certain cases).

Arguably the biggest difference between the 16-bit and 32-bit window manager is
the asynchronous input model. On 16-bit Windows you have a synchronous input
model, sometimes called “cooperative multitasking.” In this model, each application
must always process its messages because every application saw every message and
if you did not process each one and yield to another program quickly, you would
hold up all the other programs on the system. This necessitated a coding style where
the most frequently called API was PeckMessage, because every application
constantly had to check the message queue for messages and pass them on. If they
did not, the system would appear to hang. (This also gave rise to a generation of
applications that, by default, loop in the processor checking for messages with
PeekMessage instead of calling GetMessage which will return control to the
window system until a message arrives. This does not really hurt anything, but as a
coding style we find it offensive. We’ll have no more of that, thank you.)

On Windows NT, messages are sent only to the processes that need to see them. If
one process ceases to deal with its messages it may become unresponsive and may
cease to update its display area, but the rest of the system will carry on just fine.
This means PeekMessage no longer has to be the most popular API in the system.
You still want to remain responsive to the user, of course, so you should still call it,
but maybe not so often.

For the window manager, it is more important than ever that you write your
application using Unicode. Having to translate everything that goes onto the display
from ASCII to Unicode slows the important path from your application to the user’s
vision. Unicode, Unicode, Unicode. We love Unicode.

Considerations for RISC Computers

One thing that surprises designers porting applications to, or writing applications .
for, Windows NT is how easy it is to get their application to run on RISC
processors. There are virtually no processor dependencies in the Win32™ API layer.

However, you can give up a lot of performance in your applications if your data is
not properly aligned. The right way to handle this problem is to align the data in
your source for both RISC and non-RISC machines. You want to assure that you
have DWORDs on DWORD boundaries, and LARGE_INTEGERS on 8-byte
boundaries. Normally the compiler makes this happen, but there are cases when
you need to force unalignment, such as data coming in from a file or from over a
network. Such structures may not follow these alignment rules.



Chapter 9 Writing High-Performance Windows NT Applications 275

In this case, you will want to use the pragmas PACK and UNPACK to define the
structures, and the modifier UNALIGNED to declare pointers to them. This will get
the compiler to generate the appropriate code. If you do not do this you will get
alignment faults. On some systems these will simply trap and you can fix your
program. We are more concerned about the systems that handle your unaligned
references with a trap handler. This will slow your application down in a way that
is not very obvious.

- Choosing Between API Sets

The number of Win32 implementations the application designer might be
con51der1ng is growing. At present these consist of Windows NT and Win32s™. As
you certainly know by now, Win32s is implemented on top of 16-bit Windows so
that Win32s applications can gain the benefits of a 32-bit address space, but still
execute on existing 16-bit Windows systems. The existence of these two flavors of
the Win32 API complicates the design decisions for the application programmer
primarily in the performance arena. This is because Win32s offers the application
the advantages of the 32-bit address space, but continues to be subject to the
internal restrictions of 16-bit Windows (and to some extent, MS-DOS).

Therefore optimizations made for Windows NT will not always porf to Win32s,
and vice versa. Here we 11 summarize which optimizations apply to which Win32
implementations.

The following table lists the various optimizations and tools presented in this
chapter, and indicates where they apply. (Many of the tools listed at the end of
the table are discussed in Chapter 10, “Tuning Windows NT Applications,” and
Chapter 11, “Tuning the Working Set of Your Application.”) The abbreviations
used in the table are:

Yes OK to use in this implementation

N/A Not applicable, does not apply to Win32s

No-op You can do this without effect on Win32s

No No, don’t do this on Win32s ‘

Optimization Windows NT Win32s
Kernel optimizations: ‘

Large address space . Yes Yes
Discard old custom virtual memory schemes Yes Yes
Use memory-mapped files for file access - Yes Yes
Reserve large data address spaces, but commit only Yes Yes

what you need



276 Optimizing Windows NT

Optimization Windows NT Win32s
Kernel optimizations (continued):
Use named shared virtual memory Yes Yes
For sequential I/O, use 4K or 8K blocks Yes Yes
Use threads to enhance concurrency Yes No
Keep files open Yes No
Global and Local allocation are the same ~ Yes No
Real-time priority for data communications Yes. ‘ No
Page-Locking API is provided Yes Yes
Use new data type MULTI_SZ in Registry Yes No
Write the application using Unicode Yes No
No disk cache tuning required ' Yes No
Graphics:
Client-server protection dominates ) Yes N/A
Batching of calls amortizes cost Yes ~ N/A
Caching of values on client side reduces cost Yes N/A
Mapping of server data read-only to client Yes N/A
Batch output functions that return a Boolean result Yes N/A
SetPixelV and MoveToEx are batched - Yes No-op
New APIs Gdi{GetlSet}BatchLimit, GdiFlush help " Yes ' No-op
Set batch limit as high as possible while avoiding jerky ~ Yes No-op
display
Most “user” (that is, Windows management) calls Yes No-op
flush the batch
GDI calls that return a number or a handle flush Yes No-op
the batch

- Selecting fonts, brushes, and pens do not flush Yes No-op
the batch ‘
Selecting bitmaps and regions flush the batch Yes No-op
SetWorldTransform and SetMapMode flush the batch Yes No-op
GdiSetBatchLimit(1) only to see errors, or Yes No-op
GdiSetBatchLimit(1) only to profile API calls Yes No-op
Use new Poly calls as much as possible Yes Yes

Avoid Create, Select, Use, Select former, Destroy Yes No



Chapter 9 Writing High-Performance Windows NT Applications 217

Optimization Windows NT  Win32s
Graphics (continued):

Create, Create, Create; Select and Use, Use, Use... Yes No
Richer structures to hold unlimited objects Yes N/A
Group attribute usage: gray, gray, gray, red, red Yes Yes
Grouping avoids cache lookup for pens, fonts, colors, Yes Yes
palettes, brushes

Use CS_OWNDC in RegisterClass Yes No
CreateWindow, Get(Own)DC set DC attributes only Yes . No
once

Timers are no longer precious Yes No
Less need to use PeekMessage frequently Yes No .
Write to Unicode Yes No
RISC:

Be sure to align data Yes No
Compiler pragma for handling file/net data Yes Yes
Exception handling for data alignment not supported varies N/A
Tools:

Win32 API Profiler Yes Yesl
Win32 Call/Attributed Profiler Yes No
Working Set Tuner Yes 2
VADump Yes 2
PView Yes No
Debugger wt command Yes No
Performance Monitor Yes No

1 There are two Win32 API Profilers: one for Windows NT, and another for Win32s.

2 Working set tuning done on Windows NT will apply without further effort to the same application

running on Win32s.






279

CHAPTER 10

Tuning Windqws NT Applications

If you’ve done everything we mentioned in the last chapter and you’re as good a
programmer as you claim, you can, of course, skip this chapter. If instead you are
mortal like the rest of us, you may discover that your application’s performance
could use a bit of improvement.

When you set out to make that improvement, having the perfect knowledge of the’
static structure of your program is not enough to lead you down the right path. No
one is surprised more often by the dynamic behavior of a program than its author.

You need tools for performance tuning. In this chapter we discuss the tools you can
use to help you find performance problems in your application. The tools we discuss
here are flexible and can address a wide variety of tuning issues. To cover them all
completely would give us yet another volume. So instead, we’ll show you how to.
use each tool and what it can tell you, and refer you to the documentation supplied
with each one for the gory details.



280 Optimizing Windows NT

Run Performance Monitor First

Usually you can tell you have a performance problem because someone is beatmg
down your door complaining about it. (And that someone may well be yourself.)
What to do then?

Your first reaction should always be to run Performance Monitor. The objective of
Performance Monitor is not to solve all performance problems, but rather to make
sure no one wastes any time barking up the wrong tree. The Windows NT SDK
provides a number of tools you can use to tune your application, and running
Performance Monitor before tuning helps you make sure you pick up the right
tools to use next.

Let’s take an example from the early days of the development of Windows NT. We
ported the Solitaire program to Windows NT from 16-bit Windows. Initial users of
the game complained about its performance when the cards cascade at the end of a
winning game. You’ve never seen this because you’ve never beaten Solitaire? Well,
on Windows NT we have built this in as a graphics demo. To see it, start Solitaire
from the Games group and press SHIFT+ALT+2. That’s the number 2, not the F2 key.
We hope you’re not disappointed with the speed, because the tuning work we are
about to demonstrate has already been done on the copy of Solitaire you are
running.-

When we heard complaints about Solitaire, our first step was to run Performance
Monitor. Because we didn’t think Solitaire used the network, we logged the data
across the LAN so we didn’t interfere with any possible disk activity. We set the
time interval to five seconds because the operation we wanted to time takes about
90 seconds. This gave us only 18 data points, which we figured was probably
enough. If it wasn’t, we could have built a version of Solitaire that performs the
cascade operation repeatedly. You can’t get too far exploring application
performance problems unless you can isolate the problem.



Chapter 10 Tuning Windows NT Applications

281

EREE

File Edit View Options Help

100
90
80

o o L (,

Last] 3706523 Average|  3586.833 Min| 3142373 Max|  4091.300 Graph Time| = 340.000°

Color Scale Counter Instance = Parent  Object Computer

E 1.000 % Processor Time 0 Processor \\OBLONGATA
— 1.000 Pages/sec Memory \\OBLONGATA
---- 0.000100 Bytes Total/sec. " \Dewvice\Nbf |- NetBEUL - \\OBLONGATA
— 1.000 % Disk Time [ 1} LogicalDisk ~ \\OBLONGATA
—— 1.000 % Disk Time D: 1 LogicalDisk ~ \\OBLONGATA
— 1.000 % Disk Time E: 2 LogicalDisk ~ \\OBLONGATA

Figure 10.1 Overview of the Solitaire cascade

The overview from our log file of Solitaire is plotted in Figure 10.1. It’s pretty clear
that we have a processor bottleneck. All the other chart lines are flat, except for the
LAN activity generated by Performance Monitor. How can we be sure this activity
is caused by Performance Monitor? The average NetBEUL Bytes Total/sec (3587)
times the length of the run in seconds (340) is just about the size of the Performance

Monitor log file (1120260 bytes; we learned this from the dir command).

Computer: \\OBLONGATA
Object: Processor 0

% Privileged Time

% Processor Time .
% User Time . 58.555
Interupts/sec 385.950

Object: System

Context Switches/sec 3494.828
File Control Bytes/sec 1920.747
File Control Dperations/sec 16.392
File Data Operations/sec 0.100
File Read Bytes/sec ) 0.000
File Read Operations/sec 0.000
File Wiite Bytes/sec 3055.283
File Write Dperations/sec 0.100
Processor Queue Length 1.000
System Calls/sec 389.969

Figure 10.2 Processor and system statistics during the Solitaire cascade



282

Optimizing Windows NT

We’re spending 41.445% of the time in privileged mode, and we see a pretty high
context switch rate for this computer, a 486/33. Because the value of File Write
Bytes/sec is close to the NetBEUI: Bytes Total/sec we saw in Figure 10.1, we can’
tell that the File Write Bytes/sec rate was caused by the redirector when it wrote
Performance Monitor data. The interrupt rate is consistent with a system connected
to a busy network, but not too active on it. We followed our own advice from
Chapter 3, and looked at which processes were eating up the processor.

Computer: \\OBLONGATA

Object: Process SOL csiss
% Privileged Time 11.985 28133
% Pracessor Time 19.003 78.664
% User Time v 7018 50.525
Elapsed Time 333510 4418.280
File Control Bytes/sec 0.000 0.000
File Control Operations/sec 0.000 0.000
File Read Bytes/sec 0.000 0.000
File Read Operations/sec 0.000 0.000
File Write Bytes/sec 0.000 0.000
File Wiite Operations/sec 0.000 ~0.000
ID Process 138.000 24.000
Page Faults/sec 0.062 0.056
Page File Bytes 245760.000 5513216.000
Page File Bytes Peak 245760.000 5533696.000
Pool Nonpaged Bytes 12920.000 1562868.000
Pool Paged Bytes 37655.000 407588.000
Priority Base 7.000 13.000
Private Bytes 241664.000 5341184.000
Thread Count 1.000 26.000
Virtual Bytes 8560640.000 32227328.000
Virtual Bytes Peak 8560640.000 32358400.000
Working Set 595320.000
‘Working Set Peak 696320.000

Figure 10.3 Process activity during the Solitaire cascade

Looks like CSRSS was doing all the work. Between Sol and CSRSS, the processor
was maxed out. We decided to see if looking at the threads could give us any more
information about what was going on here.



Chapter 10 Tuning Windows NT Applications 283

[-]~

;ptinns Help

] (]

Computer: \\OBLONGATA SOL csIss

Dbject: Thread 0 25

% Privileged Time 11.985 27.849

% Processor Time 19.003 78.036

% User Time 7.018 50.188

Context Switches/sec 1675.450 1677.342

Elapsed Time 333.495 332.655

ID Process 138.000 24.000

ID Thread 162.000 184.000

Priority Base 7.000 13.000

Priority Current 7.000 14.000

Start Address 2005487756 2005487744

Thread State 1.000 5.000
Thread Wait Reason 7.000

Figure 10.4 Thread statistics during the Solitaire cascade

Now we can see where all those context switches were going. Solitaire is calling
CSRSS constantly, and most of the time is spent in CSRSS in a single thread.
(For clarity, we omitted the 25 idle or near-idle CSRSS threads from the report
shown here.)

We’re not spending a great deal of time in the Solitaire program. So it must be
Windows NT that has the problem, right? Let’s make sure that’s true by using
the next indicated tool, the Windows API Profiler. '

The Windows API Profiler

The Windows API Profiler, affectionately known as WAP, is useful for determining .
which Windows 32-bit API calls are taking up time. WAP can effectively profile
any number of processes and threads concurrently. You can run it on a program
without having to recompile the program. WAP intercepts the calls from the
application to the system and counts and times them. WAP is available in the
Windows NT SDK.

WAP modifies the executable image to point to a set of measurement DLLs that
sandwich themselves between the application and the system DLLs. See Figure
10.5. If your application performs a checksum on its executable, you must disable
the checksum to run WAP.



284

Optimizing Windows NT

Application process before API profiler is started

GDI
User .
Application Privileged
code Kernel mode
CRTdll
AdvAPI32

System API

Application process while API profiler is running

ZDI GDI
o Zser User B
Ap;;l‘;%aglon Zernel Kernel Prxg%%ed
ZRTdll CRTdIl
ZdvAPI32 | AdvAPI32

API System API
profiler

Figure 10.5 Application interface to the system before and after running apf32cvt

WAP sets the client-server batch size to one before taking any measurements. This
assures that the proper API call gets billed for its time. If WAP did not do this, the
time for all the API calls in the batch would be counted against the last one in the
batch, totally confusing the data (not to mention confusing you). Setting the batch
limit to one is a good idea, but you may notice a slowdown in the operation of the
application because there are many more client-server transitions. Set another plate:
Heisenberg invited himself to the party again.

If you are concerned about the impact of setting the batch level to one for your
application, you can get an idea of the cost of a client-server transition on your
computer by looking in the WAP data for a call to SetWindowLong. It’s a pretty
common call. If you don’t see a SetWindowLong call, use WAP to find such a call
in another application, such as WinHIp32.



Chapter 10  Tuning Windows NT Applications 285

The Win32 APIs are contained in the following dynamic link libraries:
KERNEL32.DLL, ADVAPI32.DLL, GDI32.DLL, USER32.DLL, and
CRTDLL.DLL. The profiler is in the form of five DLL files, one for each DLL

to be profiled. As shown in Figure 10.5, these DLLs sit between an application and
the Win32 DLL to be profiled, intercept API calls to them, and then make and time
a call to the Win32 APL The profiling DLL records the following information for
each API:

s The number of times the API is called

= The total time spent executing the API during those calls

= The average time per call, computed by dividing the total time spent in the API
by the number of times the API is called

= The time of the first call to the API
=  After the first call, the maximum time spent in the API on any one call
= After the first call, the minimum time spent in the API on any one call

= The number of calls that were not timed, due to a timer overflow (timer
overflows should not happen)

All result times are in microseconds.

The profiler determines overhead by reading the timer 2000 times upon
initialization of the profiling DLL. The minimum time of these calls obtained during
this process is subtracted from the time for each API call, thus eliminating the
majority of timer overhead from the final results. For accurate timing, it is
important that the system be inactive during the calibration process.



286

Optimizing Windows NT

Setting Up the Profiling Envir0nmeht

There are a few utilities that assist the profiler. You must place APF32CVT.EXE
and APF32DMP.EXE in the path of the measurement computer. You use apf32cvt
to prepare the application for profiling. You also use apf32cvt again after profiling,
to restore the application to its original state.

The apf32dmp utility is used to collect the profiling data during and after the
profiling run.

The following DLLs are required and must also be placed somewhere on the
operating system’s path:

» ZDVAPI32.DLL, the profiling DLL for ADVAPI32.DLL

= ZERNAL.DLL, the profiling DLL for KERNAL32.DLL

= ZDI32.DLL, the profiling DLL for GDI32.DLL

= ZSER32.DLL, the profiling DLL for USER32.DLL

= ZRTDLL.DLL, the profiling DLL for CRTDLL.DLL

s FASTIMER.DLL, the timing DLL

Profiling an Application

The apf32cvt utility prepares an application for a profiling run. It does this by
modifying the application to load the profiling DLLs instead of the system DLLs.

It displays a list of all the DLLs loaded by an application as well as any changes to
this list. :

To prepare a group of apphcatwns for the proﬁlmg of all system DLLs with WAP,
type:

apf32cvt win32 <app list>

where <app list> is a list of one or more names of the executable applications or
DLLs to be profiled during the profiling run. The argument <app list> must be the
last argument to apf32cvt. You must include the file extensions in the application
list; for example, to prepare the Solitaire program for profiling, type:

apf32cvt win32 sol.exe

Llstmg an Application’s DLLs

You can also use the apf32cvt utility to simply display the DLLs that an
application loads. To display the DLL list of an application or applications, type:

apf32cvt <app list>



Chapter 10 Tuning Windows NT Applications 287

Collecting WAP Data

If you want to collect profile data while an application is running, you must start
apf32dmp before you start the application, and it must remain running throughout
the execution of the application. The apf32dmp utility also provides a means to
collect data during selected phases of the profiling run (see below). The application
may now be executed normally. Profiling will begin as soon as the application is
started.

When you stop apf32dmp, it writes the profiling data to ASCII files. The data is
written to DLLNAME.END, where DLLNAME is the name of the system DLL that
is being profiled. For example, KERNEL32.END would contain data from the last
profiling run of KERNEL32.DLL. After each run, you should rename the .END
data files so that they aren’t overwritten with the data from the next run.

Data from concurrent processes and threads is written to the same data file, and
there is no method for separating that data. If you need separate data on different
processes, profile them individually in separate runs. If you need separate data on
different threads, use the CAP tool discussed later in this chapter.

The program apf32dmp also allows data to be dumped to a file or cleared from
memory at any time during the profiling run. By default, the data is dumped to a file
but not cleared from memory. If you choose both options, the data is first dumped
and then cleared. If you clear any data without first dumping it to a file, the data
will be lost. Then you’ll get to do the experiment again. Some fun, huh?

To specify whether data is dumped to a file or cleared, choose the option you want
in the apf32dmp dialog box.

The utility data dumps to a file DLLNAME.EXT, where DLLNAME is the name

of the system DLL being profiled, and . EXT is a file extension you define. By
default, this extension is .WAP, but you may change it if you want. (Do not use
the extension .END, as the profiler uses this extension.) DLLNAME.EXT is placed
in the working directory of apf32dmp.

Excluding Some APIs from Analysis with WAP

When you use WAP, you should exclude certain APIs from analysis because they
either make callbacks into the application or wait for some event to take place. You
shouldn’t concern yourself with time spent in these APIs.

Certain parent APIs call back into the application to complete their task. It may so
happen that, in this process, the application might make certain other child API
calls. The times for executing the child APIs are included in the time for the parent
API in addition to being reported for the child AP



288 Optimizing Windows NT

There are other APIs that wait on events; for example, user input. An example
of this is DialogBox, which waits for the user to respond. Another example is
WaitMessage, where the application is suspended and control is yielded to other
applications until a message is placed in the queue of the application under
consideration.

Representative APIs in these categories include the following:

- m DispatchMessage
» WaitMessage
= GetMessage
»  SendMessage
= DialogBox
= WaitEvent
»  CallWindowProc
» DefWindowProc
»  DefFrameProc
»n  Escape
»  UpdateWindow -
=  CreateWindow
= ShowWindow
= . DestroyWindow
» MoveWindow
»  EnableWindow

Running WAP on Solitaire

In Figure 10.6, we show the essential data we found when we ran WAP on the
Solitaire cascade. We start apf32cvt, and then SOL.EXE. We clear the counters
first with apf32dmp because we don’t want to see all those API calls that occur
during the initialization of Solitaire (that’s another performance problem to deal
with separately). Then we press SHIFT+ALT+2 to start the cascade. When the
cascade is complete, we dump the data.



Chapter 10 Tuning Windows NT Applications 289

§

Edit Search Help
gdi32.wap: Api profile of gdi32. Lt
All times are in microseconds (us) |
Excess Timer Overhead = 1 us
First Time is not included in Max/Min computation
API Name Num Calls Total Time Time/Call
BitBlt w27 19482143 4720
CreateCompatibleBitmap 19 155764 8198
CreateCompatibleDC 4146 3132590 755
CreateSolidBrush 2 583 291
DeleteDC 4146 2669765 643
DeleteObject 21 7275 346
GetPixel 49296 24762415 502
GetTextExtentPointn 93 6969 74
PatBlt 3676 1960444 533
SelectObject 8314 3152617 379
SetBrushOrgEx 9 16212 1801
SetPixel 52928 208594375 389
SetTextColor 62 5222 8y
TextOutA 2 2288 1144 s

Figure 10.6 GDI32.DLL activity during the Solitaire cascade

Very interesting. We would have guessed that the program was spending a lot of
time in the BitBlIt routine putting the card images on the display, and it is. But what
about all that time in GetPixel and SetPixel? There were almost 12 calls to each
routine for every BitBlt call! Most of the time was spent there. And by the rules
outlined in the last chapter, both of these calls cross the client-server boundary so
they will be flushing the batch in the bargain. '

It’s time to take a step back and think about what we’ve discovered. We have card
images flowing all over the screen, and on top of that we set individual pixels. No
way could a user see those individual pixels, so this definitely seems an excessive
refinement. We want to want to find out why Solitaire is making so many of these
calls during the cascade. To do that we have to move on to another tool called CAP.
But first, we clean up the WAP conversion.



290 Optimizing Windows NT

Ending WAP

You use apf32cvt to restore the application executables to their original state after
you are done profiling. To remove all profiling DLLs from a list of applications,

type:
apf32cvt undo <app list>

where <app list> is the list of applications to be restored. In our example,
we typed:

apf32cvt undo sol.exe

The Call Attributed Profiler

The Call Attributed Profiler, or CAP, details the internal function calls within an
application. You use it to see how much time is spent in each function and in the
functions called by that function. You can also use it to see how much time is spent
in the function itself, ignoring the functions that it calls. This gives a complete
picture of how time is spent throughout the application. .

Many older-generation application profilers were sampling profilers. They would
interrupt the processor at high frequency and take a snapshot of the instruction
pointer. The areas in the program most heavily hit during sampling were the
program’s “hot spots.” Tuning the application consisted of recoding its hot spots.
This approach is very successful in programs that are computationally rich. Modern
applications tend to be highly structured, having thousands of functions—none of
which are computationally intensive. Such programs yield a flat sampled profile and
thus do not lend themselves to tuning with such profilers.

A different approach was needed to help resolve this issue, and this led to the
evolution of CAP. In CAP, each function call is timed. The start time is stored in a
data structure allocated to the function when it is called (suppose it’s named “f00”),
and attached to the calling function’s structure (call this one “sweet”). A count is
incremented so we’ll know how many times the function foo was called by the
function sweet, as well as total time in the function. When another function, say
“bar,” is first called, a new data structure is allocated. (Now you know what we

do with all that memory.) The result is a dynamic call tree showing the sequence
sweet->foo->bar with counts and times at each level. This permits the entire
structure and not just the individual functions to be tuned.



Chapter 10 Tuning Windows NT Applications 291

Initial proposals for call attributed profiling on Windows NT involved using the
debugging APIs to intercept the function calls. This design would have had the
advantage of not requiring you to recompile the application to measure it with the
profiler. While older systems with simple debuggers could probably get away with
this, the extra protection and security features of Windows NT made the debugging
APIs, well, rich. Using them would have used all the space in the processor’s cache
and thus greatly distorted the execution time of the functions. Cousin Heisenberg
again. Initial estimates indicated this would severely degrade the accuracy of the
results. So instead, the module is recompiled with the -Gh compiler option, and a
special call is inserted by the compiler at the start of every function. This invokes

a measurement module called CAP.DLL which takes the measurement. It still
interferes with the processor’s caches, but nowhere near as much as using the
debugging APIs would have.

CAP uses an elapsed time clock to measure time in functions. This has both benefits
and liabilities. The benefit is that you see where time is spent during disk or LAN
activity. The flip side is that if your thread gets switched out while the national debt
is being computed by another application, it will appear as though the preempted
function used all that time. So it is important to control the environment when using
CAP. (Actually the principle is not unique to CAP: it applies equally to WAP.)

CAP can be used to measure the functions within one or more executable programs
and/or dynamic-link libraries. The activity in each thread of each process is tracked
in a separate call tree. It can also monitor the calls from one such module to
another, just as WAP does. Unlike WAP, however, CAP is not restricted to
measuring only the calls to system DLLs. Calls to any DLL can be monitored

with CAP, whether the DLL belongs to the application or to Windows NT.

By default, CAP collects data only on functions written in Microsoft C or C++ or a
~ compatible product from another vendor. Data is collected from assembly language
procedures only if you provide some special support in those routines.



292 Optimizing Windows NT

Using CAP

Windows NT does not ship with debugging symbols in its modules because it takes
many megabytes of disk space to provide them. So, as discussed previously, you
should run apf32cvt on your application with no action specified. This will give
you a list of the system DLLs (modules) you need to have with symbols. You can
get the versions with symbols from the SUPPORT\DEBUG directory in the
Windows NT SDK. First you rename the current system module; for example, type
ren gdi32.dll gdi32.nsm. Then copy the one from the SDK to GDI32.DLL. Once
you have done this for all the DLLs you want to measure, you must shut down and
restart Windows NT so the modules with symbols get loaded.

Next we need to set up an initialization file called CAP.INI in the root directory

of the C drive. CAP.INI has four sections that control the set of .EXEs and

DLLs profiled. Each .EXE or .DLL listed must be placed on a separate line. It is
important that you get the format of this file right, because otherwise Windows NT
might not start. The four sections of CAP.INI are as follows:

= [EXES] A list of applications to be profiled. When CAP.DLL initializes, it
checks the current executable name against this list and will start profiling if
the name is on the list. If the name is not on the list, CAP doesn’t profile that
process.

= [PATCH IMPORTS] A list of .DLLs and .EXEs to be profiled for imported
entries. That is, listing a .DLL or .EXE here causes the profiling of all functions
(located in other modules) called by the listed .DLLs and .EXEs.

= [PATCH CALLERS] A list of .DLLs to be profiled for exported entries. That
is, .DLLs listed here are profiled when called by the applications listed in the
{EXE] section, or by any of their .DLLs.

= [NAME LENGTH] The maximum length of a symbol. This number must be in
the range from 20 to 2048. We recommend for C++ program this value be set
to at least 128 due to the name elaboration that is performed by the linker. If a
symbol is longer than this value, it is truncated. If the field is not specified or is
0, the value defaults to 40. This field is optional.

Headers for the first three sections ([EXES], [PATCH IMPORTS], and [PATCH
CALLERS]) are required to be in the CAP.INI file, but the contents of any section
may be left blank. An additional section contains options for controlling
measurement overhead in unusual situations. See the README file provided with
CAP for details.



Chapter 10 Tuning Windows NT Applications 293

In our example we want to profile the Solitaire program, so our CAP.INI file looks
like this:

[EXES]
sol.exe

[PATCH IMPORTS]
sol.exe

[PATCH CALLERS]

This profiles SOL.EXE and measures any calls it makes to functions in other
modules, including the system DLLs. In our case, there is nothing after the
[PATCH CALLERS] header. You’ll want to use that section to profile particular
DLLs that ycu’ve developed when you have listed in the [EXES] section the
applications that call your DLLs.

We also want to measure the functions inside the Solitaire program, because we
want to know where all those calls to GetPixel and SetPixel are coming from. And
no, we can’t just search the source for the calls, because they are called from many
functions (nice try, though). So we’ll recompile Solitaire specifying the -Gh and -
Zd compiler options, and we’ll link specifying the CAP.LIB library and using the -
debugtype:coff and -debug:full linker options.

Important  You must slip a call to GdiSetBatchLimit(1) into the initialization code
for each thread before you recompile, or batching will really confuse the data. WAP
does this for you but with CAP you’re on your own.

It’s measurement time! We provide a Capdump program allowing you to control
which application activity you measure. First we start Capdump, and then we

start the recompiled version of Solitaire. We’ll tell Capdump to clear the counters
because we are not concerned at present about the performance while Solitaire
starts. Once Capdump clears the counters, we press SHIFT+ALT+2 to activate the
cascade. After the cascade is done, we shift to Capdump to dump the data. Data
files with the default .CAP extension appear in the directory where each measured
application resides.



204

* Optimizing Windows NT

A center section of the results from the SOL.CAP file produced by this run are
shown in Figure 10.7 for function times including called functions, and in Figure

10.8 for function calls excluding called functions.

Thr
Depth
7

8

9
18
10
10
18
10
18
18

ead #: (pid|tid=0x6f]|0x40

Routine Calls
SOL.EXE: _DrawCardPt 4267
SOL.EXE: _cdtDrawExt 4267
SOL.EXE: _HbmFromCd 4267
USER32.DLL: _LoadBitmapn &
GDI32.DLL: _CreateCompatibleDC 8
GDI32.DLL: _CreateCompatibleBitmap 4
GDI32.DLL: _SelectObject 16
GDI32.DLL: _BitBlt 4
GDI32.DLL: _DeleteObject L
GDI32.DLL: _DeleteDC 8
GDI32.DLL: _CreateCompatibleDC 4267
GDI32.DLL: _SelectObject 8534
SOL.EXE: _SaveCorners 4267
GDI32.DLL: _GetPixel 51204
GDI32.DLL: _BitBl1t - 4267
SOL.EXE: _RestoreCorners 4267
GDI32.DLL: _SetPixel 51204
GDI32.DLL: _DeleteDC 4267
GDI32.DLL: _PatBlt 5776
GDI32.DLL: _SetPixel 5776
BOL.EXE: _Fabort © 4267

Client:pid|tid=0x8]08x8)

Rtn + Czllees
Tot Time
89561181
89359010

166394
43754
3940
4959
6485
31462
1563
3728
2849629
3495921
290882632
25928990
19896612
23112842
20224631

2892566

2863986

2273112

2632621

Time/Call
208989
20941
38
10937
492
1239
404
7865
390
h66
667
409
6815
506
4662
5416
394
677
495
393
616

Figure 10.7 Call/attributed profile of Solitaire cascade, called functions included




Chapter 10 Tuning Windows NT Applications 295

= T Triuni [~
File Edit Search Help
Thread #1: (pid|tid=8x6f|0x40 Client:pid|tid=0x0]6x8) [t
----- Rtn - Callees ----

Depth Routine Tot Time Time/Call

7  SOL.EXE: _DrauCardPt 202170 46

8 SOL.EXE: _cdtDrauExt 2725391 637 —

9 SOL.EXE: _HbnFromCd 70500 15 fasad

10  USER32.DLL: _LoadBitmapf 43754 10937

10 GDI32.DLL: _CreateCompatibleDC 3940 492

10 GDI32.DLL: _CreateCompatibleBitmap 4959 1239

10 GDI32.DLL: _SelectObject 6485 404

10 GDI32.DLL: _BitBlt 31462 7865

10 GDI32.DLL: _DeleteObject 1563 390

18 GDI32.DLL: _DeleteDC 3728 466

9 GDI32.DLL: _CreateCompatibleDC 2849629 : 667

9 GDI32.DLL: _SelectObject 3495921 409

9 SOL.EXE: _SaveCorners 3153642 738

18 GDI32.DLL: _GetPixel 25928990 5086

2 GDI32.DLL: _BitBlt 19896612 4662

9 SOL.EXE: _RestoreCorners 2888211 676

18 GDI32.DLL: _SetPixel 20224631 394

9 GDI32.DLL: _DeleteDC 2892566 677

9 GDI32.DLL: _PatBlt 2863906 495

9 GDI32.DLL: _SetPixel : 2273112 393

7 SOL.EXE: _FAbort 347749 81 T
4.1' a |¢7 ;

Figure 10.8 CAP of Solitaire cascade, excluding called functions

In the leftmost column is the function call nesting depth. This starts at zero with the
first function call that CAP encounters. If a function is called but has not returned
when the data is dumped, there will be an asterisk to the left of this number. Next
we have a column with the module name followed by the function name. If the
function is not known because the coff symbols with the function names in them
are not contained in the module, ???: ??? will appear instead of module: function.

This section of the results, where SOL.EXE executed for 89 seconds, starts at call
level 7-with _DrawCardPt, which was called 4267 times. It called _cdtDrawExt
each time it was called, and that called _HbmFromCd. We didn’t spend much time
here: only 1.6 out of the 89 seconds. This called the USER32.DLL Win32 API call
_LoadBitMapA four times. The final “A” in this function name means this is the
ASCII form of the call, so right away we know that Solitaire is not a Unicode
application (in which case it would have been a final “W”). But Solitaire does
almost no text output, so maybe we can let that pass. The _HbmFromCd call used
some graphics primitives in GDI32.DLL, but only a few times even though it was
called 4267 times. So this is not the central cause of the poor performance.



296

Optimizing Windows NT

The call level returns to 9 which means _cdtDrawExt at level 8 is back in control.
We see from Figure 10.7 that even though we spent 89 seconds in this routine and
the routines it called, we spent only 2.7 seconds in the routine itself. The other
86-plus seconds were in the functions it called.

Let’s see where. It calls _CreateCompatibleDC each time it is called, and then
_SelectObject twice on every call. We have over 6 seconds between them.
Looks like we should investigate an own DC for Solitaire. Then there is a call to
_SaveCorners, which takes 29 seconds. Looking at Figure 10.8 we see only 3.1
seconds in _SaveCorners itself, so the rest must be in GetPixel. A similar story
applies to _RestoreCorners and _SetPixel right after the call to _BitBIt.

We went to the developer porting Solitaire at this point and asked what on earth
_SaveCorner and _RestoreCorners were up to. It turned out that they modify three
pixels on each corner of the bitmap of a card to make the corner look a little more
rounded. We shared our observation that this was excessive refinement when cards
were cascading on the screen, and how each call forced a client-server transition.
We discussed using SetPixelV to remove one of the client-server transitions, but
decided the real solution was to remove the calls altogether during a cascade. This
was a very small change, just a few lines of code, but it made the Solitaire cascade
twice as fast.

Capview: a Visual Form of CAP

Looking at Figures 10.7 and 10.8 is educational but a mite tedious if you have a
large program with hundreds or thousands of functions. There is a great alternative:
Capview. Figures 10.9 through 10.11 show some of the data from running the
repaired Solitaire as it is seen by Capview.

=| File Options Windows Help

Figure 10.9 Capview tree profile of Solitaire cascade, zoomed out



Chapter 10 Tuning Windows NT Applications 297

R S s o 21110y -~
=| File Options Windows Help 3
+
SOL.EXE GDI32.DLL L]
_SaveCorners _GetPixel
3113 —— 40956
b 1671567 10% 0% 2209124 100% 5% 19162176
¥ 63619028 33% 6% 21371301 89% 5% 19162176
GDI132.DLL GDI32.DLL
ner _BitBlt _SetPixel
31413 40956
1 55 100% 4% 15054287 100% 4% 15088867
b 8496793 23% 4% 15054287 87% 4% 15088867
SOL.EXE USER32.DLL
_RestoreCorners _MessageBoxA
3413 1
12% 0% 2174430 99% 2% 8476989
27% 4% 17263297 99% 2% 8496087
SOL.EXE
_FYesNoAlert
1
0% 0% 288
99% 2% 8496738 ||
¥

Figure 10.10 Capview tree profile of Solitaire cascade, zoomed in

Each box in the Capview tree represents a line in the SOL.CAP file. If you zoom
out you get the overview, and if you zoom in you can see the details of each line.

The first figure in the box is the number of calls made to that routine.

“The rightmost number in the next line of figures is the time spent in the function
itself, expressed in microseconds. The left number is the attributed time. This is
the time spent in the function expressed as a percentage of the time in the function
plus the time in the functions it calls. The middle figure is time in the function as a
percentage of time in the entire program.

In the last line, the rightmost number is the attributed time. The middle number is
the attributed time in this function as a percentage of time in the program. And the
leftmost number is the time in this function as a percentage of attributed time in the
calling function. '



298 Optimizing Windows NT

SOL.EXE : _KlondWinner
GDI32.DLL: _SelectObject
GDI32.DLL : _CreateCompatibleDC -
GDI32.DLL; DeleteDC :

SOL.EXE : _FAbort
_DrawCardPt
: _GetPixel

5359914
4437802
35161318
2847372
2300735

2254741)

1594291

5781) 47%

25
485916
228051

1805376
25513222

5359914
4437802
35161318
445

722

708

Figure 10.11 Capview list profile of Solitaire cascade

The List view of Capview is illustrated in Figure 10.11. The attributed columns are

shown but the function-only columns are also available.

The FIOSAP Profiler

Let’s take a look at another case. You know so much now, we can present
Performance Monitor information without comment. Look this over and form

your own conclusions, and then read on.




Chapter 10 Tuning Windows NT Applications

299

Lo 1,000 % Processor Tim

"CEREBELLUM

1.000 % Disk Time
1.000 % Disk Time

T 0 “LogicalDisk
D: 1 LogicalDisk

\\CEREBELLUM;
\CEREBELLUM|

’

Figure 10.12 Overview of an application without a processor problem

ptions Help

Computer: WCEREBELLUM
Object: Processor

% Privileged Time
% Processor Time
% User Time
Interrupts/sec

DObject: System

Context Switches/sec
File Control Bytes/sec
File Control Operations/sec
File Data Operations/sec
File Read Bytes/sec

File Read Operations/sec
File Wiite Bytes/sec

File Write Operations/sec
Processor Queue Length
System Calls/sec

Total Interrupts/sec

326.651

- 953087
10.493
0.438
2941.037
0.045
26209.712
0.452
0.000
383.234

Figure 10.13 System and processor views of an application without a processor

problem



300

Optimizing Windows NT

BRBE) FHERX] [k

Object: Memory

Cache Faults/sec

Demand Zero Faults/sec

Page Faults/sec 218.642
Page Reads/sec 9408
Page Wiites/sec 1.040
Pages Input/sec 102.491
Pages Output/sec 10.312
Pages/sec 112.804
Transition Faults/sec 12212

Dbject: Cache

Copy Read Hits % 80.692
Copy Reads/sec 105.883
Data Flush Pages/sec 69.473
Data Flushes/sec 11.308
Data Map Hits % 75.000
Data Maps/sec 0.362
Fast Reads/sec 106.110
Lazp Write Flushes/sec 6.558
Lazy Wirite Pages/sec 101.632
Pin Read Hits % 96.000
Pin Reads/sec 1.131 *_43
Figure 10.14 Memory and cache views of an application without a processor
problem
File Edlt View Optlons ﬂelp
Computel \\CEREBELLUM 0 1 |+
Object: LogicalDisk C: D:
% Disk Read Time 12.116 90.542
% Disk Time 19.403 100.000
% Disk Wiite Time 7.287 100.000
% Fiee Space 14.953 33635
Avg. Disk Bytes/Read 4166.621 57891.873
Avg. Disk Bytes/Transfer 14512.988 29282.765
Avg. Disk Bytes/write 40603.826 20134.843
Avg. Disk sec/Read 0046 0128
Avg. Disk sec/Transfer 0.053 0.107
Avg. Disk sec/Wiite 0.070 0.101
Disk Bytes/sec 53170.242 858250.150
Disk Queue Length 0.000 3.000
Disk Read Bytes/sec 10930.468 411096.750
Disk Reads/sec 2.623 7.101
Disk Transfers/sec 3.664 29.309
Disk Write Bytes/sec 42239.774 447153.400
Disk Writes/sec 1.040
Free Megabytes - 48.000

Figure 10.15 Logical disk view of an application without a processor problem

You’ve convinced me, the disk is the bottleneck here. Now what can we do about
it? It’s not going to do us a great deal of good to use the tools we’ve shown so

far, although we might be able to deduce which files are in play by seeing which
functions of the program are busy. (There’s a bit of fun detective work to try.) We
have an easier, softer way.



Chapter 10 Tuning Windows NT Applications 301

Using the /O Profiler

The File I/O and Synchronization Win32 API Profiler (FIOSAP) is an outgrowth
of WAP designed to profile applications that possibly have multiple concurrent
threads. The Windows NT File I/O and Synchronization APIs are contained in
the KERNEL32.DLL. The profiler is in the form of a single FERNEL32.DLL,
corresponding to the KERNEL32 DLL. This DLL sits between an application
and KERNEL32.DLL, intercepts file I/O and synchronization API calls to
KERNEL32.DLL, and then makes and times a call to the actual API. It also
collects various statistics useful in monitoring the overall file, event, mutex and
semaphore activity of the application(s).

FERNEL32.DLL reports the number of operations, total time and average time in
each operation, as well as the additional statistics for some of these operations. The
following list shows exactly what additional operations are measured. Times are
expressed in microseconds.
= Statistics summed over all operation