.

A}

PROGRAMMER'S REFERENCE LIBRARY

Wi for
P ﬁnmnutm

LY

L
2
L4
A

e
‘e

L
Yo%
LS
‘e

-
‘e
Liee

™

MICROSOFTo
WINDOWS..

.
LY
AL\

Microsoft

Programmer's Reference

Version 1
Designed to
work with
Windows 3.1

Microsoft

Programmer's Reference

Version 1
Designed to
work with
Windows 3.1

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright ©1992 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.)

Library of Congress Cataloging-in-Publication Data
Microsoft Windows for Pen computing programmer’s reference / author,
Microsoft Corporation.
p. cm.
Includes index.
ISBN 1-55615-469-0 (softcover)

1. Microsoft Windows (Computer program) 1. Microsoft
Corporation.
QA76.76.W56M525 1992
005.4'3--dc20 91-39265

CIP
Printed and bound in the United States of America.

123456789 MLML 765 432

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation. ’

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.
Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood, Victoria, Australia

Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

Microsoft, MS, MS-DOS, and QuickC are registered trademarks and Windows is a trademark
of Microsoft Corporation.

Writers: Terry A. Ward
Stephen M. Liffick

Editors: Bryce Holmes
David Paul

Contents

Before You Begin ix

Chapter 1 Getting Started with Microsoft Windows for Pen Computing

-

Objective
What Is Microsoft Windows for Pen Computing?
Device Drivers
The Recognizer
Microsoft Windows for Pen Computing DLL
The Pen Interface
What Is the Microsoft Windows for Pen Computing SDK?
How Will MS Windows for Pen Computing Be Delivered?
What Are the Basics of the Pen API?
The Handwriting Edit (hedit) Control
The Boxed Edit (bedit) Control
Data Flow (Overview)
ProcessWriting Function
Recognize Function
The RC Structure
The RCRESULT Structure
How Should Applications Support the Pen?
Basic Pen Awareness (Pen-Capable Applications)
Extended Pen Awareness (Pen-Enhanced Applications)
Advanced Pen Awareness (Pen-Centric Applications)

— Yoo UM UNUNUN DR BBRARDRWLWWLWWER ==

This Guide 1
Chapter 2 The Architecture of the Pen Extensions 13
The Goals ' 13
Components 14
The RC Manager 14

The Pen Driver 14

The Display Driver 15

The Pen Message Interpreter 15
Windows Applications 16

Pen Applications 16
Recognizers 16
Dictionary Modules 17

Data Flow 17

Programmer’s Reference

iv Contents

The Pen Driver

The RC Manager: Normal Mode

The Application

The RC Manager: Inking Mode

The Results

The Pen Message Interpreter and the Rest of the System
The Gesture Macro Layer

Chapter 3 The Recognition Process

Overview
RC: The Principal Data Structure
Using and Modifying Ink
Ending Recognition: Pen State
The Application-Recognizer Connection
Writing Location
Specifying the Recognizer and the Type of Input Expected
The Timing of Recognition Results and Significant Events
Controlling the Recognition Process
Specifying the User for Recognition
Dictionary Processing
Recognition Results: The RCRESULT Structure
The WM_RCRESULT Message '
Symbols and Symbol Values
The Symbol Graph
The Best Guess
Location and Position of the Input
Contextual Information
The Ink

Chapter 4 Managing Ink in Pen Applications

The HPENDATA Data Type and Ink
The Basics
The Details
The Ink Functions
Rendering Pen Data
Transforming Pen Data
Pen Data Housekeeping
Pen Data Input and Output
Compressing Pen Data
Display Resolution Compression
Common Scenarios Using an Ink Object

Microsoft Windows for Pen Computing

18
18
20
21
23
24
24

21

27
29
29
29
30
31
31
33
33
35
36
36
37
37
37
39
39
40
40

]

41
41
42
45
45
46
47
48
50
50
51

Contents v

Chapter 5 A Sample Pen Application 53
Overview of the PENAPP Application 53
WinMain and Initialization Functions 54

WinMain 54
FInitApp 55
FInitInstance 56
FLoadRec 58
Data Handling and Display Functions 60
MainWndProc 60
InputWndProc 62
InfoWndProc and RawWndProc 65

Chapter 6 Using Pen Controls and the ProcessWriting Function 67

Using the Hedit (Handwriting) Pen Control 67
Control Messages 68
WinMain 68
Initialization Functions 70
HformWndProc 71
FCreateForm 72
Dialog Box Functions 75

Using the Bedit (Boxed Handwriting Edit) Control 75
Using Bedit Controls in Dialog Boxes 77

Using the ProcessWriting Function 77
Modifying a Windows Program to Use ProcessWriting 79

Chapter 7 Replaceable Components: Recognizers and Dictionaries 81

Recognizers 81
Converting Input to Usable Data 81
Returning Results 83
Training 85
Symbol Values and Symbol Graphs 85
The RC Structure 87
How a Custom Recognizer Interacts with the RC Manager 89
A Sample Recognizer 91

Dictionaries 96
The RC Structure and Dictionary Processing 96
Subfunction Messages Used in a Dictionary DLL 99
A Sample Dictionary 100

Programmer’s Reference

vi Contents

Chapter 8 Pen API Overview 105
Pen API Categories 107
Pen Interface Functions 107

Pen Data Functions 111
Custom Recognizer Functions 112

Pen Module Functions 112

Pen Driver Functions 113
Display Driver Functions 114
Dictionary Functions 114
Chapter 9 Pen API Reference 115
AddPenEvent , 116
AddPointsPenData 117
AtomicVirtualEvent 118
BeginEnumStrokes 119
BoundingRectFromPoints 120
CharacterToSymbol 121
CloseRecognizer 122
CompactPenData 123
ConfigRecognizer 125
CorrectWriting 128
CreatePenData 130
DestroyPenData ' 132
DictionaryProc 133
DictionarySearch 142
DPtoTP 144
DrawPenData 145
DuplicatePenData 146
EmulatePen 147
EndEnumStrokes 148
EndPenCollection 149
EnumSymbols 150
ExecuteGesture 151
FirstSymbolFromGraph 153
GetGlobalRC 154
GetMessageExtralnfo 155
GetPenAsyncState 156
GetPenDatalnfo 157
GetPenDataStroke 158
GetPenHwData 159
GetPenHwEventData 161
GetPointsFromPenData 163
GetSymbolCount 164

Microsoft Windows for Pen Computing

Contents vii

GetSymbolMaxLength 165
GetVersionPenWin 166
InitRC 167
InitRecognizer 169
InstallRecognizer 170
IsPenAware 171
IsPenEvent 172
MetricScalePenData 173
OffsetPenData 175
PostVirtualKeyEvent 176
PostVirtualMouseEvent 177
ProcessPenEvent 179
ProcessWriting 180
Recognize 183 -
RecognizeData 186
RecognizeDatalnternal 187
Recognizelnternal 188
RedisplayPenData 190
RegisterPenApp 192
ResizePenData 193
SetGlobalRC 194
SetPenHook 196
SetRecogHook 197
ShowKeyboard 199
SymbolToCharacter 203
TPtoDP 204
TrainContext 205
TrainContextInternal 207
TrainInk 209
TrainInkInternal 211
UninstallRecognizer 212
UpdatePenInfo 213
Chapter 10 Pen Structures 215
BOXLAYOUT 216
GUIDE 218
OEMPENINFO 221
PENDATAHEADER 223
PENINFO 225
PENPACKET 228
RC 229
RCRESULT 240
RECTOFS 244

Programmer’s Reference

viii

Chapter 11

Appendix A

Appendix B

Index

SKBINFO
STROKEINFO
SYG, SYE, SYC, and SYV

Pen Messages and Constants

ALC_Values (Alphabet Code)
BXD_Values (Boxed Edit Control)
HN_ Notification Messages

IDC_ Values (Display Cursor)

PCM_ Values (Pen Collection Mode Values)
PDC_ Values (Pen Device Capabilities)
PDK_ Values (Pen Driver State Bits)
PDT_ Values (OEM-Specific Data)
PDTS_ Values (Data Scaling Values)
RCD__ Values (Writing Direction)
RCO_Values (Recognition Option)
RCOR_Values (Tablet Orientation)
RCP_Values (User Preferences)
RCRT_Values (Results Type)

REC_ Values (Recognition Functions)
SYV_ Values (Symbol)
WM_GLOBALRCCHANGE Message
WM_HEDITCTL Messages
WM_RCRESULT Message

WM_SKB Message

Guide to the Initialization Files

FORMAT of .INI files

Modifying the SYSTEM.INI File
Modifying the CONTROL.INI File
Modifying the PENWIN.INI File
Modifying the WIN.INI File

Pen Addenda for MS Windows API Functions

GetSystemMetrics

SetClipboardData

Combo-Box Notification Codes

Differences Between Bedit and Edit Controls
Installable Pen Device Driver

Microsoft Windows for Pen Computing

245
246
247

251

252
255
256
257
258
259
260
261
262
263
264
266
267
268
270
273
276
277
282
283

285

285
286
288
289
293

295

295
295
295
295
296

n

Before You Begin

This guide describes the Microsofte Windows™ graphical environment for Pen Computing
Software Development Kit (SDK). The chapters that follow contain information on:

m [Installation

= SDK components

m Pen application programming interface (API)

Organization

This guide is divided into the following chapters and appendixes.

Chapter

Description

Chapter 1, Getting Started with Microsoft
Windows for Pen Computing

Chapter 2, The Architecture of the Pen
Extensions

Chapter 3, The Recognition Process

Chapter 4, Managing Ink in Pen
Applications

Chapter 5, A Sample Pen Application

Chapter 6, Using Pen Controls and the
ProcessWriting Function

Chapter 7, Replaceable Components:
Recognizers and Dictionaries

Chapter 8, Pen Overview
Chapter 9, Pen API Reference

Chapter 10, Pen Structures

An overview of pen computing, the Pen
SDK, and setup information.

An overview of the architecture of the pen
API extensions used to build pen
applications.

An overview of the data structures and
methods used in the recognition process.

An overview of the data structures and
methods used in the inking process.

A sample application that uses child
windows for handwriting input.

A sample application that uses the pen
controls. This chapter also introduces the
ProcessWriting function.

Sample recognizer and dictionary dynamic-
link libraries (DLLs).

An overview of the Pen API.

Descriptions of the Pen Extensions
functions.

Descriptions of the Pen Extensions
structures.

Programmer’s Reference

X Before You Begin

Chapter

Description

Chapter 11, Pen Messages and Constants

Appendix A, Guide to the Initialization
Files

Appendix B, Pen Addenda for MS
Windows API Functions

Document Conventions

Descriptions of the Pen Extensions
messages and constants.

Settings used in the Windows and Pen
Extensions .INI files.

Supplemental notes to the Windows 3.1
API documentation.

The following document conventions are used throughout this manual.

Convention

Description

Bold text

O

Italic text

Monospaced text

if(!RegisterClass(LPWNDCLASS)&wc))

else

Microsoft Windows for Pen Computing

Bold letters indicate a specific term or
punctuation mark intended to be used
literally: language functions or keywords
(such as InitRC or switch), MS-DOSe
commands, and command-line options.
You must type these terms and punctuation
marks exactly as shown. The use of
uppercase or lowercase letters is usually,
but not always, significant. For example,
you can invoke the C compiler by typing
either CL, cl, or CI at the MS-DOS prompt.

In syntax statements, parentheses enclose
one or more parameters that you pass to a
function.

Italic text indicates a placeholder; you are
expected to provide an actual value. For
example, the following syntax for the
InitRC function initializes the recognition
context for the recognizer:

InitRC(hwndInput, (LPRC) &rc);

Code examples are displayed in a
nonproportional typeface.

A vertical ellipsis in a program example
indicates that a portion of the program has
been omitted.

Additional Documentation xi

Convention

Description

(n

{1

SMALL CAPITAL LETTERS

Additional Documentation

A horizontal ellipsis following an item
indicates that more items having the same
form may appear.

Double brackets enclose optional fields or
parameters in command lines or syntax
statements.

A vertical bar indicates that you can enter
one of the entries shown on either side of
the bar. In symbol graphs, a vertical bar
indicates the possible character choices.

Curly braces indicate that you must specify
one of the enclosed items.

Small capital letters indicate the names of
keys and key sequences—for example,
CTRL+ALT+DEL. If the key names are
separated by commas instead of plus
signs—for example ALT, F—then you must
press the keys consecutively rather than
together.

This guide assumes a basic familiarity with MS Windows programming. The additional
documentation listed in the following table explains the MS Windows Graphical

Environment for Pen Computing.
Title

Contents

Microsoft Windows for Pen Computing
documentation package

Microsoft Windows for Pen Computing
online help

Microsoft Windows Software Development
Kit (SDK) documentation, or equivalent
documentation

Microsoft Windows Device Driver
Development Kit (DDK) documentation, or
equivalent documentation

Introduction and tutorial materials for the
pen computing system. These materials
describe the user interface and Windows
applications.

The complete source for Windows user
documentation.

" Information about the application

programming interface of the Microsoft
Windows graphical environment.

Describes the application programming
interface of the Microsoft Windows device
drivers. Required if you are developing pen
or tablet drivers.

Programmer’s Reference

xii Before You Begin

System Requirements

You can develop pen applications with the following software and hardware:

An IBM personal computer or compatible running Microsoft Windows version 3.1 or
later

A mouse, tablet, or other pointing device supported by the Microsoft Windows for Pen
Computing system
Microsoft Windows version 3.1 SDK

Microsoft Windows version 3.1 Device-Driver Development Kit (DDK)—necessary
only if you build pen, display, tablet, or keyboard drivers

Microsoft C Optimizing Compiler, version 5.1 or later, or Microsoft QuickCe for
Windows version 1.0 or later

Microsoft Macro Assembler version 5.1 or later (necessary only if you will be building
pen, display, or keyboard drivers)

You may also use equivalent development software produced by other manufacturers (for
example, Borland International Inc.).

Setting Up

You can run the SETUP.EXE Windows program on Disk 1 of the distribution disks to
install this SDK.

Note Do not install this version of the SDK over any older versions. You must install this
SDK in a new directory. (References in this book assume that the SDK has been installed
in the default PENSDK directory, however.)

Be sure to read the README.TXT file on Disk 1 for late-breaking release notes.

Microsoft Windows for Pen Computing

Getting Started with Microsoft Windows
for Pen Computing

This chapter provides background information on Microsoft Windows for Pen Computing.
It also discusses pen computing in general, the pen computing application programming
interface (API), and interface design considerations appropriate to pen-based applications.
This introduction lays the groundwork for your participation in the pen computing
revolution with Microsoft Windows for Pen Computing.

Objective

Since the beginnings in 1988, the goal of the Microsoft Windows for Pen Computing
development team has been the creation of a compelling and compatible pen-based
operating environment. '

A compelling pen-based operating environment enables the creation of applications that
extend current graphical user interface (GUI) techniques and interact with the user on a
“pen-and-paper” level. This metaphor is exciting because it is familiar to users and less
intimidating than the current keyboard and mouse standard. Given the familiarity of the
pen and how it is used, the interaction between a user and a computer becomes more
natural if a pen is the method of interaction.

A compatible pen-based operating environment interacts with existing Windows
applications without modification. Microsoft Windows for Pen Computing offers increased
effectiveness to the installed base of Microsoft Windows applications and hardware
platforms. By employing the code base and experience of Windows independent software
vendors (ISVs), the Pen Extensions widen the acceptance of Microsoft Windows in
corporate settings.

MS Windows for Pen Computing provides a migration path for current Windows products
and a means by which interested ISVs can create advanced pen-centric applications from
the ground up.

What Is Microsoft Windows for Pen Computing?

Microsoft Windows for Pen Computing, also known as Pen Extensions, is a series of
modular extensions to the MS Windows 3.1 operating environment. The Pen Extensions
include a set of dynamic-link libraries (DLLs) and drivers that enable pen-based input and
handwriting recognition in Microsoft Windows. The components of the Pen Extensions are
transparent to the normal Windows 3.1 applications, and yet they are readily available for
those applications that seek to leverage their capabilities.

Pen services are available through a new set of APIs, referred to in the following pages as
the Pen APIL. This API is available to every computer running version 3.1 of MSe

Programmer’s Reference

2 Chapter 1 Getting Started with Microsoft Windows for Pen Computing -

Windows—regardless of whether or not that computer is a pen computer or has an
attached pen peripheral. Application developers can therefore leverage the Pen API
window classes—hedit and bedit-—as well as use other pen API services, and feel
confident that their programs will run identically on all machines running MS Windows
3.1

If the pen is present, the Pen API informs applications so they can activate advanced pen-
specific features. It also automatically enables pen interaction in the pen control classes. If
the pen is not present, the same .EXE will operate without modification—and without pen
behaviors, of course—under Windows 3.1.

The Pen Extensions have been designed and built for MS Windows version 3.1, and this
version of Windows—or a later version—is required for pen-specific behaviors.

The Pen Extensions can be broken down into four general areas. The following paragraphs
summarize them briefly.

Device Drivers

To use MS Windows for Pen Computing, you need to install a pen driver, and you
generally need to use a modified standard display driver.

Pen Drivers

A pen driver is an installable device driver. Its primary role is to get data from the
digitizing device into the Windows system. The data from a digitizing device consists
minimally of (x,y) coordinates indicating pen position; it may also contain pressure or
angle information. All information reported by a pen driver is available to applications
should they decide to use it.

Pen drivers are distinct from mouse drivers in three important ways. First, they report data
at much higher sampling rates and at much higher resolution than a mouse does. This is
required to support handwriting recognition. Second, they may also report pressure, angle,

. rotation, or other pen state information. Finally, they employ a private pen computing
interface to manage the high data rate and density, thereby avoiding a flood of useless
information.

Display Drivers

A quality pen user interface requires the ability to ink (that is, to draw lines to the current
pen location to give the illusion that the user is drawing on the screen. To improve
performance and reduce code duplication, Microsoft has implemented inking in the RC
Manager.

To support the inking process, a communication is established between a Windows display
driver and the pen interface in such a way that ink can be drawn at interrupt time. Thus, in
much the same fashion as the mouse cursor follows the mouse immediately, ink follows
the pen immediately by a close interaction between MS Windows for Pen Computing and
the Windows display driver at interrupt time.

Microsoft Windows for Pen Computing

What Is the Microsoft Windows for Pen Computing SDK? 3

The Recognizer

The portion of the system that actually turns streams of (x,y) points into recognized -
characters is a DLL referred to as the recognizer. The Microsoft recognizer recognizes
neatly hand-printed characters from the ANSI character set. However, the recognizer
component can be replaced by third-party recognition systems that may offer improved
recognition rates, different symbol sets, and other qualities not yet available in the
Microsoft recognizer. Several other manufacturers have already begun to develop
recognizers for pen computing systems.

In addition to the standard characters, a recognizer might also recognize circles, squares,
triangles, Kanji symbols, Gregg shorthand, mathematical symbols, CAD/CAM symbols,
and other symbols or characters. MS Windows for Pen Computing SDK includes a special
recognizer (SHAPEREC.DLL) that recognizes circles, ellipses, squares, rectangles, and
lines.

Microsoft Windows for Pen Computing DLL

PENWIN.DLL is the manager of all pen-specific components in the Windows 3.1 system
other than those handled by the recognizer. PENWIN.DLL is the implementation point for
the majority of the Pen APIs and acts as an intermediary between the pen driver, the
display driver, the recognizer, and pen-aware Windows applications.

PENWIN.DLL is included with the retail versions of MS Windows 3.1. At runtime,
PENWIN.DLL determines whether or not there is a pen attached to the system and takes
appropriate action. It is the presence of this DLL in all Windows 3.1 systems that ensures
that developers can always leverage hedit, bedit, and any of the other Pen APIs.

The Pen Interface

There are a number of new interface components in MS Windows for Pen Computing that
ease or otherwise assist pen interaction, accessed primarily through a small floating toolbar
called the Pen Palette. These new interface components include the Trainer, the Gesture
Editor, the On-Screen Keyboard, and the Writing Window. Also included are four new
Control Panel extensions that provide a means to identify specific users to the system, set
user-configurable options, determine screen orientation, and calibrate the stylus device.
Discussed in detail later in this guide, these elements provide a primary interface with
which users manage and modify their pen computing environment.

What Is the Microsoft Windows for Pen Computing SDK?

The Microsoft Windows for Pen Computing SDK (Pen SDK) is an extension to the MS
Windows version 3.1 SDK. The Pen SDK contains libraries, INCLUDE files, and
numerous sample sources. The Pen SDK enables a Windows ISV to develop pen-based
applications and custom recognizers.

The MS Windows version 3.1 SDK is also required for the development of pen-aware
applications and recognizers. The Pen SDK assumes that the INCLUDE files, libraries,
and tools in the Windows 3.1 SDK are present.

Programmer’s Reference

4 Chapter1 Getting Started with Microsoft Windows for Pen Computing

Any development tool that can compile Windows APIs in C code can do the same with the
Pen API and libraries as long as the development tool calls the Windows 3.1 functions
directly and links to the standard API libraries included with MS Windows 3.1. These
capabilities indicate that the tool is sufficient for the same functions with the MS Windows
for Pen Computing SDK elements.

How Will MS Windows for Pen Computing Be Delivered?

MS Windows for Pen Computing is an original equipment manufacturer (OEM) product.
This means that both developers and end users purchase the product only when they buy
hardware that uses its capabilities. The hardware can be a portable pen-based computer, a
notebook machine with a screen that can be removed and carried around as a pen-based
computer, or a digitizing tablet used on the desktop.

It is important to note that the Pen SDK mentioned previously does not include the MS
Windows for Pen Computing runtime components. You can test your pen applications
under Windows 3.1 without a pen; however, you cannot test them fully until you acquire
pen hardware.

What Are the Basics of the Pen API?

This section assumes that you are familiar with standard Microsoft Windows programming
conventions. It is provided as an introduction to the detailed discussion that follows in the
rest of this guide.

There are seven primary elements for the development of pen-specific behaviors in
Windows applications: the handwriting, or hedit, control; the boxed edit, or bedit, control,;
the data flow; the ProcessWriting function; the Recognize function; the RC structure; and
the RCResult structure.

The Handwriting Edit (hedit) Control

The hedit control is a replacement for the edit control. The hedit is a version of the normal
Windows edit control that accepts handwritten input and allows for the configuration and
control of the recognition process through a messaging interface.

The Boxed Edit (bedit) Control

The bedit control is an entirely new Windows control, implementing boxed input. The
following is a boxed edit control showing the cells in the letter guides. Sometimes this
control is referred to as a comb.

Figure 1.1. Boxed edit control

Microsoft Windows for Pen Computing

What Are the Basics of the Pen API? 5

The message set supported by the bedit control is essentially a superset of that supported
by the standard edit control, with additions provided for modifying of the recognition
process and rendering the letter guides. This control was designed from the ground up for
the pen, but it also supports a keyboard interface for compatibility with machines with
attachable keyboards.

Data Flow (Overview)

The data flow in the Pen Extensions is similar to that of a regular Windows program. The
pen driver reports events to Windows as if they were mouse events. Applications treat the
pen as a mouse the majority of the time.

The action begins when the user puts the pen down (mapped to WM_LBUTTONDOWN)
in an area—or over a window—that the application has determined to be a writing area.
When an application determines that this has occurred, it calls the ProcessWriting or the
Recognize function and awaits the results. Both functions activate inking, process the
recognition of ink, and package up the results to be returned to applications.

For a more detailed discussion of the data flow, see Chapter 2, “The Architecture of the
Pen Extensions.”

ProcessWriting Function

An application uses the ProcessWriting function to request that all of the basic
recognition parameters be used and that the results be returned as WM_CHARSs. This is the
quickest way to add handwriting capabilities to an existing Windows application, because
the application is insulated from the complexities of managing recognition results. An
application receives a WM_LBUTTONDOWN message and responds by calling
ProcessWriting. WM_CHARs are received, ProcessWriting returns, and processing
resumes.

Recognize Function

If the ProcessWriting function is the easiest way to add handwriting capability to an
existing Windows application, the Recognize function can be considered the most flexible.
The caller has complete control over the recognition process. The results are returned
through a new message called WM_RCRESULT before Recognize returns. An application
that needs to perform exacting control over the recognition process or implement some of
the more advanced features might use this function instead of ProcessWriting.

The RC Structure

The RC structure, the primary controlling data structure of the Pen API, is used by the
application to moderate the recognition process when Recognize or ProcessWriting is
called. The RC controls such parameters as ink width and color, the recognizer to be used,
the timing of the results, which user actions terminate inking, the type of input expected
(that is, numeric or alphabetic), and other parameters.

Programmer’s Reference

6 Chapter1 Getting Started with Microsoft Windows for Pen Computing

The RCRESULT Structure

This data structure is used to pass recognition results back to applications that have called
Recognize or ProcessWriting. The WM_RCRESULT message contains a pointer to an
RCRESULT structure. RCRESULT contains the recognizer’s best guess as to what the
user entered, the possible alternatives, and the actual ink data entered by the user.

How Should Applications Support the Pen?

Important

The following three-tiered breakdown of pen enhancements can be viewed both as a
suggestion list for new pen-aware applications and as guidelines for modifying existing
Windows applications. By following these guidelines you will be able to see where your
application must be modified if it is to be run on pen-based systems, where it might be
augmented to support the pen specifically, and where value can be added through the
incorporation of advanced pen-specific behaviors.

There is no substitute for testing your application on an integrated display-digitizer (if not
an actual pen-based computer) to understand the strengths and limitations of the pen.
Specifically, try your application on such a device to determine how well it works with a
pen. This type of usability testing can help you see which pen interfaces are more
appropriate than others. '

Basic Pen Awareness (Pen-Capable Applications)

Basic pen awareness is the groundwork necessary to provide a minimally functional pen-
based interface and a base for further pen-aware behaviors. The effort necessary to achieve
basic pen awareness is minimal; the resulting application is fully compatible with desktop-
oriented applications.

Registering Your Application with RegisterPenApp

Calling the RegisterPenApp function will result in the replacement of all edit windows
created in your application by hedit Windows. Note that this includes the edit field portion
of combo boxes. This is the first step to being pen-aware. However, you should make sure
that no subclassing of standard edit controls is broken when they are replaced with hedit
controls.

Handwriting Recognition Is Difficult

Handwriting recognition presents a problem that is very difficult to solve to a user’s
satisfaction. The first thing to do to an application is to limit the amount of handwriting
required to the greatest extent possible. For example, if you can provide a combo box with
a list of acceptable inputs, provide it. Picking something from a list will always result in
100 percent recognition.

Microsoft Windows for Pen Computing

How Should Applications Support the Pen? 7

Similarly, buttons always result in 100 percent recognition. You will find that using
buttons—as in toolbars—and selection lists will improve the usability of an application
whether used with or without the pen.

Writing Areas

Provide writing areas within your application as appropriate, to allow for text and gesture
entry. The ProcessWriting function is provided for this purpose. It allows support for the
standard editing gestures and text entry with minimum effort on the part of the
programmer. The PENPAD sample in the PENSDK\SAMPLES\PENPAD directory of the
Pen SDK uses this function.

Power Management

Pen-aware Windows applications—and, increasingly, all MS Windows 3.1 applications—
will run on portable systems with limited battery life. New power-management facilities in
Windows 3.1 provide for the detection of idle time in Windows applications and institute
special power-saving mechanisms when the system is idle. However, applications that spin
in a PeekMessage loop as their main message loop are never idle. Applications that do not
call GetMessage or WaitMessage will prematurely exhaust the battery of any portable
machine, because they short-circuit the Windows idle-detection mechanism.

Display Considerations

Pen-aware Windows applications need to run acceptably on monochrome monitors,
because a number of early pen-based machines will have them. Application designers
should consider this when designing bitmaps and color schemes. .

When designing applications, you should also bear in mind that the configuration of the
desktop is likely to change from execution to execution because of the rotation of the
screen from portrait to landscape mode. Therefore, Windows programs should determine
display dimensions dynamically with each execution. You should take special care when
designing toolbars and dialog boxes, because it is deceptively easy to design both items in
such a way that all or part of them is off the screen when the display is in portrait mode.

Avoiding Keyboard-Only Behaviors

Beware of creating commands in your applications that are dependent on keyboard
shortcuts or key modifiers—for example, a zoom feature that can be restored to normal
view only by pressing the ESC key. If the user doesn’t have a keyboard, there will be no
way to restore normal view. A button or gesture could be used instead of a key. This is yet
another example for which a toolbar would provide an excellent and immediate interface
beneficial to both the pen and the mouse user.

Understanding Portable Platforms

Because Microsoft Windows will increasingly find its way onto highly portable platforms,
the application vendor should strive to comply with the size and storage limitations
inherent in such platforms.

Programmer’s Reference

8 Chapter1 Getting Started with Microsoft Windows for Pen Computing

There are a number of strategies for ensuring this. One is to use compressed file formats to
store application data. Another is to break up an application—or its data dependencies—
into a number of pieces (DLLs) that can be “left behind” if only a subset of an
application’s functionality is required. In general, where vast amounts of fixed storage
could once be counted on, a pen-based machine may not have as much storage available.

Other Considerations

The “text goes where you write it” rule should be implemented whenever reasonable. The
user should not have to tap in a field or window before writing is accepted by it. This is
one of the features of the hedit class. Any writing areas in your application should do the
same.

The pen is very good at indicating general positions—at pointing to regions, selecting
menu items, hitting buttons, and so on. It is not good at indicating specific locations on the
screen. To test this, you might try tapping ona single display pixel with a pen. This should
influence your decisions about button size, the size of the handles you put on objects, font
size, and so on.

Extended Pen Awareness (Pen-Enhanced Applications)

Extended pen awareness is the quality describing applications that provide functionalities
specific to the pen. There are a number of elements that help make pen computing easy,
because they are based on modes of interaction that are already familiar to the user. These
are discussed in the following paragraphs.

Boxed Edit (bedit) Controls

Boxed input is an extremely powerful way to get handwritten input from the user and
should be used in your pen-aware applications whenever possible. The advantages of bedit
controls are numerous:

m The recognizer has excellent segmentation and baseline information.

m Users write more neatly when constrained with boxes.

m The boxed control interface is especially natural and appropriate for pen input.
Note that the bedit control is less than optimal when the amount of user input cannot be

predicted or restrained. It functions best when the input is known to be of a certain length
and type—for example, a social security number, a phone number, or a first name.

Ink Field: Retaining Ink as Data

The ability for a user to enter ink and store it as ink is extremely powerful. The hedit and
bedit classes support this already, but it requires little extra effort to add the inking
capabilities to an existing window class. By storing ink in analog format, the problems
associated with handwriting recognition can be avoided, and yet the user is able to
understand and manage the information contained in the ink. In essence, this is the
electronic equivalent of taking notes on scraps of paper.

Microsoft Windows for Pen Computing

How Should Applications Support the Pen? 9

If ink is entered as graphical data, the ability to recognize that data later is crucial. In MS
Windows for Pen Computing, delayed recognition is implemented in hedit and bedit
controls. The RecognizeData function in the Pen API enables an apphcatlon to implement
delayed recognition on its own stored ink.

Application developers should not ignore the importance of providing inking capabilities
in applications. It is easy to implement inking behavior with the Pen API. The power and
usability this feature adds to your application is tremendous.

Context

A pen-aware application can provide contextual information that is applied at the
beginning of the recognition process, and contextual information that is applied at the end
of the process. By providing context, applications improve their recognition rate
substantially.

For example, before recognition begins, it is useful for the recognizer to know what type
of data to expect. If a field is numeric, the recognizer should be programmed to expect
only numeric data. If the field is alphabetic, the recognizer should be programmed to
expect only alphabetic data. Other types of contextual information include gestures only,
Kanji symbols only, and normal alphanumeric characters. The hedit and bedit controls
support a message interface through which contextual information can be provided, and
the RC structure provides the same information when ProcessWriting and Recognize are
used.

In addition to providing preprocessing clues to the recognizer, MS Windows for Pen
Computing provides a dictionary path to check recognized pen input against a set of words
(or multiple sets of words) to aid in the recognition process. A dictionary is a DLL that
communicates with PENWIN.DLL to help determine which of the recognizer’s guesses is
the best guess. This facility can be folded into your applications where appropriate. For
example, lists of states, terms specific to your application, user names, keywords, or any
other anticipated input can be provided as a check against the recognition process.

In this way, even very poor handwritten input can be interpreted correctly by comparing it
to the set of expected inputs. A dictionary for the English language is included with MS
Windows for Pen Computing to provide this capability for normal English input.

Good Graphical User Interfaces Il

Besides the suggestions offered in “Handwriting Recognition is Difficult,” earlier in this
chapter, there are further basic GUI elements that you can focus on to ensure that good pen
interaction is possible with your product. These include object linking and embedding
(OLE), direct manipulation, the use of toolbars, and a generally uncluttered user interface.

Advanced Pen Awareness (Pen-Centric Applications)

Pen-centric functionalities are directed solely at a pen-based platform. They are usually
too complex to manage with only a keyboard and a mouse. A personal information
manager (PIM) application targeted at portable pen-based machines would fall into this
category. Pen-centric behaviors and functionalities are many; the following are a few
general ideas.

Programmer’s Reference

10 Chapter1 Getting Started with Microsoft Windows for Pen Computing

Text Goes Where You Write It

There are several terms used to describe this behavior; smart targeting is one of the best.
The idea is that if a user writes text at a particular location, the application should
understand where that text was really meant to go and make sure it gets there. This
functionality might boil down to something as simple as electronic paper—that is, text is
recognized where it is written and placed in an object for later management by the user.

Annotation

An annotation layer, in contrast to an inking field, tends to be all-encompassing and not
constrained to an individual field or location. The ability for a user to scribble all over an
application window, print the annotations, select and modify them, hide them, and so on,
is a complex and powerful pen-centric behavior. An example of this type of functionality
would be the capability to annotate a word-processing document and pass your
handwritten edits along with the text of the document back to the author for revision.

Special Recognition and Shape Recognition

Another powerful pen-centric functionality stems from the ability of special recognizers to
convert glyphs to application- and context-specific input. The shape recognizer included
with MS Windows for Pen Computing is one such recognizer.

A drawing package that can snap, or indtantly reconfigure, a rough circle or square to one
that is true is especially valuable. For example, a CAD/CAM application can have a
special recognizer designed to recognize the symbols specific to the industry in which it is
employed.

Pen and Paper

The pen-and-paper metaphor refers to a shift of responsibility from the user to the
application; the application makes decisions and proceeds based on an understanding that
the application work area resembles paper.

Functionalities of this class include context-sensitive pen input. Consider the example of a
scribble entered in a drawing region of an application. If a shape recognizer is unable to
determine what the scribble is, it retains it as a scribble; if it recognizes the scribble, it
snaps it to a circle, square, triangle, or line, as appropriate. If the same glyph is entered in
a writing region of an application, it is translated to a letter.

Another example of pen-and-paper behaviors is known as math paper. If a region of your
application is designated as math-aware, it understands how to perform calculations as
they are written by a user. For example, if your application understands that an equal sign
is a part of the handwritten input, then the input to the left of the equal sign should be
evaluated as an equation, and the answer must be provided as part of the recognized input.

Another common attribute of this class of application is the ability to bypass the cursor.
With a pen, the user indicates the location of the pointing device by placing the pen tip on
top of it, thereby reducing the need for the cursor. In practice, you may find that this is

Microsoft Windows for Pen Computing

This Guide 1

only partly true, but when visual feedback is moved from the cursor to a change in the
object or area indicated with the pen, it is both powerful and easy to grasp for the average
user. For example, the handles for an object appear only as you move the pen over the
edge of the object.

This Guide

The remainder of this programmer’s guide provides in-depth converage of many of the
topics touched upon in the preceding pages. Included are a detailed background on the
architecture of MS Windows for Pen Computing and information on the use of the RC and
RCRESULT structures. Information about adding ink support to your application is also
included. Combined with the MS Windows API reference, this guide will serve as a
roadmap to the pen API and pen computing functionalities in your applications.

Programmer’s Reference

The Architecture of the Pen Extensions

This chapter discusses the architecture and components of Microsoft Windows for Pen
Computing and how these elements interact with the Windows version 3.1 system. The
reader is assumed to be familiar with basic Windows architecture, programming
techniques, and naming conventions.

The Goals

The goal of the Pen Extensions is to give independent software vendors (ISVs) the ability
to create pen applications that run on top of Microsoft Windows. Powerful pen
applications require something more than simple mouse and keyboard emulation. A
flexible application programming interface (API) must allow ISVs complete freedom when
designing their pen interfaces. The API must enable “pen-and-paper” interaction with the
user in a natural and intuitive manner.

These objectives require several behaviors:

= The pen must behave in a manner the user expects. For example, it must leave ink as it
moves across the surface of the tablet in the same way that a pen leaves ink on paper.
Also, the pen interface should be natural and easy to use.

m The user must be able to indicate command and position in a single pen action, called a
gesture. The use of gestures is unique to the combination of a pen and a computer, and
it gives users certain advantages over normal pen-and-paper interaction.

m Applications must have access to all recognition results and their alternatives; in
addition, they must be able to process the ink as the user enters it. This flexibility
enables an application to handle user input in the manner appropriate to the task—
leaving the information as ink on the page, interpreting it as text characters or shapes,
or providing a list of alternatives to the user so that the correct result can be obtained.

= Applications should be able to create and make use of customized recognizers for
mathematical symbols, Gregg shorthand, and other specialized handwriting recognition
purposes. The Pen API provides a mechanism for passing a single piece of user input to
several recognizers, so that if one cannot determine the correct recognition results,
another might.

m The installed base of Windows applications should have some means of interacting
with the pen. This should certainly take the form of simple mouse emulation and a
writing window from which recognized results can be sent to applications. In addition,
however, this behavior should work in all writing areas in the system—at least with a
minimum of pen functionality (without true pen-and-paper capabilities)—regardless of
whether or not the application has been specifically modified to support the pen.

Programmer’s Reference

14 Chapter2 The Architecture of the Pen Extensions

Components

The following diagram illustrates the relationships of the various components that
constitute MS Windows for Pen Computing and their relationships to Microsoft Windows
and Windows applications. '

Windows

apps Pen apps

Pen message interpreter

Dictionary

p | | module
driver RC Manager —

Recognizers
Windows 3.1

Figure 2.1. The Pen Extensions

The RC Manager

The RC (Recognition Context) Manager is the heart of the Pen Extensions. If you are
familiar with display contexts (DCs), understanding an RC should be straightforward. In
the same way that a DC contains all of the information necessary to send graphical output
to a device, an RC contains all of the information necessary to carry out pen interaction
and handwriting recognition.

The RC Manager moderates the recognition process. It manages the interactions with all of
the pen extension components necessary to support the pen and pen behaviors. It records
points from the pen driver and passes them on to Windows, serves as the implementation
point for the new Pen APIs, integrates the work of the recognizer and dictionaries, and
packages up results for applications.

The RC Manager is implemented in PENWIN.DLL, which is analogous to USER.EXE in
Windows. Throughout this document, “PENWIN.DLL” and “RC Manager” will be used
interchangeably when referring to the Pen Extensions.

The Pen Driver

This is the component of Windows for Pens that interacts with the pen hardware and
passes the information along to the rest of the Windows system by way of PENWIN.DLL.

Two files are associated with the pen driver: an installable Windows device driver that
uses the new installable driver interface of Windows version 3.1, and a virtual device
driver that handles interaction with the hardware when Windows is running in enhanced
mode.

Microsoft Windows for Pen Computing

Components 15

The fact that the pen driver’s input may at times be needed for handwriting recognition
places several constraints on a pen input device:

= The pen driver must be able to report the location of the pen at least 100 times per
second. This rate ensures that the true path of the pen is reported accurately enough to
support the efforts of vector-based recognizers, and it makes the ink dropped by the pen
appear smooth and natural for normal writing speeds.

= The pen driver must be able to report pen positions with a resolution of 200 points per
inch. This degree of resolution ensures sufficient granularity in ink coordinates to make
accurate judgments about the path of the pen over the digitizing surface. In other
words, it ensures that the positions reported are fine enough for a recognizer to derive
useful information from them.

m Regardless of the actual resolution of the device, the pen driver must report the pen
position in coordinates of 0.001 inch for the RC Manager, the recognizers, and
applications to manage the ink in a known and standard scale.

The Display Driver

As with Windows, the display driver is responsible for interacting with the display
hardware and the graphical device interface (GDI) module of Microsoft Windows. For the
Pen Extensions, a normal Windows display driver must be enhanced to support inking.
Inking support takes the form of two entry points within the display driver and the ability
to be called at interrupt time by the RC Manager to perform inking. The entry points are
the following.

Function call Purpose

InkReady function Called by the RC Manager. This call instructs the display
driver that, when ready, it should call back the RC
Manager to draw some ink.

GetLPDevice function Returns a value necessary for the RC Manager’s ink-
drawing function.

In addition, the display driver should provide a cursor in the shape of a pen.

In all other respects, the display driver requirements and responsibilities are the same as
those for a standard Windows 3.1 driver. For more details on pen-enabled display drivers,
see the Windows 3.1 DDK.

The Pen Message Interpreter

The Pen message interpreter is the component of MS Windows for Pen Computing that
interacts with Windows applications that have not been modified to take advantage of the
Pen Extensions. This component is responsible for interpreting gestures, handwritten input,
and pen events into the corresponding mouse and keyboard events for use by applications
that do not do so for themselves.

The most significant feature of the Pen message interpreter is its ability to enable
handwriting in all Windows applications. This is accomplished by detection of the I-Beam

Programmer’s Reference

16

Chapter2 The Architecture of the Pen Extensions

cursor. It can do this regardless of whether or not the application uses the Pen Extensions
APL

Since most applications use the system I-beam cursor in writing areas, the Pen Extensions
can detect this and allow handwritten input of gestures and characters in those writing
areas. Once the user begins writing, the Pen message interpreter intercepts the normal pen-
to-application data flow and acts as an intermediary between the old application and the
Pen Extensions.

As pen input is received by the Pen message interpreter, it is translated into the appropriate
mouse and keyboard messages, which are passed on to the application. The appllcatlon has
no knowledge of the pen—or that pen input has occurred.

There are limitations in the compatibility provided by the Pen Message Interpreter. First, it
cannot handle nonstandard Windows applications (for example, those without a standard I-
beam cursor). Second, applications developed for MS Windows prior to version 3.1 were
not designed with the pen in mind, and therefore they may not work optimally with the
pen; for example, an edit field may be too small to write in. Finally, no contextual
information from the application is available to the Pen message interpreter. This
adversely affects recognition rates.

These basic limitations mean that applications must call the Pen Extensions API directly to
implement the highly positional, context-dependent behaviors that define good pen
applications.

Windows Applications

The Windows Apps box in Figure 2.1 represents unmodified Windows applications
executing in standard or enhanced mode.

Pen Applications

The Pen Applications box represents new applications that call the Pen Extensions API
directly. They bypass the Pen message interpreter to provide more direct, intuitive, and
advanced pen interface functionalities. Often these take the form of positionality behaviors
that the Pen message interpreter cannot interpret.

For example, a circle drawn by the user might be the letter “O” in a writing area; however,
if it’s drawn in a drawing area, it might be a shape that should be snapped to an exact
circle; if drawn in a scratch area, it might be intended to remain as ink; if drawn over an
object, it might select the object. The application’s ability to process the user input as it is
intended is possible because the application calls the API directly and can make the correct
interpretation based on the location and context of a user’s input.

Recognizers

Any recognizer is a dynamic-link library (DLL) that communicates with the RC Manager
through a defined protocol. As the name suggests, the recognizer is responsible for
interpreting pen input into recognized symbols. The symbols recognized might be ANSI
characters, mathematical symbols, the symbols associated with electrical diagrams, or any
other set of symbols that someone decides should be directly recognizable.

Microsoft Windows for Pen Computing

Data Flow 17

The recognizer is completely replaceable and modular. This means that an application can
send one sample of user input (ink) to a number of different recognizers, and then examine
the results.

) The Microsoft Recognizer

The MS recognizer is a vector-based recognizer. It analyzes the points entered by the user
not as an image, but as a succession of positions; when broken down correctly, these
positions yield a set of features against which comparisons can be made.

The order in which the user enters points is very important. This can be a stumbling block
for users who cannot decide why a recognizer might not be able to distinguish between
two very similar characters. The problem can be solved to some extent by multiple
character prototypes.

The Microsoft recognizer:
m supports the ANSI character set

m supports delayed strokes—for example, crossing a “t” after completing the rest of a
word.

= supports the standard Pen Extensions gestures and the circled letters of the alphabet

m s trainable—that is, it can learn the peculiarities of a person’s handwriting to achieve
higher recognition rates

Dictionary Modules

The dictionary module provides a means for checking the results of any recognition
against a set of words—or, more generally, a set of acceptable results.

A dictionary is a DLL that communicates with the RC Manager. After the RC Manager
receives a result from a recognizer, it passes the result on to the Dictionary, which then has
the opportunity to correct that result. Note that a dictionary might be a common English
language dictionary, a dictionary of medical terms, a set of proper names, or the like.
There can be multiple dictionary DLLs in the dictionary module, and the RC Manager
calls each of the dictionaries in turn. The application controls the number of dictionaries
called and their calling order.

A good way to think about the dictionary path is as a general means to perform
postprocessing on a recognition result.

Data Flow

Figure 2.2 illustrates the flow of pen input through the system. The following sections
discuss how the pen interacts with Windows, unmodified Windows applications, and
applications designed specifically for the pen.

Programmer’s Reference

18

Chapter2 The Architecture of the Pen Extensions

Pen application

A A
Mouse events — RC — ——Recognition results

Y
RC Manager,

Windows (= recognizer, dictionary
) A
Mouse events — Pan events ’—— Ink
Pen driver Display driver

Figure 2.2. Pen Extensions data flow: overview

The Pen Driver

A good place to start is with the stylus device, or pen driver. Just asthe Windows system is
driven by keyboard and mouse input, the Pen Extensions are driven by pen input.

If no pen behavior has been requested by an application, the pen behaves as a mouse. It
reports the pen status at least 100 times per second to the RC Manager by two function
calls in the RC Manager, AddPenEvent and ProcessPenEvent. Note that the pen driver
might be reporting information other than simple x and y position. For example,
applications may be requesting the pressure with which the user entered the point, the
angle of the pen when it was written, the rotation of the pen, and the distance of the pen
from the tablet surface.

The AddPenEvent and ProcessPenEvent functions pass all pen input to PENWIN.DLL
(the RC Manager), which in turn processes the input. Just how that input is processed by
the RC Manager depends on the recognition mode, as is discussed in the following section.

The RC Manager: Normal Mode

There are two possible modes for pen input: normal mode and inking mode.

In normal mode, the pen acts as a pointing device; that is, it is used for pointing and
clicking, dragging menus, making selections, and other mouse-like functions. The Pen
Extensions need to do very little except act as a message pump from the pen to the
Windows system, converting pen events into their Windows mouse message counterparts.

In inking mode, the pen acts as a pen—dropping ink, passing data off to a recognizer, and
performing other pen functions. In this mode, Windows is not involved in the process at
all. The RC Manager, pen driver, recognizer, and display driver enter a closed universe
where they and they alone process pen input. The pen driver reports it, the recognizer
recognizes it, the display driver draws it, and the RC Manager processes the interactions
necessary to do all of the foregoing.

Microsoft Windows for Pen Computing

Data Flow 19

The transition between modes takes place when an application—or, more precisely, a
window—requests that pen input begin. At all other times (and by default), the pen is in
normal mode. From the user’s point of view, the pen behaves correctly—the pen inks,
points, and clicks where it should.

The following paragraphs discuss how the RC Manager processes data when the pen is in
normal mode. Inking mode is discussed later in this chapter.

Buffering Pen Data

The RC Manager buffers all data it passes on to Windows. This is necessary for a number
of reasons.

First, the digitizing device operates at a very high resolution with respect to the screen.
Because a recognizer requires this resolution to do a reasonable job of recognizing
handwritten input, you cannot rely on WM_MOUSEMOVE resolution information for
recognition. Therefore, the high-resolution (x,y) information you do not pass along to
Windows must be stored so that it is available later when needed for recognition.

Second, the digitizing device may also report information other than simple (x,y)
information such as pressure. Windows has no facility for storing this information.

Third, pen events are interrupt-level events with very high report rates. Because all input
in Windows is processed synchronously, it is possible that an application will take a very
long time to process some message while input continues to stream in. The Windows
buffer is not sufficiently large to store all of this information. Therefore, the RC Manager
must store it locally to ensure that no data is lost.

Finally, Windows coalesces mouse moves. Because an application is generally interested
only in the final location of the mouse, Windows does not report mouse moves associated
with old mouse locations. This granularity of measurement is not sufficient for accurate
recognition where every location of the pen is important.

The Message Pump

While the pen is in normal mode, the RC Manager must simply interpret the pen events
into the appropriate mouse events and pass the information along to Windows. The RC
Manager and pen driver combination creates what amounts to a mouse driver.

The mappings are very straightforward. If the pen touches the surface of the digitizer, the
RC Manager sends a WM_LBUTTONDOWN message to Windows. If the pen moves
across the surface of the digitizer, WM_MOUSEMOVE messages are generated. This may
happen whether the pen is in contact with the surface or not; some devices support the
detection of the pen even when it is not in contact with the digitizer. If the pen leaves the
surface of the digitizer,a WM_LBUTTONUP message is passed on to Windows.

After messages have been reported to Windows, the generation of double taps, the
coalescing of mouse messages, the synchronous handling of input, and other processes are
all handled by Windows.

Programmer’s Reference

20

Chapter2 The Architecture of the Pen Extensions

The Application

The WM_LBUTTONDOWN message notifies a Windows application that inking or
recognition should begin. When the pen touches the tablet surface, the result is an
WM_LBUTTONDOWN message; it is up to the application to understand that this
message has occurred over an area that should be an inking area.

For example, menus used with a pen behave as they do with a mouse. This is because the
user expects the pen to work this way with menus. However, in a text area, an application
will want to begin inking, because this is what the user expects. When an application
receives a WM_LBUTTONDOWN message, it must call back into the RC Manager and
instruct the Pen Extensions to begin inking, recognizing the ink, and managing all pen
interaction until the recognition event is over.

The API used by an application to accomplish all of this is Recognize.

GetMessageExtralnfo Function: Digitizing Events, Mouse Messages, and
Time Travel

You may have noticed a problem with the scheme suggested in the preceding
paragraphs—mapping pen events to WM_LBUTTONDOWN and waiting for the
application to call back into the RC Manager to begin recognition. It is not possible to
determine which (x,y) event from the digitizing device (stored in the private RC Manager
buffer) maps to the mouse event being processed by the application.

While Windows input is processed synchronously, pen events are streaming in at 100
points per second. Regardless of what Windows applications are doing—for example, a
spreadsheet may be performing a recalculation—the interrupts from the digitizing device
continue to stream in, and new (x,y) positions for the pen continue to be recorded in the
private RC Manager buffer.

By the time the application calls Recognize function, it is not possible to determine which
of the buffered events are associated with the mouse message being processed by the
application. The solution to this problem requires backtracking and associating the
WM_LBUTTONDOWN message being processed by the application with an event
buffered by the RC Manager. This facility is provided by GetMessageExtralnfo function,
anew Windows 3.1 APL

The pen extensions are reporting more than just (x,y) information when they call the
Windows Mouse_Event function entry point to report an (x,y) position. They are also
reporting a 32-bit number that is stored by Windows with the message. This 32-bit number
is a pointer into the RC Manager buffer that links the Windows message to a specific

* digitizer event. Because this extra message information is retained by Windows for the life

of the message, the information is available to applications regardless of how long it takes
an application to get to it.

Using GetMessageExtralnfo function, an application can access this pointer in the RC
Manager buffer while processing the WM_LBUTTONDOWN message and pass it into the
RC Manager as one of the arguments of Recognize function. With this pointer, the RC
Manager knows where the buffered events from the digitizer become significant, and it can
then safely understand which data to begin sending to the recognizer.

Microsoft Windows for Pen Computing

Data Flow 21

The RC Manager: Inking Mode

After the Recognize function call, the pen device enters pen mode and the recognizer
begins to get data and perform recognition. While the RC Manager is in pen mode, the
data flow through the Pen Extensions takes the path illustrated in Figure 2.3.

Pen Application

A

RC ———V ——Recognition results
. RC Manager,
Windows = recognizer, dictionary
A A
Pen events — { Ink
Pen driver Display driver

Figure 2.3. Pen Extensions data flow: ink mode

The important point of Figure 2.3 is that Windows is out of the loop. The Pen Extensions
interact without the rest of Windows.

Once an application has called Recognize, there are three major functions to be carried out
before the results can be packaged up and returned to applications. They are inking,
recognition, and dictionary processing.

Inking

It is important that ink be left by the pen in the same way a pen leaves ink on paper. This
implies a timely display of bits, as well as accurate positionality information that
associates a point on a digitizing device with a point on the display.

Note that the digitizing device and the display are disjoint devices. It is up to the drivers to
calibrate their relationship so that pen and ink positions coincide. The Pen Extensions
provide a calibration interface for doing just this—at least for simple (x,y) drift. Rotation
and compression of the digitizing matrix are not addressed in the tablet calibration item
(Calibrate) in the Control Panel window.

The inking procedure is simple. After the pen driver calls AddPenEvent and
ProcessPenEvent to record new data, the RC Manager calls into the display driver
informing it that there is ink to be drawn. Then the display driver does one of two things.
If it is busy—for example, it is in the middle of a large bitblt—then it must wait to draw
the ink until it has finished the other operation. Once it has finished, or if it was not busy
to begin with, it calls back into the RC Manager, which in turn draws the ink. The RC

Programmer’s Reference

22

Chapter2 The Architecture of the Pen Extensions

Manager calls a display driver entry point directly to draw the ink. In this respect, the RC
Manager behaves exactly as the Windows GDI.

The reason the RC Manager calls the display driver directly is that ink is being drawn at
interrupt time. Because GDI is not re-entrant, you cannot rely on it for a timely display of
ink on the screen. It was necessary to design a direct interface between the RC Manager
and the display driver to avoid calling other portions of Windows. The availability of a
known set of display driver functions makes this safe as long as the display driver controls
the timing of the whole procedure. The display driver makes sure it is a safe time for the
RC Manager to draw the ink by initiating the process with a callback into the RC Manager.

Recognition

While the display driver and the RC Manager carry out inking, the recognizer is -
recognizing the points associated with the ink being drawn to the screen.

The RC Manager calls the RecognizeIlnternal function exported by all recognizers. The
recognizer then enters a loop, querying data in the RC Manager buffer. The recognizer
then interprets the data as character (or other) symbols. Logically, the loop looks
something like the following:

WHILE (GetMoreXYData() != TERMINATION_EVENT) {
IF (ThereWerePoints)

Process()
}
SendResultsToDictionariesAndApplications()
return

A number of different events can terminate recognition:

m The pen leaving a bounding rectangle provided by the calling application

m The pen entering an exclusion rectangle provided by the calling application

m The pen leaving the proximity of the tablet

m A timeout on new pen data

After recognition is completed, the'recognizer calls back into the RC Manager to process
the results. It is at this point that dictionary processing ensues. Note that the Recognizer

function has called back into the RC Manager before returning from RecognizeIlnternal
function.

Recognition occurs concurrently with writing. The pen driver reports the points to the RC
Manager at interrupt time, and the recognizer operates independently in the interim. After
the user finishes writing, there is very little delay before the results are displayed on the
screen.

Dictionary Processing

The dictionary path provides a means to check a recognition result against an expected or
preferred set of results. Most recognizers, including the Microsoft recognizer, return
alternatives along with their best-guess result. The method by which semantic or language

Microsoft Windows for Pen Computing

Data Flow 23

knowledge can be applied to modify results—that is, to decide if one of the alternatives is
preferable to the best guess—is to pass a data structure that embodies the notion “best
guess plus anything else remotely possible” to a dictionary capable of making this
determination. The dictionary then decides if any of the alternatives should replace the
best guess.

A Pen Extensions dictionary is a DLL with a predefined set of exported functions. The RC
Manager can use LoadModule and GetProcAddress to call the required functions at run
time. The concept of a dictionary and its capabilities are loosely defined in the Pen
Extensions architecture. They might be relatively smart, with lots of contextual
intelligence, or relatively dumb, looking up words and replacing a best guess with an
alternative. The API is flexible enough to support either.

The RC Manager passes a single result to a chain of dictionary DLLs until one of the
dictionaries decides to make a correction in the results. Once a single dictionary has
determined that it knows the results should be corrected, no more dictionaries are called;
the results are bundled up and sent to the application that called Recognize function with a
WM_RCRESULT message.

The Results

The recognition results are passed back to an application by a new message,
WM_RCRESULT. The message contains a pointer to a data structure that contains the ink
the user has entered, the recognizer’s best guess, the bounding rectangle of the input, and
the list of possible alternatives. The application can process this information however it
decides to do so.

All of this occurs before the Recognize function terminates. In fact, the application is
several functions deep at this point, as illustrated in Figure 2.4.

WM_LBUTTONDOWN (Application)

B!
Recognize (RC Manager)

]

Recognizelnternal (Recognizer)

!
ProcessResults (RC Manager)

|
WM_RCRESULT (Application)

Figure 2.4. Data flow, LBUTTONDOWN to WM_RCRESULT

Programmer’s Reference

24

Chapter2 The Architecture of the Pen Extensions

After an application returns from the WM_RCRESULT message, the call tree is unwound,
with some cleanup occurring at each step. The Recognize function returns, and the
remaining WM_LBUTTONDOWN processing, if any, is carried out by the application.

One final note: no WM_LBUTTONUP is received by an application that has called
Recognize function. The RC Manager removes this message from the queue and does not
allow it to be passed on to the application. Application designers need to take note of this.

The Pen Message Interpreter and the Rest of the System

The cursor is an I-beam when over an area designated for textual input and management.
When detected, the cursor changes into a pen cursor. When the pen goes down, the Pen
message interpreter creates an invisible window that overlies the entire screen.

This invisible window serves as the agent for pen-ignorant applications. Inking actually
occurs on this window. It is this window that interacts with the Pen API to perform
recognition. The WM_RCRESULT message is sent to the invisible window, which then
maps the results to keystrokes and mouse messages. The WM_CHAR,
WM_MOUSEMOVE, and WM_LBUTTONDOWN messages that correspond to the
gesture or text entered are entered into the system at the lowest level—by
Keyboard_Event and Mouse_Event, respectively. The Pen message interpreter serves as
both a logical keyboard and a logical mouse.

After the events are posted, the invisible window is destroyed. The results are that
interaction with the pen is possible, all of the gestures function as expected, and text can
be inserted at the insertion point. This use of an invisible window is present in the
Windows Notepen application.

The Pen message interpreter makes it possible to use the pen with applications designed
only for keyboard and mouse. However, if you design your applications with the pen in
mind, you will increase their usability because they will support the entirety of the pen
interface.

The Gesture Macro Layer

An additional layer of functionality not illustrated in Figures 1 through 3 is the Gesture

Macro Layer.

The Gesture Macro Layer is a system service that functions similarly to keyboard macro
layers, in which the binding of a keystroke to an action implies that the keystroke will not
be available to applications. If you bind a circle-letter gesture to an action, then that
gesture will not be available to applications.

Figure 2.5 illustrates the functionality of the Gesture Macro Layer.

When the recognizer recognizes a circle-letter gesture, it passes the result to the Gesture
Macro Layer to determine what should be done with it. There are three possible outcomes:
no gesture binding, gesture binding that contains only printable characters, and gesture
binding that contains nonprintable characters.

Microsoft Windows for Pen Computing

Data Flow 25

No Gesture Binding

If there is no gesture binding, the WM_RCRESULT message is passed on to the
application. The behavior is as if there were no Gesture Macro Layer.

Windows Application

— WM_CHAR WM_RCRESULT —

Gesture Macro
Layer

If non-printable If printable text or

characters gesture keystrake

— Circle Letter Gesture

RC Manager,
Recognizer, Dictionary

Figure 2.5. The Gesture Macro Layer

Gesture Binding; Binding Contains Only Printable Characters

If a circle-letter gesture is bound only to printable characters—a common case—then the
printable characters are returned to the application by WM_RCRESULT as the
recognizer’s best guess. The alternatives are still available, but the best guess is the user-
provided character mapping for the circle-letter gesture. There are two important
consequences of this action:

= The application gets a result that bears no resemblance to the ink the user entered or the
set of alternatives suggested by the recognizer. Specifically, the ink will be that for a
circled letter, and the result may be a very long string. A flag is set in the RCRESULT
structure indicating that the Gesture Manager has made a replacement.

m The positional information associated with the gesture is retained. Because there has
been no translation to WM_CHARSs, and the entire set of results information is
available to the application, any position dependence associated with the gesture is
maintained. This ensures that, for those applications that attach importance to the
position of input, the maximum level of this information is retained in results from the
RC Manager.

Gesture Binding; Binding Contains Nonprintable Characters

It is possible to bind a gesture to invisible or nonprintable characters such as ALT, CTRL,
and F1. For example, the circle-s gesture might be bound to ALT+F+S (the Save command)

Programmer’s Reference

26 Chapter2 The Architecture of the Pen Extensions

in the majority of Windows applications. If a gesture binding has characters of this nature,
it cannot simply be specified as the recognizer’s best-guess result, because the recognizer’s
best guess is always printable.

The Pen Extensions are designed so that the values returned from a recognizer map only to
printable items. Recognizers return a special 32-bit value for each symbol recognized. The
nonprintable characters are not represented in the space of acceptable 32-bit recognizer
symbol values.

Because there is no way to return nonprintable characters with the WM_RCRESULT
message, the characters must be sent to the application as WM_CHARs. There are two
subcases for a nonprintable character binding: the characters represent keyboard shortcuts
for editing gestures, or they are random. .

Nonprintable Characters As Keyboard Shortcuts

In this case, the nonprintable characters represent the keyboard shortcuts associated with
standard editing gestures. Examples are SHIFT+DEL for the Cut command and SHIFT+INS for
the Paste command. The Gesture Macro Layer replaces the circle-letter gesture result with
the corresponding standard editing gesture result.

It is important to note that the standard keyboard shortcuts are logically reserved by the
Gesture Macro Layer. Consider the scenario in which an application uses SHIFT+DEL for
something other than the Cut command. If the user maps a circle-letter gesture to
SHIFT+DEL, the Gesture Macro Layer will not map the circle-letter gesture to SHIFT+DEL—it
will map it to the cut gesture. The application will never see SHIFT+DEL—it will see Cut.

Nonprintable Characters As Random Characters

In this case, the nonprintable characters are just random and uninteresting nonprintable
characters sent to the application as WM_CHAR messages. The keystrokes are entered
into the Windows system through the Keyboard_Event function API in KERNEL. In
other words, the Gesture Macro Layer becomes a logical keyboard driver.

- Microsoft Windows for Pen Computing

The Recognition Process

This chapter describes the recognition process in Microsoft Windows for Pen Computing.
It discusses the primary data structures and the methods used by application programs to
process recognition results. This chapter assumes that you have read the previous chapter,
“The Architecture of the Pen Extensions.”

Further details about the structures, functions, and constants used by recognizers are
contained in Chapters 9 through 11.

Overview

Figure 3.1 highlights the steps necessary to produce recognition. These steps begin after an
application has initiated the recognition process with a call to the Recognize function, for
example.

Raw data
(Pen driver)

!

Display and buffering
(Display driver, RC Manager)

Shape recognition
(recognizer)

]

Postprocessing
(dictionaries)

o

Timing of results
(RC Manager)

!
RCRESULTS

Figure 3.1. The recognition process

The basic process of recognition takes place as follows:

Programmer’s Reference

28 Chapter3 The Recognition Process

m Display and buffering. The RC Manager takes raw data from the pen driver and
displays it as ink on the screen. The display of ink is incidental to the recognition
process—it is required only to give the user feedback equivalent to that of a pen on
paper. As the ink is displayed on the screen, it is being buffered for use in the next step
of recognition.

= Shape Recognition. In this part of the process, the recognizer turns raw pen data into a
predefined symbol such as a Roman character, geometric figure, or Kanji character.
This phase begins with a recognizer callback into the RC Manager to query the
buffered data. A recognizer processes the data in convenient chunks and determines the
most likely set of symbols associated with the ink.

m Postprocessing. The postprocessing facility provides a measure of contextual
information that can be used to improve recognition accuracy. For example, a typical
postprocessing facility compares the word that was recognized against a set of expected
results (some word list—for example, a dictionary).

= Timing of Results. During this phase, the results are returned to the caller in the
method requested.

Shape recognition is often obstructed by the inability of the recognizer to resolve
ambiguities in user input. Suppose, for example, the following text is passed as raw data to
the recognizer.

/ | }
Figure 3.2. Text sample

If you are familiar with the English language, you associate this ink with the word “kit.”
However, a recognizer might read it as the text string “Icit.” In fact, the recognizer has
little information to distinguish these two possibilities. At first glance, you might expect
that the spacing of the letters could be used to make a determination. However, it’s quite
possible that the first two characters are indeed “I”” and “c,” accidentally written close
together. For this particular ink, a recognizer might return the result that the input has a 40
percent chance of being “kit” and a 60 percent chance of being “Icit.”

A postprocessing of these results would replace the possible “Icit” result with the word
“kit,” because “Icit” does not appear in an English-language word list.

An application can request that the results of recognition be returned on character, word,
or line boundaries. An application can also request that the results be returned only when
the entire recognition process is complete. The RC Manager passes results back to the
application at the requested intervals, thereby completing the final step of the recognition
process.

Microsoft Windows for Pen Computing

RC: The Principal Data Structure 29

RC: The Principal Data Structure

The RC structure is the primary data structure used in the recognition process. The
following paragraphs discuss all of the various options available with the elements of this
structure, listed “chronologically” with respect to the flow of information from ink to
recognition.

Using and Modifying Ink

The nInkWidth and rgblnk field of the RC structure specify the width and color of the
ink left by the pen as the user writes with it. The nInkWidth field is an integer—specified
in display coordinates (pixels)—that describes the width of the ink to draw. The rgbInk
field is a DWORD that contains an RGB value used to render the ink on the screen. If the
requested color does not map exactly to a possible color, the GetNearestColor function is
used internally to determine the nearest solid color to use. The ink is drawn only in solid
colors for the sake of speed.

Ending Recognition: Pen State

When you design an application, you must consider when the recognition process will be
considered complete. For example, the type of input expected will influence the criteria for
ending recognition. In the case of a system gesture that consists of a single stroke,
recognition ends after the user enters one stroke. In the case of a freehand drawing
application, recognition might end when the pen leaves a bounding rectangle area where
the user draws with the pen.

The standard way to end recognition is to wait for a pen time-out. The system waits until a
specific interval has elapsed without new data from the pen, and then it stops recognition.
The termination conditions are set in the IPcm bit field (the Pen Collection Mode field) in
the RC structure. You can combine the PCM_ values discussed in the following
paragraphs with the OR operator to create any termination condition you want to specify.

PCM_PENUP

This value ends recognition as soon as the pen is lifted from the tablet surface. If you use
this option, you limit user input to a single stroke before recognition results are returned to
the caller. This is useful for a gestures-only field or for an application that performs some
special action on single strokes of input.

One special use of PCM_PENUP might be for an application to implement scrolling in
applications through flicks of the pen. Another might be for an application that recognizes
only system gestures within a given screen region.

PCM_RANGE

This value ends recognition as soon as the pen leaves the range of the tablet’s proximity-
detection mechanism. This option makes sense only for those tablet devices that support
proximity detection. Use PCM_RANGE if you want recognition to end after a single letter
of input or as soon as the user stops writing.

Programmer’s Reference

30

Chapter3 The Recognition Process

One difficulty with PCM_RANGE is that the control of proximity is set by the hardware
and is not accessible to software control with the Pen API extensions. If you are going to
use this termination condition, you should test it extensively on the target hardware to
make sure that normal user variances in writing technique do not result in undesirable
behavior such as premature attempts at recognition.

PCM_RECTBOUND

This value ends recognition with the next pen down event that occurs outside a specified
bounding rectangle. Use this option to keep the pen in inking mode for long periods of
time. For example, you can use this option to keep the ink displayed as ink until the user
lifts the pen and taps outside a field. Note that writing can extend beyond the bounding
rectangle; it is the first tap outside this area that ends recognition.

You can also use this termination mechanism to limit the inking area to a window’s client
area. The rectangle to serve as the bounding rectangle is in the rectBound field in the RC
structure. This field is a RECT structure that specifies the bounding rectangle in screen
coordinates, unless the RCO_TABLETCOORDS flag is set. If this flag is set, the rectangle
will be in tablet coordinates (thousandths of an inch).

PCM_RECTEXCLUDE

This value ends recognition as soon as a pen down occurs within a specified rectangle. For
example, you might use PCM_RECTEXCLUDE to create a button on the display that the
user taps to end the recognition. The rectangle is specified with the rectExclude field in
the RC structure. This rectangle is also in screen coordinates unless the
RCO_TABLETCOORDS flag is set to specify tablet coordinates.

Note that PCM_RECTEXCLUDE has a higher priority than PCM_RECTBOUND if both
are set and their specified rectangles intersect.

PCM_TIMEOUT

This value ends recognition if there is no pen activity for the specified time. The
wTimeOut field of the RC structure specifies how long (in milliseconds) to wait before
the time-out occurs. A value of zero never times out.

PCM_TIMEOUT provides the most common method for ending recognition. It provides
for a fairly natural process of printing, waiting for recognition, and then continuing with
more text entry—much like a user’s natural tendency to pause for thought when writing.
This quality makes the time-out option a natural choice for recognition termination.

The Application-Recognizer Connection

The accuracy of recognition can be improved if the application and recognizer
communicate the type of input expected from the user. Such prerecognition contextual
information can be used by a recognizer to improve recognition.

Microsoft Windows for Pen Computing

The Application-Recognizer Connection 3

There are several categories of information that an application can provide to the
recognizer to improve its accuracy. The following pages describe these categories of
information, as well as the RC structure fields and values that can be used.

Writing Location

It is likely that applications will provide some context to help users write neatly and
achieve high levels of recognition. This might mean, for example, drawing lines on the
screen that serve as guides for input—in effect representing ruled paper on the screen.

Another example is the bedit window class, which provides a boxed edit control based on
a letter guide like the one illustrated in Figure 3.3. The letter guide improves recognition
accuracy by constraining letters to individual cells.

IPI I 1 1 1 [| 1 1 |

| I N N N NEN RN RENN R R R |

Figure 3.3. Letter guide of the bedit window class

The cells of the bedit class provide writing areas for the user. The GUIDE structure, an
element of the RC structure, describes the grid of letter guides that the recognizer can use
to separate the ink the user draws.

Suppose the “Icit” of Figure 3.2 is drawn in a bedit-class window. The ambiguous “Ic”
portion of the ink appears in one cell. With this additional clue, the recognizer can make
the correct decision, recognizing the ink as a “k.”

A similar use of the GUIDE structure is to resolve the ambiguities of some uppercase and
lowercase letters such as “c/C,” “s/S,” “u/U,” “0/0O,” “w/W,” and “k/K.” The recognizer is
capable of independent processing to help make a determination, but it can be helped
along by any information from the application regarding the baseline and midline rules
provided to the writer.

An application can use the wRcOrient field to inform the recognizer of the digitizer’s
orientation.The coordinates returned from the digitizing device never actually change—
they are just interpreted differently. As an example, this field can be used to enable writing
along the vertical axis of a chart in a graphics program.

The wReDirect field is used to specify the primary and secondary directions for input. It is
not necessary for a recognizer to support this capability; the Microsoft recognizer, for
example, does not. The wRcDirect field reflects the fact that most languages have a
primary and a secondary writing direction. For English, the primary direction is from left
to right, and the secondary direction is from the top down. For Chinese, the primary
direction is from top to bottom, and the secondary direction is from right to left.
Depending on the language, this information can be important for the recognizer.

Specifying the Recognizer and the Type of Input Expected

Applications can supply additional information in the RC structure to specify which
recognizer to use and what data to expect. Both types of information are supplied by fields
in the RC structure.

Programmer’s Reference

32

Chapter3 The Recognition Pracess

The hrec field in the RC structure is a handle to the recognizer to use. Generally, an
application will load recognizers with a call to InitRC, which generates a default RC
structure. This loads the default system recognizer. Additional recognizers (such as a shape
recognizer) are loaded with a call to InitRecognizer.

If the hrec field of the RC structure is NULL, then no recognizer is called. A NULL
recognizer is used, for example, if the only intended result of the recognition event is to
display and store the ink entered by the user.

In addition to specifying the recognizer, an application can use three additional clues to
improve recognition accuracy: the characters expected by the recognizer, the priority to be
assigned to different character sets, and the language to be used.

Expected Characters

In many situations, especially those involving the fields in a form or dialog box, an
application knows what type of characters the user is likely to enter. For example, a ZIP
Code field should expect only numeric input—assuming it is configured exclusively for
U.S. addresses. If you know the type of data expected, you can greatly improve the
recognition accuracy by supplying this information to the recognizer.

You can specify the expected characters in the alc field of the RC structure as a 32-bit
value. An application can combine the ALC codes with the OR operator to describe the
expected input precisely. The alphabet, or ALC, codes are discussed in Chapter 11, “Pen
Messages and Constants.”

You can also set the rgbfAlc field to specify any subset of the ANSI character set as the
set of expected characters. For more information, see the RC structure, discussed in
Chapter 10, “Pen Structures.”

Priority

A second field that the application can use is the alcPriority field in the RC structure.
This field gives a precedence rating to the possible ALC codes. The alcPriority field is set
to a subset of the alc fields that specifies those results to be glven the highest priority in
making recognition decisions.

For example, an application could list ALC_UCALPHA | ALC_LCALPHA as the valid
ALC codes indicating that the application is expecting only uppercase or lowercase letters.
If you expect most users to enter uppercase versions of the letters, you set the alcPriority
field to ALC_UCALPHA. This weights the recognizer toward the uppercase letters.

Language

The IpLanguage field specifies one or more languages for the expected input. All
characters within the ANSI character set can be specified by adding the
RCIP_ALLANSICHAR flag to the wIntlPreferences field of the RC structure. It is often
more useful to specify a subset of languages that should be enabled during recognition.
The IpLanguage field points to an array of concatenated three-letter language codes that
describe the current set of possible languages expected from the user.

Microsoft Windows for Pen Computing

The Application-Recognizer Connection 33

By default, versions of MS Windows for Pen Computing will specify a single language
relying on the International item from the Control Panel. Multiple language values might
be set for European users or for other multinational pen platform users. By default, the
values for this field are derived from the sLanguage element of the [Intl] secuon of the
Windows WINL.INI file.

The Timing of Recognition Results and Significant Events

The application can provide two different clues concerning the timing of recognition and
the significance of events.

Returning Results

The Microsoft recognizer can return recognition results at different intervals. The available
intervals include word boundaries, stroke boundaries, character boundaries, new lines, and
completion of recognition.

The timing of recognition is specified by the wResultMode field of the RC Structure.
Results are returned no sooner than the requested interval, and they may be returned later.
This may mean that even though an application requests results stroke by stroke, the
results are actually returned when an entire word or an entire sentence is entered.

Determining Significant Points

Pen events are stored in a buffer that is separate from the normal system queue of mouse
events in Windows. This pen event buffer contains the high-resolution data from the
digitizer device that is used by recognizers. Even though the two buffers are independent,
it is possible to associate a particular mouse event with the appropriate pen event.

The pen computer submits each pen event to the Windows system as a mouse event. Along
with the simple (x,y) screen coordinates, MS Windows for Pen Computing also passes a
pointer that associates the mouse event with the pen event that generated it. This pointer is
stored along with the queued mouse event in the Windows buffer. This buffer can be
queried later by applications.

Use the GetMessageExtralnfo function to get the associated event pointer from Windows
while processing a mouse message. For example, witha WM_LBUTTONDOWN
message, an application should call GetMessageExtralnfo to get the pen event pointer.
InitRC assigns a default value to wEventRef. Otherwise, it is the application’s
responsibility to assign the wEventRef field of the RC Structure before calling Recognize.

Controlling the Recognition Process

There are several RC structure fields that affect how recognition proceeds. You can use
these fields to implement special functionalities or manage special considerations during
recognition.

The clErrorLevel field is a value from 1 to 100 that represents the percentage probability
that a particular recognition result will be correct. The error level is the level below which
a recognition result is considered to be unrecognized. The application can set the level at

Pragrammer’s Reference

34

Chapter3 The Recognition Process

which a recognizer will give up and return a “don’t know” response rather than return an
incorrect recognition result.

For example, you can modify this setting for a Social Security field where a very low error
rate is required. By setting cIErrorLevel to a high number, you can enforce a low error
rate.

The IpfnYield field is a long pointer to a function supplied by the application that should
be called by the Recognize function whenever it needs to yield the CPU for other
background processing. If the IpfnYield field is NULL, the default Windows Yield
function is called. It is the IpfnYield function’s eventual responsibility to call the
Windows Yield function. The default Windows function will not be called if lpfnYield is
non-NULL.

The wRcOptions field is a bitwise combination of the RCO_ flags listed in the following
paragraphs.

RCO_BOXED

This value indicates that the GUIDE field of the RC structure contains valid data that
should be used in the recognition process. RCO_BOXED suggests that boxes have been
provided to the user for letter entry.

RCO_DISABLEGESMAP

This value disables the Gesture Manager’s ability to replace circle-letter gestures with one
or more keystroke combinations. An application that has reserved the circle-letter gestures
might consider using this flag to disable any user-provided meanings for those gestures,
but this is not recommended.

The Gesture Manager is a macro layer, and, as with all macro layers, the user must
understand that any input bound to a macro cannot be used in the context of another
application, because that input will never reach the application. The macro will instead be
mapped before it gets to the application. This behavior is identical for the Gesture
Manager and any other keystroke macro recorder.

. RCO_NOFLASHCURSOR, RCO_NOFLASHUNKNOWN

These values disable the display of visual feedback to the user. Normally, if a recognition
result is SYV_COPY or SYV_UNKNOWN, the user receives cursor feedback in the form
of a brief change from the pen cursor to an I-beam cursor or a question-mark cursor.

RCO_NOHIDECURSOR

This value prevents the cursor from being hidden while inking. You might use this option
in a drawing package to provide adequate visual feedback with an opaque digitizer tablet.
RCO_NOHIDECURSOR is rarely used with an integrated digitizer-display, because the
user is pressing the pen down on the desired location directly.

Microsoft Windows for Pen Computing

The Application-Recognizer Connection 35

RCO_NOHOOK

This value prevents the system-wide recognition results hook from being called before the
recognition results are passed on to an application. You would most likely set this option
in an application using hooks that have re-entrancy problems. The application could then
disable the hook recognition results in contexts that are likely to cause such problems.

RCO_NOSPACEBREAK

This value informs the recognizer to send entire sentences, instead of individual words, to
the dictionary. Doing this is useful if you’re using a custom dictionary with special
contextual or natural language parsing capabilities.

RCO_SAVEALLDATA

This value specifies that all of the data points should be saved. In the default case, only
those points used by the recognizer are saved. Other points might include pen up locations
or pressure information.

RCO_SAVEHPENDATA

This value is used to save the pen data. Normally, the ink returned to the application by
MS Windows for Pen Computing is discarded after the application returns from
WM_RCRESULT. If an application is to save the data, it must either copy it before
returning from WM_RCRESULT or set this option.

Once RCO_SAVEHPENDATA is set, it is the application’s responsibility to free the ink
data. :

RCO_SUGGEST

This value tells the dictionary to make suggestions for a particular recognition result. In
general, a dictionary can only promote a less likely alternative to be the first choice—it
cannot make suggestions on its own as to the likely recognition result. RCO_SUGGEST
enables the dictionary to make suggestions that are not necessarily among the alternatives
supplied by the recognizer.

RCO_TABLETCOORD

This value indicates that all coordinate values in the RC structure have already been
converted to tablet coordinates. By default, all coordinate values in the RC structure are in
screen coordinates.

Specifying the User for Recognition

The final important values you can provide to the RC structure should be provided within
the IpUser, the wRcPreferences, and the hwnd fields. In these fields, you can identify the
user supplying the input and specify the window that should receive the recognition
results.

- Programmer’s Reference

36

Chapter3 The Recognition Process

The IpUser field points to the name of the current user. It is accessible from the
Handwriting application in the Control Panel window. The current user name is the basis
for all training and user-specific settings used by the recognizer—for example, left- or
righthandedness and preferred time-out interval before recognition.

This information should be available at recognition time, because all training is inherently
user-specific, and the left- or righthandedness information can be especially important for
shape recognition. Because the Control Panel supports the addition of new users, multiple
users can use the same machine with their individual preferences recorded in this field.

In conjunction with the IpUser field, the wRcPreferences field of the RC structure
contains the current user’s preferences. In the current version of MS Windows for Pen
Computing, this contains information about the preferred writing hand and whether the
recognizer should generate information for training.

The hwnd field of the RC structure indicates where results are to be sent. It is this window
that receives the WM_RCRESULT message containing the results from recognition.

Dictionary Processing

Several fields of the RC structure are used in the postprocessing phase of recognition. All
of these fields affect the dictionary processing of recognition results.

The rglpdf field of the RC structure contains a list of entry points within various
dictionaries that are used in the processing of recognition results. Recognition results are
passed to each of these dictionaries in turn until one of them indicates that a correction has
been made or there are no more entry points to be called.

In general, dictionary processing takes place word by word. Once a single correction is
made, the results string is modified with the new result, and the dictionary processing code
moves to the next word.

You can use the RCO_NOSPACEBREAK option to pass entire sentences on to
dictionaries for correction. This option is not supported by the Microsoft-supplied
dictionary.

The wTryDictionary field of the RC structure is a value from 1 to 4096 that specifies the
number of alternatives in the symbol graph that will be passed to dictionaries. A standard
value for wTryDictionary is 100. This value means that 100 alternatives (should that
many alternatives exist) will be passed to a dictionary for possible correction.

The application can use wTryDictionary to trade-off performance for recognition
accuracy since many dictionary calls are time consuming.

Recognition Results: The RCRESULT Structure

This section focuses on the processing of recognition results, specifically the
WM_RCRESULT message and the associated RCRESULT structure. The RCRESULT
structure contains the actual recognition results that are sent from MS Windows for Pen
Computing to a pen-aware application.

Microsoft Windows for Pen Computing

Recognition Results: The RCRESULT Structure 37

The WM_RCRESULT Message

The WM_RCRESULT message is used to send RCRESULT structures back to
applications. The IParam parameter points to the RCRESULT structure. An application
must be prepared to receive this message before calling the Recognize function, because
all WM_RCRESULT messages associated with a particular recognition event will be
received before Recognize returns.

The WM_RCRESULT message can arrive more than once for a given recognition event
depending on the frequency with which applications have requested that data be returned.
Each message contains a pointer to a new, self-contained RCRESULT structure that
contains the recognition results from the time of the last WM_RCRESULT message to the
present.

The wParam parameter specifies the reason the message was sent—for example, end of
recognition or because of some event like a word break. The wParam parameter contains
one of the REC_ codes described in Chapter 11, “Pen Messages and Constants,” describing
why recognition has ended. These REC_ codes are the same as those returned by the
Recognize function.

Symbols and Symbol Values

MS Windows for Pen Computing defines a 32-bit space to hold recognition results. Out of
this space, values are allocated for geometric shapes, gestures, letters of the alphabet,
Kanji, Katakana, musical notes, electronic symbols, or any other symbols defined by the
recognizer. For example, there is a unique 32-bit value associated with the letter “a.”

These 32-bit values associated with various symbols are known as symbol values (SYVs).
They are used internally by the Windows for Pen Computing functions to refer to
recognized input. The application, however, uses the symbol graph for recognition results.

The Symbol Graph

The first element of the RCRESULT structure, syg, contains the various alternatives for
user input that are conveyed to the application. This data structure, called a symbol graph,
contains all of the likely alternatives for the ink entered. Specifically, it is a directed graph
of symbol values that describe the recognition event.

Consider the ink example presented earlier in this chapter, in which the word “kit” was
confused with “Icit.” The symbol graph representing this situation looks like the following:

{1c | k} it

If the recognizer decides that the “k” is the likelier interpretation, the symbol graph looks
like the following:

{ k| 1c} it

Each RCRESULT structure contains a symbol graph that fully describes all of the results
generated since the last RCRESULT structure was sent to the application. This means that
in most cases, the symbol graph will contain all of the recognized input associated with an
entire recognition event.

Programmer’s Reference

38

Chapter3 The Recognition Process

The symbol graph is not, strictly speaking, a graph of symbol values. It is possible to have
more than a single symbol value occupying a place in the graph. For example, the possible
meaning “Ic” is two distinct symbol values occupying one place in the recognized input.

Additional information is needed to completely specify the letters associated with a set of
ink. Further, each meaning is potentially a group of symbol values. The symbol graph
must bind locations in the ink stream to multiple alternatives of one or more symbol
values, each with associated probabilities, so that likelihood decisions can be made.

The symbol graph structure contains two additional data structures that provide this -
information: symbol correspondence structures and symbol elements.

The array of symbol correspondence structures (SYCs) delineates a specific chunk of ink
out of the stream of ink entered by a user. Each SYC contains a first stroke and a last
stroke. These two strokes and all of the strokes between them define the chunk of ink
associated with the SYC. The symbol graph contains an array of SYC structures, each of
which corresponds to a different part of the ink input. Taken together, the SYC structures
map all of the ink associated with the RCRESULT structure. Note that the array of SYC
structures will be generated only if the RCP_MAPCHAR flag is specified in the
wRcPreferences field of the RC structure.

The second data structure used to delineate the ink and the characters is an array of symbol
elements (SYEs). An SYE contains a symbol value, a confidence level (probability), and
an index into the array of SYCs. There is a symbol element for every symbol value in the
recognized input. Each has its own confidence level and pointer into the array of SYCs.
Each SYE in the array is associated with its ink and the relative certainty with which it is
recognized.

To determine that a single chunk of ink maps to more than one character, note that more
than a single SYE structure maps to the same SYC structure. In other words, more than a
single symbol value is associated with the same chunk of ink.

To determine which result is likelier, you can compare the confidence levels associated
with the symbol elements.

3

The cost of any particular path through the symbol graph—*“cost,” that is, in terms of error
level—is a measure of how poor-a character match is and how much the recognizer must
deviate from the pure character prototype to accept this match. The cost of a particular
path is computed by adding the costs of all symbol values and dividing by the number of
symbol values for a potential mapping. Thus, you can obtain the lowest-cost solution and
provide it as the best guess.

Higher-cost solutions can remain in the symbol graph as alternatives. By postprocessing
the results with dictionaries, you can then promote one of the alternatives to best-guess
status if it is appropriate.

The symbol graph allows applications to generate choice lists accurately and precisely. It
also allows applications to target input appropriately by illustrating the exact relationship
between the symbols recognized and the ink entered by the user.

Microsoft Windows for Pen Computing

Recognition Results: The RCRESULT Structure 39

The Best Guess

The RCRESULT structure also contains three fields that provide best-guess information.
Together these fields describe the interpretation the recognizer and dictionaries will apply
to the ink entered by the user, representing the best guess as to the user’s meaning.

The Ipsyv field is a string of symbol values that map to the best guess. The best guess can
be in one of the three following states:

u It can be the lowest-cost path through the symbol graph, as discussed earlier. The
FirstSymbolFromGraph function will generate such a Ipsyv from a symbol graph.

m The Ipsyv field can specify a path through the symbol graph that has been created by
dictionary postprocessing—or perhaps a dictionary suggestion unrelated to the symbol
graph. In this case, a dictionary has promoted one of the higher-cost paths through the
symbol graph to the best-guess position. The only way to determine that this has
occurred is to compare the lowest-cost solution, which is obtained with a call to
FirstSymbolFromGraph with the Ipsyv field.

m The Ipsyv field may be the result of a Gesture Manager mapping. For example, the
circle-letter gestures can be mapped to character strings. There are two ways to
determine that this has occurred. You can compare lpsyv with the
FirstSymbolFromGraph result, as discussed previously, or you can check the
wResultsType field of the RCRESULT structure for the
RCRT_GESTURETRANSLATED or RCRT_GESTURETOKEYS flag.

Additional information about the lpsyv field included in the RCRESULT structure is
contained in ¢Syv, the number of symbol values in the lpsyv string, and hSyv, the handle
to the memory block where Ipsyv is allocated. '

If the Ipsyv field contains a string of symbol values associated with printable characters,
you can translate the string of SYVs to a string of characters with the
SymbolToCharacter function. This function will generate a normal C language string.

Location and Position of the Input

There are several fields in the RCRESULT structure that provide information regarding
the location and position of the ink entered by the user.

= The nBaseLine field is the recognizer’s estimate of the baseline of the ink entered by
the user. If the baseline is not known, this value will be zero. The Microsoft recognizer
does not use this field, so it sets nBaseLine to zero.

s The nMidLine field is the recognizer’s estimate of the midline of the ink entered by
the user. If the midline is not known, this value will be zero. The Microsoft recognizer
does not use this field, so it sets nMidLine to zero.

m The rectBoundInk field is a Windows RECT structure that contains the bounding
rectangle that, in turn, contains the ink entered by the user. Typically, rectBoundInk is
used to invalidate the area of the screen in which inking occurred, or otherwise to
update the display in the appropriate location. This occurs, for example, when ink is
replaced with recognized text.

Programmer’s Reference

40

Chapter3 The Recognition Process

When rectBoundInk is computed, the ink width is taken into account. It is also taken into
account that this is the bounding rectangle for all of the data the user enters. It is not
guaranteed that the rectBoundInk value in RCRESULT will be a subset of the
rectBoundInk provided as the bounding rectangle for input.

Contextual Information

Two elements of the RCRESULT structure provide information about the recognition
event, but not as a part of the actual results of recognition. They are Iprc, a far pointer to
the RC structure passed in to Recognize, and wResultsType, a flag that describes how the
recognition event actually proceeded. The values of the RCRT_ constants used in the
wResultsType flag are described in Chapter 11, “Pen Messages and Constants.”

The Ink

The final two elements of the RCRESULT structure contain information about the ink
entered by the user:

m The pntEnd element contains the last point of the ink data from the user only if
PCM_RECTBOUND or PCM_RECTEXCLUDE have been specified.

m The hpendata element is a handle to a pen data memory block that contains all of the
ink information entered by the user.

Applications that manage ink in any way will reference the hpendata field of
RCRESULT extensively. Some of the functions an application can perform on ink include
recognizing it, training it, scaling it, drawing it, adding points to it and getting points out
of it, copying it, and saving it. These capabilities and the Pen API functions that provide
them are discussed in Chapter 4, “Managing Ink in Pen Applications.”

Microsoft Windows for Pen Computing

Managing Ink in Pen Applications

This chapter introduces the MS Windows for Pen Computing ink data type and discusses
its internal structure, the Pen APIs that manipulate ink, and some implementation
scenarios involving ink in applications.

The use of ink falls into two broad categories:
m Ink can be left on the screen without any character recognition.

m Ink can be managed by an application when it is performing delayed recognition.

Ink that is left on the screen without recognition is the more important application. In this
usage category, the ink and screen behave like an electronic notepad, but with a few
important differences. The electronic ink can be copied, scaled, erased, stored, indexed,
and otherwise manipulated in ways not possible with ink on paper. This ink capability is
one of the strongest features of the new pen-based computing systems.

The second usage of ink management is by applications performing delayed recognition.
Delayed recognition is the process of storing ink with no loss of accuracy so that
recognition can be performed at some later time.

The HPENDATA Data Type and Ink

Ink used in the Pen Extensions is accessed by HPENDATA—a handle to pen data. The
pen data is a memory block. This data structure is analogous to the other Window “H” data
types such as HDC, HCURSOR, and HPEN. With these the HPENDATA type shares
certain similarities:

m The handles are references to data structures that reside somewhere in memory blocks.

m The handles to memory are passed to the Pen Extension API functions that perform
useful work on the data structures.

® Applications should ignore the details of the underlying data structure and use the API
functions alone to do the work.

However, some details of the HPENDATA type are of interest. The remaining part of this
chapter discusses the data structure and the APIs used to manipulate it.

The Basics

The HPENDATA structure is a block of memory made available by an internal call to the
Windows GlobalAlloc (global allocation) function. Unlike most other Windows data types
that are allocated out of the USER or GDI heaps, the size of the PENDATA blocks require
that their allocation come from the Windows global heap.

Programmer’s Reference

42

Chapter4 Managing Ink in Pen Applications

The HPENDATA structure is flat—that is, it contains no references to memory locations,
and all of the information is stored in a single, contiguous block of memory. This means
that the data structure can be written to disk and read back in again without corruption due
to invalid pointers. If an HPENDATA block is written to disk, all that is required to
restore the HPENDATA is that the data structure be read back in again into an
appropriately sized, globally allocated block of memory.

There is a 64K limit on the size of the memory block containing pen data. At standard
report rates of 120 samples a second at 4 bytes per data point, plus some overhead data
structures, minus the time the pen is not in contact with the surface of the tablet, roughly
two and one-half minutes of pen activity can be encompassed in a single HPENDATA
structure.

The Details

Figure 4.1 illustrates how the pen data memory block referenced by HPENDATA handles
is laid out.

Stroke header
- 1 -]

Main
Header

I
Data points in stroke

Figure 4.1. HPENDATA memory block

The layout of pen data in memory is a simple hierarchy. Data points are grouped by the
strokes in the order in which they are entered. The HPENDATA block of memory begins
with a descriptive header area.

Note that the drawing in Figure 4.1 is not to scale. The data points are generally a much
larger proportion of the memory block than the remaining header components.

Data Points

The data points associated with each stroke are initially (x,y) coordinates in tablet
coordinates with a resolution of one-thousandth of an inch and an origin at the upper-left
corner of the tablet. Tablets are required to report points in this scale regardless of their
actual resolution.

The Pen Extensions include functions to scale the points from the one-thousandth-inch
resolution in the HPENDATA memory block to other metric systems. It is not necessary
for the data in a HPENDATA memory block to remain in thousandths of an inch.

Microsoft Windows for Pen Computing

The HPENDATA Data Type and Ink 43

If Windows for Pen Computing is running in a portrait mode, the tablet is still required to
report coordinates as if the current upper-left corner of the display is the upper-left corner
of the tablet. The application does not need to concern itself with the current orientation of
the screen. The (0,0) coordinate in Windows display coordinates is always equal to (0,0) in
tablet coordinates.

Each (x,y) data point can be accompanied in the memory block by additional data such as
pressure, angle, or rotation, assuming the tablet supports it. The main header section of the
HPENDATA memory block describes how this additional information is stored in the
stroke data areas for each data point.

Internally, any such OEM data is stored immediately following the block of (x,y)
coordinates for a stroke. For each such coordinate there is a corresponding index in the
OEM data block.

The ink in pen data structures has the absolute origin (0,0) set at the upper-left corner of
the tablet, and not the relative (0,0) coordinate of the client window. This can cause
difficulties when windows are moved around on the screen. If you encounter such
difficulties, you’ll need to modify your pen application. Your application should store the
window-relative offset of the ink and constantly move the ink data to reflect the new
location of the ink in client coordinates each time the ink is rendered.

Whenever a window is moved, the ink should move along with it and be repainted in a
location relative to the upper-left corner of the window. One function you can use to
accomplish this is the OffsetPenData function. This function immediately and
permanently offsets all of the points in the pen data by an amount that you specity. If you
offset them by the position of the client window, you can make the pen data relative to
your client window instead of the tablet. In effect, this makes the ink position window-
relative, but still in tablet coordinates.

Stroke Header

A stroke is defined as the points that are recorded between the transition of the pen from
down to up. The normal case is a stroke that occurs between the time the pen makes
contact with the surface of the tablet and when the pen is lifted from the surface of the
tablet. Some tablets and applications may also use proximity strokes for those points
received when the pen is not in contact with the tablet.

Internally, the stroke header is a STROKEINFO structure (described in Chapter 10, “Pen
Structures”). Each STROKEINFO structure corresponds to the pen’s leaving or touching
the tablet surface. Each of the pen events between these transitions is considered part of a
single stroke.

Figure 4.1 shows strokes of different sizes. This is because the pen can be in contact with
the surface of the tablet for longer or shorter periods of time, resulting in more or fewer
points of data. The length of a single stroke is limited only by the maximum size of an
HPENDATA memory block (64K).

Programmer’s Reference

44

Chapter4 Managing Ink in Pen Applications

The information in the stroke header includes the following items:
= The number of points in the stroke

u The number of bytes in the stroke (only used internally)

m The state of the pen during the stroke (up or down)

m A time index indicating when the stroke began

The time index is particularly useful if you need to reproduce the data on the screen
exactly as the user entered it. For example, using the time index for the beginning of a
stroke and the fact that the number of points per second is a known quantity, a signature
can be retraced with the same speed used to enter it.

Main Header

The first part of the main header of the HPENDATA data block is the
PENDATAHEADER structure described in Chapter 10, “Pen Structures.” The
PENDATAHEADER contains the following types of information:

s The number of strokes

® The number of points in those strokes

m The remaining amount of memory in the memory block for new information
® The bounding rectanglé of all points

m The ink color

m The ink width

This information is used by applications when they query portions of the pen data out of
the HPENDATA, or render pen information to the screen.

The wPndts field of the PENDATAHEADER structure describes the state of the data in
the HPENDATA block. The possible states include compression type, inclusion or
exclusion of up points in the data, and an indicator of OEM data. The wPndts field can be
used by applications to determine the state of the pen data, but it is most often used by the
Pen APIs for this purpose. The wPndts element is a bitwise OR combination of the
PDTS_* flags described in Chapter 11, “Pen Messages and Constants.”

The final component in the main header is a PENINFO structure. Briefly, the PENINFO
structure contains information on the tablet device where the data originated. This includes
such information as the width, height, resolution, report rate, proximity capabilities, and
barrel button status. For more information about the PENINFO structure, see Chapter 10,
“Pen Structures.”

The PENINFO structure also specifies if additional data is available beyond simple (x,y)
coordinates.

If the cbOemData field of the PENINFO structure is greater than O, there is more
information available. The format and order of this extra information are contained in the
rghboempeninfo array of the PENINFO structure. This array describes the order,

Microsoft Windows for Pen Computing

The Ink Functions 45

minimum value, and scale of any OEM specific pen data reported along with the (x,y)
coordinate data.

For example, suppose this array has as its first index a pressure indicator and as its second
index an angle indicator. This means that in the data point area of the pen data memory
block, every (x,y) coordinate is associated with two bytes of pressure data and two bytes of
angle data in the OEM data section of the pen data area. All applications should use the
PENINFO structure to determine the nature of the data associated with each (x,y) location
contained in pen data.

The Ink Functions

The following sections describe the categories of functions that manipulate ink and the
HPENDATA structure on behalf of applications. For complete details on these functions,
see Chapter 9, “Pen API Reference.”

Rendering Pen Data

The most common use of ink by an application is to render the ink on either screen or
page. The following two functions, DrawPenData and RedisplayPenData, are used for
this purpose. i

DrawPenData
DrawPenData(HDC hdc, LPRECT lprect, HPENDATA hpendata)

This function renders the pen data to the specified device context using the Windows GDI
polyline function. The current settings in the device context are used to render the data.
For example, the current pen, pen color, and mapping mode are used when rendering the
points in the pen data. Note that the color and width of ink stored in the pen data block are
not automatically used to render ink.

In general, DrawPenData does not render to the screen data that exactly matches the data
previously drawn by the display driver and PENWIN.DLL at interrupt time. This
discrepancy results because the display driver and GDI polyline functions use different
algorithms to draw the data. The possible difference is an “off by one” error that visually
appears as a shifting of some pixels around the edges, depending on the rounding done by
PolyLine.

You should use the RedisplayPenData function to render ink to the screen preéisely as the -
user entered it.

RedisplayPenData

RedisplayPenData(HDC hdc, HPENDATA hpendata, LPPOINT 1pOrg,
LPPOINT 1pExt, int nInkWidth, RGB rgbcolor)

RedisplayPenData uses the same algorithm as PENWIN.DLL to render ink onto the
screen so that it looks exactly like the ink rendered originally by PENWIN.DLL and the
display driver at interrupt time. There are two methods you can use to accomplish this:

Programmer’s Reference

46

Chapter4 Managing Ink in Pen Applications

m For each HPENDATA received, store the current origin of the window containing the
ink in screen coordinates. Whenever that HPENDATA must be rendered, its origin
will be placed in the [pDelta argument of RedisplayPenData. It is critical that the
origin for every HPENDATA be stored. The ink received while the origin is the same
can be merged into a single HPENDATA, but ink received after an origin change
cannot be merged.

® Immediately upon receipt of the pen data, call MetricScalePenData to convert the pen
data to display coordinates. Then use OffsetPenData to convert from display
coordinates to client coordinates. This ensures that the ink data has the origin of the
window in which it is to be drawn as its origin. If this procedure is carried out on all
ink data received, numerous HPENDATA memory blocks can be merged together (up
to the 64K limit for a HPENDATA memory block).

The disadvantage of this second method is that there will be some degradation in
recognition rates if the recognizer is particularly scale-dependent. If you have used this
method, use the following function call:

RedisplayPenData(hdc, hpendata, NULL, NULL, 1, OL)

The algorithm used to render pen data at interrupt time uses a square pen brush rather than
a round one for reasons of speed. For wide ink, this optimization of the GDI means that the
end of the inked lines may appear blocky. If you don’t want this, use DrawPenData
instead of RedisplayPenData to render the ink.

Transforming Pen Data

There are three functions that manipulate the scale of the pen data in the HPENDATA
memory block: MetricScalePenData, ResizePenData, and OffsetPenData.

MetricScalePenData
MetricScalePenData(HPENDATA hpendata, WORD wPdts)

This function converts pen data between any of the standard Pen Extensions mapping
modes. The mapping modes specified by wPdts have the same scale as GDI mapping
modes, but they do not have the same origin. In the Pen Extensions, the orlgm is the
upper-left corner of the display or tablet.

This function will be used in applications that already rely on the use of a mapping mode
and need to pass one of their standard device contexts to DrawPenData. Once the pen
data points are scaled to the mapping mode of their application, the default device contexts
can be passed to DrawPenData, and the ink will appear in the proper scale.

There are two important things to note about MetricScalePenData:

m Because of rounding errors, the scaling is not reversible when you move between
mapping modes. Generally, this is important only if the ink is to be used for delayed
recognition. The problem arises when you move from the standard ink scale
(HIENGLISH) to a scale of lower resolution. Once this is done, you have lost some of
the data from the higher-resolution scale. The recognition accuracy of Recognize Data
may diminish, even if the data is converted back into HIENGLISH.

Microsoft Windows for Pen Computing

The Ink Functions 47

m The scaling is not perfect and will result in numerous shifting, “off-by-one” errors
when the function renders scaled data. :

ResizePenData
ResizePenData(HPENDATA hpendata, LPRECT 1pRect)
This function scales ink into arbitrarily sized rectangles.

ResizePenData exhibits the same weaknesses of the other scaling functions. Proportions
of the rectangle are preserved, but rounding errors prevent the scaling process from being
reversible. If the ink is scaled to a rectangle larger than the bounding rectangle in the pen
data header, delayed recognition is generally not affected.

OffsetPenData
OffsetPenData(HPENDATA hpendata, int dx, int dy)

This function offsets the (x,y) data for the points in the pen data memory block. The
increments dx and dy are added to the (x,y) points. You can use this function to shift the
location of the pen data without changing the scale of the data and thereby affecting
recognition.

A common use for OffsetPenData is to shift the points in pen data to be in window-
relative tablet coordinates. Pen data can be stored in this format and easily rendered at the
proper location in a window by this method.

Pen Data Housekeeping

There are three functions that perform housekeeping operations on pen data memory
blocks: DuplicatePenData, DestroyPenData, and CreatePenData. They are standard
operations similar to many Windows data types.

DuplicatePenData

HPENDATA DuplicatePenData(HPENDATA hpendata, WORD gmemFlags)

This function is a copy routine for pen data. An application can quickly generate clones of
its pen data blocks using this function. The gmemF1ags parameter is a combination of
desired GMEM_* flags used by the Windows GlobalAlloc function.

DestroyPenData

DestroyPenData(HPENDATA hpendata)

This macro maps to the GlobalFree(hpendata) function. Because pen data memory
blocks are simply chunks of memory allocated by GlobalAlloc, the GlobalFree function
frees them.

Programmer’s Reference

48 Chapter4 Managing Ink in Pen Applications

CreatePenData

HPENDATA CreatePenData(LPPENINFO 1ppeninfo, int cbOemData,
WORD wPdtScale, WORD gmemFlags)

Use this function to create pen data memory blocks from scratch. If an application
provides the PENINFO structure that will reside in the header, the real size of any OEM
data to be stored along with each (x,y) coordinate, and the scale of the points in the pen
data, it can create its own pen data memory block.

The gmemF1ags should be either GMEM_MOVEABLE or GMEM_DDESHARE. This
enables the memory block containing the pen data to move within the Windows global
heap and to be passed to other applications.

Pen Data Input and Output

The functions listed below retrieve (x,y) data from pen data memory blocks and add new
data to the memory blocks.

GetPenDatalnfo

BOOL GetPenDataInfo(HPENDATA hpendata, LPPENDATAHEADER 1ppendataheader,
LPPENINFO 1ppeninfo, DWORD dwReserved)

This function retrieves summary information from the pen data memory block. It is
generally called before any of the other pen data input or output functions are called.

BeginEnumStrokes, GetPenDataStroke, EndEnumStrokes
LPPENDATA BeginEnumStrokes(HPENDATA hpendata)

BOOL GetPenDataStroke(LPPENDATA 1ppendata, WORD wStroke,
LPPOINT FAR * 1plippoint, LPVOID FAR *1plpvOem, LPSTROKEINFO 1psi)

WORD EndEnumStrokes(HPENDATA hpendata)

These three functions operate on the pen data memory block on a stroke-by-stroke basis.
An application must call BeginEnumStrokes before calling GetPenDataStroke, and it
must call EndEnumStrokes when it has finished querying any stroke-level data.

BeginEnumStrokes uses GlobalLock internally to get a pointer to the location of the pen
data block.

GetPenDataStroke returns pointers into the locked pen data memory block. An
application requests that a certain stroke be returned, and a pointer is returned in the
Iplppoint argument that points into the Apendata memory block itself. The Ipstrokeinfo
buffer is provided by the application and is instantiated with information about the stroke
pointed to by *Iplppoint.

Because pointers are returned that indicate the actual points in the pen data block, you
could modify the pen data in place. However, this is not recommended. Strokes are packed

Microsoft Windows for Pen Computing

The Ink Functions 49

one after the other; therefore, it is questionable how much functionality an application
would get from this, because the stroke size is unable to change.

Once an application has finished calling GetPenDataStroke, it must call
EndEnumStrokes. This unlocks the memory block containing the pen data and
invalidates any of the pointers returned by GetPenDataStroke. For this reason, you must
take care never to use the pointers returned by GetPenDataStroke once
EndEnumStrokes has been called.

GetPointsFromPenData

GetPointsFromPenData(HPENDATA hpendata, WORD wStroke, int wPnt,
int cPnt, LPPOINT lppoint)

This function copies points from a pen data memory block in a manner more traditional
than that used by GetPenDataStroke function. The application provides a buffer in which
to hold a block of points, and then it indicates which stroke to retrieve the data from. An
application can also request a certain block of points within a stroke. In that case, wPnt is
the first point to retrieve, and cPnts is the number of points to retrieve.

Use GetPointsFromPenData to retrieve a specific point or block of points from a
particular stroke. For example, use this function to digest the points in a pen data block a
few at a time to avoid allocating a large block of memory to get all of the points.

GetPointsFromPenData can also be used to return the last point in a stroke if the wPnt
argument is greater than the number of points in the stroke. In addition, if wStroke is larger
than the number of strokes in a pen data memory block, the points returned will be from
the last stroke.

A quick way to query the last point in a pen data memory block is to use large numbers for
wStroke and wPnt. For example, any number that creates more than 64K of point data is
high enough to guarantee that the point returned will be the last one in the pen data.

AddPointsPenData

HPENDATA AddPointsPenData(HPENDATA hpendata, LPPOINT 1ppoint,
LPVOID 1pvOemData, LPSTROKEINFO 1psiNew)

This function appends new blocks of points onto an existing pen data memory block
specified by hpendata. The IpsiNew parameter specifies a STROKEINFO structure that
describes the new points, and IpvOemData describes any OEM data to be added.

The STROKEINFO structure might represent points that are in the same state as those -
that are currently in the last stroke of the pen data. Because such points do not indicate a
state transition, they are appended to the last stroke. If the STROKEINFO structure
indicates that the state transition between pen up and pen down has occurred, a new stroke
will be created to contain the points passed by this function call. The number of points in
the Ippoint array is indicated by the cPnts element of the STROKEINFO structure.

The return value from this function is usually the same HPENDATA passed into it. Any
other return indicates an error condition.

Programmer’s Reference

50

Chapter4 Managing Ink in Pen Applications

Compressing Pen Data

Data compression of pen data is an important element of pen applications. Combining the
high data rates of the pen digitizing devices with large amounts of inking created by the
user results in large memory blocks of ink data. The Pen Extensions offer an application
many different compression options, each with a set of advantages and disadvantages
depending on the future use of the ink.

In general, there are three types of compression:

= Compression that removes redundant or otherwise useless data from the data structure.
The resulting HPENDATA can be passed immediately to any delayed recognition
function without any loss in accuracy.

m Compression that employs a more complex algorithm to compress pen data points. The
resulting HPENDATA cannot be passed immediately to a delayed recognition
function. However, data can be decompressed and then passed to a delayed recognition
function with no loss of accuracy.

m Compression that employs an algorithm that compresses the data with some loss of
information. The result is that the data can no longer be used for delayed recognition,
but it is still suitable for display purposes.

CompactPenData
CompactPenData(HPENDATA hpendata, WORD wTrimOptions)

The CompactPenData function is the primary function used to compress pen data. The
wT'rimOptions option is a bitwise OR combination of the PDTT_ compression options
described in Chapter 9, “Pen API Reference.”

Display Resolution Compression

There is an additional compression method that can be used if the application is intended
to render data only for display and not for later recognition. This method saves the largest
amount of memory space, but at the cost of recognition accuracy.

First, use MetricScalePenData to convert the ink from tablet coordinates to display
coordinates (that is, PDTS_STANDARDSCALE to PDTS_DISPLAY). Second, use the
CompactPenData option of PDTT_COLINEAR to remove the duplicate and colinear
points. These two steps will massively reduce the number of points in the pen data,
because many high-resolution digitizer points are thrown away by the conversion.
However, this loss means that the data may not be correctly recognized later.

The application can still choose to perform any of the other PDTT_* compression methods
on the ink to compress pen data further, making the MetricScalePenData call to
MM_TEXT the first step along a path to ink in its most highly compressed form.

Microsoft Windows for Pen Computing

Common Scenarios Using an Ink Object 51

Common Scenarios Using an Ink Object

One common scenario is the display of a scribble of ink that the user enters in a region
containing a number of other scribbles. This ink object will most likely be displayed in
window class designed to support various inking functionalities. When ink is entered into
this region, there are several steps that an application should undertake.

Offset the Ink

The ink should be offset from the origin of the window. However, this object will render
ink precisely as it was inked at interrupt time, and the ink will not be submitted for
delayed recognition. To render the ink in a usable state, you should convert it to
PDTS_DISPLAY coordinates and offset it to the origin of the window instead of the origin
of the display.

Assuming the origin of the window containing the ink to be at screen coordinates (x,y), the
following calls are required:

MetricScalePenData(hpendata, PDTS_DISPLAY);
OffsetPenData(hpendata, -x, -y) ;

Generate New HPENDATA Structures

New ink from the user will generate new HPENDATA structures. These should be merged
into the ink storage mechanism already established for the window. There are two ways to
do this:

B You can add the contents of the new pen data to an existing pen data. First, extract the
points in the new pen data, using GetPointsFromPenData. Then add them to the
existing pen data structure representing the contents of the window, using
AddPointsToPenData.

Remember that a pen data memory block data structure is limited to 64K, and before
the points are extracted they must have the same scaling or offset performed on them as
on any previous ink.

m Alternatively, you can create a higher-level application data structure—such as a linked
list or an array—that stores a number of HPENDATA handles, rendering them all as
needed. The inking sample provided in the Pen SDK shows how to do this.

Render the Ink

The ink should be rendered as necessary. There are several reasons why the ink may not
be rendered exactly as the user entered it:

m A mapping mode other than MM_TEXT is already in use, so the ink will have to be
scaled anyway. This will produce differences.

m The use of a square brush in RedisplayPenData as opposed to the round one used by
GDI and DrawPenData may cause distortion in the display, especially if the ink is
wide.

Programmer’s Reference

52

Chapter4 Managing Ink in Pen Applications

= The ink was originally intended for delayed recognition, and the overhead necessary to
do this and render the ink properly is insufficient.

If none of these factors is present, use RedisplayPenData.

Allow for Resizable Ink Objects

It is likely that an ink object is going to be resizable, and this will probably involve scaling
the ink within the rectangle. You can best implement this functionality by using the Iprect
argument of the DrawPenData function or the /pExt argument of the RedisplayPenData
function to scale the ink into the window’s DC at display time. Scaling this ink at display
time preserves recognition accuracy.

You can physically alter the points in pen data to achieve the same effect, using
MetricScalePenData. However, this will affect accuracy by altering the data points.

Compressing Ink Objects

Another key issue to consider for the ink object is how the ink will be compressed before it
is stored.

In general, you should use the maximum amount of compression possible, consistent with
the intended use of the ink. If the ink is to be submitted for delayed recognition, you must
use one of the compression methods that is completely reversible or otherwise not
destructive of the ink data. If the ink is to be scaled and redrawn smoothly, then you need
to ensure adequate resolution for the stored data to facilitate rendering at any size.

For example, if the ink data is compressed to display resolution, it will not scale bigger
than its first size without loss of fidelity. If however, the ink is left at tablet resolution, it
will scale much more smoothly because digitizers have a much higher resolution than
display devices.

Saving the Ink to a File

Saving the ink to a file is a trivial matter, because the HPENDATA structure is flat. The
application should first use GlobalSize to determine the size of the HPENDATA block.
Then the application should call GlebalLock to lock the pen data handle and then store
the data. Later, a memory block sufficiently large to store the data can be allocated from
the global heap with GlobalAlloc, and the data can be read back in to the block. When the
new block of data is unlocked, a valid HPENDATA will result.

Microsoft Windows for Pen Computing

A Sample Pen Application

This chapter explains how to write a simple pen application. The source code for this
sample program is in the \PENSDK\SAMPLES\SREC directory. The PENAPP.* files
make up the sample application. This directory also contains the files (SREC.*) for a
sample recognizer. For a complete description of this recognizer dynamic-link library, see
Chapter 7, “Replaceable Components: Recognizers and Dictionaries.”

This chapter assumes that you are familiar with the architecture of the Pen Extensions and
the basics of Windows programming. An overview of the architecture is discussed in
Chapter 2, “The Architecture of the Pen Extensions.”

Overview of the PENAPP Application

The PENAPP application is a standard pen application. It has the familiar Windows look:
a main window, a border, an application menu, and Minimize and Maximize buttons. It
also has three child windows: Input, Info, and Raw Data.

In operation, the PENAPP application accepts pen input through the Input child window.
Depending on the menu option, PENAPP sends the input to the system recognizer, the
shape recognizer, or the sample custom recognizer (SREC).

The output from the recognizers is displayed through the Raw Data and Info child
windows. The Raw Data child window redisplays the raw input data. The Info child
window displays one of three things:

= If the selected recognizer is the system recognizer, the Info child window displays the
recognized ANSI text.

m If the selected recognizer is the sample custom recognizer, the Info child window
displays an arrow indicating the compass direction of the input stroke (up, down, left,
or right). If there is no direction—that is, the pen is resting in contact with the tablet
surface—the Info window displays a single dot.

m If the selected recognizer is the shape recognizer, the Info window displays a clean
image of the shape. Recognized shapes are rectangles, ellipses, or lines.

The beginning of writing is signaled by a WM_LBUTTONDOWN message. The
IsPenEvent function is called to confirm that this is a pen rather than a mouse event. Upon
receiving this message, the program initializes the recognition context with a call to
InitRC. In this application, the rc.rglpdf{0] field of the RC structure is set to NULL to
disable dictionary processing.

After the recognizer has recognized pen input, the window procedure receives the
WM_RCRESULT message. The wParam parameter of the message indicates the cause of
the end of recognition (the REC_ code). The application tests to see if wParam is less than
zero, indicating an error condition—for example, buffer overflow. If the pen input is

Programmer’s Reference

54

Chapter5 A Sample Pen Application

successfully recognized, the symbol value returned by the recognizer is copied to the
PENAPP.C syvGlobal variable. In the default recognizer condition, the symbol value is
also converted to an ANSI character.

The raw data is then copied with a call to the CopyRawData function. All of the window
rectangles are invalidated and redrawn on the WM_PAINT message.

WinMain and Initialization Functions

The PENAPP application uses WinMain and three initialization functions: FInitApp,
FInitInstance, and FLoadRec. To an experienced Windows programmer, the WinMain
and initialization functions will look very familiar.

WinMain
The WinMain function is the entry point for a pen application, just as it is for any

Windows application. In fact, the PENAPP WinMain function looks virtually identical to
a regular Windows function, with just a few additions.

In a pen application, WinMain does the following:

m Declares an extern HANDLE for the recognizer, calls the initialization functions that
register window classes, creates windows, and performs any other necessary
initializations.

m Enters a message loop to process messages from the application queue.

= Stops the application when the message loop retrieves a WM_DESTROY message in
MainWndProc. This termination includes unloading the recognizer with a call to the
UninstallRecognizer function.

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR TpszCommandLine, int. cmdShow)
{
MSG msg;

extern HANDLE hrecCur;
1pszCommandLine; // to prevent CS 5.1 compiler warning messages

if (!hPrevinstance)
{
if (!FInitApp(hInstance))
{
return 1;

}
}

if (FInitInsfance(hInstance, hPrevInstance, cmdShow))
{

Microsoft Windows for Pen Computing

WinMain and Initialization Functions 55

while (GetMessage((LPMSG)&msg,NULL,0,0))
{
TranslateMessage((LPMSG)&msg);
DispatchMessage((LPMSG)&msg);
}

}

else
msg.wParam = 0;

return msg.wParam;
}

FInitApp

The FInitApp function is executed only once. It initializes the application data and
registers the window classes. Following standard Windows practice, the function returns
FALSE if it cannot register the window classes. Otherwise, FInitApp returns TRUE. The
PENAPP child window classes are also registered in this function.

FInitApp has a pen-specific element. The cursor type, IDC_PEN, is the default cursor
type required for a pen driver. The various pen cursors all begin with IDC_. For more
information on them, see Chapter 9, “Pen Messages and Constants.”

BOOL FAR PASCAL FInitApp(HANDLE hInstance)
{
WNDCLASSwc;
HCURSOR hcursor;

hcursor = LoadCursor(NULL, IDC_ARROW);
/* Register Pen App window class */

wc.hCursor = hcursor;

wc.hIcon = LoadIcon(hInstance,MAKEINTRESOURCE(iconPenApp)):
wc.1pszMenuName = MAKEINTRESQURCE(menuPenApp);
wc.1pszClassName = (LPSTR)szPenAppClass ;

wc.hbrBackground = (HBRUSH)COLOR_APPWORKSPACE+1;
wc.hInstance = hinstance;

wc.style = CS_VREDRAW | CS_HREDRAW ;

wc.1pfnWndProc = MainWndProc;

wc.cbClsExtra 0;

wc.cbWndExtra 0;

if (!RegisterClass((LPWNDCLASS) &wc))
return FALSE;

Programmer’s Reference

56

Chapter5 A Sample Pen Application

/* Register Pen App child window classes */

wc.hCursor = LoadCursor(NULL, IDC_PEN);
wc.hlcon = NULL;
wc.1pszMenuName = NULL;
wc.lpszClassName = (LPSTR)szPenAppInputCliass;
wc.hbrBackground = (HBRUSH)COLOR_WINDOW+1;
wc.style = CS_VREDRAW | CS_HREDRAW | CS_SAVEBITS;
wc.lpfnWndProc = InputWndProc;
if (!RegisterClass((LPWNDCLASS) &wc))

return FALSE;
wc.hCursor = hcursor;
wc.lpszClassName = (LPSTR)szPenAppInfoClass;
wc.lpfnWndProc = InfoWndProc;
if (!RegisterClass((LPWNDCLASS) &wc))

return FALSE;
wc.lpszClassName = (LPSTR)szPenAppRawClass;
wc.1pfnWndProc = RawWndProc;
if (1RegisterClass((LPWNDCLASS) &wc))

return FALSE;
}

Finitinstance

The FlnitInstance function initializes all data structures for the program instance and
creates the necessary windows.

FInitInstance looks like a standard Windows initialization function except that, after the
windows are created, the function calls another initialization function, FLoadRec. This
initialization function is required to install the sample recognizer used for handwriting
recognition.

The default system recognizer is already installed. In fact, the procedure of loading
recognizers is necessary only for custom recognizers; it is never required for the system
recognizer.

BOOL FAR PASCAL FInitInstance(HANDLE hInstance, HANDLE hPrevInstance,
int cmdShow)
{
int cxScreen = GetSystemMetrics(SM_CXSCREEN);
int cyScreen = GetSystemMetrics(SM_CYSCREEN);
RECTrect;

~extern HWND hwndMain;
extern HWND hwndInput;
extern HWND hwndRaw;
extern HWND hwndInfo;

Microsoft Windows for Pen Computing

WinMain and Initialization Functions 57

hPrevInstance; // to prevent CS 5.1 compiler warning message
/* Create Main window */

hwndMain = CreateWindow((LPSTR)szPenAppClass,
(LPSTR)szPenAppWnd,
WS_CLIPCHILDREN | WS_OVERLAPPEDWINDOMW,
@, 0, cxScreen, cyScreen,
(HWND)NULL,
(HWND)NULL,
(HANDLE)hInstance,
(LPSTR)NULL
)

if (!hwndMain)
{
return FALSE;
}

/* Create Input window */
GetClientRect(hwndMain, &rect);

hwndInput = CreateWindow((LPSTR)szPenAppInputClass,
(LPSTR)szInputWnd,
WS_CHILD | WS_BORDER | WS_CAPTION | WS_VISIBLE | WS_CLIPSIBLINGS,
XInputWnd(rect.right), YInputWnd(®), DxInputWnd(rect.right),
DyInputWnd(rect.bottom),
hwndMain,
nchildInput,
(HANDLE)hInstance,
(LPSTR)NULL
);

if (lhwndInput)
{
return FALSE;
}

/* Create Raw Data window */
hwndRaw = CreateWindow((LPSTR)szPenAppRawC1as§,
(LPSTR)szRawWnd,

WS_CHILD | WS_BORDER | WS_CAPTION | WS_VISIBLE | WS_CLIPSIBLINGS,
XRawWnd (@), YRawWnd(rect.bottom),

Programmer’s Reference

58 Chapter5 A Sample Pen Application

DxRawWnd(rect.right), DyRawWnd(rect.bottom),
hwndMain,

nchildInfo,

(HANDLE)hInstance,

(LPSTRINULL

)

if (!hwndRaw)
{
return. FALSE;
}

/* Create Info window */

hwndInfo = CreateWindow((LPSTR)szPenAppInfoClass,
(LPSTR)szInfoWnd,
WS_CHILD | WS_BORDER | WS_CAPTION | WS_VISIBLE | WS_CLIPSIBLINGS,
XInfoWnd(@), YInfoWnd(0),
DxInfoWnd(rect.right), DyInfoWnd(rect.bottom),
hwndMain,
nchildRaw,
(HANDLE)hInstance,
(LPSTRYNULL
)

if (lhwndInfo)
{
return FALSE;
}

ShowWindow(hwndMain, cmdShow):
UpdateWindow(hwndMain);

return FlLoadRec(); /*Load the recognizer */
}

FLoadRec

The FLoadRec function uses the InstallRecognizer function to install a recognizer. The
recognizer to be loaded is determined by the value of the application global flag,
miRecMode. If miRecMode == miSample, this function installs the sample custom
recognizer. If an application performs an explicit load on a default recognizer (as the
following sample does), the application must also explicitly unload it. If an application is
only going to use the system recognizer, there is no need to install it.

BOOL NEAR PASCAL FLoadRec(VOID)
{

Microsoft Windows for Pen Computing

WinMain and Initialization Functions

59

LPSTR 1pRecogName;
HCURSOR hsave;

extern HWND hwndMain;

extern HREC hrecCur;

extern int miRecMode;

/* hrecCur == NULL only at start of program */

if (hrecCur != NULL)
{
UninstallRecognizer(hrecCur);/* Unload any current recognizer */
}

/* Install appropriate recognition DLL */

switch(miRecMode)

{

case miSample: /* load sample recognizer */
1pRecogName = (LPSTR)szSampleRec;
break;

case miShape: /* load shape recognizer */
1pRecogName = (LPSTR)szShapeRec;
break;

default: /* load system recognizer */

1pRecogName = NULL:
hrecCur = NULL;
return TRUE; /* Don’t need to load the Default recognizer */
break;
}
hsave = SetCursor(LoadCursor(NULL, IDC_WAIT)):
hrecCur = InstallRecognizer(1pRecogName);
SetCursor(hsave);

if (!hrecCur)
{

MessageBox(hwndMain, "Could not install recognizer", szPenAppWnd, MB_0K);

return FALSE;
}

return TRUE;
}

Programmer’s Reference

60 Chapter5 A Sample Pen Application

Data Handling and Display Functions

The CopyRawData, DrawArrow, and DrawRawData functions copy the raw data points,
draw the arrow based on the symbol value returned by the custom recognizer, and draw the
raw data in the Info child window, respectively.

The CopyRawData function saves a buffer of raw data points using an HPENDATA
structure. A message box warns that DuplicatePenData is unable to allocate enough
memory.

The DrawArrow function uses the value of the syvGlobal variable to determine which
arrow to draw. The syvGlobal value is compared with the recognizer-specific symbols—
for example, syvEast—defined in SREC.H.

The DrawRawData function draws the picture form of the input as taken by the
recognizer. It uses the GetPenDataStrokes function to reconstruct the input.

The DrawShape function uses the value of the syvGlobal variable to determine which
shape to draw. The syvGlobal value is compared with the recognizer-specific symbols (for
example, SYV_SHAPEELLIPSE) defined in PENWIN.H.

The SetGraphWindow function responds to a request to change the recognizers. It sets
the graph window, installs or reinstalls recognizers, and changes the menu setting,
according to the mi value. The SetGraphWindow function uses the FL.oadRec function to
install a recognizer.

M