= N DRoM -

1he Developer’s Guide to the
Win32° API for Windows NT™ 3.5
and Windows 95

JEFFREY RICHTER

Microsoft Press

1he Developer’s Guide to the
Win32° API for Windows NT™ 3.5
and Windows 95

JEFFREY RICHTER

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1995 by Jeffrey Richter

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Richter, Jeffrey.
Advanced Windows : the developer’s guide to the Win32
API for Windows NT and Windows 95 / by Jeffrey Richter.
. cm.
Includes index.
ISBN 1-55615-677-4
1. Windows (Computer programs) 2. Microsoft Win32. 3. Microsoft
Windows NT. 4. Microsoft Windows 95. 1. Title.
QA76.76.W56R52 1995
005.26--dc20 94-47264
CIP

Printed and bound in the United States of America.
123456789 QBP 098765

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office. Or contact Microsoft Press
International directly at fax (206) 936-7329.

Apple is a registered trademark of Apple Computer, Inc. Borland and dBASE are registered trademarks of
Borland International, Inc. Alpha AXP and DEC are trademarks of Digital Equipment Corporation. Intel is
a registered trademark and Pentium is a trademark of Intel Corporation. IBM, OS/2, and Presentation Manager
are registered trademarks and PowerPC is a trademark of International Business Machines Corporation. 1-2-3
and Lotus are registered trademarks of Lotus Development Corporation. Microsoft, MS-DOS, Win32, and
Win32s are registered trademarks and Visual C++, Windows, and Windows NT are trademarks of Microsoft
Corporation. MIPS is a registered trademark and R4000 is a trademark of MIPS Computer Systems, Inc.
Noveli is a registered trademark of Noveli, Inc. TRS-80 is a registered trademark of Radio Shack, a division
of Tandy Corporation. Sequent is a registered trademark of Sequent Computer Systems, Inc. Sun is a
registered trademark of Sun Microsystems, Inc. Tandy is a registered trademark of Tandy Corporation.
Unicode is a trademark of Unicode, Inc. Unisys is a registered trademark of Unisys Corporation. Smalltalk
and Xerox are registered trademarks of Xerox Corporation. Z80 is a registered trademark of Zilog, Inc.

Acquisitions Editor: Dean Holmes
Project Editor: Rebecca Gleason
Technical Editor: Jim Fuchs

To my mother, Arlene, for her bravery and courage
through the most difficult and trying of times. Your
love and support have shaped me into the person I
am. You're with me wherever I go.

—With all my love, Jeff

To Susan “Q-bert” Ramee, for showing me that
computers are not at the center of the Universe with
all of the planets circling around.

—J “BBB” R

CONTENTS SUMMARY

ACKNOWIedgments XXi
Introduction XXV

CHAPTER ONE

THE WIN32 APl AND
PLATFORMS THAT SUPPORT IT

» This chapter explains Microsoft’s various APIs and operating system
platforms; clarifies the latest catchwords (Win32, Win32s, Windows 95, and
Windows NT); and discusses Microsoft’s goals for each of them. By the
end of the chapter, you will understand why I believe this is a very exciting
time for software developers and why the Win32 API is the area in which
software engineers should be concentrating their development efforts.

CHAPTER TWO

PROCESSES.. ...

» Under Windows 95 and Windows NT, an instance of an executing
application is a process. This chapter explains how a new process is
invoked, how it initializes, and how it is destroyed. Various attributes asso-
ciated with a process are also explained. For example, in Win32 each pro-
cess has its own address space, which means that one process cannot
adversely affect another process—this is not true in 16-bit Windows. This
chapter also introduces Win32 Kernel objects, which are the basis for all
kernel-related tasks in both Windows 95 and Windows NT. A solid under-
standing of Kernel objects is required for any serious Win32 developer.

CHAPTER THREE

THREADS . . 51

» Threads are at the heart of Windows 95’s and Windows NT’s multi-
tasking abilities. In order for a Win32 process to actually do anything, it
must have threads that execute the code and manipulate the data con-
tained in the process. All Win32 processes contain at least one thread, but

ADVANCED WINDOWS

Vi

both Windows 95 and Windows NT allow a process to contain several
threads that are scheduled and preemptively multitasked by the operat-
ing system. This chapter explains how threads are created, scheduled,
and destroyed.

CHAPTER FOUR

WIN32 MEMORY ARCHITECTURE............... 93

» Advanced operating systems such as Windows 95 and Windows NT
require sophisticated memory architectures. This chapter explains how
the system manages the computer’s RAM and paging files on the hard
disk in order to give each process a full 4 GB of virtual address space. The
chapter also covers how each process’s address space is partitioned and
discusses the implementation differences between Windows 95 and Win-
dows NT. One of the features that make the Win32 memory architecture
unique is that Win32 separates the task of reserving regions of address
space from the task of committing physical storage to these regions. This
chapter explains how these two tasks are accomplished as well as how pro-
tection attributes can be assigned to pages of committed physical storage.

CHAPTER FIVE

EXPLORING VIRTUAL MEMORY 127

» This chapter builds on the information presented in Chapter 4. The
chapter introduces various Win32 functions that allow you to explore the
system’s memory configuration and the contents (code and data) of a
process’s address space.

CHAPTER SIX

USING VIRTUAL MEMORY
IN YOUR OWN APPLICATIONS 169

» This chapter shows how to use virtual memory management tech-
niques in your own applications. Topics inciude how to reserve regions in
a process’s address space and techniques for knowing when to commit
physical storage to these regions. These techniques allow an application
to use physical storage more efficiently than it could under most other
operating systems.

Contents Summary

CHAPTER SEVEN

MEMORY-MAPPED FILES 207

» Windows 95 and Windows NT use memory-mapped files to implement
virtual memory management. All of a process’s code and data are backed
by a file on disk—a memory-mapped file. This chapter demonstrates how
memory-mapped files make manipulation of disk files almost trivially
simple. The chapter also shows how to use memory-mapped files to share
code and data among multiple processes.

CHAPTER EIGHT

» Heaps are the third and last memory management technique offered
by the Win32 API. This chapter shows how to create multiple heaps
within a single process and explains why a developer might want to do
this. This chapter also discusses how the 16-bit Windows heap functions
are emulated by the Win32 API under Windows 95 and Windows NT in
order to make it easier for developers to port existing 16-bit Windows
source code.

CHAPTER NINE

THREAD SYNCHRONIZATION 283

» Whenever multiple threads are executing simultaneously or are being
preemptively interrupted, an application will often need to suspend a
thread in order to prevent data corruption. Windows 95 and Windows NT
offer several objects for performing thread synchronization; this chapter
discusses these objects and describes techniques for using them.

CHAPTER TEN

WINDOW MESSAGES
AND ASYNCHRONOUS INPUT.................. 417

» One of the biggest problems with 16-bit Windows is that it is too easy
for a single application to hang all running applications. Robust operat-
ing systems such as Windows 95 and Windows NT do not allow applica-
tions to compromise the smooth execution of other processes in the
system. In order to create a robust environment, window messages and
hardware input are handled differently in Win32 than in 16-bit Windows.

vii

ADVANCED WINDOWS

These changes may break some source code originally written for 16-bit
Windows. This chapter explains how window messages are processed in
both Windows 95 and Windows N'T.

CHAPTER ELEVEN

DYNAMIC-LINK LIBRARIES.................. ... 481

» Dynamic-link libraries (DLLs) have always been the cornerstone of all
Windows applications—and they continue to be in Windows 95 and Win-
dows NT. However, DLLs are managed quite differently under Win32
than under 16-bit Windows. This chapter explains how a DLL is mapped
into a process’s address space and how to appropriately initialize a DLL.
In addition, this chapter demonstrates how a DLL can be used to export
both functions and data.

CHAPTER TWELVE

THREAD-LOCAL STORAGE 535

» In an environment in which multiple threads are running concur-
rently, it’s important to associate data objects and variables with the indi-
vidual threads of a process. This chapter describes how to use both
dynamic and static thread-local storage techniques in order to associate
data with specific threads.

CHAPTER THIRTEEN

FILE SYSTEMSAND FILEI/O.................... 569

» This chapter discusses how an application can manipulate the many
file systems offered by Windows 95 and Windows NT: FAT, CDFS, HPFS,
and NTFS. It also discusses how to manipulate directories, files, and the
data contained in the files. Also discussed are some additional techniques
for manipulating the file system, such as directory tree walking and file
system change notifications. Finally, this chapter presents methods for
using asynchronous file I/O, alertable file I/0, and file change notification.

CHAPTER FOURTEEN

STRUCTURED EXCEPTION HANDLING 683

» Structured exception handling (SEH) is a new mechanism that allows
application developers to write more robust and reliable applications.

viii

Contents Summary

SEH consists of two components that work together: exception handling
and termination handling. Exception handling is a mechanism that
allows an application to catch both hardware and software exceptions
(for example, invalid memory accesses). Termination handling guaran-
tees that clean-up tasks are performed even if an exception occurs.

CHAPTER FIFTEEN

UNICODE 783

» Software developers are finding a huge potential for software distribu-
tion in international markets. To help developers, Microsoft built full
Unicode support into Windows NT and limited Unicode support into
Windows 95. Unicode is a 16-bit character set that lets developers easily
manipulate characters and strings for different languages and writing sys-
tems. This chapter discusses how you can best take advantage of Win32’s
Unicode facilities to help localize your development projects.

CHAPTER SIXTEEN

BREAKING THROUGH
PROCESS BOUNDARY WALLS 809

» The robust nature of the Windows 95 and Windows NT environments
makes it much more difficult to manipulate other processes in the sys-
tem. While it is not normal for processes to alter one another, some pro-
cesses, such as debuggers and other tools, require intimate knowledge of
other processes in order to be useful to the software developer. This chap-
ter demonstrates three techniques that allow a process to inject a DLL
into another process’s address space. These techniques require a knowl-
edge of processes, threads, virtual memory, thread synchronization, win-
dow messages, DLLs, structured exception handling, and Unicode.

APPENDIX A

MESSAGE CRACKERS 879

» Most Windows programmers have never heard of message crackers,
even though these programming aids exist for both 16-bit Windows and
Win32. This appendix explains how to use message crackers to help you
write, read, and maintain your source code. In addition, message crackers
make it much easier to port 16-bit Windows source code to Win32 and
vice versa.

ADVANCED WINDOWS

APPENDIX B

THE BUILD ENVIRONMENT 887

» This appendix explains the ADVWIN32.H header file included in all
the sample applications presented in this book. This header file contains
a number of #defines, #pragmas, and linker directives. The appendix also
discusses how various compiler and linker switches have been set in each

sample application’s project make file.

TABLE OF CONTENTS

Acknowledgments XXi
Introduction XXV

CHAPTER ONE

THE WIN32 APl AND

PLATFORMS THAT SUPPORT IT 1
ToDream: The WIn32 APl e 1
WiNB2s . . . o 2
Windows NT ... 3
WiNAOWS 05 4
The Reality: The Win32 APL 5

CHAPTER TWO

PROCESSES 9
Kernel Objects 10
Writing Your First Win32 Application 13
A Process’sInstanceHandle 15
A Process’s Previous Instance Handle 18
A Process’s CommandLline 20
A Process’s Environment Variables. 21
AProcess'sErrorMode, 25
A Process’s Current Drive and Directory 26
A Process’s Inherited Kernel Objects 27
The System Version 30
The CreateProcess Function i 32
IpszlmageName and lpszCommandLine 33
lpsaProcess, lpsaThread, and flnheritHandles. 34
fawCreate 37
IDVENVIIONMENT o 39

IPSZCUIDIr. . . . o 39

ADVANCED WINDOWS

lpsiStartinfo. 39
lppiProcinfo. 44
Terminating a Process 46
The ExitProcess Function 46
The TerminateProcess Function 46
What Happens When a Process Terminates 47
Child ProCeSSES .« . oo 48
Running Detached Child Processes. 50

CHAPTER THREE

THREADS ... 51
WhentoCreateaThreadt 51
When NottoCreateaThread 53
Writing Your First Thread Function R 55
AThread’s Stack.............. [57
A Thread’s CONTEXT Structure 57
A Thread's ExecutionTimes it 57
The CreateThread Function. i 60
o 61
ChSIaCK . . 61
IpStartAddr and IpvThreadParm. 62
fawCreate 62
IpIDThread 64
TerminatingaThread. 64
The ExitThread Function i 65
The TerminateThread Function 65
What Happens When a Thread Terminates 66
Gaining a Sense of One’'s Own Identity. 67
How the System Schedules Threads 71
How Priority Levels Are Assigned Using the Win32 API. 72
Altering a Process’s Priority Class 75
Setting a Thread's Relative Priority 76
Suspending and Resuming Threads 79
What's Going Oninthe System. i i 80
Processes, Threads, and the C Run-Time Library 86
C Run-Time Functionsto Avoid 91

Xii

Table of Contents

CHAPTER FOUR

WIN32 MEMORY ARCHITECTURE............... 93
CPUsIHave Known i, 93
AVirtual Address Space oo 96
Partitions in a Process’s Address Space 97
How Windows NT Partitions a Process’s Address Space 100
Regionsinan Address Space. 102
Committing Physical Storage Withina Region 103
Physical Storage i e 105
Physical Storage Not Maintained in the Paging File........... 107
Protection Attributes 108
Copy-On-Write ACCESS oo 110
Special Access Protection Attribute Flags 111
Bringing tAllHOome 111
Insidethe Regions i 115
Address Space Differences for Windows 95 120

CHAPTER FIVE

EXPLORING VIRTUAL MEMORY 127
System Information 127
» The System Information Sample Application 128
Virtual Memory Status 137
» The Virtual Memory Status Sample Application 138
Determining the State of an Address Space. 145
The VMQuery Function. 146
» The Virtual Memory Map Sample Application. 158

CHAPTER SIX

USING VIRTUAL MEMORY

IN YOUR OWN APPLICATIONS 169
Reserving a Regioninan AddressSpace 169
Committing Storage in a Reserved Region. 172
Reserving a Region and Committing Storage Simultaneously 173
When to Commit Physical Storage 174

Xiii

ADVANCED WINDOWS

Decommitting Physical Storage and Releasing a Region 177
When to Decommit Physical Storage 178
» The Virtual Memory Allocation Sample Application 180
Changing Protection Attributes 194
Locking Physical Storage inRAM oL 195
AThread’s Stack i 197
A Thread’s Stack Under Windows 95 201
The C Run-Time's Stack Checking Function. 204

CHAPTER SEVEN

MEMORY-MAPPED FILES 207
Memory-Mapped EXEsand DLLs., 208
Static Data Is Not Shared by
Multiple Instancesof an EXEoraDLL................... 209
Memory-Mapped DataFiles 212
Method 1: One File, One Buffer 213
Method 2: Two Files, OneBuffer. 213
Method 3: One File, Two Buffers. 214
Method 4: One File, ZeroBuffers 214
Using Memory-Mapped Files i 215
Step 1: Creating or Opening a File Kernel Object 215
Step 2: Creating a File-Mapping Kernel Object 217
Step 3: Mapping the File’s Data
into the Process’s Address Space 220
Step 4: Unmapping the File’s Data
from the Process’s AddressSpace 224
Steps 5 and 6: Closing the
File-Mapping Object and the File Object. 225
Processing a Big File Using Memory-Mapped Files 227
Memory-Mapped Files and Coherence 229
» The File Reverse Sample Application. 231
Specifying the Base Address of a Memory-Mapped File. 240
Memory-Mapped Files and Win32 Implementations 241
Using Memory-Mapped Files to
Share Data Among Processes 244
Memory-Mapped Files Backed by the Paging File 248
» The Memory-Mapped File Sharing Sample Application. 250
Sparsely Committed Memory-Mapped Files. 257

Xiv

Table of Contents

CHAPTER EIGHT

HEAPS ... 261
WhatlsaWin32Heap?......... 262
AAProcess’sDefaultHeap 262
Creating Your Own Win32Heapscovov... 264
Creating Another Win32Heap 267
DestroyingaWin32Heap............... 272
UsingHeapswithC++ 272
The 16-Bit Windows Heap Functions 277

CHAPTER NINE

THREAD SYNCHRONIZATION 283
Thread SynchronizationinaNutshell 283
The Worst ThingYouCanDo 284
Critical SECtiONS. 285
Creating a Critical Section 287
Using a Critical Section 288
» The Critical Sections Sample Application. 295
Synchronizing Threads with Kernel Objects 311
MUtEXES . .. 316
» The Mutexes Sample Application 322
Semaphores L. [333
» The Supermarket Sample Application 335
Events 364
» The Bucket of Balls Sample Application.................. 366
The SWMRG Compound Synchronization Object 369
The Bucket Sample Source Code 376
» The Document Statistics Sample Application.............. 400
Thread SUSPENSION 411
SIEED . . . o 411
Asynchronous File I/O. 411
WaitForinputidle 412
MsgWaitForMultipleObjects 413
WaitForDebugEvent 414
The Interlocked Family of Functions. 414

ADVANCED WINDOWS

CHAPTER TEN

WINDOW MESSAGES

AND ASYNCHRONOUS INPUT........... 417
Multitasking e 417
Preemptive Time Scheduling 420
Thread Queues and Message Processing 422
Win32 Message Queue Architecture 422
Posting Messages to a Thread’s Message Queue 423
Sending MessagestoaWindow 425
WakingaThread. 430
Sending Data with Messages 436
» The CopyData Sample Application. 439
Deserialized Input 447
How Input Is Deserialized. 448
LocallnputState 452
Keyboard Inputand Focus 453
Mouse Cursor Management 457
» The Local Input State Laboratory Sample Application. 460

CHAPTER ELEVEN

DYNAMIC-LINK LIBRARIES.................. ... 481
Creating a Dynamic-Link Library 481
Mapping a DLL into a Process’s Address Space. 484
The DLL's Entry/Exit Function 490
DLL_PROCESS_ATTACH. 492
DLL_PROCESS_DETACH i 494
DLL_THREAD_ATTACH 498
DLL_THREAD_DETACH i 498
How the System Serializes Callsto DiiMain 499
DiIMain and the C Run-Time Library. 503
Exporting Functions and Variables fromaDLL................... 504
Importing Functions and Variables fromaDLL................... 507
ADLLsHeaderFile 513
Sharing Data Across MappingsofanEXEoraDLL............... 514
The Sectionsofan EXEoraDLL 514
» The ModUse Sample Application 518
» The Multinst Sample Application 530

Table of Contents

CHAPTER TWELVE

THREAD-LOCAL STORAGE 535
Dynamic Thread-Local Storage 536
Using Dynamic Thread-Local Storage e 539
» The Dynamic Thread-Local Storage Sample Application. 541
Static Thread-Local Storage 555
» The Static Thread-Local Storage Sample Application 556

CHAPTER THIRTEEN

FILE SYSTEMS AND FILEI/O 569
Win32’s Filename Conventions 571
System and Volume Operations 573
Getting Volume-Specific Information 576
» The Disk Information Viewer Sample Application........... 583
Directory Operationsot 594
Getting the Current Directory oot 594
Changing the Current Directory 595
Getting the System Directory 595
Getting the Windows Directory 596
Creating and Removing Directories 596
Copying, Deleting, Moving, and Renaming Files 597
CopyingaFile. 597
DeletingaFile. 598
MovingaFile. 598
Renaming aFile 601
Creating, Opening, and Closing Files 602
Reading and Writing Files Synchronously. 608
Positioninga File Pointer. 610
Settingthe EndofaFile 611
Forcing Cached Data to Be Writtento Disk 612
Locking and Unlocking Regions ofaFile................... 612
Reading and Writing Files Asynchronously. 616
Performing Multiple Asynchronous
File /O Operations Simultaneously 623
Alertable Asynchronous File I/O 624
» The Alertable I/0 Sample Application. 627

ADVANCED WINDOWS

Xviii

Manipulating File Attributes. 642
File Flags. . .. oo 642
File Size.o 643
File Time Stamps 643
Searching forFiles. 647
» The Directory Walker Sample Application 651
File System Change Notifications 663
» The File Change Sample Application 666

CHAPTER FOURTEEN

STRUCTURED EXCEPTION HANDLING 683
Termination Handlers 684
Understanding Termination Handlers by Example............ 685
Notes About the finally Block 698
» The SEH Termination Sample Application 700
Exception Filters and Exception Handlers 712
Understanding Exception Filters
and Exception Handlers by Example. 713
EXCEPTION_EXECUTE_HANDLER 715
EXCEPTION_CONTINUE_EXECUTION 716
EXCEPTION_CONTINUE_SEARCH 718
GlobalUnwinds 722
Halting Global Unwinds 724
More About Exception Filters 726
GetExceptioninformation 731
» The SEH Exceptions Sample Application. 737
» The SEH Sum Sample Application 749
Software ExCeptions i 758
» The SEH Software Exceptions Sample Application 761
Unhandled Exceptions 773
Unhandled Exceptions Without a Debugger Attached 774
Turning Off the Exception Message Box 777
Calling UnhandledExceptionFilter Yourself. 780

Windows NT-Specific: Unhandled Kernel-Mode Exceptions ... 781

Table of Contents

CHAPTER FIFTEEN

UNICODE 783
Character SetS. v 783
Single-Byte and Double-Byte Character Sets 784
Unicode: The Wide-Byte CharacterSet 785
Why You Should Use Unicode 786
How to Write Unicode Source Code 787
Windows NT and Unicode 787
Windows 95andUnicode., 787
Unicode Support in the C Run-Time Library 788
Unicode Data Types Defined by Win32 794
Unicode and ANSI Functions inWin32. 794
Making Your Application ANSI- and Unicode-Aware 797
String Functions inWin32 798
ReSOUICES o 801
TextFiles 801
Translating Strings Between Unicode and ANSI 802
Windows NT: Window Classes and Procedures 806

CHAPTER SIXTEEN

BREAKING THROUGH

PROCESS BOUNDARY WALLS 809
Why Process Boundary Walls Need to Be Broken: An Example 810
Injecting a DLL Usingthe Registry 813
Injecting a DLL Using Windows Hooks 815
» The Program Manager Restore Sample Application 817
Injecting a DLL Using Remote Threads 834
HowaDLLIsLoaded.............. 835
Win32 Functions That Affect Other Processes 835
CreateRemoteThread i, 837
GetThreadContext and SetThreadContext 838
VirtualQueryEx and VirtualProtectEx 842
ReadProcessMemory and WriteProcessMemory 843

XiX

ADVANCED WINDOWS

Creating a Function to Inject a DLL

into Any Process's AddressSpace.o, 843

Version 0: Why the Obvious Method Just Doesn't Work. 844

Version 1: Hand-Coded Machine Language 845

Version 2: AllocProcessMemory and CreateRemoteThread. 848

The ProcMem Utility Functions 853

The InjectLib Function i 857

Testing the InjectLib Function 870

» The Inject Library Test Sample Application 870

The Image Walk Dynamic-Link Library 873

ASUMMAENY .o 876
APPENDIX A

MESSAGE CRACKERS 879

Message CraCkerst 881

Child Control Macros.o 884

APIMaCIOS o 886
APPENDIX B

THE BUILD ENVIRONMENT 887

The ADVWIN32.HHeaderFile 887

Warning Level 4 888

The STRICTMACIOo e e 888

UniCode ... 888

The ARRAY_SIZEMacCro.t 889

The BEGINTHREADEXMacro ..., 889

Linker Directives 890

Project Settings | Couldn't Set in the Source Files 895

INAEX 897

XX

ACKNOWLEDGMENTS

Although my name appears alone on the cover of this book, many
people have contributed in some form or another to the book’s creation.
In many cases, these people are good friends of mine (that is, we occa-
sionally go to movies or out to dinner together); and in other cases, I
have never met the individuals and have conversed with them only on the
phone or by electronic mail. I could not have completed this book with-
out the assistance or support of each of the following—I thank you all.

Susan “Q” Ramee gave me her love and support throughout the
entire process. Sue also proofread chapters and helped me come up with
some ideas for the sample programs. And, of course, it would not be
right to thank Sue without also thanking her two cats, Natt and Cato.
Often, late at night, when I could not sleep and decided to write, Natt
and Cato would keep me company. They would frequently shed on my
notes and walk across the keyboard as I typed. Any typos you sea in thid
boot are duw too Natt amd Cato, knot me, I assure you.

Jim Harkins is one of my best friends. Whenever I think of Jim, I
can hear him saying, “When was the last time you put chlorine in the
Jacuzzi?” And, although it’s not publicly known, Jim is the creator of the
very popular and hilariously outrageous game “Guess What The Plant
Said?” His direct contribution to this book can be found in the Directory
Walker, Alertable File I/O, and File Change sample programs. In addi-
tion, Jim also helped me think through many of the thread synchroniza-
tion issues in the book and the CPU-independent version of InjectLib.

Scott Ludwig and Valerie Horvath have become my closest friends.
Our favorite pastime is going to movies that have lots of explosions and
destruction in them. Scott and Valerie have also been initiating me into
the world of professional basketball. (You mean the Harlem Globe-
trotters?) Scott was a lead developer at Microsoft for the first version of
Windows NT. When I was writing the first edition of this book, Scott was
extremely patient with me and answered all of my questions. Through
the discussions we have had, Scott has earned my utmost respect and
admiration.

ADVANCED WINDOWS

Lucy Gooding added spice and spices (mostly garlic) to my life. She
deserves a medal for putting up with my busy schedule. Now that the
book is done, we can spend more time with Me-yow-zer and Chirrp-per.

Jeff Cooperstein is a friend with a keen sense of how to muck with a
system and make it do things that it was specifically designed not to do.
Jeff devised several ways to circumvent Windows NT security (all of
which have been fixed in Windows NT 3.5) and was also about to start
work on his Virus Developer’s Kit (VDK). He is also known for saying,
“Just disconnect the network cable, the machine won’t receive the
broadcast packet, plug the cable back in and you’re set!”

Jonathan Locke and I share a common interest in music, but for
some reason, he prefers 386/25MHz machines to MIPS machines.
Jonathan helped with proofing many of the chapters and made several
recommendations to mangle my text and alter its meaning. Many of his
suggestions opened up either a ball of worms or a can of wax. However,
we managed to incorporate them into the book before it went to press.

Lou Perazzoli, Steve Wood, and Marc Lucovsky of the Windows NT
development team reviewed a number of chapters and answered many
questions related to threads and memory management.

Brian Smith, Jon Thomason, and Michael Toutonghi of the Win-
dows 95 development team answered several questions having to do with
Windows 95 memory and thread management.

Asmus Freytag (aka Dr. Unicode) reviewed the Unicode chapter
and gave me some last-minute suggestions over dinner at Red Robin one
very rainy Seattle evening.

Dave Hart of the Windows NT NTVDM development team spent a
lot of time with me in person and via e-mail while I asked numerous ques-
tions about running 16-bit MS-DOS and Windows applications under
Windows NT’s NTVDM layer. While very little of this information ap-
pears in the book, Dave gave me a good deal more insight into the work-
ings of Windows NT.

Chuck Mitchell, Steve Salisbury, and Jonathan Mark of the Win32
Visual C++ team answered my questions about structured exception
handling, thread-local storage, the C run-time library, and linking.

I'would also like to thank/mention Mark Durley and Cezary Marcjan,
who found bugs in the first edition and provided me with numerous
ideas and stimulating conversations about Win32 programming.

Acknowledgments

I would also like to thank/mention several additional developers
on the Visual C++ team I had the opportunity to work with: Byron Dazey,
Eric Lang (“Do they sell milk at the Crest of London?”), Dan Spalding,
Matthew Tebbs (“Thanks for brunch!”), Bruce Johnson, Jon Jorstad
(“How’s this for a better thing to say?”), Dave Henderson, and T.K.
Brackman.

Bernie Mcllroy helped me test the sample applications on a DEC
Alpha machine. Bernie thinks that all introductions should begin with
“In the beginning...” and is also well known for his philosophy on life:
“Life is a heck of a thing.”

Numerous developers at Microsoft helped fill in the gaps for me:
Mark Cliggett, Cameron Ferroni, Eric Fogelin, Randy Kath, and Steve
Sinofsky.

Rebecca Gleason was my editor at Microsoft Press for the second
edition of the book. I still owe her a big favor for putting all the RC files
back into the book at the last moment. Rebecca was on top of everything
and always had an answer to my questions—even though her answer was
frequently, “It’s a style thing.” I'm still trying to recover from the 10-
alarm barbecue lunch we had from Dixie’s BBQ /Porter’s Automotive
Service shop.

Jim Fuchs was my technical editor at Microsoft Press for the second
edition. Jim worked incredibly hard on proofing my source code and
resource files. He was absolutely indefatigable while dealing with code
changes as he and I worked on the source code at the same time.

Nancy Siadek, my editor for the first edition of this book, deserves an
award for the amount of effort and dedication she gave to me. I'm sure
she had no idea what she was getting into. Nancy taught me more about
writing in the short time I spent with her than I learned in all my years.

Jett Carey, my technical editor for the first edition of this book, was
a big help in letting me off the hook by answering many of Nancy’s ques-
tions, which allowed me to rewrite some of the material.

I also want to thank the rest of the Microsoft Press team. Many of
them I have never met, but I do appreciate all their efforts. For the sec-
ond edition: Shawn Peck, John Sugg, Jim Kramer, Michael Victor, Kim
Eggleston, David Holter, Penelope West, Richard Carter, Elisabeth
Thebaud, Peggy Herman, and Barbara Remmele. And those of the first
edition: Erin O’Connor, Laura Sackerman, Deborah Long, Peggy
Herman, Lisa Iversen, and Barb Runyan.

XXiii

ADVANCED WINDOWS

XXiv

Thanks also to:

Dan Horn at Borland International, for his suggestions and com-
ments on several chapters and for giving an apple to the teacher.

Jim Lane, Tom Van Baak, Rich Peterson, and Bill Baxter, for their
assistance with the DEC Alpha compiler.

Dean Holmes, acquisitions director at Microsoft Press, for signing
me and for putting up with delays in the first edition while I purchased
my new house.

Gretchen Bilson and everyone at Microsoft Systems Journal, for
encouraging me to continue writing.

Charles Petzold, for introducing me to Microsoft Press and hot and
sour soup.

Carlos Richardson, for helping me get TJ-Net (my home network)
up and running in my new house.

Donna Murray, for her love, support, and friendship over the years.
I admire you for always pursuing your dreams.

My brother, Ron, for trying to find me a copy of Patrick Moraz’s
“Salamander.” Even though you never found it, I know you tried. I'll ask
Peter Gabriel to autograph your golf clubs the next time he’s in town.
Here’s hoping you win the contest and that we and Velveeta-Clear—loving
Maria take a trip to Bath, England.

My mom and dad, Arlene and Sylvan, for their love and support
over the years. Both of you are welcome to visit me anytime you want. I’ll
keep the Jacuzzi hot and a bag of popcorn by the TV, and I'll order
another set of contour pillows.

INTRODUCTION

I have really enjoyed writing this book. There is nothing I like more
than being at the forefront of technology and learning new things. Win-
dows 95 and Windows NT are definitely at the forefront of technology,
and boy, is there a lot of new stuff to learn. But don’t let the amount of
new stuff scare you. If you are already a 16-bit Windows programmer, you
will find that you can start writing Win32 applications after learning
just a few simple techniques for porting your existing code. However,
these ported programs will not be taking advantage of the new, powerful,
and exciting features that the Win32 environments of Windows 95 and
Windows NT offer.

After you have started working with Win32, you can begin incorpo-
rating more and more of these features into your applications. Many of
the Win32 features make it much easier to write programs. And, as I soon
discovered when porting some of my own code, I was able to delete large
sections of code from my existing programs and replace them with calls
to facilities offered by Win32.

The new features are such a pleasure to use and work with that I
now do Win32 programming exclusively and frequently speak at compa-
nies and conferences explaining how developers can effectively write
Win32 applications.

This book is the result of my experiences in working with Windows
95 and Windows NT. I have learned a lot since the first edition of this
book; for this edition, I have rewritten almost all of the chapters and
have greatly expanded the depth to which I cover the more advanced
Win32 features. I have also reorganized the material and present it in
what I believe is a much clearer fashion.

There is no doubt in my mind that the Win32 API will become a
standard API for both minicomputers and mainframe computers (with
Windows NT) and for personal computer systems (with Windows 95 and
Windows NT). This book should help you get ready for developing appli-
cations for an environment that is destined to be the industry standard.

ADVANCED WINDOWS

What | Expect from You

This book is for the Windows developer who already has some experi-
ence writing programs for 16-bit Windows. However, an extensive knowl-
edge of 16-bit Windows is not necessary—you need only know the basics
of Windows programming, including window procedures, window mes-
sages, and dialog boxes. This book covers new features that have been
introduced in the Win32 API as it runs under the Windows 95 and Win-
dows NT operating systems. No attempt will be made to teach introduc-
tory Windows programming. This book also covers the types of issues
you should expect when porting 16-bit Windows applications to the
Win32 APL.

About the Sample Applications

The purpose of the sample applications is to demonstrate with real code
how to use the advanced features of Win32. You could never read
enough text to replace the knowledge and experience that you gain by
writing your own applications. I know that this has certainly been true of
my experience with Win32. Many of the sample applications presented
throughout this book are direct descendants of experimental programs
that I created myself in an effort to understand how the Win32 functions
behave.

Programs Written in C

When it came time to decide on a language for the sample applications,
I'was torn between C and C++. For large projects, I always use C++—but
the fact of the matter is that most Windows programmers are not using
C++yet, and I didn’t want to alienate my largest potential audience.

Message Cracker Macros

XXVi

If you are not writing your Win32 application using C++ and a Windows
class library (such as Microsoft’s Foundation Classes), I highly recom-
mend that you use the message cracker macros defined in the
WINDOWSX.H header file. These macros make your programs easier to
write, read, and maintain. I feel so strongly about the message cracker
macros that I have included Appendix A in this book to explain why mes-
sage crackers exist and how to use them effectively.

Introduction

Knowledge of 16-Bit Windows Programming

None of the programs presented rely on extensive knowledge of 16-bit
Windows programs, although experience with 16-bit Windows program-
ming is definitely a plus. The sample programs do assume that you are
familiar with the creation and manipulation of dialog boxes and their
child controls. Very little knowledge of GDI and Kernel functions is
required.

When presenting various topics in this book, I do make behavior
comparisons between 16-bit Windows and Win32. If you already under-
stand how 16-bit Windows behaves, you should have an easier time
understanding how behaviors have changed in Win32.

Running the Sample Applications Under Windows 95

Windows 95 is targeted to run on machines that have only 4 MB of RAM.
In order to accomplish this, Microsoft had to cut some corners when cre-
ating Windows 95. For the software developer, this means that some
Win32 functions do not have full implementations on Windows 95. With
respect to my sample applications, this means that some of the applica-
tions have additional functionality when run under Windows NT.

In addition, at the time I was working on this book Windows 95 was
still under development. All the sample programs were tested with Win-
dows 95 build 275, but there was no way to check the sample programs
with the final release of Windows 95. At the time I finished the book,
the following programs did not run under Windows 95 build 275:
ALTERTIO.EXE (Chapter 13) and TINJLIB.EXE (Chapter 16)—for rea-
sons that I explain when I introduce them in their respective chapters.

For up-to-the-minute changes in information about Windows 95, 1
recommend that you periodically visit the WIN_NEWS forum, which
you can find at the following locations:

On CompusServe: GO WINNEWS

On the Internet: Jtp://fep.microsoft.com/peropsys/Win_ News
hitp: /fwww.microsoft.com

On AOL: keyword WINNEWS
On Prodigy: jumpword WINNEWS
On Genie: WINNEWS file area on Windows RTC

XXVii

ADVANCED WINDOWS

You can also subscribe to Microsoft’s electronic newsletter, WinNews.
To subscribe, send Internet e-mail to enews@microsoft.nwnet.com and put
the words SUBSCRIBE WINNEWS in the text of the e-mail.

Unrelated Code

I wanted to remove any code from the sample programs that was not
directly related to the techniques I wanted to demonstrate. Unfortu-
nately, this is not possible when writing any Windows program. For
example, most Windows programming books repeat the code for regis-
tering window classes in every application presented in the book. I have
done my best to reduce this type of nonrelevant code.

One way that I reduce nonrelevant code is by using techniques that
are not always obvious to Windows programmers. For example, the user
interface for most of the sample programs is a dialog box. In fact, most of
the sample programs have a single line of code in WinMain that simply
calls the DialogBox function. As a result, none of the sample programs
initialize a WNDCLASS structure or call the RegisterClass function. In ad-
dition, only one sample application—FileChng in Chapter 13—has a
message loop in it.

Independent Sample Applications

XXViii

I have tried to keep the sample applications independent from one an-
other. For example, the memory-mapped files chapter is the only chap-
ter containing memory-mapped file sample programs. Because I have
structured the sample programs so that they are independent, feel free
to skip earlier chapters and proceed to later chapters.

Occasionally you’ll find a sample program that uses techniques or
information presented in earlier chapters. For example, the SEHExcpt
sample application, presented in Chapter 14, “Structured Exception
Handling,” demonstrates how to manipulate virtual memory. I decided
to mix these two topics in a single sample program because structured
exception handling (SEH) is a very useful mechanism for manipulating
virtual memory. In order to fully understand this sample application, you
should read Chapters 4, 5, and 6 prior to examining the SEHExcpt
sample application.

There is one sample application, however, that has a little bit of
everything: TInjLib, presented in Chapter 16. To fully understand this

Introduction

application, you must have a good understanding of kernel objects, vir-
tual memory, processes, threads, thread synchronization, dynamic-link
libraries, structured exception handling, and Unicode. I would say that
understanding the TInjLib application qualifies you to go on an inter-
view and say that you really understand Win32 programming.

STRICT Compliance

All of the sample programs have been compiled with the STRICT identi-
fier defined, which catches frequent coding errors. For example, with
the STRICT identifier defined, the passing of an incorrect handle type
to a function is caught during compilation instead of at run time. For
more information about using the STRICT identifier, refer to the Pro-
gramming Techniques documentation included in the Win32 SDK.

Error Checking

Error checking should be a big part of any software project. Unfortu-
nately, proper error checking can make the size and complexity of a
software project grow exponentially. In order to make the sample appli-
cations more understandable and less cluttered, I have not put very
much error-checking code into them. If you use any of my code frag-
ments and incorporate them into your own production code, I strongly
encourage you to examine my code closely and add any appropriate
error checking.

Bug Free

I would love to say that all of the sample programs are bug free. But, as
with all software, it’s only bug free until someone finds a bug. Of course,
I have given my own code several walk-throughs in the hope of catching
everything. If you do find a bug, I would appreciate your reporting it to
me via my Internet address: v-jeffrr@microsoft.com.

Tested Platforms and Environments

The bulk of my research and development for this book has been on a
machine with only one Intel 486 CPU. I have also recompiled and tested
all the sample programs on a MIPS machine and on a DEC Alpha ma-
chine, using the compilers and linkers that come with Visual C++ 2.0 for
these platforms. All of the programs have been tested under both Win-
dows 95 and Windows NT.

XXiX

ADVANCED WINDOWS

For most of the sample programs, I use no vendor-specific compiler
extensions. These programs should compile and link regardless of the
machine on which you are running and regardless of which tools you are
using to compile and link the sample programs.

However, several of the sample programs do take advantage of
compiler-specific features:

B Named data sections using the following syntax:

ftpragma data_seg (...)

B Static thread-local storage using the following syntax:
__declspec(thread)

B Structured exception handling using the following keywords:
__try, __leave, __finally, and __except

Because most compiler vendors will be modifying their compil-
ers to recognize these four new keywords, it is unlikely that you
will have to modify the structured exception handling sample
programs at all.

B Compiler-assisted function importing and exporting using the
following syntax:
__declspec(dilimport) and __declspec(dllexport)

If you are using tools other than those included in Visual C++ 2.0,

you will need to discover how your vendor exposes these features and
modify the sample programs accordingly.

There is a problem with the Microsoft Visual C++ 2.0 Setup program. If
“ you turn off MFC support when installing Visual C++, the Setup program
Important | does not copy the WINRES.H file to the \MSVC20\MFC\INCLUDE di-
rectory. If WINRES.H is missing from this directory, you will not be
able to compile the resource files that come with this book. There are
two ways to fix this problem. First, you can reinstall Visual C++ with the
MFC option turned on. Second, you can manually copy the WINRES.H
file from the Visual C++ CD-ROM to the \MSVC20\MFC\INCLUDE
directory on your hard disk.

Introduction

Unicode

Originally I wrote all the sample programs so that they could compile
natively using the ANSI character set only. Then, when I started writing
the Unicode chapter, I became a very strong believer in Unicode and
tried desperately to come up with a sample program for the Unicode
chapter. Then the answer came to me: convert all the sample applica-
tions in the book so that they demonstrate Unicode. This conversion
effort took only four hours and allows you to compile all the sample ap-
plications natively for both ANSI and Unicode.

The disadvantage in doing this is that you might see calls to unfa-
miliar functions that manipulate characters and strings within the sample
applications. For the most part, you should be able to guess what that
function does if you are familiar with the standard C run-time library
functions for manipulating characters and strings. However, if you get
stuck, you should refer to Chapter 15. This chapter explains in much
greater detail what I have done in the sample programs. It is my hope
that you not be confused by the new character and string functions and
that you see how easy it is to write your application code using Unicode.

Installing the Sample Programs

The companion CD-ROM contains the source code for all the sample
applications presented throughout this book. In addition, the EXE and
DLL files for the x86, MIPS, and Alpha AXP versions of the sample pro-
grams are included. Because none of the files on the CD-ROM are com-
pressed, you can simply insert the CD-ROM and load the source code
files; you can also run the sample applications directly from the CD-ROM.

On the CD-ROM, the root directory contains the installation soft-
ware and the ADVWIN32.H header file discussed in Appendix B. The
root directory also contains several subdirectories. Three of these sub-
directories are called X86.BIN, MIPS.BIN, and ALPHA.BIN. These
subdirectories contain the EXE and the DLL files for their respective
CPU platforms. If you are running Windows NT on a platform other
than an x86, MIPS, or Alpha, you can still access the source code files but
you will not be able to execute any of the sample applications without
building them yourself. This means you will need to install the source
code files on your hard disk. The section “Windows NT” later in this
Introduction discusses how to perform this installation.

XXXi

ADVANCED WINDOWS

The remaining subdirectories contain the source code files for the
sample applications. Each sample application is in its very own sub-
directory. The eight-letter name of each subdirectory contains the name
of the sample program, and the subdirectory’s extension indicates the
chapter in the book where the program is presented. For example, the
subdirectory FILECHNG.09 identifies the File Change sample applica-
tion presented in Chapter 9.

Ifyou are interested only in examining the source code or running
the sample applications, you do not have to copy anything to your hard
disk. However, if you want to modify, compile, or debug the sample
applications, you will need to copy the files to your hard disk. The next
two sections explain how to access the sample application files depend-
ing on whether you are running Windows 95 or Windows NT.

Windows 95

XXXii

When you insert a CD-ROM into your CD-ROM drive, Windows 95 de-
tects the disc and can automatically execute a Setup program contained
on that CD-ROM. The CD-ROM supplied with this book has been pre-
pared to take advantage of this feature. When you insert the CD-ROM,
the following dialog box appears:

If you click on the Copy Source Code, EXEs, And DLLs To The
Hard Disk button, the Setup program supplied on the CD-ROM exe-
cutes and allows you to type in the directory path where you would like
the files copied. When the Setup program is complete, a new menu item
will be created for the Programs menu of the system’s task bar. You can
execute any of the sample applications by selecting the desired applica-
tion from the task bar’s Programs menu.

Introduction

If you select the Explore The Sample Applications On The CD-
ROM button, the Windows 95 Explorer will display the icons for all the
sample applications, as shown below. Double-click on an icon to run the

associated application.

B\ a

PMRest TiniLib SEHSoft SEHSum

LisLab CopyData

Critsecs MMFShare

Windows NT

SEHExcpt

i

A

DocStats

P

SEHTem

Under Windows NT, you must manually invoke the SETUP.BAT batch
file located in the root directory of the CD-ROM. This batch file deter-
mines which type of CPU platform you are running Windows NT on and
invokes the correct Setup application for your platform (ISETUP.EXE
for x86, MSETUP.EXE for MIPS, and ASETUP.EXE for Alpha). The
Setup program then prompts you to type in a destination directory and,
after you have done so, copies all the source code files and binary files to
your hard drive. After all the files have been copied, a new Program Man-
ager group is created and all the sample programs are added to this

group, as shown on the next page.

XXXiii

ADVANCED WINDOWS

XXXiV

If you are running Windows NT on a platform other than x86,
MIPS, or Alpha, you must invoke SETUP.BAT and specify a location at
which the files should be installed. For example, the following line as-
sumes that the CD-ROM is in drive H and that you want to install the
source code files in the ADVWIN32 directory on drive C. (This directory
will be created if it doesn’t exist.)

C:\>H:\SETUP C:\ADVWIN32

Of course, the Setup batch file cannot create a Program Manager
group because no EXE files are installed. You will have to create your
own Program Manager group, compile each of the sample applications,
and manually add each application to the newly created Program Man-
ager group.

CHAPTER ONE

THE WIN32 API
AND PLATFORMS
THAT SUPPORT IT

I am a frequent speaker at industry events, where I am often asked,
“What is the difference between Win32, Win32s, Windows NT, and
Windows 952" In this chapter, I will attempt to clarify these differences
once and for all. I will also explain why I chose to focus exclusively on
Windows 95 and Windows NT when writing this book.

To Dream: The Win32 API

Win32 is the name of an application programming interface (API), that’s
all—no more, no less. So a set of functions that are available to call from
your source code is contained in the Win32 API. When you write a Win32
program, you are doing so because you are calling functions in the
Win32 API.

The Win32 API defines a set of functions that an application may
call and also defines how these functions behave. Some of the areas cov-
ered by the API’s functions are listed in Figure 1-1 on the next page.

The Win32 API is implemented on three platforms: Win32s;
Windows NT, and Windows.95. Microsoft’s plan is to have all the Win32
functions implemented. in every platform that supports the Win32 API.
This is a major win for software developers like you and me, as well as for
Microsoft. For us it means we can write the code for our application just
once and then package it for the different platforms and ship it off to

1. Itis unfortunate that the Win32s platform has Win32 in its name, because this only adds
to the confusion.

ADVANCED WINDOWS

our customers. For Microsoft it means existing applications can run on
all their operating system platforms.

Atoms Networks

Child controls Pipes and mailslots

Clipboard manipulations Printing

Communications Processes and threads
Consoles Registry database manipulation
Debugging Resources

Dynamic-link libraries Security

Event logging Services

Files Structured exception handling
Graphics drawing primitives System information

Keyboard and mouse input Tape backup

Memory management Time

Multimedia services Window management

Figure 1-1.

Some areas covered by the Win32 API.

Of course, you may be asking yourself, Why do we need to have dif-
ferent Win32 platforms? Wouldn’t it make more sense to have a single
Win32 platform and make this one platform pervasive?

Well, if this were a perfect world, the answer to the second question
would be “yes.” However, this is the real world—and in the real world,
one Win32 platform just doesn’t cut it. I'll explain why in the next three
sections, which introduce the three Win32 platforms and describe where
each one fits into Microsoft’s operating system strategy.

Win32s

The Win32s platform was the very first shipping platform capable of
running Win32 applications. Win32s consists of a set of dynamic-link
libraries (DLLs) and a virtual-device driver that add the Win32 API to
the 16-bit Windows 3.x system. Win32s is not much more than a 32-bit to
16-bit mapping layer sitting on top of 16-bit Windows 3.x. This mapping

ONE: The Win32 API and Platforms That Support It

layer uses thunking to convert the 32-bit function parameters to 16-bit
parameters and to call the corresponding 16-bit Windows function.

Because Win32s does not extend the operating system’s capabili-
ties, most of the Win32 functions are implemented as small stub func-
tions that simply return, indicating failure. For example, because 16-bit
Windows does not support threads, the CreateThread function does noth-
ing but return a NULL handle. All of the Win32 functions that create
kernel objects such as mutexes and events return NULL handles. The
Win32s platform does add a few new capabilities, however, such as struc-
tured exception handling and limited implementations of memory-
mapped files.

Microsoft created Win32s to allow developers to begin writing 32-
bit code immediately. Microsoft hoped this would help spark interest in
Win32 programming so that when Windows NT shipped, some 32-bit
applications would already be available. Unfortunately, Win32s did not
take off too well, and I personally know of no software development
effort that has specifically targeted the Win32s platform.

Windows NT

Windows NT, Microsoft’s high-end operating system, is the second Win32
platform to ship from the company. Windows NT is a relatively new oper-
ating system that has no MS-DOS heritage. Microsoft expects this new
design and architecture to take the company’s operating systems into
the future. However, Windows NT requires substantial memory and hard
disk space. This means the average end user probably needs to purchase
additional memory and hard disk space in order to run the system. As
many software companies have discovered over the years, getting users
to buy hardware to run software is very difficult.

And so, to date, Windows NT has had less than spectacular sales.
But, in my opinion, we will all be running Windows NT someday—it just
may take a few more years. Why is Windows NT the operating system of
the future? I'm glad you asked. I explain in detail below.

First, Windows NT native applications are Win32 applications,
giving them the power, robustness, and speed provided by the API In
addition, Windows NT is capable of running several different types of
applications simultaneously. For example, Windows NT can run OS/2
1.x character applications, POSIX applications, Presentation Manager
2.x applications, MS-DOS applications, and 16-bit Windows applications.

ADVANCED WINDOWS

Second, Windows NT is a portable operating system. This means
that Windows NT is capable of running on machines that have different
CPUs. Most of Windows NT itself is written in C or C++. So if Microsoft
wants Windows NT to run on a MIPS R4000, a DEC Alpha, or Motorola’s
PowerPC, Microsoft needs only to recompile the operating system source
code using the target CPU’s native compiler and voila—a version of
Windows NT for another platform. Of course, porting the operating sys-
tem to another CPU architecture is not quite this easy. Two very low level
components of the Windows NT Executive, called the Kernel and the
Hardware Abstraction Layer (HAL), need to be written to support the
target architecture. Much of the Kernel and the HAL is written in native
assembly language and is quite specific to the target machine architecture.

After Microsoft finishes porting Windows NT to a new architec-
ture, all you need to do is recompile your Win32 application and voila
again—your application now runs on a new machine architecture. This
actually ¢s as simple as it sounds! I have compiled and tested all of the
sample applications in this book for the following three Windows NT plat-
forms: %86, MIPS, and Alpha. The first time I did this, I was amazed at
how simple it was. Now I just take it for granted. ,

You should note that Windows NT is the only Win32 platform for
machine architectures based on CPUs other than the x86. In other words,
if you want to run Win32 applications on a MIPS, Alpha, or PowerPC
machine, you will have to use the Windows NT platform. If you have an
x86 machine, you can choose from three platforms: Win32s, Windows
NT, or Windows 95. Windows NT is the most competent of these operat-
ing systems but does require the additional hardware.

_The third big feature of Windows NT is that it supports machines
with multiple CPUs. So if you are running Windows NT on a machine that
contains 30 CPUs, the operating system is capable of letting 30 threads
run simultaneously. This means the machine can perform 30 tasks in the
time that it takes to perform one task. This is an incredibly powerful
capability, but, as you might expect, a machine with several CPUs costs
significantly more than a single-CPU machine.

Windows 95

Windows 95 is Microsoft’s most recent Win32 platform, and the long-
awaited successor to 16-bit Windows 3.x. Because Windows 95 replaces
Windows 3.x, the Win32s platform is now considered obsolete. So this

ONE: The Win32 API and Platforms That Support It

leaves two Win32 platforms worthy of your consideration: Windows 95
and Windows NT.

Windows 95 is a much better implementation of the Win32 API than
its predecessor, Win32s. However, Windows 95 does not contain the full
implementation of the Win32 API as found in Windows NT. Windows 95
fills a very large and strategic marketing gap: users with 386 (or better)
machines with 4 MB (or more) of RAM. The number of machines that
fall into this category is staggering—and it’s expected to grow signifi-
cantly over the next couple of years. Because the Windows NT hardware
requirements are too demanding to address this market, Microsoft pro-
duced the Windows 95 platform.

In order for Windows 95 to fit in a 4-MB machine, Microsoft was
forced to cut back on some of the Win32 API’s functionality. As a result,
Windows 95 does not fully support some of Win32’s asynchronous file
I/O functions, debugging functions, registry functions, security func-
tions, and event logging functions (just to name a few)—the functions
exist, but they have restricted implementations. Surprisingly, however,
Microsoft was able to shoehorn quite a bit of the Win32 API set into
Windows 95, making it a very feasible and powerful operating system.
So powerful, in fact, that it is expected to be the most purchased and
used Win32 platform in the near future.

The Reality: The Win32 API

The Win32s, Windows NT, and Windows 95 platforms all contain imple-
mentations of all the Win32 functions, which means you can call any of
the functions in the Win32 API regardless of which platform you are run-
ning on. However, there is implementation and there is implementation.
When Microsoft says that every Win32 function will be implemented on
every platform, what it really means is that every Win32 function will exist
on every platform. For example, the CreateRemoteThread function exists
on all three platforms: Win32s, Windows NT, and Windows 95. However,
the function doesn’t actually create a remote thread unless the applica-
tion calling the function is running on the Windows NT platform. If a
process running on Win32s or Windows 95 calls CreateRemoteThread, the
function does nothing and simply returns NULL, indicating that a new
thread of execution could not be created.

The reason for this limitation on Win32s is that Win32s is really just
an extension to 16-bit Windows 3.x that implements most of the Win32

ADVANCED WINDOWS

API by thunking calls to 16-bit Windows functions. Because 16-bit Win-
dows does not support the creation of new threads of execution, Win32s
does not support this feature. But remember, Win32s implements all of
the Win32 functions, although some of the implementations are limited.
On Windows 95, a new thread of execution cannot be created because
Microsoft didn’t feel that the function was useful enough to warrant the
additional memory overhead required to make Windows 95 run in a
4-MB machine.

Because this is a Win32 programming book, you might think that
you can compile all the sample programs you find here and run them on
all three Win32 platforms. This is true; however, most of the features that
I discuss in this book (for example, multithreaded programming, virtual
memory, and memory-mapped files) have full implementations on the
Windows 95 and Windows NT platforms but only limited implementa-
tions on the Win32s platform. Because of this, you must run the sample
programs under the Windows 95 or the Windows NT platform to see them
in all their glory. :

In fact, because the Win32s platform is so limited in its capabilities,
I have given no thought whatsoever to the Win32s platform in this book.
Everything I have written applies to the Windows 95 and Windows NT
platforms only—if something I say happens to be true for the Win32s
platform, I assure you it is purely coincidental.

I’d like to make one more point: With the introduction of the
Windows 95 platform, Microsoft has added a new wrinkle to the Win32
story. Windows 95 has added new functions to the Win32 API in order to
support image color matching, modems, and other services. The func-
tions that support these new services will not exist on the Windows NT
implementation of the Win32 API until Microsoft ships a future, post-3.5
version of Windows NT. This means that there are some Win32 functions
that exist on one platform and not on another. And I don’t just mean
that the Windows NT implementation of these functions is limited—I
mean the Windows NT version of the Win32 API doesn’t include these
functions at all. This is terrible—Windows NT is always supposed to have
the complete implementation of the Win32 API.

Finally, while writing this book I have tried to pay particular atten-
tion to differences between the Windows 95 and Windows NT imple-
mentations of the Win32 API. Where appropriate, I have placed boxes
with icons, as shown on the facing page, in the text to draw attention to
implementation details specific to one platform or the other.

ONE: The Win32 API and Platforms That Support It

wm““‘"‘ g
-

=JYindo! '

o
!

Important

This is an implementation detail specific to the Windows 95 platform.

This is an implementation detail specific to the Windows NT platform.

I have also used boxes with icons to include information helpful to pro-
grammers porting from 16-bit Windows to Win32, and for important
notes—both shown below.

This is important information to help programmers porting from 16-bit
Windows to Win32.

This is an important note.

CHAPTER TWDO

PROCESSES

This chapter discusses how the system manages all of the running appli-
cations. I’ll begin by defining what a process is and how the system cre-
ates a process kernel object to manage each process. Special attention
will be paid to kernel objects because a solid understanding of kernel
objects is critical to becoming a proficient Win32 software developer.
Kernel objects are used by the system and the applications we write to
manage numerous resources such as processes, threads, and files (to
name just a few).

After this short departure to discuss kernel objects, I’ll return to
processes and show how to manipulate a process using its associated
kernel object. Then I'll discuss the various attributes or properties of a
process as well as several functions that are available for querying and
changing these properties. I’ll also examine the functions that allow you
to create or spawn additional processes in the system. And of course, no
discussion of processes would be complete without an in-depth look at
how they terminate. OK, let’s begin.

A process is usually defined as an instance of a running program. In
Win32, a process owns a 4-GB address space. Unlike their counterparts
in MS-DOS and 16-bit Windows operating systems, Win32 processes are
inert. That is, a Win32 process executes nothing—it simply owns a 4-GB
address space containing the code and data for an application’s EXE file.
AnyDLLs required by the EXE also have their code and data loaded into
the process’s address space. In addition to an address space, a process
owns certain resources such as files, dynamic memory allocations, and
threads. The various resources created during a process’s life are destroyed
when the process is terminated —guaranteed.

As I said, processes are inert. In order for a process to accomplish
anything, the process must own a thread; it is this thread that is respon-
sible for executing the code contained in the process’s address space. In

ADVANCED WINDOWS

fact, a single process might contain several threads, all of them executing
code “simultaneously” in the process’s address space. In order to do this,
each thread has its very own set of CPU registers and its own stack. Every
process has at least one thread executing code contained in the
process’s address space. If there were no threads executing code in
the process’s address space, there would be no reason for the process to
continue to exist and the system would automatically destroy the process
and its address space.

In order for all of these threads to run, the operating system sched-
ules some CPU time for each individual thread. The operating system
gives the illusion that all the threads are running concurrently by offer-
ing time slices (called quantums) to the threads in a round-robin fashion,
as shown in Figure 2-1.

When a Win32 process is created, its first thread, called the primary
thread, is automatically created by the system. This primary thread can
then create additional threads, and these additional threads can create
even more threads.

Windows NT is capable of utilizing machines that contain several CPUs.
For example, Sequent sells a computer system that includes 30 Intel CPUs.
Windows NT is able to assign a CPU to each thread so that 30 threads are
actually running simultaneously. The Windows NT Kernel handles all
the management and scheduling of threads on this type of system. You
do not need to do anything special in your code in order to gain the advan-
tages offered by a multiprocessor machine.

Kernel Objects

10

Before getting knee-deep into processes and threads, it is extremely im-
portant to understand kernel objects and how the system manages them.
This information is not only important for manipulating processes and
threads; it is also critical to understanding how much of the Win32 sys-
tem operates. As a Win32 software developer, you will be creating, open-
ing, and otherwise manipulating kernel objects on a regular basis. The
system creates and manipulates several types of kernel objects, including:

Event objects MailSlot objects Process objects
File-mapping objects Mutex objects Semaphore objects
File objects Pipe objects Thread objects

TWO: Processes

Thread l

Figure 2-1.
Individual threads are scheduled time quantums by the operating system
in a round-robin fashion.

These objects are created by calling various Win32 functions. For
example, the CreateFileMapping function causes the system to create a
file-mapping object. When an object is created, the system allocates a
block of memory for the object, initializes the memory with some man-
agement information, and returns a handle to your application identify-
ing the object. Your application can then pass the handle to other Win32
functions in order to manipulate the object.

Your application might also use other types of objects, such as
menus, windows, mouse cursors, brushes, and fonts. These objects are
User or Graphics Device Interface (GDI) objects, not kernel objects.

When you first start programming for Win32, you might be con-
fused when trying to differentiate a User or GDI object from a kernel
object. For example, is an icon a User object or a kernel object? The easi-
est way to determine whether an object is a kernel object or not is by
examining the Win32 function that creates the object. All functions that
create kernel objects have a parameter that allows you to specify security
attribute information. For example, the CreateMutex function:

HANDLE CreateMutex(LPSECURITY_ATTRIBUTES 1psa,

BOOL fInitialOwner, LPCTSTR 1pszMutexName);
has, as its first parameter, a pointer to a SECURITY_ATTRIBUTES struc-
ture. The Createlcon function, shown on the next page, does not have a
parameter allowing you to specify security attributes.

11

ADVANCED WINDOWS

12

HICON CreateIcon(HINSTANCE hinst, int nWidth, int nHeight,
BYTE cPlanes, BYTE cBitsPixel,
CONST BYTE *1pbANDbits, CONST BYTE *1pbXORbits);

Once a kernel object exists, any application can open the object
(subject to security checks). For example, one application might create a
mutex object, which is then available for another application to open.
This capability allows the two applications to manipulate the same
mutex object. When an application opens a kernel object, the system
does not create another block of memory for the object. Instead, the sys-
tem increments a usage count associated with the already existing object
and returns a handle, identifying the existing object, to the thread open-
ing the object.

When a thread no longer needs to manipulate a kernel object, it
should call the CloseHandle function:

BOOL CloseHandle(HANDLE hObject);

This function causes the system to decrement the usage count for
the object, and if the usage count reaches0, the system frees the memory
allocated to manage the object.

To help make the system more robust and secure, a handle to a ker-
nel objectis process-relative—that is, it is meaningful only to the process
that called the create or open function. If a thread calls CreateMutex, the
system might return the handle value 0x22222222. If a thread in another
process opens the same mutex object, the system might return the han-
dle value 0x12345678. Both handles identify the same mutex object even
though the values are different.

Because handles for kernel objects are process-relative, a thread
cannot successfully get a handle to an object and give or pass that handle
to a thread in another process through some form of interprocess com-
munication (such as sending a window message). When the thread in
the receiving process attempts to use the handle, one of two things hap-
pens: the handle value does not identify an object accessible to the
thread, or the handle identifies a different object created or opened by
another thread in the process. In either case, an error will most likely
result when the handle is used.

Contrast this to the User or GDI objects, which use the same han-
dle value across processes. For example, if a window is identified with a
handle value of 0x34343434, all processes use this same value to refer to
the window.

TWO: Processes

Writing Your First Win32 Application

Win32 supports two types of applications: graphical user interface (GUI)-
based and console-based. A GUI-based application has a graphical front
end. GUI applications create windows, have menus, interact with the
user via dialog boxes, and use all the standard “Windowsy” stuff. Almost
all the accessory applications that ship with Windows (Notepad, Calcula-
tor, and Clock, for instance) are typical examples of GUI-based applica-
tions. Console-based applications more closely resemble MS-DOS text
applications: their output is text-based, they don’t create windows or
process messages, and they don’t require a graphical user interface.
Although console-based applications are contained within a window on
the screen, the window contains only text. The command shells, CMD
.EXE (for Windows NT) and COMMAND.COM (for Windows 95), are
typical examples of console-based applications.

Although there are two types of applications, the line between
them is very fuzzy. It is possible to create console-based applications that
display dialog boxes. For example, the command shell could have a spe-
cial command that causes it to display a graphical dialog box, allowing
you to select the command you want to execute instead of having to
remember the various commands supported by the shell. You could also
create a GUI-based application that outputs text strings to a console win-
dow. I have frequently created a GUI-based application that creates a
console window where I can send debugging information as the applica-
tion executes. Of the two application types, you are certainly encouraged
to use a graphical user interface in your applications instead of using
the old-fashioned character interface. It has been proven time and time
again that GUI-based applications are much more user friendly.

The real difference between the two applications is how your code
starts executing. If you are writing a GUI-based application, the process’s
primary thread will execute your code starting with its WinMain func-
tion. (See Chapter 3 for more details.) However, a console-based appli-
cation’s primary thread begins execution with a main function. Because
the system passes more information to a GUI application’s WinMain
function than to a console-based application’s main function, I encour-
age you to write GUI-based applications that begin with WinMain.

In this chapter, my discussion of the mechanics of creating pro-
cesses applies to both GUI-based and console-based applications, but I
emphasize GUI-based applications and don’t discuss some of the finer

13

ADVANCED WINDOWS

14

details of creating console-based applications. If you want more informa-
tion on creating console-based applications, please refer to the Microsoft
Win32 Programmer’s Reference.

All Win32 GUlI-based applications must have a WinMain function
that you implement in your source code. The function must have the fol-
lowing prototype:
int WINAPI WinMain(HINSTANCE hinstExe, HINSTANCE hinstPrev,

LPSTR 1pszCmdLine, int nCmdShow);

This function is not actually called by the operating system. Instead,
the operating system calls the C/C++ run-time’s startup function. The
Visual C++ linker knows that the name of this function is_WinMainCRT-
Startup, but you can override this using the linker’s /ENTRY switch. The
_WinMainCRTStartup function is responsible for performing the follow-
ing actions:

1. Retrieves a pointer to the new process’s full command line.
2. Retrieves a pointer to the new process’s environment variables.

3. Initializes the C run-time’s global variables accessible from your
code by including STDLIB.H. Figure 2-2 shows the list of vari-
ables available.

4. Initializes the heap used by the C run-time memory allocation
functions (that is, malloc and calloc) and other low-level input/
output routines.

5. Calls your WinMain function as follows:

GetStartupInfoA(&StartupInfo);

int nMainRetVal = WinMain(GetModuleHandle(NULL), NULL,
TpszCommandLine,
(StartupInfo.dwFlags & STARTF_USESHOWWINDOW) ?
StartupInfo.wShowWindow : SW_SHOWDEFAULT);

6. When WinMain returns, the startup code calls the C run-time’s
exit function, passing it WinMain’s return value (nMainRetVal).
The exit function performs some cleanup and then calls the
Win32 ExitProcess function, passing it WinMain’s return value.

The remainder of this section discusses the various attributes that
are “bestowed” upon a new process.

TWO: Processes

Variable

Name Type Description

_osver unsigned int Build version of the operating system. For
example, Windows NT 3.5 was build 807.
Thus _osver has a value of 807. As of this
writing, the most recent build of Windows
95 is 275.

—winmagor unsigned int Major version of Windows in hexadecimal
notation. For Windows NT 3.5, the value
is 0x03.

_winminor unsigned int Minor version of Windows in hexadecimal
notation. For Windows NT 3.5, the value
is 0x32.

—winver unsigned int (_winmajor << 8) + _winminor

—argc unsigned int The number of arguments passed on the
command line.

—argu char ## An array of __argc pointers to ANSI strings.
Each array entry points to a command-line
argument.

_environ char ##* An array of pointers to ANSI strings. Each
array entry points to an environment string.

Figure 2-2.

The C run-time global variables available to your programs.

A Process’s Instance Handle

Every EXE or DLL loaded into a process’s address space is assigned a
unique instance handle. Your process is passed its instance value as Win-
Mair’s first parameter, hinstExe. The handle’s value is typically needed
for calls that load resources. For example, to load an icon resource from
the EXE file’s image, you will need to call:

HICON LoadIcon(HINSTANCE hinst, LPCTSTR 1pszlIcon);

The first parameter to LoadlIcon indicates which file (EXE or DLL)
contains the resource that you want to load. Many applications save
WinMain’s hinstExe parameter in a global variable so that it is easily acces-
sible to all of the EXE file’s code.

The Win32 documentation states that some Win32 functions require
a parameter of the type HMODULE. An example is the GetModuleFile-
Name function, shown on the next page.

15

ADVANCED WINDOWS

16

DWORD GetModuleFileName(HMODULE hinstModule, LPTSTR TpszPath,
DWORD cchPath);

However, the Win32 API makes no distinction between a process’s
HMODULE and HINSTANCE values—they are one and the same.
Wherever the Win32 documentation for a function indicates that
HMODULE is required, you can pass HINSTANCE.

The actual value of WinMain’s hinstExe parameter is the base memory
address indicating where the system loaded the EXE file’s image into the
process’s address space. For example, if the system opens the executable
file and loads its contents at address 0x00400000, WinMain’s hinstExe
parameter will have a value of 0x00400000. This “definition” of the
hinstExe parameter is documented and can be relied on for future ver-
sions of Win32 implementations.

The base address where an application loads is determined by the
linker. Different linkers can use different default base addresses. The
Visual C++ linker uses a default base address of 0x00400000 because this
is the lowest address an executable file image can load to when you are
running Windows 95. Some older linkers use a default base address of
0x00010000 because this is the lowest address an executable file image
can load to when running under Windows NT. You can change the base
address that your application loads to by using the /BASE: address linker
switch for Microsoft’s linker.

If you attempt to load an executable that has a base address below
0x00400000 on Windows 95, the Windows 95 loader must relocate the
executable to a different address. This increases the loading time of
the application, but at least the application can run. If you are develop-
ing an application intended to run on both Windows 95 and Windows
NT, you should make sure that the application’s base address is at
0x00400000 or above.

The GetModuleHandle function:

HMODULE GetModuleHandle(LPCTSTR 1pszModule);

returns the handle/base address indicating where an EXE or DLL file
loaded in the process’s address space. When calling this function, you
pass a zero-terminated string that specifies the name of an EXE or DLL
file loaded into the calling process’s address space. If the system finds the

TWO: Processes

specified EXE or DLL name, GetModuleHandle returns the base address
at which that EXE or DLL’s file image is loaded. The system returns
NULL if it cannot find the specified file. You can also call GetModule-
Handle, passing NULL for the lpszModule parameter. When you do this,
GetModuleHandle returns the EXE file’s base address. This is what the C
run-time startup code does when it calls your WinMain function, as dis-
cussed in step 5 on page 14.

There are two important things to note about the GetModuleHandle
function. First, GetModuleHandle examines only the calling process’s
address space. If the calling process does not use any GDI functions,
calling GetModuleHandle and passing it “GDI32” will cause NULL to be
returned even though GDI32.DLL is probably loaded into other pro-
cesses’ address spaces. Second, calling GetModuleHandle and passing a
value of NULL returns the base address of the EXE file in the process’s
address space. So even if you call GetModuleHandle(NULL) from code
that is contained inside a DLL, the value returned is the EXE file’s base
address—not the DLL file’s base address. This is different from how the
GetModuleHandle function works under 16-bit Windows.

In 16-bit Windows, a task’s hModule indicates the module database
13.#@ (a block of information used internally by the system to manage the
module) for an EXE or a DLL. Even if 200 instances of Notepad are run-
ning, there is only one module database for Notepad and therefore only
one hmodExe value shared by all the instances. There can be one and
only one instance of a DLL loaded in 16-bit Windows, so only one
hmodExe value exists for each loaded DLL.

In 16-bit Windows, each running instance of a task receives its very
own hinstExe value. This value identifies the task’s default data segment.
If 200 instances of Notepad are running, there are 200 hinstExe values—
one for each running instance. Because DLLs also have a default data
segment, each loaded DLL also receives its very own hinstExe value. You
might think that because a DLL can be loaded only once, 16-bit Windows
could use the same value for aDLL’s AmodExe and hinstExe. This is not the
case, however, because hmodExe identifies the DLL’s module database,
while hinstExe identifies the DLL’s default data segment.

(continued)

17

ADVANCED WINDOWS

In Win32, each process gets its own address space, which means
each process thinks it is the only process running in the system. One pro-
cess cannot easily see another process. For this reason, no distinction is
made between a process’s hinstExe and its AmodExe—they are one and the
same. For historical reasons, the two terms continue to exist throughout
the Win32 documentation.

As stated in the previous section, an application’s hinstExe actually
identifies the base memory address where the system loaded the EXE
file’s code into the process’s address space. Because of this, it is extreme-
ly likely that many processes will have the same hinstExe value. For exam-
ple, invoking NOTEPAD.EXE causes the system to create a 4-GB process
address space and load Notepad’s code and data into this address space.
The code and data might load at memory address 0x00400000. If we now
invoke a second instance of NOTEPAD.EXE, the system will create a new
4-GB address space for this process and again load Notepad’s code and
data at memory address 0x00400000. Because an application’s hinstExe
value is the same as the base memory address where the system load-
ed the EXE’s code, the hinstExe value for both of these processes is
0x00400000.

In 16-bit Windows, it is possible to call the DialogBox function and
pass it an hinstExe value that belongs to a task other than your own:

16" e

continued

int DialogBox(HINSTANCE hInstance, LPCTSTR l1pszTemplate,
HWND hwndOwner, DLGPROC dlgprc);

This causes 16-bit Windows to load the dialog box template from
the other application’s resources. Of course, this is a questionable action
to take anyway, but in Win32 it’s no longer possible to do this. When you
make a call to a function that expects an hinstExe value, Win32 interprets
the call to mean that you are requesting information from the EXE or
DLL loaded into your own process’s address space at the address indi-
cated by the hinstExe parameter.

A Process’s Previous Instance Handle

As noted earlier, the C run-time’s startup code always passes NULL to
WinMain’s hinstPrev parameter. This parameter exists for backward com-
patibility and has no meaning to Win32 applications.

18

TWO: Processes

In a 16-bit Windows application, the hinstPrev parameter specifies the
13.#@ handle of another instance of the same application. If no other instances
of the application are running, hinstPrev is passed as NULL. A 16-bit
Windows application frequently examines this value for two reasons:

B To determine whether another instance of the same applica-
tion is already running and, if so, to terminate the newly in-
voked instance. This termination occurs if a program such as
the Print Manager wants to allow only a single instance of itself
to run at a time.

B To determine whether window classes need to be registered. In
16-bit Windows, window classes need to be registered only once
per module. These classes are then shared among all instances
of the same application. If a second instance attempts to regis-
ter the same window classes a second time, the call to Register-
Class fails. In Win32, each instance of an application must
register its own window classes because window classes aren’t
shared among all instances of the same application.

To ease the porting of a 16-bit Windows application to the Win32
API, Microsoft decided to always pass NULL in the hinstPrev parameter
of WinMain. Because many 16-bit Windows applications examine this
parameter when registering window classes, all instances see that
hinstPrev is NULL and automatically reregister their window classes.

While this decision eases the job of porting your applications, it
also means that applications cannot use the value of hinstPrev to prevent
a second instance from running. An application must use alternative
methods to determine whether other instances of itself are already run-
ning. In one method, the application calls FindWindow and looks for a
particular window class or caption that uniquely identifies that applica-
tion. If FindWindowreturns NULL, the application knows thatit’s the only
instance of itself running. In Chapter 11, I present another method for
determining whether multiple instances of an application are running.

19

ADVANCED WINDOWS

A Process’s Command Line

20

When a new process is created, it is passed a command line. The com-
mand line is almost never blank; at the very least, the name of the execut-
able file used to create the new process is the first token on the
command line. However, as you’ll see later when we discuss the Create-
Process function, it is possible that a process can receive a command line
that consists of a single character: the string-terminating zero. When the
C run-time’s startup code begins executing, it retrieves the process’s
command line, skips over the executable file’s name, and passes a
pointer to the remainder of the command line to WinMain’s lpszCmdLine
parameter.

It’s important to note that the lpszCmdLine parameter always points
to an ANSI string. Because the system doesn’t know whether you are
interested in using ANSI or Unicode, Microsoft chose to always pass an
ANSI string. Microsoft chose ANSI to help with porting 16-bit Windows
code to Win32, because 16-bit Windows applications expect an ANSI
string. I discuss Unicode in detail in Chapter 16.

An application can parse and interpret the ANSI string any way it
chooses. Because the lpszCmdLine is an LPSTR instead of an LPCSTR,
feel free to write to the buffer that it points to—but you should not,
under any circumstances, write beyond the end of the buffer. Personally,
I always consider this a read-only buffer. If I want to make changes to the
command line, I first copy the command-line buffer to a local buffer in
my application; then I modify my local buffer.

You can also obtain a pointer to your process’s complete command
line by calling the GetCommandLine function:

LPTSTR GetCommandLine(VOID);

This function returns a pointer to a buffer containing the full command
line, including the full pathname of the executed file. Probably the most
compelling reason to use the GetCommandLine function instead of the
Ipsz2CmdLine parameter is that both Unicode and ANSI versions of Get-
CommandLine exist in the Win32 API, whereas the lpszCmdLine param-
eter always points to a buffer containing an ANSI character string.
Many applications would prefer to have the command line parsed
into its separate tokens. An application can gain access to the command
line’s individual components by using the global __argc and __argv vari-
ables. But again, the __argv variable is an array of character pointers to

TWO: Processes

ANSI strings, not Unicode strings. Win32 offers a function that separates
any string into its separate tokens, CommandLineToArgvW:!

LPWSTR *CommandLineToArgvW(LPWSTR 1pCmdLine, LPINT pArgc);

As the W at the end of the function name implies, this function exists in
a Unicode version only. (The W stands for wide.) The first parameter,
ipCmdLine, points to a command-line string. This is usually the return
value from an earlier call to GetCommandLine. The pArgc parameter is the
address of an integer; the integer will be set to the number of arguments
that are in the command line. CommandLineToArguW returns the address
to an array of Unicode string pointers.

A Process’s Environment Variables

Every process has an environment block associated with it. An environ-
ment block is a block of memory allocated within the process’s address
space. Each block contains a set of strings with the following appearance:

VarNamel=VarValuel\@
VarName2=VarValue2\@
VarName3=VarValue3\0@

VarNameX=VarValueX\0
\0

The first part of each string is the name of an environment variable.
This name is followed by an equal sign, which is followed by the value
you want to assign to the variable. All strings in the environment block
must be sorted alphabetically by environment variable name.

Because the equal sign is used to separate the name from the value,
an equal sign cannot be part of the name. Also, spaces are significant.
For example, if you declare these two variables:

XYZ= Win32 (Notice the space after the equal sign.)
ABC=Win32

and then compare the value of XYZ with the value of ABC, the system will
report that the two variables are different. This is because any white

1. This function was added in Windows NT 3.5; it does not exist in Windows NT 3.1.

21

ADVANCED WINDOWS

22

space that appears immediately before or after the equal sign is taken
into account. For example, if you were to add these two strings to the
environment block:

XYZ =Home (Notice the space before the equal sign.)
XYZ=Work

the environment variable “XYZ ” would contain “Home” and another en-
vironment variable “XYZ” would contain “Work.” Finally, an additional 0
byte must be placed at the end of all the environment variables to mark
the end of the block.

In order to create an initial set of environment variables for Windows 95,
you must modify the system’s AUTOEXEC.BAT file by placing a series of
SET lines in the file. Each line must be of the following form:

SET VarName=VarValue

When you reboot your system, the contents of the AUTOEXEC
.BAT file are parsed, and any environment variables you have set will be
available to any processes you invoke during your Windows 95 session.

When a user logs on to Windows NT, the system creates the shell process
and associates a set of environment strings with it. The system obtains
the initial set of environment strings by examining two keys in the Regis-
try. The first key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
SessionManager\Environment

contains the list of all environment variables that apply to the system,
while the second key:

HKEY_CURRENT_USER\Environment

contains the list of all environment variables that apply to the user cur-
rently logged on.

A user may add, delete, or change any of these entries by double-
clicking on the System option in the Control Panel. This presents the
following dialog box:

(continued)

TWO: Processes

sl
cqffjndows Computer Name: RINCEWIND
[Operating System

continued

Show list for seconds

System Environment Variables:
ComSpec = D:\NT35\system32\cmd.exe
Os2LibPath = D:\NT 35\system32v0s2\dll;
Path = D:\NT 35\system32,D:\N T 35\windows\system;d:\batch
windir = D:\NT35

User Environment Variables for jimf

include = d:\msvc20\include;d:\msvc20\mfchinclude
init = D:\MSVC20

lib = d:\msvc20\lib;d: \msvc20\mfchib

path = D:\MSVC20\BIN

Only a user who has administrator privileges can alter the variables
contained in the System Environment Variables list.

Your application can use the various Registry functions to modify
these Registry entries as well. However, in order for the changes to take
effect, the user must log off and then log back on. Some applications,
such as Program Manager, Task Manager, and the Control Panel, can
update their environment block with the new Registry entries when their
main windows receive a WM_WININICHANGE message. For example, if
you update the Registry entries and want to have the interested applica-
tions update their environment blocks, you can make the following call:

SendMessage (HWND_BROADCAST, WM_WININICHANGE,
oL, (LPARAM) "Environment");

Normally, a child process inherits a set of environment variables
that are exactly the same as its parent process’s. However, the parent pro-
cess can control what environment variables a child inherits, as I'll show
later when we discuss the CreateProcess function. By inherit, I mean that
the child process gets its own copy of the parent’s environment block,
not that the child and parent share the same block. This means that a
child process can add, delete, or modify a variable in its block and the
change will not be reflected in the parent’s block.

23

ADVANCED WINDOWS

24

Environment variables are usually used by applications to allow the
user to fine-tune the application’s behavior. The user creates an environ-
ment variable and initializes it. Then, when the user invokes the applica-
tion, the application examines the environment block for the variable. If
the application finds the variable, the application parses the value of the
variable and adjusts its behavior.

The problem with environment variables is that they are not easily
set or understood by users. Users need to spell variable names correctly,
and they must also know the exact syntax expected of the variable’s value.
Most (if not all) graphical applications, on the other hand, allow users to
fine-tune an application’s behavicr using dialog boxes. This approach is
far more user friendly and is very strongly encouraged.

If you still wish to continue using environment variables, Win32
offers a few functions that your applications can call. The GetEnviron-
mentVariable function allows you to determine the existence and value of
an environment variable:

DWORD GetEn'v1'ronmentVariabTe(LPCTSTR 1pszName,
LPTSTR 1pszValue, DWORD cchValue);

When calling GetEnvironmentVariable, lpszName points to the desired
variable name, lpszValue points to the buffer that will hold the variable’s
value, and cchValue indicates the size of this buffer in characters. The
function returns either the number of characters copied into the buffer
or 0 if the variable name cannot be found in the environment.

The SetEnvironmentVariable function allows you to add a variable,
delete a variable, or modify a variable’s value:

BOOL SetEnvironmentVariable(LPCTSTR 1pszName, LPCTSTR 1pszValue);

This function sets the variable identified by the lpszName parameter to the
value identified by the [pszValue parameter. If a variable with the specified
name already exists, SetEnvironmentVariable modifies the value. If the
specified variable doesn’t exist, the variable is added and, if lpszValue is
NULL, the variable is deleted from the environment block.

You should always use these functions for manipulating your
process’s environment block. As I said at the beginning of this section,
the strings in an environment block must be sorted alphabetically by
variable name. This means that GetEnvironmentVariable can locate strings
faster; it also means that the SetEnvironmentVariable function is smart
enough to keep the environment variables in sorted order.

TWO: Processes

A Process’s Error Mode

Associated with each process is a set of flags that tells the system how the
process should respond to serious errors. Serious errors include disk
media failures, unhandled exceptions, file-find failures, and data mis-
alignment. A process can tell the system how to handle each of these
errors by calling the SetErrorMode function:

UINT SetErrorMode(UINT fuErrorMode);

The fuErrorMode parameter is a combination of any of the following
flags bitwise ORed together:

Note that a child process inherits the error mode flags of its parent.
In other words, if a process currently has the SEM_NOGPFAULI-
ERRORBOX flag turned on and then spawns a child process, the child
process will also have this flag turned on. However, the child process is
not notified of this and might not have been written to handle GP fault
errors itself. If a GP fault does occur in one of the child’s threads, the
child application might terminate without notifying the user.

Flag Description

SEM_FAILCRITICALERRORS The system does not display the
critical-error-handler message
box and returns the error to the
calling process.

SEM_NOGPFAULTERRORBOX The system does not display the
general-protection-fault message
box. This flag should be set only
by debugging applications that
handle general protection (GP)
faults themselves with an excep-
tion handler.

SEM_NOOPENFILEERRORBOX The system does not display a
message box when it fails to find
afile.

SEM_NOALIGNMENTFAULTEXCEPT The system automatically fixes
memory alignment faults and
makes them invisible to the appli-
cation. This flag has no effect on
%86 or Alpha processors.

25

ADVANCED WINDOWS

A Process’s Current Drive and Directory

26

The current directory of the current drive is where the various Win32
functions look for files and directories when full pathnames are not sup-
plied. For example, if a thread in a process calls CreateFile to open a file
(without specifying a full pathname), the system will look for the file in
the current drive and directory.

The system keeps track of a process’s current drive and directory
internally. Because this information is maintained on a per-process basis,
a thread in the process that changes the current drive or directory
changes this information for all the threads in the process.

A thread can obtain and set its process’s current drive and directory
by calling the following two functions:

DWORD GetCurrentDirectory(DWORD cchCurDir, LPTSTR 1pszCurDir);
BOOL SetCurrentDirectory(LPCTSTR 1pszCurDir);

I discuss these functions in more detail in Chapter 13.

A Process’s Current Directories

Notice that the system keeps track of the process’s current drive and
directory but does not keep track of the current directory for each and
every drive. However, there is some operating system support for han-
dling current directories for multiple drives. This support is offered by
using the process’s environment strings. For example, a process can have
two environment variables such as:

=C:=C:\UTILITY\BIN
=D:=D:\PROJECTS\ADVWIN32\CODE

These variables indicate that the process’s current directory for drive Cis
\UTILITY\BIN and that its current directory for drive D is\PROJECTS\
ADVWIN32\CODE.

Ifyou call a Win32 function, passing a drive-qualified name indicat-
ing a drive that is not the current drive, then the system looks in the
process’s environment block for the variable associated with the speci-
fied drive letter. If the variable for the drive exists, the system uses the
variable’s value as the current directory. If the variable does not exist, the
system assumes that the current directory for the specified drive is its
root directory.

For example, if your process’s current directory is CNUTILITY\
BIN, and you call CreateFile to open D:README.TXT, the system looks up

TWO: Processes

the environment variable =D:. Because the =D: variable exists, the sys-
tem attempts to open the README.TXT file from the DAPROJECTS\
ADVWIN32\CODE directory. If the =D: variable did not exist, the system
would attempt to open the README.TXT file from the root directory of
drive D. The Win32 file functions never add or change a drive-letter envi-
ronment variable—they only read the variables.

You can use the C run-time function _chdir instead of the Win32 SetCur-
rentDirectory function to change the current directory. The _chdir func-
Important | (ion calls SetCurrentDirectory internally, but _chdir also adds or modifies
the environment variables so that the current directory of different
drives is preserved.

If a parent process creates an environment block that it wants to
pass to a child process, the child’s environment block will not automati-
cally inherit the parent process’s current directories. Instead, the child
process’s current directories will default to the root directory of every
drive. If you want the child process to inherit the parent’s current direc-
tories, the parent process must create these drive-letter environment
variables and add them to the environment block before spawning the
child process. The parent process can obtain its current directories by
calling GetFullPathName:

DWORD GetFullPathName(LPCTSTR 1pszFile, DWORD cchPath,
LPTSTR TpszPath, LPTSTR #ppszFilePart);

For example, to get the current directory for drive C, you would call
GetFullPathName as follows:

TCHAR szCurDir[MAX_PATH];
DWORD GetFullPathName(__TEXT("C:"), MAX_PATH, szCurDir, NULL);

Note that a process’s environment variables must always be kept in
alphabetical order. Because of this, the drive letter environment variables
will usually need to be placed at the beginning of the environment block.

A Process’s Inherited Kernel Objects

When a parent process creates a child process, one of the parameters
indicates whether the parent wants the child process to inherit the
parent’s inheritable kernel objects. If the child is to inherit the parent’s
kernel objects, the system cycles through all of the parent’s inheritable

27

ADVANCED WINDOWS

28

objects and increments each object’s usage count by 1. The system then
assigns handles to these kernel objects relative to the newly created child
process. This makes the kernel objects accessible to the child process.

For example, let’s say that a process creates an inheritable mutex
object and the system returns a handle value of 0x44442222 that identi-
fies the object. Then this same process creates a child process and tells
the system that the child is to inherit all inheritable kernel objects. When
the system creates the new child process, the system increments the usage
count of the mutex from 1 to 2. The system also assigns a handle, relative
to the child process, that identifies the same mutex object. In fact, the
system will assign the same exact handle value for this object that the par-
ent process has—0x44442222.

You can use this handle value to manipulate the mutex object as
soon as the primary thread in the child process begins executing. Since
the usage count of the mutex object is 2, both the parent and the child
process will have to close their handles to the object before the usage
count decrements to 0 and the system can free the kernel object from its
memory.

How to Make a Kernel Object Inheritable

Remember, I said earlier that the Win32 functions that create kernel
objects all accept a pointer to a SECURITY_ATTRIBUTES structure as
a parameter. When a kernel object is created, you have the option of cre-
ating one of these structures, initializing its members, and passing the
address of the structure to the function to create the appropriate secu-
rity attributes—or you can simply pass NULL.

If you pass NULL for this parameter, the created kernel object will
not be inheritable by any child processes spawned by your process. How-
ever, you can have the system create an inheritable kernel object by
initializing the SECURITY_ATTRIBUTES structure and passing this
structure to one of the create functions. The example below shows how
to create an inheritable mutex object:

HANDLE hMutex;

SECURITY_ATTRIBUTES sa;

sa.nLength = sizeof(sa);

sa.lpSecurityDescriptor = NULL;

sa.bInheritHandle = TRUE; // Makes object inheritable

// Call CreateMutex passing the address of the sa variable.
hMutex = CreateMutex(&sa, FALSE, NULL);

TWO: Processes

When the system creates the kernel object, the system will know
that this object is inheritable. This does not automatically mean that any
and all child processes spawned later by this process will automatically
inherit the kernel object. When a process spawns a child process, the
parent gets the opportunity to tell the system whether it wants the child
to inherit all of the inheritable kernel objects. If the bInheritHandle
member of the SECURITY_ATTRIBUTES structure is not set to TRUE
when a kernel objectis created, the system will not allow a child process to
inherit the kernel object at all.

In addition, a process can also open a handle to an existing kernel
object. For example, the function to open a mutex object is OpenMutex:

HANDLE OpenMutex(DWORD fdwAccess, BOOL fInherit,
LPCTSTR 1pszMutexName);

This function does not accept a parameter that points to a SECURI-
TY_ATTRIBUTES structure because the security attributes for a kernel
object must be set when the object is created. However, this function’s
second parameter, fInherit, does allow a process to open a kernel object
and tell the system that the opened object is inheritable by any child pro-
cesses created in the future.

The system performs the exact same actions when creating a child
process regardless of whether the parent process created the kernel
object or opened an existing kernel object—that is, the system incre-
ments the object’s usage count by 1 and assigns the exact same handle
value to the object relative to the child process.

I'will discuss later in this chapter how a parent tells the system thata
child process should inherit the parent’s inheritable kernel objects.

Telling a Child About Its Inherited Kernel Objects

The problem with inheritance is that the child process is not made aware
of the kernel objects it inherits. The objects are opened for the child and
the handle values are set, but somehow the parent process must explic-
itly tell the child the values of the inherited object handles.

Several techniques can be employed here. The simplest is for the
parent process to create the child process, convert the handle value to a
string, and pass it as part of the child process’s command line. The child
process will then, as it initializes, parse the command line and retrieve
the handle values of any objects it has inherited.

Another technique is for the parent to wait for the child to complete
initialization (using the WaitForInputldle function discussed in Chapter 9);

29

ADVANCED WINDOWS

then the parent can send or post a message to a window created by a
thread in the child process.

A third technique is for the parent process to add an environment
variable to its environment block. The variable name would be some-
thing that the child process knows to look for and the variable’s value
would be the handle value of the kernel object to be inherited. Then,
when the parent spawns the child process, the child process inherits the
parent’s environment variables and can easily call GetEnvironmentVariable
to obtain the inherited object’s handle value. This is an excellent approach
if the child process is going to spawn another child process because the
environment variables can be inherited again.

The System Version

30

Frequently an application needs to determine which version of Windows
the user is running the application on. This might be required for sev-
eral reasons. For example, an application might take advantage of secu-
rity features by calling the Win32 security functions. However, these
functions are fully implemented only on Windows NT.

For as long as I can remember, the Windows API has had a Get-
Version function:

DWORD GetVersion(VOID);

This simple function has quite a history behind it. It was first designed
for 16-bit Windows. The idea was a simple one: return the MS-DOS ver-
sion number in the high-word and return the Windows version number
in the low-word. For each word, the high-byte would represent the major
version number and the low-byte would represent the minor version
number.

Unfortunately, the programmer who wrote this code made a small
mistake, coding the function so that the Windows version numbers were
reversed—the major version number was in the low-byte and the minor
number was in the high-byte. Since many programmers had already
started using this function, Microsoft was forced to leave the function as
is and change the documentation to reflect the mistake.

This was not the end of the problem, however, because now many
programmers misunderstood how to use and compare the version infor-
mation returned from GetVersion, and they frequently wrote code that
was incorrect as a result. Sure, their programs functioned correctly on
Windows 3.1, but when Microsoft started working on Windows 95 and

TWO: Processes

tested many of the existing applications on that system, they soon discov-
ered that the applications were failing simply because they incorrectly
compared version numbers. For this reason, the GetVersion function is
forever hard-coded to return version 3.95 in all future versions of Win-
dows 95 and Windows NT.

This, of course, is simply not a good enough solution. Programs
require an effective and accurate method for determining the version
number of the system they’re running on. So Microsoft added a new
function to the Win32 API, GetVersionEx:

BOOL GetVersionEx(LPOSVERSIONINFO 1pVersionInformation);

This function requires you to allocate an OSVERSIONINFO struc-
ture in your application and pass the structure’s address to GetVersionEx.
The OSVERSIONINFO structure is shown below:

typedef struct {
DWORD dwOSVersionInfoSize;
DWORD dwMajorVersion;
DWORD dwMinorVersion;
DWORD dwBuildNumber;
DWORD dwPlatformid;
TCHAR szCSDVersion[128];
} OSVERSIONINFO, *LPOSVERSIONINFO;

Notice that the structure has different members for each of the indi-
vidual components of the system’s version number. This was done pur-
posely so that programmers would not have to bother with extracting
low-words, high-words, low-bytes, and high-bytes; it should make things
much easier for applications to compare their expected version number
with the host system’s version number. The table below describes the
OSVERSIONINFO structure’s members:

Member Description

dwOSVersionInfoSize Must be set to sizeof(OSVERSIONINFO) prior to call-
ing the GetVersionEx function.

dwMajorVersion Major version number of the host system.
dwMinorVersion Minor version number of the host system.
dwBuildNumber Build number of the current system.

(continued)

31

ADVANCED WINDOWS

continued

Member Description

dwPlatformld Identifies the platform supported by the current system.
This can be VER_PLATFORM_WIN32s (Win32s on Win-
dows 3.1), VER_PLATFORM_WIN32_WINDOWS (Win32
on Windows 95), or VER_PLATFORM_WIN32_NT (Win-
dows NT).

s2CSDVersion This field contains additional text that provides further

information about the installed operating system.

The CreateProcess Function

32

A process is created when your application calls the CreateProcess function:

BOOL CreateProcess(
LPCTSTR 1pszImageName,
LPCTSTR 1pszCommandLine,
LPSECURITY_ATTRIBUTES 1psaProcess,
LPSECURITY_ATTRIBUTES 1psaThread,
BOOL fInheritHandles,
DWORD fdwCreate,
LPVOID 1pvEnvironment,
LPTSTR 1pszCurDir,
LPSTARTUPINFO 1psiStartinfo,
LPPROCESS_INFORMATION 1ppiProcInfo);

When a thread in your application calls CreateProcess, the system cre-
ates a process kernel object with an initial usage count of 1. This process
kernel object is not the process itself but rather a small data structure
that the operating system uses to manage the process— think of the pro-
cess kernel object as a small data structure that consists of statistical
information about the process. The system then creates a virtual 4-GB
address space for the new process and loads the code and data for the
executable file and any required dynamic-link libraries into the process’s
4-GB address space.

The system then creates a thread kernel object (with a usage count
of 1) for the new process’s primary thread. Like the process kernel object,
the thread kernel object is a small data structure that the operating sys-
tem uses to manage the thread. This primary thread will begin by execut-
ing the C run-time startup code, which will eventually call your WinMain
function (or main function if your application is console-based). If the

TW O: Processes

system successfully creates the new process and primary thread, Create-
Process returns TRUE.

OK, that’s the broad overview. The following sections dissect each
of CreateProcess’s parameters.

If you are familiar with the two 16-bit Windows functions for creating a
m.-'@ process, WinExec and LoadModule, you can see by comparing the number
of parameters for these two functions with the new CreateProcess function
that CreateProcess offers much more control over process creation. Both
the WinExec and LoadModule functions are implemented internally as
calls to the CreateProcess function. And because these functions are sup-
plied only for backward compatibility with 16-bit Windows, no Unicode
versions of these functions exist—you can call these functions only by
passing ANSI strings.

IpsziImageName and IpszCommandLine

The lpszImageName and lpszCommandLine parameters specify both the
name of the executable file the new process will use and the command-
line string that will be passed to the new process. Let’s talk about the
IpszCommandLine parameter first.

The lpszCommandLine parameter allows you to specify a complete
command line that CreateProcess uses to create the new process. When
CreateProcess parses the lpszCommandLine string, it examines the first token
in the string and assumes that this token is the name of the executable
file you want to run. If the executable file’s name does not have an exten-
sion, an EXE extension is assumed. CreateProcess will also search for the
executable in the following order:

The direétory éontaining the EXE file of the calling process
The current directory of the calling process

The Windows system directory
The Windows directory

A L

The directories listed in the PATH environment variable

Of course, if the filename includes a full path, the system looks for
the executable using the full path and does not search the directories. If

33

ADVANCED WINDOWS

the system finds the executable file, it creates a new process and maps
the executable’s code and data into the new process’s address space. The
system then calls the C run-time startup routine. As noted earlier in this
chapter, the C run-time startup routine examines the process’s com-
mand line and passes the address to the first argument after the execut-
able file’s name as WinMain’s lpszCmdLine parameter.

What I have just described is what happens as long as the lpszImage-
Name parameter is NULL. Instead of passing NULL, you can pass the
address to a string containing the name of the executable file you want
to run in the lpszImageName parameter. Note that you must specify the
file’s extension; the system will not automatically assume that the file-
name ends with an EXE extension. CreateProcess assumes the file is in the
current directory unless a path is specified preceding the filename. If the
file can’t be found in the current directory, CreateProcess does not look
for the file in any other directory— CreateProcess simply fails.

However, even if you specify a filename in the [pszImageName param-
eter, CreateProcess passes the contents of the lpszCommandLine parameter
to the new process as its command line. For example, say that you call
CreateProcess like this:

CreateProcess("C:\\WINNT\\SYSTEM32\\NOTEPAD.EXE",
"WRITE README.TXT", ...);

The system invokes the Notepad application, but Notepad’s command
line is “WRITE README.TXT". This is certainly a little strange, but
that’s how CreateProcess works.

IpsaProcess, IpsaThread, and finheritHandles

34

In order to create a new process, the system must create a process object
and a thread object (for the process’s primary thread). Because these are
kernel objects, the parent process gets the opportunity to associate secu-
rityattributes with these two objects. The lpsaProcess and lpsaThread param-
eters allow you to specify the desired security for the process object and
the thread object, respectively. You can pass NULL for these parameters,
in which case the system gives these objects default security descriptors.
Or you can allocate and initialize two SECURIT Y_ATTRIBUTES struc-
tures to create and assign your own security privileges to the process and
thread objects.

Another reason to use SECURIT Y_ATTRIBUTES structures for the
IpsaProcess and IpsaThread parameters is if you want either of these two
objects to be inheritable by any child processes.

TWO: Processes

Figure 2-3 is a short program that demonstrates kernel inheritance.
Let’s say that Process A creates Process B by calling CreateProcess and pass-
ing the address of a SECURITY_ATTRIBUTES structure for the lpsa-
Process parameter in which the bInheritHandle member is set to TRUE. In
this same call, the lpsaThread parameter points to another SECURIT ¥
~ATTRIBUTES structure in which its blnheritHandles member is set to
FALSE.

When the system creates Process B, it allocates both a process
kernel object and a thread kernel object and returns handles back to
Process A in the structure pointed to by the [ppiProcInfo parameter (dis-
cussed shortly). Process A can now manipulate the newly created process
object and thread object by using these handles.

Now let’s say that Process A is going to call CreateProcess a second
time to create Process C. Process A can decide whether to grant Process
C inheritance privileges. The fInheritHandles parameter is used for this
purpose. If fInheritHandles is set to TRUE, the system causes Process C to
inherit any inheritable handles. In this case, the handle to Process B’s
process object is inheritable. The handle to Process B’s primary thread
object is not inheritable no matter what the value of the fTnheritHandles
parameter to CreateProcess is. Also, if Process A calls CreateProcess, passing
FALSE for the fInheritHandles parameter, Process C will not inherit any of
the handles currently in use by Process A.

Figure 2-3. (continued)
An inheritance example.

35

ADVANCED WINDOWS

36

TWO: Processes

fdwCreate

The fdwCreate parameter identifies flags that affect how the new process
is created. Multiple flags can be specified when combined with the Bool-
ean OR operator.

The DEBUG_PROCESS flag tells the system that the parent process
wants to debug the child process and any processes created by the child
process in the future. This flag instructs the system to notify the parent
process (now the debugger) when certain events occur in any of the
child processes (debuggees).

The DEBUG_ONLY_THIS_PROCESS flag is similar to the DEBUG-
_PROCESS flag except that the debugger is notified of special events
occurring only in the immediate child process. If the child process cre-
ates any additional processes, the debugger is not notified of events in
these additional processes.

The CREATE_SUSPENDED flag causes the new process to be cre-
ated, but its primary thread is suspended. A debugger provides a good
example for using this flag. When a debugger is told to load a debuggee,
it must have the system initialize the process and primary thread, but the
debugger does not want to allow the primary thread to begin execution
yet. Using this flag, the user debugging the application can set various
breakpoints throughout the program in case there are special events
that need trapping. Once all the breakpoints have been set, the user can
tell the debugger that the primary thread can begin execution.

The DETACHED_PROCESS flag blocks a console-based process’s
access to its parent’s console window and tells the system to send its out-
put to a new console window. If a console-based process is created by
another console-based process, the new process will, by default, use the
parent’s console window. (When you run the C compiler from the com-
mand shell, a new console window isn’t created; the output is simply
appended to the bottom of the window.) By specifying this flag, the new
process will send its output to a new console window.

The CREATE_NEW_CONSOLE flag tells the system to create a new
console window for the new process. It is an error to specify both the
CREATE_NEW_CONSOLE and DETACHED_PROCESS flags.

The CREATE_NEW_PROCESS_GROUP flag is used to modify the
list of processes that get notified when the user presses the Ctrl+C or
Ctrl+Break keys. If you have several console-based processes running
when the user presses one of these key combinations, the system noti-
fies all the processes in a process group that the user wants to break
out of the current operation. By specifying this flag when creating a new

37

ADVANCED WINDOWS

38

console-based process, you are creating a new process group. If the user
presses Ctrl+C or Ctrl+Break while a process in this new process group is
active, the system notifies only processes in this group of the user’s request.

The CREATE_DEFAULT_ERROR _MODE flag tells the system that
the new process is not to inherit the error mode used by the parent pro-
cess. (See the SetErrorModefunction discussed earlier in this chapter.)

The CREATE_SEPARATE_WOW_VDM flag is useful only when you
are invoking a 16-bit Windows application. If the flag is specified, the sys-
tem will create a separate Virtual DOS Machine (VDM) and run the 16-
bit Windows application in this VDM. By default, all 16-bit Windows
applications execute in a single, shared VDM. The advantage of running
an application in a separate VDM is that if the application crashes it kills
only the single VDM; any other programs running in distinct VDMs con-
tinue to function normally. Also, 16-bit Windows applications that are
run in separate VDMs have separate input queues. That means that if
one application hangs momentarily, applications in separate VDMs con-
tinue to receive input. The disadvantage of running multiple VDMs is
that each VDM consumes a significant amount of physical storage.

The CREATE_UNICODE_ENVIRONMENT flag tells the system
that the child process’s environment block should contain Unicode
characters. By default, a process’s environment block contains ANSI
strings.

You can also specify a priority class when you’re creating a new pro-
cess. However, you don’t have to specify a priority class, and for most
applications it is recommended that you don’t; the system will assign a
default priority class to the new process. The table below shows the pos-
sible priority classes.

Priority Class Flag Identifier

Idle IDLE_PRIORITY_CLASS
Normal NORMAL_PRIORITY_CLASS
High HIGH_PRIORIT Y_CLASS
Realtime REALTIME_PRIORITY_CLASS

These priority classes affect how the threads contained within
the process are scheduled with respect to other processes’ threads. See
the section “How the System Schedules Threads” in Chapter 3 for more
information.

TWO: Processes

IpvEnvironment

The lpvEnvironment parameter points to a block of memory containing
environment strings that the new process will use. Most of the time
NULL is passed for this parameter, causing the child process to inherit
the set of environment strings that its parent is using. Or you can use the
GetEnvironmentStrings function:

LPVOID GetEnvironmentStrings(VOID);

This function gets the address of the environment string data block that
the calling process is using. You can use the address returned by this
function as the lpuEnvironment parameter of CreateProcess. This is exactly
what CreateProcess does if you pass NULL for the lpuEnvironment parameter.

IpszCurDir

The lpszCurDir parameter allows the parent process to set the child
process’s current drive and directory. If this parameter is NULL, the new
process’s working directory will be the same as that of the application
spawning the new process. If this parameter is not NULL, lpszCurDir
must point to a zero-terminated string containing the desired working
drive and directory. Notice that you must specify a drive letter in the path.

IpsiStartinfo

The lpsiStartInfo parameter points to a STARTUPINFO structure:

typedef struct _STARTUPINFO {
DWORD cb;
LPSTR 1pReserved;
LPSTR TpDesktop;
LPSTR 1pTitle;
DWORD dwX;
DWORD dwY;
DWORD dwXSize;
DWORD dwYSize;
DWORD dwXCountChars;
DWORD dwYCountChars;
DWORD dwFillAttribute;
DWORD dwFlags;
WORD wShowWindow;
WORD cbReserved?;
LPBYTE TpReserved?;
HANDLE hStdInput;
HANDLE hStdOutput;
HANDLE hStdError;

} STARTUPINFO, *LPSTARTUPINFO;

39

ADVANCED WINDOWS

Win32 uses the members of this structure when it creates the new
process. We’ll discuss each member in turn. Some members are mean-
ingful only if the child application creates an overlapped window, while
others are meaningful only if the child performs console-based input
and output. Figure 2-4 indicates the usefulness of each member:

Window,
Console,
Member or Both Purpose

cb Both Contains the number of bytes in the
STARTUPINFO structure. Acts as a version
control in case Microsoft expands this struc-
ture in a future version of Win32. Your
application must initialize ¢b to
sizeof(STARTUPINFO):

[pReserved Both Reserved. Must be initialized to NULL.

IpDesktop Both Identifies the name of the desktop in which
» to start the application. If the desktop ex-

ists, the new process is associated with the
specified desktop. If the desktop does not
exist, a desktop with default attributes will
be created with the specified name for the
new process. If ipDesktop is NULL (which is
most common), the process is associated
with the current desktop. Currently there
are no implementations of Win32 that allow
you to create multiple desktops. Microsoft
plans to add this feature in future versions.

pTitle Console Specifies the window title for a console
window. If [pTitle is NULL, the name of the
executable file is used as the window title.

dwX Both Specify the x- and y-coordinates (in pixels)

dwY of the location where the application’s win-
dow should be placed on the screen. These
coordinates are used only if the child pro-
cess creates its first overlapped window
with CW_USEDEFAULT as the x parameter
of CreateWindow. For applications that cre-
ate console windows, these members indi-
cate the upper left corner of the console
window.

Figure 2-4. (continued)
The members of the STARTUPINFO structure.

40

TWO: Processes

Figure 2-4. continued

Window,
Console,
Member or Both Purpose
dwXSize Both Specify the width and height (in pixels) of
dwYSize an application’s window. These values are
used only if the child process creates its first
overlapped window with CW_USEDEFAULT
as the nWidth parameter of CreateWindow.
For applications that create console win-
dows, these members indicate the width
and height of the console window.
dwXCountChars Console Specify the width and height (in charac-
dwYCountChars ters) of a child’s console windows.
dwFillAttribute Console Specifies the text and background colors
used by a child’s console window.
dwFlags Both See below and the table on page 42.
wShowWindow Window Specifies how the child’s first overlapped
window should appear if the application’s
first call to ShowWindow passes
SW_SHOWDEFAULT as the nCmdShow
parameter. This member can be any of the
SW_ identifiers normally used with the
ShowWindow function.
cbReserved?2 Both Reserved. Must be initialized to 0.
lpReserved2 Both Reserved. Must be initialized to NULL.
hStdInput Console Specify handles to buffers for console input
hStdOutput and output. By default, the hStdInput identi-
hStdError fies a keyboard buffer, whereas hStdOutput

and AStdError identify a console window’s
buffer.

Now, as promised, I'll discuss the dwFlags member. This member
contains a set of flags that modify how the child processis to be created.
Most of the flags simply tell CreateProcess whether other members of the
STARTUPINFO structure contain useful information, or whether some
of the members should be ignored. The table on page 42 shows the list of
- possible flags and their meanings.

41

ADVANCED WINDOWS

42

Flag Meaning

STARTF_USESIZE Use the dwXSize and dwYSize members.
STARTF_USESHOWWINDOW Use the wShowWindow member.
STARTF_USEPOSITION Use the dwX and dwY members.
STARTF_USECOUNTCHARS Use the dwXCountChars and

dwYCountChars members.
STARTF_USEFILLATTRIBUTE Use the dwFillAttribute member.

STARTF_USESTDHANDLES Use the hStdInput, hStdOutput, and
hStdError members.

Two additional flags, STARTF_FORCEONFEEDBACK and STARTF-
_FORCEOFFFEEDBACK, give you control over the mouse cursor when
invoking a new process. Because Windows 95 and Windows NT support
true preemptive multitasking, it is possible to invoke an application and,
while the process is initializing, use another program. To give visual feed-
back to the user, CreateProcess temporarily changes the system’s mouse
cursor to a new cursor called a start glass:

This cursor indicates that you can wait for something to happen or
you can continue to use the system. In the very early beta releases of
Windows NT this cursor didn’t exist— CreateProcess did not change the
appearance of the cursor at all. This was confusing; often, when I ran
a program from the Program Manager, the program’s windows would
not appear immediately and the cursor would still appear as the normal
arrow. So I would click on the program icon again in the Program Man-
ager, which I thought wasn’t acknowledging my request. Soon the pro-
gram I wanted would pop up on the screen, followed by another, and
another, and another. Now I had to close all the additional instances of
the program. It is amazing how big a difference changing the cursor
can make. The problem was compounded, of course, because 16-bit
Windows does change the cursor to an hourglass when an application is
being initialized. Because I was expecting this, I thought that Windows
NT wasn’t working properly. Old habits are hard to break.

TWO: Processes

The CreateProcess function gives you more control over the cursor
when invoking another process. When you specify the STARTF_FORCE-
OFFFEEDBACK flag, CreateProcess does not change the cursor into the
start glass, leaving it as the normal arrow.

Specifying STARTF_FORCEONFEEDBACK causes CreateProcess to
monitor the new process’s initialization and to alter the cursor based on
the result. When CreateProcess is called with this flag, the cursor changes
into the start glass. If, after 2 seconds, the new process does not make a
GUI call, CreateProcess resets the cursor to an arrow.

If the process does make a GUI call within 2 seconds, CreateProcess
waits for the application to show a window. This must occur within 5 sec-
onds after the process makes the GUI call. If a window is not displayed,
CreateProcess resets the cursor. If a window is displayed, CreateProcess keeps
the start glass cursor on for another 5 seconds. If at any time the applica-
tion calls the GetMessage function, indicating that it is finished initializ-
ing, CreateProcess immediately resets the cursor and stops monitoring the
new process.

The final flag to discuss is STARTF_SCREENSAVER. This flag tells
the system that the application is a screen-saver application, which
causes the system to initialize the application in a very special way. When
the process begins executing, the system allows the process to initialize
at the foreground priority of the class that was specified in the call to
CreateProcess. As soon as the process makes a call to either GetMessage or
PeeckMessage, the system automatically changes the process’s priority to
the idle priority class.

If the screen-saver application is active and the user presses a key or
moves the mouse, the system automatically boosts the priority class of
the screen-saver application back to the foreground priority of the class
flag passed to CreateProcess.

To start a screen-saver application, you should call CreateProcess
using the NORMAL_PRIORIT Y_CLASS flag. Doing so has the following
two effects:

B The system allows the screen-saver application to initialize
before making it run idle. If the screen-saver application ran
100 percent of its time at idle priority, normal and realtime
processes would preempt it, and the screen-saver application
would never get a chance to initialize.

B The system allows the screen-saver application to terminate.
Usually a screen saver terminates because the user starts using

43

ADVANCED WINDOWS

an application. This application is probably running at nor-
mal priority, which would cause the threads in the screen-saver
application to be preempted again, and the screen saver would
never be able to terminate.

Before leaving this section, I'd like to say a word about START-
UPINFO’s wShowWindow member. You initialize this member to the value
that is passed to WinMain’s last parameter, nCmdShow. This value indi-
cates how you would like the main window of your application shown.
The value is one of the identifiers that can be passed to the ShowWindow
function. Usually nCmdShow’s value is either SW_SHOWNORMAL or
SW_SHOWMINNOACTIVE. However, the value can sometimes be
SW_SHOWDEFAULT.

When you invoke an application from the Program Manager by
double-clicking, the application’s WinMain function is called with SW-
_SHOWNORMAL passed as the nCmdShow parameter. If you hold down
the Shift key while double-clicking, your application is invoked passing
SW_SHOWMINNOACTIVE as the nCmdShow parameter. In this way,
the user can easily start an application with its main window showing in
either the normal state or the minimized state.

IppiProcinfo

44

The lppiProcInfo parameter points to a PROCESS_INFORMATION struc-
ture that you must allocate; CreateProcess will initialize the members of
this structure before it returns. The structure appears as follows:

typedef struct _PROCESS_INFORMATION {
HANDLE hProcess;)
HANDLE hThread;
DWORD dwProcessld;
DWORD dwThreadld;

} PROCESS_INFORMATION; -

As already mentioned, creating a new process causes the system to
create a process kernel object and a thread kernel object. At creation
time, the system gives each object an initial usage count of 1. Then, just
before CreateProcess returns, the function opens the process object and
the thread object and places the process-relative handles for each in the
hProcess and hThread members of the PROCESS_INFORMATION struc-
ture. When CreateProcess opens these objects, the usage count for each
increments to 2.

This means that before the system can free the process object, the
process must terminate (decrementing the usage count to 1) and the

TWO: Processes

parent process must call CloseHandle (decrementing the usage count to
0). Similarly, to free the thread object, the thread must terminate and
the parent process must close the handle to the thread object.

Don’t forget to close these handles. Failure to close handles is one of the
most common mistakes developers make and results in a system memory
Impertant | jeak until the process that called CreateProcess terminates.

When a process is created, the system assigns the process a unique
identifier; no other process running in the system will have the same ID
number. The same is true for threads. When a thread is created, the
thread is also assigned a unique, systemwide ID number. Before Create-
Process returns, it fills the dwProcessld and dwThreadld members of the
PROCESS_INFORMATTION structure with these IDs. The parent process
can use these two IDs to communicate with the child process.

Itis extremely important to note that the system reuses process and
thread IDs. For example, let’s say that when a process is created, the sys-
tem allocates a process object and assigns it the ID value 0x22222222. If
a new process object is created, the system doesn’t assign the same ID
number. However, if the first process object is freed, the system might
assign 0x22222222 to the next process object created.

This is important to know so that you avoid writing code that refer-
ences an incorrect process object (or thread). It’s easy to acquire a pro-
cess ID and save the ID, but the next thing you know, the process
identified by the ID is freed and a new process is created and given the
same ID. When you use the saved process ID, you end up manipulating
the new process, not the process you originally acquired the handle to.

You can easily guarantee this doesn’t happen by making sure you
have an outstanding lock on the process object. In other words, make
sure that you have incremented the usage count for the process object.
The system will never free the process object while it has a usage count
greater than 0. In most situations, you will already have incremented the
usage count. For example, the call to CreateProcess returns after incre-
menting the usage count for the process object.

With the usage count incremented, you can feel free to use the pro-
cess ID to your heart’s content. When you no longer need the process ID,
call CloseHandle to decrement the process object’s usage count. Simply
.make sure that you don’t use that process ID after you have called
CloseHandle. ‘ ‘

45

ADVANCED WINDOWS

Terminating a Process

A process can be terminated in two ways: by calling the ExitProcess func-
tion, which is the most common method, or by calling the Terminate-
Process function, which is a method that should be reserved as a last
resort. This section discusses both methods for terminating a process
and describes what actually happens when a process ends.

The ExitProcess Function

A process terminates when one of the threads in the process calls
ExitProcess: '

VOID ExitProcess(UINT fuExitCode);

This function terminates the process and sets the exit code of the pro-
cess to fuExitCode. ExitProcess doesn’t return a value because the process
has terminated. If you include any code following the call to the ExitProcess
function, that code will never execute.

This is the most common method for terminating a process because
ExitProcess is called when WinMain returns to the C run-time’s startup
code. The startup code calls ExitProcess, passing it the value returned
from WinMain. Any other threads running in the process terminate
along with the process.

Note that the Win32 documentation states that a process does not
terminate until all its threads terminate. The C run-time’s startup code
ensures that the process terminates by calling ExitProcess. However, if you
call ExitThread in your WinMain function instead of calling ExitProcess or
simply returning, the primary thread for your application will stop execut-
ing, but the process will not terminate if at least one other thread in the
process is still running.

The TerminateProcess Function

A call to TerminateProcess also ends a process:
BOOL TerminateProcess(HANDLE hProcess, UINT fuExitCode);

This function is different from ExitProcess in one major way: any thread
can call TerminateProcess to terminate another process or its own process.
The hProcess parameter identifies the handle of the process to be termi-
nated. When the process terminates, its exit code becomes the value you
passed as the fuExitCode parameter.

TWO: Processes

Note that using TerminateProcess is discouraged; use it only if you
can’t force a process to exit by using another method. Normally, when a
process ends the system notifies any DLLs attached to the process that
the process is ending. If you call TerminateProcess, however, the system
doesn’t notify any DLLs attached to the process, which can mean that the
process won’t close down correctly. For example, a DLL might be written
to flush data to a disk file when the process detaches from the DLL. De-
tachment usually occurs when an application unloads the DLL by calling
FreeLibrary. Because the DLL isn’t notified about the detachment when
you use TerminateProcess, the DLL can’t perform its normal cleanup. The
system does notify the DLL when a process ends normally or when
ExitProcess is called. (See Chapter 11 for more information about DLLs.)

Although it’s possible that the DLL won’t have a chance to clean up
its data, the system guarantees that all allocated memory is freed, all
opened files are closed, all kernel objects have their usage counts
decremented, and all User or GDI objects are freed regardless of how
the process terminates.

What Happens When a Process Terminates

When a process terminates, the following actions are set in motion:

1. All the threads in the process are halted.

2. All the User and GDI objects allocated by the process are freed,
and all the kernel objects are closed.

3. The process kernel object status becomes signaled. (See Chap-
ter 9 for more information about signaling.) Other threads in
the system can suspend themselves until the process is termi-
nated.

4. The process’s exit code changes from STILL_ACTIVE to the
code passed to ExitProcess or TerminateProcess.

5. The process kernel object’s usage count is decremented by 1.
When a process terminates, its associated process kernel object
isn’t freed until all outstanding references to the object are closed.

Also, terminating a process does not cause any of its child processes to
terminate.

47

ADVANCED WINDOWS

When a process terminates, the code for the process and any
resources that the process allocated are removed from memory. How-
ever, the private memory that the system allocated for the process kernel
object is not freed until the process object’s usage count reaches 0. This
can happen only if all other processes that have created or opened
handles to the now-defunct process notify the system that they no longer
need to reference the process. These processes notify the system by call-
ing CloseHandle.

After a process is no longer running, the parent process can’t do
much with the process handle. However, it can call GetExitCodeProcess to
check whether the process identified by hProcess has terminated and, if
so, determine its exit code.

BOOL GetExitCodeProcess(HANDLE hProcess, LPDWORD 1pdwExitCode);

The exit code value is returned in the DWORD pointed to by lpdwExit-
Code. If the process hasn’t terminated when GetExitCodeProcess is called,
the function fills the DWORD with the STILL_ACTIVE identifier (de-
fined as 0x103). If the function is successful, TRUE is returned. Using
the child process’s handle to determine when the child process has ter-
minated is discussed further in Chapter 9.

Child Processes

48

When you design an application, situations might arise in which you
want another block of code to perform work. You assign work like this all
the time by calling functions or subroutines. When you call a function,
your code cannot continue processing until the function has returned.
And in many situations, this single-tasking synchronization is needed.

An alternative way to have another block of code perform work is to
create a new thread within your process and have it help with the pro-
cessing. This allows your code to continue processing while the other
thread performs the work you requested. This technique is useful, but it
creates synchronization problems when your thread needs to see the
results of the new thread.

Another approach is to spawn off a new process—a child process—
to help with the work. Let’s say that the work you need to do is pretty
complex. To process the work, you decide to simply create a new thread
within the same process. You write some code, test it, and get some incor-
rect results. You might have an error in your algorithm, or maybe you
dereferenced something incorrectly and accidentally overwrote some-
thing important in your address space. One way to protect your address

TWO: Processes

space while having the work processed is to have a new process perform
the work. You could then wait for the new process to terminate before
continuing on with your own work, or you could continue working while
the new process works.

Unfortunately, the new process probably would need to perform
operations on data contained in your address space. In this case, it might
be a good idea to have the process run in its own address space and sim-
ply give it access to the relevant data contained in the parent process’s
address space, thus protecting all the data not relevant to the job. Win32
gives you several different methods for transferring data between differ-
ent processes: Dynamic Data Exchange (DDE), OLE, Pipes, MailSlots,
and so on. One of the most convenient ways to share the data is to use
memory-mapped files. (See Chapter 7 for a detailed discussion of memory-
mapped files.)

If you want to create a new process, have it do some work, and wait
for the result, you can use code similar to the following:

PROCESS_INFORMATION ProcessInformation;
DWORD dwExitCode;

BOOL fSuccess = CreateProcess(..., &ProcessInformation);
if (fSuccess) {
HANDLE hProcess = ProcessInformation.hProcess;

// Close the thread handle as soon as it is no longer needed!
CloseHandle(ProcessInformation.hThread);

if (WaitForSingleObject(hProcess, INFINITE) != WAIT_FAILED) {
// The process terminated.
GetExitCodeProcess(hProcess, &dwExitCode);

}

// Close the process handle as soon as it is no longer needed.
CloseHandle(hProcess);
}

In the code fragment above you create the new process and, if successful,
call the WaitForSingleObject function:

DWORD WaitForSingleObject(HANDLE hObject, DWORD dwTimeout);

We’ll discuss the WaitForSingleObject function exhaustively in Chap-
ter 9. For now, all you need to know is that it waits until the object identi-
fied by the hObject parameter becomes signaled. Process objects become
signaled when they terminate. So the call to WaitForSingleObject suspends

49

ADVANCED WINDOWS

the parent’s thread until the child process terminates. After WaitFor-
SingleObject returns, you can get the exit code of the child process by call-
ing GetExitCodeProcess.

The calls to CloseHandle in the code fragment above cause the sys-
tem to decrement the usage count for the thread and process objects to
0, allowing the objects’ memory to be freed.

You’ll notice that in the code fragment I close the handle to the
child process’s primary thread kernel object immediately after Create-
Process returns. This does not cause the child’s primary thread to termi-
nate—it simply decrements the usage count of the child’s primary
thread object. Here’s why this is a good practice: Suppose the child pro-
cess’s primary thread spawns off another thread and then the primary
thread terminates. At this point, the system can free the child’s primary
thread object from its memory if the parent process doesn’t have an out-
standing handle to this thread object. But if the parent process does have
a handle to the child’s thread object, the system can’t free the object
until the parent process closes the handle.

Running Detached Child Processes

50

Most of the time, an application starts another process as a detached pro-
cess. This means that after the process is created and executing, the par-
ent process doesn’t need to communicate with the new process or
doesn’t require that the child process complete its work before the par-
ent process continues. This is how the Program Manager and Explorer
work. After the Program Manager or Explorer creates a new process for
the user, it doesn’t care whether that process continues to live or whether
the user terminates it.

To give up all ties to the child process, the Program Manager or
Explorer must close its handles to the new process and its primary thread
by calling CloseHandle. The code sample below shows how to create a new
process and how to let it run detached:

PROCESS_INFORMATION ProcessInformation;
BOOL fSuccess = CreateProcess(..., &ProcessInformation);
if (fSuccess) {
CloseHandle(ProcessInformation.hThread);
CloseHandle(ProcessInformation.hProcess);

CHAPTER THRESE

THREADS

In this chapter, I’ll discuss the concept of a thread and describe how the
system uses threads to execute your application’s code. Like processes,
threads have properties associated with them, and I'll discuss some of
the functions available for querying and changing these properties. I'll
also examine the functions that allow you to create or spawn additional
threads in the system. And finally, I'll discuss how threads terminate.

When to Create a Thread

A thread describes a path of execution within a process. Every time a pro-
cess is initialized, the system creates a primary thread. This thread starts
at the C run-time’s startup code, which in turn calls your WinMain func-
tion and continues executing until the WinMain function returns and
the Crun-time’s startup code calls ExitProcess. For many applications, this
primary thread is the only thread that the application requires. However,
processes can create additional threads to help them do their work. The
whole idea behind creating additional threads is to utilize the CPU’s
time as much as possible.

For example, a spreadsheet program needs to perform recalcula-
tions as the data entries in the cells are changed by the user. Because
recalculations of a complex spreadsheet might require several seconds
to complete, a well-designed application should not recalculate the
spreadsheet after each change made by the user. Instead, the spread-
sheet’s recalculation function should be executed as a separate thread
with a lower priority than that of the primary thread. This way, if the user
is typing the primary thread is running, which means that the system
won’t schedule any time to the recalculation thread. When the user stops

51

ADVANCED WINDOWS

52

typing, the primary thread is suspended, waiting for input, and the recal-
culation thread is scheduled time. As soon as the user starts typing again,
the primary thread, having a higher priority, preempts the recalculation
thread. Creating an additional thread makes the program very respon-
sive to the user. It is also rather easy to implement this type of design.

In a similar example, you can create an additional thread for a
repagination function in a word processor that needs to repaginate the
document as the user enters text into the document. Microsoft Word for
Windows, for example, must simulate multithreaded behavior in 16-bit
Windows but could easily spawn a thread dedicated to repaginating the
document for the Win32 version. The primary thread would be respon-
sible for processing the user’s input, and a background thread would be
responsible for locating the page breaks.

It’s also useful to create a separate thread to handle any printing
tasks in an application. In this way the user can continue to use the appli-
cation while it’s printing. In addition, when performing a long task many
applications display a dialog box that allows the user to abort the task.
For example, when the File Manager copies files, it displays a dialog box
that, besides listing the names of the source file and the destination file,
also contains a Cancel button. If you click on the Cancel button while the
files are being copied, you abort the operation.

In 16-bit Windows, implementing this type of functionality requires
periodic calls to PeekMessage inside the File Copy loop. And calls to Peek-
Message can be made only between file reading and writing. If a large
data block is being read, the response to the button click doesn’t occur
until after the block has been read. If the file is being read from a floppy
disk, this can take several seconds. Because the response is so sluggish, I
have frequently clicked on the button several times, thinking that the sys-
tem didn’t know I’d canceled the operation.

By putting the File Copy code in a different thread, you don’t need
to sprinkle calls to the PeckMessage function throughout your code—
your user interface thread operates independently. This means that a
click on the Cancel button results in an immediate response.

You can also use threads for creating applications that simulate
real-world events. In Chapter 9 I show a simulation of a supermarket.
Because each shopper is represented by his or her own thread, theoreti-
cally each shopper is independent of any other shopper and can enter,
shop, check out, and exit as he or she sees fit. The simulation can moni-
tor these activities to determine how well the supermarket functions.

THREE: Threads

Although simulations can be performed, potential problems lurk.
First, you would ideally want each shopper thread to be executed by its
very own CPU. Because it is not practical to expect a CPU for every shop-
per thread, the solution is to incur a time overhead when the operating
system preempts 1 thread and schedules another. For example, if your
simulation has 2 threads and your machine has eight CPUs, the system
can assign 1 thread to each CPU. However, if your simulation has 1000
threads, the system will have to assign and reassign the 1000 threads
among the eight CPUs over and over again. And some overhead results
when the operating system schedules a large number of threads among a
few CPUs. If your simulation lasts a long time, this overhead has a rela-
tively small impact on the simulation. However, if the simulation is short,
the overhead of the operating system can take a larger percentage of the
simulation’s total execution time.

Second, the system itself requires threads to run while other pro-
cesses might be executing. All these processes’ threads need to be sched-
uled for CPU time as well, which almost certainly affects the outcome of
the simulation.

And third, the simulation is useful only if you keep track of its pro-
gress. For example, the supermarket simulation in Chapter 9 adds entries
to a list box as the shoppers progress through the store; adding entries to
the list box takes time away from the simulation. The Heisenberg Uncer-
tainty Principle states that a more accurate determination of one quan-
tity results in a less precise measurement of the other.! This is most
definitely true here.

When Not to Create a Thread

The first time many programmers are given access to an environment
that supports multiple threads, they’re ecstatic. If only they had had
threads sooner, their applications would have been so simple to write.
And, for some unknown reason, these programmers start dividing an
application into individual pieces, each of which can execute as its own
thread. This is not the way to go about developing an application.
Threads are incredibly useful and have a place, but when you use
threads you can potentially create new problems while trying to solve the
old ones. For example, let’s say you're developing a word processing

1. ‘Werner Heisenberg actually developed the theory with respect to quantum mechanics,
not computer science.

53

ADVANCED WINDOWS

54

application and want to allow the printing function to run as its own
thread. This sounds like a good idea because the user can immediately
go back and start editing the document while it is printing. But wait—
this means that the data in the document might be changed while the
document is printing. This is a whole new type of problem you’ll need to
address. Maybe it would be best not to have the printing take place in its
own thread, but this seems a bit drastic. How about if you let the user
edit another document but lock the printing document so that it can’t
be modified until the printing has been completed? Or here’s a third
idea: Copy the document to a temporary file, print the contents of the
temporary file, and let the user modify the original. When the temporary
file containing the document has finished printing, delete the tempo-
rary file.

As you can see, threads help solve some problems at the risk of cre-
ating new ones. Another common misuse of threads can arise in the
development of an application’s user interface. In most applications, all
the user interface components (windows) should be sharing the same
thread. If you’re producing a dialog box, for example, it wouldn’t make
much sense for a list box to be created by one thread and a button to be
created by another.

Let’s take this a step further and say that you have your own list box
control that sorts data every time an element is added or deleted. The
sorting operation might take several seconds, so you decide to assign this
control to its very own thread. In this way, the user can continue to work
with other controls while the list box control’s thread continues sorting.

Doing this wouldn’t be a very good idea. First, every thread that cre-
ates a window must also contain a GetMessage loop. Second, because the
list box thread contains its own GetMessage loop, you potentially open
yourself up to some synchronization problems among the threads. You
can solve these problems by assigning to the list box control a dedicated
thread whose sole purpose is to sort elements in the background.

For Windows NT, a third reason exists. The Windows NT Win32 sub-
system is like a parallel universe in that, for every thread you create that
creates a window, the subsystem creates a complementary thread for itself.
This adds unnecessary overhead in your application.

Now, having said all this, let me take some of it back. In rare situa-
tions, assigning individual threads to user interface objects is useful. In

THREE: Threads

the system, each process has its own separate thread controlling its own
user interface. For example, the Calculator application has one thread
that creates and manipulates all the application’s windows, and the
Paintbrush application has its own thread that creates and manipulates
Paintbrush’s own windows. These separate threads were assigned for
protection and robustness. If Calculator’s thread enters an infinite loop,
the resulting problem has no effect on Paintbrush’s thread. This is quite
different from the behavior we see in 16-bit Windows. In 16-bit Windows,
if one application hangs, the entire system hangs. The Win32-based sys-
tems allow you to switch away from Calculator (even though it is hung)
and start using Paintbrush. See Chapter 10 for more details.

Another use for multiple threads in GUI components is in multi-
ple document interface (MDI) applications in which each MDI child
window is running on its own thread. If one of the MDI child threads
enters an infinite loop or starts a time-consuming procedure, the user
can switch to another MDI child window and begin working with it while
the other MDI child thread continues to chug along. This can be so use-
ful, in fact, that Win32 offers a special function, shown below, whose
result is similar to creating an MDI child window by sending the WM-
~MDICREATE message to an MDIClient window.

HWND CreateMDIWindow(LPTSTR 1pszClassName, LPTSTR 1pszWindowName,
DWORD dwStyle, int x, int y, int nWidth, int nHeight,
HWND hwndParent, HINSTANCE hinst, LONG 1Param);

The only difference is that the CreateMDIWindow function allows the MDI
child to be created with its own thread.

The moral of the story is that multiple threads should be used judi-
ciously. Don’t use them only because you can. You can still write many
useful and powerful applications using nothing more than the primary
thread assigned to the process. If after reading all this you’'re convinced
you have a valid need for threads, read on.

Writing Your First Thread Function

All threads begin executing at a function that you must specify. The func-
tion must have the following prototype:

DWORD WINAPI YourThreadFunc(LPVOID 1pvThreadParm);

Like WinMain, this function is not actually called by the operating
system. Instead, the operating system calls an internal function, not part
of the C run-time, contained in KERNEL32.DLL. I call this function

55

ADVANCED WINDOWS

56

StartOf Thread; the actual internal name is not important. Below is what
StartOf Thread looks like:

void StartOfThread (LPTHREAD_START_ROUTINE T1pStartAddr,
LPVOID 1pvThreadParm) {

_try {

}

DWORD dwThreadExitCode = 1pStartAddr(I1pvThreadParm);
ExitThread(dwThreadExitCode);

__except(UnhandledExceptionFilter(GetExceptionInformation())) {

}

ExitProcess(GetExceptionCode());

The StartOf Thread function sets into motion the following actions:

1.

Sets up a structured exception handling (SEH) frame around
your thread function so that any exceptions raised while your
thread executes will get some default handling by the system.
See Chapter 14 for more information about structured excep-
tion handling.

The system calls your thread function, passing it the 32-bit
lpuThreadParm parameter that you passed to the CreateThread
function (discussed shortly).

When your thread function returns, the StartOf Thread function
calls ExitThread, passing it your thread function’s return value.
The thread kernel object’s usage count is decremented, and
the thread stops executing.

If your thread raises an exception that is not handled, the SEH
frame set up by the StartOf Thread function will handle the ex-
ception. Usually, this means that a message box is presented to
the user and that, when the user dismisses the message box,
StartOf Thread calls ExitProcess to terminate the entire process,
not just the offending thread.

Although I left it out of the earlier discussion, a process’s primary
thread actually begins by executing the system’s StartOf Thread function.
The StartOf Thread function then calls the C run-time’s startup code, which
calls your WinMain function. The C run-time’s startup code, however,
does not ever return back to the StartOfThread function because the
startup code explicitly calls ExitProcess.

THREE: Threads

The remainder of this section discusses the various attributes that
are “bestowed” upon a new thread.

A Thread’s Stack

Each thread is allocated its very own stack from the owning process’s 4-GB
address space. When you use static and global variables, multiple threads
can access the variables at the same time, potentially corrupting the vari-
ables’ contents. However, local and automatic variables are created on
the thread’s stack and are therefore far less likely to be corrupted by
another thread. For this reason, you should always try to use local or
automatic variables when writing your functions and avoid the use of
static and global variables.

The actual size of a thread’s stack, and how the operating system
and compiler manage the stack, are very complex subjects—I postpone
discussing these details until Chapter 6.

A Thread’s CONTEXT Structure

Each thread has its own set of CPU registers, called the thread’s context.
This CONTEXT structure reflects the state of the thread’s CPU registers
when the thread was last executing. The CONTEXT structure is the only
CPU-specific Win32 data structure. In fact, the Win32 help file doesn’t
show the contents of this structure at all. If you want to see the members
of this structure, you must look in the WINNT.H file, where you will find
this structure defined several times: once for x86, once for MIPS, and
once for Alpha. The compiler selects the appropriate version of this
structure depending on the target CPU type for your EXE or DLL.

When a thread is scheduled CPU time, the system initializes the
CPU’s registers with the thread’s context. Of course, one of the CPU reg-
isters is an instruction pointer that identifies the address of the next CPU
instruction for the thread to execute. The CPU registers also include a
stack pointer that identifies the address of the thread’s stack.

A Thread’s Execution Times

In a multithreaded environment, it becomes much more difficult to time
how long it takes your process to perform various tasks. This is because
your process might have a thread that is busy recalculating some com-
plex algorithm while threads in other processes are all competing for the
same CPU. Since your recalc thread is constantly being preempted, you
can’t simply write code to time your algorithm as shown on the next page.

57

ADVANCED WINDOWS

58

DWORD dwStartTime = GetTickCount();
// Perform complex algorithm
DWORD dwElapsedTime = GetTickCount() - dwStartTime;

What is needed here is a function that returns the amount of time
that the CPU has been assigned to this thread. Fortunately, in Win32
there is a function that returns this information:

BOOL GetThreadTimes(HANDLE hThread, LPFILETIME 1pCreationTime,
LPFILETIME TpExitTime, LPFILETIME 1pKernelTime,
LPFILETIME 1pUserTime);

GetThreadTimes returns four different time values, as shown in the
table below:

Time Value Meaning
Creation time The time when the thread was created.
Exit time The time when the thread exited. If the thread is still

running, the exit time is undefined.

Kernel time The amount of time that the thread has spent executing
operating system code.

User time The amount of time that the thread has spent executing
application code.

Using this function, you can determine the amount of time neces-
sary to execute a complex algorithm by using code such as this:

__int64 FileTimeToQuadWord (PFILETIME pFileTime) ({
_int64 qw;
gw = pFileTime->dwHighDateTime;
gw <<= 32;
gw i= pFileTime->dwLowDateTime;
return(qw);
}

PFILETIME QuadWordToFileTime (__int64 qw, PFILETIME pFileTime) {
pFileTime->dwHighDateTime = (DWORD) (gw >> 32);
pFileTime->dwLowDateTime (DWORD) (qw & OXFFFFFFFF);
return(pFileTime);

void Recalc () {
FILETIME ftKernelTimeStart, ftKernelTimeEnd;

THREE: Threads

FILETIME ftUserTimeStart, ftUserTimeEnd;

FILETIME ftDummy, ftTotalTimeElapsed;

—int64 qwKernelTimeElapsed, qwUserTimeElapsed,
qwTotalTimeElapsed;

// Get starting times.
GetThreadTimes(GetCurrentThread(), &ftDummy, &ftDummy,
&ftKernelTimeStart, &ftUserTimeStart);

// Perform complex algorithm here.

// Get ending times.
GetThreadTimes(GetCurrentThread(),&ftDummy, &ftDummy,
4ftKernelTimeEnd, &ftUserTimeEnd);

// Get the elapsed kernel and user times by converting the start

// and end times from FILETIMEs to quad words, and then subtract

// the start times from the end times.

qwKernelTimeElapsed = FileTimeToQuadWord(&ftKernelTimeEnd) -
FileTimeToQuadWord(&ftKernelTimeStart);

gqwUserTimeElapsed = FileTimeToQuadWord(&ftUserTimeEnd) -
FileTimeToQuadWord(&ftUserTimeStart);

// Get total time duration by adding the kernel and user times.
qwTotalTimeElapsed = qwKernelTimeElapsed + qwUserTimeElapsed;

// Convert resultant quad word to FILETIME.
QuadWordToFileTime(qwTotalTimeElapsed, &ftTotalTimeElapsed);

// The total elapsed time is in gqwTotalElapsedTime and in
// ftTotalTimeElapsed. You can use either form.

Let me also point out here that there is a function similar to Get-
ThreadTimes that applies to all of the threads in a process:

BOOL GetProcessTimes (HANDLE hProcess, LPFILETIME 1pCreationTime,
LPFILETIME 1pExitTime, LPFILETIME 1pKernelTime,
LPFILETIME 1pUserTime);

GetProcessTimes returns times that apply to all the threads in a speci-
fied process. For example, the kernel time returned will be the sum of
all the elapsed times that all of the process’s threads have spent in
kernel code.

59

ADVANCED

WINDOWS

i

Unfortunately, the GetThreadTimes and GetProcessTimes functions are not
functional in Windows 95. If you call either of these functions in Win-
dows 95, they return FALSE. A subsequent call to GetLastError returns a
value of 120 (ERROR _CALL_NOT_IMPLEMENTED), which indicates
that these functions are valid only in Windows NT.

There is no reliable mechanism for an application to determine
how much CPU time a thread or process has used under Windows 95.

The CreateThread Function

60

We’ve already discussed how a process’s primary thread comes into being
when CreateProcess is called. However, if you want a primary thread to cre-
ate additional threads, you can have it call CreateThread:

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES 1psa,
DWORD cbStack,
LPTHREAD_START_ROUTINE 1pStartAddr,
LPVOID 1pvThreadParm,
DWORD fdwCreate,
LPDWORD 1pIDThread);

For every call to CreateThread, the system must perform the follow-
ing steps:

1. Allocate a thread kernel object to identify and manage the
newly created thread. This object holds much of the system
information to manage the thread. A handle to this object is
the value returned from the CreateThread function.

2. Initialize the thread’s exit code (maintained in the thread
kernel object) to STILL_ACTIVE and set the thread’s suspend
count (also maintained in the thread kernel object) to 1.

3. Allocate a CONTEXT structure for the new thread.

4. Prepare the thread’s stack by reserving a region of address space,
committing 2 pages of physical storage to the region, setting the
protection of the committed storage to PAGE_READWRITE,
and setting the PAGE_GUARD attribute on the second-to-top
page. See Chapter 6 for more information about a thread’s stack.

THREE: Threads

5. Initialize the stack pointer register in the thread’s CONTEXT
structure to point to the top of the stack; initialize the instruction
pointer register to point to the internal StartOf Thread function.

OK, that’s the broad overview. The following sections dissect each
of CreateThread’s parameters.

Ipsa
The Ilpsa parameter is a pointer to a SECURITY_ATTRIBUTES struc-
ture. You can also pass NULL if you want the default security attributes
for the object. If you want any child processes to be able to inherit a
handle to this thread object, you must specify a SECURITY_ATTRI-
BUTES structure whose blnheritHandle member is initialized to TRUE.
cbStack

The cbStack parameter specifies how much address space the thread is
allowed to use for its own stack. Every thread owns its very own stack.
When CreateProcess starts an application, it calls CreateThread to initialize
the process’s primary thread. For the cbStack parameter, CreateProcess uses
the value stored inside the executable file. You can control this value
using the linker’s /STACK switch:

/STACK:[reservel [,commit]

The reserve argument sets the amount of memory the system should
reserve in the address space for the thread’s stack. The default is 1 MB.
The commit argument specifies the amount of reserved address space
that should initially be committed to the stack. The default is 1 page.
(See Chapter 6 for a discussion of reserving and committing memory.)
As the code in your thread executes, it is quite possible thatyou’ll require
more than 1 page of memory. When your thread overflows its stack, an
exception is generated. (See Chapter 14 for detailed information about
handling exceptions.) The system catches the exception and commits
another page (or whatever you specified for the commit argument) to the
reserved space, which allows your thread’s stacks to grow dynamically
as needed.

When calling CreateThread you can pass 0 to the cbStack parameter.
In this case, CreateThread creates a stack for the new thread using the
commit argument embedded in the EXE file by the linker. The amount
of reserved space is always 1 MB. The system sets a limit of 1 MB to stop
functions that recurse endlessly.

61

ADVANCED WINDOWS

For example, let’s say that you are writing a function that calls itself
recursively. This function also has a bug that causes endless recursion.
Every time the function calls itself, a new stack frame is created on
the stack. If the system didn’t set 2 maximum limit on the stack size, the
recursive function would never stop calling itself. All of the process’s
address space would be allocated, and enormous amounts of physical
storage would be committed to the stack. By setting a stack limit, you pre-
vent your application from using up enormous amounts of physical stor-
age, and you’ll also know much sooner when a bug exists in your program.
The SEHSum sample application in Chapter 14 shows how you can trap
and handle stack overflows in your application.

IpStartAddr and IpvThreadParm

The IpStartAddr parameter indicates the address of the thread function
that you want the new thread to execute. It is perfectly legal and actually
quite useful to create multiple threads that all have the same function
address as their starting point. For example, you might create an MDI
application in which all the child windows behave similarly but each oper-
ates on its own thread. The thread function you write must have the same
function prototype as this function:

DWORD WINAPI ThreadFunc(LPVOID TpvThreadParm) {
DWORD dwResult = 0;

return(dwResult);

The thread function’s lpvThreadParm parameter is the same as the
lpuThreadParm parameter that you originally passed to CreateThread.
CreateThread does nothing with this parameter except pass it on to the
thread function when the thread starts executing. This parameter pro-
vides a way to pass an initialization value to the thread function. This ini-
tialization data can be either a 32-bit value or a 32-bit pointer to a data
structure that contains additional information.

fdwCreate

62

The fdwCreate parameter specifies additional flags that control the cre-
ation of the thread. It can be one of two values. If the value is 0, the thread
starts executing immediately. If the value is CREATE_SUSPENDED, the
system creates the thread, creates the thread’s stack, initializes the CPU

THREE: Threads

register members in the thread’s CONTEXT structure, and gets ready
to execute the first instruction of the thread function but suspends the
thread so that it doesn’t start executing.

Immediately before CreateThread returns, and while the thread that
called it continues to execute, the new thread is also executing—that is,
as long as the CREATE_SUSPENDED flag wasn’t specified.? Because the
new thread is running simultaneously, the possibility of problems exists.
Watch out for code like this:

DWORD WINAPI FirstThread (LPVOID 1pvThreadParm) {
int x = 0;
DWORD dwResult = @, dwThreadld;
HANDLE hThread;

hThread = CreateThread(NULL, @, SecondThread, (LPVOID) &x,
0, &dwThreadId);
CloseHandle(hThread);

return(dwResult);

DWORD WINAPI SecondThread (LPVOID 1pvThreadParm) {
DWORD dwResult = 0;

// Do some lengthy processing here.
* ((int #) l1pvThreadParm) = 5;

return(dwResult);

In the code above, it is very likely that FirstThread will finish its work
before SecondThread assigns 5 to FirstThread’s x. If this happens, Second-
Thread won’t know that FirstThread no longer exists and will attempt to
change the contents of what is now an invalid address. This is certain to
cause SecondThread to raise an access violation because FirstThread’s stack
is destroyed when FirstThread terminates. One way to solve the problem
is to declare x as a static variable. In this way, the compiler will create a
storage area for x in the application’s data section rather than on the stack.

2. Actually, on a single-CPU machine threads execute one at a time, but it’s best to think
of them as all executing simultaneously. Also, the new thread’s execution is subject to the
priority levels of all other threads.

63

ADVANCED WINDOWS

However, this makes the function non-reentrant. In other words, you
couldn’t create two threads that execute the same function because the
static variable would be shared between the two threads.

Another way to solve this problem, as well as its more complex
variations, is to use synchronization objects, which I discuss in Chapter9.

IpIDThread

-}

i

The last parameter of CreateThread, ipIDThread, must be a valid address of
a DWORD in which CreateThread will store the ID that the system assigns
to the new thread. Under Windows NT, this parameter cannot be NULL
even if you are not interested in the thread’sID; passing NULL causes an
access violation.

I personally believe that you should be able to pass NULL for the
IpIDThread parameter because more often than not the thread’s unique
ID number is not that useful. Apparently, some of the developers on
Microsoft’s Windows 95 team felt as I did because Windows 95 does allow
you to pass NULL for the ipIDThread parameter, in which case the func-
tion does not raise an access violation and you don’t get the thread’s ID
back. This is a small but nice feature of Windows 95.

Of course, this inconsistency between Windows 95 and Windows
NT can cause problems for software developers. For example, let’s say
you develop and test an application on Windows 95 that takes advantage
of the fact that CreateThread will accept NULL for the ipIDThread param-
eter. Now, when you later run your application on Windows NT, your
program will fail. This means that you must thoroughly test your applica-
tions on both Windows 95 and Windows NT.

Terminating a Thread

Like a process, a thread can be terminated in two ways: by calling the
ExitThread function, which is the most common method, or by calling
the TerminateThread function, which you should reserve as a last resort.
This section discusses both methods for terminating a thread and
describes what actually happens when a thread ends.

THREE: Threads

The ExitThread Function

A thread terminates when it calls ExitThread:
VOID ExitThread(UINT fuExitCode);

This function terminates the thread and sets the thread’s exit code
to fuExitCode. ExitThread doesn’t return a value because the thread has
terminated.

This method is the most common because ExitThread is called when
the thread function returns to the system’s internal StartOf Thread func-
tion. The StartOf Thread function calls ExitThread, passing it the value
returned from your thread function.

The TerminateThread Function

A call to TerminateThread also ends a thread:
BOOL TerminateThread(HANDLE hThread, DWORD dwExitCode);

The function ends the thread identified by the AThread parameter
and sets its exit code to dwExitCode. The TerminateThread function exists
so you can terminate a thread when it no longer responds. You should
use it only as a last resort.

1A Under Windows NT, when a thread dies by calling ExitThread, the stack
HWindo"* for the thread is destroyed. However, if the thread is terminated by

\-J TerminateThread, the system does not destroy the stack until the process
that owns the thread terminates because other threads might still be
using pointers that reference data contained on the terminated thread’s
stack. If these other threads attempted to access the stack, an access vio-
lation would occur.

of the thread that’s being terminated.

windows = : . .
m Under Windows 95, the TerminateThread function does destroy the stack

When a thread ends, the system notifies any DLLs attached to the
process owning the thread that the thread is ending. If you call
TerminateThread, however, the system doesn’t notify any DLLs attached to
the process, which can mean that the process won’t be closed down cor-
rectly. For example, a DLL might be written to flush data to a disk file

65

ADVANCED WINDOWS

when the thread detaches from the DLL. Because the DLL isn’t notified
about the detachment when you use TerminateThread, the DLL cannot
perform its normal cleanup.

The ExitProcess and TerminateProcess functions discussed in Chapter
2 also terminate threads. The difference is that these functions termi-
nate all the threads contained in the process being terminated.

What Happens When a Thread Terminates

66

The following actions occur when a thread terminates:

1. All User object handles owned by the thread are freed. In Win32,
most objects are owned by the process containing the thread
that creates the objects. However, there are a few objects (mostly
User objects such as windows, accelerators, and hooks) that can
be owned by a thread. When the threads that create these objects
die, the system automatically destroys the objects.

2. The state of the thread kernel object becomes signaled.

3. The thread’s exit code changes from STILL_ACTIVE to the
code passed to ExitThread or TerminateThread.

4. If the thread is the last active thread in the process, the pro-
cess ends.

5. The thread kernel object’s usage count is decremented by 1.

When a thread terminates, its associated thread kernel object
doesn’t automatically become freed until all the outstanding references
to the object are closed.

Once a thread is no longer running, there isn’t much any other
thread in the system can do with the thread’s handle. However, these
other threads can call GetExitCodeThread to check whether the thread
identified by AThread has terminated and, if it has, determine its exit code.

BOOL GetExitCodeThread(HANDLE hThread, LPDWORD 1pdwExitCode);

The exit code value is returned in the DWORD pointed to by
lpdwExitCode. If the thread hasn’t terminated when GetExitCodeThread is
called, the function fills the DWORD with the STILL_ACTIVE identi-
fier (defined as 0x103). If the function is successful, TRUE is returned.
Using the thread’s handle to determine when the thread has terminated
is discussed further in Chapter 9.

THREE: Threads

Gaining a Sense of One’s Own Identity

Several Win32 functions require a process handle as a parameter. A
thread can get the handle of the process it is running in by calling
GetCurrentProcess:

HANDLE GetCurrentProcess(V0OID);

This function returns a pseudo-handle to the process; it doesn’t
create a new handle, and it doesn’t increment the process object’s usage
count. If you call CloseHandle and pass this pseudo-handle as the param-
eter, CloseHandle simply ignores the call and does nothing but return.

You can use pseudo-handles in calls to functions that require a pro-
cess handle. For example, the line below changes the priority class of the
calling process to HIGH_PRIORITY_CLASS:

SetPriorityClass(GetCurrentProcess(), HIGH_PRIORITY_CLASS);

The Win32 API also includes a few functions that require a process
ID. A thread can acquire the ID of the process it is running in by calling
GetCurrentProcessld:

DWORD GetCurrentProcessId(VOID);

This function returns the unique, systemwide ID that identifies the
process.

When you call CreateThread, the handle of the newly created thread
is returned to the thread making the call, but the new thread does not
know what its own handle is. For a thread to acquire a handle to itself, it
must call:

HANDLE GetCurrentThread(VOID);

Like GetCurrentProcess, GetCurrentThread returns a pseudo-handle
that is meaningful only when used in the context of the current thread.
The thread object’s usage count is not incremented, and calls to Close-
Handle passing the pseudo-handle have no effect.

A thread acquires its ID by calling:

DWORD GetCurrentThreadId(VOID);

Sometimes you might need to acquire a “real” handle to a thread
instead of a pseudo-handle. By “real,” I mean a handle that unambigu-
ously identifies a unique thread. Examine the following code:

DWORD WINAPI ParentThread (LPVOID T1pvThreadParm) {
DWORD IDThread;

(continued)

67

ADVANCED WINDOWS

68

HANDLE hThreadParent = GetCurrentThread();
CreateThread(NULL, @, ChildThread, (LPVOID) hThreadParent, 0,
&IDThread);
// Function continues...
}

DWORD WINAPI ChildThread (LPVOID lpvThreadParm) ({
HANDLE hThreadParent = (HANDLE) 1pvThreadParm;
SetThreadPriority(hThreadParent, THREAD_PRIORITY_NORMAL);
// Function continues...

Can you see the problem with this code fragment? The idea is to
have the parent thread pass to the child thread a thread handle that
identifies the parent thread. However, the parent thread is passing a
pseudo-handle, not a “real” handle. When the child thread begins
execution, it passes the pseudo-handle to the SetThreadPriority function,
which causes the child thread—not the parent thread—to change prior-
ity. This happens because a thread pseudo-handle is a handle to the cur-
rent thread—that is, a handle to whichever thread is making the
function call.

To fix this code, we must turn the pseudo-handle into a “real”
handle. This can be done by using the DuplicateHandle function:

BOOL DuplicateHandle(
HANDLE hSourceProcess,
HANDLE hSource,

HANDLE hTargetProcess,
LPHANDLE 1phTarget,
DWORD fdwAccess,

BOOL fInherit,

DWORD fdwOptions);

Usually this function is used to create a new process-relative handle
from a kernel object handle that is relative to another process. The first
parameter, ASourceProcess, identifies the process that has access to the
object to be duplicated. The handle value of ASourceProcess must be rela-
tive to the process that is making the call to DuplicateHandle. The third
parameter, hTargetProcess, identifies the process to be granted access to
the same object. Again, this handle value must be relative to the process
that is making the call to DuplicateHandle.

The second parameter, hSource, identifies the existing object. This
handle value must be relative to the process identified by the hSource-
Process parameter. The fourth parameter, lphTarget, is the address to a
HANDLE variable that DuplicateHandle will fill with the duplicated

THREE: Threads

handle’s value. This new handle value identifies the same object that the
hSource parameter identifies, but the new handle is relative to the process
identified by the hTargetProcess parameter. In other words, only threads in
the process identified by the ASourceProcess parameter can use the object
identified by the ASource parameter, and only threads in the process iden-
tified by the ATargetProcess parameter can use the objectidentified by the
lphTarget parameter. The remaining three parameters allow you to
specify how the new handle can be accessed, whether the new handle is
inheritable by child processes spawned by the target process, and
whether the original object should be closed automatically. (See the
Microsoft Win32 Programmer’s Reference for more information about the
DuplicateHandle function.)

We can use the DuplicateHandle function in an unusual way to cor-
rect the code fragment discussed earlier. The corrected code fragment is
as follows:

DWORD WINAPI ParentThread (LPVOID TpvThreadParm) {

DWORD IDThread;
HANDLE hThreadParent;

DuplicateHandle(
GetCurrentProcess(), // Handle of process that thread
// pseudo-handle is relative to
GetCurrentThread(), // Parent thread's pseudo-handle
GetCurrentProcess(), // Handle of process that the new,

// “"real,” thread handle is
// relative to

&hThreadParent // Will receive the new,
// "real," handle identifying
// the parent thread

0, // Ignored because of
// DUPLICATE_SAME_ACCESS
FALSE, // New thread handle is not

// inheritable
DUPLICATE_SAME_ACCESS); // New thread handle has same
// access as pseudo-handle

CreateThread(NULL, @, ChildThread, (LPVOID) hThreadParent, 0,
&IDThread);
// Function continues...
}

DWORD WINAPI ChildThread (LPVOID TpvThreadParm) {
HANDLE hThreadParent = (HANDLE) 1pvThreadParm;

(continued)

69

ADVANCED WINDOWS

70

SetThreadPriority(hThreadParent, THREAD_PRIORITY_NORMAL);
CloseHandle(hThreadParent);
// Function continues...

Now when the parent thread executes, it converts the ambiguous
pseudo-handle identifying the parent thread to a new, “real,” handle
that unambiguously identifies the parent thread, and it passes this “real”
handle to CreateThread. When the child thread starts executing, its lpv-
ThreadParm parameter contains the “real” thread handle. Any calls to
functions, passing this handle, will now affect the parent thread, not the
child thread.

Because DuplicateHandle does increment the usage count of the
specified kernel object, it is very important to remember to decrement
the object’s usage count by passing the target handle to CloseHandle
when you are finished using the duplicated object handle. This is dem-
onstrated in the code fragment on the previous page. Immediately after
the call to SetThreadPriority, the child thread calls CloseHandle to decre-
ment the parent thread object’s usage count. In the previous code frag-
ment, I assumed that the child thread would not call any other functions
using this handle. If other functions are to be called passing the parent
thread’s handle, the call to CloseHandle should not be made until the
handle is no longer required by the child thread.

I should also point out that the DuplicateHandle function can be
used to convert a pseudo-handle for a process to a “real” process handle
as follows:

HANDLE hProcess;

DuplicateHandle(
GetCurrentProcess(), // Handle of process that the process
// pseudo-handle is relative to
GetCurrentProcess(), // Process's pseudo-handle
GetCurrentProcess(), // Handle of process that the new,
// “real," process handle is
// relative to
&hProcess, // Will receive the new, "real,"
// handle identifying the process
0, // Ignored because of
// DUPLICATE_SAME_ACCESS
FALSE, // New thread handle is not

// inheritable
DUPLICATE_SAME_ACCESS); // New process handle has same
// access as pseudo-handle

THREE: Threads

How the System Schedules Threads

The system schedules all active threads based on their priority levels.
Each thread in the system is assigned a priority level. Priority levels range
from 0, the lowest, to 31, the highest. Priority level 0 is assigned to a spe-
cial thread in the system called the zero page thread. The zero page thread
is responsible for zeroing any free pages in the system when there are no
other threads that need to perform work in the system. It is not possible
for any other thread to have a priority level of 0.

When the system assigns a CPU to a thread, it treats all threads of
the same priority as equal. That is, the system simply assigns the first
thread of priority 31 to a CPU, and after that thread’s time slice is fin-
ished, the system assigns the next priority 31 thread to the CPU. When
all the priority 31 threads have had a time slice, the system assigns the
first priority 31 thread back to the CPU. Note that if you always have at
least one priority 31 thread for each CPU, other threads having priorities
less than 31 will never be assigned to a CPU and will therefore never exe-
cute. This is called starvation. Starvation occurs when some threads use
so much of the CPU’s time that other threads are never able to execute.

When no priority 31 threads need to run, the system will begin
assigning the CPU to priority 30 threads. When no priority 31 and no
priority 30 threads need to run, the system assigns the CPU to priority 29
threads, and so on.

At first, you might think that low priority threads (like the zero
page thread) will never get a chance to run in a system designed like this.
But as it turns out, threads frequently do not have a reason to run. For
example, if your process’s primary thread calls GetMessage and the system
sees that there are no messages pending, the system suspends your
process’s thread, relinquishes the remainder of the thread’s time slice,
and immediately assigns the CPU to another, waiting, thread.

If no messages show up for GetMessage to retrieve, the process’s
thread stays suspended, and the CPU is never assigned to it. However,
when a message is placed in the thread’s queue, the system knows that
the thread should no longer be suspended and will assign the CPU to the
thread as long as no higher-priority threads need to execute.

Let me point out another issue here. If a priority 5 thread is run-
ning, and the system determines that a higher-priority thread is ready
to run, the system will immediately suspend the lower-priority thread

71

ADVANCED WINDOWS

(even if it’s in the middle of its time slice) and assign the CPU to the
higher-priority thread, which gets a full time slice. Higher-priority
threads always preempt lower-priority threads regardless of what the
lower-priority threads are executing.

How Priority Levels Are Assigned Using the Win32 API

72

When you create threads, you don’t assign them priority levels using num-
bers. Instead, the system determines the thread’s priority level using a
two-step process. The first step is to assign a priority class to a process. A
process’s priority class tells the system the priority required by the pro-
cess compared to other running processes. The second step is to assign
relative priority levels to threads owned by the process. The following
sections discuss both steps.

Process Priority Classes
Win32 supports four different priority classes: idle, normal, high, and
realtime. You assign a priority class to a process by ORing one of the
CreateProcess flags listed in the table below with the other fdwCreate flags
when calling CreateProcess. The table below shows the priority level associ-
ated with each priority class:

Class CreateProcess Flag Level
Idle IDLE_PRIORITY_CLASS 4
Normal NORMAL_PRIORITY_CLASS 7-9
High HIGH_PRIORITY_CLASS 13

Realtime REAITIME_PRIORITY_CLASS 24

This means that any thread created in a process whose priority class is
idle has the priority level 4.

I can’t stress enough how important it is to select a priority class for
your process carefully. When calling CreateProcess, most applications
should either not specify a priority class or use the NORMAL_PRIOR-
ITY_CLASS flag. When you don’t specify a priority class, the system
assumes normal priority class unless the parent process has an idle prior-
ity class. In this case, the child process is also of the idle priority class.

Processes of the normal priority class behave a little differently
than processes using other priority classes. Most applications a user runs

THREE: Threads

are of the normal priority class. When the user is working with a process,
that process is said to be the foreground process and all other processes
are called background processes. When a normal process is brought to
the foreground, Windows NT automatically boosts all of that process’s
threads by 2. Windows 95 boosts all that process’s threads by 1.

The reason for this boosting is to make the foreground process react
faster to the user’s input. If the process’s threads weren’t boosted, a nor-
mal process printing in the background and a normal process accepting
user input in the foreground would be competing equally for the CPU’s
time. The user, of course, would see that text was not appearing smoothly
in the foreground application. But because the system boosts the fore-
ground process’s threads, the foreground process’s threads always pre-
empt threads in background normal processes.

When running Windows NT, the user can control the system’s boosting
of normal foreground processes by double-clicking on the System option
in the Control Panel and then clicking on the Tasking button. This pre-
sents the following dialog box:

T

~ Tasking

O F d Application More R. ive than Background
around and Background Applications Equally R .

- (@EBe:l Foreground Application Response Time:

The Best Foreground Application Response Time option means
that normal processes in the foreground have a priority level of 9, the
Foreground Application More Responsive Than Background option
means that normal processes in the foreground have a priority level of 8,
and the Foreground And Background Applications Equally Responsive
option means that normal processes in the foreground have a priority
level of 7.

This feature is not offered in Windows 95 because Windows 95 is
not designed to be run on a dedicated server machine. Windows NT
server machines are frequently installed in a room where no user will
operate them directly. When Windows NT machines are set up as dedi-
cated servers, the administrator should select the Foreground And Back-
ground Applications Equally Responsive option so that all processes
compete equally for the CPU.

73

ADVANCED WINDOWS

74

Idle priority is perfect for system-monitoring applications. For
example, you might write an application that periodically displays the
amount of free RAM in the system. Because you would not want this
application to interfere with the performance of other applications, you
would set this process’s priority class to IDLE_PRIORITY_CLASS.

Another good example of an application that can use idle priority
is a screen saver. Most of the time a screen saver simply monitors actions
from the user. When the user is idle for a specified period of time, the
screen saver activates itself. There is no reason to have the screen saver
monitoring the user’s actions at a very high priority, so the perfect prior-
ity for this process is idle priority.

High priority class should be used only when absolutely necessary.
You might not guess this, but the Windows NT Task Manager runs at
high priority. Most of the time the Task Manager’s thread is suspended,
waiting to be awakened when the user presses Ctrl+Esc. While the Task
Manager’s thread is suspended, the system doesn’t assign a CPU to the
thread, which allows lower-priority threads to execute. However, once
the user does press Ctrl+Esc, the system wakes up the Task Manager’s
thread. If any lower-priority threads are executing, the system preempts
those threads immediately and allows the Task Manager to run. The Task
Manager responds by displaying a dialog box that lists all the running
applications. Microsoft designed the Task Manager this way because
users expect the Task Manager to be extremely responsive, regardless of
what else is going on in the system. In fact, the Task Manager’s window
can be displayed even when lower-priority threads are hung in infinite
loops. Because the Task Manager’s thread has a higher priority level, the
thread executing the infinite loop is preempted, and the Task Manager
allows the user to terminate the hung process.

The Task Manager is very well behaved. Most of the time it simply
sits idle, not requiring any CPU time at all. If this were not the case, the
whole system would perform much more slowly, and many applications
would not respond.

The fourth priority flag, REALTIME_PRIORITY_CLASS, should
almost never be used. In fact, earlier betas of the Win32 API did not
expose this priority class to applications even though the operating sys-
tem supported it. Realtime priority is extremely high, and because most
threads in the system (including system management threads) execute
at a lower priority, they will be affected by a process of this class. In fact,

THREE: Threads

the threads in the system that control the mouse and the keyboard, back-
ground disk flushing, and Ctrl+Alt+Del trapping all operate at a lower
priority class than realtime priority. If the user is moving the mouse, the
thread responding to the mouse’s movement will be preempted by a
realtime thread. This affects the movement of the mouse, causing it to
move jerkily rather than smoothly. Even more serious consequences can
occur, such as loss of data.

You might use the realtime priority class if you are writing an appli-
cation that talks directly to hardware, or if you need to perform some
short-lived task and want to be pretty sure it will not be interrupted.

" A process cannot run in the realtime priority class unless the user logged
Wi on to the system has Increase Scheduling Priority permission. Any user
designated an administrator or a power user has this permission by
default. You can give this permission to other users and groups by using
the Windows NT User Manager application.

Altering a Process’s Priority Class

It might seem odd to you that the process that creates a child process
chooses the priority class at which the child process runs. Let’s consider
the Explorer or the Program Manager as an example. When you run an
application from either of these applications, the new process runs at
normal priority. The Explorer or the Program Manager has no idea what
the process does or how quickly it needs to operate. However, once the
child process is running, it can change its own priority class by calling
SetPriorityClass:

BOOL SetPriorityClass(HANDLE hProcess, DWORD fdwPriority);

This function changes the priority class identified by AProcess to the
value specified in the fdwPriority parameter. The fdwPriority parameter
can be one of the following: IDLE_PRIORITY_CLASS, NORMAL-
—PRIORITY_CLASS, HIGH_PRIORITY_CLASS, or REALTIME_PRI-
ORITY_CLASS. If the function succeeds, the return value is TRUE;
otherwise, it’s FALSE. Because this function takes a process handle, you
can alter the priority class of any process running in the system as long as
you have a handle to it and ample access privileges.

75

ADVANCED WINDOWS

The complementary function used to retrieve the priority class of a
process is:

DWORD GetPriorityClass(HANDLE hProcess);

As you might expect, this function returns one of the CreateProcess flags
listed previously.

When you invoke a program using the command shell instead of
the Explorer or the Program Manager, the program’s starting priority is
normal. However, if you invoke the program using the START com-
mand, you can use a switch to specify the starting priority of the applica-
tion. For example, the following command entered at the command
shell causes the system to invoke the Calculator and initially run it at low

priority:
C:\>START /LOW CALC.EXE

The START command also recognizes the /NORMAL, /HIGH,
and /REALTIME switches to start executing an application at normal
priority (also the default), high priority, and realtime priority, respec-
tively. Of course, once an application starts executing, it can call SetPriori-
tyClass to alter its own priority to whatever it chooses.

The Windows 95 START command does not support the /LOW, /NOR-
MAL, /JHIGH, and /REALTIME switches. Processes started from the
Windows 95 command shell always run using the normal priority class.

Setting a Thread’s Relative Priority

76

When a thread is first created, its priority level is that of the process’s pri-
ority class. For example, the primary thread of a HIGH_PRIORITY
_CLASS process is assigned an initial priority level value of 13. However,
it is possible to raise or lower the priority of an individual thread.
A thread’s priority is always relative to the priority class of the process
that owns it.

You can change a thread’s relative priority within a single process
by calling SetThreadPriority:

BOOL SetThreadPriority(HANDLE hThread, int nPriority);

The first parameter, hThread, is the handle to the thread whose priority
class you’re changing. The nPriority parameter can be one of the values
shown in the following table.

THREE: Threads

|dentifier Meaning

THREAD_PRIORITY_LOWEST The thread’s priority should
be 2 less than the process’s
priority class.

THREAD_PRIORITY_BELOW_NORMAL The thread’s priority should
be 1 less than the process’s
priority class.

THREAD_PRIORITY_NORMAL The thread’s priority should
be the same as the process’s
priority class.

THREAD_PRIORITY_ABOVE_NORMAL The thread’s priority should
be 1 more than the process’s
priority class.

THREAD_PRIORITY_HIGHEST The thread’s priority should
be 2 more than the process’s
priority class.

When a thread is first created, its initial relative priority value is
THREAD_PRIORITY_NORMAL. The rules for threads within a pro-
cess are similar to the rules for threads across processes. You should set
a thread’s priority to THREAD_PRIORITY_HIGHEST only when it is
absolutely necessary in order for the thread to execute correctly. The
scheduler will starve lower-priority threads if higher-priority threads
require execution.

In addition to the above flags, two special flags can be passed to
SetThreadPriority: THREAD_PRIORITY_IDLE and THREAD_PRIORI-
TY_TIME_CRITICAL. Specifying THREAD_PRIORITY_IDLE causes
the thread’s priority level to be set to 1 regardless of whether the priority
class for the process is idle, normal, or high. However, if the priority class
for the process is realtime, THREAD_PRIORITY_IDLE sets the thread’s
priority level to 16. Specifying THREAD_PRIORITY_TIME_CRITICAL
causes the thread’s priority level to be set to 15 regardless of whether the
priority class for the process is idle, normal, or high. However, if the pri-
ority class for the process is realtime, THREAD_PRIORITY_TIME-
—CRITICAL sets the thread’s priority level to 31. Figure 3-1 on the next
page shows how the system combines a process’s priority class with a
thread’s relative priority to determine a thread’s base priority level.

77

ADVANCED WINDOWS

78

Process Priority Class

Relative Normal,in Normal, in

Thread Normal, in Foreground Foreground

Priority Idle Background (Boost+1) (Boost+2) High Realtime
Time critical 15 15 15 15 15 31
Highest 6 9 10 11 15 26
Above normal 5 8 9 10 14 25
Normal 4 7 8 9 13 24
Below normal 3 6 7 8 12 23
Lowest 2 5 6 7 11 22
Idle 1 1 1 1 1 16
Figure 3-1.

Houw the system determines a thread’s base priority level.

The complementary function to SetThreadPriority, GetThreadPriority,
can be used to query a thread’s relative priority:

int GetThreadPriority(HANDLE hThread);

The return value is one of the identifiers listed above or THREAD-
~PRIORITY_ERROR_RETURN if an error occurs.

Changing a process’s priority class has no effect on any of its
threads’ relative priorities. Also note that the effects of calling SetThread-
Priority are not cumulative. For example, if a thread is created in a pro-
cess of the high priority class and you execute the following two lines:

SetThreadPriority(hThread, THREAD_PRIORITY_LOWEST);
SetThreadPriority(hThread, THREAD_PRIORITY_LOWEST);

the thread will have a priority level of 11, not a priority level of 9.

Dynamic Boosting of Thread Priority Levels

The priority level determined by combining a thread’s relative priority
with the priority class of the process containing the thread is called a
thread’s base priority level. Occasionally, the system boosts the priority level
of a thread. This usually happens in response to a window message. For
example, a thread having a relative priority of normal and running in a
normal priority class process has a base priority of 9 (assuming that the
process is in the foreground).

THREE: Threads

If the user presses a key, the system places a WM_KEYDOWN
message in the thread’s queue. Because a message has appeared in
the thread’s queue, the system assigns the CPU to the thread so that the
thread can process the message. The system also temporarily boosts the
priority level of the thread from 9 to 11. (The actual value may vary.) This
new thread priority level is called a thread’s dynamic priority. The CPU
executes the thread for a complete time slice, and when the time slice is
over, the system reduces the thread’s priority by 1 so thatitis now 10. The
CPU is again assigned to the thread for another time slice, and at the end
of this time slice, the system again reduces the thread’s priority by 1. The
thread’s dynamic priority is now back to the thread’s base priority level.
The system never allows a thread’s dynamic priority to drop below the
thread’s base priority level.

Microsoft is always fine-tuning the dynamic boosts of the system in
order to determine the best overall results. All of this is in an effort to
keep the system behaving very responsively to the end user. By the way,
threads that have a base priority level in the realtime range (between 16
and 31) are never boosted by the system. The system boosts only threads
that are in the dynamic range (between 0 and 15). In addition, the sys-
tem will never boost a thread’s priority into the realtime range (greater
than 15).

Suspending and Resuming Threads

Earlier mentioned that a thread can be created in a suspended state (by
passing the CREATE_SUSPENDED flag to CreateProcess or CreateThread).
When you do this, the system creates the kernel object identifying the
thread, creates the thread’s stack, and initializes the thread’s CPU regis-
ter members in the CONTEXT structure. However, the thread object is
given an initial suspend count of 1, which means the system will never
assign a CPU to execute the thread. To allow the thread to begin execu-
tion, another thread must call ResumeThread and pass it the thread han-
dle returned by the call to CreateThread (or the thread handle from the
structure pointed to by the lppiProcInfo parameter passed to CreateProcess):

DWORD ResumeThread(HANDLE hThread);

If ResumeThread is successful, it returns the thread’s previous sus-
pend count; otherwise, it returns OxFFFFFFFF.

A single thread can be suspended several times. If a thread is sus-
pended three times, the thread must be resumed three times before it is

79

ADVANCED WINDOWS

eligible for assignment to a CPU. Aside from using the CREATE_SUS-
PENDED flag when creating a thread, you can suspend a thread by call-
ing SuspendThread:

DWORD SuspendThread(HANDLE hThread);

Any thread can call this function to suspend another thread. It goes
without saying (but I'll say it anyway) that a thread can suspend itself but
it cannot resume itself. Like ResumeThread, SuspendThread returns the
thread’s previous suspend count. A thread can be suspended as many as
MAXIMUM_SUSPEND_COUNT times (defined as 127 in WINNT.H).

What’s Going On in the System

80

You can use two utilities that ship with Visual C++ 2.0—PSTAT.EXE and
PVIEW.EXE—to find out which processes are loaded in the system and
which threads exist in each process. At the time of this writing, neither of
these tools runs under Windows 95. Figure 3-2 shows a dump from the
PSTAT.EXE application. It lists all the processes and threads currently
running in the system. The pid field shows the process ID for each pro-
cess. For example, the process ID for the Program Manager (PROG-
MANL.EXE) is 0xAQ. The pri field to the right of the process ID shows the
priority class value for the process. The Program Manager’s priority
value is 13, indicating that it has high priority.

Under each process is a list of threads owned by that process. The
Event Log (EVENTLOG.EXE) has four threads. For each thread, the tid
field shows the ID of the thread. The pri field indicates the priority num-
ber of the thread. The ¢s field shows the number of context switches for
the thread. The status of the thread is shown at the end of the line. The
word Wait indicates that the thread is suspended and is waiting for an
event to occur before it can resume execution. The reason for the wait is
also included.

Figure 3-2. (continued)
Output from the PSTAT. EXE application.

THREE: Threads

Figure 3-2. continued

(continued)

81

ADVANCED WINDOWS

Figure 3-2. continued

(continued)

82

THREE: Threads

Figure 3-2. continued
- tids 66 pri: 9 cs: 34 WaitilpcReceive

oo tid: 65 pri:l@ cs: o 14 Waft:Executive
©Utids 63 prisle cs: o 22 WaitiUserRequest

(continued)

83

ADVANCED WINDOWS

Figure 3-2. continued

Figure 3-3 shows how the PVIEW utility appears when you first
execute it. The Process list box lists all the processes running in the sys-
tem. Listed to the right of each process is the amount of CPU time the
process has used since it was started and the percentage of that time

84

THREE: Threads

!

Important

spent in privileged mode (the Windows NT Executive’s code) vs. user
mode (the application’s code). When you select a process, PVIEW updates
the Priority group’s radio buttons and fills the Thread(s) list box with a
list of all the threads owned by the selected process, the amount of CPU
time used by each thread, and the percentage of time each thread has
spent in privileged mode vs. user mode. When you select a thread,
PVIEW updates the Thread Priority group’s radio buttons.

Pracess Viewer

Computer: |\\fncew'md

Processor Time Privileged User
-03. 36: 2. 18 %

0:23:26.772
0:00:00.711
0:00:00.130

864 KB
116 KB

%
100% 0%
80% 20%
69% 3%
Priority
O Very High
Normal
Q Idie

Processor Time Privileged User

Process
csiss (0x17)
Idle (0x0)
lsass (0x29)
mcsxnsve (0x33]
[Process Memory Used
‘Working Set:
Heap Usage:
Th
I Thread Priority [ead(s)
Q Highest
O Above Normal
@ Normal
> Below Normal
O Idle

0:00:03.364

82% 182

[Thread Information

User PC Value: 0x77f71c3b
Start Address: 0x77f04634

Context Switches: 904
Dynamic Priority:

Figure 3-3.
The PVIEW utility.

You might notice that PVIEW’s window has radio buttons to indicate
whether a process priority class is very high, normal, or idle but that
there is no radio button to indicate whether the process is running in
the realtime priority class. PVIEW was written before the realtime prior-
ity class was exposed to the Win32 API, and no one at Microsoft has seen

fit to update this extremely useful utility.

You might also notice that the Thread Priority radio buttons do
not include radio buttons to indicate the time-critical priority and the

lowest priority.

Ideally, someday Microsoft will update PVIEW to add support for
these flags and will also fix PVIEW so that it runs under Windows 95.

85

ADVANCED WINDOWS

Processes, Threads, and the C Run-Time Library

Microsoft ships three C run-time libraries with Visual G++ 2.0. The table
below lists the names of the libraries and their descriptions:

Library Name Description

LIBC.LIB Statically linked library for single-threaded applications.
LIBCMT.LIB Statically linked library for multithreaded applications.
MSVCRT.LIB Import library for dynamically linking the

MSVCRT20.DLL library. This library supports both
single-threaded and multithreaded applications.

The first question you’'re probably asking yourself is, “Why do I
need one library for single-threaded applications and an additional
library for multithreaded applications?” The reason is that the standard
Crun-time library was invented around 1970, long before threads became
available. The inventors of the library didn’t consider the problems of
using the C run-time library with multithreaded applications.

Consider, for example, the standard C run-time global variable
errno. Some functions set this variable when an error occurs. Let’s say
you have the following code fragment:

BOOL fFailure = (system("NOTEPAD.EXE README.TXT") == -1);

if (fFailure) {
switch (errno) {

case E2BIG: // Argument Tist or environment too big
break;

case ENOENT: // Command interpreter cannot be found
break;

case ENOEXEC: // Command interpreter has bad format
break;

case ENOMEM: // Insufficient memory to run command

break;
}

Now let’s imagine that the thread executing the code above is inter-
rupted after the call to the system function and before the if statement.

86

THREE: Threads

Let’s further imagine that the thread is being interrupted to allow a sec-
ond thread in the same process to execute and that this new thread will
execute another C run-time function that sets the global variable errno.
When the CPU is later assigned back to the first thread, the value of errno
no longer reflects the proper error code for the call to system on the pre-
vious page. To solve this problem, you need to assign each thread its very
own errnovariable.

This is only one example of how the standard C run-time library
was not designed for multithreaded applications. Some of the C run-
time variables and functions that have problems in multithreaded envi-
ronments are errno, _doserrno, strtok, _wcstok, strerror, _strerror, tmpnam,
tmpfile, asctime, _wasctime, gmtime, _ecvt, and _fcvt—just to name a few.

In order for multithreaded C and C++ programs that use the C run-
time library to work properly, a data structure must be created and asso-
ciated with each thread that uses C run-time library functions. To do this,
you create threads using the C run-time’s _beginthreadex function instead
of the Win32 CreateThread function:

unsigned long _beginthreadex(void #*security, unsigned stack_size,
unsigned (*start_address)(void *), void *arglist,
unsigned initflag, unsigned *thrdaddr);

Parameter-wise, _beginthreadex has the same exact parameter list as
the CreateThread function, although the parameter names and types are
not exactly the same. The _beginthreadex function also returns the handle
of the newly created thread just like CreateThread. However, if you define
STRICT when you compile the Windows.H file, you will need to cast
—beginthreadex’s return value to a HANDLE.

When you call _beginthreadex, it performs the following actions:

1. Allocates an undocumented, internal data structure that con-
tains the per-thread instance data. For example, the single
thread’s errno variable and a pointer to the thread’s strtok buf-
fer is maintained in this data structure. This data structure
also contains two members that are initialized to contain the
start_address and arglist parameters that you passed to _begin-
threadex.

2. Calls the Win32 CreateThread function to create the new thread.
CreateThread is called as follows:

hThread = CreateThread(security, stack_size, _threadstart,
&PerThreadData, initflag, thrdaddr);

87

ADVANCED WINDOWS

3. Returns the handle of the newly created thread, or returns 0 if

an error occurred.

You’ll notice that the new thread is instructed to start at a function

called

_threadstart instead of at the function that you passed to _begin-

threadex. The _threadstart function is a function inside the C run-time
library that performs the following tasks:

1.

Associates the memory address of the per-thread instance data
block with the thread using dynamic thread-local storage. (For
more information on thread-local storage, see Chapter 12.)
The _threadstart function is passed this data block’s address as
its parameter.

. Initializes the C run-time’s floating-point support for the new

thread.

Enters a structured exception handling frame in order to sup-
port the C run-time’s signal function.

Retrieves the address of your thread function and the param-
eter you want passed to it from the per-thread instance data
block members. The _threadstart function then uses these val-
ues to call your thread function, passing it the 32-bit value
you want.

. Calls another C run-time function named _endthreadex when

your thread function returns; passes _endthreadex the value
that your thread function returns.

The _endthreadex function then terminates a thread created by the
_beginthreadex function; its prototype is as follows:

void _endthreadex(unsigned retval);

The retval parameter is the thread’s exit code. The _endthreadex
function performs the following actions:

1. Terminates floating-point support for the thread

. Gets the address of the per-thread instance data block associ-

ated with the thread

3. Frees the per-thread instance data block

88

Terminates the thread by calling the Win32 ExitThread func-
tion, passing it the value that was passed as _endthreadex’s retval
parameter

THREE: Threads

Note that you can call the _endthreadex function explicitly if you
want. Just be aware that if your thread function returns, the C run-time’s
_threadstart function calls _endthreadex on your behalf.

By now you should understand why the C run-time library’s func-
tions need a separate data block for each thread created, and you should
also see how calling _beginthreadex allocates, initializes, and associates
this data block with the newly created thread. You should also be able to
see how the _endthreadex function frees the data block when the thread
terminates.

Once this data block is initialized and associated with the thread,
any C run-time library functions the thread calls that require per-thread
instance data can easily retrieve the address to the calling thread’s data
block and manipulate the thread’s data. This is fine for functions, but
you might be wondering how this works for a global variable such as
errno. Well, errno is defined in the standard C headers like this:

#if defined(_MT) !} defined(_DLL)
extern int * __cdecl _errno(void);
j#fidefine errno (*_errno())

felse /% ndef _MT && ndef _DLL =/
extern int errno;

ffendif /* _MT i1 _DLL =/

If you’re creating a multithreaded application, you’ll need to
specify the /MT (multithreaded application) or /MD (multithreaded
DLL) switch on the compiler’s command line. This causes the compiler
to define the _MT identifier. Then, whenever you reference errno, you
are actually making a call to the internal C run-time library function
—errno. This function returns the address to the errno data member in the
calling thread’s associated data block. You’ll notice that the errno macro
is defined as taking the contents of this address. This is necessary because
it’s possible to write code like this:

int *p = &errno;
if (xp == ENOMEM) {

If the internal _errno function simply returned the value of errno,
the above code wouldn’t compile.

The multithreaded version of the C run-time library also places syn-
chronization primitives around certain functions. For example, if two

89

ADVANCED WINDOWS

90

threads simultaneously call malloc, the heap could possibly become cor-
rupted. The multithreaded version of the C run-time library prevents
two threads from allocating memory from the heap at the same time. It
does this by making the second thread wait until the first has returned
from malloc. Then the second thread is allowed to enter. Thread synchro-
nization is discussed in more detail in Chapter 9.

Obviously, the performance of the multithreaded version of the C
run-time library is impacted by all this additional work. This is why
Microsoft supplies the single-threaded version of the statically linked C
run-time library in addition to the multithreaded version.

The dynamically linked version of the C run-time library was writ-
ten to be generic so that it could be shared by any and all running appli-
cations and DLLs using the C run-time library functions. For this reason,
the library exists only in a multithreaded version. Because the C run-
time library is supplied in a DLL, applications (EXE files) and DLLs
don’t need to include the code for the G run-time library function and
are smaller as a result. Also, if Microsoft fixes a bug in the C run-time
library DLL, applications will automatically gain the fix as well.

You might be wondering what would happen if you created your
new threads by calling the Win32 CreateThread function instead of the C
run-time’s _beginthreadex function. Well, here is what happens if a thread
created with CreateThread calls a C run-time library function that requires
the per-thread instance data block:

1. The C run-time function first attempts to get the address of the
thread’s data block.

2. If the address is NULL, the C run-time library allocates a data
block for the thread, initializes, and then associates the block’s
address with the thread using thread-local storage. (See Chap-
ter 12 for more information on thread-local storage.)

3. The function can now execute successfully because it has the
address of the thread’s data block.

There are a couple of problems, however. First, if the thread uses
the C run-time’s signal function, the entire process will terminate because
the structured exception handling frame has not been prepared. Sec-
ond, if the thread terminates without calling _endthreadex, the data block
cannot be destroyed and a memory leak occurs. There is a caveat to this
second problem: if the application is using the dynamic-link library ver-
sion of the C run-time library, the DLL is notified when the thread termi-
nates and the DLL will destroy the thread’s data block. Only if the

THREE: Threads

application uses the static-link versions of the C run-time does this
memory leak occur. As a rule, you should always use the C run-time’s
_beginthreadex/_endthreadex functions instead of the Win32 CreateThread/
ExitThread functions.

As you might expect, the C run-time’s startup code allocates and
initializes a data block for your application’s primary thread. This allows
the primary thread to safely call any of the C run-time functions. When
your primary thread returns from WinMain, the C run-time frees the
associated data block. In addition, the startup code sets up the proper
structured exception handling code so that the primary thread can suc-
cessfully call the C run-time’s signal function.

C Run-Time Functions to Avoid

The C run-time library also contains two other functions:

unsigned Tong _beginthread(void (__cdecl *start_address)(void =*),
unsigned stack_size, void *arglist);

and
void _endthread(void);

These two functions were originally created to do the work of the
new _beginthreadex and _endthreadex functions, respectively. However, as
you can see, the _beginthread function has fewer parameters and is there-
fore more limited than the fullfeatured _beginthreadex function. For
example, if you use _beginthread, you cannot create the new thread with
security attributes, you cannot create the thread suspended, and you
cannot obtain the thread’s ID value. The _endthread function has a simi-
lar story: it takes no parameters, which means you can’t give your thread
an exit value when it terminates.

There is a major problem with the _endthread function that you
can’t see, however. Just before _endthread calls ExitThread, it calls Close-
Handle, passing the handle of the new thread. To see why this is a prob-
lem, examine the following code:

DWORD dwExitCode;

HANDLE hThread = _beginthread(...);
GetExitCodeThread(hThread, &dwExitCode);
CloseHandle(hThread);

Itis quite possible that the newly created thread will execute, return,
and terminate before the first thread can call GetExitCodeThread. If this
happens, the value in AT hread is invalid because _endthread has closed the

o1

ADVANCED WINDOWS

92

new thread’s handle. Needless to say, the call to CloseHandle will also fail
for the same reason.

The new _endthreadex function does not close the thread’s handle,
and therefore the code fragment on the previous page will work cor-
rectly if we replace the call to _beginthread with a call to _beginthreadex.
Remember that _beginthreadex calls _endthreadex when your thread func-
tion returns, whereas _beginthread calls _endthread when your thread
function returns.

CHAPTEHR F O UR

WIN32 MEMORY
ARCHITECTURE

The memory architecture used by an operating system is the most impor-
tant key to understanding how the operating system does what it does.
When you start working with a new operating system, many questions
come to mind, such as “How do I share data between two applications?”
“Where does the system store the information I'm looking for?” and
“How can I make my program run more efficiently?” just to name a few.
I have found that, more often than not, a good understanding of
how the system manages memory can help determine the answers to
these questions quickly and accurately. So this chapter explores the
memory architecture used by the various implementations of Win32.

CPUs | Have Known

It’s both interesting and exciting to watch advances in microcomputer
architecture. The first microcomputer I ever owned was Tandy/Radio
Shack’s TRS-80 Model 1. This computer was designed around the Z80
microprocessor and came standard with 4 KB of RAM, although the
machine could actually address up to 64 KB of memory. I can still remem-
ber how happy I was when I had earned enough money duplicating disks
so that I could upgrade my machine to 16 KB of RAM.

When IBM introduced the IBM PG, it had no idea of the impact the
machine would have on the microcomputer industry. In fact, IBM was so
skeptical of how well its PC would be received that the company decided
to minimize its risk by utilizing hardware that was readily available
instead of designing and manufacturing custom hardware. Because of
this decision, IBM has been plagued almost from the beginning by many

93

ADVANCED WINDOWS

94

competitors making PC clones. If IBM could easily get the parts for the
machines, anyone could.

The PC was a big step forward because it used Intel’s 8088 CPU.
This 16-bit CPU allowed the processor to access as much as 1 MB of mem-
ory. But soon applications required even more than 1 MB of memory.
This need to access more memory became so great a problem that sev-
eral companies responded by offering various solutions.

Most of these solutions shared a common theme: to make different
memory objects available in the same memory location at different
times. The first of these solutions, which became known as the Expanded
Memory Specification (EMS), was developed by a Lotus, Intel, and
Microsoft collaboration. EMS allowed you to place a hardware card with,
say, 2 MB of memory on it in your computer. The card would then be
given instructions to swap various sections of the EMS memory into and
out of a fixed 64-KB section of the CPU’s addressable address space.

Another solution added overlay technology to applications’ code
segments. If segments of code had not been executed in a while, an over-
lay manager could overlay the code segment with another code segment
from the same application. Both Borland and Microsoft offer this sup-
port today in their respective C/C++ compilers. Borland calls it VROOMM
(Virtual Runtime Object-Oriented Memory Manager), and Microsoft
calls it MOVE (Microsoft Overlay Virtual Environment).

In 1982 Intel introduced a new microprocessor, the 80286, which
was capable of addressing up to 16 MB of memory. Unfortunately, the
upper 15 MB of memory could be accessed only when the processor was
set to a special mode called protected mode (used by Windows 3.x). Pro-
tected mode also enabled additional features, such as virtual memory
and support for the separation of tasks in a multitasking environment.
For backward compatibility, the 80286 also contained real mode, the default
mode of the processor, which allowed applications written for the 8086
to run. For years following, the 80286 was considered to be not much
more than a fast 8086 because no software was developed to take advan-
tage of its advanced features.

But the need to access more memory continued, and Microsoft
soon introduced a technology that allowed applications running in real
mode to access the additional memory that could be installed on 80286
machines. This technology was called the Extended Memory Specifica-
tion (XMS). Applications running in real mode on an 80286 could
access up to 15 MB of extended memory by making calls to functions

FOUR: Win32 Memory Architecture

contained in a device driver. Microsoft’s implementation of this device
driver is called HIMEM.SYS and is still used by 16-bit Windows today.

Once we had reached the point where the hardware and software
could gain access to 16 MB of memory, it became practical to run several
applications at once. This, in turn, further drove up the demand for
memory—16 MB may have been plenty for one application but not for
six or seven applications running simultaneously. For this we needed a
more powerful CPU with a more sophisticated memory architecture
than the 80286’s.

Enter the 32-bit 80386. The 80386 offered several advantages over
the 80286. In addition to supporting the 8086 real mode and the 16-bit
protected mode of the 80286, the 80386 also offered a 32-bit protected
mode and a virtual 8086 mode. The virtual 8086 mode enabled the oper-
ating system to create the illusion that several 8086 CPUs were available
on the system. When in 32-bit protected mode, the operating system
could instruct the 80386 to create virtual 8086 machines. Each of these
virtual machines could support MS-DOS running an MS-DOS applica-
tion. In fact, these applications could be preemptively multitasked by the
80386. The virtual 8086 mode was extremely important because it allowed
a migration path for users. They could use the added benefits of 32-bit
protected mode without having to give up all their current MS-DOS appli-
cations. Plus, they had the advantage of being able to run multiple MS-
DOS applications concurrently.

I have neglected to say how much memory can be addressed by the
80386 in 32-bit protected mode (the mode used by Win32 applications).
The answer is a whopping 4 GB. Not only is it 4 GB, but each application
running in this mode has its own 4-GB address space, which should be
more than enough memory for even the most demanding of applica-
tions. The only problem is that memory isn’t free. To purchase 4 GB of
memory would cost approximately $140,800 at the time I’m writing this.

Most of you probably can’t afford to walk up to your nearest com-
puter store, lay this kind of money down on the counter, and push a
wheelbarrow full of RAM back to your house. Besides, even if you could
buy all this RAM, where would you put it? It certainly wouldn’t fit in any
80386-based computer I've ever seen!

Instead, the 80386 was designed to support a technique called page
swapping, which Microsoft has implemented in 16-bit Windows, Win-
dows NT, and Windows 95. Page swapping allows portions of the hard
disk to simulate RAM. Of course, the CPU needs to work on data that is

95

ADVANCED WINDOWS

actually in memory. But if some of the data hasn’t been accessed in a
while, the operating system can step in and copy some of that data to a
location on the hard disk. After the information has been copied, the
RAM that was occupied by that data can be reallocated to data required
for another application. When the CPU needs to access the old data, the
operating system again steps in, copies another application’s data to the
hard disk, and pulls the earlier data back into memory. The CPU can
then do its stuff.

In 1989 Intel introduced the 80486. Having satisfied the demand
for addressable memory with the 80386, Intel made no major improve-
ments to the 80486’s memory architecture. Instead, the most notable
feature of the 80486 was improved execution speed. When I was writing
the first edition of this book, Intel released Pentium, its next-generation
CPU. Again, there are no major changes to the memory management
capabilities of the chip, but execution speed is improved.

A Virtual Address Space

!

Important

96

In Win32, every process’s virtual address space is 4 GB. A 32-bit pointer
can have any value from 0x00000000 through OxFFFFFFFF. This allows
a pointer to have one of 4,294,967,296 values, which covers a process’s
4-GB range.

In MS-DOS and 16-bit Windows, all processes share a single address
space. This means that any process can read from and write to memory
belonging to any other process, including the operating system itself. Of
course, this leaves every process at the mercy of every other running pro-
cess. If Process A accidentally overwrites data belonging to Process B,
Process B may become very unstable and will probably crash. A robust
operating system and environment should not allow this to occur.

In the Win32 environment, this problem is solved because each
Win32 process is given its very own private address space. When a thread
in a process is running, that thread can access only memory that belongs
to its process. The memory that belongs to all other processes is hidden
and inaccessible to the running thread.

In Windows NT, the memory belonging to the operating system itself is
also hidden from the running thread. This means that the operating
system’s data cannot be accidentally accessed by the thread.

(continued)

FOUR: Win32 Memory Architecture

In Windows 95, the memory belonging to the operating system is not
hidden from the running thread. It is therefore possible that the run-
Imporiant | ning thread could accidentally access the operating system’s data and

continued corrupt the operating system. It is not possible in Windows 95 for one
process’s thread to access memory belonging to another process. This
makes the system much more robust than 16-bit versions of Windows but
still leaves the operating system open to potential crashes.

As I said, every process has its own private address space. This
means that Process A can have a data structure stored in its address space
at address 0x12345678 while Process B has a totally different data struc-
ture stored in its address space at address 0x12345678. When threads
running in Process A access memory at address 0x12345678, these
threads are accessing Process A’s data structure. When threads running
in Process B access memory at address 0x12345678, these threads are
accessing Process B’s data structure. Threads running in Process A can-
not access the data structure in Process B’s address space, and vice versa.

Now, before you get all excited about having so much address space
for your application, keep in mind that this is virtual address space—not
physical storage. This address space is simply a range of memory ad-
dresses. Physical storage needs to be assigned or mapped to portions of
the address space before you can successfully access data without raising
access violations. We will discuss how this is done later in this chapter.

Different implementations of Win32 partition a process’s 4-GB vir-
tual address space in slightly different ways. The next two sections describe
how Windows 95 and Windows NT partition a process’s address space.

Partitions in a Process’s Address Space

Figure 4-1 on the following page shows how the Windows 95 implemen-
tation of Win32 partitions a process’s address space.

The Partition from 0x00000000 through 0x003FFFFF

This4-MB region at the bottom of the process’s addressspace is required
by Windows 95 in order to maintain compatibility with MS-DOS and 16-
bit Windows. From our Win32 applications, we should not attempt to
read from or write to this region. Ideally, the CPU should raise an access
violation if a thread in our process touches this memory, but, for techni-
cal reasons, Microsoft was unable to guard this 4 MB of address space.
However, Microsoft was able to guard the bottom 4 KB. If a thread in
your process attempts to read or write to a memory address between

97

ADVANCED WINDOWS

Figure 4-1.
Win32 partitions in Windows 95.

0x00000000 and 0x00000FFF, the CPU will catch this and raise an access
violation. Protecting this 4-KB region is incredibly useful in helping to

T

1-GB region for VxDs, memory manager, and
file system code; shared by all Win32 processes

(read/writable — but don’t touch)

A

1-GB region for memory-mapped files, shared
Win32 DLLs, 16-bit apps, and memory
allocations; shared by all Win32 processes

(usable, read/writable)

I

2,143,289,344 bytes,
private to Win32 processes
(unreserved, usable)

¥
kY

4,190,208 bytes,
MS-DOS and 16-bit Windows
(read/writable — but don’t touch)

v
5

4096 bytes,

MS-DOS and 16-bit Windows
(inaccessible — NULL pointer
assignments)

detect NULL-pointer assignments.

Itis quite common that error checking is not religiously performed
in C programs. For example, the following code performs no error

checking:

int *pnSomelnteger;

pnSomelnteger
*pnSomelInteger

98

malloc(sizeof(int));
5;

FO UR: Win32 Memory Architecture

If malloc cannot find enough memory to satisfy the request, it returns
NULL. However, the foregoing code doesn’t check for this possibility—it
assumes that the allocation was successful and proceeds to access mem-
ory at address 0x00000000. Because the bottom 4 KB of the address
space is off-limits, a memory access violation occurs and the process is
terminated. This feature helps developers find bugs in their applications.

The Partition from 0x00400000 through 0x7FFFFFFF

This 2,143,289,344-byte (2 GB minus 4 MB) partition is where the pro-
cess’s private (unshared) address space resides. One Win32 process can-
not read from, write to, or in any way access another process’s data
residing in this partition.! For all Win32 applications, this partition is
where the bulk of the process’s data is maintained. Because each process
gets its own private, unshared partition for data, Win32 applications are
far less likely to be corrupted by other applications, making the whole
system more robust.

The Partition from 0x80000000 through OxBFFFFFFF

This 1-GB partition is where the system stores data that is shared among
all Win32 processes. For example, the system dynamic-link libraries,
KERNEL32.DLL, USER32.DLL, GDI32.DLL, and ADVAPI32.DLL, are
all loaded in this address space partition. This makes these four DLLs
easily available to all Win32 processes simultaneously. It also means that
these DLLs are loaded at the same memory address for every Win32 pro-
cess. The system also maps all memory-mapped files in this partition. I
will discuss memory-mapped files in more detail in Chapter 7.

The Partition from 0xC0000000 through OxFFFFFFFF

This 1-GB partition is where the operating system’s code is located, includ-
ing the system’s virtual device drivers (VxDs), low-level memory manage-
ment code, and file system code. As with the preceding partition, all the
code in this partition is shared among all Win32 processes. Unfortu-
nately, the data in this partition is not protected—any Win32 application
may read from or write to this section, potentially corrupting the operat-
ing system.

1. Win32 does offer special functions (ReadProcessMemory and WriteProcessMemory) that do
allow one process to read from or write to data in another process’s address space, but these
functions are usually called by debuggers.

99

ADVANCED WINDOWS

How Windows NT Partitions a Process’s Address Space

Figure 4-2 shows how the Windows NT implementation of Win32 parti-
tions a process’s address space:

2-GB region for the
operating system
(inaccessible)

64-KB region for bad-
pointer assignments
(inaccessible)

2,147,352,576 bytes,
private to Win32 processes
(unreserved, usable)

64-KB region for NULL-
pointer assignments
(always free)

Figure 4-2.
Win32 partitions in Windows NT.

100

FOUR: Win32 Memory Architecture

The Partition from 0x00000000 through 0x0000FFFF

This 64-KB range at the bottom of the process’s address space is set aside
by Windows NT to help programmers catch NULL-pointer assignments—
just like the bottommost 4 KB under Windows 95. Any attempts to read
from or write to memory addresses in this partition cause an access
violation.

The Partition from 0x00010000 through 0x7FFEFFFF

This 2,147,352,576-byte (2 GB minus 64 KB minus 64 KB) partition is
where the process’s private (unshared) address space resides. This parti-
tion is like the 0x00400000 through Ox7FFFFFFF partition under Win-
dows 95.

When a Win32 process loads, it will require access to the system
dynamic-link libraries, KERNEL32.DLL, USER32.DLL, GDI32.DLL, and
ADVAPI32.DLL. The code for these DLLs as well as for any other DLLs is
loaded into this partition. Each process may load these DLLs at a differ-
ent address within this partition (although this is very unlikely). The sys-
tem also maps all memory-mapped files accessible to this process within
this partition.

The Partition from 0x7FFF0000 through 0x7FFFFFFF

This 64-KB partition just below the 2-GB line is similar to the 0x00000000
through 0x0000FFFF partition. That is, the operating system sets this
partition aside to catch invalid-pointer assignments in this range. Any
attempts to read from or write to addresses in this range always result in
an access violation.

The Partition from 0x80000000 through OxFFFFFFFF
This 2-GB partition is where the Windows NT Executive, Kernel, and
device drivers are loaded. Unlike with Windows 95, the Windows NT
operating system components are completely protected. If you attempt
to access memory addresses in this partition, your thread will raise an
access violation, causing the system to display a message box to the user
and causing Windows NT to terminate your application. See Chapter 14
for more information about access violations and how to handle them.
You’re probably thinking that it seems a little unreasonable that
Windows NT should steal 2 GB of your address space, and I'd have to
agree. However, the MIPS R4000 CPUs require that thisrange be reserved.
Microsoft could have implemented the Windows NT version of Win32

101

ADVANCED WINDOWS

differently on different CPU platforms but decided that developers
could port their applications more easily if the top 2 GB were reserved
on every Windows NT implementation of Win32.

Regions in an Address Space

102

When a process is created and given its address space, the bulk of this
usable address space is free, or unallocated. In order to use portions of
this address space, you must allocate regions within it by calling the
Win32 VirtualAlloc function (discussed in Chapter 6). The act of allocat-
ing a region is called reserving.

Whenever you reserve aregion of address space, the system ensures
that the region begins on an even allocation granularity boundary. The
allocation granularity may vary from one CPU platform to another. How-
ever, as of this writing, all the CPU platforms (x86, MIPS, Alpha, and
PowerPC) use the same allocation granularity of 64 KB. The system uses
the allocation granularity to more easily manage its internal record
keeping of the reserved regions in your address space, and to reduce the
amount of address space region fragmentation that can occur in your
address space.

When you reserve a region of address space, the system ensures
that the size of the region is an even multiple of the system’s page size.
A page is a unit of memory that the system uses in managing memory.
Like the allocation granularity, the page size can vary from one CPU to
another. The x86, MIPS, and PowerPC implementations of Win32 use a
4-KB page size, whereas the DEC Alpha implementation uses an 8-KB
page size.

If you attempt to reserve a 10-KB region of address space, the sys-
tem will automatically round up your request and reserve a region whose
size is an even multiple of the page size. This means that on an x86, a
MIPS, or a PowerPC, the system will actually reserve a region that is 12
KB, and on an Alpha, the system will reserve a 16-KB region.

When your program’s algorithms no longer need to access areserved
region of address space, the region should be freed. This is called releas-
ing the region of address space and is accomplished by calling the
VirtualFree function.

FOUR: Win32 Memory Architecture

Sometimes the system reserves regions of address space on behalf of
q your process. For example, the system allocates a region of address space
Important | ip order to store a process environment block (PEB). A PEB is a small data
structure created, manipulated, and destroyed entirely by the system.
When a process is created, the system allocates a region of address space
for the PEB.

The system also needs to create thread environment blocks (TEBs) to
help manage all the threads that currently exist in the process. The
regions for these TEBs will be reserved and released as threads in the
process are created and destroyed.

Although the system demands that any of your requests to reserve
address space regions begin on an even allocation granularity boundary
(64 KB), the system itself is not subjected to the same limitation. It is
extremely likely that the region reserved for your process’s PEB and
TEBs will not start on an even 64-KB boundary. However, these reserved
regions will still have to be an even multiple of the CPU’s page size.

W

Committing Physical Storage Within a Region

To actually use a reserved region of address space, you must allocate
physical storage and then map this storage to the reserved region. This
process is called committing physical storage. Physical storage is always
committed in pages. To commit physical storage to a reserved region,
you again call the VirtualAlloc function.

When you commit physical storage to regions, you do not have to
commit physical storage to the entire region. For example, you can
reserve a region that is 64 KB and then commit physical storage to the
second and fourth pages within the region. Figure 4-3 on the following
page shows what a process’s address space might look like. Note that the
address space is different depending on which CPU platform you’re run-
ning on. The address space on the left shows what happens on an x86, a
MIPS, or a PowerPC machine (all of which have 4-KB pages), and the
address space on the right shows what happens on an Alpha machine
(which has 8-KB pages).

103

ADVANCED WINDOWS

x86, MIPS, and
PowerPC DEC Alpha
F A

Page 11 Page 6
through through
page 16 page 8

24,576 bytes 24,576 bytes

Page 10

Page 5

8192 bytes

64-KB region in
address space

Page 3
8192 bytes

Page 4
4096 bytes
age -

Page 1

4096 bytes
S 8192 bytes

~Pag :

Figure 4-3.
Example process address spaces for different CPUs.

When your program’s algorithms no longer need to access commit-
ted physical storage in the reserved region, the physical storage should
be freed. This is called decommitting the physical storage and is accom-
plished by calling the VirtualFree function.

104

FOUR: Win32 Memory Architecture

Physical Storage

In 16-bit Windows 3.1, physical storage was considered to be the amount
of RAM that you had in your machine. In other words, if you had 16 MB
of RAM in your machine you could load and run applications that used
up to 16 MB of RAM. To help conserve memory, 16-bit Windows had lots
of memory optimizations. For example, if you wanted to run two or more
instances of an application, 16-bit Windows created a new data segment
for each instance but all instances shared the program’s code. This sig-
nificantly reduced the amount of RAM needed to run multiple instances
of an application.

Also, in 16-bit Windows 3.1 Microsoft added support for virtual
memory in the form of hard disk swap files. But an operating system can
use swap files only if the CPU directly supports them. For this reason, 16-
bit Windows was able to use swap files only when running on a computer
driven by a 386 or later CPU. From an application’s perspective, a swap
file transparently increases the amount of RAM (or storage) that the
application can use. If you have 16 MB of RAM in your machine and also
have a 20-MB swap file on your hard disk, the applications you’re run-
ning believe that your machine has a grand total of 36 MB of RAM.

Of course, you don’t actually have 36 MB of RAM. Instead, the oper-
ating system, in coordination with the CPU, saves portions of RAM to the
swap file and loads portions of the swap file back into RAM as the run-
ning applications need them. Because a swap file increases the apparent
amount of RAM available for applications, the use of a swap file in 16-bit
Windows is optional. If you don’t have a swap file, the system just thinks
that there is less RAM available for applications to use.

The Windows 95 and Windows NT implementations of memory
management are drastically different from the Windows 3.1 implemen-
tation. In these Win32 systems, the amount of RAM in the computer is
completely managed by the operating system, and no application has
any direct control over this memory.

With Win32 systems, it is best to think of physical storage as data
stored in a paging file on a disk drive (usually a hard disk drive). So when
an application commits physical storage to a region of address space by
calling the VirtualAlloc function, space is actually allocated from a file on
the hard disk. The size of the system’s paging file is the most important
factor in determining how much physical storage is available to applica-
tions; the amount of RAM you have has very little effect.

105

ADVANCED WINDOWS

106

Now, when a thread in your process attempts to access a block of
data in the process’s address space, one of two things can happen, as
shown in the flowchart in Figure 4-4.

4 NO—>»
(fault occurs)

NO —>»

YES

NO—>

YES

Figure 4-4.
How data is accessed.

In the first possibility, the data that the thread is attempting to access
is in RAM. In this case, the CPU maps the data’s virtual memory address
to the physical address in RAM, and the desired access is performed.

In the second possibility, the data that the thread is attempting to
access is not in RAM but is contained somewhere in the paging file. In
this case, the attempted access is called a page fault and the CPU notifies

FOUR: Win32 Memory Architecture

the operating system of the attempted access. The operating system then
locates a free page of memory in RAM,; if a free page cannot be found,
the system must free one. If a page has not been modified, the system can
simply free the page. But if the system needs to free a page that was modi-
fied, it must first copy the page from RAM to the paging file. Next the
system goes to the paging file, locates the block of data that needs to be
accessed, and loads the data into the free page of memory. The operat-
ing system then maps the data’s virtual memory address to the appropri-
ate physical memory address in RAM.

The more often the system needs to copy pages of memory to the
paging file and vice versa, the more your hard disk thrashes and the
slower the system runs. (Thrashing means that the operating system
spends all its time swapping pages in and out of memory instead of run-
ning programs.) So by adding more RAM to your computer, you reduce
the amount of thrashing necessary to run your applications; this will, of
course, greatly improve the performance of the system.

/’” Windows NT requires a paging file. The system will automatically create

47"”"””' one at boot time if one doesn’t exist. In addition, Windows NT is capable

of using multiple paging files. If multiple paging files exist on different

physical hard drives, the system can perform much faster because it can

write to the multiple drives simultaneously. You can add and remove pag-

ing files by opening the Control Panel, double-clicking on the System
icon, and then choosing the Virtual Memory button.

Physical Storage Not Maintained in the Paging File

After reading the previous section, you must be thinking the paging file
can get pretty large if many programs are all running at once— especially
if you’re thinking that every time you run a program the system must
reserve regions of address space for the process’s code and data, commit
physical storage to these regions, and then copy the code and data from
the program’s file on the hard disk to the committed physical storage in
the paging file.

The system does not do what I describe above; ifit did, it would take
a very long time to load a program and start it running. Instead, when
you invoke an application the system opens the application’s EXE file

107

ADVANCED WINDOWS

g

Important

and determines the size of the application’s code and data. Then the sys-
tem reserves a region of address space and notes that the physical stor-
age associated with this region is the EXE file itself. That’s right—instead
of allocating space from the paging file, the system uses the actual con-
tents or image of the EXE file as the program’s reserved region of address
space. This, of course, makes loading an application very fast and reduces
the size of the paging file.

When a program’s file image (that is, an EXE or a DLL file) on the
hard disk is used as the physical storage for a region of address space, itis
called a memory-mapped file. When an EXE or a DLL is loaded, the system
automatically reserves a region of address space and maps the file’s image
to this region. However, the system also offers a set of Win32 functions
that allow you to map data files to a region of address space. We will talk
about memory-mapped files much more in Chapter 7.

When an EXE or a DLL file is loaded from a floppy disk, both Windows
95 and Windows NT allocate storage for the entire file from the system’s
paging file. The system then copies the file from the floppy into the
system’s RAM and the system’s paging file; the paging file is said to back
the RAM. This is how setup programs operate.

Often a setup program begins with one floppy, which the user
removes from the drive in order to insert another floppy. If the system
needs to go back to the first floppy to load some of the EXE’s or the
DLLs code, it is of course no longer in the floppy drive. However,
because the system copied the file to RAM and the paging file, it will
have no trouble accessing the setup program. When the setup program
terminates, the system frees the RAM and the storage in the paging file.

Protection Attributes

108

Individual pages of physical storage allocated by the VirtualAlloc function
can be assigned different protection attributes. The Win32 protection
attributes are shown in the following table:

F O UR: Win32 Memory Architecture

Protection Attribute

Description

PAGE_NOACCESS

PAGE_READONLY

PAGE_READWRITE

PAGE_EXECUTE

PAGE_EXECUTE_READ

PAGE_EXECUTE_READWRITE

PAGE_WRITECOPY

PAGE_EXECUTE_WRITECOPY

Attempts to read, write, or execute
memory in this region cause an access
violation.

Attempts to write or execute mem-
ory in this region cause an access
violation.

Attempts to execute memory in this
region cause an access violation.

Attempts to read or write memory in
this region cause an access violation.

Attempts to write to memory in this
region cause an access violation.

There is nothing you can do to this
region to cause an access violation.

Attempts to execute memory in this
region cause an access violation.
Attempts to write to memory in this
region cause the system to give the
process its own private copy of the
page of physical storage.

There is nothing you can do to this
region to cause an access violation.
Attempts to write to memory in this
region cause the system to give the
process its own private copy of the
page of physical storage.

The x86, MIPS, PowerPC, and Alpha platforms do not support the
execute protection attribute, although this attribute is supported in the
Win32 operating system software. These hardware platforms treat read
access as execute access. This means that if you assign PAGE_EXECUTE
protection to memory, that memory will also have read privileges. Of
course, you should not rely on this behavior because Windows NT imple-
mentations on other CPUs may very well treat execute protection as

execute-only protection.

Windows 95 assigns only the PAGE_NOACCESS, PAGE_READONLY, and
PAGE_READWRITE protection attributes to pages of physical storage.

109

ADVANCED WINDOWS

Copy-On-Write Access

110

The protection attributes listed in the table on the previous page should
all be pretty self-explanatory except the last two: PAGE_WRITECOPY
and PAGE_EXECUTE_WRITECOPY. These attributes exist in order to
conserve RAM usage and space in the paging file. Win32 supports a
mechanism that allows two or more processes to share a single block of
data. There is usually no problem doing this as long as the processes all
consider the block of data to be read-only or execute-only and do not
attempt to write to it. If threads in different processes all wrote to the
same block of data, there would be total chaos.

In order to prevent this chaos, copy-on-write protection is assigned
to shared data by the operating system. When a thread in one process
attempts to write to a shared block of data, the system intervenes and per-
forms the following actions:

1. The system allocates a page of physical storage from the pag-
ing file.

2. The system finds a free page of memory in RAM.

3. The system copies the page containing the data that the thread
attempted to write to a shared block of data to the free page of
RAM obtained in step 2.

4. The system then maps the process’s virtual memory address for
this page to the new page of RAM.

After the system has performed these steps, the process is able to
access its very own private instance of this page of data. I will talk about
sharing memory and copy-on-write protection in much more detail in
Chapter 7.

In addition, you should not pass either PAGE_WRITECOPY or
PAGE_EXECUTE_WRITECOPY when you are reserving address space
or committing physical storage using the VirtualAlloc function. Doing
so will cause the call to VirtualAlloc to fail; calling GetLastError returns
ERROR_INVALID_PARAMETER. These two attributes are used by the
operating system when it maps EXE and DLL file images.

FOUR: Win32 Memory Architecture

Windows 95 does not support copy-on-write protection. When Windows
95 sees that copy-on-write protection has been requested, it immedi-
ately makes copies of the data instead of waiting for the attempted
memory write.

mdﬂ"’sﬁ

Special Access Protection Attribute Flags

In addition to the protection attributes already discussed, there are also
two protection attribute flags: PAGE_NOCACHE and PAGE_GUARD.
You use these two flags by bitwise ORing them with any of the protection
attributes except PAGE_NOACCESS.

The first of these protection attribute flags, PAGE_NOCACHE, dis-
ables caching of the committed pages. This flag is not recommended for
general use; it exists mostly for hardware device driver developers who
need to manipulate memory buffers.

The second of these protection attribute flags, PAGE_GUARD, is
also not recommended for general use. Windows NT uses this flag when
it creates a thread’s stack. See the section “A Thread’s Stack” in Chapter 6
for more information about this flag.

X
Y-}

i Windows 95 ignores the PAGE_NOCACHE and PAGE_GUARD protec-
tion attribute flags.

Bringing It All Home

In this section we’ll bring address spaces, partitions, regions, blocks, and
pages all together. The best way to start is by examining a virtual memory
map that shows all the regions of address space within a single process.
The process happens to be the VMMAPEXE sample application, pre-
sented in Chapter 5. To fully understand the process’s address space,
we’ll begin by discussing the address space as it appears when VMMap is
running under Windows NT. A sample address space map is shown in
Figure 4-5 on the following page. Later I'll discuss the differences be-
tween the Windows NT and Windows 95 address spaces.

111

ADVANCED WINDOWS

Base Protection

Address Type Size Blocks Attribute(s) Description

00000000 Free 65536

00010000 Private 4096 1 -RW-

00011000 Free 61440

00020000 Private 4096 1 -RW-

00021000 Free 61440

00030000 Private 1048576 3 -RW- Thread Stack

00130000 Private 4096 1 -RW-

00131000 Free 61440

00140000 Private 1048576 2 -RW- Default Process Heap

00240000 Mapped 65536 2 -RW-

00250000 Mapped 36864 1 -R--

00259000 Free 28672

00260000 Mapped 57344 1 -R--

0026E000 Free 8192

00270000 Mapped 266240 1 -R--

00281000 Free 61440

0020000 Mapped 4096 1 -R--

002C1000 Free 61440

002D0000 Private 4096 1 -RW-

002D1000 Free 61440

002E0000 Private 1048576 2 -RW-

003E0000 Private 4096 1 -RW-

003E1000 Free 126976

00400000 Image 36864 6 ERWC C:\AdvWin32\VMMap.@5\Dbg_x86\VMMap.EXE
00409000 Free 28672

00410000 Mapped 65536 1 -RW-

00420000 Free 265158656

10100000 Image 270336 8 ERWC F:\WINNT35\System32\MSVCRT20.d11
10142000 Free 1740562432

77D30000 Image 126976 7 ERWC F:\WINNT35\System32\WINSPQOOL.DRV
77D4F000 Free 659456

77DF0000 Image 208896 6 ERWC F:\WINNT35\system32\ADVAPI32.d11
77E23000 Free 118784

77E40000 Image 225280 6 ERWC F:\WINNT35\system32\RPCRT4.d11
77E77000 Free 36864

77E80000 Image 229376 7 ERWC F:\WINNT35\system32\USER32.d11
77EB8000O Free 32768

77EC0000 Image 208896 6 ERWC F:\WINNT35\system32\GDI32.d11
77EF3000 Free 53248

77F00000 Image 405504 7 ERWC F:\WINNT35\system32\KERNEL32.d11
77F63000 Free 53248

77F70000 Image 286720 10 ERWC F:\WINNT35\System32\ntdl11.d11
Figure 4-5. (continued)

A sample address space map showing regions under Windows NT.

112

FOUR: Win32 Memory Architecture

Figure 4-5. continued

Base Protection
Address Type Size Blocks Attribute(s) Description
77FB6000 Free 122920960

7F4F0000 Mapped 524288 2 ER--
7F570000 Free 524288

7F5F0000 Mapped 2097152 4 ER--
7F7F0000 Free 7864320

7FF70000 Private 262144 2 -RW-
7FFB0000 Mapped 147456 1 -R--
7FFD4000 Free 40960

7FFDE0Q0OQ Private 4096 1 -RW-
7FFDF000 Private 4096 1 -RW-
7FFE0000 Private 65536 2 -R--

The address space map in Figure 4-5 shows the various regions in
the process’s address space. There is one region shown per line, and
each line contains six fields.

The first, or leftmost, field shows the region’s base address. You’ll

notice that we start walking the process’s address space starting with the
region at address 0x00000000 and ending with the last region of usable
address space, which begins at address 0x7FFE0000. All regions are con-
tiguous. You’ll also notice that almost all of the base addresses for
nonfree regions start on an even multiple of 64 KB. This is because of
the allocation granularity of address space reservation imposed by the
system. A region that does not start on an even allocation granularity
boundary represents a region that was allocated by operating system
code on your process’s behalf.

The second field shows the region’s type, which is one of the
four values—free, private, image, or mapped—described in the follow-
ing table.

Type Description

Free The region of address space is not reserved, and the application
may reserve a region either at the shown base address or any-
where within the free region.

Private The region contains physical storage residing in the system’s
paging file.

(continued)

113

ADVANCED WINDOWS

114

continued

Type Description

Image The region contains physical storage residing in a memory-
mapped EXE or DLL file.

Mapped The region contains physical storage residing in a memory-
mapped data file.

The way that my VMMap application calculates this field may lead
to misleading results. When the region is not free, the VMMAP.EXE
sample application guesses at which of the three remaining values ap-
plies—there is no Win32 function we can call to request this region’s
exact usage. The way that I calculate this field’s value is by scanning all of
the blocks within the region and taking an educated guess. You should
examine my code in Chapter 5 to understand this better.

The third field shows the number of bytes that were reserved for
the region. For example, the system mapped the image of USER32.DLL
at memory address 0x77E80000. When the system reserved address
space for this image, it needed to reserve 229,376 bytes. The number in
the third field will always be an even multiple of the CPU’s page size
(4096 bytes for an x86).

The fourth field shows the number of blocks within the reserved
region. A block is a set of contiguous pages that all have the same protec-
tion attributes and that are all backed by the same type of physical stor-
age—UI’ll talk more about this in the next section of this chapter. For free
regions, this value will always be 0 because there can be no physical stor-
age committed within a free region. (Nothing is displayed in the third
column for a free region.) For the nonfree regions, this value can be any-
where from 1 to a maximum number of (region size / page size). For
example, the region that begins at memory address 0x77E80000 has a
region size of 229,376 bytes. Because this process is running on an x86,
for which the page size is 4096 bytes, the maximum number of different
committed blocks is 56 (229,376 / 4096); the map shows that there are 7
blocks in the region.

The fifth field on the line shows the region’s protection attributes.
The individual letters represent the following: E = execute, R=read, W=
write, C= copy-on-write. If the region does not show any of these protec-
tion attributes, the region has no access protection. The free regions
show no protection attributes since unreserved regions do not have pro-
tection attributes associated with them. Neither the guard protection

FOUR: Win32 Memory Architecture

attribute flag nor the no cache protection attribute flag will ever appear
here; these flags have meaning only when associated with physical stor-
age, not reserved address space. Protection attributes are given to a
region for the sake of efficiency only and are always overridden by pro-
tection attributes assigned to physical storage.

The sixth and last field shows a text description of what’s in the
region. For free regions, this field will always be blank; for private regions,
it will usually be blank because VMMAP.EXE has no way of knowing why
the application reserved this private region of address space. However,
VMMAPEXE can identify two types of private regions: thread stacks and
the process’s default heap. VMMAPEXE can usually detect thread stacks
because they will commonly have a block of physical storage within them
with the guard protection attribute. However, when a thread’s stack is
full it will not have a block with the guard protection attribute, and
VMMAPEXE will be unable to detect it. VMMAP.EXE can detect the
process’s default heap (discussed in Chapter 8) by obtaining the region’s
base address and comparing it with the value returned by the
GetProcessHeap function.

For image regions, I can display the full pathname of the file that
is mapped into the region. VMMAP.EXE obtains this information by
calling GetModuleFileName. For mapped regions, nothing is displayed
because VMMAP.EXE has no way of determining what data file the pro-
cess has mapped to the region.

Inside the Regions

It’s possible to break down the regions even further than shown in Fig-
ure 4-5. Figure 4-6 shows the same address space map as Figure 4-5, but
the blocks contained inside each region are also displayed.

Base Protection
Address Type Size Blocks Attribute(s) Description
00000000 Free 65536
00010000 Private 4096 1 -RW-
00010000 Private 4096 -RW- --
00011000 Free 61440
00020000 Private 4096 1 -RW-
00020000 Private 4096 -RW- --
Figure 4-6. (continued)

A sample address space map showing blocks within regions under Windows NT.

115

ADVANCED WINDOWS

Figure 4-6. continued

Base Protection
Address Type Size Blocks Attribute(s) Description
00021000 Free 61440
00030000 Private 1048576 3 -RW- Thread Stack
00030000 Reserve 1036288 -RW- --
0012D000 Private 4096 -RW- G-
0012E000 Private 8192 -RW- --
00130000 Private 4096 1 -RW-
00130000 Private 4096 -RW- --
00131000 Free 61440
00140000 Private 1048576 2 -RW- Default Process Heap
00140000 Private 8192 -RW- --
00142000 Reserve 1040384 -RW- --
00240000 Mapped 65536 2 -RW-
00240000 Mapped 4096 -RW- --
00241000 Reserve 61440 -RW- --
00250000 Mapped 36864 1 -R--
00250000 Mapped 36864 -R-- --
00259000 Free 28672
00260000 Mapped 57344 1 -R--
00260000 Mapped 57344 -R-- -~
0026E000 Free 8192
00270000 Mapped 266240 1 -R--
00270000 Mapped 266240 -R-- --
002B1000 Free 61440
002C0000 Mapped 4096 1 -R--
002C0000 Mapped 4096 -R-- --
002C1000 Free 61440
00200000 Private 4096 1 -RW-
002D0000@ Private 4096 -RW- --
002D1000 Free 61440
002E0000 Private 1048576 2 -RW-
002E0000 Private 65536 -RW- --
002F0000 Reserve 983040 -RW- --
003E0000 Private 4096 1 -RW-
003E0000 Private 4096 -RW- --
003E1000 Free 126976 .
00400000 Image 36864 6 ERWC C:\AdvWin32\VMMap.@5\Dbg_x86\VMMap.EXE
00400000 Image 4096 -R-- --
00401000 Image 8192 ER-- --
00403000 Image 4096 -RW- --
00404000 Image 4096 -R-- --
00405000 Image 8192 -RW- --
00407000 Image 8192 -R-- --
00409000 Free 28672

116

(continued)

FOUR: Win32 Memory Architecture

Figure 4-6. continued

Base Protection
Address Type Size Blocks Attribute(s) Description
00410000 Mapped 65536 1 -RW-
00410000 Mapped 65536 -RW- --
00420000 Free 265158656
10100000 Image 270336 8 ERWC F:\WINNT35\System32\MSVCRT20.d11
10100000 Image 4096 -R-- --
10101000 Image 172032 ER-- --
1012B000 Image 8192 -RW- --
10120000 Image 4096 -R-- --
1012E000 Image 12288 -RW- --
10131000 Image 20480 -RWC --
10136000 Image 4096 -RW- --
10137000 Image 45056 -R-- --
10142000 Free 1740562432
77D30000 Image 126976 7 ERWC F:\WINNT35\System32\WINSPOOL.DRV
77D30000 Image 4096 -R-- --
77031000 Image 73728 ER-- --
77D43000 Image 4096 -RW- --
77D44000 Image 8192 -R-- --
77D46000 Image 8192 -RW- --
77D48000 Image 4096 -RWC --
77D49000 Image 24576 -R-- --
77D4F000 Free 659456
77DF0000 Image 208896 6 ERWC F:\WINNT35\system32\ADVAPI32.d11
77DFQ000 Image 4096 -R-- --
77DF1000 Image 131072 ER-- --
77E11000 Image 4096 -RW- --
77E12000 Image 12288 -R-- --
77E15000 Image 20480 -RWC --
77E1A000 Image 36864 -R-- --
77E23000 Free 118784
77E40000 Image 225280 6 ERWC F:\WINNT35\system32\RPCRT4.d11
77E40000 Image 4096 -R-- --
77E41000 Image 180224 ER-- --
77E6D00O Image 4096 -RW- --
77E6EQ00 Image 4096 -R-- --
77E6F000 Image 4096 -RWC --
77E70000 Image 28672 -R-- --
77E77000 Free 36864
77E80000 Image 229376 7 ERWC F:\WINNT35\system32\USER32.d11
77E80000 Image 4096 -R-- --
77E81000 Image 172032 ER-- --
77EAB0OO Image 4096 -RW- --
77EAC000 Image 4096 -R-- --

(continued)

117

ADVANCED WINDOWS

Figure 4-6. continued

Base Protection

Address Type Size Blocks Attribute(s) Description
77EADOGO Image 4096 -RW- --
77EAEQ00 Image 4096 -RWC --
77EAFQ00 Image 36864 -R-- --

77EB800O Free 32768

77EC0000 Image 208896 6 ERWC F:\WINNT35\system32\GDI32.d11
77EC0000 Image 4096 -R-- --
77EC1000 Image 167936 ER-- --
77EEAQ00 Image 4096 -RW- --
77EEBOQO Image 4096 -R-- --
77EEC000 Image 4096 -RW- --
77EEDOOO Image 24576 -R-- --

77EF3000 Free 53248

77F00000 Image 405504 7 ERWC F:\WINNT35\system32\KERNEL32.d11
77F00000 Image 4096 -R-- --
77F01000 Image 229376 ER-- --
77F39000 Image 8192 -RW- --
77F3B000 Image 4096 -R-- --
77F3C000 Image 8192 -RW- --
77F3E000 Image 4096 -RWC --
77F3F000 Image 147456 -R-- --

77F63000 Free 53248

77F70000 Image 286720 10 ERWC F:\WINNT35\System32\ntdl11.d11
77F70000 Image 4096 -R-- --
77F71000 Image 155648 ER-- --
77F97000 Image 4096 -RW- --
77F98000 Image 4096 -R-- --
77F99000 Image 4096 -RWC --
77F9A000 Image 4096 -RW- --
77F9B000 Image 4096 -RWC --
77F9C000 Image 28672 -R-- --
77FA3000 Image 4096 -RWC --
77FA4000 Image 73728 -R-- --

77FB6000 Free 122920960

7F4F0000 Mapped 524288 2 ER--
7F4FA000 Mapped 126976 ER-- --
7F50F000 Reserve 397312 ER-- --

7F570000 Free 524288

7F5F0000 Mapped 2097152 4 ER--
7F5F0000 Mapped 8192 ER-- --
7F5F2000 Reserve 1040384 ER-- --
7F6F0000 Mapped 20480 ER-- --
7F6F5000 Reserve 1028096 ER-- --

118

(continued)

FOUR: Win32 Memory Architecture

Figure 4-6. continued

Base Protection

Address Type Size Blocks Attribute(s) Description

7F7F0000 Free 7864320

7FF70000 Private 262144 2 -RW-
7FF70000 Private 4096 -RW- --
7FF71000 Reserve 258048 -RW- --

7FFB0000 Mapped 147456 1 -R--
7FFBO000 Mapped 147456 -R-- --

7FFD4000 Free 40960

7FFDE00O Private 4096 1 -RW-
7FFDE@@@ Private 4096 -RW- --

7FFDF000 Private 4096 1 -RW-
7FFDFO0@ Private 4096 -RW- --

7FFEQQ0Q Private 65536 2 -R--
7FFEGO00 Private 4096 -R-- --
7FFE1000 Reserve 61440 -R-- --

Of course, free regions do not expand at all because they have no
committed pages of storage within them. Each block line shows four
fields as explained below.

The first field shows the address of a set of pages all having the same
state and protection attributes. For example, there is a single page (4096
bytes) of memory with read protection committed at address 0x10100000.
At address 0x10101000, there is a block of 42 pages (172,032 bytes) of
committed storage that has execute and read protection. If both of
these blocks had the same protection attributes, the two would be com-
bined and would appear as a single 43-page (176,128-byte) entry in the
memory map.

The second field shows what type of physical storage is backing the
block within the reserved region. One of four possible values can appear
in this field: private, mapped, image, or reserve. A value of private,
mapped, or image indicates that the block is backed by physical storage
in the paging file, a data file, or aloaded EXE or DLL file, respectively. If
the value is reserve, the block is not backed by any physical storage at all,
but the system may commit physical storage to it later.

For the most part, all the committed blocks within a single region
are backed by the same type of physical storage. However, it is possible
for different committed blocks within a single region to be backed by dif-
ferent types of physical storage. For example, a memory-mapped file
image will be backed by an EXE or a DLL file. If you were to write to a

119

ADVANCED WINDOWS

single page in this region that had PAGE_WRITECOPY or PAGE _EXE-
CUTE_WRITECOPY, the system would make your process a private copy
of the page backed by the paging file instead of the file image. This new
page would have the same attributes as the original page without the
copy-on-write protection attribute.

The third field shows the size of the block. All blocks are contigu-
ous within a region—there will not be any gaps.

The fourth field shows the protection attributes and protection
attribute flags of the block. A block’s protection attributes override
the protection attributes of the region that contains the block. The pos-
sible protection attributes are identical to those that can be specified for
aregion; however, the two protection attribute flags, PAGE_GUARD and
PAGE_NOCACHE, which are never associated with a region, may be
associated with a block.

Address Space Differences for Windows 95

Figure 4-7 shows the address space map when the same VMMAPEXE
program is executed under Windows 95.

Base Protection
Address Type Size Blocks Attribute(s) Description
00000000 Free 4194304
00400000 Private 65536 ---- C:\ADVWIN32\VMMAP-.@5\REL_X86\VMMAP .EXE
00400000 Private 8192 -R-- --
00402000 Private 4096 -RW- --
00403000 Private 4096 -R-- --
00404000 Private 8192 -RW- --
00406000 Private 8192 -R-- --
00408000 Reserve 32768 ---- --
00410000 Private 1114112 ---- Default Process Heap
00410000 Private 4096 -RW- --
00411000 Reserve 1044480 ---- --
00510000 Private 4096 -RW- --
00511000 Reserve 61440 ---- --
00520000 Private 65536 -RW-
00520000 Private 4096 -RW- --
00521000 Reserve 61440 -RW- --
Figure 4-7. (continued)

A sample address space map showing blocks within regions under Windows 95.

120

FOUR: Win32 Memory Architecture

Figure 4-7. continued

Base Protection
Address Type Size Blocks Attribute(s) Description
00530000 Private 1179648 6 ---- Thread Stack
00530000 Reserve 1077248 ---- --
00637000 Private 4096 -RW- --
00638000 Reserve 24576 o ---- --
0063E000 Private 4096 00 ---- --
0063F000 Private 4096 -RW- --
00640000 Reserve 65536 ---- --
00650000 Private 1048576 2 -RW-
00650000 Private 65536 -RW- --
00660000 Reserve 983040 -RW- --
00750000 Private 65536 2 -RW-
00750000 Private 4096 -RW- --
00751000 Reserve 61440 -RW- --
00760000 Free 261750784
10100000 Private 327680 6 ---- C:\WINDOWS\SYSTEM\MSVCRT20.DLL
10100000 Private 176128 -R-- --
1012B000 Private 8192 -RW- --
1012D000 Private 4096 -R-- --
1012E000 Private 36864 -RW- --
10137000 Private 45056 -R-- --
10142000 Reserve 57344 ---- --
10150000 Free 1877671936
80000000 Private 4096 1 ----
80000000 Reserve 4096 00 ---- --
80001000 Private 4096 1 ----
80001000 Private 4096 -RW- --
80002000 Private 4096 1 -—--
80002000 Private 4096 -RW- --
80003000 Private 4096 1 ----
80003000 Private 4096 -RW- --
80004000 Private 622592 1 ----
80004000 Private 622592 -RW- --
8009C000 Private 65536 2 ----
8009C000 Private 16384 -RW- --
800A0000 Reserve 49152 === --
800AC000 Private 4096 1 ----
800ACO0P0 Private 4096 -RW- --
800AD0G0O Private 516096 1 ----
800AD0OOO Private 516096 -RW- --

(continued)

121

ADVANCED WINDOWS

Figure 4-7. continued

Base Protection
Address Type Size Blocks Attribute(s) Description
8012B000 Private 196608 ----
8012B000O Private 196608 -RW- --
81A81000 Private 16384 ----
81A81000 Private 4096 -RW- --
81A82000 Reserve 8192 = ---- --
81A84000 Private 4096 -RW- --
81A85000 Private 12288 ----
81A85000 Private 12288 -R-- --
81A88000 Private 12288 ----
81A88000 Private 12288 -R-- --
81A8B000 Private 94208 ----
81A8B000Q Private 94208 -R-- --
81AA2000 Private 24576 ----
81AA2000 Private 24576 -R-- --
81AA8000 Private 4096 ----
81AA8000 Private 4096 -RW- --
81AA9000 Private 2228224 -RW-
81AA9000 Private 69632 -RW- --
81ABAQQO Reserve 61440 -RW- --
81AC9000 Private 24576 -RW- --
81ACF000 Reserve 8192 -RW- --
81AD1000 Private 8192 -RW- --
81AD3000 Reserve 2052096 -RW- --
81CC800GO Private 4096 -RW- --
81CC9000 Private 4096 ----
81CC9000 Private 4096 -RW- --
81CCAQ00 Private 524288 -
81CCAQ0D Private 12288 -RW- --
81CCD0OOO Reserve 507904 ---- --
81D49000 Private 4096 -RW- --
81D4A000 Private 4096 ----
81D4A000 Private 4096 -RW- --
81D4B000 Private 4096 ----
81D4B00O Private 4096 -RW- --
81D4C000 Private 4096 ----
81D4C000 Private 4096 -RW- --
81D4D000 Private 4096 ----
81D4D000 Private 4096 -RW- --

122

(continued)

FOUR: Win32 Memory Architecture

Figure 4-7. continued

Base Protection
Address Type Size Blocks Attribute(s) Description
81D4E000Q Private 2228224 5 -RW-
81D4EQOO Private 69632 -RW- --
81D5F000 Reserve 61440 -RW- --
81D6EAOO Private 8192 -RW- --
81D70000 Reserve 2084864 -RW- --
81F6D000 Private 4096 -RW- --
81F6E000 Private 2162688 11 -RW-
81F6EQ00 Private 4096 -RW- --
81F6F000 Reserve 61440 -RW- --
81F7EQ00 Private 8192 -RW- --
81FB8000O Reserve 4096 -RW- --
81F81000 Private 24576 -RW- --
81F87000 Reserve 4096 -RW- --
81F88000 Private 4096 -RW- --
81F89000 Reserve 24576 -RW- --
81F8FP00 Private 4096 -RW- --
81F90000 Reserve 2019328 -RW- --
8217D000 Private 4096 -RW- --
8217E000 Private 4096 1 ----
8217E000 Private 4096 -RW- --
8217F000 Private 12288 1 ----
8217F000 Private 12288 -R-- --
82182000 Private 4096 1 ----
82182000 Private 4096 -RW- --
82183000 Private 4096 1 ----
82183000 Private 4096 -RW- --
82184000 Private 2097152 3 ----
82184000 Private 4096 -RW- --
82185000 Reserve 2088960 @@ ---- --
82383000 Private 4096 -RW- --
82384000 Private 4096 1 ----
82384000 Private 4096 -RW- --
82385000 Free 16384
82389000 Private 4096 1 ----
82389000 Private 4096 -RW- --
8238A000 Free 12288
8238D000 Private 4096 1 ----
8238D000 Private 4096 -RW- --
8238E000 Free 24576

(continued)

123

ADVANCED WINDOWS

Figure 4-7. continued

Base Protection
Address Type Size Blocks Attribute(s) Description
82394000 Private 4096 1 ----
82394000 Private 4096 -RW- --
82395000 Free 4096
82396000 Private 4096 1 ----
82396000 Private 4096 -RW- --
82397000 Private 16384 2 -RW-
82397000 Private 4096 -RW- --
82398000 Reserve 12288 -RW- --
8239B000 Free 4096
8239C000 Private 4096 1 ----
8239C000 Private 4096 -RW- --
82390000 Free 16384
823A1000 Private 73728 1 ----
823A1000 Private 73728 -R-- --
823B3000 Free 20480
823B8000 Private 4096 1 ----
823B800@ Private 4096 -RW- --
823B9000 Private 2097152 5 ----
823B9000 Private 49152 -RW- --
823C5000 Reserve 4096 00 ---- --
823C6000 Private 8192 -RW- --
823C8000 Reserve 2031616 ---- --
825B8000 Private 4096 -RW- --
825B9000 Private 1056768 3 ----
825B9000 Private 4096 -RW- --
825BA000 Reserve 1048576 ---- --
826BA000 Private 4096 -RW- --
826BB000O Private 1052672 3 ----
826BBA0O Private 4096 -RW- --
826BC000 Reserve 1044480 ---- --
827BB000 Private 4096 -RW- --
827BC000 Private 94208 1 -RW-
827BCO0O Private 94208 -RW- --
827D3000 Private 24576 1 -RW-
827D3000 Private 24576 -RW- --
827D9000 Free 2039808
829CB000 Private 163840 1 ----
829CB000O Private 163840 -R-- --
829F3000 Private 73728 1 ----
829F3000 Private 73728 -R-- --

124

(continued)

FOUR: Win32 Memory Architecture

Figure 4-7. continued

Base Protection
Address Type Size Blocks Attribute(s) Description
82A05000 Free 1027649536
BFE10000 Private 73728 ----
BFE10000 Private 40960 -R-- --
BFE1AQQGO® Private 4096 -RW- --
BFE1BO@@ Private 4096 -R-- --
BFE1CO@@ Private 4096 -RW- --
BFE1DO@® Private 20480 -R-- --
BFE22000 Free 712704
BFEDQQQO Private 32768 ---- C:\WINDOWS\SYSTEM\ADVAPI32.DLL
BFEDQGOO Private 8192 -R-- --
BFED2000 Private 4096 -RW- --
BFED3000 Private 20480 -R-- --
BFED8000 Free 98304
BFEF0000 Private 200704 ----
BFEF@000 Private 143360 -R-- --
BFF13000 Private 4096 -RW- --
BFF14000 Private 53248 -R-- --
BFF21000 Free 61440
BFF30000 Private 147456 ---- C:\WINDOWS\SYSTEM\GDI32.DLL
BFF30000 Private 106496 -R-- --
BFF4A000 Private 8192 -RW- --
BFF4C000 Private 16384 -R-- --
BFF50000 Private 4096 -RW- --
BFF51000 Private 12288 -R-- --
BFF54000 Free 49152
BFF60000 Private 57344 ---- C:\WINDOWS\SYSTEM\USER32.DLL
BFF60000 Private 24576 -R-- --
BFF66000 Private 4096 -RW- --
BFF67000 Private 28672 -R-- --
BFF6EQQ0Q Free 8192
BFF70000 Private 524288 ---- C:\WINDOWS\SYSTEM\KERNEL32.DLL
BFF70000 Private 278528 -R-- --
BFFB400@ Reserve 8192 = ---- --
BFFB600@ Private 12288 -R-- --
BFFB90Q@ Private 16384 -RW- -~
BFFBDO@@ Private 24576 -R-- --
BFFC3000 Private 12288 -RW- --
BFFC6000 Private 73728 -R-- --
BFFD80GO@ Reserve 98304 = ---- --
BFFF0000 Free 65536

125

ADVANCED WINDOWS

126

The biggest difference between the two address space maps is the
lack of information offered under Windows 95. For example, each region
and block will reflect whether the area of address space is free, reserve,
or private. You will never see mapped or image because Windows 95 does
not offer the additional information indicating whether the physical
storage backing the region is a memory-mapped file or is contained in
an EXE or a DLL’s file image.

You’ll notice that most of the region sizes are exact multiples of the
allocation granularity (64 KB). If the sizes of the blocks contained within
aregion do not add up to a multiple of the allocation granularity, there
is frequently a block of reserved address space at the end of the region.
This block is whatever size is necessary to bring the region to an even
64 KB. For example, the region starting at address 0x00520000 consists
of 2 blocks: a4-KB committed block of storage and a reserved block that
occupies a 60-KB range of memory addresses.

Finally, the protection flags never reflect execute or copy-on-write
access because Windows 95 does not support these flags. The two protec-
tion attribute flags, no cache and guard, are also not supported. Because
the guard flag is not supported, VMMAPEXE uses a more complicated
technique to determine whether aregion of address space is reserved for
a thread’s stack.

You will notice that, unlike under Windows NT, under Windows 95
the region of address space between 0x80000000 and OxBFFFFFFF can
be examined. This is the partition that contains the address space shared
by all Win32 applications. As you can see, the four system DLLs are loaded
into this region of address space and are therefore available to all Win32
processes.

CHAPTEHR FI1VE

EXPLORING VIRTUAL
MEMORY

In the last chapter, we discussed how the system manages virtual mem-
ory, how each process receives its very own private address space, and
what a process’s address space looks like. In this chapter, we move away
from the abstract and examine some of the Win32 functions that give us
information about the system’s memory management and about the vir-
tual address space in a process.

System Information

To understand how Win32 uses virtual memory, you need to know how
the current Win32 implementation works. The GetSystemInfo function
retrieves information (including virtual memory information) about the
current Win32 implementation:

VOID GetSystemInfo (LPSYSTEM_INFO 1pSystemInfo);

You must pass the address of a SYSTEM_INFO structure to this
function. The function will initialize the structure’s members and return.
Here is what the SYSTEM_INFO data structure looks like:

typedef struct _SYSTEM_INFO {
DWORD dwOemlId;
DWORD dwPageSize;
LPVOID TpMinimumApplicationAddress;
LPVOID 1pMaximumApplicationAddress;
DWORD dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
DWORD dwReserved;

} SYSTEM_INFO;

127

ADVANCED WINDOWS

When the system boots, it determines what the values of these mem-
bers should be; for a given system the values will always be the same.
GetSystemInfo exists so that an application can query these values at run
time. Of all the members in the structure, only four of them have anything
to do with memory. These four members are explained in the table below:

Member Name

Description

dwPageSize

IpMinimumApplicationAddress

IpMaximumApplicationAddress

dwAllocationGranularity

Shows the size of a memory page. On x86,
MIPS, and PowerPC CPUs, this value is 4
KB. On Alpha CPUs, this value is 8 KB.

Gives the minimum memory address of
every process’s usable address space. On
Windows 95, this value is 4,194,304, or
0x00400000, because the bottom 4 MB of
every process’s address space is inaccessible.
On Windows NT, this value is 65,536, or
0x00010000, because the first 64 KB of
every process’s address space is reserved.

Gives the maximum memory address of
every process’s usable private address
space. On Windows 95, this address is
2,147,483,647, or Ox7FFFFFFF, because

the shared memory-mapped file region
and the shared operating system code are
contained in the top 2-GB partition. On
Windows NT, this address is 2,147,418,111,
or 0x7FFEFFFF, because unusable address
space begins just 64 KB below the 2-GB line
and extends to the end of the process’s
address space.

Shows the granularity of a reserved region
of address space. As of this writing, this
value is 65,536 because all implementations

of Win32 reserve address space on even
64-KB boundaries.

The System Information Sample Application

The SysInfo application (SYSINFO.EXE), listed in Figure 5-1 beginning
on page 130, is a very simple program that calls GetSystemInfo and displays
the information returned in the SYSTEM_INFO structure. The source
code files, resource files, and make file for the application are in the

128

FIVE: Exploring Virtual Memory

SYSINFO.05 directory on the companion disc. The dialog boxes below
show the results of running the SysInfo application on several different
platforms.

Windows 95 on Intel x86.

Windows NT on Intel x86.

Windows NT on MIPS R4000.

Windows NT on DEC Alpha.

129

ADVANCED WINDOWS

Syslnfo.ico

Figure 5-1. (continued)
The SysInfo application.

130

FIVE: Exploring Virtual Memory

Figure 5-1. continued

////////./////////.///,//////,////_//»////-//»/,//////////,//////////

_ LPCTSTR GetFTagStr (DNORD dwFlag, LONGDATA FlagList(l,

(continued)

131

ADVANCED WINDOWS

Figure 5-1. continued

(continued)

132

FIVE: Exploring Virtual Memory

Figure 5-1. continued

SetDlgItemText(hwnd, IDC_OEMID,
BigNumToString(si.dwOemId;vszBuf)):

;SetDigItemText(hwnd. 10, PAGESIZB el

' stprintf(szﬁuf, TEXTC
si dectivePracessorMask

UINT codewotify) {

switch tid} {
case IBCAN&EL

(continued)

133

ADVANCED WINDOWS

Figure 5-1. continued

(continued)

134

FI1V E: Exploring Virtual Memory

Figure 5-1. continued

//

/1
/7 Generated fr‘om the TEXTINCLUDE 2 resource.

Sl -
.#1nc1ude "afxres h” .

',‘////1//1///1'///; 111 '///;///////1////// 111911
. undef APSTUDIO_ mnou : o :

(continued)

135

ADVANCED WINDOWS

Figure 5-1. continued

(continued)

136

FI1VE: Exploring Virtual Memory

Figure 5-1. continued -

SYSINFO ICON DISCARDABLE "SysInfo.Ico"

#ifndef APSTUDIO_INVOKED
//
!/

// Generated from the TEXTINCLUDE 3 resource.

/7 . o

_ //////////////////////////////////f////Il////////////f////////
#endlf £/ not APSTUDIQ _INVOKED:.

Virtual Memory Status

There is a Win32 function called GlobalMemoryStatus that retrieves dynamic
information about the current state of memory:

VOID GlobalMemoryStatus (LPMEMORYSTATUS 1pmstMemStat);

I think that this function is very poorly named— GlobalMemoryStatus
implies that the function is somehow related to the global heaps in 16-
bit Windows. Win32 does not have a global heap but does offer the old
global heap functions such as GlobalAlloc purely to ease the burden of
porting a 16-bit Windows application to Win32. I think that Global-
MemoryStatus should have been called something like VirtualMemory-
Status instead.

When you call GlobalMemoryStatus, you must pass the address of a
MEMORYSTATUS structure. Here is what the MEMORYSTATUS data
structure looks like:

typedef struct _MEMORYSTATUS {
DWORD dwlLength;
DWORD dwMemoryload;
DWORD dwTotalPhys;
DWORD dwAvailPhys;
DWORD dwTotalPageFile;
DWORD dwAvailPageFile;
DWORD dwTotalVirtual;
DWORD dwAvailVirtual;
} MEMORYSTATUS, *LPMEMORYSTATUS;

Before calling GlobalMemoryStatus, you must initialize the dwLength
member to the size of the structure in bytes—that is, sizeof(MEMO-
RYSTATUS). This allows Microsoft to add members to this structure in

137

ADVANCED WINDOWS

future versions of the Win32 API without breaking existing applications.
When you call GlobalMemoryStatus, it will initialize the remainder of the
structure’s members and return. The VMStat sample application in the
next section describes the various members and their meanings.

The Virtual Memory Status Sample Application

138

The VMStat application (VMSTAT.EXE), listed in Figure 5-2, displays a
simple dialog box that lists the results of a call to GlobalMemoryStatus. The
source code files, resource files, and make file for the application are in
the VMSTAT.05 directory on the companion disc. Below is the result of
running this program on Windows 95 using an 8-MB Intel 486 machine:

The dwMemoryLoad member (shown as Memory Load) gives arough
estimate of how busy the memory management system is. This number
can be anywhere from 0 to 100. The exact algorithm used to calculate
this value varies between Windows 95 and Windows NT. In addition, the
algorithm is subject to change in future versions of the operating system.
In practice, the value reported by this member variable is all but useless.

The dwTotalPhys member (shown as TotalPhys) indicates the total
number of bytes of physical memory (RAM) that exist. On this8-MB 486
machine, this value is 6,983,680, which is just over 6.6 MB. This value is
the exact amount of memory, including any holes in the address space
between the low 640 KB and 1 MB of physical memory. The dwAvailPhys
member (shown as AvailPhys) indicates the total number of bytes of
physical memory available for allocation.

The dwTotalPageFile member (shown as TotalPageFile) indicates the
maximum number of bytes that can be contained in the paging file(s) on
your hard disk(s). Although VMStat reported that the paging file is cur-
rently 58,777,600 bytes, the system can expand and shrink the paging file
as it sees fit. The dwAvailPageFile member (shown as AvailPageFile) indi-
cates that 57,204,736 bytes in the paging file(s) are not committed to any

FIVE: Exploring Virtual Memory

process and are currently available should a process decide to commit
any private storage.

The dwTotalVirtual member (shown as TotalVirtual) indicates the
total number of bytes that are private in each process’s address space.
The value 2,143,289,344 is 4 MB short of being exactly 2 GB. The bottom
4 MB of inaccessible address space accounts for the 4-MB difference. If
you run VMStat under Windows NT, you'll see that dwTotalVirtual comes
back with a value of 2,147,352,576, which is just 128 KB short of being
exactly 2 GB. The 128-KB difference exists because the system never lets
an application gain access to the 64 KB at the beginning or the 64 KB at
the end of a 2-GB mark of address space.

The last member, dwAvailVirtual (shown as AvailVirtual), is the only
member of the structure specific to the process calling GlobalMemory-
Status—all the other members apply to the system and would be the
same regardless of which process was calling GlobalMemoryStatus. To cal-
culate this value, GlobalMemoryStatus adds up all of the free regions in the
calling process’s address space. The dwAvailVirtual value 2,139,422,720
indicates the amount of free address space that is available for VMStat to
do with what it wants. If you subtract the dwAvailVirtual member from
the dwTlotalVirtual member, you’ll see that VMStat has 3,866,624 bytes re-
served in its virtual address space.

There is no member that indicates the amount of physical storage
currently in use by the process.

VMStat.ico

Figure 5-2. (continued)
The VMStat application.

139

ADVANCED WINDOWS

Figure 5-2. continued

(continued)

140

FIVE: Exploring Virtual Memory

Figure 5-2. continued

//////////'///,/////////////////////////’/////////////-//////////

© BOOL Blg..OnInitDong (HNND hwnd, HWND. hwndFocus. R
LPARAM lParam) (i .

(continued)

141

ADVANCED WINDOWS

Figure 5-2. continued

(continued)

142

FIVE: Exploring Virtual Memory

Figure 5-2. continued

VMSTAT.RC

v //Microsoft v1sua1 C++ generated resource script
/!
.#1nc1ude "Resource h

U#define AP$TUD§0 READONLY SYMBOLS ‘ :
H_/////////////{/////////7///////////////////////////////1//////

om the ‘TEXTINCLUDE 2,, resouree

UDE DISCARDABLE

L /f[//[f/[f//f/f/////l//////f////////il/i!l/
M'PSTﬂHIB INVOKEB "

(continued)

143

ADVANCED WINDOWS

Figure 5-2. continued

144

FIV E: Exploring Virtual Memory

Determining the State of an Address Space

Win32 offers a function that lets you query certain information (for ex-
ample, size, storage type, and protection attributes) about a memory
address in your address space. In fact, the VMMap sample application
shown later in this chapter uses this function to produce the virtual
memory map dumps that appeared in Chapter 4. This Win32 function is
called VirtualQuery:

DWORD VirtualQuery(LPVOID 1pAddress,
PMEMORY_BASIC_INFORMATION 1pBuffer,
DWORD dwlLength);

When you call VirtualQuery, the first parameter, [pAddress, must con-
tain the virtual memory address that you want information about. The
[pBuffer parameter is the address to a MEMORY_BASIC_INFORMATION
structure that you must allocate. This structure is defined in WINNT.H
as follows:

typedef struct _MEMORY_BASIC_INFORMATION {
PVOID BaseAddress;
PVOID AllocationBase;
DWORD AllocationProtect;
DWORD RegionSize;
DWORD State;
DWORD Protect;
DWORD Type;
} MEMORY_BASIC_INFORMATION, *PMEMORY_BASIC_INFORMATION;

The last parameter, dwlLength, specifies the size of a MEMORY-
-BASIC_INFORMATION structure. VirtualQuery returns the number of
bytes copied into the buffer.

Based on the address that you pass in the lpAddress parameter,
VirtualQuery fills the MEMORY_BASIC_INFORMATION structure with
information about the range of adjoining pages that share the same
state, protection attributes, and type. See the table on the following page
for a description of the structure’s members.

145

ADVANCED WINDOWS

Member Name Description

BaseAddress This is the same value as the lpAddress parameter
rounded down to an even page boundary.

AllocationBase Identifies the base address of the region containing the
address specified in the lpAddress parameter.

AllocationProtect Identifies the protection attribute assigned to the region
when it was initially reserved.

RegionSize Identifies the size, in bytes, for all pages starting at
BaseAddress that have the same protection attributes,
state, and type as the page containing the address
specified in the I[pAddress parameter.

State Identifies the state (MEM_FREE, MEM_RESERVE,
or MEM_COMMIT) for all adjoining pages that have
the same protection attributes, state, and type as the
page containing the address specified in the lpAddress
parameter.

If the state is free, the AllocationBase, AllocationProtect,
Protect, and Type members are undefined.

If the state is reserve, the Protect member is undefined.

Protect Identifies the protection attribute (PAGE_#) for all ad-
joining pages that have the same protection attributes,
state, and type as the page containing the address
specified in the [pAddress parameter.

Type Identifies the type of physical storage (MEM_IMAGE,
MEM_MAPPED, or MEM_PRIVATE) that is backing
all adjoining pages that have the same protection attri-
butes, state, and type as the page containing the address
specified in the lpAddress parameter. For Windows 95,
this member will always indicate MEM_PRIVATE.

The VMQuery Function

146

When I was first learning how the Win32 memory architecture is designed,
I used VirtualQuery as my guide. In fact, if you examine the first edition of
this book, you’ll see that the VMMAPEXE program was much simpler
than the new version I present in the next section. In the old version, I
had a very simple loop that called VirtualQuery repeatedly, and for each
call, I simply constructed a single line containing the members of the
MEMORY_BASIC_INFORMATION structure. I studied this dump and
tried to piece the Win32 memory management architecture together
while referring to the Windows NT 3.1 SDK documentation (which was

FIVE: Exploring Virtual Memory

rather poor at the time). Well, I've come a long way, baby—I now know
that the VirtualQuery function and the MEMORY_BASIC_INFORMA-
TION structure are not good for creating a process’s virtual address
space memory map.

The problem is that the MEMORY_BASIC_INFORMATION struc-
ture does not return all of the information that the system has stored
internally. If you have a memory address and want to obtain some sim-
ple information about it, VirtualQuery is great. If you just want to know
whether there is committed physical storage to an address or whether a
memory address can be read from or written to, VirtualQuery works fine.
But if you want to know the total size of a reserved region or the number
of blocks in a region, or whether a region contains a thread’s stack, a
single call to VirtualQuery is just not going to give you the information
you’re looking for.

In order to obtain much more complete memory information, I
have created my own function, named VMQuery:

BOOL VMQuery (PVOID pvAddress, PVMQUERY pVMQ);

This function is similar to VirtualQueryin that it takes a memory ad-
dress specified by the pvAddress parameter and a pointer to a structure
that is to be filled, specified by the pVMQ parameter. This structure is a
VMQUERY structure that I have also defined:

typedef struct {
// Region information
PVOID pvRgnBaseAddress;
DWORD dwRgnProtection; // PAGE_=x
DWORD dwRgnSize;
DWORD dwRgnStorage; // MEM_%: Free, Image,
// Mapped, Private
DWORD dwRgnBlocks;
DWORD dwRgnGuardBlks; // If > @, region contains thread stack
BOOL fRgnIsAStack; // TRUE if region contains thread stack

// Block information
PVOID pvBl1kBaseAddress;
DWORD dwB1kProtection; // PAGE_=*
DWORD dwB1kSize;
DWORD dwB1kStorage; // MEM_x: Free, Reserve, Image,
// Mapped, Private
} VMQUERY, =*PVMQUERY;

As you can see from just a quick glance, my VMQUERY structure
contains much more information than VirtualQuery's MEMORY_BASIC-
_INFORMATION structure. My structure is divided into two distinct

147

ADVANCED WINDOWS

148

parts: region information and block information. The region portion
describes information about the region, and the block portion contains
information about the block containing the address specified by the
pvAddress parameter. The table below describes all the members:

Member Name

Description

pvRgnBaseAddress

dwRgnProtection

dwRgnSize

dwRgnStorage

dwRgnBlocks

dwRgnGuardBlks

JRgnIsAStack

puBlkBaseAddress
dwBIkProtection

dwBlkSize

Identifies the base address of the virtual address space
region containing the address specified in the pvAddress
parameter.

Identifies the protection attribute that was assigned
to the region of address space when it was initially
reserved.

Identifies the size, in bytes, of the region that was
reserved.

Identifies the type of physical storage that is used for
the bulk of the blocks in the region. The value is one
of the following: MEM_FREE, MEM_IMAGE, MEM-
_MAPPED, or MEM_PRIVATE. Windows 95 doesn’t
distinguish between different storage types, so this
member will always be MEM_FREE or MEM_PRIVATE
under Windows 95.

Identifies the number of blocks contained within
the region.

Identifies the number of blocks that have the PAGE-
—GUARD protection attribute flag turned on. This
value will usually be either 0 or 1. If it’s 1, that’s a good
indicator that the region was reserved to contain a
thread’s stack. Under Windows 95, this member will
always be 0.

Identifies whether the region contains a thread’s stack.
This value is determined by taking a “best guess” be-
cause it is impossible to be 100 percent sure whether a
region contains a stack.

Identifies the base address of the block that contains
the address specified in the pvAddress parameter.

Identifies the protection attribute for the block that con-
tains the address specified in the pvAddress parameter.

Identifies the size, in bytes, of the block that contains
the address specified in the pvAddress parameter.

(continued)

FIVE: Exploring Virtual Memory

continued
Member Name Description
dwBlkStorage Identifies the content of the block that contains the

address specified in the puAddress parameter. The value
is one of the following: MEM_FREE, MEM_RESERVE,
MEM_IMAGE, MEM_MAPPED, or MEM_PRIVATE.
Under Windows 95, this member will never be
MEM_IMAGE or MEM_MAPPED.

There is no doubt that VMQuery must do a significant amount of
processing, including many calls to VirtualQuery, in order to obtain all
this information—which means it executes much more slowly than
VirtualQuery. For this reason, you should think carefully when deciding
which of these two functions to call. If you do not need the extra infor-
mation obtained by VMQuery, call VirtualQuery.

The VMQUERY.C file, listed in Figure 5-3, shows how I obtain and
massage all the information needed to set the members of the VMQUERY
structure. The VMQUERY.C and VMQUERYH files are in the VMMAP.05
directory on the companion disc. Rather than go into detail in the text
about how I process this data, I’ll let my comments (sprinkled liberally
throughout the code) speak for themselves.

"v"'VMQUEHYC e ¥ | v e
5/******** ***************************#**********************: _.

;:f_‘Modu’Ie ﬂame VMQuery.C b ’

Ko ces? Ccpymght ey 1995 Jeffrey Rmhter

; ***/

e Wy e T

Figure 5-3. (continued)
The VMQuery listings.

149

ADVANCED WINDOWS

Figure 5-3. continued

(continued)

150

FIV E: Exploring Virtual Memory

Figure 5-3. continued

if ((pmbiBuffer->RegionSize % 0x1000) == OxFFF) {
// If the RegionSize member ends with OxFFF

// the size is 1 byte off

pmbiBuffer >Reg10n$ize++

-~3:_1f.‘(<pmmauffer >State 1= MEn FREE) 81&

St Zero«the contents. of the structt
':=amemset(pVNQHeip,- 5 sizeof(*pvnﬁ' 1p))

(continued)

151

ADVANCED WINDOWS

Figure 5-3. continued

(continued)

152

FI1V E: Exploring Virtual Memory

Figure 5-3. continued

derotectB]ock[pVMGHew >dngn81ocks] =. e
(MBI.State == MEM R£SERV£) 2.0 MBI Protect. -

(continued)

153

ADVANCED WINDOWS

Figure 5-3. continued
s gt :
- £

(continued)

154 '

FIV E: Exploring Virtual Memory

Figure 5-3. continued

if (1fOk) { - .
/7 1f we can't get any 1nformat10n about the passed
/7 address, return FALSE, 1ndicat1ng an-error,
S GetLastError() w111 report3$he,actua1 problem

(continued)

155

ADVANCED WINDOWS

Figure 5-3. continued

(continued)

156

FIV E: Exploring Virtual Memory

Figure 5-3. continued

pVMQ->dwRgnSize = VMQHelp.dwRgnSize;
7. pYMQ- >dwRgnStorage = VMQHelp. dwRgnStorage;
" pVYMQ->dwRgnBlocks = VMQHelp.dwRgnBlocks;
7. pYMQ->dwRgnGuardBTks = VMOHelp. ﬁngn&uardB?ksg S
“»p\tm >ngnIsA$tack = VMQHe‘%p ngnIsAStaok' :

(continued)

157

ADVANCED WINDOWS

Figure 5-3. continued

The Virtual Memory Map Sample Application

158

The VMMap application (VMMAP.EXE), listed in Figure 5-4 beginning
on page 160, walks its own address space and shows the regions and the
blocks within regions. The source code files, resource files, and make
file for the application are in the VMMAP.05 directory on the compan-
ion disc. When you start the program, the following window appears:

Free . !
Private 65536 [CNADVWINIZ\VMHAP

00400000 Private 12288 ~R—— —
00403000 Private 4096 -Ry- —
00404000 Private 4096 -R— ——
00405000 Private 8192 —Ry- —
00407000 Private 8192 -R— —
00409000 Reserve 28672 — i
oo410000 Private 1114112 4 - Default Process Héd
00410000 Private 4096 -RU- ——
00411000 Reserve 1044480 —— e
00510000 Private 4096 ~R¥- ——
00511000 Reserve 61440 ——
00520000 Private 65536 2 -RU-
00520000 Private 4096 -RU- —
00521000 Reserve 61440 -RU- —
00530000 Private 1179648 6 —— Thread Stack
00530000 Reserve 1077248 -
00637000 Private 4096
00638000 Reserve 24576
0063E000 Private 4096
0063F000 Private 4096
i 00640000 Ressrve 65536
00650000 Private 1048576 2
00650000 Private 65536
00660000 Ressrve 983040
00750000 Private 65536 2

00750000 Private 4096 =

The contents of this application’s list box were used to produce the
virtual memory map dumps presented in Figure 4-5 on page 112, Figure
4-6 on page 115, and Figure 4-7 on page 120 in Chapter 4.

Each entry in the list box shows the result of information obtained
by calling my VMQuery function. The main loop looks like this:

PVOID pvAddress = 0x00000000;

BOOL fOk = TRUE;
VMQUERY VMQ;

FIVE: Exploring Virtual Memory

while (fOk) {
fOk = VMQuery(pvAddress, &VMQ);

if (fok) {
// Construct the 1ine to be displayed, and
// add it to the Tist box.
ConstructRgnInfoLine(&VMQ, szlLine, sizeof(szline));
ListBox_AddString(hWndLB, szlLine);

f#if 1
// Change the 1 above to a @ if you do not want
// to see the blocks contained within the region.

for (dwBlock = @; fOk && (dwBlock < VMQ.dwRgnBlocks);
dwBlock++) {

ConstructBlkInfolLine(&VMQ, szLine, sizeof(szlLine));
ListBox_AddString(hWndLB, szlLine);

// Get the address of the next region to test.
pvAddress = ((BYTE =) pvAddress + VMQ.dwBlkSize);
if (dwBlock < VMQ.dwRgnBlocks - 1) {

// Don't query the memory info after

// the Tast block.

fO0k = VMQuery(pvAddress, &VMQ);

}
f#endif

// Get the address of the next region to test.
pvAddress = ((BYTE =) VMQ.pvRgnBaseAddress +
VMQ.dwRgnSize);

This loop starts walking from virtual address 0x00000000 and ends
when VMQuery returns FALSE, indicating that it can no longer walk the
process’s address space. With each iteration of the loop, there is a call to
ConstructRgninfoLine; this function fills a character buffer with informa-
tion about the region. Then this information is appended to the list.

Within this main loop, there is a nested loop that iterates through
each of the blocks in the region. Each iteration of this loop calls
ConstructBlkInfoLine to fill a character buffer with information about the
region’s blocks. Then the information is appended to the list box. It’s
very easy to walk the process’s address space using the VMQuery function.

159

ADVANCED WINDOWS

VMMap.ico

-ijoid CopyContraTToClipbcard (HNMD hwnd) ge ."
SaintnCount, caNumG SR
N TcHAR; Szaﬁpaata{mmﬁ]vﬁl {l'a }:;\ Ty

BoxﬂﬁetCount(hwnd). o
’,nN&m <, nCount~ nNnm++) {

5L1$tBex GetText(hWnd’ nNum, szL1ne).

Figure 5-4. (continued)
The VMMap application.

160

FIV E: Exploring Virtual Memory

Figure 5-4. continued

_tcscat(szClipData, szlLine);
~tescat(szClipData, __TEXT("\r\n"));

o Ope_nC_Tf’pﬁoard(_'N-U'LL):;-_';- v
- ... EmptyCl pboard(),

(continued)

161

ADVANCED WINDOWS

Figure 5-4. continued

(continued)

162

FI1V E: Exploring Virtual Memory

Figure 5-4. continued

if (pVMQ->dwRgnStorage != MEM_FREE). { RN
—stprintf(_tcschr(szLine, @), .,_,TEXT("%Su 'f). ;
pVMQ->dwRgnBlocks):

GetProtectText(pvm, >dngnProtect1 on ’

(continued)

163

ADVANCED WINDOWS

Figure 5-4. continued

164

(continued)

FIV E: Exploring Virtual Memory

Figure 5-4. continued

if (fok) {
// Construct the line to be displayed, and
// add it to the list box.
_ ConstructRgnInfoline(&VMQ, szline, sizeof(szLine)).
ListBox AddString(hwndLB. szLine);

FHEL L
‘ el Qhange‘the 1 above ‘to a @ if ydu do.not want
il to see the b1ocks contained within the reg1on

‘?for (de]ock = e ka && (dw81ock < vna dngnB]ocks)*
: de1ock++) {

i ConstructBTkInfoLine(&VMﬁ, szLine. sizeof(szLine))
L1stBox_AddString(hWndLB, szLine);

/I Get the address of the ‘next reg10n to test
. 'pvAddress = ({BYTE #) vaddres& 4 YMQ, de1kSize),v
if (de]ock‘< VMO, angnB]ocks - 1) { . '
;// Don't: query the memory 1nfo after
A the Jast block.. ' e
(FOk = VMOuery(vaddress &vma). - i

';#éndff'7
// Get}the address G the hext region’ %6 tést..
vaddress ((BYTE *) VMQ pngnBaseAddress +,

' VMQ dngnSize),;‘, et
'}

L COPYTOCLIPBOARD i

i CopyControlToC]ipboard(hundLB),, ,;
Cfpendi L

L return(TRUE)} o
L

"/fflk)k//{l/ff{/[fzzkfkklif/k//2/2///7/1k////fff{/)zf/f/zfzkiﬁ' :

_void D?g_OnCommand (HWN& hwnd, 1nt 1d HHND hwndCtl
UINT ccdeNotify) { :

(continued)

165

ADVANCED WINDOWS

Figure 5-4. continued

(continued)

166

FI1V E: Exploring Virtual Memory

Figure 5-4. continued

VMMAP.RC

//Microsoft Visual C++ generated resource script.
_ fHinclude “Resource.h" = .

 #define APSTUDIO_READONLY_SYMBOLS

(continued)

167

ADVANCED WINDOWS

Figure 5-4. continued

W Y e
~dtendif // not APSTUDIO_INVOKED . =~ =~ -~ .

168

CHAPTER S 1 X

USING VIRTUAL MEMORY IN
YOUR OWN APPLICATIONS

VVinSQ offers the following three mechanisms for manipulating memory:

B Virtual memory, which is best for managing large arrays of
objects or structures

B Memory-mapped files, which are best for managing large
streams of data (usually from files) and for sharing data
between multiple processes

B Heaps, which are best for managing large numbers of small
objects

In this chapter, we discuss the first method, virtual memory. The
other two methods, memory-mapped files and heaps, are discussed in
Chapter 7 and Chapter 8, respectively.

The Win32 functions for manipulating virtual memory allow you to
directly reserve aregion of address space, commit physical storage (from
the paging file) to the region, and set your own protection attributes.

Reserving a Region in an Address Space

Youreserve aregion in your process’s address space by calling VirtualAlloc:

LPVOID VirtualAlloc(LPVOID 1pAddress, DWORD cbSize,
DWORD fdwAllocationType, DWORD fdwProtect);

The first parameter, [pAddress, contains a memory address specifying
where you would like the system to reserve the address space. Most of the
time, you’ll pass NULL as the lpAddress parameter. This tells VirtualAlloc

169

ADVANCED WINDOWS

\
3

wind

170

that the system, which keeps a record of free address ranges, should
reserve the region wherever it sees fit. The system can reserve a region
from anywhere in your process’s address space—there are no guaran-
tees that the system will allocate regions from the bottom of your address
space up or vice versa. However, you can have some say over this by using
the MEM_TOP_DOWN flag, discussed later.

For most programmers, the ability to choose a specific memory
address where a region will be reserved is a new concept. When you allo-
cated memory in the past, the operating system simply found a block of
memory large enough to satisfy the request, allocated the block, and
returned its address. But because each Win32 process has its own address
space, you can actually specify the base memory address where you
would like the operating system to reserve the region.

For example, say that you want to allocate a region starting 50 MB
into your process’s address space. In this case, you will pass 52,428,800
(50 x 1024 x 1024) as the lpAddress parameter. If there is a free region
large enough to satisfy your request at this memory address, the system
will reserve the desired region and return. If a free region does not exist
at the specified address, or if the free region is notlarge enough, the sys-
tem cannot satisfy your request and VirtualAlloc returns NULL.

Under Windows 95, you can attempt to reserve a region only in the
0x00400000 through 0x7FFFFFFF partition of a process’s address space.
An attempt to reserve a region in any other partition will fail, causing
VirtualAlloc to return NULL.

Under Windows NT, you can attempt to reserve a region only in the
0x00010000 through 0x7FFEFFFF partition of a process’s address space.
An attempt to reserve a region in any other partition will fail, causing
VirtualAlloc to return NULL.

As mentioned in Chapter 4, regions are always reserved on an allo-
cation granularity boundary (64 KB for all implementations of Win32 to
date). So if you attempt to reserve a region starting at address 19,668,992
(300 x 65,536 + 8192) in your process’s address space, the system rounds
that address down to an even multiple of 64 KB and will actually reserve
the region starting at address 19,660,800 (300 x 65,536).

S1IX: Using Virtual Memory in Your Own Applications

=

If VirtualAlloc can satisfy your request, it returns a value indicating
the base address of the reserved region. If you passed a specific address
as VirtualAlloc’s lpAddress parameter, this return value is the same value
that you passed to VirtualAlloc rounded down (if necessary) to an even
64-KB boundary.

VirtualAlloc’s second parameter, cbSize, specifies the size of the re-
gion you want to reserve in bytes. Because the system must always reserve
regions in multiples of the CPU’s page size, an attempt to reserve a re-
gion that spans 79 KB will actually result in reserving a region that spans
80 KB on machines that use either 4-KB or 8-KB pages.

VirtualAlloc’s third parameter, fdwAllocationType, tells the system
whether you want to reserve a region or commit physical storage. (This
distinction is necessary because VirtualAlloc is also used to commit
physical storage.) To reserve a region of address space, you must pass
the MEM_RESERVE identifier as the value for the fdwAllocationType
parameter.

If you're going to reserve a region that you don’t expect to release
for a long time, you might want to reserve the region at the highest
memory address possible. That way, the region does not get reserved
from the middle of your process’s address space, where it can potentially
cause fragmentation. If you want the system to reserve a region at the
highest possible memory address, you must pass NULL for the lpAddress
parameter and you must also bitwise OR the MEM_TOP_DOWN flag
with the MEM_RESERVE flag when calling VirtualAlloc.

Under Windows 95, the MEM_TOP_DOWN f{lag is ignored.

The last parameter, fdwProtect, indicates the protection attribute
that should be assigned to the region. The protection attribute associ-
ated with the region has no effect on the committed storage mapped to
the region. Regardless of the protection attribute assigned to a region, if
no physical storage is committed, any attempt to access a memory
address in the range will cause the thread to raise an access violation.
This is identical to what happens if you reserve and commit storage to a
region using the PAGE_NOACCESS flag.

171

ADVANCED WINDOWS

95

L

When reserving a region, assign the protection attribute that will
be used most often with the storage committed to the region. For
example, if you intend to commit physical storage with a protection
attribute of PAGE_READWRITE, you should reserve the region with
PAGE_READWRITE. The internal record keeping of the system behaves
more efficiently when the region’s protection attribute matches the
committed storage’s protection attribute.

You can use any of the following protection attributes: PAGE-
_NOACCESS, PAGE_READWRITE, PAGE_READONLY, PAGE_EXE-
CUTE, PAGE_EXECUTE_READ, or PAGE_EXECUTE_READWRITE.
However, you cannot specify either the PAGE_WRITECOPY or the
PAGE_EXECUTE_WRITECOPY attribute. If you do so, VirtualAlloc will
notreserve the region and will return NULL. Also, you cannot use either
of the protection attribute flags PAGE_GUARD or PAGE_NOCACHE
when reserving regions—they can be used only with committed storage.

Windows 95 supports only the PAGE_NOACCESS, PAGE_READONLY,
and PAGE_READWRITE protection attributes. Attempting to reserve
a region using PAGE_EXECUTE or PAGE_EXECUTE_READ results
in a region with PAGE_READONLY protection. Likewise, reserving a
region using PAGE_EXECUTE_READWRITE results in a region with
PAGE_READWRITE protection.

Committing Storage in a Reserved Region

172

After you have reserved a region, you will need to commit physical stor-
age to the region before you can access the memory addresses contained
within it. The system allocates physical storage committed to a region
from the system’s paging file on your hard disk. Physical storage is com-
mitted on page boundaries and in page-size chunks.

To commit physical storage, you must call VirtualAlloc again. This
time, however, you'll pass the MEM_COMMIT identifier instead of the
MEM_RESERVE identifier for the fdwAllocationType parameter. You
usually pass the same page protection attribute that was used when
VirtualAlloc was called to reserve the region, although you can specify
a different protection attribute.

From within the reserved region, you must tell VirtualAlloc where
you want to commit physical storage and how much physical storage to

S1X: Using Virtual Memory in Your Own Applications

commit. You do this by specifying the desired memory address in the
IpAddress parameter and the amount of physical storage, in bytes, in
the cbSize parameter. Note that you don’t have to commit physical stor-
age to the entire region at one time.

Let’slook at an example of how to commit memory. Say your appli-
cation is running on an Intel x86 CPU and the application reserves a
512-KB region starting at address 5,242,880. Now you would like your
application to commit storage to the 6-KB portion of the reserved
region starting 2 KB into the reserved region’s address space. To do this,
call VirtualAlloc using the MEM_COMMIT flag as follows:

VirtualAlloc(5242880 + (2 = 1024), 6 * 1024,
MEM_COMMIT, PAGE_READWRITE);

In this case, the system must commit 8 KB of physical storage, span-
ning the address range 5,242,880 through 5,251,072 (5,242,880 + 8 KB).
Both of these committed pages have a protection attribute of PAGE-
_READWRITE. Protection attributes are assigned on a whole-page basis
only. It is not possible to use different protection attributes for portions
of the same page of storage. However, it is possible for one page in a
region to have one protection attribute (such as PAGE_READWRITE)
and for another page in the same region to have a different protection
attribute (such as PAGE_READONLY).

Reserving a Region and
Committing Storage Simultaneously

There will be times when you’ll want to reserve a region and commit stor-
age to it simultaneously. You can do this by placing a single call to
VirtualAlloc as follows:

PVOID pvMem = VirtualAlloc(NULL, 99 = 1024,
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);

This call is a request to reserve a 99-KB region and commit 99 KB
of physical storage to the region. When the system processes this call, it
first searches your process’s address space to find a contiguous area of
unreserved address space large enough to hold 100 KB (on a 4-KB page
machine) or 104 KB (on an 8-KB page machine).

The system searches the address space because you specified NULL
as the IpAddress parameter. If you had specified a memory address for
lpAddress, the system would see whether there was enough unreserved

173

ADVANCED WINDOWS

address space at that memory address. If the system could not find
enough unreserved address space, VirtualAlloc would return NULL.

If a suitable region can be reserved, the system then commits 100
KB (on a 4-KB page machine) or 104 KB (on an 8-KB page machine) of
physical storage to the region. Both the region and the committed stor-
age will be assigned PAGE_READWRITE protection.

Finally, VirtualAlloc returns the virtual address of the reserved and
committed region, which is then saved in the puMem variable. If the sys-
tem couldn’t find a large enough address space or commit the physical
storage, VirtualAlloc returns NULL.

It is certainly possible when reserving a region and committing
physical storage this way to pass a specific address as the lpvAddress
parameter to VirtualAlloc. Or you might need to have the system select a
suitable region toward the top of your process’s address space by ORing
the MEM_TOP_DOWN flag to the fdwAllocationType parameter and pass-
ing NULL for the lpAddress parameter.

When to Commit Physical Storage

174

Let’s pretend you're implementing a spreadsheet application that sup-
ports 200 rows by 256 columns. For each cell, you need a CELLDATA
structure that describes the contents of the cell. The easiest way for you
to manipulate the two-dimensional matrix of cells would be to declare
the following variable in your application:

CELLDATA CellDatal[2001[2561;

If the size of a CELLDATA structure were 128 bytes, it would require
6,553,600 (200 x 256 x 128) bytes of physical storage. That’s a lot of physi-
cal storage to allocate from the paging file right up front for a spread-
sheet, especially when you consider that most users put information into
only a few spreadsheet cells, leaving the majority unused. The matrix
would be very inefficient.

So, historically, spreadsheets have been implemented using other
data structure techniques, such as linked lists. With the linked-list ap-
proach, CELLDATA structures have to be created only for the cells in the
spreadsheet that actually contain data. Since most cells in a spreadsheet
go unused, this method saves a tremendous amount of storage. However,
this technique makes it much more difficult to obtain the contents of a
cell. If you want to know the contents of the cell in row 5, column 10, you

S1X: Using Virtual Memory in Your Own Applications

must walk through linked lists in order to find the desired cell, which
makes the linked-list method slower than the declared-matrix method.

Virtual memory offers a compromise between declaring the two-
dimensional matrix up front and implementing linked lists. With virtual
memory, you get the fast, easy access offered by the declared-matrix tech-
nique combined with the superior storage savings offered by the linked-
list technique.

For you to obtain the advantages of the virtual memory technique,
your program needs to do the following:

1. Reserve a region large enough to contain the entire matrix of
CELLDATA structures. Reserving a region requires no physical
storage at all.

2. When the user enters data into a cell, locate the memory
address in the reserved region where the CELLDATA structure
should go. There is, of course, no physical storage mapped to
this address yet, so any attempts to access memory at this address
will raise an access violation.

3. Commit just enough physical storage to the memory address
located in step 2 for a CELLDATA structure. (You can tell
the system to commit physical storage to specific parts of the
reserved region—a region can contain both parts that are
mapped to physical storage and parts that are not.)

4. Set the members of the new CELLDATA structure.

Now that physical storage is mapped to the proper location, your
program can access the storage without raising an access violation. This
virtual memory technique is excellent because physical storage is com-
mitted only as the user enters data into the spreadsheet’s cells. Because
most of the cells in a spreadsheet are empty, most of the reserved region
will not have physical storage committed to it.

The one problem with the virtual memory technique is that you
must determine when physical storage needs to be committed. If the
user enters data into a cell and then simply edits or changes that data,
there is no need to commit physical storage—the storage for the cell’s
CELLDATA structure was committed the first time data was entered.

Also, the system always commits physical storage with page granu-
larity (4 KB on x86, MIPS, and PowerPC; 8 KB on Alpha). So when you

175

ADVANCED WINDOWS

176

attempt to commit physical storage for a single CELLDATA structure (as
in step 2 on the previous page), the system is actually committing a full
page of storage. This is not as wasteful as it sounds: committing storage
for a single CELLDATA structure has the effect of committing storage for
other nearby CELLDATA structures. If the user then enters data into a
neighboring cell, which is frequently the case, you might not need to
commit additional physical storage.

There are four methods for determining whether to commit physi-
cal storage to a portion of a region:

W Always attempt to commit physical storage. Instead of checking
to see whether physical storage is mapped to a portion of the
region, have your program try to commit storage every time it
calls VirtualAlloc. The system first checks to see whether storage
has already been committed and, if so, does not commit addi-
tional physical storage. This is the easiest approach but has the
disadvantage of making an additional function call every time a
CELLDATA structure is altered, which makes your program
perform more slowly.

B Determine (using the VirtualQuery function) whether physical
storage has already been committed to the address space con-
taining the CELLDATA structure. If it has, do nothing else; if it
hasn’t, call VirtualAlloc to commit the memory. This is actually
worse than the first method; it both increases the size of your
code and slows down your program because of the additional
call to VirtualQuery.

W Keep a record of which pages have been committed and which
haven’t. Doing so makes your application run faster: you avoid
the call to VirtualAlloc, and your code can determine more
quickly than the system whether storage has already been com-
mitted. The disadvantage is that you must keep track of the
page commit information somehow, which could be either very
simple or very difficult depending on your specific situation.

M The best method takes advantage of structured exception han-
dling (SEH). SEH is a Win32 feature that causes the system to
notify your application when certain situations occur. Essen-
tially, you set up your application with an exception handler,
and then, whenever an attempt is made to access uncommitted

S1X: Using Virtual Memory in Your Own Applications

memory, the system notifies your application of the problem.
Your application then commits the memory and tells the system
to retry the instruction that caused the exception. This time,
the memory access succeeds, and the program continues run-
ning as though there had never been a problem. This is the
best method because it requires the least amount of work from
you (meaning less code) and because your program will run at
full speed. A complete discussion of the SEH mechanism is
saved for Chapter 14 in this book.

Decommitting Physical
Storage and Releasing a Region

To decommit physical storage mapped to a region or release an entire
region of address space, call the VirtualFree function:

BOOL VirtualFree(LPVOID 1pAddress, DWORD cbSize,
DWORD fdwFreeType);

Let’s examine the simple case of calling VirtualFree first to release a
reserved region. When your process will no longer be accessing the
physical storage within a region, you can release the reserved region,
and all the physical storage committed to the region, by making a single
call to VirtualFree.

For this call, the [pAddress parameter must be the base address of
the region. This would be the same address that VirtualAlloc returned
when the region was reserved. The system knows the size of the region at
the specified memory address, so you can pass 0 for the cbSize parameter.
In fact, you must pass 0 for the ¢bSize parameter, or the call to VirtualFree
will fail. For the third parameter, fdwFreeType, you must pass MEM_RE-
LEASE to tell the system to decommit all physical storage mapped to
the region and to release the region. When releasing a region, you must
release all the address space that was reserved by the region. For example,
you cannot reserve a 500-MB region and then decide to release only 200
MB of it. All 500 MB must be released.

When you want to decommit some physical storage from the region
without releasing the region, you also call VirtualFree. To decommit some
physical storage, you must pass the memory address that identifies the
first page to be decommitted in VirtualFree’s lpAddress parameter. You

177

ADVANCED WINDOWS

must also specify the number of bytes to free in the ¢bSize parameter and
the MEM_DECOMMIT identifier in the fdwFreeType parameter.

Like committing, decommitting is done with page granularity. That
is, specifying a memory address in the middle of a page decommits the
entire page. And, of course, if lpAddress + cbSize falls in the middle of a
page, the whole page that contains this address is decommitted as well.
So all pages that fall within the range of lpAddress to lpAddress + cbSize are
decommitted.

If cbSize is 0 and lpAddress is the base address for the allocated region,
VirtualFree will decommit the complete range of allocated pages. After
the pages of physical storage have been decommitted, the freed physical
storage is available to any other process in the system; any attempt to
access the decommitted memory results in an access violation.

When to Decommit Physical Storage

178

In practice, knowing when it’s OK to decommit memory is a very tricky
thing. Consider the spreadsheet example again. If your application is
running on an Intel x86 machine, each page of storage is 4 KB and can
hold 32 (4096 / 128) CELLDATA structures. If the user deletes the con-
tents of CellData[0][1], you might be able to decommit the page of stor-
age as long as cells CellData[0][0] through CellData[0][31] are also not
in use. But how do you know? There are many different ways to tackle
this problem.

B Without a doubt, the easiest solution is to design a CELLDATA
structure that is exactly 1 page in size. Then, because there is
always one structure per page, you can simply decommit the
page of physical storage when you don’t need the data in the
structure any longer. Even if your data structures were multiples
of a page, say, 8 KB or 12 KB for Intel CPUs (these would be
unusually large structures), decommitting memory would still
be pretty easy. Of course, to use this method you must define
your data structures to meet the page size of the CPU you’re
targeting—not how we usually write our programs.

B A more practical solution is to keep a record of which struc-
tures are in use. To save memory, you might use a bitmap. So if
you have an array of 100 structures, you also maintain an array

S1X: Using Virtual Memory in Your Own Applications

of 100 bits. Initially, all the bits are set to 0, indicating that no
structures are in use. As you use the structures, you set the cor-
responding bits to 1. Then, whenever you don’t need a structure
and change its bit back to 0, you check the bits of the adjacent
structures that fall into the same page of memory. If none of the
adjacent structures is in use, you can decommit the page.

W The last solution implements a garbage collection function.
This scheme relies on the fact that the system sets all the bytes
in a page to 0 when physical storage is first committed. To use
this scheme, you must first set aside a BOOL (perhaps called
fInUse) in your structure. Then, every time you put a structure
in committed memory, you need to ensure that fInUse is set
to TRUE.

As your application runs, you’ll want to call the garbage col-
lection function periodically. This function should traverse all
the potential data structures. For each structure, the function
first determines whether storage is committed for the structure;
if so, the function checks the fInUse member to see whether it is
0. A value of 0 means that the structure is not in use, while a
value of TRUE means that it is in use. After the garbage collec-
tion function has checked all the structures that fall within a
given page, it calls VirtualFree to decommit the storage if all the
structures are not in use.

You can call the garbage collection function immediately
after a structure is no longer considered in use, but doing so
might take more time than you want to spend because the func-
tion cycles through all the possible structures. An excellent way
to implement this function is to have it run as part of a lower-
priority thread. In this way, you don’t take time away from the
thread executing the main application. Whenever the main
application is idle or the main application’s thread is perform-
ing file I/O, the system can schedule time to the garbage collec-
tion function.

Of all the methods listed above, the first two are my personal favor-
ites. However, if your structures are not big (less than a page), I recom-
mend using the last method.

179

ADVANCED WINDOWS

The Virtual Memory Allocation Sample Application

180

The VMAIlloc application (VMALLOC.EXE), listed in Figure 6-1 begin-
ning on page 182, demonstrates how to use virtual memory techniques
for manipulating an array of structures. The source code files, resource
files, and make file for the application are in the VMALLOC.06 direc-
tory on the companion disc. When you start the program, the following
window appears:

Initially, no region of address space has been reserved for the array,
and all the address space that would be reserved for itis free, as shown by
the memory map. When you click the Reserve A Region For 50 Struc-
tures, 2 KB Each button, VMAlloc calls VirtualAlloc to reserve the region,
and the memory map is updated to reflect this. After VirtualAlloc reserves
the region, the remaining buttons become active.

You can now type an index into the edit control or use the scroll bar
to select an index, and then click on the Use button. This has the effect
of committing physical storage to the memory address where the array
element is to be placed. When a page of storage is committed, the
memory map is redrawn to reflect the state of the reserved region for
the entire array. So if, after reserving the region, you use the Use button
to mark array elements 7 and 46 as in use, the window will look like the
window on the facing page (when you are running the program on a4-KB
page machine).

S1X: Using Virtual Memory in Your Own Applications

Vistual Memoty Allocator

Any element that is marked as in use can be cleared by clicking
on the Clear button. But doing so does not decommit the physical stor-
age mapped to the array element. This is because each page contains
room for multiple structures—just because one is clear doesn’t mean the
others are too. If the memory was decommitted, the data in the other
structures would be lost. Because selecting Clear doesn’t affect the
region’s physical storage, the memory map is not updated when an array
element is cleared.

However, when a structure is cleared, its flnUse member is set to
FALSE. This is necessary so that the garbage collection routine can make
its pass over all the structures and decommit storage that’s no longer in
use. If you haven’t guessed it by now, the Garbage Collect button tells
VMAlloc to execute its garbage collection routine. To keep things
simple, I have not implemented the garbage collection function as its
own thread.

To demonstrate the garbage collection function, clear the array
element at index 46. Notice that the memory map does not change.
Now click on the Garbage Collect button. The program decommits the
page of storage containing element 46, and the memory map is updated
to reflect this:

tusl Memors Allocator

181

ADVANCED WINDOWS

Finally, even though there is no visual display to inform you, all the
committed memory is decommitted and the reserved region is freed
when the window is destroyed.

There is another element to this program that I haven’t described
yet. The program needs to determine the state of memory in the region’s
address space in three places:

B After changing the index, the program needs to enable the Use
button and disable the Clear button or vice versa.

B In the garbage collection function, the program needs to see
whether storage is committed before actually testing to see
whether the fInUse flag is set.

B When updating the memory map, the program needs to know
which pages are free, reserved, and committed.

VMAlloc performs all these tests by calling the VirtualQuery func-
tion, discussed in the previous chapter.

VMAlloc.ico

Figure 6-1. ' (continued)
The VMAlloc sample application.

182

S1X: Using Virtual Memory in Your Own Applications

Figure 6-1. continued

typedef struct {-

BOOL fA11ocated e

BYTE bOtherData[ZMS = s1zeof(BOOL)],
}SOMt:DATA *PSON TA o

(continued)

183

ADVANCED WINDOWS

184

Figure 6-1. continued

ab}eiaf} the nther coatrois o N S PN
ableWindow(GetDIgItemhwnd, gRESERVE). FALSE)*Zf;,f
EngbleWindow(GetDlglten(hwnd, IDC_INDEXTEXT), TRUE);
Enabiew1ndow(ﬁet01gltem(hwnd xsc INDEX), TRUED; -

(continued)

S1X: Using Virtual Memory in Your Own Applications

Figure 6-1. continued

Enab]eﬂindow(GetD]gItem(hwnd IDC INDEXSCRL). TRUE)
Enab]emndow(Getmgltem(hvm v IDC-‘ S;E), TRUE),

(continued)

185

ADVANCED WINDOWS

Flgure 6-1 continued

case IDCUSE: o eI R
Coulndex = GetDlgItemInt(hwnd, IBC INDEer&fTran,iated e
i ,FALSE), S . '

'V{if[cuxndex 5= MAxﬁSQMEBATA) o e
[/ 1f the index is out of range assume the s
s trans]ation was! unsuccessfula e

,fTPans1ated FALSE

1f'(fTrans1ated) { :
s vIrtua1A11oc(&g*p50menata[u1ndex],;, : e
: sizeof(SOMEDATA) MEM COMMIT PAGE REAOWRITE).7 i

"1/ When pages are comm1tted Wivid
/1 that they are zeroed. o

us NT ensures
“”‘ifg*pSomeData[uIndexJ fA]Tncated P

- Enab]eWindaw(ﬁetﬁ]gltem(hwnd zoc USE), FALSE):
 <Enab}eW1ndow(GetD1gltem(hund 10C. GLEAR) TRUE). S

»E'jl Force “the C]ear button controTite
1 have the focus. i
X .SetFocus(GetDlgItem(hwnd IDC ﬁLEAR))‘,f*

ﬂ,”// Inva]idate the memory map d1sp?ay
. .»Inva11dateRect(hwnd &g_rcMemMap, FALSE)
I SN R v :
break* R

U Case IDC CLEAR~ R e e
uIndex = GetDlgItémInt(hwnd IDCINDEX; :&fTranslated;
~FALSED; - *;f : R ST ey

.pbiff(ulndex >x MAx SOMEDATA) ¢)

: /1 3f the- index is out of range, assume the
il trans]at1on wa's unsuccessfuT

. fTrans?ated FALSE' '

CLAf (fTranslated) Lo - Py
- g“pSomeData[uIndexJ fA1located FALSE : . :
EnableWindow(GetD1gItem(hwnd, IDC_USE), TRUE):f'
" EnabTeWindow(GetD1gItem(hwnd, IDC-_CLEAR), FALSE);

(continued)

186

S1X: Using Virtual Memory in Your Own Applications

Figure 6-1. continued

// Force the Use button control to have the focus.
. SetFocus(GetDlgltem(hwnd, . IDC_USE));
} ,
‘ bheak*
_case’ IDC_GARBAGECOLLECT s :
' uMaxPages = MAX. . SDMEBATA # sizeof(SGMEBATA) /
i _u?agesize,: ;

et

”Page < uMaxPages. uPage++) {

uIndexLast : uIndex + g_uPageS1ze f T

_!fAnyAT1ocs) { : i PR
/' No ai?ocated structuras ex1st in the page
/1 ME can safely decommit fhi. A -
rtuaTFree(&gMpSomeData[uIndexLast ¥ 1]..»
' sizeef(SGMEDATA) M‘EFLDECGMMIT) A

Jidate the: ‘memory.- map«disp1ay
‘ teRect(hWnd ,&' rcMemMap, FALSE}

(continued)

187

ADVANCED WINDOWS

.Figure 6-1. continued

(continued)

188

S1X: Using Virtual Memory in Your Own Applications

Figure 6-1. continued

if (nScriPos >= MAX_SOMEDATA)
nScr1Pos = MAX_SOMEDATA - 1;

Scrol1Bar_SetPos(hwndCt1, nScriPos, TRUE); .
SetDlgItemInt(hwnd, IDC_INDEX, nScriPos, TRUE): -

T

(continued)

189

ADVANCED WINDOWS

Figure 6-1. continued

(continued)

190

S1X: Using Virtual Memory in Your Own Applications

Figure 6-1. continued

switch (uMsg) { - ' ‘
: .HANDLE.MSG(hD]g, WM. INITDIALQG Dlg_‘OnIn'itDﬁ-aTog)\,:
" HANDLE_MSG(hD1g, WM. COMMAND , n1gW0n’Co’m‘mand'> F ‘
- HANDLE.MSG(hD1g, WM. LHSCROLL, mgwonﬁswom,
‘,HANDLE Msachma, WM_PAINT, . B1g?UnPa1nt).

(continued)

191

ADVANCED WINDOWS

Figure 6-1. continued

(continued)

192

S1X: Using Virtual Memory in Your Own Applications

Figure 6-1. continued

CAPTION "Virtual Memory A11ocator"
FONT 8, "System".

BEGIN :
LTEXT ~ "CPU page size:",1DC_STATIC,4,4,51,8

CONTROL "16. KB",IDC.. PAGESIZE "Static”,
' c SS. LEFTNOWORDWRAP 1 SS_NOPREFIX
. *WS.GROUP,60,4,32,8 =
o DEEPUSHBUTTON "&Reserve a region for 58 structures. 2 KB\
‘ each“ N :
IDC RESERVE 32 16,180,714, WS GROUP

7j~LTEXT o "AIndex (R - 49 ".IDC INDEXTEXT 4, 38
MR L 85,8
- EDITTEXT. ~IDC.INDEX,56,36, 16 1200
'SCROLLBAR-- ~IDC.INDEXSCRL,80,38,160,9,WS_ TABSTOP
CPUSHBUTTON . .- *&Use"™,IDC_USE,;4,52,40,14 - :
~ PUSHBUTTON "~ ~ “&Clear",IDC_CLEAR,48,52,40,14 :
v ,”PUSHBUTTQN,f “ii"gGarbage collect",IDC GARBAGECOLLECT, v
- 5 160,52,80,14 ‘ (R
; GROUPBOX-;- v,;l"Memory map",1De. STATzn 4,66, 236 52
L T TG MENMAR, SR e

LM, IDC MEMMA?,"Static ss BLACKRECT 8. 82,
22816

i MFree: Wh?te" 10c. STATIC 8,104, 39 g :
Reserved: Gray",10C_STATIC,88,104,52,8
: Committed: B1ackv 1nc. STATIC 176 194
58,8 :

‘ 1'fLrExr
\ﬁg_crsxr
| RTEXT

o

 1//////////f////f/f////f////////////f////////////////////////////
~ o7 Teon : \ . :
'// :

"‘VMALLDC =? ﬁ5*; e 1c0N .DisaAgaAéLﬁ ©MyMATloc. Teo”

i l#1fndef APSTUDIQ INVOKED - LA ‘

= /////;//f/////f//////////////f////////////////////;/i/////////
i

‘ 14 Generated from the TEXTINCLUDE 3 resource

,// ' v ;

.’://////////////!////f////////!//l//////////////////////////////
; #endif 1/ th APS?UDIO INVOKED ‘ S

193

ADVANCED WINDOWS

Changing Protection Attributes

194

Although itis a very uncommon practice, it is possible to change the pro-
tection attributes associated with a page or pages of committed physical
storage. For example, say you've developed code to manage a linked list,
the nodes of which you are keeping in a reserved region. You could
design the functions that process the linked list so that they change the
protection attributes of the committed storage to PAGE_READWRITE
at the start of each function and then back to PAGE_NOACCESS just
before each function terminates.

By doing this, you protect your linked-list data from other bugs hid-
ing in your program. If any other code in your process has a stray pointer
that attempts to access your linked-list data, an access violation is raised.
This can be incredibly useful when you're trying to locate hard-to-find
bugs in your application.

You can alter the protection rights of a page of memory by calling
VirtualProtect: :

BOOL VirtualProtect(LPVOID 1pAddress, DWORD dwSize,
DWORD f1NewProtect, PDWORD T1pfl101dProtect);

Here IpAddress points to the base address of the memory, dwSize
indicates the number of bytes for which you want to change the protec-
tion attribute, and fINewProtect can represent any one of the PAGE_*
protection attribute identifiers except PAGE_WRITECOPY and PAGE-
_EXECUTE_WRITECOPY.

The last parameter, ipflOldProtect, is the address of a DWORD that
VirtualProtect will fill in with the old protection attributes for the storage.
You must pass a valid address for this parameter, or the function will raise
an access violation. If you are changing the protection attribute of more
than one page, the DWORD pointed to by lpflOldProtect will receive the
old protection attribute for the first page only. VirtualProtect returns
TRUE if it’s successful.

Of course, protection attributes are associated with entire pages of
storage and cannot be assigned to individual bytes. So if you were to call
VirtualProtect on a 4-KB page machine as follows:

VirtualProtect(1pRgnBase + (3 = 1024), 2 = 1024,
PAGE_NOACCESS, &f101dProtect);

You would end up assigning the PAGE_NOACCESS protection
attribute to 2 pages of storage.

S1X: Using Virtual Memory in Your Own Applications

The TInjLib sample application, shown in Chapter 16, demon-
strates how to use VirtualProtect to alter protection attributes on com-
mitted storage.

Windows Windows 95 supports only the PAGE_NOACCESS, PAGE_READONLY,

and PAGE_READWRITE protection attributes. If you attempt to change
m a page’s protection to PAGE_EXECUTE or PAGE_EXECUTE_READ,
the page receives PAGE_READONLY protection. Likewise, if you change
a page’s protection to PAGE_EXECUTE_READWRITE, the page re-
ceives PAGE_READWRITE protection.

Locking Physical Storage in RAM

Remember that committing physical storage is really a matter of allocat-
ing space from the system’s paging file. However, for your program to
actually access its data, the system must locate your program’s physical
storage in the paging file and load it into RAM. The system has been
finely tuned and optimized to perform this page swapping so that appli-
cations run very efficiently. However, there are two Win32 functions that
allow you to override this process: VirtualLock and VirtualUnlock.

The VirtualLock function tells the system that you want to lock a set
of pages in RAM. However, the system guarantees that the pages are
locked in RAM only while a thread in your process is running. When the
system preempts all the threads in your process, the system is free to
unlock the pages and swap them to the physical storage in the paging
file. When the system is ready to reschedule a thread in your process, it
loads all of the pages that you wanted locked back into RAM. When the
locked pages are back in RAM, the system allows the rescheduled thread
to continue executing. In this situation, your process takes an immediate
performance hit whenever a thread is being rescheduled.

When the system is not running any threads in your process, it does
not immediately swap the locked pages to the paging file. Instead, the
system tries to keep locked pages in RAM as long as possible. If threads
in another process do not make heavy use of the RAM, the system will
not need to swap your process’s locked pages. In this case, when the sys-
tem reschedules threads in your process, the locked pages will already be
loaded in RAM and the system will not have to access the paging file.

195

ADVANCED WINDOWS

Important

196

The locking of physical storage into RAM is a feature that Win32 offers
for special purposes. For example, many device drivers must respond to
events very quickly and cannot afford to wait for the system’s paging

“ mechanism to load the physical storage on demand. You are much better

off allowing the system to perform the page swapping rather than get-
ting involved with it yourself. After all, only the operating system knows
how other applications are behaving and what toll they are taking on the
system’s memory. The operating system’s memory management routines
have been fine-tuned for this—let them do their job.

In addition, the locking of physical storage into RAM cannot be
used to make your application in any way “realtime” because you cannot
lock down all the pages—for system DLLs, device drivers, stack pages,
heaps, and so forth—that the system might access while your thread is
running. If the system is doing any paging at all, having your application
process lock down some of the pages that it knows about will probably
make your application less realtime by forcing pages of storage that might
be accessed even more often out of RAM.

If you still want to lock physical storage in RAM, you need to
call VirtualLock:

BOOL VirtualLock(LPVOID TpvMem, DWORD cbMem);

This function locks the cbMem bytes starting at address lpuMem in
RAM. Ifitis successful, TRUE is returned. It is important to note that all
the pages you attempt to lock must be committed physical storage. In
addition, VirtualLock cannot be used to lock memory allocated with a
PAGE_NOACCESS protection attribute. Also, the system will not allow a
single process to lock more than approximately 30 pages of storage. This
number may seem rather small to you—on an x86, this comes to only
122,880 bytes. The reason for this small number is to prevent a single
process from greatly affecting the overall performance of the system.

When it is no longer necessary for your application to keep the
memory locked, you can unlock it with VirtualUnlock:

BOOL VirtualUnlock(LPVOID 1pvMem, DWORD cbMem);

This function unlocks the cbMem bytes of memory starting at address
[puMem. When you’re unlocking memory, it is not necessary to unlock
the exact amount that was locked with VirtualLock. If the range of memory
is unlocked successfully, VirtualUnlock returns TRUE.

S1X: Using Virtual Memory in Your Own Applications

As with all of the virtual functions, operations are performed on a
page basis. So if you lock a range of bytes that straddles a series of pages,
all pages affected by the range are locked or unlocked.

wmd""" 95 Under Windows 95, the VirtualLock and VirtualUnlock functions have no
useful implementation and simply return FALSE; calling GetLastError
returns ERROR_CALL_NOT_IMPLEMENTED.

A Thread’s Stack

Sometimes the system reserves regions in your own process’s address
space. I mentioned that this happened for process and thread environ-
ment blocks in Chapter 4. Another time that the system does this is for
a thread’s stack.

Whenever a thread is created in your process, the system reserves a
region of address space for the thread’s stack (each thread gets its very
own stack) and also commits some physical storage to this reserved
region. By default, the system reserves 1 MB of address space and com-
mits 2 pages of storage. However, these defaults can be changed by speci-
fying the /STACK option to the linker when you link your application:

/STACK: reservel, commit]

When a thread’s stack is created, the system reserves a region of
address space indicated by the linker’s /STACK switch. However, you
can override the amount of storage that is initially committed when you
call the CreateThread or the _beginthreadex function. Both functions have a
parameter that allows you to override the storage that is initially commit-

‘ted to the stack’s address space region. If you specify 0 for this parameter,

the system uses the commit size indicated by the /STACK switch. For the
remainder of this discussion, I will assume we’re using the default stack
sizes: 1 MB of reserved region with storage committed in single pages.

Figure 6-2 on the following page shows what a stack region (reserved
starting at address 0x08000000) might look like on a machine whose
page size is 4 KB. The stack’s region and all of the physical storage com-
mitted to it have a page protection of PAGE_READWRITE.

197

ADVANCED WINDOWS

198

Figure 6-2.
What a thread’s stack region looks like when it is first created.

After reserving this region, the system commits physical storage to
the top 2 pages of the region. Just before allowing the thread to begin
execution, the system sets the thread’s stack pointer register to point to
the end of the top page of the stack region (an address very close to
0x08100000). This page is where the thread will begin using its stack.
The second page from the top is called the guard page. As the thread
increases its call tree by calling more functions, the thread needs more
stack space.

Whenever the thread attempts to access storage in the guard page,
the system is notified. In response, the system commits another page of
storage just below the guard page. Then the system removes the guard
page protection flag from the current guard page and assigns the
guard page protection flag to the newly committed page of storage. This

S1X: Using Virtual Memory in Your Own Applications

technique allows the stack storage to increase only as the thread requires
it. Eventually, if the thread’s call tree continues to expand, the stack
region will look like Figure 6-3.

Figure 6-3.
A nearly full thread’s stack region.

Referring to Figure 6-3, assume that the thread’s call tree is very
deep and that the stack pointer CPU register points to the stack memory
address 0x08003004. Now, when the thread calls another function, the
system has to commit more physical storage. However, when the system
commits physical storage to the page at address 0x08001000, it does not
do exactly what it did when committing physical storage to the rest of the
stack’s memory region. Figure 6-4 on the following page shows what the
stack’s reserved memory region looks like.

199

ADVANCED WINDOWS

200

Figure 6-4.
A full thread stack region.

As you'd expect, the page starting at address 0x08002000 has the
guard attribute removed, and physical storage is committed to the page
starting at 0x08001000. The difference is that the system does not apply
the guard attribute to the new page of physical storage (0x08001000).
This means that the stack’s reserved address space region contains all
the physical storage that it can ever contain. The bottommost page is
always reserved and never gets committed. I will explain the reason for
this shortly.

S1X: Using Virtual Memory in Your Own Applications

The system performs one more action when it commits physical
storage to the page at address 0x08001000—it raises an EXCEPTION-
_STACK _OVERFLOW exception (defined as 0xCO0000FD in WINNT.H).
By using Win32 structured exception handling (SEH), your program will
be notified of this condition and can recover gracefully. For more infor-
mation on SEH, see Chapter 14, including the SEHSum application.

If the thread continues to use the stack after the stack overflow
exception is raised, all the memory in the page at 0x08001000 will be
used and the thread will attempt to access memory in the page starting at
0x08000000. When the thread attempts to access this reserved (uncom-
mitted) memory, the system raises an access violation exception. If this
access violation exception is raised while the thread is attempting to
access the stack, the thread is in very deep trouble. The system takes con-
trol at this point and terminates the process—not just the thread, but the
whole process. The system doesn’t even show a message box to the user;
the whole process just disappears!

Now I will explain why the bottommost page of a stack’s region is
always reserved. Doing so protects against accidental overwriting of
other data being used by the process. You see, it’s possible that at address
0x07FFF000 (1 page below 0x08000000), another region of address
space has committed physical storage. If the page at 0x08000000 con-
tained physical storage, the system would not catch attempts by the
thread to access the reserved stack region. If the stack were to dip below
the reserved stack region, the code in your thread would overwrite other
data in your process’s address space—a very, very difficult bug to catch.

A Thread’s Stack Under Windows 95

Under Windows 95, stacks behave similarly to their Windows NT coun-
terparts. However, there are some significant differences.

Figure 6-5 on the following page shows what a stack region (re-
served starting at address 0x00530000) might look like for a 1-MB stack
when running under Windows 95.

201

ADVANCED WINDOWS

202

Figure 6-5.
What a thread’s stack region looks like when it is first created under
Windows 95.

First, note that the region is actually 1 MB plus 128 KB in size, even
though we wanted only to create a stack that was up to 1 MB in size. In
Windows 95, whenever a region is reserved for a stack, the system actu-
ally reserves a region that is 128 KB larger than the requested size. The
stack is in the middle of this region, with a 64-KB block before the stack
and another 64-KB block after the stack.

The 64 KB at the beginning of the stack are there to catch stack
overflow conditions, while the 64 KB at the end of the stack are there to
catch stack underflow conditions. To see why stack underflow detection
is useful, examine the following code fragment:

int WINAPI WinMain (HINSTANCE hinstExe, HINSTANCE hinstPrev,
LPSTR 1pszCmdLine, int nCmdShow) {

char szBuf[100];
szBuf[10000] = 0; // Stack underflow

return(0);

S1X: Using Virtual Memory in Your Own Applications

When this function’s assignment statement is executed, an attempt is
made to access beyond the end of the thread’s stack. Of course, the com-
piler and the linker will not catch the bug in the code on the previous
page, butif your application is running under Windows 95, an access vio-
lation will be raised when the statement executes. This is a nice feature
of Windows 95 that is not offered by Windows NT. On Windows NT, it is
possible to have another region immediately after your thread’s stack. If
this happens and you attempt to access memory beyond your stack, you
might corrupt memory related to another part of your process—and the
system will not detect this corruption.

Second, note that there are no pages with the PAGE_GUARD pro-
tection attribute flag. Since Windows 95 does not support this flag, it
uses a slightly different technique in order to expand a thread’s stack.
Windows 95 marks the committed page immediately below the stack with
the PAGE_NOACCESS protection attribute (address 0x0063E000 in Fig-
ure 6-5). Then, when the thread touches the page below the read /write
pages, an access violation occurs. The system catches this, changes the
no access page to a read/write page, and commits a new “guard” page
just below the previous guard page.

Third, note the single page of PAGE_READWRITE storage at
address 0x00637000 in Figure 6-5. This page exists for 16-bit Windows
compatibility. Although Microsoft never documented it, developers found
out that the 16 bytes at the beginning of a 16-bit application’s stack seg-
ment contains information about the 16-bit application’s stack, local
heap, and local atom table. Because Win32 applications running on
Windows 95 frequently call 16-bit DLL components, and some of these
16-bit components assume that this information is available at the begin-
ning of the stack segment, Microsoft was forced to simulate these bytes in
Windows 95. When 32-bit code thunks to 16-bit code, Windows 95 maps
a 16-bit CPU selector to the 32-bit stack and sets the stack segment (SS)
register to point to the page at address 0x00637000. The 16-bit code can
now access the 16 bytes at the beginning of the stack segment and con-
tinue executing without any problems.

Now, as Windows 95 grows the thread’s stack, it continues to grow
the block at address 0x0063F000; it also keeps moving the guard page
down until 1 MB of stack storage is committed, and then the guard
page disappears just as it does under Windows NT. The system also con-
tinues to move the page for 16-bit Windows component compatibility

203

ADVANCED WINDOWS

down, and eventually this page goes into the 64-KB block at the begin-
ning of the stack region. So a fully committed stack on Windows 95
looks like Figure 6-6:

6400 ao’: 1 1epages | pofstaak esewedforstack
-+ 0X00640000 - (65,536 bytes) | underfiow _
R ,';5“5.'”72569699& i CmnmxﬁedpagesmeAG&REwWRﬂE
- 0x00540000 000 (1 VE) :pmtedim smkmus&
ot g
anataono (?8,;6729)‘*%?) b
| X005%80%0 1 (4096 bytes) :‘
i] 30000 > ‘3 Péﬁéé o fiéoﬂomcfstack reservad'for stac
; OXOOE’ 2 }-,‘21(_32,?68.‘9)/;!:955)‘ overflow ..
Figure 6-6.

A full thread stack region under Windows 95.

The C Run-Time’s Stack Checking Function

204

MS-DOS and 16-bit Windows applications run in a system that doesn’t
take advantage of the CPU’s ability to assign memory protections to
regions of memory. So when your application uses its stack, the CPU
can’t detect when a stack overflow occurs. Because this can be a very dif-
ficult bug to detect in these 16-bit environments, many C/C++ compiler
vendors offer a compiler switch that causes the compiler to add a call to
an internal function (provided in the C run-time library) that verifies the
stack hasn’t overflowed. This compiler switch is optional because adding
the call to the stack checking function both increases the size of your
EXE file and makes your application run more slowly.

In the Win32 environment, the CPU can automatically detect when
a thread overflows its stack, so there’s no need for additional function
calls that would make your code bigger and slower.

S1X: Using Virtual Memory in Your Own Applications

The 32-bit C/C++ compilers still offer a stack checking function,
but the purpose of the function has changed totally. Now the 32-bit stack
checking function makes sure that pages are committed to your thread’s
stack appropriately. Let’s look at an example; here’s a small function that
requires a lot of memory for its local variables:

void SomeFunction () {
int nValues[4000];

// Do some processing with the array.
nValues[0] = 0; // Some assignment

This function will require at least 16,000 bytes (4000 x sizeof(int);
each integer is 4 bytes) of stack space to accommodate the array of inte-
gers. Usually, the code generated by a compiler to allocate this stack
space simply decrements the CPU’s stack pointer by 16,000 bytes. How-
ever, the system does not commit physical storage to this lower area of
the stack’s region until an attempt is made to access the memory address.

On a system with a 4-KB or 8-KB page size, this could cause a prob-
lem. If the first access to the stack is at an address that is below the guard
page (as shown on the assignment line in the code above), the thread
will be accessing reserved memory and the system will raise an access
violation. To ensure that you can successfully write functions like the
one shown above, the compiler inserts calls to the C run-time’s stack
checking function.

When compiling your program, the compiler knows the page size
for the CPU system you are targeting. If you are compiling your applica-
tion for the x86, MIPS, or PowerPC, the x86, MIPS, and PowerPC compil-
ers all know that the page size for these platforms is 4 KB. If you are
compiling for the Alpha, the Alpha compiler knows that the page size
is 8 KB. As the compiler encounters each function in your program, it
determines the amount of stack space required for the function; if
the function requires more stack space than the target system’s page size,
the compiler inserts a call to the C run-time’s stack checking function.
You do not need to specify any compiler switches—the compiler inserts
this function automatically as needed.

The pseudo-code on the next page shows what the stack checking
function does. I say pseudo-code because this function is usually imple-
mented in assembly language by the compiler vendors.

205

ADVANCED WINDOWS

206

// The C run-time knows the page size for the target system.
Jifdef _M_ALPHA ‘

#define PAGESIZE (8 = 1024) // 8-KB page

#else

j#define PAGESIZE (4 = 1024) // 4-KB page

fendif

void StackCheck (int nBytesNeededFromStack) {
// Get the stack pointer position.
// At this point, the stack pointer has NOT been decremented
// to account for the function's local variables.
PBYTE pbStackPtr = (CPU's stack pointer);

while (nBytesNeededFromStack >= PAGESIZE) {
// Move down a page on the stack--should be a guard page.
pbStackPtr -= PAGESIZE;

// Access a byte on the guard page--forces new page to be
// committed and guard page to move down a page.
pbStackPtr[0] = 0;

// Reduce the number of bytes needed from the stack.
nBytesNeededFromStack -= PAGESIZE;
}

// Before returning, the StackCheck function sets the CPU's
// stack pointer to the address below the function's
// local variables.

Visual C++ does offer a compiler switch that allows you to control
the page-size threshold that the compiler uses to determine when to
add the automatic call to StackCheck. This compiler switch should be
used only if you know exactly what you are doing and have a special need
for it. For 99.99999 percent of all applications and DLLs written, this

switch should not be used.

CHAPTER S EVEN

MEMORY-MAPPED FILES

VVorking with files is something almost every application must do, and
it’s always a hassle. Should your application open the file, read it, and
close the file, or should it open the file and use a buffering algorithm to
read from and write to different portions of the file? Win32 offers the
best of both worlds: memory-mapped files.

Like virtual memory, memory-mapped files allow you to reserve a
region of address space and commit physical storage to the region. The
difference is that the physical storage comes from a file that is already on
the disk instead of the system’s paging file. Once the file has been
mapped, you can access it as if the whole file were loaded in memory.

Memory-mapped files are used for three different purposes:

B The system uses memory-mapped files to load and execute EXE
and DLL files. This greatly conserves both paging file space and
the time required for an application to begin executing.

B You can use memory-mapped files to access a data file on disk.
This shelters you from performing file I/O operations on the
file and from buffering the file’s contents.

B You can use memory-mapped files to allow multiple processes
running on the same machine to share data with each other.
(Win32 does offer other methods for communicating data
among processes—but these other methods are implemented
using memory-mapped files.)

In this chapter, we will examine each of these uses for memory-
mapped files.

207

ADVANCED WINDOWS

Memory-Mapped EXEs and DLLs

208

When a thread calls CreateProcess, the system performs the following steps:

1. The system locates the EXE file specified in the call to
CreateProcess. If the EXE file cannot be found, the process is not
created and CreateProcess returns NULL.

2. The system creates a new process kernel object with a usage
countof 1.

3. The system creates a 4-GB address space for this new process.

4. The system reserves a region of address space large enough
to contain the EXE file. The desired location of this region is
specified inside the EXE file itself. By default, an EXE file’s
base address is 0x00400000. However, you can override this
when you create your application’s EXE file by using the link-
er’s /BASE option when you link your application.

5. The system notes that the physical storage backing the reserved
region is in the EXE file on disk instead of the system’s paging file.

After the EXE file has been mapped into the process’s address
space, the system accesses a section of the EXE file that lists the DLLs
containing functions that the code in the EXE calls. The system then calls
LoadLibrary for each of these DLLs and, if any of the DLLs require addi-
tional DLLs, the system calls LoadLibrary to load those DLLs as well.
Every time LoadLibrary is called to load a DLL, the system performs steps
similar to steps 4 and 5 above:

1. The system reserves a region of address space large enough
to contain the DLL file. The desired location of this region is
specified inside the DLL file itself. By default, Visual C++ 2.0
makes the DLL’s base address 0x10000000. However, you can
override this when you build your DLL by using the linker’s
/BASE option. All the standard system DLLs that ship with
Windows NT and Windows 95 have different base addresses.

2. If the system is unable to reserve a region at the DLL’s pre-
ferred base address, either because the region is occupied by
another DLL or EXE or because the region just isn’t big enough,
the system will then try to find another region of address space
to reserve for the DLL. It is unfortunate when a DLL cannot
load at its preferred base address, for two reasons. First, the

SEVEN: Memory-Mapped Files

system might not be able to load the DLL at all if it does not
have fixup information. (You can remove fixup information
from a DLL when it is created by using the linker’s /FIXED
switch. This makes the DLL file smaller, but it also means that
the DLL must load at its preferred address.) Second, the system
must perform some relocations within the DLL. On Windows 95,
the system can fix the relocations as pages are swapped into
RAM. On Windows NT, these relocations require additional
storage from the system’s paging file; they also increase the
amount of time needed to load the DLL.

3. The system notes that the physical storage backing the reserved
region is in the DLL file on disk instead of in the system’s pag-
ing file. If Windows NT has to perform relocations because the
DLL could not load at its preferred base address, the system
also notes that some of the physical storage for the DLL is
mapped to the paging file.

If for some reason the system is unable to map the EXE and all the
required DLLs, the system displays a message box to the user and frees
the process’s address space and the process object. CreateProcess will return
NULL to its caller; the caller can call GetLastError to get a better idea of
why the process could not be created.

After all the EXE and DLL files have been mapped into the pro-
cess’s address space, the system can begin executing the EXE file’s
startup code. After the EXE file has been mapped, the system takes care
of all the paging, buffering, and caching. For example, if there is code in
the EXE that causes it to jump to the address of an instruction that isn’t
loaded into memory, a fault will occur. The system detects the fault and
automatically loads the page of code from the file’s image into a page of
RAM. Then the system maps the page of RAM to the proper location in
the process’s address space and allows the thread to continue executing
as though the page of code were loaded all along. Of course, all this is
invisible to the application. This process is repeated each time any
thread in the process attempts to access code or data that is not loaded
into RAM.

Static Data Is Not Shared by Multiple Instances of an EXE or a DLL

When you create a new process for an application that is already run-
ning, the system simply opens another memory-mapped view of the file-
mapping object that identifies the executable file’s image and creates a

209

ADVANCED WINDOWS

new process object and a new thread object (for the primary thread).
The system also assigns new process and thread IDs to these objects. By
using memory-mapped files, multiple running instances of the same appli-
cation can share the same code and data in RAM.

Note one small problem here. Win32 processes use a flat, 4-GB
address space. When you compile and link your program, all the code
and data are thrown together as one large entity. The data is separated
from the code but only to the extent that it follows the code in the EXE
file! The illustration below shows a simplified view of how the code and
data for an application are loaded into virtual memory and then mapped
into an application’s address space.

EXE File Application’s
on Disk Virtual Memory Address Space
- Code section. _ Codepage2 \/‘_ Codepage 1 |
“contains 3 cate . B—" IR
pages of code Qode.page 1,} __QQfliepageizy, :
: i ‘Datapage2 ,— Codepage3 E
Bosxorsii 8 Code page 3 f%«f Datapaget
- pages of data Datapage 1- NS ‘Datapage? |

As an example, let’s say that a second instance of an application is run.
The system simply maps the pages of virtual memory containing the file’s
code and data into the second application’s address space, as shown here:

Second Instance’s First Instance’s
Address Space Virtual Memory Address Space
Codepage i f—_— Goddpage y Codepage 1 E
: !Code»page_z : l ‘Gode‘,paggé “1: . N— ,Cbcfe p_a;lgé,?;‘ '
Cwepnt - enmesd |\~ Coemins
Datapage! f—/~— Codepage3d f—\ — Datapagel
- Datapage2 | “— Daapagel K Datapage2

1. Actually, the contents of a file are broken down into sections. The code is in one section,
and the global variables are in another section. Sections are aligned on page boundaries.
Pages are 4 KB on x86, MIPS, and PowerPC CPUs, and 8 KB on the DEC Alpha CPU. An
application can determine the page size being used by calling GetSystemInfo. In the EXE or
DLL file, the code section usually precedes the data section.

210

SEVEN: Memory-Mapped Files

If one instance of the application alters some global variables resid-
ing in a data page, the memory contents for all instances of the applica-
tion change. This type of change could cause disastrous effects and must
not be allowed.

The system prohibits this by using the copy-on-write feature of the
memory management system. Any time an application attempts to write
to its memory-mapped file, the system catches the attempt, allocates a new
block of memory for the page containing the memory the application is
trying to be write to, copies the contents of the page, and allows the appli-
cation to write to this newly allocated memory block. Asa result, no other
instances of the same application are affected. The illustration below
shows what happens when the first instance of an application attempts to
change a global variable in data page 2.

Second Instance’s First Instance’s
Address Space Virtual Memory Address Space
; Cdde page 1 e : Code bage.z -—\/- _Code page 1.
“Codepage2 Code page 1 — Codepage?2
Code page 3 |~ Déta?page 2. / Code page 3
“Datapage 1 | /— Code page /— . Data page 1 E
Data b@ggz , k f Data page 1 —/- , Data page 2 E

The system allocated a new page of virtual memory and copied the
contents of data page 2 into it. The first instance’s address space is
changed so that the new data page is mapped into the address space at
the same location as the original address page. Now the system can let
the process alter the global variable without fear of altering the data for
another instance of the same application.

A similar sequence of events occurs when an application is being
debugged. Let’s say that you’re running multiple instances of an applica-
tion and want to debug only one instance. You access your debugger and
seta breakpointin aline of source code. The debugger actually modifies
your code by changing one of your assembly language instructions to an
instruction that causes the debugger to activate itself. So we have the
same problem again. When the debugger modifies the code, it causes all
instances of the application to activate the debugger when the changed

211

ADVANCED WINDOWS

i

|

assembly instruction is executed. To fix this situation, the system again
uses copy-on-write memory. When the system senses that the debugger
is attempting to change the code, it allocates a new block of memory,
copies the page containing the instruction into the new page, and allows
the debugger to modify the code in the page copy.?

When a process is loaded, the system examines all the file image’s pages.
The system commits storage in the page file immediately for those pages
that would normally be protected with the copy-on-write attribute. These
pages are simply committed; they are not touched in any way. When a
page in the file image is accessed, the system loads the appropriate page.
If that page is never modified, it can be discarded from memory and
reloaded when necessary. However, if the file’s page is modified, the sys-
tem swaps the modified page to one of the previously committed pages
in the paging file.

The only difference in behavior between Windows NT and Win-
dows 95 occurs when you have two copies of a module loaded and the
writable data hasn’t been modified. In this case, processes running
under Windows NT share the data, while under Windows 95 each pro-
cess receives its own copy of the data. Windows NT and Windows 95
behave exactly the same if there is only one copy of the module loaded
or if the writable data has been modified (which is normally the case).

Memory-Mapped Data Files

212

The operating system automatically uses the technique described in the
previous section whenever an EXE or a DLL file is loaded. However, it is
also possible to memory map a data file into your process’s address
space. This makes it very convenient to manipulate large streams of data.

2. Note that you can create global variables in an EXE or a DLL file and share them among
all instances of the file. Briefly, this method requires placing the variables you want to share
in their own section by using the #pragma data_seg() compiler directive. Then you must use
the /SECTION:name, attributes switch to tell the linker that you want the data in the section
to be shared for all instances or mappings of the file. The name argument identifies the
name of the section containing the data variables you want to share, and the attributes argu-
ment specifies the attributes of data in this section. To share variables, you’ll need to use
RSW for read, shared, and write. See Chapter 11 for more information about sharing global
variables among multiple instances of a DLL.

SEVEN: Memory-Mapped Files

To understand the power of using memory-mapped files this way,
let’s look at four possible methods of implementing a program to reverse
the order of all the bytes in a file.

Method 1: One File, One Buffer

The first and theoretically simplest method involves allocating a block of
memory large enough to hold the entire file. The file is opened, its con-
tents are read into the memory block, and the file is closed. With the
contents in memory, we can now reverse all the bytes by swapping the
first byte with the last, the second byte with the second-to-last, and so on.
This swapping continues until you swap the two middle bytes in the file.
After all the bytes have been swapped, you reopen the file and overwrite
its contents with the contents of the memory block.

This method is pretty easy to implement but has two major draw-
backs. First, a memory block the size of the file must be allocated. This
might not be too bad if the file is small, but if the file is huge—say,
2 GB—the system will not allow the application to commit a block of
physical storage that large. Large files require a different method.

Second, if the process is interrupted in the middle, while the
reversed bytes are being written back out to the file, the contents of the
file will be corrupted. The simplest way to guard against this is to make a
copy of the original file before reversing its contents. If the whole pro-
cess succeeds, you can delete the copy of the file. Unfortunately, this safe-
guard requires additional disk space.

Method 2: Two Files, One Buffer

In the second method, you open the existing file and create a new file
of 0 length on the disk. Then you allocate a small internal buffer—say,
8 KB. You seek to the end of the original file minus 8 KB, read the last
8 KB into the buffer, reverse the bytes, and write the buffer’s contents to
the newly created file. The process of seeking, reading, reversing, and
writing repeats until you reach the beginning of the original file. Some
special handling is required if the file’s length is not an exact multiple of
8 KB, butit’s not extensive. After the original file is fully processed, both
files are closed and the original file is deleted.

This method is a bit more complicated to implement than the first
one. It uses memory much more efficiently because only an 8-KB chunk
is ever allocated, but there are two big problems. First, the processing is
slower than in the first method because on each iteration you must per-
form a seek on the original file before performing a read. Second, this

213

ADVANCED WINDOWS

method can potentially use an enormous amount of hard disk space. If
the original file is 400 MB, the new file will grow to be 400 MB as the pro-
cess continues. Just before the original file is deleted, the two files will
occupy 800 MB of disk space. This is 400 MB more than should be
required—which leads us to the next method.

Method 3: One File, Two Buffers

For this method, let’s say the program initializes by allocating two sepa-
rate 8-KB buffers. The program reads the first 8 KB of the file into one
buffer and the last 8 KB of the file into the other buffer. The process
then reverses the contents of both buffers and writes the contents of the
first buffer back to the end of the file, and the contents of the second
buffer back to the beginning of the same file. Each iteration continues
by moving blocks from the front and back of the file in 8-KB chunks.
Some special handling is required if the file’s length is not an exact mul-
tiple of 16 KB and the two 8-KB chunks overlap. This special handling is
more complex than the special handling in the previous method, butit’s
nothing that should scare off a seasoned programmer.

Compared with the previous two methods, this method is better at
conserving hard disk space. Because everything is read from and written
to the same file, no additional disk space is required. As for memory use,
this method is also not too bad, using only 16 KB. Of course, this is prob-
ably the most difficult method to implement. Like the first method, this
method can result in corruption of the data file if the process is some-
how interrupted.

Now let’s take a look at how this process might be accomplished
using memory-mapped files.

Method 4: One File, Zero Buffers

214

When using memory-mapped files to reverse the contents of a file, you
open the file and then tell the system to reserve a region of virtual
address space. You tell the system to map the first byte of the file to the
first byte of this reserved region. You can then access the region of virtual
memory as though it actually contained the file. In fact, if there were a
single 0 byte at the end of the file, you could simply call the C run-time
function _strrev to reverse the data in the file.

This method’s great advantage is that the system manages all the
file caching for you. You don’t have to allocate any memory, load file data
into memory, write data back to the file, or free any memory blocks at all.
Unfortunately, the possibility that an interruption such as a power fail-
ure could corrupt data still exists with memory-mapped files.

SEVEN: Memory-Mapped Files

Using Memory-Mapped Files

There are three steps that you must perform in order to use a memory-
mapped file:

1. Create or open a file kernel object that identifies the file on
disk that you want to use as a memory-mapped file.

2. Create a file-mapping kernel object that tells the system the size
of the file and how you intend to access the file.

3. Tell the system to map all or part of the file-mapping object into
your process’s address space.

When you are finished using the memory-mapped file, there are
three steps you must perform in order to clean up:

1. Tell the system to unmap the file-mapping kernel object from
your process’s address space.

2. Close the file-mapping kernel object.
3. Close the file kernel object.

The next five sections discuss all these steps in more detail.

Step 1: Creating or Opening a File Kernel Object

To create or open a file kernel object, you always call the CreateFile
function:

HANDLE CreateFile(LPCSTR 1pFileName, DWORD dwDesiredAccess,
DWORD dwShareMode, LPSECURITY_ATTRIBUTES 1pSecurityAttributes,
DWORD dwCreationDisposition, DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile);

should use to open an existing file. The 16-bit Windows OpenFile func-
tion still exists in the Win32 API, but it is supplied for backward com-
patibility only. New applications should avoid the OpenFile function and
always use the new CreateFile function.

g Although its name does not suggest it, CreateFile is also the function you
18"

The CreateFile function takes quite a few parameters. For this discus-
sion, I'll concentrate only on the first three: ipFileName, dwDesiredAccess,

215

ADVANCED WINDOWS

216

and dwShareMode. CreateFile is discussed in more detail in Chapter 13 of
this book. '

As you might guess, the first parameter, [pFileName, identifies the
name (including an optional path) of the file that you want to create or
open. The second parameter, dwDesiredAccess, specifies how you intend
to access the contents of the file. You can specify one of the four follow-
ing values here:

Value Meaning

0 You cannot read from or write
to the file’s contents. Specify 0
when you just want to get a file’s

; attributes.
GENERIC_READ You can read from the file.
GENERIC_WRITE You can write to the file.

GENERIC_READ | GENERIC_WRITE You can read from the file and
write to the file.

When creating or opening a file for use as a memory-mapped file,
select the access flag or flags that make the most sense for how you
intend to access the file’s data. For memory-mapped files, you must open
the file for read-only access or read-write access, so you’ll want to speci-
fy either GENERIC_READ or GENERIC_READ | GENERIC_WRITE
respectively.

The third parameter, dwShareMode, tells the system how you want to
share this file. You can specify one of the four following values for
dwShareMode:

Value Meaning

0 ' Any other attempts to
~ open the file fail.

FILE_SHARE_READ Other attempts to

open the file using
GENERIC_WRITE fail.

FILE_SHARE_WRITE Other attempts to
open the file using
GENERIC_READ fail.

FILE_SHARE_READ | FILE_SHARE _WRITE Other attempts to open
the file succeed.

SEVEN: Memory-Mapped Files

If CreateFile successfully creates or opens the specified file, a file
handle is returned; otherwise, INVALID_HANDLE _VALUE is returned.

g Most Win32 functions that return a handle return NULL when they are
unsuccessful. CreateFile, however, returns INVALID_HANDLE_VALUE,
Important | which is defined as OXFFFFFFFF.

Step 2: Creating a File-Mapping Kernel Object

In order to map afile’s data, you must create a file-mapping kernel object
by calling CreateFileMapping:
HANDLE CreateFileMapping(HANDLE hFile, LPSECURITY_ATTRIBUTES 1psa,

DWORD fdwProtect, DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizelow, LPSTR 1pszMapName);

A file-mapping object describes several important pieces of infor-
mation that the operating system requires while managing a memory-
mapped file.

The first parameter, iFile, identifies the handle of the file you want
mapped into the process’s address space. This handle is returned by
the previous call to CreateFile. The Ipsa parameter is a pointer to a
SECURIT Y_ATTRIBUTES structure, usually NULL.

As I pointed out at the beginning of this chapter, creating a
memory-mapped file is just like reserving a region of address space and
then committing physical storage to the region. It’s just that the physical
storage for a memory-mapped file comes from a file on a disk rather
than from space allocated from the system’s paging file. When you cre-
ate a file-mapping object, the system does not reserve a region of address
space and map the file’s storage to the region. (I’ll describe how to do
this in the next section.) However, when the system does map the storage
to the process’s address space, the system must know what protection
attribute to assign to the pages of physical storage. CreateFileMapping’s
fdwProtect parameter allows you to specify the desired protection attri-
butes. For the most part, you will specify one of the protection attributes
shown on the following page.

217

ADVANCED WINDOWS

218

Protection Attribute Meaning

PAGE_READONLY When the file-mapping object is mapped, you can
read the file’s data. You must have passed
GENERIC_READ to CreateFile.

PAGE_READWRITE When the file-mapping object is mapped, you can
read and write the file’s data. You must have passed
GENERIC_READ | GENERIC_WRITE to CreateFile.

PAGE_WRITECOPY When the file-mapping object is mapped, you can
read and write the file’s data. Writing causes a pri-
vate copy of the page to be created. You must have
passed either GENERIC_READ or GENERIC_READ
i GENERIC_WRITE to CreateFile.

Under Windows 95, you can pass the PAGE_WRITECOPY flag to Create-
FileMapping; this tells the system to commit storage from the paging file.
This paging file storage is reserved for a copy of the data file’s data; only
modified pages are actually written to the paging file. Any changes you
make to the file’s data are not propagated back to the original data file.
The end result is that the PAGE_WRITECOPY flag has the same effect
on both Windows NT and Windows 95.

In addition to the above page protections, there are four section
attributes that you may bitwise OR in the CreateFileMapping function’s
JdwProtect parameter. A section is just another word for a memory
mapping.

The first of these attributes, SEC_NOCACHE, tells the system that
none of the file’s memory-mapped pages are to be cached. So as you
write data to the file, the system will update the file’s data on the disk
more often than it normally would. This flag, like the PAGE_NOCACHE
protection attribute, exists for the device driver developer and is not usu-
ally used by applications.

Windows 95 ignores the SEC_NOCACHE flag.

The second section attribute, SEC_IMAGE, tells the system that the
file you are mapping is a Win32 portable executable (PE) file. When the

SEVEN: Memory-Mapped Files

ws 99

i

system maps this file into your process’s address space, the system exam-
ines the file’s contents to determine which protection attributes to assign
to the various pages of the mapped image. For example, a PE file’s code
section is usually mapped with PAGE_EXECUTE_READ attributes,
whereas the PE file’s data is usually mapped with PAGE_READWRITE
attributes. Specifying the SEC_IMAGE attribute tells the system to map
the file’s image and automatically set the appropriate page protections.

Windows 95 ignores the SEC_IMAGE flag.

The last two attributes, SEC_RESERVE and SEC_COMMIT, are
mutually exclusive and do not apply when you are using a memory-
mapped data file. These two flags will be discussed in the section “Using
Memory-Mapped Files to Share Data Among Processes” later in this
chapter. When creating a memory-mapped data file, you should not
specify either of these flags. CreateFileMapping will ignore them.

CreateFileMapping’s next two parameters, dwMaximumSizeHigh and
dwMaximumSizeLow, tell the system the maximum size of the file in bytes.
Two 32-bit values are required because Win32 supports file sizes that can
be expressed using a 64-bit value; the dwMaximumSizeHigh parameter
specifies the high 32 bits, and the dwMaximumSizeLow parameter speci-
fies the low 32 bits. For files that are 4 GB or less, dwMaximumSizeHigh
will always be 0.

Using a 64-bit value means that Win32 can process files as large as
18 exabytes. (An exabyte, which is abbreviated EB, is 1 quintillion, or
1,152,921,504,606,846,976, bytes.) If you want to create the file-mapping
object so thatit reflects the current size of the file, you can pass 0 for both
parameters. If you intend only to read from the file or to access the file
without changing its size, this is what you should do. If you intend to
append data to the file, you will want to choose a maximum file size that
leaves you some breathing room.

If you have been paying attention so far, you must be thinking that
there is something terribly wrong here. It’s nice that Win32 supports files
and file-mapping objects that can be anywhere up to 18 EB, but how are
you ever going to map a file that big into your process’s address space,
which has a maximum limit of 4 GB? I'll explain how this is accom-
plished in the next section.

219

ADVANCED WINDOWS

If you call CreateFileMapping, passing the PAGE_READWRITE flag,
the system will check to make sure that the associated data file on the
disk is at least the same size as the size specified in the dwMaximum-
SizeHigh and dwMaximumSizeLow parameters. If the file is smaller than
the specified size, CreateFileMapping will make the file on the disk larger
by extending its size. This is required so that the physical storage will al-
ready exist when the file is used as a memory-mapped file later. If the
file-mapping object is being created with the PAGE_READONLY or the
PAGE_WRITECOPY flag, the size specified to CreateFileMapping must be
no larger than the physical size of the disk file. This is because you will
not be able to append any data to the file.

CreateFileMapping’s last parameter, [pszMapName, is a zero-terminated
string that assigns a name to this file-mapping object. The name is used
to share the object with another process and is discussed later in this
chapter. A memory-mapped data file usually doesn’t need to be shared;
therefore, this parameter is usually NULL.

The system creates the file-mapping object and returns a handle
identifying the object back to the calling thread. If the system cannot cre-
ate the file-mapping object, a NULL handle value is returned. Again,
please note that this is different from CreateFile’s invalid handle value of
INVALID_HANDLE_VALUE (defined as OXFFFFFFFF).

Step 3: Mapping the File’s Data into the Process’s Address Space

220

After you have created a file-mapping object, you still need to have the
system reserve a region of address space for the file’s data and commit
the file’s data as the physical storage that is mapped to the region. This is
done by calling MapViewOfFile:

LPVOID MapViewOfFile(HANDLE hFileMappingObject,

DWORD dwDesiredAccess, DWORD dwFileOffsetHigh,
DWORD dwFileOffsetLow, DWORD dwNumberOfBytesToMap);

The hFileMappingObject parameter identifies the handle of the file-
mapping object, which was returned by the previous call to either
CreateFileMapping or OpenFileMapping (discussed later in this chapter).
The dwDesiredAccess parameter identifies how the data can be accessed.
That’s right, we must again specify how we intend to access the file’s data.
You can specify one of four possible values:

SEVEN: Memory-Mapped Files

Value Meaning

FILE_MAP WRITE You can read and write file data. Create-
FileMapping had to be called by passing
PAGE_READWRITE.

FILE_MAP_READ You can read file data. CreateFileMapping could
be called with any of the protection attributes:
PAGE_READONLY, PAGE_READWRITE, or
PAGE_WRITECOPY.

FILE_MAP_ALL_ACCESS Same as FILE_MAP_WRITE.

FILE_MAP_COPY You can read and write file data. Writing
causes a private copy of the page to be created.
CreateFileMapping could be called with any of

the protection attributes: PAGE_READONLY,
PAGE_READWRITE, or PAGE_WRITECOPY.

It certainly seems strange and annoying that Win32 requires all these
protection attributes to be set over and over again. I assume this was done
to give an application as much control over data protection as possible.

The remaining three parameters have to do with reserving the
region of address space and mapping the physical storage to the region.
When you map a file into your process’s address space, you do not have
to map the entire file at once. Instead, you can map only a small portion
of the file into the address space. A portion of a file that is mapped to your
process’s address space is called a view, which explains how MapViewOfFile
gotits name.

When you map a view of a file into your process’s address space, you
must specify two things. First, you must tell the system which byte in the
data file should be mapped as the first byte in the view. This is done using
the dwFileOffsetHigh and dwFileOffsetLow parameters. Because Win32 sup-
ports files that can be up to 18 EB, you must specify this byte-offset using
a 64-bit value of which the high 32 bits are passed in the dwFileOffsetHigh
parameter and the low 32 bits are passed in the dwFileOffsetLow parame-
ter. Note that the offset in the file must be an even multiple of the
system’s allocation granularity. (To date, all implementations of Win32
have an allocation granularity of 64 KB.) The section “System Informa-
tion” in Chapter 5 shows how to obtain the allocation granularity value
for a given system.

221

ADVANCED WINDOWS

a

\

Eﬂ%

222

Second, you must tell the system how much of the data file to map
into the address space. This is the same thing as specifying how large a
region of address space to reserve. You specify this size using the
dwNumberOf BytesToMap parameter. You’ll notice that this parameter is a
single 32-bit value because it could never be larger than 4 GB. If you
specify a size of 0, the system will attempt to map a view consisting of the
entire file.

Under Windows 95, if MapViewOfFile cannot find a region large enough
to contain the entire file-mapping object, MapViewOfFile returns NULL
regardless of the size of the view requested.

Under Windows NT, MapViewOfFile needs only to find a region large
enough for the view requested, regardless of the size of the entire file-
mapping object.

If you specify the FILE_MAP_COPY flag when calling MapView-
OfFile, the system commits physical storage from the system’s paging file.
The amount of space committed is determined by the dwNumberOf Bytes-
ToMap parameter. As long as you do nothing more than read from the
file’s mapped view, the system will never use these committed pages in
the paging file. However, the first time any thread in your process writes
to any memory address within the file’s mapped view, the system will grab
one of the committed pages from the paging file, copy the page of origi-
nal data to this paging-file page, and then map this copied page into your
process’s address space. From this point on, the threads in your process
are accessing a local copy of the data and cannot read or modify the
original data.

When the system makes the copy of the original page, the system
changes the protection of the page from PAGE_WRITECOPY to
PAGE_READWRITE. The following code fragment explains it all:

HANDLE hFile, hFileMapping;
BYTE bSomeByte, #pbFile;

// Open the file that we want to map.
hFile = CreateFile(1pszName, GENERIC_READ | GENERIC_WRITE, @, NULL,
OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

SEVEN: Memory-Mapped Files

95

/1 Create a file-mapping object for the file.
hFileMapping = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, @, 0,
NULL);

// Map a copy-on-write view of the file; the system will commit

// enough physical storage from the paging file to accommodate

// the entire file. A1l pages in the view will initially have

// PAGE_WRITECOPY access.

pbFile = (PBYTE) MapViewOfFile(hFileMapping, FILE_MAP_COPY, 0, 0O,
0);

// Read a byte from the mapped view.

bSomeByte = pbFile[0];

// When reading, the system does not touch the committed pages in
// the paging file. The page keeps its PAGE_WRITECOPY attribute.

// Write a byte to the mapped view.

pbFile[0] = 0;

// When writing for the first time, the system grabs a committed

// page from the paging file, copies the original contents of the
// page at the accessed memory address, and maps the new page

// (the copy) into the process's address space. The new page has

// a PAGE_READWRITE attribute.

// Write another byte to the mapped view.

pbFile[1l] = 0;

// Because this byte is now in a PAGE_READWRITE page, the system
// simply writes the byte to the page (backed by the paging file).

// When finished using the file's mapped view, unmap it.

// UnmapViewOfFile is discussed in the next section.
UnmapViewOfFile(pbFile);

// The system decommits the physical storage from the paging file.
// Any writes to the pages are lost.

// Clean up after ourselves.
CloseHandle(hFileMapping);
CloseHandle(hFile);

As mentioned earlier, Windows 95 must commit storage in the paging
file for the memory-mapped file up front. However, it will write modified
pages to the paging file only as necessary.

223

ADVANCED WINDOWS

Step 4: Unmapping the File’s Data
from the Process’s Address Space

224

When you no longer need to keep a file’s data mapped to a region of
your process’s address space, you can release the region by calling:

BOOL UnmapViewOfFile(LPVOID TpBaseAddress);

The only parameter, lpBaseAddress, specifies the base address of the
returned region. This value must be the same value returned from a call
to MapViewOfFile. It isimportant to remember to call UnmapViewOfFile. If
you do not call this function, the reserved region won’t be released until
your process terminates. Whenever you call MapViewOfFile, the system
always reserves a new region within your process’s address space—any
previously reserved regions are not released.

In the interest of speed, the system buffers the pages of the file’s
data and doesn’t update the disk image of the file immediately while
working with the file’s mapped view. However, when you are finished
with the view and call UnmapViewOfFile, the system forces all the modi-
fied data in memory to be written back to the disk image. If you need to
ensure that your updates have been written to disk, you can force the sys-
tem to write all the modified data back to the disk image by calling
FlushViewOfFile:

BOOL FlushViewOfFile(LPVOID 1pBaseAddress,
DWORD dwNumberOfBytesToFlush);

This function requires the address of the mapped view as returned
by the previous call to MapViewOfFile and also requires the number of
bytes you want to write to disk. If you call FlushViewOfFile and none of the
data has been changed, the function simply returns without writing any-
thing to the disk.

For a memory-mapped file whose storage is over a network, Flush-
ViewOfFile guarantees that the file’s data has been written from the
workstation. However, FlushViewOfFile cannot guarantee that the server
machine that is sharing the file has written the data to the remote disk
drive because the server might be caching the file’s data. To ensure that
the server writes the file’s data, you should pass the FILE_FLAG_WRITE-
_THROUGH flag to the CreateFile function whenever you create a file-
mapping object for the file and then map the view of the file-mapping
object. If the file is opened using this flag, FlushViewOfFile will return
when all of the file’s data has been stored on the server’s disk drive.

SEVEN: Memory-Mapped Files

There is one special note about the UnmapViewOfFile function. If the
view was originally mapped using the FILE_MAP_COPYflag, any changes
that you made to the file’s data were actually made to a copy of the file’s
data stored in the system’s paging file. In this case, if you call Unmap-
ViewOfFile the function has nothing to update on the disk file and simply
causes the pages in the paging file to be decommitted. The data con-
tained in the pages is lost.

If you want to preserve the changed data, you must take additional
measures yourself. For example, you might want to create another file-
mapping object (using PAGE_READWRITE) from the same file and
map this new file-mapping object into your process’s address space using
the FILE_MAP_WRITE flag. Then you could scan the first view looking
for pages with the PAGE_READWRITE protection attribute. Whenever
you found a page with this attribute, you could examine its contents and
decide whether to write the changed data to the file. If you do not want
to update the file with the new data, keep scanning the remaining pages
in the view until you reach the end. However, if you do want to save the
changed page of data, just call MoveMemory to copy the page of data from
the first view to the second view. Because the second view is mapped with
PAGE_READWRITE protection, the MoveMemory function will be updat-
ing the actual contents of the file on the disk. You can use this method to
determine changes and preserve your file’s data.

windﬂwss Windows 95 does not support the copy-on-write protection attribute,

so you cannot test for pages marked with the PAGE_READWRITE flag
m when scanning the first view of the memory-mapped file. You will have
to devise a method of your own for determining which pages in the first
view you have actually modified.

Steps 5 and 6: Closing the File-Mapping Object and the File Object

It goes without saying that you should always close any kernel objects you
open. Forgetting to do so will cause a resource leak in your process. Of
course, when your process terminates, the system automatically closes
any objects your process opened but forgot to close. But if your process
does not terminate for a while, you will accumulate resource handles.
You should always write clean, “proper” code that closes any objects you
have opened. In order to close the file-mapping object and the file
object, you simply need to call the CloseHandle function twice—once for
each handle.

225

ADVANCED WINDOWS

226

Let’s look at this a little closer. The pseudo-code below shows an
example of memory-mapping a file:

HANDLE hFile, hFileMapping;
PVOID pFile;

hFile = CreateFile(...);
hFileMapping = CreateFileMapping(hFile, ...);
pFile = MapViewOfFile(hFileMapping, ...);

// Use the memory-mapped file.

UnmapViewOfFile(pFile);
CloseHandle(hFileMapping);
CloseHandle(hFile);

The code above shows the “expected” method for manipulating
memory-mapped files. However, what it does not show is that the system
increments the usage counts of the file object and the file-mapping object
when you call MapViewOfFile. This side effect is significant because it
means that we could rewrite the code fragment above as follows:

HANDLE hFile, hFileMapping;
PVOID pFile;

hFile = CreateFile(...);

hFileMapping = CreateFileMapping(hFile, ...);
CloseHandle(hFile);

pFile = MapViewOfFile(hFileMapping, ...);
CloseHandle(hFileMapping);

// Use the memory-mapped file.

UnmapViewOfFile(pFile);

In working with memory-mapped files, it is quite common to open
the file, create the file-mapping object, and then use the file-mapping
object to map a view of the file’s data into the process’s address space.
Because the system increments the internal usage counts of the file ob-
jectand the file-mapping object, you can close these objects at the begin-
ning of your code and eliminate potential resource leaks.

If you will be creating additional file-mapping objects from the
same file or mapping multiple views of the same file-mapping object, you
cannot call CloseHandle early—you’ll need the handles later to make the
additional calls to CreateFileMapping and MapViewOfFile, respectively.

SEVEN: Memory-Mapped Files

Processing a Big File Using Memory-Mapped Files

In an earlier section, I said I would tell you how to map an 18-EB file into
a 4-GB address space. Well, you can’t. Instead, you must map a view of
the file that contains only a small portion of the file’s data. You should
start by mapping a view of the very beginning of the file. When you’ve
finished accessing the first view of the file, you can unmap it and then
map a new view starting at an offset deeper within the file. You’ll need to
repeat this process until you access the complete file. This certainly
makes dealing with large memory-mapped files less convenient, but the
good news is that most files are well under 4 GB in size.

Let’s look at an example using an 8-GB file. Here is a routine that
counts all the J characters (one of my favorites) in this ASCII file in sev-
eral steps:

__int64 WINAPI Countds (void) {

HANDLE hFile, hFileMapping;

PBYTE pbFile;

SYSTEM_INFO si;

__int64 qwFileSize, qwFileOffset = 0, qwNumOfds = 0;
DWORD dwFileSizeHigh;

DWORD dwByte, dwBytesInBlock;

DWORD dwErr;

// We need the allocation granularity value for this system

// because views must always begin with an offset in the data
// file that is a multiple of the allocation granularity value.
GetSystemInfo(&si);

// Open the data file.

hFile = CreateFile("c:\\HugeFile.Big", GENERIC_READ,
FILE_SHARE_READ, NULL, OPEN_EXISTING,
FILE_FLAG_SEQUENTIAL_SCAN, NULL);

if (hFile == INVALID_HANDLE_VALUE)
return(@);

// Create the file-mapping object.

hFileMapping = CreateFileMapping(hFile, NULL, PAGE_READONLY,
0, 0, NULL);

if (hFileMapping == NULL) {

CloseHandle(hFile);
return(0);

(continued)

227

ADVANCED WINDOWS

228

qwFileSize = GetFileSize(hFile, &dwFileSizeHigh);
gwFileSize += (((_int64) dwFileSizeHigh) << 32);

// We no Tonger need access to the file object's handle.
CloseHandle(hFile);

while (qwFileSize > @) {

// Determine the number of bytes to be mapped.
if (qwFileSize < si.dwAllocationGranularity)
dwBytesInBlock = (DWORD) qwFileSize;
else
dwBytesInBlock = si.dwAllocationGranularity;

pbFile = MapViewOfFile(hFileMapping,

FILE_MAP_READ, // Desired access
(DWORD) (qwFileOffset >> 32), // Starting byte
(DWORD) (qwFileOffset & OXFFFFFFFF),// in file
dwBytesInBlock); // # of bytes to map

// Count the number of Js in this block.
for (dwByte = 0; dwByte < dwBytesInBlock; dwByte++) {
if (pbFile[dwByte] == 'J")
qwNumQfJs++;
}

// Unmap the view so that we don't get multiple
// views 1in our address space.
UnmapViewOfFile(pbFile);

// Skip to the next set of bytes in the file.
qwFileOffset += dwBytesInBlock;
qwFileSize -= dwBytesInBlock;

}

CloseHandle(hFileMapping);
return(qwNum0fJs);

This algorithm maps views of 64 KB (the allocation granularity size)
or less. Also, remember that MapViewOfFile requires that the file offset
parameters be an even multiple of the allocation granularity size. As
each view is mapped into the address space, the scanning for /s contin-
ues. After each 64-KB chunk of the file has been mapped and scanned,
it’s time to tidy up by closing the file-mapping object.

SEVEN: Memory-Mapped Files

Memory-Mapped Files and Coherence

The system allows you to map multiple views of the same data of a file.
For example, you can map the first 10 KB of a file into a view and then
map the first 4KB of that same file into a separate view. As long as you are
mapping the same file-mapping object, the system ensures that the
viewed data is coherent. For example, if your application alters the con-
tents of the file in one view, the data in the other view is updated to reflect
the changes. This is because, although the page is mapped into the
process’s virtual address space more than once, the system really has the
data in only a single page of RAM. If multiple processes are mapping
views of a single data file, the data is still coherent because there is still
only one instance of each page of RAM within the data file—it’s just that
the pages of RAM are mapped into multiple process address spaces.

Win32 allows you to create several file-mapping objects that are backed
by a single data file. Win32 does not guarantee that views of these differ-
Important | ent file-mapping objects will be coherent. It guarantees only that mul-
tiple views of a single file-mapping object will be coherent.

When we’re working with files, however, there is no reason why an-
other application can’t call CreateFile to open the same file that another
process has mapped. This new process can then read from and write to
the file using the ReadFile and WriteFile functions. Of course, whenever a
process makes these calls, it must be either reading file data from or writ-
ing file data to a memory buffer. This memory buffer must be one the
process itself created, not the memory that is being used by the mapped
files. There can be problems when two applications have opened the
same file: one process can call ReadFile to read a portion of a file, modify
the data, and write it back out using WhriteFile without the file-mapping
object of the second process being aware of the first process’s actions.
For this reason, it is recommended that when you call CreateFile for files
that will be memory mapped, you specify 0 as the value of the fdwShare-
Mode parameter. Doing so tells the system that you want exclusive access
to the file and that no other process can open it.

229

ADVANCED WINDOWS

230

Windows 95 is not able to maintain file coherence as well as Windows NT.
For example, examine the following code fragment:

BYTE bBuf[1];

DWORD dwNumBytesRead;

HANDLE hFile = CreateFile(...);

HANDLE hFileMap = CreateFileMapping(hFile, ...);
PBYTE pbData = MapViewOfFile(hFileMap, ...);

// Change first byte of file to a capital "X."
pbData[0] = 'X';

// Read the first byte of the file into a buffer.
ReadFile(hFile, bBuf, 1, &dwNumBytesRead, NULL);

// Test to see whether the first byte of the file
// matches the byte read into the buffer.
if (pbData[@] == bBuf[0]) {
// 0S may or may not be Windows 95.
} else {
// 0S is Windows 95.
}

This code fragment modifies the first byte of the memory-
mapped file and then reads the supposedly modified byte back into a
buffer. Windows NT guarantees that the file is coherent, while Windows
95 does not. For this reason, you should not write to a file using both
memory-mapped file techniques and buffer write techniques. Of course,
if the file is opened in read-only mode, you’ll have no problem accessing
it using either technique. The problem occurs only if you attempt to
write to the file.

By the way, when the file above is closed, Windows NT guaran-
tees that the X will be the first byte of the file, while Windows 95 does not.

Read-only files do not have coherence problems, which makes
them good candidates for memory-mapped files. Memory-mapped files
should never be used to share writable files over a network because the
system cannot guarantee coherent views of the data. If someone’s com-
puter updates the contents of the file, someone else’s computer with the
original data in memory will not know that the information has changed.

SEVEN: Memory-Mapped Files

The File Reverse Sample Application

TheFileRev application (FILEREV.EXE), listed in Figure 7-1 beginning on
page 233, demonstrates how to use memory-mapped files to reverse the
contents of an ANSI or a Unicode text file. The source code files, resource
files, and make file for the application are in the FILEREV.07 directory on
the companion disc. FileRev doesn’t create any windows or do anything
visual, and it won’t work correctly for binary files. FileRev determines
whether the text file is ANSI or Unicode by calling the IsTextUnicode func-
tion (discussed in Chapter 15). This function is new with Windows NT 3.5,
and you will have to edit the source code and recompile if you want the
program to run correctly on Windows NT 3.1.

Under Windows 95, the IsTextUnicode function has no useful implemen-
tation and simply returns FALSE; calling GetLastError returns ERROR-
_CALL_NOT_IMPLEMENTED. This means that the FileRev sample
application always thinks that it is manipulating an ANSI text file when it
is run under Windows 95.

When WinMain begins executing, it takes whatever filename was
specified on FileRev’s command line and makes a copy of that file called
FILEREV.DAT. It does this so that the original file won’t become unus-
able because its contents have been reversed. Next FileRev calls the
Createlile function, opening FILEREV.DAT for reading and writing.

As I said earlier, the easiest way to reverse the contents of the file is
to call the C run-time function _strrev. As with all C strings, the last char-
acter of the string must be a zero terminator. Because text files do not
end with a zero character, FileRev must append one to the file. It does so
by first calling GetFileSize:

dwFileSize = GetFileSize(hFile, NULL);

Now that you’re armed with the length of the file, you can create
the file-mapping object by calling CreateFileMapping. The file-mapping
object is created with a length of dwFileSize plus the size of a wide charac-
ter (for the zero character). If there is a bug in FileRev that overwrites
the address space occupied by the file-mapping object, an access viola-
tion will occur. After the file-mapping object is created, a view of the
object is mapped into FileRev’s address space. The lpuFile variable con-
tains the return value from MapViewOfFile and points to the first byte of
the text file.

231

ADVANCED WINDOWS

232

The next step is to write a zero character at the end of the file and
to reverse the string:

((LPSTR) 1pvFile)[dwFileSize] = 0;
_strrev(1pvFile);

In a textfile, every line is terminated by a return character ("\r') fol-
lowed by a newline character ("\n'). Unfortunately, when we call _strrev
to reverse the file, these characters also get reversed. So that the reversed
text file can be loaded into a text editor, every occurrence of the "\n\r"
pair needs to be converted back to its original "\r\n" order. This is the
job of the following loop:

// Find first occurrence of "\n'.
Tpch = strchr(1pvFile, "\n');

while (Ipch != NULL) {
#1pch++ = '\r'; // Change the '\n' to '\r'.
#1pch++ = '"\n'; // Change the '\r' to '\n'.

// Find the next occurrence.
Tpch = strchr(ipch, '"\n");

When you examine simple code like this, it is easy to forget that you
are actually manipulating the contents of a file on the hard disk, which
shows you how powerful memory-mapped files are.

After the file has been adjusted, FileRev must clean up by unmap-
ping the view of the file-mapping object and closing all the kernel object
handles. In addition, FileRev must also remove the zero character added
to the end of the file (remember that _strrev doesn’t reverse the position
of the terminating zero character). If you don’t remove the zero charac-
ter, the reversed file would be 1 character larger, and calling FileRev
again would not reverse the file back to its original form. To remove the
trailing zero character, you need to drop back a level and use the file-
management functions instead of manipulating the file through mem-
ory mapping.

Forcing the reversed file to end at a specific location requires posi-
tioning the file pointer at the desired location (the end of the original
file) and calling the SetEndOfFile function:

SetFilePointer(hFile, dwFileSize, NULL, FILE_BEGIN);
SetEndOfFile(hFile);

SEVEN: Memory-Mapped Files

Important

FileRev.ico

Note that SetEndOfFile must be called after the view is unmapped and the
file-mapping object is closed; otherwise, an ERROR_USER _MAPPED-
_FILE will occur. This error indicates that the end-of-file operation can-
not be performed on a file that is associated with a file-mapping object.

The last thing FileRev does is spawn an instance of Notepad so that
you can look at the reversed file. Below is the result of running FileRev
on its own FILEREV.C file:

J771711818887777774477F eLiF €0 dnE 7777771711111888117

H
;)8{nruter

3
;)ssecorPh.ip(eldnaHesolC
;)daerhTh.ip(eldnaHesolC

{))ip& ,is& ,LLUN ,LLUN ,8 ,ESLAF ,LLUN ,LLUN &
LEMANELIF)" EXE.DAPETON"(TXET_ ,LLUN(SsecorPetaerC{ |
sUODNIWWOHSESU_FTRATS = sgalfFuwd.is R
sWOHS_WS = wodniWwohSu.is

s)is{foezis = bc.is

.srobal ruo fo stiurf eht ees ot dapetoN nwapS //

;JeliFh(eldnaHesolC
s)eliFh(eliFfOdnEteS
.desel i jbo 1

gnippam-elif /7

Figure 7-1.
The FileRev Application.

(continued)

233

ADVANCED WINDOWS

Figure 7-1. continued

(continued)

234

SEVEN: Memory-Mapped Files

Figure 7-1. continued

Cif ((1psszd'L1neT'== NULL) % (*1psszdL1neT =.0)) {

// 1f-no.space -was found or there are ho arguments'

s aﬁ:er ‘the: executa,Me fﬂe 'S name,. dispwy anoo
.1/ error mess ge L L

(continued)

235

ADVANCED WINDOWS

Figure 7-1. continued

(continued)

236

SEVEN: Memory-Mapped Files

Figure 7-1. continued

7/ Reverse the contents of the file.
strrev(lpchANSI):

B // Convert a11 ”\n\r" combinations back to "\r\n" to
;T/J preserve the norma1 end of 1ine sequence

j/ Find the next -
1/ ﬁccurrence e

‘ ! '&n to ’\r
i f'fchange AP Yo rn
pchUnicode = cschr(lpchUnicode, L'\n" i1t Find the

s next _
o f/occgrrence,;’

(continued)

237

ADVANCED WINDOWS

Figure 7-1. continued

(continued)

238

SEVEN: Memory-Mapped Files

Figure 7-1. continued

LITIITITELTEILET TP P00 LT 11 Eiiiiiiiiiiieirsiseiill
ffundef APSTUDIO_READONLY_SYMBOLS

//
1 .

/1 Teon .

//

;.F11eaev ";,;_,‘jf xcou ' DISCARﬁABLE &_]"Fi1eRev.1co?g;»:

e #ifdef APSTUDIDUINVOKEB et : : Ny e

_ﬁ/////!//////1///1/////////////////////////////1/////!!/f////!/
Y ¥

R e TEXTiNCLUBE

L AR

1 TEXTINCLUDE DISCARDABLE
BEGIN
"Resource h\@“"

239

ADVANCED WINDOWS

Specifying the Base Address of a Memory-Mapped File

240

Just as you can use the VirtualAlloc function to suggest an initial address
to reserve address space, you can also use the MapViewOfFileEx function
instead of the MapViewOfFile function to suggest that a file be mapped
into a particular address.

LPVOID MapViewOfFileEx(HANDLE hFileMappingObject,
DWORD dwDesiredAccess, DWORD dwFileOffsetHigh,
DWORD dwFileOffsetLow, DWORD dwNumberOfBytesToMap,
LPVOID 1pBaseAddress);

All the parameters and the return value for this function are identi-
cal to those of the MapViewOfFile function with the single exception of
the last parameter, lpBaseAddress. In this parameter, you specify a target
address for the file you’re mapping. As with VirtualAlloc, the target address
you specify must be on an even allocation granularity boundary (usually
64 KB); otherwise, MapViewOfFileEx returns NULL, indicating an error.

If the system can’t map the file at this location (usually because the
file is too large and would overlap another reserved address space), the
function fails and returns NULL. MapViewOfFileEx does not attempt to
locate another address space that can accommodate the file. Of course,

you can specify NULL as the ipBaseAddress parameter, in which case Map-

ViewOfFileEx behaves exactly the same as MapViewOfFile.

MapViewOfFileEx is useful when you’re using memory-mapped files
to share data with other processes. As an example, you might need a
memory-mapped file at a particular address when two or more applica-
tions are sharing a group of data structures containing pointers to other
data structures. A linked list is a perfect example. In a linked list, each
node, or element, of the list contains the memory address of another
element in the list. To walk the list, you must know the address of the first
element and then reference the member of the element that contains
the address of the next element. This can be a problem when you’re
using memory-mapped files.

If one process prepares the linked list in a memory-mapped file and
then shares this file with another process, it is possible that the other
process will map the file into a completely different location in its ad-
dress space. When the second process attempts to walk the linked list, it
looks at the first element of the list, retrieves the memory address of the
next element, and then tries to reference this next element. However,
the address of the next element in the first node will be incorrect for this
second process.

SEVEN: Memory-Mapped Files

There are two ways to solve this problem. First, the second process
can simply call MapViewOfFileEx instead of MapViewOfFile when it maps
the memory-mapped file containing the linked list into its own address
space. Of course, this requires that the second process know where the
first process originally mapped the file when constructing the linked list.
When the two applications have been designed to interact with each
other—which is most likely the case—this isn’t a problem: the address
can be hard-coded into both, or one process can notify the other process
using another form of interprocess communication, such as sending a
message to a window.

The second method for solving the problem is for the process that
creates the linked list to store in each node the offset from within the
address space where the next node is located. This requires that the
application add the offset to the base address of the memory-mapped
file in order to access each node. This method is not great: it can be slow,
it makes the program bigger (because of the additional code the com-
piler generates to perform all the calculations), and it can be quite error
prone. However, this is certainly a viable method and the Microsoft com-
piler offers assistance for based-pointers using the __based keyword.

windows &
When calling MapViewOfFileEx, you must specify an address that is between
0x80000000 and OxBFFFFFFF, or MapViewOfFileEx will return NULL.

/’” When calling MapViewOfFileEx, you must specify an address that is between
?Wil""""s ' 0x00010000 and 0x7FFEFFFF, or MapViewOfFileEx will return NULL.

Memory-Mapped Files and Win32 Implementations

Windows 95 and Windows NT implement memory-mapped files differ-
ently. You need to be aware of these differences because they can affect
the way that you write your code and the robustness of your data.
Under Windows 95, a view is always mapped in the address space
partition that ranges from 0x80000000 to OxBFFFFFFF. This means that
all successful calls to MapViewOfFile will return an address within this
range. You might recall that the data in this partition is shared by
all Win32 processes. This means that if a process maps a view of a

241

ADVANCED WINDOWS

242

file-mapping object, the data of the file-mapping object is physically
accessible to all Win32 processes whether they have mapped a view of the
file-mapping object or not. If another process calls MapViewOfFile using
the same file-mapping object, Windows 95 will return the same memory
address to the second process that it did to the first process. The two pro-
cesses are accessing the same data and the views are coherent.

In Windows 95, it is possible for one process to call MapViewOfFile
and pass the returned memory address to another process’s thread using
some form of interprocess communication. Once this thread has received
the memory address, there is nothing to stop the thread from success-
fully accessing the same view of the file-mapping object. However, you
should not do this for two reasons:

B Your application will not run under Windows NT, for reasons
that I’ll describe shortly.

B If the first process calls UnmapViewOfFile, the address space
region will revert to the free state; this means the second
process’s thread will raise an access violation when it attempts
to access the memory where the view once was.

In order for the second process to access the view of the memory-
mapped file, a thread in the second process should call MapViewOfFile on
its own behalf. When the second process does this, the system incre-
ments a usage count for the memory-mapped view. So if the first process
calls UnmapViewOfFile, the system will not release the region of address
space occupied by the view until the second process also calls Unmap-
ViewOfFile.

When the second process calls MapViewOfFile, the address returned
will be the same address that was returned to the first process. This averts
the need for the first process to send the memory address to the second
process using interprocess communication.

The Windows NT implementation of memory-mapped files is bet-
ter than the Windows 95 implementation because Windows NT requires
a process to call MapViewOfFile before the file’s data is accessible in the
process’s address space. If one process calls MapViewOfFile, the system
reserves a region of address space for the view in the calling process’s
address space—no other process can see the view at all. If another pro-
cess wants to access the data in the same file-mapping object, a thread in
the second process must call MapViewOfFile, and the system will reserve a
region for the view in the second process’s address space.

SEVEN: Memory-Mapped Files

It is very important to note that the memory address returned by
the first process’s call to MapViewOfFile will most likely not be the same
memory address returned by the second process’s call to MapViewOfFile.
This is true even though both processes are mapping a view of the same
file-mapping object. In Windows 95, the memory addresses returned
from MapViewOfFile are the same—but you should absolutely not count
on them being the same if you want your application to run under
Windows NT!

Let’s look at another implementation difference. Here is a small
program that maps two views of a single file-mapping object:

Jfdefine STRICT
fHinclude <Windows.h>

int WINAPI WinMain (HINSTANCE hinstExe, HINSTANCE hinstPrev,
LPSTR 1pCmdLine, int nCmdShow) {

HANDLE hFile, hFileMapping;
BYTE *pbFile, #*pbFile2;

// Open an existing file--it must be bigger than 64 KB.
hFile = CreateFile(1pCmdLine, GENERIC_READ | GENERIC_WRITE, 9,
NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

// Create a file-mapping object backed by the data file.
hFileMapping = CreateFileMapping(hFile, NULL, PAGE_READWRITE,
0, 0, NULL);

// Starting at offset 0, map a view of the file

// into the process's address space.

pbFile = (PBYTE) MapViewOfFile(hFileMapping, FILE_MAP_WRITE,
0, 0, 0);

// Starting at offset 65536, map another view of the file

// into the process's address space.

pbFile2 = (PBYTE) MapViewOfFile(hFileMapping, FILE_MAP_WRITE,
@, 65536, 0);)

if (pbFile + 65536 == pbFile2) {
// 1f the addresses overlap, there is one address
// space region for both views: this must be Windows 95.
MessageBox(NULL, "We are running under Windows 95",
NULL, MB_OK);
} else {

(continued)

243

ADVANCED WINDOWS

// 1f the addresses do not overlap, each view has its own
// address space region: this must be Windows NT.
MessageBox(NULL, "We are running under Windows NT",

NULL, MB_OK);

UnmapViewOfFile(pbFile2);
UnmapViewOfFile(pbFile);
CloseHandle(hFileMapping);
CloseHandle(hFile);

return(0);

Under Windows 95, when a view of a file-mapping object is mapped,
the system reserves enough address space for the entire file-mapping
object. This happens even if MapViewOfFile is called with parameters
that indicate that you want the system to map only a small portion of the
file-mapping object. This means that you can’t map a 1-GB file-mapping
object to a view even if you specify that only a 64-KB portion of the object
be mapped.

Whenever any process calls MapViewOfFile, the function returns an
address within the address space region that was reserved for the entire
file-mapping object. So in the code above, the first call to MapViewOfFile
returns the base address of the region that contains the entire mapped
file. The second call to MapViewOfFile returns an address that is 64 KB
into the same address space region.

The Windows NT implementation is again quite different. The two
calls to MapViewOfFile in the code above cause Windows NT to reserve
two different address space regions. The size of the first region is the size
of the file-mapping object, and the size of the second region is the size of
the file-mapping object minus 64 KB. Even though there are two differ-
ent regions, the data is guaranteed to be coherent because both views
are made from the same file-mapping object. Under Windows 95, the
views are coherent because it is the same memory.

Using Memory-Mapped Files to Share Data Among Processes

The ability to share data and information quickly and easily among pro-
cesses is one of the most compelling reasons to use a Microsoft Windows
environment over more restrictive environments such as MS-DOS.
Win32 and 16-bit Windows both handle these sharing tasks in a number

244

SEVEN: Memory-Mapped Files

of ways. In 16-bit Windows, for example, there are several methods for
sharing data. Probably the most common method is to call either Send-
Message or PostMessage using a window belonging to another process.
Unfortunately, in 16-bit Windows Send Message and PostMessage allow only
one 16-bit value and one 32-bit value to be passed to another process.
You can also allocate a block of global memory (using the GMEM-
—SHARE flag) and then pass the handle (as the wParam or [Param
parameter) in a call to SendMessage or PostMessage. The receiver of this
message then calls GlobalLock to get an address to the memory block and
reads or writes the data.

This method doesn’t work in Win32, however, because each pro-
cess has its own address space and one process cannot easily probe the
data in another process’s address space. 16-bit Windows makes it almost
too easy to share data—applications frequently manipulate data that
doesn’t belong to them, causing other applications to crash.

The Win32 system, on the other hand, allows multiple applications
(running on the same machine) to share data using memory-mapped
files. Memory-mapped files are, in fact, the only mechanism that offers
this capability in the Win32 environment. Other techniques for sharing
and transferring data, such as using PostMessage or SendMessage (includ-
ing using SendMessage passing the new Win32 WM_COPYDATA window
message), all use memory-mapped files internally.

This data sharing is accomplished by having two or more processes
map views of the same file-mapping object, which means they are sharing
the same pages of physical storage. As a result, when one process writes to
data in a view of a shared file-mapping object, the other processes see the
change instantly in their views. Note that for multiple processes to share a
single file-mapping object, all processes must use exactly the same name
for the file-mapping object.

Let’s look at an example: starting an application. When an applica-
tion starts, the system calls CreateFile to open the EXE file on the disk.
Then the system calls CreateFileMapping to create a file-mapping object.
Finally the system calls MapViewOfFileEx on behalf of the newly created
process so that the EXE file is mapped into the process’s address space.
MapViewOfFileEx is called instead of MapViewOfFile so that the file’s image
is mapped to the base address stored in the EXE file’s image. The system
creates the process’s initial thread, puts the address of the first byte of
executable code of this mapped view in the thread’s instruction pointer,
and then lets the CPU start executing the code.

245

ADVANCED WINDOWS

246

If the user runs a second instance of the same application, the sys-
tem sees that a file-mapping object already exists for the desired EXE file
and doesn’t create a new file object or file-mapping object. Instead, the
system maps a view of the file a second time, this time in the context of
the newly created process’s address space. What the system has done is
map the identical file into two address spaces simultaneously. Obviously,
this is a more efficient use of memory because both processes are shar-
ing the same pages of physical storage containing portions of the code
that are executing.

The next two sections discuss various techniques for sharing a file-
mapping object among multiple processes.

CreateFileMapping and OpenFileMapping
Let’s begin by again looking at the CreateFileMapping function:

HANDLE CreateFileMapping(HANDLE hFile, LPSECURITY_ATTRIBUTES 1psa,
DWORD fdwProtect, DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizelLow, LPSTR 1pName);

When you call this function to create a file-mapping object, you can
give the object a name by passing a zero-terminated string as the [pName
parameter. For example, one process might create a file-mapping object
and assign it the name MyFileMapObj:

HANDLE hFileMap = CreateFileMapping(..., "MyFileMapObj");

When the code above executes, CreateFileMapping creates the file-mapping
object and, if another file-mapping object with the specified name doesn’t
exist, stores the name with the new file-mapping object.

If a file-mapping object does exist with the specified name, however,
CreateFileMapping does not create a new object. Instead, it increments
the usage count for the object and returns a process-relative handle
identifying the existing file-mapping object. Note that the system does
not change the size of the existing file-mapping object.

You can determine whether a new file-mapping object was created
by calling GetLastError. Usually, you would call GetLastError to determine
why a function failed. However, in the case of CreateFileMapping you
can call GetLastError if the function is successful. If GetLastError returns
ERROR_ALREADY_EXISTS, CreateFileMapping has returned a handle
to a previously existing object. If you don’t want to use this existing object,
you need to close the handle. The following code fragment guarantees
that CreateFileMapping will create a new object or none at all:

SEVEN: Memory-Mapped Files

HANDLE hFileMap = CreateFileMapping(...);

if ((hFileMap != NULL) &&
(GetLastError() == ERROR_ALREADY_EXISTS)) {
CloseHandle(hFileMap);
hFileMap = NULL;

}

return(hFileMap);

Another way that multiple processes can share a file-mapping object
is by calling OpenFileMapping:

HANDLE OpenFileMapping(DWORD dwDesiredAccess,
BOOL bInheritHandle, LPSTR 1pName);

This function is similar to CreateFileMapping except that it assumes
that a file-mapping object already exists—and if the object does not
exist, OpenFileMapping will not create a new one. So in order to share a
file-mapping object using OpenFileMapping, one process must first create
the object using CreateFileMapping; then the other processes can open
the file-mapping object using OpenFileMapping. In keeping with my ex-
ample, all processes but the first open the file-mapping object by calling
OpenFileMapping and passing a zero-terminated string as the [pName
parameter:

HANDLE hFileMap = OpenFileMapping(..., "MyFileMapObj");

OpenFileMapping’s first parameter, dwDesiredAccess, specifies access
rights, such as FILE_MAP_READ, FILE_MAP_WRITE, FILE_MAP-
_ALL_ACCESS, or FILE_MAP_COPY, and the second parameter, bInherit-
Handle, indicates whether child processes should automatically inherit
the handle to this file-mapping object. The handle that OpenFileMapping
returns identifies the process-relative handle to the file-mapping object
created by the first process.

If OpenFileMapping cannot find a file-mapping object that has the
passed name, NULL is returned. If a valid handle is returned, mapping
the data into a process’s own address space is simply a matter of calling
MapViewOfFile or MapViewOfFileEx. Don’t forget to call CloseHandle when
you have finished using the opened file-mapping object.

Inheritance

A great way for two processes to share a file-mapping object is for one pro-
cess to create an inheritable file-mapping object; a new child process then
inherits the parent’s file-mapping object. The child process’s handle to
the file-mapping object will be exactly the same as the parent’s handle.

247

ADVANCED WINDOWS

In order to create an inheritable file-mapping object, you must call
CreateFileMapping and pass it the address of a SECURITY_ATTRIBUTES
structure that is initialized as follows:

SECURITY_ATTRIBUTES sa;

sa.nlLength = sizeof(sa);
sa.lpSecurityDescriptor = NULL;
sa.bInheritHandle = TRUE;

hFileMap = CreateFileMapping(hFile, &sa, ...);

(Alternatively, if the parent process is sharing a file-mapping object cre-
ated by another process, the parent process can call OpenFileMapping
and simply pass TRUE for the bInheritHandle parameter.)

Then, when the parent process is ready to create the child process,
the parent must call the CreateProcess function and pass TRUE for the
[fInheritHandle parameter:

BOOL CreateProcess(LPCTSTR T1pszImageName, LPCTSTR 1pszCommandLine,
LPSECURITY_ATTRIBUTES TpsaProcess,
LPSECURITY_ATTRIBUTES 1psaThread,
BOOL fInheritHandles, DWORD fdwCreate, LPVOID I1pvEnvironment,
LPCTSTR TpszCurDir, LPSTARTUPINFO 1psiStartInfo,
LPPROCESS_INFORMATION 1ppiProcInfo);

This causes the usage count of the file-mapping object to incre-
ment; the new child process will be able to use the handle to the file-
mapping object, but it will not know what the value of the handle is. You
must have some other technique for passing the value of the handle to
the child. You can do this by passing a command-line parameter to the
child or by sending or posting a message to a window created by the child
process.

Whatever method you use (and others exist), the child is respon-
sible for closing its handle to the file-mapping object. Only after all the
processes have closed their handles to the file-mapping object does the
system delete the object and all of the physical storage that was commit-
ted from the paging file for the object.

Memory-Mapped Files Backed by the Paging File

248

So far I've been discussing techniques that allow you to map a view of a
file thatresides on a disk drive. Many applications create some data while
they run and need to transfer the data or share it with another process. It
would be terribly inconvenient if the applications had to create a data
file on a disk drive and store the data there in order to share it.

SEVEN: Memory-Mapped Files

Microsoft realized this and added the ability to create memory-
mapped files that are backed by the system’s paging file rather than a
dedicated hard disk file. This method is almost identical to the method
for creating a memory-mapped disk file except that it’s even easier. First,
there is no need to call CreateFile since you will not be creating or opening
a dedicated file. Instead, you simply call CreateFileMapping as you would
normally and pass (HANDLE) OxFFFFFFFF as the AFile parameter. This
tells the system that you are not creating a file-mapping object whose
physical storage resides in a file on the disk; instead, you want the system
to commit physical storage from the system’s paging file. The amount of
storage allocated is determined by CreateFileMapping’s dwMaximumSize-
High and dwMaximumSizeLow parameters.

After you have created this file-mapping object and mapped a view
of it into your process’s address space, you can use it as you would any
region of memory. If you want to share this data with other processes,
call CreateFileMapping and pass a zero-terminated string as the ipName pa-
rameter. Then other processes that want to access the storage can call
CreateFileMapping or OpenFileMapping and pass the same name.

When a process no longer needs access to the file-mapping object,
that process should call CloseHandle. When all the handles are closed, the
system will reclaim the committed storage from the system’s paging file.

“ Here is an interesting problem that has caught unsuspecting program-
mers by surprise. Can you guess what is wrong with the following code
|III|l0l‘talll fragment:

HANDLE hFile = CreateFile(...);
HANDLE hMap = CreateFileMapping(hFile, ...);
if (hMap == NULL)

return(GetLastError());

If the call to CreateFile above fails, it returns OxFFFFFFFF (INVALID-
_HANDLE _VALUE). However, the unsuspecting programmer who
wrote the code above didn’t test to check whether the file was created
successfully. When CreateFileMapping is called, OXFFFFFFFF is passed in
the hFile parameter, which causes the system to create a file mapping
using pages from the paging file instead of the intended disk file.

249

ADVANCED WINDOWS

The Memory-Mapped File Sharing Sample Application

250

The MMFShare application (MMFSHARE.EXE), listed in Figure 7-2,
demonstrates how to use memory-mapped files to transfer data among
two or more separate processes. The source code files, resource files,
and make file for the application are in the MMFSHARE.07 directory on
the companion disc. _

You're going to need to execute at least two instances of the
MMFSHARE.EXE program. Each instance creates its own dialog box,
shown below.

memmy—Héaped File Sharing Application

Some test data

To transfer data from one instance of MMFShare to another, type
the data to be transferred into the Data edit field. Then click on the Cre-
ate Mapping Of Data button. When you do, MMFShare calls CreateFile-
Mapping to create a 4-KB memory-mapped file object backed by the
system’s paging file and names the object MMF SharedData. If MMFShare
sees that a file-mapping object with this name already exists, it displays a
message box notifying you that it could not create the object. If, on the
other hand, MMFShare succeeds in creating the object, it proceeds to
map aview of the file into the process’s address space and copies the data
from the edit control into the memory-mapped file.

After the data has been copied, MMFShare unmaps the view of the
file, disables the Create Mapping Of Data button, and enables the Close
Mapping Of Data button. At this point, there is a memory-mapped file
named MMFSharedData just sitting somewhere in the system. No pro-
cesses have mapped a view to the data contained in the file.

If you now go to another instance of MMFShare and click on this
instance’s Open Mapping And Get Data button, MMFShare attempts to
locate a file-mapping object called MMFSharedData by calling OpenFile-
Mapping. If an object of this name cannot be found, MMFShare displays
another message box notifying you. If MMFShare finds the object, it maps
a view of the object into its process’s address space and copies the data
from the memory-mapped file into the edit control of the dialog box.
Voila! You have transferred data from one process to another.

SEVEN: Memory-Mapped Files

MMFShare.ico

The Close Mapping Of Data button in the dialog box is used to
close the file-mapping object, which frees up the storage in the paging
file. If no file-mapping object exists, no other instance of MMFShare
will be able to open one and get data from it. Also, if one instance has
created a memory-mapped file, no other instance is allowed to create
one and overwrite the data contained within the file.

 MMFSHARE.C

S /************************&************************************
'Module name: MMFShare.C . - ' '
'Notw es* Copyr1ght (e). 1995: Jeffrey R1chter

{ ****#**/‘

iricTude \Ade1n32 a"\ /% see Appendix B for details. #/
‘FincTude <mndows Ry A e e ; L
#1nclude (w*;ndowsx h>

;#pragma‘ warmng(disab1e. 40@1) 1_{*‘:_‘S,i'hg'lvevr]jnevft;'x_)vmmgnt /. :

’ludé : Resource H"

LI Zﬁff{?{/é?f}jffﬁ[l)/{?{[//lf?{}?lk[ff}?[f{?]l({/avﬁé

:: BOQL‘ B!gﬂt}nlmtma}og (h‘NND hwnd HWND hwndFocus, f
‘.;.LPARAM 1Param) A

‘i// A komate an icon W‘lth the. daa?og box,

© SetClassLong(hwnd, GCL_HICON; (LONG)~ : i

: L{)afiicon((HINSTAHCE) Getmndawwng(hwnd GWL_HI&STA&CE);_;
TEXT("MMFShare“))) : -

Imt1ahze the ecﬁt contrm with some test data
it_SetText(GetDlgItem(hwnd, IDCJATA),. » e
‘TE’XTQ"Some test data })

x D1saja}e' the C]ose hutton because the File can' t
’f be(‘cl’osed af i'c was never created or opened . SEIREY
uttc 1 CLUSEFILE) FALSE)‘f,

Figure 7-2. (continued)
The MMFShare application.

251

ADVANCED WINDOWS

Flgure 7-2. continued

fff///xlz”’"/////ffzxff///////i//

‘:f~ sw1tch (1d§ {
s CasevIﬁC GREATEFILE

v;:’;JNULLl PAGQ*RfADWRITﬁ 0,4+ 1024,
TEXT("MMFSharedBata"})

.'(GetlastErﬁor() i
MessageBox(hwnd

TEXT{“Mapping aWready

. TEXT("not created "),

NULL MB_OK); R

CioseHand]e(s hF}TeMap).

} else {

‘1g¥;fi F11e mapping created successfu&?y

 ,ff."// Map a view ot the fi1e
.77 into the address space. AT
”WI;LPVDID IpView = MapV1ewﬁfFi1e(s*hFileMap,
“KFILE_MAP REA ""FILE MAP NRITE 0,

,'(BYTE oy 1pv1ew 1= NULL)*{'

Py .cantents« -
,’T 1nto fhe memory mapped N

11 of ed1t cont
A1 fiTes

(continued)

252

SEVEN: Memory-Mapped Files

Figure 7-2. continued

 Edit_GetText(GetDlgItem(hwnd, IDC_DATA),
(LPTSTR)]pV'lew.A * 1024)., '

':{_// Unmap the view. This: protects the
: ,'/1 data from wayward. pointers o

(continued)

253

ADVANCED WINDOWS

Figure 7-2. continued

WL W00

b f?i;k}}fzi?j[?kzi Z?Z{}f//k{?{/l??f?(?[ffl[f?/{/kf/?;l}fff(?jf?

-~ BOOL. CALLBACK/Dig_Proc (Huna thg, UINT uMsg,(, RIS
NPARAM w?aram LPARAM 1Param) { :

(continued)

254

SEVEN: Memory-Mapped Files

Figure 7-2. continued

BOOL fProcessed = TRUE;

~ switch (uMsg) {
i’ HANDLE MSG(hD]g, NM~INITDIALOG D1g~0n1n1tD1a1og)
HANDLE MSG(thg, NM COMMAND D1g_0nCommand), ;"i_ o

(continued)

255

ADVANCED WINDOWS

Figure 7-2. continued

(continued)

256

SEVEN: Memory-Mapped Files

Figure 7-2. continued
3 TEXTINCLUDE DISCARDABLE
BEGIN - oo
et

Sparsely Committed Memory-Mapped Files

In all the discussion of memory-mapped files so far, we see that the sys-
tem requires that all storage for the memory-mapped file be committed
either in the data file on disk or in the paging file. This means that we
can’t use storage as efficiently as we might like. Let’s return to the discus-
sion of the spreadsheet from the section “When to Commit Physical Stor-
age” in Chapter 6. Let’s say that you want to share the entire spreadsheet
with another process. If we were to use memory-mapped files, we would
need to commit the physical storage for the entire spreadsheet:

CELLDATA CellData[200]1[2561];

If a CELLDATA structure is 128 bytes, this array requires 6,553,600
(200 x 256 x 128) bytes of physical storage. As I said in Chapter 6, “That’s
alot of physical storage to allocate from the paging file right up front for
aspreadsheet, especially when you consider that most users putinforma-
tion into only a few spreadsheet cells, leaving the majority unused.”

It should be obvious that we would prefer to share the spreadsheet as
a file-mapping object without having to commit all of the physical storage

257

ADVANCED WINDOWS

258

up front. CreateFileMapping offers a way to do this by specifying either the
SEC_RESERVE or the SEC_COMMIT flag in the fdwProtect parameter.

These flags are meaningful only if you're creating a file-mapping
object that is backed by the system’s paging file. The SEC_COMMIT flag
causes CreateFileMapping to commit storage from the system’s paging file.
This is also the result if you specify neither flag.

When you call CreateFileMapping and pass the SEC_RESERVE flag,
the system does not commit physical storage from the system’s paging
file; it just returns a handle to the file-mapping object. You can now call
MapViewOfFile or MapViewOfFileEx to create a view of this file-mapping
object. MapViewOfFile and MapViewOfFileEx will reserve a region of address
space and will not commit any physical storage to back the region. Any
attempts to access a memory address in the reserved region will cause the
thread to raise an access violation.

What we have here is a region of reserved address space and a han-
dle to a file-mapping object that identifies the region. Other processes can
use the same file-mapping object in order to map a view of the same re-
gion of address space. Physical storage is still not committed to the region,
and if threads in other processes attempt to access a memory address of
the view in their regions, these threads will raise access violations.

Now, here is where things get exciting. In order to commit physical
storage to the shared region, all a thread has to do is call VirtualAlloc:

LPVOID VirtualAlloc(LPVOID 1pvAddress, DWORD cbSize,
DWORD fdwAllocationType, DWORD fdwProtect);

We already discussed this function in great detail in Chapter 6. Calling
VirtualAlloc to commit physical storage to the memory-mapped view
region is just like calling VirtualAlloc to commit storage to a region ini-
tially reserved by a simple call to VirtualAlloc using the MEM_RESERVE
flag. And just as you can commit storage sparsely in a region reserved
with VirtualAlloc, you can also commit storage sparsely within a region
reserved by MapViewOfFile or MapViewOfFileEx. However, when you com-
mit storage to a region reserved by MapViewOfFile or MapViewOfFileEx, all
the processes that have mapped a view of the same file-mapping object
can now successfully access the committed pages.

Using the SEC_RESERVE flag and VirtualAlloc, we can successfully
share the spreadsheet application’s CellData matrix with other pro-
cesses—and use physical storage very efficiently.

SEVEN: Memory-Mapped Files

g 96 Normally, VirtualAlloc will fail when you pass it a memory address outside
0x00400000 through 0x7FFFFFFF. However, when committing physical
storage to a memory-mapped file created using the SEC_RESERVE flag,
you have to call VirtualAlloc, passing a memory address that is between
0x80000000 and OxBFFFFFFF. Windows 95 knows that you are committing
storage to a reserved memory-mapped file and allows the call to succeed.

Under Windows NT, you cannot use the VirtualFree function to decom-
g mit storage from a memory-mapped file that was reserved with the SEC-
Important | _RESERVE flag.
However, Windows 95 does allow you to call VirtualFree to decommit
storage in this case.

259

CHAPTEHR EIGHT

HEAPS

The third and last mechanism for manipulating memory in Win32 is
the use of heaps. Heaps are great for allocating lots of small blocks of
data. For example, linked lists and trees are best managed using heaps
rather than the virtual memory techniques discussed in Chapter 6 or the
memory-mapped file techniques discussed in Chapter 7.

If you are coming from a 16-bit Windows programming background,
you are familiar with the two different types of heaps: the local heap and
the global heap. Each process and DLL in 16-bit Windows receives its
very own local heap, and all processes share a single global heap.

In Win32, heap management is vastly different. Here is a list of
some of the differences:

W There is just one type of heap. (It has no special name like
“local” or “global” because there is only one type.)

B Heaps are always local to a process; the contents of a process’s
heap cannot be accessed by a thread in another process. Be-
cause many 16-bit Windows applications use the global heap
as a method for sharing data between processes, this change
to heaps is frequently the source of problems encountered in
porting from 16-bit Windows to Win32.

M A single process can create several heaps within its address
space and manipulate all of them.

B A DLL does not get its own heap; it uses heaps that are part of
the process’s address space. However, a DLL can create a heap
in the process’s address space for the DLL’s own purposes. Be-
cause many 16-bit DLLs share data between processes using the
DLLs’ local heap, this change is also a frequent source of port-
ing problems.

261

ADVANCED WINDOWS

This chapter discusses Win32 heaps and the functions that are
available to create them, manipulate them, and destroy them. For all
new Win32 applications, these are the functions that you should be using.
At the end of this chapter, I present a section that describes how Win32
implements the 16-bit Windows heap functions. Take note that the 16-
bit Windows heap functions exist in the Win32 API for backward com-
patibility only. The functions are implemented on top of the new heap
functions; they perform slowly and require additional memory. Use the
16-bit Windows global and local heap functions only if you must.

What Is a Win32 Heap?

A Win32 heap is a region of reserved address space. Initially, most of the
pages within the reserved region are not committed with physical stor-
age. As you make more allocations from the heap, the heap manager
commits more physical storage to the heap. As allocations in the heap are
freed, the heap manager decommits physical storage from the heap.
Physical storage is committed to the heap in pages.

Every now and then someone asks me for the exact rules that the
heap manager uses to decide when to commit or decommit physical stor-
age. To be honest, I knew what the rules were once but I've forgotten
them now. Also, different implementations and different versions of the
Win32 API might use slightly different rules. Microsoft is constantly per-
forming stress tests and running different scenarios to determine the
rules that work best most of the time. As applications and the hardware
that runs them change, these rules will change. If this knowledge is criti-
cal to your application, don’t use heaps. Instead, use the virtual memory
functions (that is, VirtualAlloc and VirtualFree) so that you can control
these rules yourself.

A Process’s Default Heap

262

When a Win32 process is initialized, the system creates a heap in the
process’s address space. This heap is called the process’s default heap.
By default, this heap’s region of address space is 1 MB in size. However,
the system can grow a process’s default heap so that it becomes larger
than 1 MB in size. The default region size of 1 MB can be changed using
the /HEAP linker switch when you create an application. A DLL does
not have a heap associated with it, and therefore you should not use the

EIGHT: Heaps

/HEAP switch when you are linking a DLL. The heap switch has the fol-
lowing syntax:

/HEAP: reservel, commit]

The process’s default heap is required by many of the Win32 func-
tions. For example, the core functions in Windows NT perform all of
their operations using Unicode characters and strings. If you call an
ANSI version of a Win32 function, this ANSI version must convert the
ANSI strings to Unicode strings and then call the Unicode version of the
same function. In order to convert the strings, the ANSI function needs
to allocate a block of memory to hold the Unicode version of the string.
This block of memory is allocated from your process’s default heap.
There are many other Win32 functions that require the use of temporary
memory blocks; these blocks are allocated from the process’s default
heap. Also, the 16-bit Windows global and local heap functions make
their memory allocations from the process’s default heap.

Because the process’s default heap is used by many of the Win32
functions and because your application has many threads calling the
various Win32 functions simultaneously, access to the default heap is
serialized. In other words, the system guarantees that only one thread at
a time may allocate or free blocks of memory in the default heap at any
given time. If two threads attempt to allocate a block of memory in the
default heap simultaneously, only one thread will be able to allocate a
block and the other thread will be forced to wait until the first thread’s
block is allocated. Once the first thread’s block is allocated, the heap
functions will allow the second thread to allocate a block. This serialized
access causes a small performance hit. If your application has only one
thread and you want to have the fastest possible access to a heap, you
should create your own separate heap and not use the process’s default
heap. Unfortunately, you cannot tell the Win32 functions not to use the
default heap, so their accesses to the heap are always serialized.

As I mentioned at the beginning of this chapter, a single process
can have several heaps at once. These heaps can be created and destroyed
during the lifetime of the process. The default heap, however, is created
before the process begins execution and is destroyed automatically
when the process terminates. You cannot destroy the process’s default
heap. Each heap is identified by its own heap handle, and all of the
Win32 heap functions that allocate and free blocks within a heap require
this heap handle as a parameter.

263

ADVANCED WINDOWS

You can obtain the handle to your process’s default heap by calling
GetProcessHeap:

HANDLE GetProcessHeap(VOID);

Creating Your Own Win32 Heaps

264

In addition to the process’s default heap, you can create additional heaps
in your process’s address space. Basically, there are three main reasons
why you would want to create additional heaps in your own applications:

B Component protection
B More efficient memory management

B Local access
Let’s look at each of these in detail.

Component Protection

For this discussion, imagine that your application needs to process two
components: a linked list of NODE structures and a binary tree of
BRANCH structures. You have two C files: LNKLST.C, which contains
the functions that process the linked list of NODEs; and BINTREE.C,
which contains the functions that process the binary tree of BRANCHes.

If the NODEs and the BRANCHes are stored together in a single
heap, the combined heap might look like Figure 8-1. Now let’s say that
there’s a bug in the linked-list code that causes the 8 bytes after NODE 1
to be accidentally overwritten. This causes the data in BRANCH 3 to be
corrupted. When the code in BINTREE.C later attempts to traverse the
binary tree, it will probably fail because of this memory corruption. This
will, of course, lead you to believe that there is a bug in your binary-tree
code when, in fact, the bug exists in the linked-list code. Because the dif-
ferent types of objects are mixed together in a single heap, it becomes
significantly more difficult to track down and isolate bugs.

By creating two separate heaps, one for NODEs and the other for
BRANCHEes, you localize your problems. A small bug in your linked-list
code does not compromise the integrity of your binary tree and vice
versa. It is still possible to have a bug in your code that causes a wild
memory write to another heap, but this is far less likely to happen.

EIGHT: Heaps

Figure 8-1.
A single heap that stores NODEs and BRANCHes together.

Efficient Memory Management
Heaps can be managed more efficiently by allocating objects of the same
size within them. For example, let’s say that every NODE structure re-
quires 24 bytes and every BRANCH structure requires 32 bytes. All of
these objects are allocated from a single heap. Figure 8-2 on the follow-
ing page shows a fully occupied single heap with several NODE and
BRANCH objects allocated within it. If NODE 2 and NODE 4 are freed,
memory in the heap becomes fragmented. If you then attempt to allo-
cate a BRANCH structure, the allocation will fail even though 48 bytes
are available and a BRANCH needs only 32 bytes.

If each heap consisted only of objects that were the same size, free-
ing an object would guarantee that another object would fit perfectly
into the freed object’s space.

Local Access

The last reason to use separate heaps in your application is to provide
local access. Giving applications a 4-GB address space when you’'re using
a machine containing far less than 4 GB of physical memory requires
that the operating system and the CPU work together. When the system

265

ADVANCED WINDOWS

266

Figure 8-2.
A single fragmented heap that contains several NODE and
BRANCH objects.

swaps a page of RAM out to its paging file, it takes a performance hit. By
the same token, another performance hit is taken when the system
needs to swap a page of data back from the paging file into RAM. If you
keep accesses to memory localized to a small range of addresses, it is
less likely that the system will need to swap pages between RAM and the
paging file.

So, in designing an application, it’s a good idea to allocate things
that will be accessed together close to each other. Returning to our linked
list and binary tree example, traversing the linked list is not related in
any way to traversing the binary tree. By keeping all the NODEs close
together (in one heap), you can keep the NODEs in adjoining pages; in
fact, it’s likely that several NODEs will fit within a single page of physical
memory. Traversing the linked list will not require that the CPU refer to
several different pages of memory for each NODE access.

If you were to allocate both NODEs and BRANCHes in a single
heap, the NODEs would not necessarily be close together. In the worst-
case situation, you might be able to have one NODE only per page of
memory, with the remainder of each page occupied by BRANCHes.
In this case, traversing the linked list could cause page faults for each
NODE, which would make the process extremely slow.

EIGHT: Heaps

Creating Another Win32 Heap

You can create additional heaps in your process by having a thread call
HeapCreate:

HANDLE HeapCreate(DWORD f1Options, DWORD dwInitialSize,
DWORD cbMaximumSize);

The first parameter, flOptions, modifies how operations are per-
formed on the heap. You can specify 0, HEAP_NO_SERIALIZE, HEAP-
_GENERATE_EXCEPTIONS, or a combination of the two flags.

By default, a heap will serialize access to itself so that multiple
threads can allocate and free blocks from the heap without the danger of
corrupting the heap. When an attempt is made to allocate a block of
memory from the heap, the HeapAlloc function (discussed later) must do
the following:

1. Traverse the linked list of allocated and freed memory blocks
2. Find the address of a free block

3. Allocate the new block by marking the free block as allocated
4. Add a new entry into the linked list of memory blocks

To illustrate how you might use the HEAP_NO_SERIALIZE flag,
let’s say that two threads are attempting to allocate blocks of memory
from the same heap at the same time. The first thread executes steps 1
and 2 above and gets the address of a free memory block. However,
before this thread can execute step 3, the thread is preempted and the
second thread gets a chance to execute steps 1 and 2. Because the first
thread has not executed step 3 yet, the second thread finds the address
to the same free memory block.

With both threads having found what they believe to be a free
memory block in the heap, Thread 1 updates the linked list, marking the
new block as allocated. Thread 2 then also updates the linked list, mark-
ing the same block as allocated. Neither thread has detected a problem
so far, but both threads receive an address to the exact same block of
memory.

This type of bug can be very difficult to track down because it usu-
ally doesn’t manifest itself immediately. Instead, the bug waits in the
background until the most inopportune moment. The potential prob-
lems are listed on the following page.

267

ADVANCED WINDOWS

B The linked list of memory blocks has been corrupted. This
problem will not be discovered until an attempt to allocate or
free a block is made.

B Both threads are sharing the same memory block. Thread 1
and Thread 2 might both write information to the same block.
When Thread 1 examines the contents of the block, it will not
recognize the data introduced by Thread 2.

B One thread might proceed to use the block and free it, causing
the other thread to overwrite unallocated memory. This will
corrupt the heap.

The solution to these problems is to allow a single thread exclusive
access to the heap and its linked list until the thread has performed all
the operations it needs to on the heap. The absence of the HEAP-
_NO_SERIALIZE flag does exactly this. It is safe to use the HEAP_NO-
_SERIALIZE flag only if one or more of the following conditions are
true for your process:

B Your process uses only a single thread.

B Your process uses multiple threads, but the heap is accessed by
only a single thread.

B Your process uses multiple threads but manages access to the
heap itself by using other forms of mutual exclusion, such as
mutexes and semaphores, as discussed in Chapter 9.

If you’re not sure whether to use the HEAP_NO_SERIALIZE flag,
don’t use it. Not using it will cause your threads to take a slight perfor-
mance hit whenever a heap manipulation function is called, but you
won’t risk corrupting your heap and its data.

The other flag, HEAP_GENERATE_EXCEPTIONS, causes the sys-
tem to raise an exception whenever an attempt to allocate or reallocate
a block of memory in the heap fails. An exception is just another way for
the system to notify your application that an error has occurred. Some-
times it’s easier to design your application to look for exceptions rather
than to check for return values. Exceptions are discussed in Chapter 14.

The second parameter of HeapCreate, dwinitialSize, indicates the
number of bytes initially committed to the heap. HeapCreate rounds this

268

EIGHT: Heaps

value up to an even multiple of the CPU’s page size if necessary. The final
parameter, dwMaximumSize, indicates the maximum size to which the
heap can expand (the maximum amount of address space the system
can reserve for the heap). If dwMaximumSize is 0, the system reserves
aregion (size determined by the system) for the heap and expands the
region as needed until the region has reached its maximum size. If
the heap is created successfully, HeapCreate returns a handle identifying
the new heap. This handle is used by the other heap functions.

Allocating a Block of Memory from a Heap
Allocating a block of memory from a heap is simply a matter of calling
HeapAlloc:

LPVOID HeapAlloc(HANDLE hHeap, DWORD dwFlags, DWORD dwBytes);

The first parameter, hHeap, identifies the handle of the heap from which
an allocation should be made. This handle must be a handle that was
returned by an earlier call to HeapCreate or GetProcessHeap. The dwBytes
parameter specifies the number of bytes that are to be allocated from the
heap. The middle parameter, dwFlags, allows you to specify flags that
affect the allocation. Currently only three flags are supported: HEAP-
_ZERO_MEMORY, HEAP_GENERATE_EXCEPTIONS, and HEAP_NO-
_SERIALIZE.

The purpose of the HEAP_ZERO_MEMORY flag should be pretty
obvious. This flag causes the contents of the block to be filled with zeros
before HeapAlloc returns. The second flag, HEAP_ GENERATE _EXCEP-
TIONS, causes the HeapAlloc function to raise a software exception if
insufficient memory is available in the heap to satisfy the request. When
creating a heap with HeapCreate, you can specify the HEAP_GENERATE-
-EXCEPTIONS flag, which tells the heap that an exception should be
raised when a block cannot be allocated. If you specify this flag when call-
ing HeapCreate, you don’t need to specify it when calling HeapAlloc. On
the other hand, you might want to create the heap without using this
flag. In this case, specifying this flag to HeapAlloc affects only the single
call to HeapAlloc, not every call to this function.

If HeapAlloc fails and then raises an exception, the exception raised
will be one of the two shown in the table on the following page.

269

ADVANCED WINDOWS

270

Identifier Meaning

STATUS_NO_MEMORY The allocation attempt failed because
of insufficient memory.

STATUS_ACCESS_VIOLATION The allocation attempt failed because

of heap corruption or improper
function parameters.

A block allocated with HeapAlloc is fixed and nondiscardable, so it
is quite possible for the heap to become fragmented as the application
allocates and frees various memory blocks. If the block has been success-
fully allocated, HeapAlloc returns the address of the block. If the memory
could not be allocated and HEAP_GENERATE_EXCEPTIONS was not
specified, HeapAlloc returns NULL.

The last flag, HEAP_NO_SERIALIZE, allows you to force this indi-
vidual call to HeapAlloc to not be serialized with other threads that are
accessing the same heap. You should use this flag with extreme caution
because it is possible that the heap will become corrupted if other
threads are manipulating the heap at the same time.

Changing the Size of a Block

Often it’s necessary to alter the size of a memory block. Some applica-
tions initially allocate a larger than necessary block and then, after all
the data has been placed into the block, resize the block to a smaller size.
Some applications begin by allocating a small block of memory and then
attempt to enlarge the block when more data needs to be copied into it.
Resizing a memory block is accomplished by calling the HeapReAlloc
function:

LPVOID HeapReAlloc(HANDLE hHeap, DWORD dwFlags,
LPVOID 1pMem, DWORD dwBytes);

As always, the hHeap parameter indicates the heap that contains the
block you want to resize. The dwFlags parameter specifies the flags that
HeapReAlloc should use when attempting to resize the block. The follow-
ing four flags only are available: HEAP_GENERATE_EXCEPTIONS,
HEAP_NO_SERIALIZE, HEAP_ZERO_MEMORY, and HEAP_REAL-
LOC_IN_PLACE_ONLY.

The first two flags have the same meaning as when they are used
with HeapAlloc. The HEAP_ZERO_MEMORY flag is useful only when you

EIGHT: Heaps

are resizing a block to make it larger. In this case, the additional bytes
in the block will be zeroed. This flag has no effect if the block is being
reduced.

The HEAP_REALLOC_IN_PLACE_ONLY flag tells HeapReAlloc
that it is not allowed to move the memory block within the heap, which
HeapReAlloc might attempt to do if the memory block were growing. If
HeapReAlloc is able to enlarge the memory block without moving it, it
will do so and return the original address of the memory block. On the
other hand, if HeapReAlloc must move the contents of the block, the
address of the new, larger block is returned. If the block is made smaller,
HeapReAllocreturns the original address of the memory block. You would
want to specify the HEAP_REALLOC_IN_PLACE_ONLY flag if the
block were part of a linked list or tree. In this case, other nodes in the list
or tree might have pointers to this node and relocating the node in the
heap would corrupt the integrity of the linked list.

The remaining two parameters, [pMem and dwBytes, specify the cur-
rent address of the block that you want to resize and the new size—in
bytes—of the block. HeapReAlloc returns either the address of the new,
resized block or NULL if the block cannot be resized.

Obtaining the Size of a Block
After a memory block has been allocated, the HeapSize function can be
called to retrieve the actual size of the block:

DWORD HeapSize(HANDLE hHeap, DWORD dwFlags, LPCVOID 1pMem);

The hHeap parameter (returned from an earlier call to either HeapCreate
or GetProcessHeap) identifies the heap, and the l[pMem parameter (returned
from an earlier call to HeapAlloc or HeapReAlloc) indicates the address
of the block. The dwFlags parameter can be either 0 or HEAP_NO-
_SERIALIZE.

Freeing a Block
When you no longer need the memory block, you can free it by calling
HeapFree:

BOOL HeapFree(HANDLE hHeap, DWORD dwFlags, LPVOID 1pMem);

HeapFree frees the memory block and returns TRUE if successful.
The dwFlags parameter can be either 0 or HEAP_NO_SERIALIZE. Call-
ing this function may cause the heap manager to decommit some physi-
cal storage, but there are no guarantees.

271

ADVANCED WINDOWS

Destroying a Win32 Heap

If your application no longer has a need for a heap that it created, you
can destroy the heap by calling HeapDestroy:

BOOL HeapDestroy(HANDLE hHeap);

Calling HeapDestroy causes all the memory blocks contained within
the heap to be freed and causes the physical storage and reserved address
space region occupied by the heap to be released back to the system. If
the function is successful, HeapDestroy returns TRUE. If you don’t explic-
itly destroy the heap before your process terminates, the system will
destroy it for you. However, a heap is destroyed only when a process ter-
minates. If a thread creates a heap, the heap won’t be destroyed when
the thread terminates.

The system will not allow the process’s default heap to be destroyed
until the process completely terminates. If you pass the handle to the
process’s default heap to HeapDestroy, the system simply ignores the call.

Using Heaps with C++

272

One of the best ways to take advantage of Win32 heaps is to incorporate
them into your existing C++ programs. In C++, class-object allocation is
performed by calling the new operator instead of the normal C run-time
routine malloc. Then, when we no longer need the class object, the delete
operator is called instead of the normal C run-time routine free. For
example, let’s say that we have a class called CSomeClass and we want to
allocate an instance of this class. To do this we would use syntax similar
to the following:

CSomeClass* pCSomeClass = new CSomeClass;

When the C++ compiler examines this line, it first checks whether the
CSomeClass class contains a member function for the new operator; if it
does, the compiler generates code to call this function. If the compiler
doesn’t find a function overloading the new operator, the compiler gen-
erates code to call the standard C++ new operator function.

After you’re done using the allocated object, you can destroy it by
calling the delete operator:

delete pCSomeClass;

By overloading the new and delete operators for our C++ class, we
can easily take advantage of the Win32 heap functions. To do this, let’s
define our CSomeClass class in a header file like this:

EIGHT: Heaps

class CSomeClass {
private:

static HHEAP s_hHeap;
static UINT s_uNumAllocsInHeap;

// Other private data and member functions

public:

void* operator new (size_t size);

void operator delete (void* p);

// Other public data and member functions

};

In the code fragment above, I have declared two member variables,
s_hHeap and s_uNumAllocsinHeap, as static variables. Because they are
static, C++ will make all instances of CSomeClass share the same vari-
ables. That is, C++ will not allocate separate s_hHeap and s_uNumAllocsIn-
Heap variables for each instance of the class that is created. This is very
important to us because we want all of our instances of CSomeClass to be
allocated within the same heap.

The s_hHeap variable will contain the handle to the heap within
which CSomeClass objects should be allocated. The s_uNumAllocsInHeap
variable is simply a counter of how many CSomeClass objects have been
allocated within the heap. Every time a new CSomeClass object is allo-
cated in the heap, s_uNumAllocsInHeap is incremented. Every time a
CSomeClass object is destroyed, s_uNumAllocsinHeap is decremented.
When s_uNumAllocsInHeap reaches 0, the heap is no longer necessary
and is freed. The code to manipulate the heap should be included in a
CPP file that looks like this:

HHEAP CSomeClass::s_hHeap = NULL;
UINT CSomeClass::s_uNumAllocsInHeap = 0;

void* CSomeClass::operator new (size_t size) {
if (s_hHeap == NULL) {
// Heap does not exist; create it.
s_hHeap = HeapCreate(HEAP_NO_SERIALIZE, 0, 0);

if (s_hHeap == NULL)
return(NULL);

(continued)

273

ADVANCED WINDOWS

274

// The heap exists for CSomeClass objects.
void* p;
while ((p = (void #) HeapAlloc(s_hHeap, 0, size)) == NULL) {
// A CSomeClass object could not be allocated from the heap.
if (_new_handler != NULL) {
// Call the application-defined handler.
(*_new_handler)();

} else {
// No application-defined handler exists; just return.
break;

}

}

if (p != NULL) {
// Memory was allocated successfully; increment
// the count of CSomeClass objects in the heap.
s_uNumAllocsInHeap++;

}

// Return the address of the allocated CSomeClass object.
return(p);

You’'ll notice that I first defined the two static member variables,
s_hHeap and s_uNumAllocsInHeap, at the top and initialized them as NULL
and 0, respectively.

The C++ new operator receives one parameter—size. This parame-
ter indicates the number of bytes required to hold a CSomeClass object.
The first thing that our new operator function must do is create
a heap if one hasn’t been created already. This is simply a matter of
checking the s_hHeap variable to see whether it is NULL. If it is, a new
heap is created by calling HeapCreate, and the handle that HeapCreate
returns is saved in s_hHeap so that the next call to the new operator will
not create another heap but rather use the heap we have just created.

When I called the HeapCreate function above, I used the HEAP-
_NO_SERIALIZE flag because the remainder of the sample code is not
multithread safe. In Chapter 9, I discuss features of Win32 that can be
incorporated into the above code to make it multithread safe. The other
two parameters in the call to HeapCreate indicate the initial size and the
maximum size of the heap, respectively. I chose 0 and 0 here. The first 0
means that the heap has no initial size, whereas the second 0 means that
the heap starts out small and expands as needed. You might want to
change either or both of these values depending on your needs.

EIGHT: Heaps

You might think it would be worthwhile to pass the size parameter
to the new operator function as the second parameter to HeapCreate. In
this way, you could initialize the heap so that it is large enough to contain
one instance of the class. Then, the first time that HeapAlloc is called, it
will execute faster because the heap won’t have to resize itself to hold the
class instance. Unfortunately, things don’t always work the way you want
them to. Because each allocated memory block within the heap has an
overhead associated with it, the call to HeapAlloc will still have to resize
the heap so that it is large enough to contain the one class instance and
its associated overhead.

Once the heap has been created, new CSomeClass objects can be
allocated from it using HeapAlloc. The first parameter is the handle to the
heap, and the second parameter is the size of the CSomeClass object.
HeapAlloc returns the address to the allocated block.

Once the allocation is performed successfully, I increment the
s_uNumAllocsInHeap variable so that I know there is one more allocation
in the heap. The last thing that the new operator does is return the address
of the newly allocated CSomeClass object.

Well, that’s it for creating a new CSomeClass object. Let’s turn our
attention now to destroying one when our application no longer needs
it. This is the responsibility of the delete operator function, coded as follows:

void CSomeClass::operator delete (void* p) {
if (HeapFree(s_hHeap, 0, p)) {
// 0Object was deleted successfully.
s_uNumAllocsInHeap--; :
}

if (s_uNumAllocsInHeap == 0) {

// 1If there are no more objects in the heap,

// destroy the heap.

if (HeapDestroy(s_hHeap)) {
// Set the heap handle to NULL so that the new operator
// will know to create a new heap if a new CSomeClass
// object is created.
s_hHeap = NULL;

The delete operator function receives only one parameter: the ad-
dress of the object being deleted. The first thing that the function does is
call HeapFree, passing it the handle of the heap and the address of the

275

ADVANCED WINDOWS

276

object to be freed. If the object is freed successfully, s_uNumAllocsInHeap
is decremented, indicating that one fewer CSomeClass object is in the
heap. Next the function checks whether s_uNumAllocsInHeap is 0, and, if
itis, the function calls HeapDestroy, passing it the heap handle. If the heap
is destroyed successfully, s_hHeap is set to NULL. This is extremely
important because our program might attempt to allocate another
CSomeClass object sometime in the future. When it does, the new opera-
tor will be called and will examine the s_hHeap variable to determine
whether it should use an existing heap or create a new one.

This example demonstrates a very convenient scheme for using
multiple heaps. Itis easy to set up and can be incorporated into several of
your classes. You will probably want to give some thought to inheritance,
however. If you derive a new class using CSomeClass as a base class, the
new class will inherit CSomeClass’s new and delete operators. The new
class will also inherit CSomeClass’s heap, which means that when the new
operator is applied to the derived class, the memory for the derived class
object will be allocated from the same heap that CSomeClass is using.
Depending on your situation, this may or may not be what you want. If
the objects are very different in size, you might be setting yourself up for
a situation in which the heap might fragment badly. You might also be
making it harder to track down bugs in your code, as mentioned in the
“Component Protection” and “Efficient Memory Management” sections
earlier in this chapter.

If you want to use a separate heap for derived classes, all you need
to do is duplicate what I did in the CSomeClass class. More specifically,
include another set of s_hHeap and s_uNumAllocsInHeap variables, and
copy the code over for the new and delete operators. When you compile,
the compiler will see that you have overloaded the new and delete opera-
tors for the derived class and will make calls to those functions instead of
to the ones in the base class.

The only advantage to not creating a heap for each class is that you
won’t need to devote overhead and memory to each heap. However, the
amount of overhead and memory the heaps tie up is not great and is
probably worth the potential gains. The compromise might be to have
each class use its own heap and to let derived classes share the base class’s
heap when your application has been well tested and is close to shipping.
But be aware that fragmentation might still be a problem.

EIGHT: Heaps

The 16-Bit Windows Heap Functions

In this section, I'll discuss how the 16-bit Windows heap functions are
implemented in the Win32 API. I'll cover all the global and local heap
memory management functions, but I won’t offer techniques for using
them because I'm assuming that you’re already familiar with 16-bit Win-
dows programming techniques and because these functions should be
avoided in new Win32 applications. Win32 supports the 16-bit Windows
memory management functions solely for easy porting from one envi-
ronment to another. If you are developing a new 32-bit application,
and if you do not intend to compile the application natively for 16-bit
Windows, I recommend that you don’t use the global and local memory
functions—they’re slower and have more overhead than do the new
Win32 heap functions.

In order to support the 16-bit Windows local and global heap func-
tions, every Win32 process receives its very own default process heap and
its very own handle table when initialized. The default process heap has
already been discussed earlier in this chapter. This default heap is where
the global and local memory allocations will be made.

The handle table exists so that Win32 can manage the local and
global allocations. The handle table is an array of structures; each entry
in the array points to a block of memory allocated from the default heap.
When you call GlobalAlloc, the Win32 system allocates a block of memory
from the process’s default heap and locates an unused entry in the
process’s handle table. Then the system saves the address of the allo-
cated block in the handle table and returns the address of the entry in
the handle table. This returned value is the handle of the memory block.
When you call GlobalLock, the system looks at the handle table and simply
returns the address of the allocated block of memory in the default heap.

Initially Win32 allocates a small amount of storage to hold only a
small number of handle table entries. As the application continues to
make allocations from the handle table, additional handles might
become necessary. When this happens, Win32 can increase the amount
of storage used by the handle table, allowing additional handles to be
allocated.

Because of this additional work required by the system to manage
this handle table, it is easy to see why the new Win32 heap functions
should be used instead of the old 16-bit Windows functions. However, if
you want to continue to use the 16-bit Windows functions so that you can
write code that can be natively compiled for both 16-bit Windows and
Win32, or if you want to port your application to Win32 quickly, you

277

ADVANCED WINDOWS

278

should know that not all of the 16-bit Windows heap functions perform
exactly as they did in 16-bit Windows. The remaining sections in this chap-
ter explain what the 16-bit heap functions do in a Win32 environment.

16-Bit Windows Functions That Port to Win32
Figure 8-3 shows what the 16-bit Windows memory management func-
tions do in Win32. For each entry, the two functions listed perform
identical tasks on the heap. (Note that in Win32, both HGLOBAL and
HLOCAL are typedefed as HANDLE.)

Of all the functions listed, only a few had semantic changes when
they were ported to Win32. The following section covers these changes.

16-Bit Windows Memory Function Meaning in Win32

HGLOBAL GlobalAlloc(UINT fuAlloc, Allocate a memory block.
DWORD cbAlloc);
HLOCAL LocalAlloc(UINT fuAlloc, UINT

cbAlloc);
HGLOBAL GlobalDiscard(HGLOBAL hglb); Discard a memory block.
HLOCAL LocalDiscard (HLOCAL hlcl); Macros defined as:
GlobalReAlloc((hglb), 0,
GMEM_MOVEABLE);
LocalReAlloc((hglb), 0,
LMEM_MOVEABLE);
UINT GlobalFlags(HGLOBAL hglb); Return flag information
UINT LocalFlags(HLOCAL hicl); about a memory block.
HGLOBAL GlobalFree (HGLOBAL hglb); Free a memory block.
HLOCAL LocalFree (HLOCAL hlcl);
LPVOID GlobalLock(HGLOBAL hglb); Lock a memory block.
LPVOID LocalLock(HLOCAL hlcl);
BOOL GlobalUnlock(HGLOBAL hglb); Unlock a memory block.
BOOL LocalUnlock(HLOCAL hicl);
HGLOBAL GlobalReAlloc(HGLOBAL hglb, Change the size and/or
DWORD cbNewSize, UINT fuAlloc); flags of a memory block.

HLOCAL LocalReAlloc(HLOCAL hlcl,
UINT cbAlloc, UINT fuAlloc);

DWORD GlobalSize (HGLOBAL hglb); Return the size of a
UINT LocalSize(HLOCAL hlcl); memory block.
HGLOBAL GlobalHandle (LPVOID lpvMem); Return the handle of the
HLOCAL LocalHandle (LPVOID IpvMem); memory block containing

the passed address.

Figure 8-3. .
Memory functions ported from 16-bit Windows to Win32.

EIGHT: Heaps

Functions with Semantic Changes

Whenever an application calls GlobalAlloc or LocalAlloc to allocate non-
fixed memory, the Win32 system must allocate a handle for the data as
well as memory space for the data. When GlobalAlloc or LocalAlloc returns,
it returns a handle—the address of an entry in the handle table. For
example, let’s say that these lines of code are executed:

HGLOBAL hgib = GlobalAlloc(GMEM_MOVEABLE, 10);
LPVOID 1pv = GloballLock(hglb);

The variable Aglb is an address to a structure in the handle table. When
GlobalLock is called, the entry in the handle table is examined to deter-
mine the address of the memory block. GlobalLock then returns this
address.

Both GlobalLock and LocalLock return the address to the memory
block that was allocated. Immediately preceding this block in memory is
an internal data structure. This data structure contains some internal
management information, such as the size of the allocated block and the
handle of the block. When allocating fixed memory blocks, the system
does not need to allocate a handle from the handle table. Instead, the
system simply allocates the memory block and returns the address to this
block when GlobalAlloc or LocalAlloc returns.

For GlobalAlloc and LocalAlloc, some of the flags’ meanings have
changed. Figure 8-4 shows all of the possible flags and what they mean
in Win32.

Flag Meaning in Win32
GHND Defined as

(GMEM_MOVEABLE | GMEM_ZEROINIT)
LHND Defined as

(LMEM_MOVEABLE | LMEM_ZEROINIT)
GPTR Defined as

(GMEM_FIXED | GMEM_ZEROINIT)
LPTR Defined as

(LMEM_FIXED { LMEM_ZEROINIT)
GMEM_DDESHARE, Win32 does not allow memory to be shared in
GMEM_SHARE this way. However, this flag may be used as a

hint to the system about how to share memory
in the future.

Figure 8-4. (continued)
Memory flags and their meanings in Win32.

279

ADVANCED WINDOWS

280

Figure 8-4. continued

Flag Meaning in Win32
GMEM_DISCARDABLE, Allocate block as discardable. Win32 ignores
LMEM_DISCARDABLE these flags.

GMEM_FIXED, Allocate block as fixed.

LMEM_FIXED

GMEM_LOWER, Ignored.

GMEM_NOT_BANKED,
GMEM_NOCOMPACT,
LMEM_NOCOMPACT,
GMEM_NODISCARD,
LMEM_NODISCARD,
GMEM_NOTIFY,
LMEM_NOTIFY

GMEM_MOVEABLE, Allocate block as movable.
LMEM_MOVEABLE

GMEM _ZEROINIT, Zero contents of block after allocation.
LMEM_ZEROINIT

NONZEROLHND Defined as (LMEM_MOVEABLE)
NONZEROLPTR Defined as (LMEM _FIXED)

It is incorrect to call GlobalReAlloc or LocalReAlloc specifying the
GMEM_DISCARDABLE or LMEM_DISCARDABLE flag without also
including the GMEM_MODIFY or LMEM_MODIFY flag.!

Functions That Should Be Avoided in Win32

Figure 8-5 shows 16-bit Windows memory allocation functions that have
been kept in Win32 for easier porting between 16-bit Windows and
Win32 applications but that are obsolete and should be avoided. Each of
the functions existed for one or more of the following reasons:

W To allow applications to manipulate the shared global heap. In
Win32, each application has its own address space and this type
of functionality is no longer possible.

1. The GMEM_MODIFY flag and the LMEM_MODIFY flag do not appear in Figure 8-4
because they are used only in conjunction with the GlobalReAlloc and LocalReAlloc functions.

EIGHT: Heaps

B To help manage discardable memory. In Win32, memory blocks
are never discarded by the system. They can be discarded if an
application explicitly calls GlobalDiscard or LocalDiscard. Both
functions really resize the blocks to 0 bytes anyway.

B To help manage movable memory. In Win32, memory blocks
are never moved or compacted by the system.

16-Bit Windows Memory Function

Meaning in Win32

BOOL DefineHandleTable (WORD w)
DWORD GetFreeSpace (UINT u)

DWORD GlobalCompact(DWORD);
void GlobalFix (HGLOBAL);

HGLOBAL GlobalLRUNewest (HGLOBAL h)
HGLOBAL GlobalLRUOldest (HGLOBAL h)
void GlobalUnfix(HGLOBAL);

BOOL GlobalUnWire (HGLOBAL);

void *GlobalWire (HGLOBAL);

void LimitEmsPages(DWORD)

UINT LocalCompact(UINT);

UINT LocalShrink (HLOCAL, UINT);
HGLOBAL LockSegment(UINT w)

LONG SetSwapAreaSize (UINT w)
void UnlockSegment(UINT w)

Macro defined as
((w), TRUE)

Macro defined as
(0x100000L)

Always returns 0x100000

Same as calling
GlobalLock

Macro defined as
(HANDLE) (h)

Macro defined as
(HANDLE) (h)

Same as calling
GlobalUnlock

Same as calling
GlobalUnlock

Same as calling
GlobalLock

Macro defined as nothing
Always returns 0x100000
Always returns 0x100000

Macro defined as
GlobalFix((HANDLE) (w))

Macro defined as (w)

Macro defined as
GlobalUnfix ((HANDLE) (w))

Figure 8-5.

These 16-bit Windows memory functions should be avoided in Win32.

281

ADVANCED WINDOWS

282

Functions That Have Been Removed from Win32

The following list shows 16-bit Windows memory functions that have
been removed from the Win32 API, mainly because they were Intel
processor—specific functions. Win32 is a portable API designed to offer
all of its functions on any and all CPU platforms to which Win32 is
ported. Calling the following functions results in a compiler error be-
cause no prototype or macro exists for them:

AllocDStoCSAlias GlobalNotify
AllocSelector GlobalPagel .ock
ChangeSelector GlobalPageUnlock
FreeSelector Locallnit
GetCodelnfo SwitchStackBack
GlobalDOSAlloc SwitchStackTo
GlobalDOSFree

CHAPTEHR NI NE

THREAD SYNCHRONIZATION

In an environment in which several threads are running concurrently, it
becomes important to be able to synchronize the activities of various
threads. The Win32-based operating systems provide several synchroni-
zation objects that allow threads to synchronize their actions with one
another. In this chapter, I'll concentrate on the four main synchroniza-
tion objects: critical sections, mutexes, semaphores, and events. Other
objects also exist for synchronization, and some of these are discussed
and demonstrated in other chapters in this book.

This chapter offers numerous techniques for using the four main
synchronization objects. For the most part, all the synchronization objects
behave similarly. There are differences, however, which make one type of
object more suitable for a particular task than another.

Of these four types of synchronization objects, all are kernel
objects except critical sections. That is, a critical section is not managed
by the low-level components of the operating system and is not manipu-
lated using handles. A critical section is the easiest synchronization object
to use and understand, and therefore, we’ll discuss it before the other
synchronization objects.

However, before we move directly on to critical sections, let’s dis-
cuss the general concept of thread synchronization.

Thread Synchronization in a Nutshell

In general, a thread synchronizes itself with another thread by putting
itself to sleep. When the thread is sleeping, it is no longer scheduled
CPU time by the operating system and therefore stops executing. How-
ever, just before the thread puts itself to sleep, it tells the operating sys-
tem what “special event” has to occur in order for the thread to resume
execution.

283

ADVANCED WINDOWS

The operating system remains aware of the thread’s request and
watches to see if and when this special event occurs. When it occurs, the
thread is again eligible to be scheduled to a CPU. Eventually the thread
will be scheduled and will continue its execution—the thread has now
synchronized its execution with the occurrence of the special event.

As we discuss the various synchronization objects throughout this
chapter, I'll show you how to specify a special event and how to put your
thread to sleep after notifying the system to watch for the special event
on your thread’s behalf.

The Worst Thing You Can Do

284

Without synchronization objects and the operating system’s ability to
watch for special events, a thread would be forced to synchronize itself
with special events by using the technique that I am about to demon-
strate. However, because the operating system has built-in support for
thread synchronization, you should never use this technique.

In this technique, one thread synchronizes itself with the comple-
tion of a task in another thread by continuously polling the state of a
variable that is shared by or accessible to multiple threads. The code
fragment below illustrates:

BOOL g_fFinishedCalculation = FALSE;

int WINAPI WinMain (...) {
CreateThread(..., RecalcFunc, ...);

// Wait for the recalculation to complete.
while (!g_fFinishedCalculation)

}
DWORD WINAPI RecalcFunc (LPVOID 1pvThreadParm) {

// Perform the recalculation.

g_fFinishedCalculation = TRUE;
return(@);

As you can see, the primary thread (executing WinMain) doesn’t
putitself to sleep when it needs to synchronize itself with the completion

NINE: Thread Synchronization

of the RecalcFunc function. Because the primary thread does not sleep, it
is being scheduled CPU time by the operating system. This takes pre-
cious time cycles away from other threads that could be executing code
that does something more useful.

Another problem with the polling method as used in the previous
code fragment is that the Boolean variable g_fFinishedCalculation might
never be set to TRUE. This could happen if the primary thread has a
higher priority than the thread executing the RecalcdFunc function. In this
case, the system never assigns any time slices to the RecalcFunc thread,
which will never execute the statement that sets g_fFinishedCalculation to
TRUE. If the thread executing the WinMain function were put to sleep
instead of polling, it would not be scheduled time, and the system would
have an opportunity to schedule time to lower-priority threads, such as
the RecalcFunc thread, allowing them to execute.

I can’t be any clearer than this: synchronize threads by putting
them to sleep. Do not synchronize threads by having them continuously
poll for special events.

Critical Sections

A critical section is a small section of code that requires exclusive access
to some shared data before the code can execute. Of all the synchroniza-
tion objects, critical sections are the simplest to use, but they can be used
to synchronize threads only within a single process. Critical sections allow
only one thread at a time to gain access to a region of data. Examine the
following code fragment:

int g_nIndex = 0;

const int MAX_TIMES = 1000;
DWORD g_dwTimes[MAX_TIMES];

DWORD WINAPI FirstThread (LPVOID T1pvThreadParm) {
BOOL fDone = FALSE;

while (!fDone) {
if (g_nIndex >= MAX_TIMES) {

fDone = TRUE;
} else {
g_dwTimes[g_nIndex] = GetTickCount();
g_nIndex++;
}
}
return(@);

(continued)

285

ADVANCED WINDOWS

286

DWORD WINAPI SecondThread (LPVOID 1pvThreadParm) {
BOOL fDone = FALSE;

while (!fDone) {
if (g_nIndex >= MAX_TIMES) {
fDone = TRUE;
} else {
g_nlndex++;
g_dwTimes[g_nIndex - 1] = GetTickCount();
}
}
return(0);

Both of the thread functions here are supposed to produce the
same result, although each is coded a bit differently. If the FirstThread
function were running by itself, it would fill the g_dwTimes array with
ascending values. The same is true if we were to run the SecondThread
function by itself. Ideally, we would like to have both threads running
concurrently and still have the g_dwTimes array produce ascending values.
However, there is a problem with the code above: the g_dwTimes array
won'’t be filled properly because the two thread functions are accessing
the same global variables simultaneously. Here is an example of how this
could happen. ,

Let’s say that we have just started executing both threads on a sys-
tem with one CPU. The operating system starts running SecondThread
first (which could very well happen), and right after SecondThread incre-
ments g nlndex to 1, the system preempts the thread and allows First-
Thread to run. FirstThread then sets g_dwTimes[1] to the system time, and
the system preempts the thread and gives time back to SecondThread.
SecondThread now sets g_dwTimes[1 — 1] to the new system time. Because
this operation occurred later, the new system time is a higher value than
that of the time placed into FirstThread’s array. Also notice thatindex 1 of
g_dwTimeswas filled in before index 0. The data in the array is corrupted.

I'admit that this example is a bit contrived. It is difficult to come up
with a reallife example that doesn’t require several pages of source
code. However, you can easily see how this problem could extend itself
to real-life examples. Consider the case of managing a linked list of objects. If
access to the linked list was not synchronized, one thread could be add-
ing an item to the list while another thread was simultaneously trying to
search for an item in the list. The situation could become more chaotic if
the two threads were adding items to the list at the same time. By using

NINE: Thread Synchronization

critical sections, you can ensure that access to the data structures is coor-
dinated among threads.

Creating a Critical Section

To create a critical section, you must first allocate a CRITICAL_SEC-
TION data structure in your own process. The allocation of the critical
section structure must be global so that different threads can gain access
to it. Usually, critical sections are simply global variables. Although the
CRITICAL_SECTION structure and its members appear in WINNTH,
you should think of the members of this structure as being off-limits. The
Win32 functions that manipulate critical sections initialize and maintain
all the members in the structure for you. You should not access or modify
any of the members yourself.

After we’ve added critical sections to our example program, the
code looks like this:

int g_nlndex = 0;
const int MAX_TIMES = 1000;
DWORD g_dwTimes[MAX_TIMES];
" CRITICAL_SECTION g_CriticalSection;

int WINAPI WinMain (...) {
HANDLE hThreads[2];

// Initialize the critical section before the threads so
// that it is ready when the threads execute.
InitializeCriticalSection(&g_CriticalSection);

hThreads[@]
hThreads[1]

CreateThread(..., FirstThread ...);
CreateThread(..., SecondThread ...);

// Wait for both threads to terminate.
// Don't worry about this Tine; it will be explained shortly.
WaitForMultipleObjects(2, hThreads, TRUE, INFINITE);

// Close the thread handles.
CloseHandle(hThreads[0]);
CloseHandle(hThreads[1]);

// Delete the critical section.
DeleteCriticalSection(&g_CriticalSection);

(continued)

1. CRITICAL_SECTION itself is in WINBASE.H as RTL_CRITICAL_SECTION. The
RTL_CRITICAL_SECTION structure is typedefed in WINNT.H.

287

ADVANCED WINDOWS

DWORD WINAPI FirstThread (LPVOID 1pvThreadParm) {
BOOL fDone = FALSE;

while (!fDone) {
EnterCriticalSection(&g_CriticalSection);
if (g_nIndex >= MAX_TIMES) {
fDone = TRUE;
} else {
g_dwTimes[g_nIndex] = GetTickCount();
g_nIndex++;
}
LeaveCriticalSection(&g_CriticalSection);
}
return(0);
}

DWORD WINAPI SecondThread (LPVOID ipvThreadParm) {
BOOL fDone = FALSE;

while (!fDone) {
EnterCriticalSection(&g_CriticalSection);
if (g_nIndex >= MAX_TIMES) {
fDone = TRUE;

} else {

g_nIndex++;

g_dwTimes[g_nIndex - 1] = GetTickCount();
}

LeaveCriticalSection(&g_CriticalSection);
}
return(0);
}

Using a Critical Section

288

Before you can synchronize threads with a critical section, you must ini-
tialize the critical section by calling InitializeCriticalSection, passing the
address to the CRITICAL_SECTION structure as the lpCriticalSection
parameter:

VOID InitializeCriticalSection
(LPCRITICAL_SECTION 1pCriticalSection);

This initializes the members of the structure and must be done
before EnterCriticalSection is called. The code above shows the critical sec-
tion being initialized in WinMain. Both thread functions are expecting
that the g_CriticalSection structure variable has been initialized by calling

NINE: Thread Synchronization

InitializeCriticalSection before they begin executing. Let’s see what hap-
pens next.

Referring again to our code example on the preceding pages, let’s
say that SecondThread executes first. It calls EnterCriticalSection, passing it
the address to the g_CriticalSection structure variable:

VOID EnterCriticalSection(LPCRITICAL_SECTION 1pCriticalSection);

EnterCriticalSection sees that this is the first time that EnterCriticalSection
has been called for the g_CriticalSection variable, changes some members
in the data structure, and lets the g_nIndex++; line execute. After this line
executes, the system might preempt SecondThread and assign processor
time to FirstThread. FirstThread calls EnterCriticalSection, passing the address
of the same object that SecondThread used. This time, EnterCriticalSection
sees that the g_CriticalSection structure variable is in use and puts First-
Thread to sleep. Because FirstThread is asleep, the system can assign the
remainder of its time slice to another thread. The system will stop trying
to assign time slices to FirstThread until FirstThread is awakened.

Eventually SecondThread will be assigned another time slice. Then it
will execute the following statement:

g_dwTimes[g_nIndex - 1] = GetTickCount();

This causes g_dwTimes[0] to be assigned the current system time. This is
different from our first scenario, in which g_dwTimes[1] was assigned a
lesser value than g_dwTimes[0]. At this point, if the system wants to preempt
SecondThread it can do so, but it can’t assign time to FirstThread because
FirstThread is still waiting for the critical section to become available.
Eventually SecondThread will be assigned a time slice again and will exe-
cute the following statement:

LeaveCriticalSection(&g_CriticalSection);

After this line executes, the g_CriticalSection variable indicates that
the shared data structures are no longer protected and are available to
any other thread that wants access to them. FirstThread was waiting on
g CriticalSection, so it can now be awakened. FirstThread’s call to Enter-
CriticalSection sets ownership of g_CriticalSection to FirstThread, and then
EnterCriticalSection returns so that FirstThread can continue execution.

As you can see, using critical sections allows access of data to only
one thread at a time. In some cases, however, it is possible to have more
than two threads requiring access to the same data at the same time.

289

ADVANCED WINDOWS

290

When this happens, each thread must call EnterCriticalSection before it
attempts to manipulate the data. If one of the threads already has owner-
ship of the critical section, any thread waiting to gain access is put to
sleep. When a thread relinquishes ownership by calling LeaveCritical-
Section, the system wakes up only one of the waiting threads and gives
that thread ownership. All the other sleeping threads continue to sleep.

Note that it is legal—and even useful—for a single thread to own a
critical section several times. This can happen because calls to Enter-
CriticalSection from the thread owning the critical section increment a
reference count. Before another thread can own the critical section, the
thread currently owning it must call LeaveCriticalSection enough times so
that the reference count drops back to 0. Let’s see how this works using
the following example:

int g_nNums[100];
CRITICAL_SECTION g_CriticalSection;

DWORD WINAPI Thread (LPVOID 1pvParam) {
int nIndex = (int) TpvParam;
EnterCriticalSection(&g_CriticalSection);

if (g_nNums[nIndex] < MIN_VAL)
IncrementNum(nIndex);

else
g_nNums[nIndex] = MIN_VAL;

LeaveCriticalSection(&g_CriticalSection);
return(0);
}

void IncrementNum (int nlIndex) {
EnterCriticalSection(&g_CriticalSection);
g_nNums[nIndex]++;
LeaveCriticalSection(&g_CriticalSection);

In this code fragment, the Thread function acquires ownership of
the critical section when it first begins executing. In this way, it can test
g_nNums[nIndex], knowing that no other thread can change g nNums-
[nIndex] during the test. Then, if g_nNums[nIndex] contains a value less
than MIN_VAL, the IncrementNum function is called.

NINE: Thread Synchronization

IncrementNum is an independent function. It is implemented with-
out any knowledge of what functions call it. Because the function will
alter the g_nNums array, it requests access to the array by calling Enter-
CriticalSection. Because IncrementNum is executing under the thread that
already owns the critical section, EnterCriticalSection increments only the
reference count of the critical section and allows the thread to continue
execution. If IncrementNum were called from another thread, the call to
EnterCriticalSection would put that thread to sleep until the thread exe-
cuting the Thread function called LeaveCriticalSection.

If you have several unrelated data structures in your application,
you would create CRITICAL_SECTION variables for each of the data
structures. Then your code would first have to call InitializeCriticalSection
once for each of the CRITICAL_SECTION variables. Your threads would
also need to call EnterCriticalSection, passing the address of the CRITI-
CAL_SECTION variable that applies to the data structure(s) to which
the thread wants access. Examine this code fragment:

int g_nNum[100];
char g_cChars[100];
CRITICAL_SECTION g_CriticalSection;

DWORD WINAPI ThreadFunc (LPVOID l1pvParam) {
int x;

EnterCriticalSection(&g_CriticalSection);

for (x = 0; x < 100; x++) {
g_nNums[x] = 0;
g_cChars[x] = 'X';

}

LeaveCriticalSection(&g_CriticalSection);
return(9);

In this case, you enter a single critical section whose job it is to pro-
tect both the g_nNums array and the g_cChars array while they are being
initialized. But the two arrays have nothing to do with one another.
While this loop executes, no thread can gain access to either array. If the
ThreadFunc function is implemented as shown on the next page, the two
arrays are initialized separately.

291

ADVANCED WINDOWS

292

DWORD WINAPI ThreadFunc (LPVOID 1pvParam) {
int x;

EnterCriticalSection(&g_CriticalSection);

for (x = 0; x < 100; x++)
g_nNums[x] 0;

for (x = 0; x < 100; x++)
g_cChars[x] = 'X';

LeaveCriticalSection(&g_CriticalSection);
return(0);

So, theoretically, after the g_nNums array has been initialized, a differ-
ent thread that needs access only to the g_nNums array and not to the
g_cChars array can begin executing while ThreadFunc continues to initial-
ize the g_cChars array. But alas, this is not possible because both data
structures are being protected by a single critical section. To fix this, you
can create two critical sections, as follows:

int g_nNums[100];

char g_cChars[100];

CRITICAL_SECTION g_CriticalSectionForNums;
CRITICAL_SECTION g_CriticalSectionForChars;

DWORD WINAPI ThreadFunc (LPVOID TpvParam) {
int x;

EnterCriticalSection(&g_CriticalSectionForNums);

for (x = 0; x < 100; xt++)
g_nNums[x] = 0;

LeaveCriticalSection(&g_CriticalSectionForNums);

EnterCriticalSection(&g_CriticalSectionForChars);

for (x = 0; x < 100; x++)
g_cChars[x] = "X';

LeaveCriticalSection(&g_CriticalSectionForChars);
return(0);

NINE: Thread Synchronization

Now this function has been implemented so that another thread
can start using the g_nNums array as soon as ThreadFunc has finished
initializing it. Sometimes you will need to access two data structures si-
multaneously. If this were a requirement of ThreadFunc, it would be
implemented like this:

DWORD WINAPI ThreadFunc (LPVOID 1pvParam) {

int x;

EnterCriticalSection(&g_CriticalSectionForNums);
EnterCriticalSection(&g_CriticalSectionForChars);

for (x = 0; x < 100; x++)
g_nNums[x] 0;

for (x = 0; x < 100; x++)
g_cChars[x] = 'X";

LeaveCriticalSection(&g_CriticalSectionForChars);
LeaveCriticalSection(&g_CriticalSectionForNums);
return(0);

Suppose ano