PROGRAMMER'S REFERENCE LIBRARY :E

B Winiows 3.

Programmer’s Reference

oy TN
MICROSOFTs
WINDOWS..

Volume 2
Functions

EWindows 3.1

Programmer's Reference

Volume 2
Functions

PUBLISHED BY -/

Microsoft Press \N b o

A Division of Microsoft Corporation P g ey A

One Microsoft Way Vt) 55 [

Redmond, Washington 98052-6399 \% Q (gr ‘;?

Copyright ©1987-1992 by Microsoft Corporation. All rights reserved. \ / 9' |
¢ i

Information in this document is subject to change without notice and does not represent a commitment on the part of Microsoft !
Corporation. The software, which includes information contained in any databases, described in this document is furnished under

a license agreement or nondisclosure agreement and may be used or copied only in accordance with the terms of that agreement.

It is against the law to copy the software except as specifically allowed in the license or nondisclosure agreement. No part of this

manual may be reproduced in any form or by any means, electronic or mechanical, including photocopying and recording, for

any purpose without the express written permission of Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data
Microsoft Windows programmer’s reference.
p. cm.
Includes indexes.
Contents: v. 1. Overview -- v. 2. Functions -- v. 3. Messages,
structures, macros -- v. 4. Resources.
ISBN 1-55615-453-4 (v. 1). -- ISBN 1-55615-463-1 (v. 2). -- ISBN
1-55615-464-X (v. 3). -- ISBN 1-55615-494-1 (v. 4)
1. Microsoft Windows (Computer program) I Microsoft
Corporation.
QA76.76.W56M532 1992
005.4'3--dc20 91-34199
CIP

Printed and bound in the United States of America.

123456789 MLML 76 54 32*»"’,}5

Distributed to the book trade in Canada by Macmiilax; ‘bf Canada, a division of Canada Publishing Corporation.
Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand 2\ Ll Li/ / 7 ;}, %’ """" g

British Cataloging-in-Publication Data available.

Copyright ©1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino, New Century Schoolbook, Times,
and Times Roman typefont data is the property of Linotype or its licensors.
Arial and Times New Roman fonts. Copyright ©1991 Monotype Corporation PLC. All rights reserved.

Adobe® and PostScript® are registered trademarks of Adobe Systems, Inc. Apple® Macintosh® and TrueType® are registered trade-
marks of Apple Computer, Inc. PANOSE™ is a trademark of ElseWare Corporation. Epson® and FX® are registered trademarks of
Epson America, Inc. Hewlett-Packard® HP® LaserJet® and PCL® are registered trademarks of Hewlett-Packard Company. Intel® is a
registered trademark and i486™ is a trademark of Intel Corporation. AT® and IBM® are registered trademarks of International
Business Machines Corporation. Helvetica® New Century Schoolbook® Palatino® Times® and Times Roman® are registered trade-
marks of Linotype AG and/or its subsidiaries. CodeView® Microsoft® MS® MS-DOS® and QuickC® are registered trademarks and
QuickBasic™ and Windows™ are trademarks of Microsoft Corporation. Arial® and Times New Roman® are registered trademarks
of Monotype Corporation PLC. Nokia® is a registered trademark of Nokia Corporation. Okidata® is a registered trademark of Oki
America, Inc. Olivetti® is a registered trademark of Ing. C. Olivetti.

The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of AGFA Compugraphic Division
of Agfa Corporation.

U.S. Patent No. 4974159

Document No. PC28916-0492

Contents

INBPOUUCRION ...ttt s e eeaesesee e eae e seneeneieens

How to Use ThiS ManUal...........cocccvvviviiiieieeieeeeenieeeeieeeesseeeesssseseseessnessssssesssssnes
Document CONVENLIONScoouveeeeieerreirieierreenseeeseessesaeesseeesseessssessseesssessssesssssees

Alphabetic Referenceccoeoveieiiiiiiciiirir e e

Introductioh

The Microsoft® Windows™ 3.1 operating system is a single-user system for per-
sonal computers. Applications that run with this operating system use functions in
the Windows applications programming interface (API). This manual describes
the API functions in alphabetic order, including each function’s purpose, the ver-
sion of Windows in which it first appeared, and the function’s syntax, parameters,
and possible return values. Many function descriptions also contain additional in-
formation and simple code examples that illustrate how the function can be used to
carry out simple tasks.

How to Use This Manual

For most of the functions described in this manual, the syntax is given in C-
language format. In your C-language source files, the function name must be
spelled exactly as given in syntax and the parameters must be used in the order
given in syntax.

The Windows API uses many types, structures, and constants that are not part of
standard C language. These items, designed for Windows, are defined in the
Windows C-language header files. Although there are many Windows header
files, the majority of API functions, structures, and messages are defined in the
WINDOWS.H header file. You can use these items in your Windows application
by placing an #include directive specifying WINDOWS.H at the beginning of
your C-language source file.

In this manual, if a function is not defined in WINDOWS.H, its appropriate header
file is included in the first line of syntax. If no header file is listed, you can assume
the function is defined in WINDOWS.H.

Note You will find a list of the appropriate module and library for each Windows
function in the Microsoft Windows Programmer’s Reference, Volume 1. A list of
the types used in the Windows API, with a brief description of each, is provided in
the Microsoft Windows Programmer’s Reference, Volume 3.

vi Microsoft Windows Programmer’s Reference

Document Conventions

The following conventions are used throughout this manual to define syntax:

Convention Meaning

Bold text Denotes a term or character to be typed literally, such as a resource-
definition statement or function name (MENU or CreateWindow),
a Microsoft MS-DOS® command, or a command-line option
(/nod). You must type these terms exactly as shown.

Italic text Denotes a placeholder or variable: You must provide the actual
value. For example, the statement SetCursorPos(X, Y) requires you
to substitute values for the X and Y parameters.

[1 Enclose optional parameters.

I Separates an either/or choice.

Specifies that the preceding item may be repeated.
BEGIN Represents an omitted portion of a sample application.

END
In addition, certain text conventions are used to help you understand this material:

Convention Meaning

SMALL CAPITALS Indicate the names of keys, key sequences, and key
combinations—for example, ALT+SPACEBAR.

FULL CAPITALS Indicate filenames and paths, most type and structure names
(which are also bold), and constants.

monospace Sets off code examples and shows syntax spacing.

AbortProc 1

AbortDoc | [3.1]

int AbortDoc(hdc)
HDC hdc; /* handle of device context */

The AbortDoc function terminates the current print job and erases everything
drawn since the last call to the StartDoc function. This function replaces the
ABORTDOC printer escape for Windows version 3.1.

Parameters hdc
Identifies the device context for the print job.

Return Value The return value is greater than or equal to zero if the function is successful. Other-
wise, it is less than zero.

Comments Applications should call the AbortDoc function to terminate a print job because of
an error or if the user chooses to cancel the job. To end a successful print job, an
application should use the EndDoc function.

If Print Manager was used to start the print job, calling the AbortDoc function
erases the entire spool job—the printer receives nothing. If Print Manager was not
used to start the print job, the data may have been sent to the printer before Abort-
Doc was called. In this case, the printer driver would have reset the printer (when
possible) and closed the print job.

See Also EndDoc, SetAbortProc, StartDoc

AbortProc [3.1]

BOOL CALLBACK AbortProc(hdc, error)
HDC hdc; /* handle of device context */
int error; /* error value */

The AbortProc function is an application-defined callback function that is called
when a print job is to be canceled during spooling.

Parameters hdc
Identifies the device context.

error
Specifies whether an error has occurred. This parameter is zero if no error has
occurred; it is SP_OUTOFDISK if Print Manager is currently out of disk space

2 AccessResource

and more disk space will become available if the application waits. If this
parameter is SP_OUTOFDISK, the application need not cancel the print job. If
it does not cancel the job, it must yield to Print Manager by calling the Peek-
Message or GetMessage function.

Return Value The callback function should return TRUE to continue the print job or FALSE to
cancel the print job.

Comments An application installs this callback function by calling the SetAbortProc func-
tion. AbortProc is a placeholder for the application-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the ap-
plication’s module-definition file.

See Also GetMessage, PeekMessage, SetAbortProc

AccessResource [2.x]

int AccessResource(hinst, hrsrc) ,
HINSTANCE hinst; /* handle of module with resource */
HRSRC #hrsrc; /* handle of resource */

The AccessResource function opens the given executable file and moves the file
pointer to the beginning of the given resource.

Parameters hinst
Identifies the instance of the module whose executable file contains the re-
source.

hrsrc
Identifies the desired resource. This handle should be created by using the
FindResource function.

Return Value The return value is the handle of the resource file if the function is successful.
Otherwise, it is —1.

Comments The AccessResource function supplies an MS-DOS file handle that can be used in
subsequent file-read calls to load the resource. The file is opened for reading only.

Applications that use this function must close the resource file by calling the
_Iclose function after reading the resource. AccessResource can exhaust available
MS-DOS file handles and cause errors if the opened file is not closed after the re-
source is accessed.

AddAtom 3

In general, the LoadResource and LockResource functions are preferred. These
functions will access the resource more quickly if several resources are being read,
because Windows maintains a file-handle cache for accessing executable files.
However, each call to AccessResource requires that a new handle be opened to
the executable file.

You should not use AccessResource to access executable files that are installed in
ROM on a ROM-based system, since there are no disk files associated with the ex-
ecutable file; in such a case, a file handle cannot be returned.

See Also FindResource, _Iclose, LoadResource, LockResource

AddAtom TS

ATOM AddAtom(lpszName)
LPCSTR IpszName; /* address of string to add */

The AddAtom function adds a character string to the local atom table and returns
a unique value identifying the string.

Parameters IpszZName
Points to the null-terminated character string to be added to the table.

Return Value The return value specifies the newly created atom if the function is successful.
Otherwise, it is zero.

Comments The AddAtom function stores no more than one copy of a given string in the atom
table. If the string is already in the table, the function returns the existing atom
value and increments (increases by one) the string’s reference count.

The MAKEINTATOM macro can be used to convert a word value into a string
that can be added to the atom table by using the AddAtom function.

The atom values returned by AddAtom are in the range 0xCO000 through OxFFFF.

Atoms are case-insensitive.

Example The following example uses the AddAtem function to add the string “This is an
atom” to the local atom table:

4 AddFontResource

ATOM at;
char szMsg[80];

at = AddAtom("This is an atom");

if (at == 0)
MessageBox(hwnd, "AddAtom failed", "", MB_ICONSTOP);
else {
wsprintf(szMsg, "AddAtom returned %u", at);
MessageBox(hwnd, szMsg, "", MB_OK);
}

See Also DeleteAtom, FindAtom, GetAtomName

AddFontResource [2x]

int AddFontResource(lpszFilename)
LPCSTR IpszFilename; /* address of filename */

The AddFontResource function adds a font resource to the Windows font table.
Any application can then use the font.

Parameters IpszFilename
Points to a character string that names the font resource file or that contains a
handle of a loaded module. If this parameter points to a font resource filename,
it must be a valid MS-DOS filename, including an extension, and the string
must be null-terminated. The system passes this string to the LoadLibrary
function if the font resource must be loaded.

Return Value The return value specifies the number of fonts added if the function is successful.
Otherwise, it is zero.

Comments Any application that adds or removes fonts from the Windows font table should
send a WM_FONTCHANGE message to all top-level windows in the system by
using the SendMessage function with the hwnd parameter set to OxFFFF.

When font resources added by using AddFontResource are no longer needed,
you should remove them by using the RemoveFontResource function.

Example The following example uses the AddFontResource function to add a font re-
source from a file, notifies other applications by using the SendMessage function,
then removes the font resource by using the RemoveFontResource function:

AdjustWindowRect 5

AddFontResource("fontres.fon");
SendMessage(HWND_BROADCAST, WM_FONTCHANGE, @, 0);

. /% Work with the font. */

if (RemoveFontResource("fontres.fon")) {
SendMessage (HWND_BROADCAST, WM_FONTCHANGE, @, 0);
return TRUE;

}

else
return FALSE;

See Also LoadLibrary, RemoveFontResource, SendMessage

AdjustWindowRect [2x]

void AdjustWindowRect(lprc, dwStyle, fMenu)

RECT FAR#* Iprc; /* address of client-rectangle structure */
DWORD dwStyle; /* window styles */
BOOL fMenu; /* menu-present flag */

The AdjustWindowRect function computes the required size of the window
rectangle based on the desired client-rectangle size. The window rectangle can
then be passed to the CreateWindow function to create a window whose client
area is the desired size.

Parameters Iprc
Points to a RECT structure that contains the coordinates of the client rectangle.
The RECT structure has the following form:

typedef struct tagRECT { /* rc *x/
int left;
int top;
int right;
int bottom;
} RECT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

awStyle
Specifies the window styles of the window whose client rectangle is to be con-
verted.

fMenu

Specifies whether the window has a menu.

6 AdjustWindowRectEx

Return Value

Comments

See Also

This function does not return a value.

A client rectangle is the smallest rectangle that completely encloses a client area.
A window rectangle is the smallest rectangle that completely encloses the window.

AdjustWindowRect does not take titles and borders into account when comput-
ing the size of the client area. For window styles that include titles and borders, ap-
plications must add the title and border sizes after calling AdjustWindowRect.
This function also does not take the extra rows into account when a menu bar
wraps to two or more rows.

AdjustWindowRectEx, CreateWindowEx

AdjustWindowRectEx

void AdjustWindowRectEx(lprc, dwStyle, fMenu, dwExStyle)

RECT FAR* Iprc;
DWORD dwStyle;
BOOL fMenu;
DWORD dwExStyle;

Parameters

/* address of client-rectangle structure */
/* window styles */
/* menu-present flag */
/* extended style */

The AdjustWindowRectEx function computes the required size of the rectangle
of a window with extended style based on the desired client-rectangle size. The
window rectangle can then be passed to the CreateWindowEx function to create
a window whose client area is the desired size.

Iprc
Points to a RECT structure that contains the coordinates of the client rectangle.
The RECT structure has the following form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

dwStyle
Specifies the window styles of the window whose client rectangle is to be con-
verted.

AllocDiskSpace 7

Return Value

Comments

See Also

JMenu

Specifies whether the window has a menu.

dwExStyle
Specifies the extended style of the window being created.

This function does not return a value.

A client rectangle is the smallest rectangle that completely encloses a client area.
A window rectangle is the smallest rectangle that completely encloses the window.

AdjustWindowRectEx does not take titles and borders into account when com-
puting the size of the client area. For window styles that include titles and borders,
applications must add the title and border sizes after calling AdjustWindow-
RectEx. This function also does not take the extra rows into account when a menu
bar wraps to two or more rows.

AdjustWindowRect, CreateWindowEx

AllocDiskSpace

#include <stress.h>

int AllocDiskSpace(ILeft, uDrive)

long [Left;

UINT uDrive;

Parameters

/* number of bytes left available */
/* disk partition */

The AllocDiskSpace function creates a file that is large enough to ensure that the
specified amount of space or less is available on the specified disk partition. The
file, called STRESS.EAT, is created in the root directory of the disk partition.

If STRESS.EAT already exists when AllocDiskSpace is called, the function de-
letes it and creates a new one.

Left
Specifies the number of bytes to leave available on the disk.

uDrive
Specifies the disk partition on which to create the STRESS.EAT file. This
parameter must be one of the following values:

8 AllocDStoCSAlias

Value Meaning
EDS_WIN Creates the file on the Windows partition.
EDS_CUR Creates the file on the current partition.

EDS_TEMP Creates the file on the partition that contains the TEMP directory.

Return Value The return value is greater than zero if the function is successful; it is zero if the
function could not create a file; or it is —1 if at least one of the parameters is in-
valid.

Comments In two situations, the amount of free space left on the disk may be less than the

number of bytes specified in the [Left parameter: when the amount of free space
on the disk is less than the number in ILeft when an application calls Alloc-
DiskSpace, or when the value of [Left is not an exact multiple of the disk cluster
size.

The UnAllocDiskSpace function deletes the file created by AllocDiskSpace.

See Also UnAllocDiskSpace

AllocDStoCSAlias

UINT AllocDStoCSAlias(uSelector)
UINT uSelector; /* data-segment selector */

The AllocDStoCSAlias function accepts a data-segment selector and returns a
code-segment selector that can be used to execute code in the data segment.

Parameters uSelector
Specifies the data-segment selector.

Return Value The return value is the code-segment selector corresponding to the data-segment
selector if the function is successful. Otherwise, it is zero.

- Comments The application should not free the new selector by calling the FreeSelector func-
tion. Windows will free the selector when the application terminates.

In protected mode, attempting to execute code directly in a data segment will
cause a general-protection violation. AllocDStoCSAlias allows an application to
execute code that the application had created in its own stack segment.

AllocFileHandles 9

See Also

Windows does not track segment movements. Consequently, the data segment
must be fixed and nondiscardable; otherwise, the data segment might move, invali-
dating the code-segment selector.

The PrestoChangoSelector function provides another method of obtaining a code
selector corresponding to a data selector.

An application should not use this function unless it is absolutely necessary, since
its use violates preferred Windows programming practices.

FreeSelector, PrestoChangoSelector

AllocFileHandles

#include <stress.h>

int AllocFileHandles(Left)
int Left; /* number of file handles to leave available */

Parameters

Return Value

Comments

See Also

The AllocFileHandles function allocates file handles until only the specified num-
ber of file handles is available to the current instance of the application. If this or a
smaller number of handles is available when an application calls AllocFile-
Handles, the function returns immediately.

Before allocating new handles, this function frees any handles previously allocates
by AllocFileHandles.

Left

Specifies the number of file handles to leave available.

The return value is greater than zero if AllocFileHandles successfully allocates at
least one file handle. The return value is zero if fewer than the specified number of
file handles were available when the application called AllocFileHandles. The re-
turn value is —1 if the Left parameter is negative.

AllocFileHandles will not allocate more than 256 file handles, regardless of the
number available to the application.

The UnAllocFileHandles function frees all file handles previously allocated by
AllocFileHandles.

UnAllocFileHandles

10 AllocGDIMem

AllocGDIMem | [31]

#include <stress.h>

BOOL AllocGDIMem(uLeft)
UINT uLeft; /* number of bytes to leave available */

The AllocGDIMem function allocates memory in the graphics device interface
(GDI) heap until only the specified number of bytes is available. Before making
any new memory allocations, this function frees memory previously allocated by

AllocGDIMem.
Parameters uLeft
Specifies the amount of memory, in bytes, to leave available in the GDI heap.
Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.
Comments The FreeAlIGDIMem function frees all memory allocated by AllocGDIMem.
See Also FreeAllGDIMem |

AllocMem [3.1]

#include <stress.h>

BOOL AllocMem(dwLeft)
DWORD dwLeft; /*smallest memory allocation */

The AllocMem function allocates global memory until only the specified number
of bytes is available in the global heap. Before making any new memory alloca-
tions, this function frees memory previously allocated by AllocMem.

Parameters dwLeft

Specifies the smallest size, in bytes, of memory allocations to make.
Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.
Comments The FreeAllMem function frees all memory allocated by AllocMem.

See Also FreeAllMem

AllocSelector 1

AllocResource [2x]

HGLOBAL AllocResource(hinst, hrsrc, cbResource)

HINSTANCE hinst; /* handle of module containing resource */
HRSRC hrsrc; /* handle of resource , */
DWORD cbResource; /* size to allocate, or zero */

The AllocResource function allocates uninitialized memory for the given resource.

Parameters hinst
Identifies the instance of the module whose executable file contains the re-

source.
hrsrc
Identifies the desired resource. This handle should have been created by using
the FindResource function.
cbResource

~Specifies the size, in bytes, of the memory object to allocate for the resource. If
this parameter is zero, Windows allocates enough memory for the specified re-

source.
Return Value The return value is the handle of the global memory object if the function is
successful.
See Also FindResource, LoadResource

AllocSelector |

UINT AllocSelector(uSelector)
UINT uSelector; /* selector to copy or zero */

The AllocSelector function allocates a new selector.

Do not use this function in an application unless it is absolutely necessary, since
its use violates preferred Windows programming practices.

Parameters uSelector
Specifies the selector to return. If this parameter specifies a valid selector, the
function returns a new selector that is an exact copy of the one specified here. If
this parameter is zero, the function returns a new, uninitialized sector.

12 AllocUserMem

Return Value

Comments

See Also

The return value is a selector that is either a copy of an existing selector, or a new,
uninitialized selector. Otherwise, the return value is zero.

The application must free the new selector by calling the FreeSelector function.

An application can call AllocSelector to allocate a selector that it can pass to the
PrestoChangoSelector function.

PrestoChangoSelector

AllocUserMem [31]

#include <stress.h>

BOOL AllocUserMem(uContig)

UINT uContig;

Parameters

Return Value
Comments

See Also

/* smallest memory allocation */

The AllocUserMem function allocates memory in the USER heap until only the
specified number of bytes is available. Before making any new allocations, this
function frees memory previously allocated by AllocUserMem.

uContig
Specifies the smallest size, in bytes, of memory allocations to make.

The return value is nonzero if the function is successful. Otherwise, it is zero.
The FreeAllUserMem function frees all memory allocated by AllocUserMem.

FreeAllUserMem

AnimatePalette |

void AnimatePalette(hpal, iStart, cEntries, Ippe)

HPALETTE hpal;
UINT iStart;
UINT cEntries;

/* handle of palette */
/* first palette entry to animate */
/* number of entries in palette */

const PALETTEENTRY FAR#* [ppe; /* address of color structure */

AnimatePalette 13

The AnimatePalette function replaces entries in the specified logical palette. An
application does not have to update the client area when it calls AnimatePalette,
because Windows maps the new entries into the system palette immediately.

Parameters hpal
Identifies the logical palette.

iStart
Specifies the first entry in the palette to be animated.

cEntries
Specifies the number of entries in the palette to be animated.

Ippe
Points to the first member of an array of PALETTEENTRY structures. These
palette entries will replace the palette entries identified by the iStart and
cEntries parameters. The PALETTEENTRY structure has the following form:

typedef struct tagPALETTEENTRY { /* pe */
BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;
} PALETTEENTRY;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value This function does not return a value.

Comments The AnimatePalette function can change an entry in a logical palette only when
the PC_RESERVED flag is set in the corresponding palPaletteEntry member of
the LOGPALETTE structure that defines the current logical palette.

Example The following example initializes a LOGPALETTE structure and an array of
PALETTEENTRY structures, uses the CreatePalette function to retrieve a
handle of a logical palette, and then uses the AnimatePalette function to map the
entries into the system palette:

fidefine NUMENTRIES 128
HPALETTE hpal;
PALETTEENTRY ape[NUMENTRIES];

plgpl = (LOGPALETTE#*) LocalAlloc(LPTR,
sizeof (LOGPALETTE) + cColors * sizeof(PALETTEENTRY));

plgpl->palNumEntries = cColors;
plgpl->palVersion = 0x300;

14 AnsiLower

for (i = 0, red = @, green = 127, blue = 127; i < NUMENTRIES;
i++, red += 1, green += 1, blue += 1) {
ape[il.peRed =
plgpl->palPalEntry[i].peRed = LOBYTE(red);
ape[il.peGreen =
plgpl->palPalEntry[i].peGreen = LOBYTE(green);
ape[il.peBlue =
plgpl->palPalEntry[i].peBlue = LOBYTE(blue);
ape[il.peFlags =
plgpi->palPalEntry[i]l.peFlags = PC_RESERVED;
}
hpal = CreatePalette(plgpl);
LocalFree((HLOCAL) plgpl);
AnimatePalette(hpal, @, NUMENTRIES, (PALETTEENTRY FAR*) &ape);

See Also CreatePalette
AnsiLower [2x]
LPSTR AnsiLower(lpsz)
LPSTR Ipsz; /* address of string, or specific character */
The AnsiLower function converts a character string to lowercase.
Parameters Ipsz
Points to a null-terminated string or specifies a single character. If the high-
order word of this parameter is zero, the low-order byte of the low-order word
must contain a single character to be converted.

Return Value The return value points to a converted character string if the function is successful.
Otherwise, the return value is a 32-bit value that contains the converted character
in the low-order byte of the low-order word.

Comments The conversion is made by the language driver for the current language (the one
selected by the user at setup or by using Control Panel). If no language driver has
been selected, Windows uses an internal function.

Example The following example uses the AnsiLower function to convert two strings to

lowercase for a non—case-sensitive comparison:

/*

* Convert the target string to lowercase, and then

* convert the subject string one character at a time.
*/

AnsiLowerBuff 15

See Also

Ansilower(pszTarget);
while (*pszTarget != '\@') {
if (*pszTarget != (char) (DWORD) AnsilLower(
MAKELP(@, *pszSubject)))
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

AnsiLowerBuff, AnsiNext, AnsiUpper

AnsiLowerBuff

UINT AnsiLowerBuff(IpszString, cbString)

LPSTR IpszString;

UINT cbString;

Parameters

Return Value

Comments

Example

/* address of string to convert */
/* length of string */

The AnsiLowerBuff function converts a character string in a buffer to lowercase.

IpszString
Points to a buffer containing one or more characters.

cbString
Specifies the number of bytes in the buffer identified by the IpszString parame-
ter. If cbString is zero, the length is 64K (65,536).

The return value specifies the length of the converted string if the function is
successful. Otherwise, it is zero.

The language driver makes the conversion for the current language (the one
selected by the user at setup or by using Control Panel). If no language driver has
been selected, Windows uses an internal function.

The following example uses the AnsiLowerBuff function to convert two strings
to lowercase for a non—case-sensitive comparison:

AnsilowerBuff(pszSubject, (UINT) 1strlen(pszSubject));
AnsilowerBuff(pszTarget, (UINT) 1strlen(pszTarget));

16 AnsiNext

See Also

while (#pszTarget != '\0") {
if (*pszTarget != *pszSubject)
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

AnsiLower, AnsiUpper

AnsiNext

LPSTR AnsiNext([pchCurrentChar)
LPCSTR IpchCurrentChar; /* address of current character */

Parameters

Return Value

Comments

Example

See Also

The AnsiNext function moves to the next character in a string.

IpchCurrentChar
Points to a character in a null-terminated string.

The return value points to the next character in the string or to the null character at
the end of the string, if the function is successful.

The AnsiNext function can be used to move through strings where each character
is a single byte, or through strings where each character is two or more bytes (such
as strings that contain characters from a Japanese character set).

The following example uses the AnsiNext function to step through the characters
in a filename:

/* Find the last backslash. */

for (1pszFile = 1pszTemp; *IpszTemp != '\Q';
1pszTemp = AnsiNext(1pszTemp)) {

if (*1pszTemp == '\\")
1pszFile = AnsiNext(1pszTemp);

AnsiPrev

AnsiPrev 17 .

AnsiPrev

[2x]

LPSTR AnsiPrev(IpchStart, IpchCurrentChar)

LPCSTR IpchStart;

/* address of first character */

LPCSTR IpchCurrentChar; /* address of current character */

Parameters

Return Value

Comments

Example

See Also

The AnsiPrev function moves to the previous character in a string.

IpchStart
Points to the beginning of the string.

IpchCurrentChar .
Points to a character in a null-terminated string.

The return value points to the previous character in the string, or to the first char-
acter in the string if the [pchCurrentChar parameter is equal to the IpchStart
parameter.

The AnsiPrev function can be used to move through strings where each character
is a single byte, or through strings where each character is two or more bytes (such
as strings that contain characters from a Japanese character set).

This function can be very slow, because the string must be scanned from the begin-
ning to determine the previous character. Wherever possible, the AnsiNext func-
tion should be used instead of this function.

The following example uses the AnsiNext and AnsiPrev functions to change
every occurrence of the characters *\&’ in a string to a single newline character:

/* Find ampersands. */
for (1psz = 1pszTest; *1psz != '\@'; Ipsz = AnsiNext(lpsz)) {
/* Check the previous character. */
if (¥x1psz == '&' &&
*(1psz2 = AnsiPrev(1pszTest, 1psz)) == "\\') {

Istrcpy(1psz2, 1psz);
*¥1psz2 = '\n';

AnsiNext

18 AnsiToOem

AnsiToOem [2x]

void AnsiToOem(hpszWindows, hpszOem)
const char _huge* hpszWindows; /* address of string to translate */
char _huge* hpszOem; /* address of buffer for string */

The AnsiToOem function translates a string from the Windows character set into
the specified OEM character set.

Parameters hpszWindows
Points to a null-terminated string of characters from the Windows character set.

hpszOem
Points to the location where the translated string is to be copied. To translate the
string in place, this parameter can be the same as hpszWindows.

Return Value This function does not return a value.

Comments The string to be translated can be greater than 64K in length.

Windows-to-OEM mappings are defined by the keyboard driver, where this func-
tion is implemented. Some keyboard drivers may have different mappings than
others, depending on the machine environment, and some keyboard driver support
loading different OEM character sets; for example, the standard U.S. keyboard
driver for an IBM keyboard supports loadable code pages, with the default being
code page 437 and the most common alternative being code page 850. (The Win-
dows character set is sometimes referred to as code page 1007.)

The OEM character set must always be used when accessing string data created by
MS-DOS or MS-DOS applications. For example, a word processor should convert
OEM characters to Windows characters when importing documents from an
MS-DOS word processor. When an application makes an MS-DOS call, including
a C run-time function call, filenames must be in the OEM character set, whereas
they must be presented to the user in Windows characters (because the Windows
fonts use Windows characters).

Example The following example is part of a dialog box in which a user would create a
directory by typing a name in an edit control: '

case IDOK:
GetWindowText(GetD1gItem(hwndD1g, ID_EDITDIRNAME), szDirName,
sizeof(szDirName));
AnsiToOem(szDirName, szDirName);
mkdir(szDirName);
EndDialog(hwndDlg, 1);
return TRUE;

AnsiUpper 19

See Also AnsiToOemBuff, OemToAnsi

AnsiToOemBuff |

void AnsiToOemBuff(IpszWindowsStr, IpszOemStr, coWindowsStr)

LPCSTR IpszWindowsStr; /* address of string to translate */
LPSTR IpszOemStr; /* address of buffer for translated string */
UINT cbWindowsStr; /* length of string to translate */

Parameters

Return Value

See Also

The AnsiToOemBuff function translates a string from the Windows character set
into the specified OEM character set.

IpszWindowsStr ‘
Points to a buffer containing one or more characters from the Windows charac-

ter set.

Ipsz0emStr
Points to the location where the translated string is to be copied. To translate the

string in place, this parameter can be the same as IpszWindowsStr.

cbWindowsStr
Specifies the number of bytes in the buffer identified by the IpszWindowsStr pa-

rameter. If coWindowsStr is zero, the length is 64K (65,536).
This function does not return a value.

AnsiToOem, OemToAnsi

AnsiUpper

LPSTR AnsiUpper(lpszString)

LPSTR IpszString;

Parameters

/* address of string, or specific character */

The AnsiUpper function converts the given character string to uppercase.

IpszString
Points to a null-terminated string or specifies a single character. If the high-
order word of this parameter is zero, the low-order byte of the low-order word
must contain a single character to be converted.

20 AnsiUpperBuff

Return Value The return value points to a converted character string if the function parameter is
a character string. Otherwise, the return value is a 32-bit value that contains the
converted character in the low-order byte of the low-order word.

Comments The language driver makes the conversion for the current language (the one
selected by the user at setup or by using Control Panel). If no language driver is
selected, Windows uses an internal function.

Example The following example uses the AnsiUpper function to convert two strings to up-
percase for a non—case-sensitive comparison:

/*

* Convert the target string to uppercase, and then

* convert the subject string one character at a time.
*/

AnsiUpper(pszTarget);
while (#pszTarget != '\0') {
if (*pszTarget != (char) (DWORD) AnsiUpper(
MAKELP(@, *pszSubject)))
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

See Also AnsiLower, AnsiUpperBuff

AnsiUpperBuff

UINT AnsiUpperBuff(/pszString, cbString)
LPSTR IpszString; /* address of string to convert */
UINT cbString; /* length of string */

The AnsiUpperBuff function converts a character string in a buffer to uppercase.

Parameters IpszString
Points to a buffer containing one or more characters.
cbString

Specifies the number of bytes in the buffer identified by the I[pszString parame-
ter. If cbString is zero, the length is 64K (65,536).

AnyPopup 21

Return Value The return value specifies the length of the converted string if the function is
successful. ’
Comments The language driver makes the conversion for the current language (the one

selected by the user at setup or by using Control Panel). If no language driver is
selected, Windows uses an internal function.

Example The following example uses the AnsiUpperBuff function to convert two strings to
lowercase for a non—case-sensitive comparison:

/*

* Convert both the subject and target strings to uppercase before
* comparing.

*/

AnsiUpperBuff(pszSubject, (UINT) Tstrien(pszSubject));
AnsiUpperBuff(pszTarget, (UINT) TIstrlen(pszTarget));

while (*pszTarget != '\0') {
if (xpszTarget != xpszSubject)
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

See Also AnsiLower, AnsiUpper

AnyPopup _ [2x]
BOOL AnyPopup(void)

The AnyPopup function indicates whether an unowned, visible, top-level pop-up,
or overlapped window exists on the screen. The function searches the entire Win-
dows screen, not just the caller’s client area.

Parameters This function has no parameters.

Return Value The return value is nonzero if a pop-up window exists, even if the pop-up window
is completely covered by other windows. The return value is zero if no pop-up
window exists.

22 AppendMenu

Comments AnyPopup is a Windows 1.x function and remains for compatibility reasons. It is
generally not useful.

This function does not detect unowned pop-up windows or windows that do not
. have the WS_VISIBLE style bit set.

See Also GetLastActivePopup, ShowOwnedPopups

AppendMenu

BOOL AppendMenu(hmenu, fuFlags, idNewltem, IpNewltem)
*/

HMENU hmenu; /* handle of menu

UINT fuFlags; /* menu-item flags */
UINT idNewltem; /* menu-item identifier */
LPCSTR IpNewltem; /* specifies menu-item content */

The AppendMenu function appends a new item to the end of a menu. The appli-
cation can specify the state of the menu item by setting values in the fuFlags
parameter.

Parameters hmenu
Identifies the menu to be changed.
fuFlags
Specifies information about the state of the new menu item when it is added to

the menu. This parameter consists of one or more of the values listed in the fol-
lowing Comments section.

idNewltem
Specifies either the command identifier of the new menu item or, if the fuFlags
parameter is set to MF_POPUP, the menu handle of the pop-up menu.

IpNewlItem
Specifies the content of the new menu item. The interpretation of the
IpNewltem parameter depends on the value of the fuFlags parameter.

Value Menu-item content

MF_STRING Contains a long pointer to a null-terminated string.
MF_BITMAP Contains a bitmap handle in its low-order word.

AppendMenu

23

Return Value

Comments

Value Menu-item content

MF_OWNERDRAW Contains an application-supplied 32-bit value that the ap-
plication can use to maintain additional data associated
with the menu item. An application can find this value in
the itemData member of the structure pointed to by the
IParam parameter of the WM_MEASUREITEM and
WM_DRAWITEM messages that are sent when the menu
item is changed or initially displayed.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Whenever a menu changes (whether or not the menu is in a window that is dis-
played), the application should call the DrawMenuBar function.

Each of the following groups lists flags that are mutually exclusive and cannot be
used together:

s MF_DISABLED, MF_ENABLED, and MF_GRAYED
= MF_BITMAP, MF_STRING, and MF_OWNERDRAW
= MF_MENUBARBREAK and MF_MENUBREAK

= MF_CHECKED and MF_UNCHECKED

Following are the flags that can be set in the fuFlags parameter:

Value Meaning

MF_BITMAP Uses a bitmap as the item. The low-order word of the
IpNewlItem parameter contains the handle of the bitmap.

MF_CHECKED Places a check mark next to the item. If the application

has supplied check mark bitmaps (see the SetMenuItem-
Bitmaps function), setting this flag displays the “check
mark on” bitmap next to the menu item.

MF_DISABLED Disables the menu item so that it cannot be selected, but
does not gray it.

MF_ENABLED Enables the menu item so that it can be selected, and re-
stores it from its grayed state.

MF_GRAYED Disables the menu item so that it cannot be selected, and
grays it.

MF_MENUBARBREAK Same as MF_MENUBREAK except that, for pop-up
menus, separates the new column from the old column
with a vertical line.

MF_MENUBREAK Places the item on a new line for static menu-bar items.
For pop-up menus, places the item in a new column,
with no dividing line between the columns.

24 AppendMenu

Example

See Also

Value Meaning

MF_OWNERDRAW Specifies that the item is an owner-drawn item. The win-
dow that owns the menu receives a
WM_MEASUREITEM message when the menu is dis-
played for the first time to retrieve the height and width
of the menu item. The WM_DRAWITEM message is
then sent whenever the owner window must update the
visual appearance of the menu item. This option is not
valid for a top-level menu item.

MEF_POPUP Specifies that the menu item has a pop-up menu as-
sociated with it. The idNewltem parameter specifies a
handle to a pop-up menu to be associated with the item.
This is used for adding either a top-level pop-up menu or
adding a hierarchical pop-up menu to a pop-up menu
item.

MF_SEPARATOR Draws a horizontal dividing line. Can be used only in a
pop-up menu. This line cannot be grayed, disabled, or
highlighted. The [pNewltem and idNewltem parameters

are ignored.

MF_STRING Specifies that the menu item is a character string; the
IpNewlItem parameter points to the string for the menu
item. : '

MF_UNCHECKED Does not place a check mark next to the item (default). If

the application has supplied check mark bitmaps (see
SetMenultemBitmaps), setting this flag displays the
“check mark off” bitmap next to the menu item.

The following example uses the AppendMenu function to append three items to a
floating pop-up menu:

POINT ptCurrent;
HMENU hmenu;

ptCurrent = MAKEPOINT(1Param);

hmenu = CreatePopupMenu();

AppendMenu(hmenu, MF_ENABLED, IDM_ELLIPSE, "Ellipse");

AppendMenu(hmenu, MF_ENABLED, IDM_SQUARE, "Square");

AppendMenu(hmenu, MF_ENABLED, IDM_TRIANGLE, "Triangle");

ClientToScreen(hwnd, &ptCurrent);

TrackPopupMenu(hmenu, TPM_LEFTALIGN, ptCurrent.x,
ptCurrent.y, @, hwnd, NULL);

CreateMenu, DeleteMenu, DrawMenuBar, InsertMenu, RemdveMenu, Set-
MenultemBitmaps

Arc 25

Arc

[2x]

BOOL Arc(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nXStartArc, nYStartArc, nXEndArc,

nYEndArc)
HDC hdc;
int nLeftRect;
int nTopRect;
int nRightRect;
int nBottomRect;
int nXStartArc;
int nYStartArc;
int nXEndArc;
int nYEndArc;

Parameters

/* handle of device context */
/* x-coordinate upper-left corner bounding rectangle */
/* y-coordinate upper-left corner bounding rectangle */
/* x-coordinate lower-right corner bounding rectangle */
/* y-coordinate lower-right corner bounding rectangle */
/* x-coordinate arc starting point */
/* y-coordinate arc starting point */
/* x-coordinate arc ending point */
/* y-coordinate arc ending point */

The Are function draws an elliptical arc.

hdc
Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the bounding
rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the bounding
rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the bounding
rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the bounding
rectangle.)

nXStartArc
Specifies the logical x-coordinate of the point that defines the arc’s starting
point. This point need not lie exactly on the arc.

nYStartArc
Specifies the logical y-coordinate of the point that defines the arc’s starting
point. This point need not lie exactly on the arc.

nXEndArc
Specifies the logical x-coordinate of the point that defines the arc’s endpoint.
This point need not lie exactly on the arc.

nYEndArc
Specifies the logical y-coordinate of the point that defines the arc’s endpoint.
This point need not lie exactly on the arc.

26 ArrangelconicWindows

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments The arc drawn by using the Are function is a segment of the ellipse defined by the
specified bounding rectangle. The starting point of the arc is the point at which a
ray drawn from the center of the bounding rectangle through the specified starting
point intersects the ellipse. The end point of the arc is the point at which a ray
drawn from the center of the bounding rectangle through the specified end point in-
tersects the ellipse. The arc is drawn in a counterclockwise direction. Since an arc
is not a closed figure, it is not filled.

Both the width and the height of a rectangle must be greater than 2 units and less
than 32,767 units.

Example The following example uses a RECT structure to store the points defining the
bounding rectangle and uses POINT structures to store the coordinates that
specify the beginning and end of the arc:

HDC hdc;

RECT rc = { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };

Arc(hdc, rc.left, rc.top, rc.right, rc.bottom,
ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);

See Also Chord

ArrangelconicWindows

UINT ArrangelconicWindows(hwnd)
HWND hwnd; /* handle of parent window */

The ArrangelconicWindows function arranges all the minimized (iconic) child
windows of a parent window.

Parameters hwnd
Identifies the parent window.

Return Value The return value is the height of one row of icons if the function is successful.
Otherwise, it is zero.

BeginDeferWindowPos 27

Comments

See Also

An application that maintains its own minimized child windows can call Arrange-
IconicWindows to arrange icons in a client window. This function also arranges
icons on the desktop window, which covers the entire screen. The GetDesktop-
Window function retrieves the window handle of the desktop window.

An application sends the WM_MDIICONARRANGE message to the MDI client
window to prompt the client window to arrange its minimized MDI child windows.

GetDesktopWindow

BeginDeferWindowPos | ,

HDWP BeginDefer WindowPos(cWindows)

int cWindows;

Parameters

Return Value

Comments

See Also

/* number of windows */

The BeginDefer WindowPos function returns a handle of an internal structure.
The Defer WindowPos function fills this structure with information about the tar-
get position for a window that is about to be moved. The EndDefer WindowPos
function accepts a handle of this structure and instantaneously repositions the win-
dows by using the information stored in the structure.

cWindows
Specifies the initial number of windows for which to store position information
in the structure. The DeferWindowPos function increases the size of the struc-
ture if necessary.

The return value identifies the internal structure if the function is successful. Other-
wise, it is NULL.

If Windows must increase the size of the internal structure beyond the initial size
specified by the cWindows parameter but cannot allocate enough memory to do so,
Windows fails the entire begin/defer/end window-positioning sequence. By speci-
fying the maximum size needed, an application can detect and handle failure early
in the process.

DeferWindowPos, EndDeferWindowPos

28 BeginPaint

BeginPaint | [2x]

HDC BeginPaint(hwnd, Ipps)
HWND hwnd /* handle of window to paint */
PAINTSTRUCT FAR* [pps; /* address of structure with paint information */

The BeginPaint function prepares the specified window for painting and fills a
PAINTSTRUCT structure with information about the painting.

Parameters hwnd
Identifies the window to be repainted.

‘Ipps
Points to the PAINTSTRUCT structure that will receive the painting informa-
tion. The PAINTSTRUCT structure has the following form:

typedef struct tagPAINTSTRUCT { /* ps *x/
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[16];
} PAINTSTRUCT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value The return value is the handle of the device context for the given window if the
function is successful.

Comments The BeginPaint function automatically sets the clipping region of the device con-
text to exclude any area outside the update region. The update region is set by the
InvalidateRect or InvalidateRgn function and by the system after sizing,
moving, creating, scrolling, or any other operation that affects the client
area. If the update region is marked for erasing, BeginPaint sends a
WM_ERASEBKGND message to the window.

An application should not call BeginPaint except in response to a WM_PAINT
message. Each call to the BeginPaint function must have a corresponding call to
the EndPaint function.

If the caret is in the area to be painted, BeginPaint automatically hides the caret to
prevent it from being erased.

If the window’s class has a background brush, BeginPaint will use that brush to
erase the background of the update region before returning.

BitBIt 29

Example

See Also

The following example calls an application-defined function to paint a bar graph
in a window’s client area during the WM_PAINT message:

PAINTSTRUCT ps;

case WM_PAINT:
BeginPaint(hwnd, &ps);

EndPaint(hwnd, &ps);
break;

EndPaint, InvalidateRect, InvalidateRgn, ValidateRect, ValidateRgn

BitBit

BOOL BitBlt(hdcDest, nXDest, nYDest, nWidth, nHeight, hdcSrc, nXSrc, nYSrc, dwRop)

HDC hdcDest;
int nXDest;

int nYDest;

int nWidth;

int nHeight;
HDC hdcSrc;

int nXSrc;

int nYSrc;
DWORD dwRop;

Parameters

/* handle of destination device context */
/* upper-left corner destination rectangle */
/* upper-left corner destination rectangle */
/* bitmap width */
/* bitmap height */
/* handle of source device context */
/* upper-left corner source bitmap */
/* upper-left corner source bitmap */
/* raster operation for copy */

The BitBIt function copies a bitmap from a specified device context to a destina-
tion device context.

hdcDest
Identifies the destination device context.
nXDest

Specifies the logical x-coordinate of the upper-left corner of the destination
rectangle.

nYDest
Specifies the logical y-coordinate of the upper-left corner of the destination
rectangle.

nWidth
Specifies the width, in logical units, of the destination rectangle and source bit-
map.

30

BitBIt

nHeight
Specifies the height, in logical units, of the destination rectangle and source bit-
map.

hdcSrc
Identifies the device context from which the bitmap will be copied. This
parameter must be NULL if the dwRop parameter specifies a raster operation
that does not include a source. This parameter can specify a memory device
context.

nXSrc
Specifies the logical x-coordinate of the upper-left corner of the source bitmap.

nYSrc
Specifies the logical y-coordinate of the upper-left corner of the source bitmap.

dwRop
Specifies the raster operation to be performed. Raster operation codes define
how the graphics device interface (GDI) combines colors in output operations
that involve a current brush, a possible source bitmap, and a destination bitmap.
This parameter can be one of the following:

Code Description

BLACKNESS Turns all output black.

DSTINVERT Inverts the destination bitmap.

MERGECOPY Combines the pattern and the source bitmap by using the
Boolean AND operator.

MERGEPAINT Combines the inverted source bitmap with the destination bit-

map by using the Boolean OR operator.
NOTSRCCOPY Copies the inverted source bitmap to the destination.

NOTSRCERASE Inverts the result of combining the destination and source bit-
maps by using the Boolean OR operator.

PATCOPY Copies the pattern to the destination bitmap.

PATINVERT Combines the destination bitmap with the pattern by using the
Boolean XOR operator.

PATPAINT Combines the inverted source bitmap with the pattern by

using the Boolean OR operator. Combines the result of this
operation with the destination bitmap by using the Boolean

OR operator.
SRCAND Combines pixels of the destination and source bitmaps by
using the Boolean AND operator.
SRCCOPY Copies the source bitmap to the destination bitmap.
SRCERASE Inverts the destination bitmap and combines the result with
the source bitmap by using the Boolean AND operator.
SRCINVERT Combines pixels of the destination and source bitmaps by

using the Boolean XOR operator.

BitBIt 31

Return Value

Comments

Example

Code Description

SRCPAINT Combines pixels of the destination and source bitmaps by
using the Boolean OR operator.

WHITENESS Turns all output white.

The return value is nonzero if the function is successful. Otherwise, it is zero.

An application that uses the BitBIt function to copy pixels from one window to

-another window or from a source rectangle in a window into a target rectangle in

the same window should set the CS_BYTEALIGNWINDOW or
CS_BYTEALIGNCLIENT flag when registering the window classes. By aligning
the windows or client areas on byte boundaries, the application can ensure that the
BitBIt operations occur on byte-aligned rectangles. BitBlt operations on byte-
aligned rectangles are considerably faster than BitBIt operations on rectangles that
are not byte-aligned.

GDI transforms the nWidth and nHeight parameters, once by using the destination
device context, and once by using the source device context. If the resulting ex-
tents do not match, GDI uses the StretchBlt function to compress or stretch the
source bitmap as necessary. If destination, source, and pattern bitmaps do not have
the same color format, the BitBIt function converts the source and pattern bitmaps
to match the destination. The foreground and background colors of the destination
bitmap are used in the conversion.

When the BitBlt function converts a monochrome bitmap to color, it sets white
bits (1) to the background color and black bits (0) to the foreground color. The
foreground and background colors of the destination device context are used. To
convert color to monochrome, BitBIt sets pixels that match the background color
to white and sets all other pixels to black. BitBIt uses the foreground and back-
ground colors of the source (color) device context to convert from color to mono-
chrome.

The foreground color is the current text color for the specified device context, and
the background color is the current background color for the specified device con-
text.

Not all devices support the BitBIlt function. An application can determine whether
a device supports BitBIt by calling the GetDeviceCaps function and specifying
the RASTERCAPS index.

For a complete list of the raster-operation codes, see the Microsoft Windows Pro-
grammer’s Reference, Volume 4.

The following example loads a bitmap, retrieves its dimensions, and displays it in
a window:

32 BringWindowToTop

HDC hdc, hdcMemory;
HBITMAP hbmpMyBitmap, hbmpOld;
BITMAP bm;

hbmpMyBitmap = LoadBitmap(hinst, "MyBitmap");
GetObject(hbmpMyBitmap, sizeof(BITMAP), &bm);

hdc = GetDC(hwnd);
hdcMemory = CreateCompatibleDC(hdc);
hbmp01d = SelectObject(hdcMemory, hbmpMyBitmap);

BitB1t(hdc, @, @, bm.bmWidth, bm.bmHeight, hdcMemory, @, @, SRCCOPY);
SelectObject(hdcMemory, hbmp01d);

DeleteDC(hdcMemory);
ReleaseDC(hwnd, hdc);

See Also GetDeviceCaps, PatBlt, SetTextColor, StretchBlt, StretchDIBits

BringWindowToTop [2x]

BOOL BringWindowToTop(hwnd)
HWND hwnd; /* handle of window */

The BringWindowToTop function brings the given pop-up or child window
(including an MDI child window) to the top of a stack of overlapping windows.
In addition, it activates pop-up, top-level, and MDI child windows. The Bring-
WindowToTop function should be used to uncover any window that is partially
or completely obscured by any overlapping windows.

Parameters hwnd
Identifies the pop-up or child window to bring to the top.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments Calling this function is similar to calling the SetWindowPos function to change a
window’s position in the Z-order. The BringWindowToTop function does not
make a window a top-level window.

See Also SetWindowPos

BuildCommDCB

33

BuildCommDCB

int BuildCommDCB(IpszDef, ipdcb)

LPCSTR IpszDef;
DCB FAR* [pdcb;

Parameters

/* address of device-control string
/* address of device-control block

IpszDef

*/
*/

[2x]

The BuildCommDCB function translates a device-definition string into appro-
priate serial device control block (DCB) codes.

Points to a null-terminated string that specifies device-control information. The
string must have the same form as the parameters used in the MS-DOS mode

command.

Ipdcb

Points to a DCB structure that will receive the translated string. The structure
defines the control settings for the serial-communications device. The DCB

structure has the following form:

typedef struct tagDCB

{
BYTE
UINT
BYTE
BYTE
BYTE
UINT
UINT
UINT

Id;
BaudRate;
ByteSize;
Parity;
StopBits;
R1sTimeout;
CtsTimeout;
DsrTimeout;

UINT
UINT
UINT
UINT
UINT
UINT
UINT

fBinary
fRtsDisable
fParity
fOutxCtsFlow
fOutxDsrFlow
fDummy
fDtrDisable

we we we

=N e

.o

UINT
UINT
UINT
UINT
UINT
UINT
UINT
UINT

foutX
fInX
fPeChar
fNull
fChEvt
fDtrflow
fRtsflow
fDummy 2

ve we we

= b b e e e e

/*

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
[*
/*
/*
/*

/*
/*
/%
/*
/*
/*
/*

dcb

internal device identifier
baud rate

number of bits/byte, 4-8
0-4=none,odd,even,mark,space
0,1,2 =1, 1.5, 2

timeout for RLSD to be set
timeout for CTS to be set
timeout for DSR to be set

binary mode (skip EOF check)
don't assert RTS at init time
enable parity checking

CTS handshaking on output

DSR handshaking on output
reserved

don't assert DTR at init time

enable
enable
enable

output XON/XOFF

input XON/XOFF

parity err replacement
enable null stripping

enable Rx character event

DTR handshake on input

RTS handshake on input

*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

34 BuildCommDCB

Return Value

Comments

Example

See Also

char XonChar; /* Tx and Rx XON character */
char XoffChar; /* Tx and Rx XOFF character */
UINT XonLim; /* transmit XON threshold */
UINT XoffLim; /* transmit XOFF threshold . */
char PeChar; /* parity error replacement char */
char EofChar; /* end of Input character */
char EvtChar; /* received event character */
UINT TxDelay; /* amount of time between chars */
} DCB;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

The return value is zero if the function is successful. Otherwise, it is —1.

The BuildCommDCB function only fills the buffer. To apply the settings to a
port, an application should use the SetCommState function.

By default, BuildCommDCB specifies XON/XOFF and hardware flow control as
disabled. To enable flow control, an application should set the appropriate mem-
bers in the DCB structure.

The following example uses the BuildCommDCB and SetCommState functions
to set up COM1 to operate at 9600 baud, with no parity, 8 data bits, and 1 stop bit:

idComDev = OpenComm("COM1", 1024, 128);
if (idComDev < @) {
ShowError(idComDev, "OpenComm");
return 0;
}

err = BuildCommDCB("COM1:9600,n,8,1", &dcb);
if (err < Q) {

ShowError(err, "BuildCommDCB");

return 0;
}

err = SetCommState(&dch);

if (err < Q) {
ShowError(err, "SetCommState");
return 0;

SetCommState

CallMsgFilter 35

CaliMsgFilter [2x]

BOOL CallMsgFilter(lpmsg, nCode)

MSG FAR* lpmsg;

int nCode;

Parameters

Return Value

Comments

See Also

/* address of structure with message data */
/* processing code */

The CallMsgFilter function passes the given message and code to the current mes-
sage-filter function. The message-filter function is an application-specified func-
tion that examines and modifies all messages. An application specifies the

function by using the SetWindowsHook function.

lpmsg
Points to an MSG structure that contains the message to be filtered. The MSG
structure has the following form:

typedef struct tagMSG { /* msg */
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM 1Param;
DWORD time;
POINT pt;
} MSG;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

nCode
Specifies a code used by the filter function to determine how to process the mes-
sage.

The return value specifies the state of message processing. It is zero if the message
should be processed or nonzero if the message should not be processed further.

The CallMsgFilter function is usually called by Windows to let applications ex-
amine and control the flow of messages during internal processing in menus and
scroll bars or when moving or sizing a window.

Values given for the nCode parameter must not conflict with any of the MSGF_
and HC_ values passed by Windows to the message-filter function.

SetWindowsHook

36 CaliNextHookEx

CallINextHookEx

LRESULT CallNextHooKEx(2Hook, nCode, wParam, lParam)

HHOOK hHook;

int nCode;
WPARAM wParam;
LPARAM [Param;

Parameters

Return Value

Comments

See Also

/* handle of hook function

/* hook code */
[* first message parameter */
/* second message parameter */

The CallNextHooKkEx function passes the hook information to the next hook func-
tion in the hook chain.

hHook
Identifies the current hook function.

nCode
Specifies the hook code to pass to the next hook function. A hook function uses
this code to determine how to process the message sent to the hook.

wParam
Specifies 16 bits of additional message-dependent information.

[Param
Specifies 32 bits of additional message-dependent information.

The return value specifies the result of the message processing and depends on the
value of the nCode parameter.

Calling the CallNextHookEx function is optional. An application can call this
function either before or after completing any processing in its own hook function.
If an application does not call CallNextHookEx, Windows will not call the hook
functions that were installed before the application’s hook function was installed.

SetWindowsHookEx, UnhookWindowsHookEx

CallWindowProc

LRESULT CallWindowProc(wndprcPrev, hwnd, uMsg, wParam, IParam)

WNDPROC wndprcPrev; /* instance address of previous procedure */
HWND hwnd; /* handle of window */
UINT uMsg; /* message */
WPARAM wParam; /* first message parameter */
LPARAM [Param; /* second message parameter */

CallwndProc 37

Parameters

Return Value

Comments

See Also

The CallWindowProc function passes message information to the specified win-
dow procedure.

wndprcPrev
Specifies the procedure-instance address of the previous window procedure.

-~ hwnd

Identifies the window that will receive the message.

uMsg
Specifies the message.

wParam
Specifies 16 bits of additional message-dependent information.

lParam
Specifies 32 bits of additional message-dependent information.

The return value specifies the result of the message processing and depends on the
message sent.

The CallWindowProc function is used for window subclassing. Normally, all
windows with the same class share the same window procedure. A subclass is a
window or set of windows belonging to the same window class whose messages
are intercepted and processed by another window procedure (or procedures)
before being passed to the window procedure of that class.

The SetWindowLong function creates the subclass by changing the window pro-
cedure associated with a particular window, causing Windows to call the new win-
dow procedure instead of the previous one. Any messages not processed by the
new window procedure must be passed to the previous window procedure by
calling CallWindowProc. This allows you to create a chain of window proce-
dures.

SetWindowLong

CallWndProc

LRESULT CALLBACK CallWndProc(code, wParam, [Param)

int code;

WPARAM wParam;
LPARAM [Param;

/* process-message flag */
/* current-task flag */
/* address of structure with message data */

The CallWndProc function is a library-defined callback function that the system
calls whenever the SendMessage function is called. The system passes the

38 CallWndProc

Parameters

Return Value

Comments

See Also

message to the callback function before passing the message to the destination win-
dow procedure.

code
Specifies whether the callback function should process the message or call the
CallNextHooKkEx function. If the code parameter is less than zero, the callback
function should pass the message to CallNextHookEx without further process-
ing.

wParam
Specifies whether the message is sent by the current task. This parameter is non-
zero if the message is sent; otherwise, it is NULL.

[Param
Points to a structure that contains details about the message. The following
shows the order, type, and description of each member of the structure:

Member Description

IParam Contains the [Param parameter of the message.
wParam Contains the wParam parameter of the message.
uMsg Specifies the message.

hWnd Identifies the window that will receive the message.

The callback function should return zero.

The CallWndProc callback function can examine or modify the message as neces-
sary. Once the function returns control to the system, the message, with any modi-
fications, is passed on to the window progedure.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the
WH_CALLWNDPROC filter type and the procedure-instance address of the call-
back function in a call to the SetWindowsHookEx function.

CallWndProc is a placeholder for the library-defined function name. The actual

name must be exported by including it in an EXPORTS statement in the library’s
module-definition file.

CallNextHookEx, SendMessage, SetWindowsHookEx

Catch 39

Catch

[2x]

int Catch(/pCatchBuf)
int FAR* [pCatchBuf; /* address of buffer for array */

Parameters

Return Value

Comments

Example

The Catch function captures the current execution environment and copies it to a
buffer. The Throw function can use this buffer later to restore the execution en-
vironment. The execution environment includes the state of all system registers
and the instruction counter.

IpCatchBuf
Points to a memory buffer large enough to contain a CATCHBUF array.

The Catch function returns immediately with a return value of zero. When the
Throw function is called, it returns again, this time with the return value specified
in the nErrorReturn parameter of the Throw function.

The Catch function is similar to the C run-time function setjmp.

The following example calls the Catch function to save the current execution
environment before calling a recursive sort function. The first return value

from Catch is zero. If the doSort function calls the Throw function, execution
will again return to the Catch function. This time, Catch will return the
STACKOVERFLOW error passed by the doSort function. The doSort function is
recursive—that is, it calls itself. It maintains a variable, wStackCheck, that is used
to check to see how much stack space has been used. If more then 3K of the stack
has been used, doSort calls Throw to drop out of all the nested function calls back
into the function that called Catch. -

ftdefine STACKOVERFLOW 1

UINT uStackCheck;
CATCHBUF catchbuf;

{
int iReturn;
char szBuf[80];
if ((iReturn = Catch((int FAR*) catchbuf)) != 0) {

. /* Error processing goes here. */

40 CBTProc

else {
uStackCheck = 0; /* initializes stack-usage count */
doSort(1l, 100); /* calls sorting function */
}
break;
}
void doSort(int sLeft, int sRight)
{
int slLast;
/*
* Determine whether more than 3K of the stack has been
* used, and if so, call Throw to drop back into the
* original calling application.
E3
* The stack is incremented by the size of the two parameters,
* the two local variables, and the return value (2 for a near
* function call).
*/
uStackCheck += (sizeof(int) * 4) + 2;
if (uStackCheck > (3 * 1024))
Throw((int FAR*) catchbuf, STACKOVERFLOW);
. /* A sorting algorithm goes here. */
doSort(sLeft, sLast - 1); /* note recursive call */
uStackCheck -= 10; /* updates stack-check variable */
}
See Also Throw

CBTProc | G

LRESULT CALLBACK CBTProc(code, wParam, I[Param)

int code; /* CBT hook code */
WPARAM wParam; /* depends on the code parameter */
LPARAM [Param; /* depends on the code parameter */

The CBTProc function is a library-defined callback function that the system calls
before activating, creating, destroying, minimizing, maximizing, moving, or sizing
a window; before completing a system command; before removing a mouse or

CBTProc 41

Parameters

keyboard event from the system message queue; before setting the input focus; or
before synchronizing with the system message queue.

The value returned by the callback function determines whether to allow or pre-

vent one of these operations.

code

Specifies a computer-based-training (CBT) hook code that identifies the opera-
tion about to be carried out, or a value less than zero if the callback function
should pass the code, wParam, and I[Param parameters to the CallNextHookEx
function. The code parameter can be one of the following:

Code

Meaning

HCBT_ACTIVATE

HCBT_CLICKSKIPPED

HCBT_CREATEWND

HCBT_DESTROYWND
HCBT_KEYSKIPPED

HCBT_MINMAX

Indicates that the system is about to activate a win-
dow.

Indicates that the system has removed a mouse mes-
sage from the system message queue. A CBT applica-
tion that must install a journaling playback filter in
response to the mouse message should do so when it
receives this hook code.

Indicates that a window is about to be created. The
system calls the callback function before sending the
WM_CREATE or WM_NCCREATE message to the
window. If the callback function returns TRUE, the
system destroys the window—the CreateWindow
function returns NULL, but the WM_DESTROY mes-
sage is not sent to the window. If the callback func-
tion returns FALSE, the window is created normally.

At the time of the HCBT_CREATEWND notifica-
tion, the window has been created, but its final size
and position may not have been determined, nor has
its parent window been established.

It is possible to send messages to the newly created
window, although the window has not yet received
WM_NCCREATE or WM_CREATE messages.

It is possible to change the Z-order of the newly
created window by modifying the hwndInsertAfter
member of the CBT_ CREATEWND structure.

Indicates that a window is about to be destroyed.

Indicates that the system has removed a keyboard
message from the system message queue. A CBT ap-
plication that must install a journaling playback filter
in response to the keyboard message should do so
when it receives this hook code.

Indicates that a window is about to be minimized or
maximized.

42 CBTProc

Return Value

Comments

Code Meaning

HCBT_MOVESIZE Indicates that a window is about to be moved or sized.

HCBT_QS Indicates that the system has retrieved a
WM_QUEUESYNC message from the system mes-
sage queue.

HCBT_SETFOCUS Indicates that a window is about to receive the input
focus.

HCBT_SYSCOMMAND Indicates that a system command is about to be car-
ried out. This allows a CBT application to prevent
task switching by hot keys.

wParam
This parameter depends on the code parameter. See the following Comments
section for details.

IParam
This parameter depends on the code parameter. See the following Comments
section for details.

For operations corresponding to the following CBT hook codes, the callback func-
tion should return zero to allow the operation, or 1 to prevent it:

HCBT_ACTIVATE
HCBT_CREATEWND
HCBT_DESTROYWND
HCBT_MINMAX
HCBT_MOVESIZE
HCBT_SYSCOMMAND

The return value is ignored for operations corresponding to the following CBT
hook codes:

HCBT_CLICKSKIPPED
HCBT_KEYSKIPPED
HCBT_QS

The callback function should not install a playback hook except in the situations
described in the preceding list of hook codes.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the WH_CBT filter
type and the procedure-instance address of the callback function in a call to the
SetWindowsHooKkEx function.

CBTProc 43

CBTProc s a placeholder for the library-defined function name. The actual name
must be exported by including it in an EXPORTS statement in the library’s
module-definition file.

The following table describes the wParam and [Param parameters for each
HCBT __ constant.

Constant

wParam

IParam

HCBT_ACTIVATE

HCBT_CLICKSKIPPED

HCBT_CREATEWND

HCBT_DESTROYWND

HCBT_KEYSKIPPED

HCBT_MINMAX

HCBT_MOVESIZE
HCBT_QS

HCBT_SETFOCUS

Specifies the handle of the win-
dow about to be activated.

Identifies the mouse message re-
moved from the system mes-
sage queue.

Specifies the handle of the new
window. ’

Specifies the handle of the win-
dow about to be destroyed.

Identifies the virtual key code.

Specifies the handle of the win-
dow being minimized or maxi-
mized.

Specifies the handle of the win-
dow to be moved or sized.

This parameter is undefined; it
should be set to 0.

Specifies the handle of the win-
dow gaining the input focus.

Specifies a long pointer to a CBT-
ACTIVATESTRUCT structure that con-
tains the handle of the currently active
window and specifies whether the activation
is changing because of a mouse click.

Specifies a long pointer to a MOUSE-
HOOKSTRUCT structure that contains the
hit-test code and the handle of the window
for which the mouse message is intended.
For a list of hit-test codes, see the descrip-
tion of the WM_NCHITTEST message.

Specifies a long pointer to a
CBT_CREATEWND data structure that
contains initialization parameters for the win-
dow.

This parameter is undefined and should be
set to OL.

Specifies the repeat count, scan code, key-
transition code, previous key state, and con-
text code. For more information, see the
description of the WM_KEYUP or
WM_KEYDOWN message.

The low-order word specifies a show-
window value (SW_) that specifies the
operation. For a list of show-window values,
see the description of the ShowWindow
function. The high-order word is undefined..

Specifies a long pointer to a RECT structure
that contains the coordinates of the window.
This parameter is undefined and should be
set to OL.

The low-order word specifies the handle of
the window losing the input focus. The high-
order word is undefined.

44 ChangeClipboardChain

Constant wParam IParam

HCBT_SYSCOMMAND Specifies a system-command If wParam is SC_HOTKEY, the low-order
value (SC_) that specifies the word of [Param contains the handle of the
system command. For more window that task switching will bring to the
information about system foreground. If wParam is not SC_HOTKEY
command values, see the and a System-menu command is chosen
description of the with the mouse, the low-order word of
WM_SYSCOMMAND IParam contains the x-coordinate of the cur-
message. sor and the high-order word contains the

y-coordinate. If neither of these conditions is
true, [Param is undefined.

See Also CallNextHookEx, SetWindowsHookEx

ChangeClipboardChain [2x]

BOOL ChangeClipboard Chain(hwnd, hwndNext)
HWND hwnd; /* handle of window to remove */
HWND hwndNext; /* handle of next window */

The ChangeClipboardChain function removes the window identified by the
hwnd parameter from the chain of clipboard viewers and makes the window iden-
tified by the ~wndNext parameter the descendant of the ~wnd parameter’s ancestor
in the chain.

Parameters hwnd
Identifies the window that is to be removed from the chain. The handle must
have been passed to the SetClipboard Viewer function.

hwndNext
Identifies the window that follows Awnd in the clipboard-viewer chain (this is
the handle returned by the SetClipboardViewer function, unless the sequence
was changed in response to a WM_CHANGECBCHAIN message).

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also SetClipboardViewer

CheckDIgButton

45

ChangeMenu

The Microsoft Windows 3.1 Software Development Kit (SDK) has replaced this

Example

See Also

function with five specialized functions, listed as follows:

Function Description

[2x]

AppendMenu Appends a menu item to the end of a menu.

DeleteMenu Deletes a menu item from a menu, destroying the menu item.
InsertMenu Inserts a menu item into a menu.
ModifyMenu Modifies a menu item in a menu.

RemoveMenu Removes a menu item from a menu but does not destroy the menu

item.

Applications written for Windows versions earlier than 3.0 may continue to call
ChangeMenu as previously documented. Applications written for Windows 3.0

and 3.1 should call the new functions.

The following example shows a call to ChangeMenu and how it would be rewrit-

ten to call AppendMenu:

ChangeMenu(hMenu, /* handle of menu */
0, /* position parameter not used */
"&White", /* menu-item string */
IDM_PATTERNL, /* menu-item identifier */
MF_APPEND | MF_STRING | MF_CHECKED); /* flags */

AppendMenu(hMenu, /* handle of menu */
MF_STRING | MF_CHECKED, /* flags */
IDM_PATTERNL, /* menu-item identifier =/
"&White"); /* menu-item string */

AppendMenu, DeleteMenu, InsertMenu, ModifyMenu, RemoveMenu

CheckDIgButton

void CheckDigButton(iwndDlg, idButton, uCheck)

HWND hwndDlg;
int idButton;
UINT uCheck;

/* handle of dialog box */
/* button-control identifier */
/* check state *

46 CheckMenultem

Parameters

Return Value

Comments

See Also

The CheckDlgButton function selects (places a check mark next to) or clears (re-
moves a check mark from) a button control, or it changes the state of a three-state
button.

hwndDlg
Identifies the dialog box that contains the button.

idButton
Identifies the button to be modified.

uCheck
Specifies the check state of the button. If this parameter is nonzero,
CheckDlgButton selects the button; if the parameter is zero, the function clears
the button. For a three-state check box, if uCheck is 2, the button is grayed; if
uCheck is 1, it is selected; if uCheck is 0, it is cleared.

This function does not return a value.

The CheckDlgButton function sends a BM_SETCHECK message to the
specified button control in the given dialog box.

CheckRadioButton, IsDigButtonChecked

CheckMenultem

BOOL CheckMenultem(hmenu, idCheckltem, uCheck)

HMENU hmenu;
UINT idCheckitem;
UINT uCheck;

Parameters

/* handle of menu */
/* menu-item identifier */
/* check state and position */

The CheckMenultem function selects (places a check mark next to) or clears (re-
moves a check mark from) a specified menu item in the given pop-up menu.

hmenu
Identifies the menu.

idCheckltem
Identifies the menu item to be selected or cleared.

uCheck
Specifies how to determine the position of the menu item
(MF_BYCOMMAND or MF_BYPOSITION) and whether the item
should be selected or cleared (MF_CHECKED or MF_UNCHECKED). This
parameter can be a combination of these values, which can be combined by
using the bitwise OR operator. The values are described as follows:

CheckRadioButton 47

Value Meaning

MF_BYCOMMAND Specifies that the idCheckltem parameter gives the menu-
item identifier (MF_BYCOMMAND is the default).

MF_BYPOSITION Specifies that the idCheckltem parameter gives the posi-
tion of the menu item (the first item is at position zero).
MF_CHECKED Selects the item (adds check mark).

MF_UNCHECKED Clears the item (removes check mark).

Return Value The return value specifies the previous state of the item—MF_CHECKED or
MF_UNCHECKED—if the function is successful. The return value is —1 if the
menu item does not exist.

Comments The idCheckltem parameter may identify a pop-up menu item as well as a menu
item. No special steps are required to select a pop-up menu item.

Top-level menu items cannot have a check.

A pop-up menu item should be selected by position since it does not have a menu-
item identifier associated with it.

~ See Also GetMenuState, SetMenultemBitmaps

CheckRadioButton - [2x]

void CheckRadioButton(hwndDlg, idFirstButton, idLastButton, idCheckButton)

HWND hwndDlg; /* handle of dialog box */
int idFirstButton; /* identifier of first radio button in group */
int idLastButton; /* identifier of last radio button in group */
int idCheckButton; /* identifier of radio button to select */

The CheckRadioButton function selects (adds a check mark to) a given radio but-
ton in a group and clears (removes a check mark from) all other radio buttons in
the group.

Parameters hwndDlg
Identifies the dialog box that contains the radio button.

idFirstButton
Specifies the identifier of the first radio button in the group.

idLastButton
Specifies the identifier of the last radio button in the group.

48 ChildWindowFromPoint

idCheckButton
Specifies the identifier of the radio button to select.
Return Value This function does not return a value.
Comments The CheckRadioButton function sends a BM_SETCHECK message to the

specified radio button control in the given dialog box.

See Also CheckDIgButton, IsDigButtonChecked

ChildWindowFromPoint [2x]

HWND ChildWindowFromPoint(hwndParent, pt)
HWND hwndParent; /* handle of parent window */
POINT pr; /* structure with point coordinates */

The ChildWindowFromPoint function determines which, if any, of the child win-
dows belonging to the given parent window contains the specified point.

Parameters hwndParent
Identifies the parent window.
pt
Specifies a POINT structure that defines the client coordinates of the point to
be checked. The POINT structure has the following form:

typedef struct tagPOINT { /% pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value . The return value is the handle of the child window (hidden, disabled, or trans-
parent) that contains the point, if the function is successful. If the given point lies
outside the parent window, the return value is NULL. If the point is within the
parent window but is not contained within any child window, the return value is
the handle of the parent window.

Comments More than one window may contain the given point, but Windows returns the
- handle only of the first window encountered that contains the point.

ChooseColor 49

See Also WindowFromPoint

ChooseColor | [31]

#include <commdlg.h>

BOOL ChooseColor(Ipcc)
CHOOSECOLOR FAR* [pcc; /* address of structure with initialization data */

The ChooseColor function creates a system-defined dialog box from which the
user can select a color.

Parameters Ipcc

Points to a CHOOSECOLOR structure that initially contains information nec-
essary to initialize the dialog box. When the ChooseColor function returns, this
structure contains information about the user’s color selection. The CHOOSE-

COLOR structure has the following form:

f#finclude <commdlg.h>

typedef struct tagCHOOSECOLOR { /* cc */
DWORD 1StructSize;
HWND hwndOwner;
HWND hInstance;
COLORREF rgbResult;
COLORREF FAR* 1pCustColors;
DWORD Flags;
LPARAM 1CustData;
UINT (CALLBACK* 1pfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR 1pTemplateName;
} CHOOSECOLOR;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value The return value is nonzero if the function is successful. It is zero if an error oc-
curs, if the user chooses the Cancel button, or if the user chooses the Close com-
mand on the System menu (often called the Control menu) to close the dialog box.

Errors Use the CommDIgExtendedError function to retrieve the error value, which may
be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE

50 ChooseColor

Comments

Example

CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE

The dialog box does not support color palettes. The color choices offered by the
dialog box are limited to the system colors and dithered versions of those colors.

If the hook function (to which the lpfnHook member of the CHOOSECOLOR

structure points) processes the WM_CTLCOLOR message, this function must re-
turn a handle for the brush that should be used to paint the control background.

The following example initializes a CHOOSECOLOR structure and then creates

a color-selection dialog box:

/* Color variables */ '

CHOOSECOLOR cc;

COLORREF clr;

COLORREF aclrCust[16];

int i;

/* Set the custom-color controls to white. */

for (i = 0; i < 16; i++)
aclrCust[i] = RGB(255, 255, 255);

/* Initialize clr to black. */
clr = RGB(O, 0, 0);
/* Set all structure fields to zero. */

memset(&cc, @, sizeof(CHOOSECOLOR));

/* Initialize the necessary CHOOSECOLOR members.

cc.1StructSize = sizeof (CHOOSECOLOR);
cc.hwndOwner = hwnd;

cc.rgbResult = clr;

cc.1pCustColors = aclrCust;

cc.Flags = CC_PREVENTFULLOPEN;

*/

ChooseFont 51

if (ChooseColor(&cc))

. /* Use cc.rgbResult to select the user-requested color. */

ChooseFont

#include <commdlg.h>

BOOL ChooseFont(ipcf)
CHOOSEFONT FAR*Ipcf;

/* address of structure with initialization data

*/

The ChooseFont function creates a system-defined dialog box from which the
user can select a font, a font style (such as bold or italic), a point size, an effect
(such as strikeout or underline), and a color.

Ipcf

Points to a CHOOSEFONT structure that initially contains information
necessary to initialize the dialog box. When the ChooseFont function returns,
this structure contains information about the user’s font selection. The
CHOOSEFONT structure has the following form:

f#include <commdlg.h>

typedef struct tagCHOOSEFONT {

DWORD

HWND

HDC

LOGFONT FAR=*
int

DWORD
COLORREF
LPARAM

UINT (CALLBACK*
LPCSTR
HINSTANCE
LPSTR

UINT

int

int

} CHOOSEFONT;

/* cf *x/
1StructSize;
hwndOwner;

hDC;

TpLogFont;
iPointSize;

Flags;

rgbColors;
1CustData;

1pfnHook) (HWND, UINT, WPARAM,
TpTemplateName;
hlnstance;
1pszStyle;
nFontType;

nSizeMin;

nSizeMax;

LPARAM) ;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

52 ChooseFont

Return Value

Errors

Example

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the CommDIgExtendedError function to retrieve the error value, which may
be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
CFERR_MAXLESSTHANMIN
CFERR_NOFONTS

The following example initializes a CHOOSEFONT structure and then displays a
font dialog box:

LOGFONT 1f;
CHOOSEFONT cf;

/* Set all structure fields to zero. */
memset (&cf, @, sizeof(CHOOSEFONT));

cf.1StructSize = sizeof(CHOOSEFONT);

cf.hwndOwner = hwnd;

cf.lpLogFont = &1f;

cf.Flags = CF_SCREENFONTS | CF_EFFECTS;
cf.rgbColors = RGB(@, 255, 255); /* light blue */
cf.nFontType = SCREEN_FONTTYPE;

ChooseFont(&cf);

Chord 53

Chord (2]

BOOL Chord(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nXStartLine, nYStartLine,

nXEndLine, nYEndLine)
HDC hdc; /* handle of device context */
int nLeftRect; /* x-coordinate upper-left corner bounding rectangle */
int nTopRect; /* y-coordinate upper-left corner bounding rectangle */
int nRightRect; /* x-coordinate lower-right corner bounding rectangle */
int nBottomRect; /* y-coordinate lower-right corner bounding rectangle */
int nXStartLine; /* x-coordinate line-segment starting point */
int nYStartLine; /* y-coordinate line-segment starting point */
int nXEndLine; /* x-coordinate line-segment ending point */
int nYEndLine; /* y-coordinate line-segment ending point */

The Chord function draws a chord (a closed figure bounded by the intersection of
an ellipse and a line segment).

Parameters hdc
Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the bounding
rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the bounding
rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the bounding
rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the bounding
rectangle.

nXStartLine
Specifies the logical x-coordinate of the starting point of the line segment.

nYStartLine
Specifies the logical y-coordinate of the starting point of the line segment.

nXEndLine
Specifies the logical x-coordinate of the ending point of the line segment.

nYEndLine
Specifies the logical y-coordinate of the ending point of the line segment.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

54 ClassFirst

Comments The (nLeftRect, nTopRect) and (nRightRect, nBottomRect) parameter combina-
tions specify the upper-left and lower-right corners, respectively, of a rectangle
bounding the ellipse that is part of the chord. The (nXStartLine, nYStartLine) and
(nXEndLine, nYEndLine) parameter combinations specify the endpoints of a line
that intersects the ellipse. The chord is drawn by using the selected pen and is
filled by using the selected brush.

The figure the Chord function draws extends up to but does not include the right
and bottom coordinates. This means that the height of the figure is determined as
follows:

nBottomRect — nTopRect
The width of the figure is determined similarly:

nRightRect — nLeftRect

Example _ The following example uses a RECT structure to store the points defining the
bounding rectangle and uses POINT structures to store the coordinates that
specify the beginning and end of the chord:

HDC hdc;

RECT rc = { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };

Chord(hdc, rc.left, rc.top, rc.right, rc.bottom,
ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);

See Also Arc

ClassFirst [34]

#include <toolhelp.h>

BOOL ClassFirst(/pce)
CLASSENTRY FAR* Ipce; /* address of structure for class info */

The ClassFirst function fills the specified structure with general information
about the first class in the Windows class list.

ClassNext 55

Parameters Ipce
Points to a CLASSENTRY structure that will receive the class information.
The CLASSENTRY structure has the following form:

ffinclude <toolhelp.h>

typedef struct tagCLASSENTRY { /#* ce #*/
DWORD dwSize;
HMODULE hlInst;
char szClassName[MAX_CLASSNAME + 17;
WORD wNext;

} CLASSENTRY;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments The ClassFirst function can be used to begin a walk through the Windows class
list. To examine subsequent items in the class list, an application can use the
ClassNext function.

Before calling ClassFirst, an application must initialize the CLASSENTRY struc-
ture and specify its size, in bytes, in the dwSize member. An application can ex-
amine subsequent entries in the Windows class list by using the ClassNext
function.

For more specific information about an individual class, use the GetClassInfo

function, specifying the name of the class and instance handle from the
CLASSENTRY structure.

See Also ClassNext, GetClassInfo

ClassNext [31]

#include <toolhelp.h>

BOOL ClassNext(/pce)
CLASSENTRY FAR* Ipce; /* address of structure for class info */

The ClassNext function fills the specified structure with general information
about the next class in the Windows class list.

56 ClearCommBreak

Parameters Ipce
Points to a CLASSENTRY structure that will receive the class information.
The CLASSENTRY structure has the following form:

f#tinclude <toolhelp.h>

typedef struct tagCLASSENTRY { /* ce */
DWORD dwSize;
HMODULE hInst;
char szClassName[MAX_CLASSNAME + 17];
WORD wNext;

} CLASSENTRY;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments The ClassNext function can be used to continue a walk through the Windows
class list started by the ClassFirst function.

For more specific information about an individual class, use the GetClassInfo

function with the name of the class and instance handle from the CLASSENTRY
structure.

See Also ClassFirst

ClearCommBreak [

int ClearCommBreak(idComDev)
int idComDev; /* device to be restored */

The ClearCommBreak function restores character transmission and places the
communications device in a nonbreak state.

Parameters idComDev
Identifies the communications device to be restored. The OpenComm function
returns this value.

ClientToScreen 57

Return Value The return value is zero if the function is successful, or —1 if the idComDev
parameter does not identify a valid device.

Comments This function clears the communications-device break state set by the SetComm-
Break function.
See Also OpenComm, SetCommBreak

ClientToScreen [2x]

void ClientToScreen(hwnd, Ippt)
HWND hwnd; /* window handle for source coordinates */
POINT FAR* Ippt; /* address of structure with coordinates */

The ClientToScreen function converts the client coordinates of a given point on
the screen to screen coordinates.

Parameters hwnd
Identifies the window whose client area is used for the conversion.

Ippt
Points to a POINT structure that contains the client coordinates to be-con-
verted. The POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value This function does not return a value.
Comments The ClientToScreen function replaces the coordinates in the POINT structure

with the screen coordinates. The screen coordinates are relative to the upper-left
corner of the screen. ‘

58 ClipCursor

Example

See Also

The following example uses the LOWORD and HIWORD macros and the
ClientToScreen function to convert the mouse position to screen coordinates:

POINT pt;
pt.x = LOWORD(1Param);
pt.y = HIWORD(1Param);

ClientToScreen(hwnd, &pt);

MapWindowPoints, ScreenToClient

ClipCursor

[2x]

void ClipCursor(lprc)
const RECT FAR* [prc; /* address of structure with rectangle */

Parameters

Return Value

Comments

See Also

The ClipCursor function confines the cursor to a rectangle on the screen. If a sub-
sequent cursor position (set by the SetCursorPos function or by the mouse) lies

outside the rectangle, Windows automatically adjusts the position to keep the cur-
sor inside.

Iprc
Points to a RECT structure that contains the screen coordinates of the upper-
left and lower-right corners of the confining rectangle. If this parameter is
NULL, the cursor is free to move anywhere on the screen. The RECT structure
has the following form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

This function does not return a value.

The cursor is a shared resource. An application that has confined the cursor to a
given rectangle must free it before relinquishing control to another application.

GetClipCursor, GetCursorPos, SetCursorPos

CloseComm 59

CloseClipboard [2x]

BOOL CloseClipboard(void)

Parameters

Return Value

The CloseClipboard function closes the clipboard.
This function has no parameters.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments The CloseClipboard function should be called when a window has finished ex-
amining or changing the clipboard. This lets other applications access the clip-
board.

See Also GetOpenClipboardWindow, OpenClipboard

CloseComm [2x]

int CloseComm(idComDev)

int idComDev;

Parameters

Return Value

See Also

/* device to close */

The CloseComm function closes the specified communications device and frees
any memory allocated for the device’s transmission and receiving queues. All char-
acters in the output queue are sent before the communications device is closed.

idComDev
Specifies the device to be closed. The OpenComm function returns this value.

The return value is zero if the function is successful. Otherwise, it is less than zero.

OpenComm

60 CloseDriver

CloseDriver [31]

LRESULT CloseDriver(hdrvr, [IParaml, IParam2)

HDRVR hdrvr; /* handle of installable driver */
LPARAM [Paraml; [* driver-specific data */
LPARAM [Param?2; /* driver-specific data */

The CloseDriver function closes an installable driver.

Parameters hdrvr
Identifies the installable driver to be closed. This parameter must have been ob-
tained by a previous call to the OpenDriver function.

[Paraml
Specifies driver-specific data.

IParam?2
Specifies driver-specific data.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments When an application calls CloseDriver and the driver identified by hdrvr is the
last instance of the driver, Windows calls the DriverProc function three times. On
the first call, Windows sets the third DriverProc parameter, wMessage, to
DRV_CLOSE; on the second call, Windows sets wMessage to DRV_DISABLE;
and on the third call, Windows sets wMessage to DRV_FREE. When the driver
identified by hdrvr is not the last instance of the driver, only DRV_CLOSE is sent.
The values specified in the [Paraml and [Param?2 parameters are passed to the
IParaml and [Param?2 parameters of the DriverProc function.

See Also DriverProc, OpenDriver

CloseMetaFile [2x]

HMETAFILE CloseMetaFile(hdc)
HDC hdc; /* handle of device context */

The CloseMetaFile function closes a metafile device context and creates a handle
of a metafile. An application can use this handle to play the metafile.

Parameters hdc
Identifies the metafile device context to be closed.

CloseWindow 61

Return Value The return value is the handle of the metafile if the function is successful. Other-
wise, it is NULL.
Comments If a metafile handle created by using the CloseMetaFile function is no longer

needed, you should remove it (using the DeleteMetaFile function).

Example The following example creates a device-context handle of a memory metafile,
draws a line in the device context, retrieves a handle of the metafile, plays the
metafile, and finally deletes the metafile.

HDC hdcMeta;
HMETAFILE hmf;

hdcMeta = CreateMetaFile(NULL);
MoveTo(hdcMeta, 10, 10);
LineTo(hdcMeta, 100, 100);

hmf = CloseMetaFile(hdcMeta);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);

See Also CreateMetaFile, DeleteMetaFile, PlayMetaFile

CloseSound [2x]

void CloseSound(void)

This function is obsolete. Use the multimedia audio functions instead. For informa-
tion about these functions, see the Microsoft Windows Multimedia Programmer’s
Reference.

CloseWindow [2x]

void CloseWindow(hwnd)
HWND hwnd; /* handle of window to minimize */

The CloseWindow function minimizes (but does not destroy) the given window.
To destroy a window, an application must use the DestroyWindow function.

Parameters hwnd
Identifies the window to be minimized.

62 CombineRgn

Return Value This function does not return a value.

Comments This function has no effect if the Awnd parameter identifies a pop-up or child win-
dow.

See Also DestroyWindow, IsIconic, Openlcon

CombineRgn | [2x]

int CombineRgn(hrgnDest, hrgnSrcl, hrgnSrc2, fCombineMode)

HRGN hrgnDest; /* handle of region to receive combined regions */
HRGN hrgnSrcl; /* handle of first source region */
HRGN hrgnSrc2; /* handle of second source region */
int fCombineMode; /* mode for combining regions */

The CombineRgn function creates a new region by combining two existing re-
gions.

Parameters hrgnDest
Identifies an existing region that will be replaced by the new region.

hrgnSrcl
Identifies an existing region.

hrgnSrc2
Identifies an existing region.

fCombineMode
Specifies the operation to use when combining the two source regions. This
parameter can be any one of the following values:

Value Meaning

RGN_AND Uses overlapping areas of both regions (intersection).
RGN_COPY Creates a copy of region 1 (identified by the hrgnSrcl parameter).

RGN_DIFF Creates a region consisting of the areas of region 1 (identified by
hrgnSrcl) that are not part of region 2 (identified by the hrgnSrc2

parameter).
RGN_OR Combines all of both regions (union).
RGN_XOR Combines both regions but removes overlapping areas.
Return Value The return value specifies that the resulting region has overlapping borders

(COMPLEXREGION), is empty (NULLREGION), or has no overlapping borders

CommDIgExtendedError 63

(SIMPLEREGION), if the function is successful. Otherwise, the return value is
ERROR.

Comments The size of a region is limited to 32,000 by 32,000 logical units or 64K of
memory, whichever is smaller.

The CombineRgn function replaces the region identified by the ArgnDest parame-
ter with the combined region. To use CombineRgn most efficiently, hrgnDest
should be a trivial region, as shown in the following example.

Example The following example creates two source regions and an empty destination re-
gion, uses the CombineRgn function to create a complex region, selects the re-
gion into a-device context, and then uses the PaintRgn function to display the
region:

HDC hdc;
HRGN hrgnDest, hrgnSrcl, hrgnSrc2;

hrgnDest = CreateRectRgn(0, 0, 0, 0);
hrgnSrcl = CreateRectRgn(10, 10, 110, 110);
hrgnSrc2 = CreateRectRgn(90, 90, 200, 150);

CombineRgn(hrgnDest, hrgnSrcl, hrgnSrc2, RGN_OR);
SelectObject(hdc, hrgnDest);
PaintRgn(hdc, hrgnDest);

See Also CreateRectRgn, PaintRgn

CommbDIgExtendedError [34]

#include <commdig.h>
DWORD CommbDIgExtendedError(void)

The CommDIgExtendedError function identifies the cause of the most recent
error to have occurred during the execution of one of the following common
dialog box procedures:

= ChooseColor

= ChooseFont

= FindText

= GetFileTitle

» GetOpenFileName

64 CommbDIgExtendedError

Parameters

Return Value

Comments

m GetSaveFileName
= PrintDig
= ReplaceText

This function has no parameters.

The return value is zero if the prior call to a common dialog box procedure was
successful. The return value is CDERR_DIALOGFAILURE if the dialog box
could not be created. Otherwise, the return value is a nonzero integer that identi-
fies an error condition.

Following are the possible CommDIgExtendedError return values and the mean-
ing of each:

Value Meaning

CDERR_FINDRESFAILURE Specifies that the common dialog box proce-
dure failed to find a specified resource.

CDERR_INITIALIZATION Specifies that the common dialog box proce-

dure failed during initialization. This error often
occurs when insufficient memory is available.

CDERR_LOADRESFAILURE Specifies that the common dialog box proce-
dure failed to load a specified resource.

CDERR_LOCKRESFAILURE Specifies that the common dialog box proce-
dure failed to lock a specified resource.

CDERR_LOADSTRFAILURE Specifies that the common dialog box proce-

dure failed to load a specified string.

CDERR_MEMALLOCFAILURE Specifies that the common dialog box proce-
dure was unable to allocate memory for internal
structures.

CDERR_MEMLOCKFAILURE Specifies that the common dialog box proce-
dure was unable to lock the memory associated
with a handle.

CDERR_NOHINSTANCE Specifies that the ENABLETEMPLATE flag
was set in the Flags member of a structure for
the corresponding common dialog box but that
the application failed to provide a correspond-
ing instance handle.

CDERR_NOHOOK Specifies that the ENABLEHOOK flag was set
in the Flags member of a structure for the corre-
sponding common dialog box but that the appli-
cation failed to provide a pointer to a
corresponding hook function.

CommbDIgExtendedError 65

Value

Meaning

CDERR_NOTEMPLATE

CDERR_REGISTERMSGFAIL

CDERR_STRUCTSIZE

CFERR_NOFONTS
CFERR_MAXLESSTHANMIN

FNERR_BUFFERTOOSMALL

FNERR_INVALIDFILENAME
FNERR_SUBCLASSFAILURE

FRERR_BUFFERLENGTHZERO

PDERR_CREATEICFAILURE

PDERR_DEFAULTDIFFERENT

Specifies that the ENABLETEMPLATE flag
was set in the Flags member of a structure for
the corresponding common dialog box but that
the application failed to provide a correspond-
ing template.

Specifies that the Register WindowMessage
function returned an error value when it was
called by the common dialog box procedure.

Specifies as invalid the IStructSize member of
a structure for the corresponding common
dialog box.

Specifies that no fonts exist.

Specifies that the size given in the nSizeMax
member of the CHOOSEFONT structure is
less than the size given in the nSizeMin mem-
ber.

Specifies that the filename buffer is too small.
(This buffer is pointed to by the IpstrFile mem-
ber of the structure for a common dialog box.)

Specifies that a filename is invalid.

Specifies that an attempt to subclass a list box
failed due to insufficient memory.

Specifies that a member in a structure for the
corresponding common dialog box points to an
invalid buffer.

Specifies that the PrintDIg function failed
when it attempted to create an information con-
text.

Specifies that an application has called the
PrintDIg function with the
DN_DEFAULTPRN flag set in the wDefault
member of the DEVNAMES structure, but the
printer described by the other structure mem-
bers does not match the current default printer.
(This happens when an application stores the
DEVNAMES structure and the user changes
the default printer by using Control Panel.)

To use the printer described by the DEV-
NAMES structure, the application should clear
the DN_DEFAULTPRN flag and call the
PrintDIg function again. To use the default
printer, the application should replace the DEV-
NAMES structure (and the DEVMODE struc-
ture, if one exists) with NULL,; this selects the
default printer automatically.

66 CopyCursor

See Also

Value

Meaning

PDERR_DNDMMISMATCH

PDERR_GETDEVMODEFAIL

PDERR_INITFAILURE

PDERR_LOADDRVFAILURE

PDERR_NODEFAULTPRN
PDERR_NODEVICES
PDERR_PARSEFAILURE

PDERR_PRINTERNOTFOUND

PDERR_RETDEFFAILURE

PDERR_SETUPFAILURE

Specifies that the data in the DEVMODE and
DEVNAMES structures describes two different
printers.

Specifies that the printer driver failed to initial-
ize a DEVMODE structure. (This error value
applies only to printer drivers written for Win-
dows versions 3.0 and later.)

Specifies that the PrintDIg function failed
during initialization.

Specifies that the PrintDIg function failed to
load the device driver for the specified printer.
Specifies that a default printer does not exist.
Specifies that no printer drivers were found.

Specifies that the PrintDIg function failed to
parse the strings in the [devices] section of the
WINLINI file.

Specifies that the [devices] section of the
WINLINI file did not contain an entry for the re-
quested printer.

Specifies that the PD_RETURNDEFAULT
flag was set in the Flags member of the
PRINTDLG structure but that either the hDev-
Mode or hDevNames member was nonzero.
Specifies that the PrintDIg function failed to
load the required resources.

For more information about the CommDIgExtendedError function, see the
Microsoft Windows Programmer’s Reference, Volume 1.

ChooseColor, ChooseFont, FindText, GetFileTitle, GetOpenFileName,

GetSaveFileName, PrintDIg, ReplaceText

CopyCursor

HCURSOR CopyCursor(kinst, hcur)
HINSTANCE hinst; /* handle of application instance */
HCURSOR #cur; /* handle of cursor to copy */

The CopyCursor function copies a cursor.

Copylcon 67

Parameters

Return Value

Comments

See Also

hinst
Identifies the instance of the module that will copy the cursor.

hcur
Identifies the cursor to be copied.

The return value is the handle of the duplicate cursor if the function is successful.
Otherwise, it is NULL.

When it no longer requires a cursor, an application must destroy the cursor, using
the DestroyCursor function. '

The CopyCursor function allows an application or dynamic-link library to accept
a cursor from another module. Because all resources are owned by the module in
which they originate, a resource cannot be shared after the module is freed. Copy-
Curser allows an application to create a copy that the application then owns.

Copylcon, DestroyCursor, GetCursor, SetCursor, ShowCursor

Copylcon

HICON Copylcon(hinst, hicon)

HINSTANCE hinst;
HICON hicon;

Parameters

Return Value

Comments

/* handle of application instance */
/* handle of icon to copy */

The Copylcon function copies an icon.

hinst
Identifies the instance of the module that will copy the icon.

hicon
Identifies the icon to be copied.

The return value is the handle of the duplicate icon if the function is successful.
Otherwise, it is NULL.

When it no longer requires an icon, an application should destroy the icon, using
the Destroylcon function.

68 CopyLZFile

See Also

The Copylcon function allows an application or dynamic-link library to accept an
icon from another module. Because all resources are owned by the module in
which they originate, a resource cannot be shared after the module is freed. Copy-
Icon allows an application to create a copy that the application then owns.

CopyCursor, Destroylcon, DrawIcon

CopyLZFile

#include <lzexpand.h>

LONG CopyLZFile(hfSource, hfDest)

HFILE hfSource;

HFILE hfDest;

Parameters

Return Value

/* handle of source file */
/* handle of destination file */

The CopyLZFile function copies a source file to a destination file. If the source
file is compressed, this function creates a decompressed destination file. If the
source file is not compressed, this function duplicates the original file.

hfSource
Identifies the source file.

hfDest

Identifies the destination file.

The return value specifies the size, in bytes, of the destination file if the function is
successful. Otherwise, it is an error value less than zero; it may be one of the fol-
lowing:

Value Meaning

LZERROR_BADINHANDLE The handle identifying the source file was not
valid.

LZERROR_BADOUTHANDLE The handle identifying the destination file was
not valid.

LZERROR_READ The source file format was not valid.

LZERROR_WRITE There is insufficient space for the output file.

LZERROR_GLOBALLOC There is insufficient memory for the required
buffers.

LZERROR_UNKNOWNALG The file was compressed with an unrecognized

compression algorithm.

CopyLZFile 69

Comments This function is identical to the LZCopy function.

The CopyLZFile function is designed for copying or decompressing multiple
files, or both. To allocate required buffers, an application should call the LZStart
function prior to calling CopyLZFile. To free these buffers, an application should
call the LZDone function after copying the files.

If the function is successful, the file identified by AfDest is decompressed.

If the source or destination file is opened by using a C run-time function (rather
than by using the _lopen or OpenFile function), it must be opened in binary mode.

Example The following example uses the CopyLZFile function to create copies of four text
files:

f#define STRICT

finclude <windows.h>
finclude <1zexpand.h>

fidefine NUM_FILES 4

char *szSrc[NUM_FILES] =
{"readme.txt", "data.txt", "update.txt", "list.txt"};
char *szDest[NUM_FILES] =
{"readme.bak", "data.bak", "update.bak", "list.bak"};
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;
int i;
/* Allocate internal buffers for the CopyLZFile function. */
LZStart();
/* Open, copy, and then close the files. */
for (i = 0; i < NUM_FILES; i++) {
hfSrcFile = LZOpenFile(szSrc[i], &ofStrSrc, OF_READ);
hfDstFile = LZOpenFile(szDest[i], &ofStrDest, OF_CREATE);
CopyLZFile(hfSrcFile, hfDstFile);
LZClose(hfSrcFile);

LZClose(hfDstFile);
}

LZDone(); /* free the internal buffers */

See Also _lopen, LZCopy, LZDone, LZStart, OpenFile

70 CopyMetaFile

CopyMetaFile [2x]

HMETAFILE CopyMetaFile(hmfSrc, IpszFile)
HMETAFILE hmfSrc; /* handle of metafile to copy */
LPCSTR IpszFile; /* address of name of copied metafile */

The CopyMetaFile function copies a source metafile to a specified file and re-
turns a handle of the new metafile.

Parameters hmfSrc
Identifies the source metafile to be copied.
IpszFile
Points to a null-terminated string that specifies the filename of the copied meta-
file. If this value is NULL, the source metafile is copied to a memory metafile.

Return Value The return value is the handle of the new metafile if the function is successful.
Otherwise, it is NULL.
Example The following example copies a metafile to a specified file, plays the copied meta-

file, retrieves a handle of the copied metafile, changes the position at which the
metafile is played 200 logical units to the right, and then plays the metafile at the
new location:

HANDLE hmf, hmfSource, hmf0ld;
LPSTR 1pszFilel = "MFTest";

hmf = CopyMetaFile(hmfSource, TpszFilel);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);

hmf0ld = GetMetaFile(lpszFilel);
SetWindowOrg(hdc, -200, 0);
PlayMetaFile(hdc, hmf01d);

DeleteMetaFile(hmfSource);
DeleteMetaFile(hmf01d);

See Also GetMetaFile, PlayMetaFile, SetWindowOrg

CountClipboardFormats b4

CopyRect [2x]

void CopyRect(lprcDst, IprcSrc)
RECT FAR* IprcDst; /* address of struct. for destination rect. */
const RECT FAR¥* IprcSrc; /* address of struct. with source rect. */

The CopyRect function copies the dimensions of one rectangle to another.

Parameters IprcDst
Points to the RECT structure that will receive the dimensions of the source
rectangle. The RECT structure has the following form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

IprcSrc
Points to the RECT structure whose dimensions are to be copied.
Return Value This function does not return a value.
See Also SetRect

CountClipboardFormats [2x]

int CountClipboardFormats(void)

The CountClipboardFormats function retrieves the number of different data for-
mats currently in the clipboard.

Parameters This function has no parameters.

Return Value The return value specifies the number of different data formats in the clipboard, if
the function is successful.

See Also EnumClipboardFormats

72 CountVoiceNotes

CountVoiceNotes [2x]

il!} CountVoiceNotes(nvoice)
int nvoice; /* sound queue to be counted */

This function is obsolete. Use the multimedia audio functions instead. For informa-
tion about these functions, see the Microsoft Windows Multimedia Programmer’s
Reference.

CPIApplet [31]

LONG CALLBACK* CPlApplet(hwndCPl, iMessage, IParaml, IParam?2)

HWND hwndCPI; /* handle of Control Panel window */
UINT iMessage; /* message */
LPARAM [Paraml; /* first message parameter */
LPARAM [Param?2; /* second message parameter */

The CPlApplet function serves as the entry point for a Control Panel dynamic-
link library (DLL). This function is supplied by the application.

Parameters hwndCPI
Identifies the main Control Panel window.

iMessage
Specifies the message being sent to the DLL.

IParaml
Specifies 32 bits of additional message-dependent information.

[Param?2
Specifies 32 bits of additional message-dependent information.

Return Value The return value depends on the message. For more information, see the descrip-
tions of the individual Control Panel messages in Microsoft Windows Program-
mer’s Reference, Volume 3.

Comments Use the hwndCPI parameter for dialog boxes or other windows that require a
handle of a parent window.

CreateBitmap 73

CreateBitmap [2x]

HBITMAP CreateBitmap(nWidth, nHeight, cbPlanes, cbBits, IpvBits)

int nWidth; /* bitmap width */
int nHeight; /* bitmap height */
UINT cbPlanes; /* number of color planes */
UINT cbBits; /* number of bits per pixel */
const void FAR* [pvBits; /* address of array with bitmap bits */
The CreateBitmap function creates a device-dependent memory bitmap that has
the specified width, height, and bit pattern.
Parameters nWidth
Specifies the width, in pixels, of the bitmap.
nHeight

Return Value

Comments

Specifies the height, in pixels, of the bitmap.

cbPlanes :
Specifies the number of color planes in the bitmap. The number of bits per
plane is the product of the plane’s width, height, and bits per pixel (nWidth x
nHeight X cbBits).

cbBits
Specifies the number of color bits per display pixel.

IpvBits
Points to an array of short integers that contains the initial bitmap bit values. If
this parameter is NULL, the new bitmap is left uninitialized. For more informa-
tion about these bit values, see the description of the bmBits member of the
BITMAP structure in the Microsoft Windows Programmer’s Reference,
Volume 3.

The return value is the handle of the bitmap if the function is successful. Other-
wise, it is NULL.

The bitmap created by the CreateBitmap function can be selected as the current
bitmap for a memory device context by using the SelectObject function.

For a color bitmap, either the cbPlanes or cbBits parameter should be set to 1. If
both of these parameters are set to 1, CreateBitmap creates a monochrome bit-
map.

Although a bitmap cannot be copied directly toa display device, the BitBlt func-
tion can copy it from a memory device context (in which it is the current bitmap)
to any compatible device context, including a screen device context.

74 CreateBitmapindirect

When it has finished using a bitmap created by CreateBitmap, an application
should select the bitmap out of the device context and then remove the bitmap by
using the DeleteObject function.

Example The following example uses the CreateBitmap function to create a bitmap with a
zigzag pattern and then uses the PatBIt function to fill the client area with that pat-
tern:

HDC hdc;

HBITMAP hbmp;

HBRUSH hbr, hbrPrevious;
RECT rc;

int aZigzag[]l = { OxFF, @xF7, OxEB, @xDD, OxBE, @x7F, OxFF, OxFF };

hbmp = CreateBitmap(8, 8, 1, 1, aZigzag);
hbr = CreatePatternBrush(hbmp);

hdc = GetDC(hwnd);
UnrealizeObject(hbr);

hbrPrevious = SelectObject(hdc, hbr);
GetClientRect(hwnd, &rc);

PatB1t(hdc, rc.left, rc.top,

rc.right - rc.left, rc.bottom - rc.top, PATCOPY);
SelectObject(hdc, hbrPrevious);
ReleaseDC(hwnd, hdc);

DeleteObject(hbr);
DeleteObject(hbmp);

See Also BitBIt, CreateBitmapIndirect, CreateCompatibleBitmap, CreateDIBitmap,
CreateDiscardableBitmap, DeleteObject, SelectObject

CreateBitmapindirect ‘ [2x]

HBITMAP CreateBitmapIndirect(lpbm)
- BITMAP FAR* Ipbm; /* address of structure with bitmap information */

The CreateBitmaplIndirect function creates a bitmap that has the width, height,
and bit pattern specified in a BITMAP structure.

CreateBitmapIndirect 75

Parameters

Return Value

Commenls‘

Example

Ipbm
Points to a BITMAP structure that contains information about the bitmap. The
BITMAP structure has the following form:

typedef struct tagBITMAP { /* bm =*/

int bmType;

int bmWidth;

int bmHeight;

int bmWidthBytes;

BYTE bmPlanes;
BYTE bmBitsPixel;
void FAR* bmBits;

} BITMAP;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

The return value is the handle of the bitmap if the function is successful. Other-
wise, it is NULL.

Large bitmaps cannot be displayed on a display device by copying them directly to
the device context for that device. Instead, applications should create a memory
device context that is compatible with the display device, select the bitmap as the
current bitmap for the memory device context, and then use a function such as
BitBIt or StretchBlt to copy it from the memory device context to the display
device context. (The PatBIt function can copy the bitmap for the current brush
directly to the display device context.)

When an application has finished using the bitmap created by the Create-
BitmapIndirect function, it should select the bitmap out of the device context and
then delete the bitmap by using the DeleteObject function.

If the BITMAP structure pointed to by the [pbm parameter has been filled in by
using the GetObject function, the bits of the bitmap are not specified, and the bit-
map is uninitialized. To initialize the bitmap, an application can use a function
such as BitBIt or SetDIBits to copy the bits from the bitmap identified by the first
parameter of GetObject to the bitmap created by CreateBitmapIndirect.

The following example assigns values to the members of a BITMAP structure and
then calls the CreateBitmapIndirect function to create a bitmap handle:

BITMAP bm;
HBITMAP hbm;

int aZigzag[] = { @OxFF, @xF7, OxEB, @0xDD, @xBE, @x7F, @OxFF, @xFF };

76 CreateBrushindirect

bm.bmType = @
bm.bmWidth =
bm.bmHeight = 8;

bm.bmWidthBytes = 2;
bm.bmPlanes = 1;

bm.bmBitsPixel = 1;
bm.bmBits = aZigzag;

hbh = CreateBitmapIndirect(&bm);

See Also BitBIt, CreateBitmap, CreateCompatibleBitmap, CreateDIBitmap,
CreateDiscardableBitmap, DeleteObject, GetObject

CreateBrushindirect [2x]

HBRUSH CreateBrushIndirect(iplb)
LOGBRUSH FAR* [plb; /* address of structure with brush attributes */

The CreateBrushIndirect function creates a brush that has the style, color, and
pattern specified in a LOGBRUSH structure. The brush can subsequently be
selected as the current brush for any device.

Parameters Iplb
Points to a LOGBRUSH structure that contains information about the brush.
The LOGBRUSH structure has the following form:

typedef struct tagLOGBRUSH { /* 1b */

UINT 1bStyle;

COLORREF 1bColor;

int 1bHatch;
} LOGBRUSH;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value The return value is the handle of the brush if the function is successful. Otherwise,
itis NULL. ’ '
Comments A brush created by using a monochrome (one plane, one bit per pixel) bitmap is

drawn by using the current text and background colors. Pixels represented by a bit
set to 0 are drawn with the current text color, and pixels represented by a bit set to
1 are drawn with the current background color.

CreateCaret 71

Example

See Also

When it has finished using a brush created by CreateBrushIndirect, an applica-
tion should select the brush out of the device context in which it was used and then
remove the brush by using the DeleteObject function.

The following example creates a hatched brush with red diagonal hatch marks and
uses that brush to fill a rectangle:

LOGBRUSH 1b;
HBRUSH hbr, hbr01d;

1b.1bStyle
1b.1bColor
1b.1bHatch

BS_HATCHED;
RGB(255, @, 0);
HS_BDIAGONAL;

hbr = CreateBrushIndirect(&l1b);
hbr0ld = SelectObject(hdc, hbr);
Rectangle(hdc, @0, 0, 100, 100);

CreateDIBPatternBrush, CreatePatternBrush, CreateSolidBrush, Delete-
Object, GetStockObject, SelectObject

CreateCaret

void CreateCaret(hwnd, hbmp, nWidth, nHeight)

HWND hwnd;
HBITMAP hbmp;
int nWidth;

int nHeight;

Parameters

/* handle of owner window */
/* handle of bitmap for caret shape */
/* caret width */
/* caret height */

The CreateCaret function creates a new shape for the system caret and assigns
ownership of the caret to the given window. The caret shape can be a line, block,
or bitmap.

hwnd
Identifies the window that owns the new caret.

hbmp |
Identifies the bitmap that defines the caret shape. If this parameter is NULL, the
caret is solid; if the parameter is 1, the caret is gray.

nWidth

Specifies the width of the caret in logical units. If this parameter is NULL, the
width is set to the system-defined window-border width.

78 CreateCaret

Return Value

Comments

Example

See Also

nHeight
Specifies the height of the caret, in logical units. If this parameter is NULL, the
height is set to the system-defined window-border height.

This function does not return a value.

If the hbmp parameter contains a bitmap handle, the nWidth and nHeight parame-
ters are ignored; the bitmap defines its own width and height. (The bitmap handle
must have been created by using the CreateBitmap, CreateDIBitmap, or Load-
Bitmap function.) If sbmp is NULL or 1, nWidth and nHeight give the caret’s
width and height, in logical units; the exact width and height (in pixels) depend on
the window’s mapping mode.

The CreateCaret function automatically destroys the previous caret shape, if any,
regardless of which window owns the caret. Once created, the caret is initially hid-
den. To show the caret, use the ShowCaret function.

The system caret is a shared resource. A: window should create a caret only when
it has the input focus or is active. It should destroy the caret before losing the input
focus or becoming inactive.

The system’s window-border width or height can be retrieved by using the
GetSystemMetrics function, specifying the SM_CXBORDER and
SM_CYBORDER indices. Using the window-border width or height guarantees
that the caret will be visible on a high-resolution screen.

The following example creates a caret, sets its initial position, and then displays
the caret:

case WM_SETFOCUS:
CreateCaret(hwndParent, NULL, CARET_WIDTH, CARET_HEIGHT);
SetCaretPos(CARET_XPOS, CARET_YPOS);
ShowCaret(hwndParent);
break;

CreateBitmap, CreateDIBitmap, DestroyCaret, GetSystemMetrics,
LoadBitmap, ShowCaret

CreateCompatibleBitmap 79

CreateCompatibleBitmap [2x]

HBITMAP CreateCompatibleBitmap(kdc, nWidth, nHeighr)

HDC hdc;
int nWidth;
int nHeight;

Parameters

Return Value

Comments

/* handle of device context *f
/* bitmap width */
/* bitmap height */

The CreateCompatibleBitmap function creates a bitmap that is compatible with
the given device.

hdc
Identifies the device context.

nWidth
Specifies the width, in bits, of the bitmap.

nHeight
Specifies the height, in bits, of the bitmap.

The return value is the handle of the bitmap if the function is successful. Other-
wise, it is NULL.

The bitmap created by the CreateCompatibleBitmap function has the same num-

" ber of color planes or the same bits-per-pixel format as the given device. It can be

selected as the current bitmap for any memory device that is compatible with the
one identified by hdc.

If hdc identifies a memory device context, the bitmap returned has the same for-
mat as the currently selected bitmap in that device context. A memory device con-
text is a memory object that represents a screen surface. It can be used to prepare
images in memory before copying them to the screen surface of the compatible
device.

When a memory device context is created, the graphics device interface (GDI)
automatically selects a monochrome stock bitmap for it.

Since a color memory device context can have either color or monochrome bit-
maps selected, the format of the bitmap returned by the CreateCompatible-
Bitmap function is not always the same; however, the format of a compatible
bitmap for a non—memory device context is always in the format of the device.

When it has finished using a bitmap created by CreateCompatibleBitmap, an ap-
plication should select the bitmap out of the device context and then remove the
bitmap by using the DeleteObject function.

80 CreateCompatibleBitmap

Example

See Also

The following example shows a function named DuplicateBitmap that accepts the
handle of a bitmap, duplicates the bitmap, and returns a handle of the duplicate.
This function uses the CreateCompatibleDC function to create source and desti-
nation device contexts and then uses the GetObject function to retrieve the dimen-
sions of the source bitmap. The CreateCompatibleBitmap function uses these
dimensions to create a new bitmap. When each bitmap has been selected into a
device context, the BitBIt function copies the bits from the source bitmap to the
new bitmap. (Although an application could use the GetDIBits and SetDIBits
functions to duplicate a bitmap, the method illustrated in this example is much
faster.)
HBITMAP PASCAL DuplicateBitmap(HBITMAP hbmpSrc)
{

HBITMAP hbmp01dSrc, hbmpOldDest, hbmpNew;

HDC hdcSrc, hdcDest;

BITMAP bmp;

hdcSrc = CreateCompatibleDC(NULL);
hdcDest = CreateCompatibleDC(hdcSrc);

GetObject(hbmpSrc, sizeof(BITMAP), &bmp);
hbmp01dSrc = SelectObject(hdcSrc, hbmpSrc);

hbmpNew = CreateCompatibleBitmap(hdcSrc, bmp.bmWidth,
bmp.bmHeight);

hbmpOl1dDest = SelectObject(hdcDest, hbmpNew);

BitB1t(hdcDest, @, @, bmp.bmWidth, bmp.bmHeight, hdcSrc, 0, @,
SRCCOPY);

SelectObject(hdcDest, hbmpOldDest);
SelectObject(hdcSrc, hbmp01dSrc);

DeleteDC(hdcDest);
DeleteDC(hdcSrc);

return hbmpNew;
}

CreateBitmap, CreateBitmapIndirect, CreateDIBitmap, DeleteObject

CreateCompatibleDC 81

CreateCompatibleDC [2x]

HDC CreateCompatibleDC(hdc)
HDC hdc; /* handle of device context */

The CreateCompatibleDC function creates a memory device context that is com-
patible with the given device.

An application must select a bitmap into a memory device context to represent a
screen surface. The device context can then be used to prepare images in memory
before copying them to the screen surface of the compatible device.

Parameters hdc
Identifies the device context. If this parameter is NULL, the function creates a
memory device context that is compatible with the system screen.

Return Value The return value is the handle of the new memory device context if the function is
successful. Otherwise, it is NULL.

Comments The CreateCompatibleDC function can be used only to create compatible device
contexts for devices that support raster operations. To determine whether a device
supports raster operations, an application can call the GetDeviceCaps function
with the RC_BITBLT index.

GDI output functions can be used with a memory device context only if a bitmap
has been created and selected into that context.

When it has finished using a device context created by CreateCompatibleDC, an
application should free the device context by calling the DeleteDC function. All
objects selected into the device context after it was created should be selected out
and replaced with the original objects before the device context is removed.

Example The following example loads a bitmap named Dog, uses the Create-
CompatibleDC function to create a memory device context that is compatible
with the screen, selects the bitmap into the memory device context, and then uses
the BitBIt function to move the bitmap from the memory device context to the
screen device context:

HDC hdc, hdcMemory;
HBITMAP hbmpMyBitmap, hbmp0ld;
BITMAP bm;

hbmpMyBitmap = LoadBitmap(hinst, "MyBitmap");
GetObject(hbmpMyBitmap, sizeof(BITMAP), &bm);

82 CreateCursor

hdc = GetDC(hwnd);
hdcMemory = CreateCompatibleDC(hdc);
hbmp01d = SelectObject(hdcMemory, hbmpMyBitmap);

BitB1t(hdc, @, @, bm.bmWidth, bm.bmHeight, hdcMemory, @, @, SRCCOPY);
SelectObject(hdcMemory, hbmp01d);

DeleteDC(hdcMemory);
ReleaseDC(hwnd, hdc);

See Also DeleteDC, GetDeviceCaps

CreateCursor

HCURSOR CreateCursor(hinst, xHotSpot, yHotSpot, nWidth, nHeight, IpvANDplane, [pvXORplane)
*/

HINSTANCE hinst; /* handle of application instance
int xHotSpot; /* horizontal position of hot spot */
int yHotSpot; /* vertical position of hot spot */
int nWidth; /* cursor width */
int nHeight; /* cursor height */
const void FAR* [pvyANDplane; /* address of AND mask array */
const void FAR* IpvXORplane; /* address of XOR mask array */
The CreateCursor function creates a cursor that has the specified width, height,
and bit patterns.
Parameters hinst
Identifies the instance of the module that will create the cursor.
xHotSpot '
Specifies the horizontal position of the cursor hot spot.
yHotSpot
Specifies the vertical position of the cursor hot spot.
nWidth
Specifies the width, in pixels, of the cursor.
nHeight
Specifies the height, in pixels, of the cursor.
IpvANDplane

Points to an array of bytes that contains the bit values for the AND mask of the
cursor. These can be the bits of a device-dependent monochrome bitmap.

CreateDC 83

Return Value

Comments

See Also

IpvXORplane
Points to an array of bytes that contains the bit values for the XOR mask of the
cursor. These can be the bits of a device-dependent monochrome bitmap.

The return value is the handle of the cursor if the function is successful. Other-
wise, it is NULL.

The nWidth and nHeight parameters must specify a width and height supported by
the current display driver, since the system cannot create cursors of other sizes. An
application can determine the width and height supported by the display driver by
calling the GetSystemMetrics function and specifying the SM_CXCURSOR or
SM_CYCURSOR value.

Before terminating, an application must call the DestroyCursor function to free
any system resources associated with the cursor.

Createlcon, DestroyCursor, GetSystemMetrics, SetCursor

CreateDC

#include <print.h>

HDC CreateDC(IlpszDriver, IpszDevice, IpszOutput, IpvinitData)

LPCSTR IpszDriver; /* address of driver name */
LPCSTR IpszDevice; /* address of device name */
LPCSTR IpszOutput; /* address of filename or port name */
const void FAR* [pvinitData; /* address of initialization data */

Parameters

The CreateDC function creates a device context for the given device.

IpszDriver
Points to a null-terminated string that specifies the MS-DOS filename (without
extension) of the device driver (for example, Epson).

IpszDevice
Points to a null-terminated string that specifies the name of the specific device
to be supported (for example, Epson FX-80). This parameter is used if the mod-
ule supports more than one device.

IpszOutput .

Points to a null-terminated string that specifies the MS-DOS filename or device
name for the physical output medium (file or output port).

84 CreateDC

Return Value

Comments

IpvInitData P
Points to a DEVMODE structure that contains device-specific initialization in-
formation for the device driver. The ExtDeviceMode function retrieves this
structure already filled in for a given device. The IpvinitData parameter must
be NULL if the device driver is to use the default initialization (if any)
specified by the user through Windows Control Panel.

The DEVMODE structure has the following form:

#include <print.h>

typedef struct tagDEVMODE { /* dm */
char dmDeviceName[CCHDEVICENAME];
UINT dmSpecVersion;
UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORD dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperLength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmDefaultSource;
int dmPrintQuality;
int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;
} DEVMODE;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

The return value is the handle of the device context for the specified device if the
function is successful. Otherwise, it is NULL.

The PRINT.H header file is required if the DEVMODE structure is used.

Device contexts created by using the CreateDC function must be deleted by using
the DeleteDC function. All objects selected into the device context after it was
created should be selected out and replaced with the original objects before the
device context is deleted.

MS-DOS device names follow MS-DOS conventions; an ending colon (:) is rec-
ommended, but optional. Windows strips the terminating colon so that a device
name ending with a colon is mapped to the same port as the same name without a
colon. The driver and port names must not contain leading or trailing spaces.

CreateDialog 85

Example

See Also

The following example uses the CreateDC function to create a device context for
a printer, using information returned by the PrintDIg function in a PRINTDLG
structure:

PRINTDLG pd;

HDC hdc;

LPDEVNAMES 1pDevNames;
LPSTR 1pszDriverName;
LPSTR 1pszDeviceName;
LPSTR 1pszPortName;
/*

* PrintDlg displays the common dialog box for printing. The
* PRINTDLG structure should be initialized with appropriate values.
*/

PrintD1g(&pd);

1pDevNames = (LPDEVNAMES) GlobalLock(pd.hDevNames);

TpszDriverName (LPSTR) 1pDevNames + 1pDevNames->wDriverOffset;
TpszDeviceName (LPSTR) 1pDevNames + T1pDevNames->wDeviceOffset;
TpszPortName (LPSTR) 1pDevNames + TpDevNames->wQutputOffset;
GlobalUnlock(pd.hDevNames);

hdc = CreateDC(1pszDriverName, 1pszDeviceName, 1pszPortName, NULL);

CreatelC, DeleteDC, ExtDeviceMode, PrintDIg

CreateDialog [2x]

HWND CreateDialog(hinst, IpszDIgTemp, hwndOwner, digprc)

HINSTANCE hinst; /* handle of application instance */

LPCSTR IpszDigTemp:; /* address of dialog box template name */

HWND hwndOwner; /* handle of owner window */

DLGPROC digprc; /* instance address of dialog box procedure */
The CreateDialog function creates a modeless dialog box from a dialog box tem-
plate resource.

Parameters hinst

Identifies an instance of the module whose executable file contains the dialog
box template.

IpszDIgTemp
Points to a null-terminated string that names the dialog box template.

hwndOwner
Identifies the window that owns the dialog box.

86 CreateDialog

Return Value

Comments

Example

See Also

dlgpre
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProcInstance function. For more in-
formation about the dialog box procedure, see the description of the Dialog-
Proc callback function.

The return value is the handle of the dialog box that was created, if the function is
successful. Otherwise, it is NULL.

The CreateWindowEx function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (if the DS_SETFONT style
was specified) and a WM_INITDIALOG message, and then the dialog box is dis-
played.

The CreateDialog function returns immediately after creating the dialog box.

To make the dialog box appear in the owner window upon being created, use the
WS_VISIBLE style in the dialog box template.

Use the DestroyWindow function to destroy a dialog box created by the Create-
Dialog function.

A dialog box can contain up to 255 controls.

The following example creates a modeless dialog box:

HWND hwndD1gFindBox;
DLGPROC dlgprc = (DLGPROC) MakeProcInstance(FindD1gProc, hinst);

hwndD1gFindBox = CreateDialog(hinst, "d1gFindBox", hwndParent, dlgprc);

CreateDialogIndirect, CreateDialogIndirectParam, CreateDialogParam,
DestroyWindow, MakeProcInstance

CreateDialogindirect 87

CreateDialogindirect [2x]

HWND CreateDialogIndirect(hinst, [pvDIlgTmp, hwndOwner, dlgprc)

HINSTANCE hinst; /* handle of application instance */
const void FAR* [pvDIigTmp; /* address of dialog box template */
HWND hwndOwners; /* handle of owner window */
DLGPROC digprc; /* instance address of dialog box procedure */

Parameters

Return Value

Comments

The CreateDialogIndirect function creates a modeless dialog box from a dialog
box template in memory. '

hinst
Identifies the instance of the module that will create the dialog box.

IpvDlgTmp
Points to a global memory object that contains a dialog box template used to
create the dialog box. This template is in the form of a DialogBoxHeader struc-
ture. For more information about this structure, see Chapter 7, “Resource For-
mats Within Executable Files,” in the Microsoft Windows Programmer’s
Reference, Volume 4.

hwndOwner
Identifies the window that owns the dialog box.

digprc
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProcInstance function. For more in-
formation, see the description of the DialogProc callback function.

The return value is the window handle of the dialog box if the function is success-
ful. Otherwise, it is NULL.

The CreateWindowEx function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (if the DS_SETFONT style
was specified) and a WM_INITDIALOG message, and then the dialog box is dis-
played.

The CreateDialogIndirect function returns immediately after creating the dialog
box.

To make the dialog box appear in the owner window upon being created, use the
WS_VISIBLE style in the dialog box template.

Use the DestroyWindow function to destroy a dialog box created by the Create-
DialogIndirect function.

A dialog box can contain up to 255 controls.

88 CreateDialogindirectParam

Example The following example uses the CreateDialogIndirect function to create a dialog .
box from a dialog box template in memory:

DLGPROC dlgprc = (DLGPROC) MakeProcInstance(DialogProc, hinst);
HWND hdl1g;
BYTE FAR* 1pbD1gTemp;

. /* Allocate global memory and build a dialog box template. */

hdlg = CreateDialogIndirect(hinst, 1pbDI1gTemp, hwndParent, dlgprc);

See Also CreateDialog, CreateDialogIndirectParam, CreateDialogParam, Destroy-
Window, MakeProcInstance

CreateDialogindirectParam

HWND CreateDialogIndirectParam(hinst, [pvDIgTmp, hwndOwner, digprc, IParaminit)
*/

HINSTANCE hinst; /* handle of application instance

const void FAR* [pvDIgTmp; /* address of dialog box template */
HWND hwndOwner; /* handle of owner window */
DLGPROC dlgprc; /* instance address of dialog box procedure */
LPARAM [Paramlinit; /* initialization value */

The CreateDialogIndirectParam function creates a modeless dialog box from a
dialog box template in memory. Before displaying the dialog box, the function
passes an application-defined value to the dialog box procedure as the [Param pa-
rameter of the WM_INITDIALOG message. An application can use this value to
initialize dialog box controls.

Parameters hinst
Identifies the instance of the module that will create the dialog box.

IpvDIgTmp
Points to a global memory object that contains a dialog box template used to
create the dialog box. This template is in the form of a DialogBoxHeader struc-
ture. For more information about this structure, see Chapter 7, “Resource For-
mats Within Executable Files,” in the Microsoft Windows Programmer’s
Reference, Volume 4.

CreateDialogindirectParam 89

Return Value

Comments

Example

hwndOwner ‘
Identifies the window that owns the dialog box.

digprc
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProcInstance function. For more in-
formation, see the description of the DialogProc callback function.

IParamlnit
Specifies the value to pass to the dialog box when processing the
WM_INITDIALOG message.

The return value is the window handle of the dialog box if the function is success-
ful. Otherwise, it is NULL.

The CreateWindowEx function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (if the DS_SETFONT style
was specified) and a WM_INITDIALOG message, and then the dialog box is dis-
played.

The CreateDialogIndirectParam function returns immediately after creating the
dialog box.

To make the dialog box appear in the owner window upon being created, use the
WS_VISIBLE style in the dialog box template.

Use the DestroyWindow function to destroy a dialog box created by the Create-
DialogIndirectParam function.

A dialog box can contain up to 255 controls.

The following example calls the CreateDialogIndirectParam function to create a
modeless dialog box from a dialog box template in memory. The example uses the
IParamlInit parameter to send two initialization parameters, winitParm1 and wlnit-
Parm?2, to the dialog box procedure when the WM_INITDIALOG message is
being processed.

ffdefine MEM_LENGTH 100

HGLOBAL hg1bD1gTemp;

BYTE FAR* 1pbDigTemp;

DLGPROC dlgprc = (DLGPROC) MakeProcInstance(DialogProc, hinst);
HWND hwndD1g;

90 CreateDialogParam

/* Allocate a global memory object for the dialog box template. */
hg1bD1gTemp = GlobalAlloc(GHND, MEM_LENGTH);

: /* Build a DLGTEMPLATE structure in the memory object. #*/
1prigTemp = GloballLock(hglbDlgTemp);

hwndDlg = CreateDialogIndirectParam(hinst, 1pbDigTemp,
hwndParent, digprc, 0);

See Also CreateDialog, CreateDialogIndirect, CreateDialogParam, DestroyWindow,‘
MakeProcInstance

CreateDialogParam |

HWND CreateDialogParam(hinst, IpszDIlgTemp, hwndOwner, dlgprc, IParamlnit)

HINSTANCE hinst; /* handle of application instance */
LPCSTR lpszDigTemp; /* address of name of dialog box template */
HWND hwndOwner; /* handle of owner window */
DLGPROC digprc; /* instance address of dialog box procedure */
LPARAM [Paramlinit; /* initialization value Co¥

The CreateDialogParam function creates a modeless dialog box from a dialog
box template resource. Before displaying the dialog box, the function passes an
application-defined value to the dialog box procedure as the /[Param parameter of
the WM_INITDIALOG message. An application can use this value to initialize
dialog box controls.

Parameters hinst
Identifies an instance of the module whose executable file contains the dialog

box template.
IpszDIgTemp
Points to a null-terminated string that names the dialog box template.

hwndOwner |
Identifies the window that owns the dialog box.

dlgprc
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProcInstance function. For more in-
formation about the dialog box procedure, see the description of the Dialog-
Proc callback function.

CreateDIBitmap 91

IParamlnit
Specifies the value to pass to the dialog box when processing the
WM_INITDIALOG message.

Return Value The return value is the handle of the dialog box that was created, if the function is
successful. Otherwise, it is NULL.

Comments The CreateWindowEx function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (if the DS_SETFONT style
was specified) and a WM_INITDIALOG message, and then the dialog box is dis-
played. ‘

The CreateDialogParam function returns immediately after creating the dialog
box.

To make the dialog box appear in the owner window upon being created, use the
WS_VISIBLE style in the dialog box template.

A dialog box can contain up to 255 controls.

Example The following example uses the CreateDialogParam function to create a mode-
less dialog box. The function passes the application-defined flags MIXEDCASE
and WHOLEWORD, which will be received by the dialog box as the [Param pa-
rameter of the WM_INITDIALOG message.

HWND hwndChangeBox;
DLGPROC dlgprc = (DLGPROC) MakeProcInstance(ChangeDlgProc, hinst);

hwndChangeBox = CreateDialogParam(hinst, "dlgFindBox",
hwndParent, dlgprc, MIXEDCASE | WHOLEWORD);

See Also CreateDialog, CreateDialogIndirect, CreateDialogIndirectParam, Destroy-
Window '

CreateDIBitmap

HBITMAP CreateDIBitmap(hdc, [pbmih, dwlnit, IpvBits, Ipbmi, fnColorUse)

HDC hdc; /* handle of device context */
BITMAPINFOHEADER FAR* Ipbmih; /* address of structure with header */
DWORD dwlnit; /* CBM_INIT to initialize bitmap */
const void FAR* [pvBits; /* address of array with bitmap values */
BITMAPINFO FAR* Ipbmi; /* address of structure with bitmap data */

UINT fnColorUse; /* RGB or palette indices */

92 CreateDIBitmap

Parameters

The CreateDIBitmap function creates a device-specific memory bitmap from a
device-independent bitmap (DIB) specification and optionally sets bits in the bit-
map.

hdc
Identifies the device context.

Ipbmih
Points to a BITMAPINFOHEADER structure that describes the size and for-
mat of the device-independent bitmap. The BITMAPINFOHEADER structure
has the following form:

typedef struct tagBITMAPINFOHEADER { /* bmih */
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizelmage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;
} BITMAPINFOHEADER;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

dwlnit
Specifies whether the memory bitmap is initialized. If this value is CBM_INIT,
the function initializes the bitmap with the bits specified by the IpvBits and
Ipbmi parameters.

IpvBits
Points to a byte array that contains the initial bitmap values. The format of the
bitmap values depends on the biBitCount member of the BITMAPINFO-
HEADER structure identified by the [pbmi parameter.

Ipbmi
Points to a BITMAPINFO structure that describes the dimensions and color
format of the IpvBits parameter. The BITMAPINFO structure contains a BIT-
MAPINFOHEADER structure and an array of RGBQUAD structures specify-
ing the colors in the bitmap. The BITMAPINFO structure has the following
form:

typedef struct tagBITMAPINFO { /* bmi */
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[1];

} BITMAPINFO;

CreateDIBitmap 93

Return Value

Example

For a full description of the BITMAPINFO and RGBQUAD structures, see
the Microsoft Windows Programmer’s Reference, Volume 3.

fnColorUse
Specifies whether the bmiColors member of the BITMAPINFO structure
contains explicit red, green, blue (RGB) values or indices into the currently
realized logical palette. The fnColorUse parameter must be one of the following
values:

Value Meaning

-DIB_PAL_COLORS The color table consists of an array of 16-bit indices into
the currently realized logical palette.

DIB_RGB_COLORS The color table contains literal RGB values.

The return value is the handle of the bitmap if the function is successful. Other-
wise, it is NULL.

When it has finished using a bitmap created by CreateDIBitmap, an application
should select the bitmap out of the device context and then remove the bitmap by
using the DeleteObject function.

The following example initializes an array of bits and an array of RGBQUAD
structures, allocates memory for the bitmap header and color table, fills in the re-
quired members of a BITMAPINFOHEADER structure, and calls the CreateDI-
Bitmap function to create a handle of the bitmap:

HANDLE hloc;
PBITMAPINFO ‘pbmi;
HBITMAP hbm;

BYTE aBits[] = { 0x00, 0x00, 0x00, 0x00, /* bottom row */
0x01, 0x12, @0x22, oxl11,
0x01, 0x12, @0x22, oxl1,
0x02, 0x20, 0x00, 0x22,
0x02, 0x20, 0x20, 0x22,
0x02, 0x20, 0x00, 0x22,
0x01, 0x12, 0x22, 0xl11,
0x01, 0x12, @x22, 0x11 }; /* top row */

RGBQUAD argbq[] = {{ 255, @, @, 0 }, /* blue */
{ @, 255, 0, 0 1}, /* green */
{0, 0, 255, 0 }}; /* red */

hloc = LocalATloc(LMEM_ZEROINIT | LMEM_MOVEABLE,
sizeof (BITMAPINFOHEADER) + (sizeof(RGBQUAD) * 16));
pbmi = (PBITMAPINFO) LocalLock(hloc);

94 CreateDIBPatternBrush

See Also

pbmi->bmiHeader.biSize = sizeof (BITMAPINFOHEADER);
pbmi->bmiHeader.biWidth = 8;
pbmi->bmiHeader.biHeight =
pbmi->bmiHeader.biPlanes =
pbmi->bmiHeader.biBitCount = 4;
pbmi->bmiHeader.biCompression = BI_RGB;

8;

1;

0

memcpy (pbmi->bmiColors, argbq, sizeof(RGBQUAD) * 3);

hbm = CreateDIBitmap(hdcLocal, (BITMAPINFOHEADER FAR%) pbmi, CBM_INIT,
aBits, pbmi, DIB_RGB_COLORS);

LocalFree(hloc);

. /* Use the bitmap handle. */

DeleteObject(hbm);

CreateBitmap, CreateBitmapIndirect, CreateCompatibleBitmap, Create-
DiscardableBitmap, DeleteObject

CreateDIBPatternBrush

HBRUSH CreateDIBPatternBrush(kglbDIBPacked, fnColorSpec)
HGLOBAL hglbDIBPacked; /* handle of device-independent bitmap */

UINT fnColorSpec;

Parameters

/* type of color table */

The CreateDIBPatternBrush function creates a brush that has the pattern
specified by a device-independent bitmap (DIB). The brush can subsequently be
selected for any device that supports raster operations.

hglbDIBPacked
Identifies a global memory object containing a packed device-independent bit-
map. A packed DIB consists of a BITMAPINFO structure immediately fol-
lowed by the array of bytes that define the pixels of the bitmap. The
BITMAPINFO structure has the following form:

typedef struct tagBITMAPINFO { /* bmi */
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[1];

} BITMAPINFO;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

CreateDIBPatternBrush 95

Return Value

Comments

Example

fnColorSpec
Specifies whether the bmiColors member(s) of the BITMAPINFO structure
contain explicit red, green, blue (RGB) values or indices into the currently
realized logical palette. This parameter must be one of the following values:

Value Meaning

DIB_PAL_COLORS The color table consists of an array of 16-bit indices into
. the currently realized logical palette.

DIB_RGB_COLORS The color table contains literal RGB values.

The return value is the handle of the brush if the function is successful. Otherwise,
itis NULL.

To retrieve the handle identified by the hglbDIBPacked parameter, an application
calls the GlobalAlloc function to allocate a global memory object and then fills
the memory with the packed DIB.

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If such a bitmap is
larger, Windows creates a fill pattern using only the bits corresponding to the first
8 rows and 8 columns of pixels in the upper-left corner of the bitmap.

When an application selects a two-color DIB pattern brush into a monochrome
device context, Windows ignores the colors specified in the DIB and instead dis-
plays the pattern brush, using the current text and background colors of the device
context. Pixels mapped to the first color (at offset 0 in the DIB color table) of the
DIB are displayed using the text color, and pixels mapped to the second color (at
offset 1 in the color table) are displayed using the background color.

When it has finished using a brush created by CreateDIBPatternBrush, an appli-
cation should remove the brush by using the DeleteObject function.

The following example retrieves a bitmap named DIBit from the application’s re-
source file, uses the bitmap to create a pattern brush in a call to the CreateDIB-
PatternBrush function, selects the brush into a device context, and fills a
rectangle by using the new brush:

HRSRC hrsrc;
HGLOBAL hglbl;
HBRUSH hbr, hbr0l1d;

hrsrc FindResource(hinst, "DIBit", RT_BITMAP);
hglb1 LoadResource(hinst, hrsrc);
LockResource(hglbl);

96 CreateDiscardableBitmap

See Also

hbr = CreateDIBPatternBrush(hglbl, DIB_RGB_COLORS);
hbr01d = SelectObject(hdc, hbr);

Rectangle(hdc, 10, 10, 100, 100);
UnlockResource(hglbl);

CreatePatternBrush, DeleteObject, FindResource, GetDeviceCaps, Global-
Alloc, LoadResource, LockResource, SelectObject, SetBkColor, SetText-
Color, UnlockResource

CreateDiscardableBitmap [2x]

HBITMAP CreateDiscardableBitmap(hdc, nWidth, nHeight)

HDC hdc;
int nWidth;
int nHeight;

Parameters

Return Value

Comments

See Also

/* handle of device context */
/* bitmap width */
/* bitmap height */

The CreateDiscardableBitmap function creates a discardable bitmap that is com-
patible with the given device. The bitmap has the same number of color planes or
the same bits-per-pixel format as the device. An application can select this bitmap
as the current bitmap for a memory device that is compatible with the one iden-
tified by the hdc parameter.

hdc
Identifies the device context.

nWidth
Specifies the width, in bits, of the bitmap.

nHeight
Specifies the height, in bits, of the bitmap.

The return value is the handle of the bitmap if the function is successful. Other-
wise, it is NULL.

Windows can discard a bitmap created by this function only if an application has
not selected it into a device context. If Windows discards the bitmap when it is not
selected and the application later attempts to select it, the SelectObject function
will return zero.

Applications should use the DeleteObject function to delete the handle returned
by the CreateDiscardableBitmap function, even if Windows has discarded the
bitmap.

CreateBitmap, CreateBitmapIndirect, CreateDIBitmap, DeleteObject

CreateEllipticRgnindirect 97

CreateEllipticRgn [2x]

HRGN CreateEllipticRgn(nLeftRect, nTopRect, nRightRect, nBottomRect)

int nLeftRect;
int nTopRect;
int nRightRect;
int nBottomRect;

Parameters

Return Value

Comments

See Also

/* x-coordinate upper-left corner bounding rectangle */
/* y-coordinate upper-left corner bounding rectangle */
/* x-coordinate lower-right corner bounding rectangle */
/* y-coordinate lower-right corner bounding rectangle */

The CreateEllipticRgn function creates an elliptical region.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the bounding
rectangle of the ellipse.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the bounding
rectangle of the ellipse.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the bounding
rectangle of the ellipse.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the bounding
rectangle of the ellipse.

The return value is the handle of the region if the function is successful. Other-
wise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When it has finished using a region created by using the CreateEllipticRgn func-
tion, an application should remove it by using the DeleteObject function.

CreateEllipticRgnIndirect, DeleteObject, PaintRgn

CreateEllipticRgnindirect

HRGN CreateEllipticRgnIndirect(lprc)
const RECT FAR* [prc; /* address of structure with bounding rectangle */

The CreateEllipticRgnIndirect function creates an elliptical region.

98 CreateEllipticRgnindirect

Parameters

Return Value

Comments

Example

See Also

Iprc
Points to a RECT structure that contains the logical coordinates of the upper-

left and lower-right corners of the bounding rectangle of the ellipse. The RECT
structure has the following form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

The return value is the handle of the region if the function is successful. Other-
wise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When it has finished using a region created by CreateEllipticRgnIndirect, an ap-
plication should remove the region by using the DeleteObject function.

The following example assigns values to the members of a RECT structure, uses
the CreateEllipticRgnIndirect function to create an elliptical region, selects the
region into a device context, and then uses the PaintRgn function to display the re-
gion:

HDC hdc;
RECT rc;
HRGN hrgn;

SetRect(&rc, 10, 10, 200, 50);
hrgn = CreateEl1TipticRgnIndirect(&rc);

SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);

CreateEllipticRgn, DeleteObject, PaintRgn

CreateFont 99

CreateFont [2x]

HFONT CreateFont(nHeight, nWidth, nEscapement, nOrientation, fnWeight, fbltalic, fbUnderline,
[bStrikeOut, foCharSet, fbOutputPrecision, fbClipPrecision, ﬂJQualzty, fbPitchAndFamily, IpszFace)

int nHeight; /* font height

int nWidth; /* character width */
int nEscapement; /* escapement of line of text */
int nOrientation; /* angle of base line and x-axis */
int fnWeight; /* font weight */
BYTE fvltalic; /* flag for italic attribute */
BYTE fbUnderline; /* flag for underline attribute */
BYTE fbStrikeOut; /* flag for strikeout attribute */
BYTE fbCharSet; /* character set */
BYTE fbOutputPrecision; /* output precision */
BYTE fbClipPrecision; /* clipping precision */
BYTE fbQuality; /* output quality */
BYTE fbPitchAndFamily; /* pitch and family */
LPCSTR IpszFace; /* address of typeface name */

The CreateFont function creates a logical font that has the specified charac-
teristics. The logical font can subsequently be selected as the font for any device.

Parameters nHeight
Specifies the requested height, in logical units, for the font. If this parameter is
greater than zero, it specifies the cell height of the font. If it is less than zero, it
specifies the character height of the font. (Character height is the cell height
minus the internal leading. Applications that specify font height in points typi-
cally use a negative number for this member.) If this parameter is zero, the font
mapper uses a default height. The font mapper chooses the largest physical font
that does not exceed the requested size (or the smallest font, if all the fonts
exceed the requested size). The absolute value of the nHeight parameter must
not exceed 16,384 after it is converted to device units.

nWidth
Specifies the average width, in logical units, of characters in the font. If this pa-
rameter is zero, the font mapper chooses a “closest match” default width for the
specified font height. (The default width is chosen by matching the aspect ratio
of the device against the digitization aspect ratio of the available fonts. The
closest match is determined by the absolute value of the difference.)

nEscapement
Specifies the angle, in tenths of degrees, between the escapement vector and the
x-axis of the screen surface. The escapement vector is the line through the
origins of the first and last characters on a line. The angle is measured counter-
clockwise from the x-axis.

100 CreateFont

nOrientation
Specifies the angle, in tenths of degrees, between the base line of a character
and the x-axis. The angle is measured in a counterclockwise direction from the
x-axis for left-handed coordinate systems (that is, MM_TEXT, in which the
y-direction is down) and in a clockwise direction from the x-axis for right-
handed coordinate systems (in which the y-direction is up).

fnWeight
Specifies the font weight. This parameter can be one of the following values:

Constant Value
FW_DONTCARE 0
FW_THIN 100

FW_EXTRALIGHT 200
FW_ULTRALIGHT 200

FW_LIGHT 300
FW_NORMAL - 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700

FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

The appearance of the font depends on the typeface. Some fonts have
only FW_NORMAL, FW_REGULAR, and FW_BOLD weights. If
FW_DONTCARE is specified, a default weight is used.

Sfoltalic
Specifies an italic font if set to nonzero.

foUnderline
Specifies an underlined font if set to nonzero.

JbStrikeOut
Specifies a strikeout font if set to nonzero.

fbCharSet
Specifies the character set of the font. The following values are predefined:

CreateFont 101

Constant Value

ANSI_CHARSET 0
DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
SHIFTIIS_CHARSET 128
OEM_CHARSET 255

The DEFAULT_CHARSET value is not used by the font mapper. An applica-
tion can use this value to allow the name and size of a font to fully describe the
logical font. If the specified font name does not exist, a font from any character
set can be substituted for the specified font; to avoid unexpected results, applica-
tions should use the DEFAULT_CHARSET value sparingly.

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. If an application uses a
font with an unknown character set, it should not attempt to translate or inter-
pret strings that are to be rendered with that font.

fbOutputPrecision
Specifies the requested output precision. The output precision defines how
closely the output must match the requested font’s height, width, character
orientation, escapement, and pitch. This parameter can be one of the following
values:

OUT_CHARACTER_PRECIS
OUT_DEFAULT_PRECIS
OUT_DEVICE_PRECIS
OUT_RASTER_PRECIS
OUT_STRING_PRECIS
OUT_STROKE_PRECIS
OUT_TT_PRECIS

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS,
and OUT_TT_PRECIS values to control how the font mapper chooses a font
when the system contains more than one font with a given name. For example,
if a system contained a font named Symbol in raster and TrueType form, speci-
fying OUT_TT_PRECIS would force the font mapper to choose the TrueType
version. (Specifying OUT_TT_PRECIS forces the font mapper to choose a
TrueType font whenever the specified font name matches a device or raster
font, even when there is no TrueType font of the same name.)

JoClipPrecision
Specifies the requested clipping precision. The clipping precision defines how
to clip characters that are partially outside the clipping region. This parameter
can be one of the following values:

CLIP_CHARACTER_PRECIS
CLIP_DEFAULT_PRECIS
CLIP_ENCAPSULATE

102

CreateFont

CLIP_LH_ANGLES
CLIP_MASK
CLIP_STROKE_PRECIS
CLIP_TT_ALWAYS

To use an embedded read-only font, applications must specify
CLIP_ENCAPSULATE.

To achieve consistent rotation of device, TrueType, and vector fonts, an applica-
tion can use the OR operator to combine the CLIP_LH_ANGLES value with
any of the other fbClipPrecision values. If the CLIP_LH_ANGLES bit is set,
the rotation for all fonts is dependent on whether the orientation of the coordi-
nate system is left-handed or right-handed. If CLIP_LH_ANGLES is not set,
device fonts always rotate counterclockwise, but the rotation of other fonts is
dependent on the orientation of the coordinate system. (For more information
about the orientation of coordinate systems, see the description of the
nOrientation parameter.)

JbQuality

Specifies the output quality of the font, which defines how carefully the
graphics device interface (GDI) must attempt to match the attributes of a logical
font to those of a physical font. This parameter can be one of the following
values:

Value Meaning
DEFAULT_QUALITY Appearance of the font does not matter.
DRAFT_QUALITY Appearance of the font is less important than when the

PROOF_QUALITY value is used. For GDI raster fonts,
scaling is enabled. Bold, italic, underline, and strikeout
fonts are synthesized if necessary.

PROOF_QUALITY Character quality of the font is more important than
exact matching of the logical-font attributes. For GDI
raster fonts, scaling is disabled and the font closest in
size is chosen. Bold, italic, underline, and strikeout
fonts are synthesized if necessary.

fbPitchAndFamily

Specifies the pitch and family of the font. The two low-order bits specify the
pitch of the font and can be one of the following values:

DEFAULT_PITCH
FIXED_PITCH
VARIABLE_PITCH

Applications can set bit 2 (0x04) of the IfPitchAndFamily member to choose a
TrueType font.

The four high-order bits specify the font family and can be one of the following
values:

CreateFont 103

Value Meaning

FF_DECORATIVE Novelty fonts. Old English is an example.

FF_DONTCARE Don’t care or don’t know.

FF_MODERN Fonts with constant stroke width, with or without serifs.
Pica, Elite, and Courier New® are examples.

FF_ROMAN Fonts with variable stroke width and with serifs. Times
New Roman® and New Century Schoolbook® are ex-
amples. .

FF_SCRIPT Fonts designed to look like handwriting. Script and Cursive
are examples.

FF_SWISS Fonts with variable stroke width and without serifs. MS®

Sans Serif is an example.

An application can specify a value for the fbPitchAndFamily parameter by
using the Boolean OR operator to join a pitch constant with a family constant.

Font families describe the look of a font in a general way. They are intended for
specifying fonts when the exact typeface requested is not available.

IpszFace ,
Points to a null-terminated string that specifies the typeface name of the font.
The length of this string must not exceed LF_FACESIZE — 1. The EnumFont-
Families function can be used to enumerate the typeface names of all currently
available fonts. If this parameter is NULL, GDI uses a device-dependent type-
face.

Return Value The return value is the handle of the logical font if the function is successful.
Otherwise, it is NULL.

Comments The CreateFont function creates the handle of a logical font. The font mapper
uses this logical font to find the closest match from the fonts available in GDI’s
pool of physical fonts.

Applications can use the default settings for most of these parameters when creat-
ing a logical font. The parameters that should always be given specific values are
nHeight and IpszFace. If nHeight and IpszFace are not set by the application, the

logical font that is created is device-dependent.

Fonts created by using the CreateFont function must be selected out of any
device context in which they were used and then removed by using the Delete-
Object function.

Example The following example sets the mapping mode to MM_TWIPS and then uses the
CreateFont function to create an 18-point logical font:

104 CreateFontindirect

See Also

HFONT hfont,

hfont01d;

int MapModePrevious, iPtSize = 18;

PSTR pszFace

MapModePrevious = SetMapMode(hdc, MM_TWIPS);

= "MS Serif";

hfont = CreateFont(-iPtSize * 20, 0, @0, @, @, /* specify pt size */

e, 0, 0, 0, 0, 0, @, 0, pszFace);

hfont01d = SelectObject(hdc, hfont);

TextOut(hdc, 100, -500, pszFace, strlen(pszFace));

SetMapMode(hdc, MapModePrevious);
SelectObject(hdc, hfont0l1d);
DeleteObject(hfont);

CreateFontIndirect, DeleteObject, EnumFontFamilies

/* and face name only */

CreateFontindirect

HFONT CreateFontIndirect(lplf)

const LOGFONT FAR* Iplf;

Parameters

/* address of struct. with font attributes

[2x]

*/

The CreateFontIndirect function creates a logical font that has the characteristics
given in the specified structure. The font can subsequently be selected as the cur-
rent font for any device.

Iplf

Points to a LOGFONT structure that defines the characteristics of the logical

font. The LOGFONT structure has the following form:

typedef struct tagLOGFONT {

int
int
int
int
int
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
} LOGFONT;

1fHeight;
1fWidth;
1fEscapement;
1fOrientation;
1fWeight;
1fItalic;
1fUnderline;
1fStrikeQut;
1fCharSet;
1fOutPrecision;
1fClipPrecision;
1fQuality;
1fPitchAndFamily;
1fFaceName[LF_FACESIZE];

/% 1f */

CreateFontindirect 105

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value The return value is the handle of the logical font if the function is successful.
Otherwise, it is NULL.
Comments The CreateFontIndirect function creates a logical font that has the characteristics

specified in the LOGFONT structure. When the font is selected by using the
SelectObject function, the graphics device interface (GDI) font mapper attempts
to match the logical font with an existing physical font. If it cannot find an exact
match for the logical font, the font mapper provides an alternative whose charac-
teristics match as many of the requested characteristics as possible.

Fonts created by using the CreateFontIndirect function must be selected out of
any device context in which they were used and then removed by using the
DeleteObject function.

Example The following example uses the CreateFontIndirect function to retrieve the
handle of a logical font. The nPtSize and pszFace parameters are passed to the
function containing this code. The MulDiv and GetDeviceCaps functions are
used to convert the specified point size into the correct point size for the
MM_TEXT mapping mode on the current device.

HFONT hfont, hfont01d;
PLOGFONT p1f = (PLOGFONT) LocalAlloc(LPTR, sizeof(LOGFONT));

pl1f->1fHeight = -MulDiv(nPtSize, GetDeviceCaps(hdc, LOGPIXELSY), 72);
strcpy(plf->1fFaceName, pszFace);

hfont = CreateFontIndirect(p1f);

hfont0ld = SelectObject(hdc, hfont);
TextOut(hdc, 10, 50, pszFace, strlen(pszFace));
LocalFree((HLOCAL) pl1f);

SelectObject(hdc, hfont01d);
DeleteObject(hfont);

See Also CreateFont, DeleteObject

106 CreateHatchBrush

CreateHatchBrush | (2]

HBRUSH CreateHatchBrush(fnStyle, clrref)
int fnStyle; /* hatch style of brush */
COLORREF clrref; /* color of brush */

The CreateHatchBrush function creates a brush that has the specified hatched
pattern and color. The brush can then be selected for any device.

Parameters fnStyle
Specifies one of the following hatch styles for the brush:
Value Meaning
HS_BDIAGONAL 45-degree upward hatch (left to right)
HS_CROSS Horizontal and vertical crosshatch

HS_DIAGCROSS 45-degree crosshatch
HS_FDIAGONAL 45-degree downward hatch (left to right)
HS_HORIZONTAL Horizontal hatch

HS_VERTICAL Vertical hatch

clrref
Specifies the foreground color of the brush (the color of the hatches).

Return Value The return value is the handle of the brush if the function is successful. Otherwise,
itis NULL.
Comments When an application has finished using the brush created by the CreateHatch-

Brush function, it should select the brush out of the device context and then delete
it by using the DeleteObject function.

The following illustration shows how the various hatch brushes appear when used
to fill a rectangle:

HS_HORIZONTAL HS_BDIAGONAL HS_FDIAGONAL

7\

HS_VERTICAL HS_CROSS HS_DIAGCROSS

CreatelC 107

Example

See Also

The following example creates a hatched brush with green diagonal hatch marks
and uses that brush to fill a rectangle:

HBRUSH hbr, hbr01d;

hbr = CreateHatchBrush(HS_FDIAGONAL, RGB(@, 255, 0));
hbr01d = SelectObject(hdc, hbr);
Rectangle(hdc, @, 0, 100, 100);

CreateBrushIndirect, CreateDIBPatternBrush, CreatePatternBrush,
CreateSolidBrush, DeleteObject, SelectObject

CreatelC

HDC CreatelC(IpszDriver, IpszDevice, IpszOutput, IpvinitData)

LPCSTR IpszDriver; /* address of driver name */
LPCSTR IpszDevice; /* address of device name */
LPCSTR IpszOutput; /* address of filename or port name */
const void FAR* IpvinitData; /* address of initialization data */

Parameters

The CreatelC function creates an information context for the specified device.
The information context provides a fast way to get information about the device
without creating a device context.

IpszDriver
Points to a null-terminated string that specifies the MS-DOS filename (without
extension) of the device driver (for example, EPSON).

IpszDevice
Points to a null-terminated string that specifies the name of the specific device
to be supported (for example, EPSON FX-80). This parameter is used if the
module supports more than one device.

IpszOutput
Points to a null-terminated string that specifies the MS-DOS filename or device
name for the physical output medium (file or port).

IpvinitData
Points to a DEVMODE structure that contains, initially, device-specific infor-
mation necessary to initialize the device driver. The ExtDeviceMode function
retrieves this structure filled in for a given device. The IpvinitData parameter
must be NULL if the device driver is to use the default initialization informa-
tion (if any) specified by the user through Windows Control Panel.

108 CreatelC

Return Value

Comments

Example

The DEVMODE structure has the following form:

#include <print.h>

typedef struct tagDEVMODE { /* dm */
char dmDeviceName[CCHDEVICENAME];
UINT dmSpecVersion;
UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORD dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperlLength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmDefaultSource;
int dmPrintQuality;
int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;
} DEVMODE;

The return value is the handle of an information context for the given device if the
function is successful. Otherwise, it is NULL.

The PRINT.H header file is required if the DEVMODE structure is used.

MS-DOS device names follow MS-DOS conventions; an ending colon (:) is rec-
ommended, but optional. Windows strips the terminating colon so that a device
name ending with a colon is mapped to the same port as would be the same name
without a colon.

The driver and port names must not contain leading or trailing spaces.
GDI output functions cannot be used with information contexts.

When it has finished using an information context created by CreatelC, an appli-
cation should remove the information context by using the DeleteDC function.

The following example uses the CreatelC function to create an information con-
text for the display and then uses the GetDCOrg function to retrieve the origin for
the information context:

HDC hdcIC;
DWORD dwOrigin;

Createlcon 109

hdcIC = CreateIC("DISPLAY", NULL, NULL, NULL);
dwOrigin = GetDCOrg(hdcIC);

DeleteDC(hdcIC);
See Also CreateDC, DeleteDC, ExtDeviceMode
Createlcon
HICON Createlcon(hinst, nWidth, nHeight, bPlanes, bBitsPixel, [pvANDbits, [pvXORbits)
HINSTANCE hinst; /* handle of application instance */
int nWidth; /* icon width */
int nHeight; /* icon height */
BYTE bPlanes; /* number of planes in XOR mask */
BYTE bBitsPixel; /* number of bits per pixel in XOR mask */
const void FAR* [pvANDbits; /* address of AND mask array */
const void FAR* [pvXORbits; /* address of XOR mask array */

Parameters

Return Value

The Createlcon function creates an icon that has the specified width, height,
colors, and bit patterns.

hinst
Identifies an instance of the module that will create the icon.

nWidth
Specifies the width, in pixels, of the icon.

nHeight
Specifies the height, in pixels, of the icon.

bPlanes
Specifies the number of planes in the XOR mask of the icon.

bBitsPixel
Specifies the number of bits per pixel in the XOR mask of the icon.

IpvANDDits
Points to an array of bytes that contains the bit values for the AND mask of the
icon. This array must specify a monochrome mask.

IpvXORbits
Points to an array of bytes that contains the bit values for the XOR mask of the
icon. These bits can be the bits of a monochrome or device-dependent color bit-
map.

The return value is the handle of the icon if the function is successful. Otherwise,
itis NULL.

110 CreateMenu

Comments The nWidth and nHeight parameters must specify a width and height supported by
the current display driver, since the system cannot create icons of other sizes. An
application can determine the width and height supported by the display driver by
calling the GetSystemMaetrics function, specifying the SM_CXICON or
SM_CYICON constant.

Before terminating, an application must call the DestroylIcon function to free sys-
tem resources associated with the icon.

See Also Destroylcon, GetsystemMetrics

CreateMenu (2]

HMENU CreateMenu(void)
The CreateMenu function creates a menu. The menu is initially empty but can be
filled with menu items by using the AppendMenu or InsertMenu function.

Parameters This function has no parameters.

Return Value

Comments

Example

The return value is the handle of the newly created menu if the function is success-
ful. Otherwise, it is NULL.

If the menu is not assigned to a window, an application must free System resources
associated with the menu before exiting. An application frees menu resources by
calling the DestroyMenu function. Windows automatically frees resources as-
sociated with a menu that is assigned to a window.

The following example creates a main menu and a pop-up menu and associates the
pop-up menu with an item in the main menu:

HMENU hmenu;
HMENU hmenuPopup;

/* Create the main and pop-up menu handles. */

hmenu = CreateMenu();
hmenuPopup = CreatePopupMenu();

CreateMetaFile 111

/* Create the pop-up menu items. *./

AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_NEW,

"&New") ;

AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_SAVE,
"8Save");

AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_SAVE_AS,
"&Save As");

/# Add the pop-up menu to the main menu. */

AppendMenu(hmenu, MF_ENABLED | MF_POPUP, (UINT) hmenuPopup,

"&File");
See Also AppendMenu, DestroyMenu, InsertMenu, SetMenu
CreateMetaFile [2x]
HDC CreateMetaFile(/pszFile)
LPCSTR IpszFile; /* address of metafile name */
The CreateMetaFile function creates a metafile device context.
Parameters IpszFile
Points to a null-terminated string that specifies the MS-DOS filename of the
metafile to create. If this parameter is NULL, a device context for a memory
metafile is returned.
Return Value The return value is the handle of the metafile device context if the function is
successful. Otherwise, it is NULL.
Comments When it has finished using a metafile device context created by CreateMetaFile,
an application should close it by using the CloseMetaFile function.
Example The following example uses the CreateMetaFile function to create the handle of a

device context for a memory metafile, draws a line in that device context, retrieves
a handle of the metafile by calling the CloseMetaFile function, plays the metafile
by using the PlayMetaFile function, and finally deletes the metafile by using the
DeleteMetaFile function:

HDC hdcMeta;
HMETAFILE hmf;

112 CreatePalette

hdcMeta = CreateMetaFile(NULL);

MoveTo(hdcMeta, 10, 10);
LineTo(hdcMeta, 100, 100);
hmf = CloseMetaFile(hdcMeta);
PlayMetaFile(hdc, hmf);

DeleteMetaFile(hmf);
See Also DeleteMetaFile
CreatePalette

HPALETTE CreatePalette(lpigpl)

const LOGPALETTE FAR* lpigpl;

Parameters

Return Value

Comments

Example

The CreatePalette function creates a logical color palette.

Iplgpl

Points to a LOGPALETTE structure that contains information about the

/* address of LOGPALETTE structure

colors in the logical palette. The LOGPALETTE structure has the following

form:

typedef struct tagLOGPALETTE { /x 1gpl */

WORD palVersion;

WORD palNumEntries;
PALETTEENTRY palPalEntry[1];

} LOGPALETTE;

For a full description of this structure, see the Microsoft Windows Program-

mer’s Reference, Volume 3.

The return value is the handle of the logical palette if the function is successful.

Otherwise, it is NULL.

When it has finished using a palette created by CreatePalette, an application
should remove the palette by using the DeleteObject function.

The following example initializes a LOGPALETTE structure and an array of
PALETTEENTRY structures, and then uses the CreatePalette function to re-

trieve a handle of a logical palette:

ffdefine NUMENTRIES 128
HPALETTE hpal;
PALETTEENTRY ape[NUMENTRIES];

CreatePatternBrush 113

See Also

plgpl = (LOGPALETTE*) LocalAlloc(LPTR,
sizeof (LOGPALETTE) + cColors * sizeof (PALETTEENTRY));

plgpl->palNumEntries = cColors;
plgpl->palVersion = 0x300;

for (i = @, red = @, green = 127, blue = 127; i < NUMENTRIES;
i++, red += 1, green += 1, blue += 1) {
ape[il.peRed =
plgpl->palPalEntry[i].peRed = LOBYTE(red);
ape[i].peGreen =
plgpl->palPalEntry[i].peGreen = LOBYTE(green);
ape[il.peBlue =
plgpl->palPalEntry[i].peBlue = LOBYTE(blue);
ape[il.peflags =
plgpl->palPalEntry[i].peFlags = PC_RESERVED;
}
hpal = CreatePalette(plgpl);
LocalFree((HLOCAL) plgpl);

. /* Use the palette handle. */

DeleteObject(hpal);

DeleteObject

CreatePatternBrush [2x]

HBRUSH CreatePatternBrush(zbmp)

HBITMAP hbmp;

Parameters

Return Value

Comments

/* handle of bitmap */

The CreatePatternBrush function creates a brush whose pattern is specified by a
bitmap. The brush can subsequently be selected for any device that supports raster
operations.

hbmp
Identifies the bitmap.

The return value is the handle of the brush if the function is successful. Otherwise,
itis NULL.

The bitmap identified by the Abmp parameter is typically created by using the
CreateBitmap, CreateBitmapIndirect, CreateCompatibleBitmap, or Load-
Bitmap function.

114 CreatePen

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger,
Windows will use the bits corresponding to only the first 8 rows and 8 columns of
pixels in the upper-left corner of the bitmap.

An application can use the DeleteObject function to remove a pattern brush. This
does not affect the associated bitmap, which means the bitmap can be used to cre-
ate any number of pattern brushes. In any case, when the brush is no longer
needed, the application should remove it by using DeleteObject.

A brush created by using a monochrome bitmap (one color plane, one bit per
pixel) is drawn using the current text and background colors. Pixels represented by
a bit set to 0 are drawn with the current text color, and pixels represented by a bit
set to 1 are drawn with the current background color.

Example The following example loads a bitmap named Pattern, uses the bitmap to create a

pattern brush in a call to the CreatePatternBrush function, selects the brush into
a device context, and fills a rectangle by using the new brush:
HBITMAP hbmp;
HBRUSH hbr, hbr0ld;
hbmp = LoadBitmap(hinst, "Pattern");
hbr = CreatePatternBrush(hbmp);
hbr01d = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);

See Also CreateBitmap, CreateBitmapIndirect, CreateCompatibleBitmap, CreateDIB-
PatternBrush, DeleteObject, GetDeviceCaps, LoadBitmap, SelectObject,
SetBkColor, SetTextColor

CreatePen [2x]

HPEN CreatePen(fiPenStyle, nWidth, clrref)

int fnPenStyle; /* style of pen */

int nWidth; /* width of pen */

COLORREF clrref; /* color of pen */

The CreatePen function creates a pen having the specified style, width, and color.
The pen can subsequently be selected as the current pen for any device.

CreatePen 115

Parameters :

Return Value

Comments

fnPenStyle
Specifies the pen style. This parameter can be one of the following values:
Value Meaning
PS_SOLID Creates a solid pen.
PS_DASH Creates a dashed pen. (Valid only when the pen width is 1.)
PS_DOT Creates a dotted pen. (Valid only when the pen width is 1.)
PS_DASHDOT Creates a pen with alternating dashes and dots. (Valid only

when the pen width is 1.)

PS_DASHDOTDOT Creates a pen with alternating dashes and double dots.
(Valid only when the pen width is 1.)

PS_NULL Creates a null pen.

PS_INSIDEFRAME Creates a pen that draws a line inside the frame of closed

‘ shapes produced by graphics device interface (GDI) out-

put functions that specify a bounding rectangle (for ex-
ample, the Ellipse, Rectangle, RoundRect, Pie, and
Chord functions). When this style is used with GDI out-
put functions that do not specify a bounding rectangle (for
example, the LineTo function), the drawing area of the
pen is not limited by a frame.

nWidth
. Specifies the width, in logical units, of the pen. If this value is zero, the width in
device units is always one pixel, regardless of the mapping mode.

clrref
Specifies the color of the pen.

The return value is the handle of the pen if the function is successful. Otherwise, it
is NULL.

Pens whose width is greater than one pixel always have the PS_NULL,
PS_SOLID, or PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color
in the logical color table, the pen is drawn with a dithered color. The PS_SOLID
pen style cannot be used to create a pen with a dithered color. The
PS_INSIDEFRAME style is identical to PS_SOLID if the pen width is less than
or equal to 1.

When it has finished using a pen created by CreatePen, an application should re-
move the pen by using the DeleteObject function.

116 CreatePenindirect

The following illustration shows how the various system pens appear when used
to draw a rectangle.

PS_SOLID
| | PS_DASH
L- — —
' PS_DOT
| | PS_DASHDOT
; | PS_DASHDOTDOT
Example The following example uses the CreatePen function to create a solid blue pen 6
units wide, selects the pen into a device context, and then uses the pen to draw a
rectangle:

HPEN hpen, hpen0ld;

hpen = CreatePen(PS_SOLID, 6, RGB(O®, @, 255));
hpen01d = SelectObject(hdc, hpen);

Rectangle(hdc, 10, 10, 100, 100);

SelectObject(hdc, hpen01d);
DeleteObject(hpen);

See Also CreatePenIndirect, DeleteObject, Ellipse, Rectangle, RoundRect

CreatePenindirect [2x]

HPEN CreatePenIndirect(lpigpn)
LOGPEN FAR* [pigpn; /* address of structure with pen data */

The CreatePenIndirect function creates a pen that has the style, width, and color
given in the specified structure.

Parameters Iplgpn

Points to the LOGPEN structure that contains information about the pen. The
LOGPEN structure has the following form:

CreatePenindirect 117

Return Value

Comments

Example

See Also

typedef struct tagLOGPEN { /* 1gpn */
UINT lopnStyle;
POINT TopnWidth;
COLORREF 1lopnColor;

} LOGPEN;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

The return value is the handle of the pen if the function is successful. Otherwise, it
is NULL.

Pens whose width is greater than 1 pixel always have the PS_NULL, PS_SOLID,
or PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color
in the logical color table, the pen is drawn with a dithered color. The
PS_INSIDEFRAME style is identical to PS_SOLID if the pen width is less than
or equal to 1.

When it has finished using a pen created by CreatePenIndirect, an application
should remove the pen by using the DeleteObject function.

The following example fills a LOGPEN structure with values defining a solid red
pen 10 logical units wide, uses the CreatePenIndirect function to create this pen,
selects the pen into a device context, and then uses the pen to draw a rectangle:

LOGPEN 1p;
HPEN hpen, hpen0ld;

1p.lopnStyle = PS_SOLID;

1p.TopnWidth.x = 10;

1p.lopnWidth.y = @; /* y-dimension not used */
1p.lopnColor = RGB(255, @, @);

x

hpen = CreatePenIndirect(&1p);
hpen01d = SelectObject(hdc, hpen);
Rectangle(hdc, 10, 10, 100, 100);

CreatePen, DeleteObject

118 CreatePolygonRgn

CreatePoIvgoann

HRGN CreatePolygonRgn(/ppt, cPoints, fnPolyFillMode)
const POINT FAR* Ippr; /* address of array of points */

int cPoints;
int fnPolyFillMode;

Parameters

Return Value

Comments

/* number of points in array */
/* polygon-filling mode */

The CreatePolygonRgn function creates a polygonal region. The system closes
the polygon automatically, if necessary, by drawing a line from the last vertex to
the first.

Ippt
Points to an array of POINT structures. Each structure specifies the x-coordi-
nate and y-coordinate of one vertex of the polygon. The POINT structure has
the following form:

typedef struct tagPOINT { /% pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

cPoints
Specifies the number of POINT structures in the array pointed to by the Ippt pa-
rameter.

JfnPolyFillMode
Specifies the polygon-filling mode. This value may be either ALTERNATE or
WINDING.

The return value is the handle of the region if the function is successful. Other-
wise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area be-
tween odd-numbered and even-numbered polygon sides on each scan line. That is,
the system fills the area between the first and second side, between the third and
fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in
which a figure was drawn to determine whether to fill an area. Each line segment
in a polygon is drawn in either a clockwise or a counterclockwise direction. When-
ever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise line segment, the system increments a count (increases

CreatePolyPolygonRgn 119

it by one); when the line passes through a counterclockwise line segment, the sys-
tem decrements the count. The area is filled if the count is nonzero when the line
reaches the outside of the figure. '

When it has finished using a region created by CreatePolygonRgn, an application
should remove the region by using the DeleteObject function.

Example The following example fills an array of POINT structures with the coordinates of
a five-pointed star, uses this array in a call to the CreatePolygonRgn function,
selects the region into a device context, and then uses the PaintRgn function to

display the region:
HDC hdc;
HRGN hrgn;
POINT apts[5] = {{ 200, 10 1},
{ 300, 200 1},
{ 1e0, 100 },
{ 300, 100 3},
{ 100, 200 1}};
hrgn = CreatePolygonRgn(apts, /* array of points =*/
sizeof(apts) / sizeof(POINT), /* number of points =/
ALTERNATE); /* alternate mode */

SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);

See Also CreatePolyPolygonRgn, DeleteObject, Polygon, SetPolyFillMode

CreatePolyPolygonRgn

HRGN CreatePolyPolygonRgn(lppt, lpnPolyCount, cIntegers, fnPolyFillMode)

const POINT FAR* [ppt; /* address of structure of points */
const int FAR* [pnPolyCount; /* address of array of vertex data */
int cIntegers; /* number of integers in array */
int fnPolyFillMode; /* polygon-filling mode */

The CreatePolyPolygonRgn function creates a region consisting of a series of
closed polygons. The polygons may be disjoint, or they may overlap.

Parameters Ippt
Points to an array of POINT structures that define the vertices of the polygons.
Each polygon must be explicitly closed, because the system does not close
them automatically. The polygons are specified consecutively. The POINT
structure has the following form:

120 CreatePolyPolygonRgn

Return Value

Comments

Example

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

IpnPolyCount
Points to an array of integers. The first integer specifies the number of vertices
in the first polygon in the array pointed to by the Ippt parameter, the second in-
teger specifies the number of vertices in the second polygon, and so on.

clntegers
Specifies the total number of integers in the array pointed to by the [pnPoly-
Count parameter.

JfnPolyFillMode
Specifies the polygon-filling mode. This value may be either ALTERNATE or
WINDING.

The return value is the handle of the region if the function is successful. Other-
wise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area be-
tween odd-numbered and even-numbered polygon sides on each scan line. That is,
the system fills the area between the first and second side, between the third and
fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in
which a figure was drawn to determine whether to fill an area. Each line segment
in a polygon is drawn in either a clockwise or a counterclockwise direction. When-
ever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise line segment, the system increments a count (increases
it by one); when the line passes through a counterclockwise line segment, the sys-
tem decrements the count. The area is filled if the count is nonzero when the line
reaches the outside of the figure.

When it has finished using a region created by CreatePolyPolygonRgn, an appli-
cation should remove the region by using the DeleteObject function.

The following example fills an array of POINT structures with the coordinates of
a five-pointed star and a rectangle, uses this array in a call to the CreatePoly-
PolygonRgn function, selects the region into a device context, and then uses the
PaintRgn function to display the region:

CreatePopupMenu 121

See Also

HDC hdc;

HRGN hrgn;

int aVertices[2]
POINT apts[1l] =

={6, 51;
{{ 200, 10 }
{ 300, 200 }
{ 100, 100 }, /* Star figure, manually closed */
{ 300, 100 }
{ 100, 200 }
{ }

200, 10

{ 1@, 150 3},

{ 350, 150 },

{ 350, 170 }, /* Rectangle, manually closed */
{ 1e, 170 1},

{ 10, 150 1}};

hrgn = CreatePolyPolygonRgn(apts, /* array of points */
aVertices, /* array of vertices */
sizeof(aVertices) / sizeof(int), /* integers in vertex array */
ALTERNATE); /* alternate mode */

SelectObject(hdc, hrgn);

PaintRgn(hdc, hrgn);

CreatePolygonRgn, DeleteObject, PolyPolygon, SetPolyFillMode

CreatePopupMenu

HMENU CreatePopupMenu(void)

Parameters

Return Value

Comments

The CreatePopupMenu function creates an empty pop-up menu.
This function has no parameters.

The return value is the handle of the newly created menu if the function is success-
ful. Otherwise, it is NULL. '

An application adds items to the pop-up menu by calling the InsertMenu and
AppendMenu functions. The application can add the pop-up menu to an existing
menu or pop-up menu, or it can display and track selections on the pop-up menu
by calling the TrackPopupMenu function.

Before exiting, an application must free system resources associated with a pop-up
menu if the menu is not assigned to a window. An application frees a menu by
calling the DestroyMenu function. ;

122 CreateRectRgn

Example The following example creates a main menu and a pop-up menu, and associates
the pop-up menu with an item in the main menu:

HMENU hmenu;
HMENU hmenuPopup;

/* Create the main and pop-up menu handles. */

hmenu = CreateMenu();
hmenuPopup = CreatePopupMenu();

/* Create the pop-up menu items. *./

AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_NEW,

"&New") ;

AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_SAVE,
"&Save");

AppendMenu(hmenuPopup, MF_ENABLED | MF_STRING, IDM_SAVE_AS,
"&Save As");

/% Add the pop-up menu to the main menu. */

AppendMenu(hmenu, MF_ENABLED | MF_POPUP, (UINT) hmenuPopup,
"&File");

See Also AppendMenu, CreateMenu, InsertMenu, SetMenu, TrackPopupMenu

CreateRectRgn [2x]

HRGN CreateRectRgn(nLeftRect, nTopRect, nRightRect, nBottomRect)

int nLeftRect; /* x-coordinate upper-left corner of region */
int nTopRect; /* y-coordinate upper-left corner of region */
int nRightRect; /* x-coordinate lower-right corner of region */
int nBottomRect; /* y-coordinate lower-right corner of region */

The CreateRectRgn function creates a rectangular region.

Parameters nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the region.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the region.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the region.

CreateRectRgnindirect 123

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the region.

Return Value The return value is the handle of a rectangular region if the function is successful.
Otherwise, it is NULL.

Comments The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When it has finished using a region created by CreateRectRgn, an application
should remove the region by using the DeleteObject function.

Example , The following example uses the CreateRectRgn function to create a rectangular
region, selects the region into a device context, and then uses the PaintRgn func-
tion to display the region:

HDC hdc;
HRGN hrgn;

hrgn = CreateRectRgn(10, 10, 110, 110);

SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);

See Also CreateRectRgnIndirect, CreateRoundRectRgn, DeleteObject, PaintRgn

CreateRectRgnindirect [2x]

HRGN CreateRectRgnIndirect(/prc)

const RECT FAR* [prc; /* address of structure with region */
The CreateRectRgnIndirect function creates a rectangular region by using a
RECT structure.

Parameters Iprc

Points to a RECT structure that contains the logical coordinates of the upper-
left and lower-right corners of the region. The RECT structure has the follow-
ing form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

124 CreateRoundRectRgn

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value The return value is the handle of the rectangular region if the function is success-
ful. Otherwise, it is NULL.

Comments The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When it has finished using a region created by CreateRectRgnIndirect, an appli-
cation should remove the region by using the DeleteObject function.

Example The following example assigns values to the members of a RECT structure, uses
the CreateRectRgnIndirect function to create a rectangular region, selects the re-
gion into a device context, and then uses the PaintRgn function to display the re-
gion:

RECT rc;
HRGN hrgn;

SetRect(&rc, 10, 10, 200, 50);
hrgn = CreateRectRgnIndirect(&rc);

SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);

See Also CreateRécthn, CreateRoundRectRgn, DeleteObject, PaintRgn

CreateRoundRectRgn

HRGN CreateRoundRectRgn(nLefiRect, nTopRect, nRightRect, nBottomRect, nWidthEllipse,
nHeightEllipse)

int nLeftRect; /* x-coordinate upper-left corner of region */
int nTopRect; /* y-coordinate upper-left corner of region */
int nRightRect; /* x-coordinate lower-right corner of region */
int nBottomRect; /* y-coordinate lower-right corner of region */
int nWidthEllipse; /* height of ellipse for rounded corners */
int nHeightEllipse; /* width of ellipse for rounded corners */

The CreateRoundRectRgn function creates a rectangular region with rounded
corners.

CreateRoundRectRgn 125

Parameters

Return Value

Comments

Example

See Also

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the region.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the region.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the region.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the region.

nWidthEllipse
Specifies the width of the ellipse used to create the rounded corners.

nHeightEllipse _
Specifies the height of the ellipse used to create the rounded corners.

The return value is the handle of the region if the function is successful. Other-
wise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When it has finished using a region created by CreateRoundRectRgn, an applica-
tion should remove the region by using the DeleteObject function.

The following example uses the CreateRoundRectRgn function to create a re-
gion, selects the region into a device context, and then uses the PaintRgn function
to display the region:

HRGN hrgn;
int nE1lipWidth = 10;
int nEllipHeight = 30;

hrgn = CreateRoundRectRgn(10, 10, 110, 119,
nE1TipWidth, nEl11ipHeight);

SelectObject(hdc, hrgn);

PaintRgn(hdc, hrgn);

CreateRectRgn, CreateRectRgnIndirect, DeleteObject, PaintRgn

126 CreateScalahleFontResource

CreateScalableFontResource [31]

BOOL CreateScalableFontResource(fHidden, IpszResourceFile, IpszFontFile, IpszCurrentPath)
*/

UINT fHidden; /* flag for read-only embedded font

LPCSTR IpszResourceFile; /* address of filename of font resource */
LPCSTR IpszFontFile; /* address of filename of scalable font */
LPCSTR IpszCurrentPath; /* address of path to font file */

The CreateScalableFontResource function creates a font resource file for the
specified scalable font file.

Parameters JfHidden
Specifies whether the font is a read-only embedded font. This parameter can be
one of the following values:

Value Meaning
0 The font has read-write permission.
1 The font has read-only permission and should be hidden from other ap-

plications in the system. When this flag is set, the font is not enumerated
by the EnumFonts or EnumFontFamilies function.

IpszResourceFile
Points to a null-terminated string specifying the name of the font resource file
that this function creates.

IpszFontFile
Points to a null-terminated string specifying the scalable font file this function
uses to create the font resource file. This parameter must specify either the
filename and extension or a full path and filename, including drive and
filename extension.

IpszCurrentPath
Points to a null-terminated string specifying either the path to the scalable font
file specified in the lpst ontFile parameter or NULL, if IpszFontFile specifies

a full path.
Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.
Comments An application must use the CreateScalableFontResource function to create a

font resource file before installing an embedded font. Font resource files for fonts
with read-write permission should use the .FOT filename extension. Font resource
files for read-only fonts should use a different extension (for example, .FOR) and
should be hidden from other applications in the system by specifying 1 for the
fHidden parameter. The font resource files can be installed by using the Add-
FontResource function.

CreateScalableFontResource 127

Example

When the IpszFontFile parameter specifies only a filename and extension, the
IpszCurrentPath parameter must specify a path. When the IpszFontFile parameter
specifies a full path, the [pszCurrentPath parameter must be NULL or a pointer to
NULL.

When only a filename and extension is specified in the [pszFontFile parameter and
a path is specified in the IpszCurrentPath parameter, the string in IpszFontFile is
copied into the .FOT file as the .TTF file that belongs to this resource. When the
AddFontResource function is called, the system assumes that the .TTF file has
been copied into the SYSTEM directory (or into the main Windows directory in
the case of a network installation). The .TTF file need not be in this directory
when the CreateScalableFontResource function is called, because the
IpszCurrentPath parameter contains the directory information. A resource created
in this manner does not contain absolute path information and can be used in any
Windows installation.

When a path is specified in the [pszFontFile parameter and NULL is specified in
the IpszCurrentPath parameter, the string in IpszFontFile is copied into the .FOT
file. In this case, when the AddFontResource function is called, the .TTF file
must be at the location specified in the IpszFontFile parameter when the Create-
ScalableFontResource function was called; the [pszCurrentPath parameter is not
needed. A resource created in this manner contains absolute references to paths
and drives and will not work if the .TTF file is moved to a different location.

The CreateScalableFontResource function supports only TrueType scalable
fonts.

The following example shows how to create a TrueType font file in the SYSTEM
directory of the Windows startup directory:

CreateScalableFontResource(®, "c:\\windows\\system\\font.fot",
"font.ttr", "c:\\windows\\system");

AddFontResource("c:\\windows\\system\\font.fot");

The following example shows how to create a TrueType font file in a specified
directory:

CreateScalableFontResource(®, "c:\\windows\\system\\font.fot",
"c:\\fontdir\\font.ttr", NULL);

AddFontResource("c:\\windows\\system\\font.fot");

128

CreateScalableFontResource

See Also

The following example shows how to work with a standard embedded font:

HFONT hfont;
/% Extract .TTF file into C:\MYDIR\FONT.TTR. */
CreateScalableFontResource(@, "font.fot", "c:\\mydir\\font.ttr", NULL);
AddFontResource("font.fot");
hfont = CreateFont(..., CLIP_DEFAULT_PRECIS, ..., "FONT");
: /* Use the font. =/
De1e£e0bject(hf0nt);
RemoveFontResource("font.fot");

. /* Delete C:\MYDIR\FONT.FOT and C:\MYDIR\FONT.TTR. */

The following example shows how to work with a read-only embedded font:

HFONT hfont;
/* Extract.TTF file into C:\MYDIR\FONT.TTR. */
CreateScalableFontResource(l, "font.for", "c:\\mydir\\font.ttr", NULL);
AddFontResource("font.for");
hfont = CreatefFont(..., CLIP_EMBEDDED, ..., "FONT");
: /* Use the font. */
De]eéeObject(hfont);
RemoveFontResource("font.for");

. /* Delete C:\MYDIR\FONT.FOR and C:\MYDIR\FONT.TTR. */

AddFontResource

CreateSolidBrush 129

CreateSolidBrush [2x]

HBRUSH CreateSolidBrush(cirref)

COLORREF clrref;

Parameters

Return Value

Comments

Example

See Also

/* brush color *f

The CreateSolidBrush function creates a brush that has a specified solid color.
The brush can subsequently be selected as the current brush for any device.

clrref
Specifies the color of the brush.

The return value is the handle of the brush if the function is successful. Otherwise,
itis NULL.

When an application has finished using the brush created by CreateSolidBrush, it
should select the brush out of the device context and then remove it by using the
DeleteObject function.

The following example uses the CreateSolidBrush function to create a green
brush, selects the brush into a device context, and then uses the brush to fill a
rectangle: '

HBRUSH hbro01d;
HBRUSH hbr;

hbr = CreateSolidBrush(RGB(@, 255, 0));
hbr01d = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);

CreateBrushIndirect, CreateDIBPatternBrush, CreateHatchBrush,
CreatePatternBrush, DeleteObject

130 CreateWindow

CreateWindow

HWND CreateWindow(IpszClassName, lpszWindowName, dwStyle, x, y, nWidth, nHeight,

hwndParent, hmenu, hinst, [pvParam)
LPCSTR IpszClassName; /* address of registered class name */
LPCSTR IpszWindowName; /* address of window text */
DWORD dwStyle; /* window style */
int x; /* horizontal position of window */
int y; /* vertical position of window */
int nWidth; /* window width */
int nHeight; /* window height */
HWND hwndParent; /* handle of parent window */
HMENU hmenu; /* handle of menu or child-window identifier */
HINSTANCE hinst; /* handle of application instance */
void FAR* IpvParams; /* address of window-creation data */

Parameters

The CreateWindow function creates an overlapped, pop-up, or child window.
The CreateWindow function specifies the window class, window title, window
style, and (optionally) the initial position and size of the window. The Create-
Window function also specifies the window’s parent (if any) and menu.

IpszClassName
Points to a null-terminated string specifying the window class. The class name
can be any name registered with the RegisterClass function or any of the prede-
fined control-class names. (See the following Comments section for a complete
list.)

IpszWindowName
Points to a null-terminated string that represents the window name.

dwStyle
Specifies the style of window being created. This parameter can be a combina-
tion of the window styles and control styles given in the following Comments
section.

Specifies the initial x-position of the window. For an overlapped or pop-up win-
dow, the x parameter is the initial x-coordinate of the window’s upper-left
corner, in screen coordinates. For a child window, x is the x-coordinate of the
upper-left corner of the window in the client area of its parent window.

If this value is CW_USEDEFAULT, Windows selects the default
position for the window’s upper-left corner and ignores the y parameter.
CW_USEDEFAULT is valid only for overlapped windows. If
CW_USEDEFAULT is specified for a non-overlapped window, the x
and y parameters are set to 0.

CreateWindow 131

Specifies the initial y-position of the window. For an overlapped window, the
y parameter is the initial y-coordinate of the window’s upper-left corner. For a
pop-up window, y is the y-coordinate, in screen coordinates, of the upper-left
corner of the pop-up window. For list-box controls, y is the y-coordinate of the
upper-left corner of the control’s client area. For a child window, y is the
y-coordinate of the upper-left corner of the child window. All of these coordi-
nates are for the window, not the window’s client area.

If an overlapped window is created with the WS_VISIBLE style and the x pa-
rameter set to CW_USEDEFAULT, Windows ignores the y parameter.

nWidth

Specifies the width, in device units, of the window. For overlapped windows,
the nWidth parameter is either the window’s width (in screen coordinates) or
CW_USEDEFAULT. If nWidth is CW_USEDEFAULT, Windows selects a de-
fault width and height for the window (the default width extends from the ini-
tial x-position to the right edge of the screen, and the default height extends
from the initial y-position to the top of the icon area). CW_USEDEFAULT is
valid only for overlapped windows. If CW_USEDEFAULT is specified in
nWidth for a non-overlapped window, nWidth and nHeight are set to 0.

nHeight

Specifies the height, in device units, of the window. For overlapped windows,
the nHeight parameter is the window’s height in screen coordinates. If the
nWidth parameter is CW_USEDEFAULT, Windows ignores nHeight.

hwndParent

Identifies the parent or owner window of the window being created. A valid
window handle must be supplied when creating a child window or an owned
window. An owned window is an overlapped window that is destroyed when its
owner window is destroyed, hidden when its owner is minimized, and that is al-
ways displayed on top of its owner window. For pop-up windows, a handle can
be supplied but is not required. If the window does not have a parent window or
is not owned by another window, the hwndParent parameter must be set to
HWND_DESKTOP.

hmenu

Identifies a menu or a child window. This parameter’s meaning depends on the
window style. For overlapped or pop-up windows, the ~menu parameter identi-
fies the menu to be used with the window. It can be NULL, if the class menu is
to be used. For child windows, Amenu identifies the child window and is an in-
teger value that is used by a dialog box control to notify its parent of events
(such as the EN_HSCROLL message). The child window identifier is deter-
mined by the application and should be unique for all child windows with the
same parent window.

hinst

Ideritifies the instance of the module to be associated with the window.

132 CreateWindow

Return Value

Comments

IpvParam
Points to a value that is passed to the window through the CREATESTRUCT
structure referenced by the /Param parameter of the WM_CREATE message. If
an application is calling CreateWindow to create a multiple document inter-
face (MDI) client window, IpvParam must point to a CLIENTCREATE-
STRUCT structure. The CREATESTRUCT structure has the following form:

typedef struct tagCREATESTRUCT { /# cs =/
void FAR* 1pCreateParams;
HINSTANCE hInstance;

HMENU hMenu;

HWND hwndParent;
int cy;

int CX;

int y;

int X3

LONG style;

LPCSTR 1pszName;

LPCSTR 1pszClass;

DWORD dwExStyle;
} CREATESTRUCT;

The CLIENTCREATESTRUCT structure has the following form:

typedef struct tagCLIENTCREATESTRUCT { /* ccs */
HANDLE hWindowMenu;
UINT idFirstChild;

} CLIENTCREATESTRUCT;

For a full description of these two structures, see the Microsoft Windows Pro-
grammer’s Reference, Volume 3.

The return value is the handle of the new window if the function is successful.
Otherwise, it is NULL.

For overlapped, pop-up, and child windows, the CreateWindow function sends
WM_CREATE, WM_GETMINMAXINFO, and WM_NCCREATE messages to
the window. If the WS_VISIBLE style is specified, CreateWindow sends the win-
dow all the messages required to activate and show the window.

If the window style specifies a title bar, the window title pointed to by the
IpszWindowName parameter is displayed in the title bar. When using Create-
Window to create controls such as buttons, check boxes, and edit controls, use the
IpszWindowName parameter to specify the text of the control.

Before returning, the CreateWindow function sends a WM_CREATE message to
the window procedure.

CreateWindow 133

Following are the predefined control classes an application can specify in the
IpszClassName parameter:

Class

Meaning

BUTTON

COMBOBOX

EDIT

LISTBOX

Designates a small rectangular child window that represents a but-
ton the user can turn on or off by clicking. Button controls can be
used alone or in groups, and can either be labeled or appear without
text. Button controls typically change appearance when the user
clicks them.

Designates a control consisting of a list box and a selection field
similar to an edit control. The list box may be displayed at all times
or may be dropped down when the user selects a pop-up list box
next to the selection field.

Depending on the style of the combo box, the user can or cannot
edit the contents of the selection field. If the list box is visible,
typing characters into the selection box will cause the first list box
entry that matches the characters typed to be highlighted. Con-
versely, selecting an item in the list box displays the selected text in
the selection field.

Designates a rectangular child window in which the user can type
text from the keyboard. The user selects the control, and gives it the
input focus by clicking it or moving to it by pressing the TAB key.
The user can type text when the control displays a flashing caret.
The mouse can be used to move the cursor and select characters to
be replaced, or to position the cursor for inserting characters. The
BACKSPACE key can be used to delete characters.

Edit controls use the variable-pitch System font and display charac-
ters from the Windows character set. Applications compiled to run
with earlier versions of Windows display text with a fixed-pitch Sys-
tem font unless they have been marked by the Windows 3.0 MARK
utility (with the MEMORY FONT option specified). An applica-
tion can also send the WM_SETFONT message to the edit control
to change the default font.

Edit controls expand tab characters into as many space characters as
are required to move the cursor to the next tab stop. Tab stops are as-
sumed to be at every eighth character position.

Designates a list of character strings. This control is used whenever
an application must present a list of names, such as filenames, from
which the user can choose. The user can select a string by pointing
to it and clicking. When a string is selected, it is highlighted and a
notification message is passed to the parent window. A vertical or
horizontal scroll bar can be used with a list box control to scroll lists
that are too long for the control window. The list box automatically
hides or shows the scroll bar as needed.

134 CreateWindow

Class Meaning

MDICLIENT Designates an MDI client window. The MDI client window receives
messages that control the MDI application’s child windows. The rec-
ommended style bits are WS_CLIPCHILDREN and WS_CHILD.
To create a scrollable MDI client window that allows the user to
scroll MDI child windows into view, an application can also use the
WS_HSCROLL and WS_VSCROLL styles.

SCROLLBAR Designates a rectangle that contains a scroll box (also called a
“thumb”) and has direction arrows at both ends. The scroll bar sends
a notification message to its parent window whenever the user clicks
the control. The parent window is responsible for updating the posi-
tion, if necessary. Scroll bar controls have the same appearance and
function as scroll bars used in ordinary windows. Unlike scroll bars,
however, scroll bar controls can be positioned anywhere in a win-
dow and used whenever needed to provide scrolling input for a
window.

The scroll bar class also includes size box controls (Maximize and
Minimize buttons). These controls are small rectangles that the user
can click to change the size of the window.

STATIC Designates a simple text field, box, or rectangle that can be used to
label, box, or separate other controls. Static controls take no input
and provide no output.

Following are the window styles an application can specify in the dwStyle

parameter.

Style Meaning

MDIS_ALLCHILDSTYLES Creates an MDI child window that can have any
combination of window styles. When this style is
not specified, an MDI child window has the
WS_MINIMIZE, WS_MAXIMIZE,
WS_HSCROLL, and WS_VSCROLL styles
as default settings.

WS_BORDER Creates a window that has a border.

WS_CAPTION Creates a window that has a title bar (implies the
WS_BORDER style). This style cannot be used
with the WS_DLGFRAME style.

WS_CHILD Creates a child window. Cannot be used with the
WS_POPUP style.

WS_CHILDWINDOW Same as the WS_CHILD style.

WS_CLIPCHILDREN Excludes the area occupied by child windows

when drawing within the parent window. Used
when creating the parent window.

CreateWindow 135

Style

Meaning

WS_CLIPSIBLINGS

WS_DISABLED
WS_DLGFRAME
WS_GROUP

WS_HSCROLL
WS_MAXIMIZE
WS_MAXIMIZEBOX
WS_MINIMIZE

WS_MINIMIZEBOX
WS_OVERLAPPED

WS_OVERLAPPEDWINDOW

WS_POPUP

WS_POPUPWINDOW

WS_SYSMENU

Clips child windows relative to each other; that is,
when a particular child window receives a paint
message, the WS_CLIPSIBLINGS style clips all
other overlapped child windows out of the

region of the child window to be updated. (If
WS_CLIPSIBLINGS is not specified and child
windows overlap, it is possible, when drawing
within the client area of a child window, to draw
within the client area of a neighboring child win-
dow.) For use with the WS_CHILD style only.

Creates a window that is initially disabled.
Creates a window with a double border but no title.

Specifies the first control of a group of controls in
which the user can move from one control to the
next by using the arrow keys. All controls defined
with the WS_GROUP style after the first control
belong to the same group. The next control with
the WS_GROUP style ends the style group and
starts the next group (that is, one group ends
where the next begins). Only dialog boxes use this
style.

Creates a window that has a horizontal scroll bar.
Creates a window of maximum size.

Creates a window that has a Maximize button.
Creates a window that is initially minimized. For
use with the WS_OVERLAPPED style only.
Creates a window that has a Minimize button.
Creates an overlapped window. An overlapped
window has a title and a border.

Creates an overlapped window having the
WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX
styles.

Creates a pop-up window. Cannot be used with the
WS_CHILD style.

Creates a pop-up window that has the
WS_BORDER, WS_POPUP, and

WS_SYSMENU styles. The WS_CAPTION style
must be combined with the
WS_POPUPWINDOW style to make the System
menu visible.

Creates a window that has a System-menu box in
its title bar. Used only for windows with title bars.

136

CreateWindow

Style

Meaning

WS_TABSTOP

WS_THICKFRAME

WS_VISIBLE

WS_VSCROLL

Specifies one of any number of controls through
which the user can move by using the TAB key.
The TAB key moves the user to the next control
specified by the WS_TABSTOP style. Only dialog
boxes use this style.

Creates a window with a thick frame that can be
used to size the window.

Creates a window that is initially visible. This ap-
plies to overlapped, child, and pop-up windows.
For overlapped windows, the y parameter is used
as a ShowWindow function parameter.

Creates a window that has a vertical scroll bar.

Following are the button styles (in the BUTTON class) that an application can
specify in the dwStyle parameter:

Value

Meaning

BS_3STATE

BS_AUTO3STATE

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

‘BS_CHECKBOX

BS_DEFPUSHBUTTON

BS_GROUPBOX

Creates a button that is the same as a check box, ex-
cept that the box can be grayed (dimmed) as well as
checked. The grayed state is used to show that the
state of a check box is not determined.

Creates a button that is the same as a three-state
check box, except that the box changes its state when
the user selects it. The state cycles through checked,
grayed, and normal.

Creates a button that is the same as a check box, ex-
cept that an X appears in the check box when the user
selects the box; the X disappears (is cleared) the next
time the user selects the box.

Creates a button that is the same as a radio button, ex-
cept that when the user selects it, the button automat-
ically highlights itself and clears (removes the
selection from) any other buttons in the same group.

Creates a small square that has text displayed to its
right (unless this style is combined with the
BS_LEFTTEXT style).

Creates a button that has a heavy black border. The
user can select this button by pressing the ENTER key.
This style is useful for enabling the user to quickly
select the most likely option (the default option).

Creates a rectangle in which other controls can be
grouped. Any text associated with this style is dis-
played in the rectangle’s upper-left corner.

CreateWindow - 137

Value

Meaning

BS_LEFTTEXT

BS_OWNERDRAW

BS_PUSHBUTTON

BS_RADIOBUTTON

Places text on the left side of the radio button or
check box when combined with a radio button or
check box style.

Creates an owner-drawn button. The owner window
receives a WM_MEASUREITEM message when the
button is created, and it receives a
WM_DRAWITEM message when a visual aspect of
the button has changed. The BS_OWNERDRAW
style cannot be combined with any other button
styles.

Creates a push button that posts a WM_COMMAND
message to the owner window when the user selects
the button.

Creates a small circle that has text displayed to its
right (unless this style is combined with the
BS_LEFTTEXT style). Radio buttons are usually
used in groups of related but mutually exclusive
choices.

Following are the combo box styles (in the COMBOBOX class) that an applica-
tion can specify in the dwStyle parameter:

Style

Description

CBS_AUTOHSCROLL

CBS_DISABLENOSCROLL

CBS_DROPDOWN

CBS_DROPDOWNLIST

CBS_HASSTRINGS

Automatically scrolls the text in the edit con-
trol to the right when the user types a character
at the end of the line. If this style is not set,
only text that fits within the rectangular bound-
ary is allowed.

Shows a disabled vertical scroll bar in the list
box when the box does not contain enough
items to scroll. Without this style, the scroll bar
is hidden when the list box does not contain
enough items.

Similar to CBS_SIMPLE, except that the list
box is not displayed unless the user selects an
icon next to the edit control.

Similar to CBS_DROPDOWN, except that the
edit control is replaced by a static text item that
displays the current selection in the list box.

Specifies that an owner-drawn combo box con-
tains items consisting of strings. The combo
box maintains the memory and pointers for

the strings so the application can use the
CB_GETLBTEXT message to retrieve the

text for a particular item.

138 CreateWindow

Style Description

CBS_NOINTEGRALHEIGHT Specifies that the size of the combo box is ex-
actly the size specified by the application when
it created the combo box. Normally, Windows
sizes a combo box so that the combo box does
not display partial items.

CBS_OEMCONVERT Converts text entered in the combo-box edit

control from the Windows character set to the
. OEM character set and then back to the Win-

dows set. This ensures proper character conver-
sion when the application calls the
AnsiToOem function to convert a Windows
string in the combo box to OEM characters.
This style is most useful for combo boxes that
contain filenames and applies only to combo
boxes created with the CBS_SIMPLE or
CBS_DROPDOWN styles.

CBS_OWNERDRAWFIXED Specifies that the owner of the list box is re-
sponsible for drawing its contents and that the
items in the list box are all the same height.
The owner window receives a
WM_MEASUREITEM message when the
combo box is created and a WM_DRAWITEM
message when a visual aspect of the combo
box changes.

CBS_OWNERDRAWVARIABLE Specifies that the owner of the list box is re-
sponsible for drawing its contents and that the
items in the list box are variable in height. The
owner window receives a WM_MEASURE-
ITEM message for each item in the combo
box when the combo box is created and a
WM_DRAWITEM message when a visual
aspect of the combo box changes.

CBS_SIMPLE Displays the list box at all times. The current
selection in the list box is displayed in the edit
control.

CBS_SORT Automatically sorts strings entered into the list
box.

Following are the edit control styles (in the EDIT class) that an application can
specify in the dwStyle parameter:

Style Meaning

ES_AUTOHSCROLL Automatically scrolls text to the right by 10 characters when
the user types a character at the end of the line. When the
user presses the ENTER key, the control scrolls all text back
to position zero.

CreateWindow

139

Style

Meaning

ES_AUTOVSCROLL

ES_CENTER
ES_LEFT
ES_LOWERCASE

ES_MULTILINE

ES_NOHIDESEL

ES_OEMCONVERT

Automatically scrolls text up one page when the user
presses ENTER on the last line.

Centers text in a multiline edit control.
Left aligns text.

Converts all characters to lowercase as they are typed into
the edit control.

Designates a multiline edit control. (The default is single-
line edit control.)

When a multiline edit control is in a dialog box, the default
response to pressing the ENTER key is to activate the default
button. To use the ENTER key as a carriage return, an appli-
cation should use the ES_WANTRETURN style.

When the multiline edit control is not in a dialog box and
the ES_AUTOVSCROLL style is specified, the edit control
shows as many lines as possible and scrolls vertically when
the user presses the ENTER key. If ES_ AUTOVSCROLL

is not specified, the edit control shows as many lines as
possible and beeps if the user presses ENTER when no more
lines can be displayed.

If the ES_AUTOHSCROLL style is specified, the multiline
edit control automatically scrolls horizontally when the
caret goes past the right edge of the control. To start a new
line, the user must press ENTER. If ES_AUTOHSCROLL is
not specified, the control automatically wraps words to the
beginning of the next line when necessary. A new line is
also started if the user presses ENTER. The position of the
wordwrap is determined by the window size. If the window
size changes, the wordwrap position changes and the text is
redisplayed.

Multiline edit controls can have scroll bars. An edit control
with scroll bars processes its own scroll bar messages. Edit
controls without scroll bars scroll as described in the pre-
vious two paragraphs and process any scroll messages sent
by the parent window.

Negates the default behavior for an edit control. The default
behavior is to hide the selection when the control loses the
input focus and invert the selection when the control re-
ceives the input focus.

Converts text entered in the edit control from the Windows
character set to the OEM character set and then back to the
Windows set. This ensures proper character conversion
when the application calls the AnsiToOem function to con-

vert a Windows string in the edit control to OEM characters.

This style is most useful for edit controls that contain
filenames.

140

CreateWindow

Style

Meaning

ES_PASSWORD

ES_READONLY

ES_RIGHT
ES_UPPERCASE

ES_ WANTRETURN

Displays all characters as an asterisk (*) as they are typed
into the edit control. An application can use the
EM_SETPASSWORDCHAR message to change the charac-
ter that is displayed.

Prevents the user from typing or editing text in the edit con-
trol.

Right aligns text in a multiline edit control.

Converts all characters to uppercase as they are typed into
the edit control.

Specifies that a carriage return be inserted when the user
presses the ENTER key while entering text into a multiline
edit control in a dialog box. If this style is not specified,
pressing the ENTER key has the same effect as pressing the
dialog box’s default push button. This style has no effect on
a single-line edit control.

Followmg are the list box styles (in the LISTBOX class) that an application can
specify in the dwStyle parameter:

Style

Meaning

LBS_DISABLENOSCROLL Shows a disabled vertical scroll bar for the list

LBS_EXTENDEDSEL

LBS_HASSTRINGS

LBS_MULTICOLUMN

LBS_MULTIPLESEL

box when the box does not contain enough
items to scroll. If this style is not specified, the
scroll bar is hidden when the list box does not
contain enough items.

Allows multiple items to be selected by using
the SHIFT key and the mouse or special key
combinations.

Specifies that a list box contains items con-
sisting of strings. The list box maintains the
memory and pointers for the strings so the ap-
plication can use the LB_GETTEXT message
to retrieve the text for a particular item. By de-
fault, all list boxes except owner-drawn list
boxes have this style. An application can create
an owner-drawn list box either with or without
this style.

Specifies a multicolumn list box that is scrolled
horizontally. The LB_SETCOLUMNWIDTH
message sets the width of the columns.

Turns string selection on or off each time the

user clicks or double-clicks the string. Any
number of strings can be selected.

CreateWindow 141

Style

Meaning

LBS_NOINTEGRALHEIGHT

LBS_NOREDRAW

LBS_NOTIFY

LBS_OWNERDRAWFIXED

LBS_OWNERDRAWVARIABLE

LBS_SORT
LBS_STANDARD

LBS_USETABSTOPS

Specifies that the size of the list box is exactly
the size specified by the application when it
created the list box. Normally, Windows sizes a
list box so that the list box does not display par-
tial items.

Specifies that the list box’s appearance is not
updated when changes are made. This style
can be changed at any time by sending a
WM_SETREDRAW message.

Notifies the parent window with an input mes-
sage whenever the user clicks or double-clicks
a string.

Specifies that the owner of the list box is re-
sponsible for drawing its contents and that the
items in the list box are the same height. The
owner window receives a WM_MEASURE-
ITEM message when the list box is created and
a WM_DRAWITEM message when a visual
aspect of the list box changes.

Specifies that the owner of the list box is
responsible for drawing its contents and

that the items in the list box are variable in
height. The owner window receives a
WM_MEASUREITEM message for each item
in the list box when the list box is created and a
WM_DRAWITEM message whenever the
visual aspect of the list box changes.

Sorts strings in the list box alphabetically.

Sorts strings in the list box alphabetically. The
parent window receives an input message
whenever the user clicks or double-clicks a
string. The list box has borders on all sides.

Allows a list box to recognize and expand tab
characters when drawing its strings. The de-
fault tab positions are 32 dialog box units. (A
dialog box unit is a horizontal or vertical dis-
tance. One horizontal dialog box unit is equal
to one-fourth of the current dialog box base
width unit. The dialog box base units are com-
puted based on the height and width of the cur-
rent system font. The GetDialogBaseUnits
function returns the current dialog box base
units in pixels.)

142

CreateWindow

Style Meaning

LBS_WANTKEYBOARDINPUT Specifies that the owner of the list box receives
WM_VKEYTOITEM or WM_CHARTOITEM
messages whenever the user presses a key and
the list box has the input focus. This allows an
application to perform special processing on
the keyboard input. If a list box has the
LBS_HASSTRINGS style, the list box can re-
ceive WM_VKEYTOITEM messages but not
WM_CHARTOITEM messages. If a list box
does not have the LBS_ HASSTRINGS style,
the list box can receive WM_CHARTOITEM
messages but not WM_VKEYTOITEM mes-
sages. '

Following are the scroll bar styles (in the SCROLLBAR class) that an application
can specify in the dwStyle parameter:

Style Meaning

SBS_BOTTOMALIGN Aligns the bottom edge of the scroll bar
with the bottom edge of the rectangle de-
fined by the following CreateWindow
parameters: x, y, nWidth, and nHeight.
The scroll bar has the default height for
system scroll bars. Used with the
SBS_HORZ style.

SBS_HORZ Designates a horizontal scroll bar. If
neither the SBS_BOTTOMALIGN nor
SBS_TOPALIGN style is specified, the
scroll bar has the height, width, and posi-
tion specified by the CreateWindow pa-
rameters.

SBS_LEFTALIGN Aligns the left edge of the scroll bar
with the left edge of the rectangle de-
fined by the CreateWindow parameters.
The scroll bar has the default width for
system scroll bars. Used with the
SBS_VERT style.

CreateWindow 143

Style

Meaning

SBS_RIGHTALIGN

SBS_SIZEBOX

SBS_SIZEBOXBOTTOMRIGHTALIGN

SBS_SIZEBOXTOPLEFTALIGN

SBS_TOPALIGN

SBS_VERT

Aligns the right edge of the scroll bar
with the right edge of the rectangle de-
fined by the CreateWindow parameters.

~The scroll bar has the default width for

system scroll bars. Used with the
SBS_VERT style.

Designates a size box. If neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN
nor SBS_SIZEBOXTOPLEFTALIGN
style is specified, the size box has the
height, width, and position specified by
the CreateWindow parameters.

Aligns the lower-right corner of the size
box with the lower-right corner of the
rectangle specified by the Create-
Window parameters. The size box has
the default size for system size boxes.
Used with the SBS_SIZEBOX style.

Aligns the upper-left corner of the size
box with the upper-left corner of the
rectangle specified by the following
CreateWindow parameters: x, y,
nWidth, and nHeight. The size box has
the default size for system size boxes.
Used with the SBS_SIZEBOX style.

Aligns the top edge of the scroll bar
with the top edge of the rectangle de-
fined by the CreateWindow parameters.
The scroll bar has the default height for
system scroll bars. Used with the
SBS_HORZ style.

Designates a vertical scroll bar. If
neither the SBS_RIGHTALIGN nor
SBS_LEFTALIGN style is specified, the
scroll bar has the height, width, and posi-
tion specified by the CreateWindow pa-
rameters.

144 CreateWindow

Following are the static control styles (in the STATIC class) that an application
can specify in the dwStyle parameter. A static control can have only one of these

styles.
Style

Meaning

SS_BLACKFRAME

SS_BLACKRECT

SS_CENTER

SS_GRAYFRAME

SS_GRAYRECT

SS_ICON

SS_LEFT

SS_LEFTNOWORDWRAP

SS_NOPREFIX

Specifies a box with a frame drawn in the same color
as window frames. This color is black in the default
Windows color scheme.

Specifies a rectangle filled with the color used to draw
window frames. This color is black in the default Win-
dows color scheme.

Designates a simple rectangle and displays the given
text centered in the rectangle. The text is formatted
before it is displayed. Words that would extend past
the end of a line are automatically wrapped to the
beginning of the next centered line.

Specifies a box with a frame drawn with the same
color as the screen background (desktop). This color
is gray in the default Windows color scheme.

Specifies a rectangle filled with the color used to fill
the screen background. This color is gray in the de-
fault Windows color scheme.

Designates an icon displayed in the dialog box. The
given text is the name of an icon (not a filename) de-
fined elsewhere in the resource file. The nWidth and
nHeight parameters are ignored; the icon automat-
ically sizes itself.

Designates a simple rectangle and displays the given
text left-aligned in the rectangle. The text is formatted
before it is displayed. Words that would extend past
the end of a line are automatically wrapped to the
beginning of the next left-aligned line.

Designates a simple rectangle and displays the given
text left-aligned in the rectangle. Tabs are expanded
but words are not wrapped. Text that extends past the
end of a line is clipped.

Prevents interpretation of any & characters in the con-
trol’s text as accelerator prefix characters (which are
displayed with the & removed and the next character
in the string underlined). This static control style may
be included with any of the defined static controls.
You can combine SS_NOPREFIX with other styles by
using the bitwise OR operator. This is most often used
when filenames or other strings that may contain an &
need to be displayed in a static control in a dialog box.

CreateWindow 145

See Also

Style Meaning

SS_RIGHT Designates a simple rectangle and displays the given
text right-aligned in the rectangle. The text is for-
matted before it is displayed. Words that would extend
past the end of a line are automatically wrapped to the
beginning of the next right-aligned line.

SS_SIMPLE Designates a simple rectangle and displays a single
line of text left-aligned in the rectangle. The line of
text cannot be shortened or altered in any way. (The
control’s parent window or dialog box must not
process the WM_CTLCOLOR message.)

SS_WHITEFRAME Specifies a box with a frame drawn in the same color
as window backgrounds. This color is white in the de-
fault Windows color scheme.

SS_WHITERECT Specifies a rectangle filled with the color used to fill
window backgrounds. This color is white in the de-
fault Windows color scheme.

Following are the dialog box styles an application can specify in the dwStyle pa-
rameter:

Style Meaning

DS_LOCALEDIT Specifies that edit controls in the dialog box will use
memory in the application’s data segment. By default, all
edit controls in dialog boxes use memory outside the applica-
tion’s data segment. This feature may be suppressed by
adding the DS_LOCALEDIT flag to the Style command for
the dialog box. If this flag is not used, EM_GETHANDLE
and EM_SETHANDLE messages must not be used, because
the storage for the control is not in the application’s data seg-
ment. This feature does not affect edit controls created out-
side of dialog boxes.

DS_MODALFRAME Creates a dialog box with a modal dialog box frame that can
be combined with a title bar and System menu by specifying
the WS_CAPTION and WS_SYSMENU styles.

DS_NOIDLEMSG Suppresses WM_ENTERIDLE messages that Windows
would otherwise send to the owner of the dialog box while
the dialog box is displayed.

DS_SYSMODAL Creates a system-modal dialog box.

AnsiToOem, GetDialogBaseUnits, ShowWindow

146 CreateWindowEx

CreateWindowEx

HWND CreateWindowEx(dwExStyle, IpszClassName, IpszWindowName, dwStyle, x, y, nWidth,
nHeight, hwndParent, hmenu, hinst, IpvCreateParams)

DWORD dwExStyle; /* extended window style */
LPCSTR IpszClassName; /* address of registered class name */
LPCSTR IpszWindowName; /* address of window text */
DWORD dwStyle; /* window style . */
int x; /* horizontal position of the window */
int y; /* vertical position of the window */
int nWidth; /* window width */
int nHeight; /* window height */
HWND hwndParent; /* handle of parent window */
HMENU hmenu; /* handle of menu or child-window identifier */
HINSTANCE hinst; /* handle of application instance */
void FAR* IpvCreateParams; /* address of window-creation data */

Parameters

The CreateWindowEx function creates an overlapped, pop-up, or child window
with an extended style; otherwise, this function is identical to the CreateWindow
function. For more information about creating a window and for full descriptions
of the other parameters of CreateWindowEx, see the preceding description of the
CreateWindow function.

dwExStyle
Specifies the extended style of the window. This parameter can be one of the
following values:

Style Meaning

WS_EX_ACCEPTFILES Specifies that a window created with this style
accepts drag-drop files.

WS_EX_DLGMODALFRAME Designates a window with a double border that
may (optionally) be created with a title bar by
specifying the WS_CAPTION style flag in the
dwStyle parameter.

WS_EX_NOPARENTNOTIFY Specifies that a child window created by using
this style will not send the
WM_PARENTNOTIFY message to its parent
window when the child window is created or
destroyed.

WS_EX_TOPMOST Specifies that a window created with this style
should be placed above all non-topmost win-
dows and stay above them even when the win-
dow is deactivated. An application can use the
SetWindowPos function to add or remove this
attribute.

CreateWindowEx 147

Style Meaning

WS_EX_TRANSPARENT Specifies that a window created with this style
is to be transparent. That is, any windows that
are beneath the window are not obscured by
the window. A window created with this style
receives WM_PAINT messages only after all
sibling windows beneath it have been updated.

IpszClassName
Points to a null-terminated string containing the name of the window class.

IpszWindowName
Points to a null-terminated string containing the name of the window.

awStyle .
Specifies the style of the window. For a list of the window styles that can be
specified in this parameter, see the preceding description of the CreateWindow
function. '

X
Specifies the initial left-side position of the window.

Specifies the initial top position of the window.

nWidth
Specifies the width, in device units, of the window.

nHeight
Specifies the height, in device units, of the window.

hwndParent
Identifies the parent or owner window of the window to be created.

hmenu
Identifies a menu or a child window. The meaning depends on the window

style.

hinst
Identifies the instance of the module to be associated with the window.

IpvCreateParams
Contains any application-specific creation parameters. The window being
created may access this data when the CREATESTRUCT structure is passed
to the window by the WM_NCCREATE and WM_CREATE messages.

148 CreateWindowEx

Return Value

Comments

Example

See Also

The CREATESTRUCT structure has the following form:

typedef struct tagCREATESTRUCT { /* cs */
void FAR* TpCreateParams;
HINSTANCE hlInstance;

HMENU hMenu;

HWND hwndParent;
int cy;

int CcX;

int Yy

int X3

LONG style;

LPCSTR 1pszName;

LPCSTR 1pszClass;

DWORD dwExStyle;
} CREATESTRUCT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

The return value identifies the new window if the function is successful. Other-
wise, it is NULL.

The CreateWindowEx function sends the following messages to the window
being created:

WM_NCCREATE
WM_NCCALCSIZE
WM_CREATE

The following example creates a main window that has the WS_EX_TOPMOST
extended style, makes the window visible, and updates the window’s client area:

char szClassName[] = "MyClass";

/* Create the main window. */

hwnd = CreateWindowEx(WS_EX_TOPMOST, szClassName, "Grouper",
WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL,
hinst, NULL);

/* Make the window visible and update its client area. */

ShowWindow(hwnd, SW_SHOW); /* always show the window */
UpdateWindow(hwnd);

CreateWindow, SetWindowPos

DdeAbandonTransaction 149

DdeAbandonTransaction [31]

#include <ddeml.h>

BOOL DdeAbandonTransaction(idInst, hConv, idTransaction)
DWORD idInst; /* instance identifier */
HCONY hConv; /* handle of conversation */
DWORD idTransaction; /* transaction identifier */

The DdeAbandonTransaction function abandons the specified asynchronous
transaction and releases all resources associated with the transaction.

Parameters idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hConv :
Identifies the conversation in which the transaction was initiated. If this parame-
ter is NULL, all transactions are abandoned (the idTransaction parameter is ig-
nored). ‘

idTransaction
Identifies the transaction to terminate. If this parameter is NULL, all active
transactions in the specified conversation are abandoned.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.
Errors Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

Comments Only a dynamic data exchange (DDE) client application should call the Dde-
AbandonTransaction function. If the server application responds to the transac-
tion after the client has called DdeAbandonTransaction, the system discards the
transaction results. This function has no effect on synchronous transactions.

See Also DdeClientTransaction, DdeGetLastError, Ddelnitialize, DdeQueryConvInfo

150 DdeAccessData

DdeAccessData

#include <ddeml.h>

BYTE FAR* DdeAccessData(hData, IpcbData)

HDDEDATA hData /* handle of global memory object */
DWORD FAR* IpcbData; /* pointer to variable that receives data length */

Parameters

Return Value

Errors

Comments

Example

The DdeAccessData function provides access to the data in the given global
memory object. An application must call the DdeUnaccessData function when it
is finished accessing the data in the object.

hData
Identifies the global memory object to access.

IpcbData
Points to a variable that receives the size, in bytes, of the global memory object
identified by the AData parameter. If this parameter is NULL no size informa-
tion is returned.

The return value points to the first byte of data in the global memory object if the
function is successful. Otherwise, the return value is NULL.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

If the hData parameter has not been passed to a Dynamic Data Exchange Manage-
ment Library (DDEML) function, an application can use the pointer returned by
DdeAccessData for read-write access to the global memory object. If ZData has
already been passed to a DDEML function, the pointer can only be used for read-
only access to the memory object.

The following example uses the DdeAccessData function to obtain a pointer to a
global memory object, uses the pointer to copy data from the object to a local buff-
er, then frees the pointer:

HDDEDATA hData;

LPBYTE TpszAdviseData;
DWORD cbDatalen;

DWORD 13

char szData[128];

1pszAdviseData = DdeAccessData(hData, &cbDatalen);

DdeAddData 151

~for (i = @; i < cbDatalen; i++)
szData[i] = *1pszAdviseData++;
DdeUnaccessData(hData);

See Also DdeAddData, DdeCreateDataHandle, DdeFreeDataHandle, DdeGetLast-
Error, DdeUnaccessData

DdeAddData ~ [3.1]

#include <ddeml.h>

HDDEDATA DdeAddData(hData, IpvSrcBuf, cbAddData, offObj)
HDDEDATA hData; /* handle of global memory object */
void FAR* IpvSrcBuf; /* address of source buffer */
DWORD cbAddData; /* length of data */
DWORD offObj; /* offset within global memory object */

The DdeAddData function adds data to the given global memory object. An appli-
cation can add data beginning at any offset from the beginning of the object. If
new data overlaps data already in the object, the new data overwrites the old data
in the bytes where the overlap occurs. The contents of locations in the object that
have not been written to are undefined.

Parameters hData
Identifies the global memory object that receives additional data.

IpvSrcBuf
Points to a buffer containing the data to add to the global memory object.

cbAddData
Specifies the length, in bytes, of the data to be added to the global memory ob-
ject.

offObj
Specifies an offset, in bytes, from the beginning of the global memory object.
The additional data is copied to the object beginning at this offset.

Return Value The return value is a new handle of the global memory object if the function is
successful. The new handle should be used in all references to the object. The re-
turn value is zero if an error occurs.

Errors Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

152 DdeAddData

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_ERROR

Comments After a data handle has been used as a parameter in another Dynamic Data Ex-
change Management Library (DDEML) function or returned by a DDE callback
function, the handle may only be used for read access to the global memory object
identified by the handle.

If the amount of global memory originally allocated is not large enough to hold
the added data, the DdeAddData function will reallocate a global memory object
of the appropriate size.

Example The following example creates a global memory object, uses the DdeAddData
function to add data to the object, and then passes the data to a client with an
XTYP_POKE transaction:

DWORD idInst; /* instance identifier */
HDDEDATA hddeStrings; /* data handle */
HSZ hszMyItem; /* item-name string handle */
DWORD offObj = 0; /* offset in global object */
char szMyBuf[16]; /* temporary string buffer =/
HCONV hconv; /* conversation handle */
DWORD dwResult; /* transaction results */
BOOL fAddAString; /* TRUE if strings to add =*/

/* Create a global memory object. */

hddeStrings = DdeCreateDataHandle(idInst, NULL, @, 0,
hszMyItem, CF_TEXT, 0);

/*

* If a string is available, the application-defined function

* IsThereAString() copies it to szMyBuf and returns TRUE. Otherwise,
* it returns FALSE.

*/

while ((fAddAString = IsThereAString())) {

/* Add the string to the global memory object. */

DdeAddData(hddeStrings, /* data handle */
&szMyBuf, /* string buffer */
(DWORD) strien(szMyBuf) + 1, /* character count */
off0bj); /* offset in object */

offObj = (DWORD) strlen(szMyBuf) + 1; /* adjust offset */

DdeCallback 153

/* No more data to add, so poke it to the server. */

DdeClientTransaction((void FAR*) hddeStrings, -1L, hconv, hszMyItem,
CF_TEXT, XTYP_POKE, 1000, &dwResult);

See Also DdeAccessData, DdeCreateDataHandle, DdeGetLastError, DdeUnaccessData

DdeCallback [34]

#include <ddeml.h>

HDDEDATA CALLBACK DdeCallback(type, fint, hconv, hszl, hsz2, hData, dwDatal, dwData2)
UINT type; /* transaction type */

UINT fint; /* clipboard data format */

HCONY hconv; /* handle of conversation */

HSZ hsz1; /* handle of string */

HSZ hsz2; /* handle of string */

HDDEDATA hData; /* handle of global memory object */

DWORD dwDatal; /* transaction-specific data */

DWORD dwData2; /* transaction-specific data */

The DdeCallback function is an application-defined dynamic data exchange
(DDE) callback function that processes DDE transactions sent to the function as a
result of DDE Management Library (DDEML) calls by other applications.

Parameters type
Specifies the type of the current transaction. This parameter consists of a combi-
nation of transaction-class flags and transaction-type flags. The following table
describes each of the transaction classes and provides a list of the transaction
types in each class. For information about a specific transaction type, see the in-
dividual description of that type in the Microsoft Windows Programmer’s Refer-
ence, Volume 3.

Value Meaning

XCLASS_BOOL A DDE callback function should return TRUE or
FALSE when it finishes processing a transaction
that belongs to this class. Following are the
XCLASS_BOOL transaction types:

XTYP_ADVSTART
XTYP_CONNECT

154 DdeCallback

Value Meaning

XCLASS_DATA A DDE callback function should return a DDE data
handle, CBR_BLOCK, or NULL when it finishes
processing a transaction that belongs to this class.
Following are the XCLASS_DATA transaction
types:

XTYP_ADVREQ
XTYP_REQUEST
XTYP_WILDCONNECT

XCLASS_FLAGS A DDE callback function should return
DDE_FACK, DDE_FBUSY, or
DDE_FNOTPROCESSED when it finishes
processing a transaction that belongs to this
class. Following are the XCLASS_FLAGS
transaction types:

XTYP_ADVDATA
XTYP_EXECUTE
XTYP_POKE

XCLASS_NOTIFICATION The transaction types that belong to this class are
for notification purposes only. The return value
from the callback function is ignored. Following
are the XCLASS_NOTIFICATION transaction
types:

XTYP_ADVSTOP
XTYP_CONNECT_CONFIRM
XTYP_DISCONNECT
XTYP_ERROR
XTYP_MONITOR
XTYP_REGISTER
XTYP_XACT_COMPLETE
XTYP_UNREGISTER

fmt

Specifies the format in which data is to be sent or received.

hcony
Identifies the conversation associated with the current transaction.

hszl

Identifies a string. The meaning of this parameter depends on the type of the
current transaction. For more information, see the description of the transaction

type.

hsz2
Identifies a string. The meaning of this parameter depends on the type of the
current transaction. For more information, see the description of the transaction

type.

DdeClientTransaction 155

Return Value

Comments

See Also

hData
Identifies DDE data. The meaning of this parameter depends on the type of the
current transaction. For more information, see the description of the transaction

type.

dwDatal
Specifies transaction-specific data. For more information, see the description of
the transaction type.

dwData2
Specifies transaction-specific data. For more information, see the description of
the transaction type.

The return value depends on the transaction class. For more information about
return values, see the descriptions of the individual DDE transactions in the
Microsoft Windows Programmer’s Reference, Volume 3.

The callback function is called asynchronously for transactions that do not involve
creating or terminating conversations. An application that does not frequently ac-
cept incoming messages will have reduced DDE performance because DDEML
uses messages to initiate transactions.

An application must register the callback function by specifying its address in a

call to the Ddelnitialize function. DdeCallback is a placeholder for the applica-
tion- or library-defined function name. The actual name must be exported by in-
cluding it in an EXPORTS statement in the application’s module-definition file.

DdeEnableCallback, Ddelnitialize

DdeClientTransaction [34]

#include <ddeml.h>

HDDEDATA DdeClientTransaction(/pvData, cbData, hConv, hszltem, uFmt, uType, uTimeout,

IpuResult)
void FAR* IpvData;
DWORD cbData;
HCONY hConv;
HSZ hszltem;
UINT uFmt;
UINT uType;
DWORD uTimeout;

/* address of data to pass to server */
/* length of data */
/* handle of conversation */
/* handle of item-name string */
/* clipboard data format */
/* transaction type */
/* timeout duration */

DWORD FAR* lpuResult; /* points to transaction result */

156 DdeClientTransaction

Parameters

The DdeClientTransaction function begins a data transaction between a client
and a server. Only a dynamic data exchange (DDE) client application can call this
function, and only after establishing a conversation with the server.

IpvData
Points to the beginning of the data that the client needs to pass to the server.

Optionally, an application can specify the data handle (HDDEDATA) to pass to
the server, in which case the cbData parameter should be set to —1. This pa-
rameter is required only if the uType parameter is XTYP_EXECUTE or
XTYP_POKE. Otherwise, this parameter should be NULL.

cbData
Specifies the length, in bytes, of the data pointed to by the IpvData parameter.
A value of —1 indicates that [pvData is a data handle that identifies the data
being sent.

hConv
Identifies the conversation in which the transaction is to take place.

hszltem
Identifies the data item for which data is being exchanged during the transac-
tion. This handle must have been created by a previous call to the DdeCreate-
StringHandle function. This parameter is ignored (and should be set to NULL)
if the uType parameter is XTYP_EXECUTE.

uFmt
Specifies the standard clipboard format in which the data item is being sub-
mitted or requested. For more information about standard clipboard formats,
see the Microsoft Windows Guide to Programming.

uType
Specifies the transaction type. This parameter can be one of the following
values:

Value Meaning

XTYP_ADVSTART Begins an advise loop. Any number of distinct advise
loops can exist within a conversation. An application
can alter the advise loop type by combining the
XTYP_ADVSTART transaction type with one or
more of the following flags:

Value Meaning

XTYPF_NODATA Instructs the server to notify the
client of any data changes without
actually sending the data. This
flag gives the client the option of
ignoring the notification or re-
questing the changed data from
the server.

DdeClientTransaction 157

Return Value

Errors

Value

Meaning

XTYP_ADVSTOP
XTYP_EXECUTE
XTYP_POKE

XTYP_REQUEST

uTimeout

Value Meaning

XTYPF_ACKREQ Instructs the server to wait until
the client acknowledges that it re-
ceived the previous data item
before sending the next data item.
This flag prevents a fast server
from sending data faster than the
client can process it.

Ends an advise loop.

Begins an execute transaction.
Begins a poke transaction.
Begins a request transaction.

Specifies the maximum length of time, in milliseconds, that the client will wait
for a response from the server application in a synchronous transaction. This pa-
rameter should be set to TIMEOUT_ASYNC for asynchronous transactions.

IpuResult

Points to a variable that receives the result of the transaction. An application
that does not check the result can set this value to NULL. For synchronous
transactions, the low-order word of this variable will contain any applicable
DDE_ flags resulting from the transaction. This provides support for applica-
tions dependent on DDE_APPSTATUS bits. (It is recommended that applica-
tions no longer use these bits because they may not be supported in future
versions of the DDE Management Library.) For asynchronous transactions, this
variable is filled with a unique transaction identifier for use with the Dde-
AbandonTransaction function and the XTYP_XACT_COMPLETE transac-

tion.

The return value is a data handle that identifies the data for successful syn-
chronous transactions in which the client expects data from the server. The return
value is TRUE for successful asynchronous transactions and for synchronous
transactions in which the client does not expect data. The return value is FALSE
for all unsuccessful transactions.

Use the DdeGetLastError function to retrieve the error value, which may be one

of the following:

DMLERR_ADVACKTIMEOUT

DMLERR_BUSY

DMLERR_DATAACKTIMEOUT
DMLERR_DLL_NOT_INITIALIZED

158 DdeClientTransaction

Comments

Example

DMLERR_EXECACKTIMEOUT
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_NOTPROCESSED
DMLERR_POKEACKTIMEOUT
DMLERR_POSTMSG_FAILED
DMLERR_REENTRANCY
DMLERR_SERVER_DIED
DMLERR_UNADVACKTIMEOUT

When the application is finished using the data handle returned by the DdeClient-
Transaction function, the application should free the handle by calling the Dde-
FreeDataHandle function.

Transactions can be synchronous or asynchronous. During a synchronous transac-
tion, the DdeClientTransaction function does not return until the transaction
completes successfully or fails. Synchronous transactions cause the client to enter
a modal loop while waiting for various asynchronous events. Because of this, the
client application can still respond to user input while waiting on a synchronous
transaction but cannot begin a second synchronous transaction because of the ac-
tivity associated with the first. The DdeClientTransaction function fails if any in-
stance of the same task has a synchronous transaction already in progress.

During an asynchronous transaction, the DdeClientTransaction function returns
after the transaction is begun, passing a transaction identifier for reference. When
the server’s DDE callback function finishes processing an asynchronous transac-
tion, the system sends an XTYP_XACT_COMPLETE transaction to the client.
This transaction provides the client with the results of the asynchronous transac-
tion that it initiated by calling the DdeClientTransaction function. A client appli-
cation can choose to abandon an asynchronous transaction by calling the
DdeAbandonTransaction function.

The following example requests an advise loop with a DDE server application:

HCONV hconv;
HSZ hszNow;
HDDEDATA hData;
DWORD dwResult;

DdeCmpStringHandles 159

hData = DdeClientTransaction(

(LPBYTE) NULL, /=%

pass no data to server */

0, /* no data */
hconv, /* conversation handle */
hszNow, /* item name */
CF_TEXT, /* clipboard format */
XTYP_ADVSTART, /* start an advise loop */
1000, /* time-out in one second */
&dwResult); /* points to result flags */
See Also DdeAbandonTransaction, DdeAccessData, DdeConnect, DdeConnectList,

DdeCreateStringHandle

DdeCmpStringHandles

#include <ddeml.h>

int DdeCmpStringHandles(%sz 1, hsz2)
HSZ hsz1; /* handle of first string
HSZ hsz2; /* handle of second string

*/
*/

The DdeCmpStringHandles function compares the values of two string handles.
The value of a string handle is not related to the case of the associated string.

Parameters hszl

hsz2

Specifies the first string handle.

Specifies the second string handle.

Return Value The return value can be one of the following:

Value Meaning

-1 The value of Asz1 is either O or less than the value of hsz2.
0 The values of hszl and hsz2 are equal (both can be 0).
1 The value of hsz2 is either O or less than the value of hszl.
Comments An application that needs to do a case-sensitive comparison of two string handles

should compare the string handles directly. An application should use DdeComp-
StringHandles for all other comparisons to preserve the case-sensitive nature of
dynamic data exchange (DDE).

160 DdeConnect

The DdeCompStringHandles function cannot be used to sort string handles al-
phabetically.

Example This example compares two service-name string handles and, if the handles are the
same, requests a conversation with the server, then issues an XTYP_ADVSTART
transaction:

HSZ hszClock; /* service name */
HSZ hszTime; /* topic name */
HSZ hszl; /* unknown server */
HCONV hConv; /* conversation handle */
DWORD dwResult; /* result flags *]
DWORD idInst; /* instance identifier */
/%
* Compare unknown service name handle with the string handle
* for the clock application.
*/
if (!DdeCmpStringHandles(hszl, hszClock)) {
/%
If this is the clock application, start a conversation
* with it and request an advise Tloop.
*/
hConv = DdeConnect(idInst, hszClock, hszTime, NULL);
if (hConv != (HCONV) NULL)
DdeClientTransaction(NULL, @, hConv, hszNow,
CF_TEXT, XTYP_ADVSTART, 1000, &dwResult);
}
See Also DdeAccessData, DdeCreateStringHandle, DdeFreeStringHandle
#finclude <ddemlLh> »
HCONY DdeConnect(idinst, hszService, hszTopic, pCC)
DWORD idinst; /* instance identifier */
HSZ hszService; /* handle of service-name string */
HSZ hszTopic; /* handle of topic-name string */

CONVCONTEXT FAR* pCC; /* address of structure with context data */

DdeConnect 161

Parameters

Return Value

The DdeConnect function establishes a conversation with a server application that
supports the specified service name and topic name pair. If more than one such
server exists, the system selects only one.

idInst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hszService
Identifies the string that specifies the service name of the server application
with which a conversation is to be established. This handle must have been
created by a previous call to the DdeCreateStringHandle function. If this pa-
rameter is NULL, a conversation will be established with any available server.

hszTopic
Identifies the string that specifies the name of the topic on which a conversation
is to be established. This handle must have been created by a previous call to
the DdeCreateStringHandle function. If this parameter is NULL, a conversa-
tion on any topic supported by the selected server will be established.

pCC
Points to the CONVCONTEXT structure that contains conversation-context in-
formation. If this parameter is NULL, the server receives the default CONV-
CONTEXT structure during the XTYP_CONNECT or
XTYP_WILDCONNECT transaction.

The CONVCONTEXT structure has the following form:

#include <ddeml.h>

typedef struct tagCONVCONTEXT { /* cc */
UINT ch;
UINT wFlags;
UINT wCountryID;
int iCodePage;
DWORD dwLanglID;
DWORD dwSecurity;

} CONVCONTEXT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

The return value is the handle of the established conversation if the function is
successful. Otherwise, it is NULL.

162 DdeConnect

“Errors

Comments

Example

See Also

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

The client application should not make assumptions regarding which server will
be selected. If an instance-specific name is specified in the hszService parameter, a
conversation will be established only with the specified instance. Instance-specific
service names are passed to an application’s dynamic data exchange callback func-
tion during the XTYP_REGISTER and XTYP_UNREGISTER transactions.

All members of the default CONVCONTEXT structure are set to zero except cb,
which specifies the size of the structure, and iCodePage, which specifies
CP_WINANGSI (the default code page).

The following example creates a service-name string handle and a topic-name
string handle, then attempts to establish a conversation with a server that supports
the service name and topic name. If the attempt fails, the example retrieves an
error value identifying the reason for the failure.

DWORD idInst = OL;
HSZ hszClock;

HSZ hszTime;

HCONV hconv;

UINT uError;

hszClock = DdeCreateStringHandle(idInst, "Clock", CP_WINANSI);
hszTime = DdeCreateStringHandle(idInst, "Time", CP_WINANSI);

if ((hconv = DdeConnect(

idInst, /* instance identifier */
hszClock, /* server's service name */
hszTime, /* topic name */
NULL)) == NULL) { /* use default CONVCONTEXT */

uError = DdeGetLastError(idInst);
}

DdeConnectList, DdeCreateStringHandle, DdeDisconnect,
DdeDisconnectList, Ddelnitialize

DdeConnectList 163

DdeConnectList [31]

#include <ddeml.h>

HCONVLIST DdeConnectList(idInst, hszService, hszTopic, hConvList, pCC)

DWORD idInst; /* instance identifier */

HSZ hszService; /* handle of service-name string */

HSZ hszTopic; /* handle of topic-name string */

HCONVLIST hConvlList; /* handle of conversation list */

CONVCONTEXT FAR#* pCC; /* address of structure with context data */
The DdeConnectList function establishes a conversation with all server applica-
tions that support the specified service/topic name pair. An application can also
use this function to enumerate a list of conversation handles by passing the func-
tion an existing conversation handle. During enumeration, the Dynamic Data Ex-
change Management Library (DDEML) removes the handles of any terminated
conversations from the conversation list. The resulting conversation list contains
the handles of all conversations currently established that support the specified
service name and topic name.

Parameters idInst

Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hszService
Identifies the string that specifies the service name of the server application
with which a conversation is to be established. If this parameter is NULL, the
system will attempt to establish conversations with all available servers that sup-
port the specified topic name.

hszTopic
Identifies the string that specifies the name of the topic on which a conversation
is to be established. This handle must have been created by a previous call to
the DdeCreateStringHandle function. If this parameter is NULL, the system
will attempt to establish conversations on all topics supported by the selected
server (Or servers).

hConvList
Identifies the conversation list to be enumerated. This parameter should be set
to NULL if a new conversation list is to be established.

pCC
Points to the CONVCONTEXT structure that contains conversation-context
information. If this parameter is NULL, the server receives the default

CONVCONTEXT structure during the XTYP_CONNECT or
XTYP_WILDCONNECT transaction.

The CONVCONTEXT structure has the following form:

164 DdeConnectList

Return Value

Errors

Comments

Example

f#finclude <ddeml.h>

typedef struct tagCONVCONTEXT { /* cc */
) UINT cb;

UINT wFlags;

UINT wCountryID;

int iCodePage;

DWORD dwlLanglD;

DWORD dwSecurity;

} CONVCONTEXT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

The return value is the handle of a new conversation list if the function is success-
ful. Otherwise, it is NULL. The handle of the old conversation list is no longer
valid.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALID_PARAMETER
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

An application must free the conversation-list handle returned by this function, re-
gardless of whether any conversation handles within the list are active. To free the
handle, an application can call the DdeDisconnectList function.

All members of the default CONVCONTEXT structure are set to zero except cb,
which specifies the size of the structure, and iCodePage, which specifies
CP_WINANGSI (the default code page).

The following example uses the DdeConnectList function to establish a conversa-
tion with all servers that support the System topic, counts the servers, allocates a
buffer for storing the server’s service-name string handles, and then copies the han-
dles to the buffer:

DdeConnectList

165

See Also

HCONVLIST hconvlList; /*
DWORD idInst; /*
HSZ hszSystem; /*
HCONV hconv = NULL; /=*
CONVINFO ci; /*

UINT cConv = 0; /%
HSZ *pHsz, *aHsz; /%

conversation list */
instance identifier */
System topic */
conversation handle */

holds conversation data */
count of conv. handles */
point to string handles */

/* Connect to all servers that support the System topic. */

hconvList = DdeConnectlList(idInst, (HSZ) NULL, hszSystem,
(HCONV) NULL, (LPVOID) NULL);

/* Count the number of handles in the conversation Tist. */

while ((hconv = DdeQueryNextServer(hconvList, hconv))

cConv++;

/* Allocate a buffer for the string handles. */

hconv = (HCONV) NULL;

!= (HCONV) NULL)

aHsz = (HSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof(HSZ));

/* Copy the string handles to the buffer. */

pHsz = aHsz;

while ((hconv = DdeQueryNextServer(hconvList, hconv))
DdeQueryConvInfo(hconv, QID_SYNC,

DdeKeepStringHandle(idInst, ci.hszSvcPartner);
*pHsz++ = ci.hszSvcPartner;

. /* Use the handles; converse with servers. */

/* Free the memory and terminate conversations. */

LocalFree((HANDLE) aHsz);
DdeDisconnectList(hconvList);

DdeConnect, DdeCreateStringHandle, DdeDisconnect, DdeDisconnectList,

Ddelnitialize, DdeQueryNextServer

!= (HCONV) NULL) {

(PCONVINFO) &ci);

166 DdeCreateDataHandle

DdeCreateDataHandle [31]

#include <ddeml.h>

HDDEDATA DdeCreateDataHandle(idInst, [pvSrcBuf, cbinitData, offSrcBuf, hszltem, uFmt, afCmd)
DWORD idinst; /* instance identifier */

void FAR* lvachuf, /* address of source buffer */

DWORD cbinitData; /* length of global memory object */

DWORD offSrcBuf; /* offset from beginning of source buffer */

HSZ hszltem /* handle of item-name string */

UINT uFmt; /* clipboard data format */

UINT afCmd; /* creation flags */

Parameters

The DdeCreateDataHandle function creates a global memory object and fills the
object with the data pointed to by the IpvSrcBuf parameter. A dynamic data ex-
change (DDE) application uses this function during transactions that involve pass-
ing data to the partner application.

idInst

Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

IpvSrcBuf
Points to a buffer that contains data to be copied to the global memory object. If
this parameter is NULL, no data is copied to the object.

cblnitData
Specifies the amount, in bytes, of memory to allocate for the global memory ob-
ject. If this parameter is zero, the [pvSrcBuf parameter is ignored.

offSrcBuf
Specifies an offset, in bytes, from the beginning of the buffer pointed to by the
IpvSrcBuf parameter. The data beginning at this offset is copied from the buffer
to the global memory object.

hszltem
Identifies the string that specifies the data item corresponding to the global
memory object. This handle must have been created by a previous call to the
DdeCreateStringHandle function. If the data handle is to be used in an
XTYP_EXECUTE transaction, this parameter must be set to NULL.

uFmt
Specifies the standard clipboard format of the data.

afCmd
Specifies the creation flags. This parameter can be HDATA_APPOWNED,
which specifies that the server application that calls the DdeCreate-
DataHandle function will own the data handle that this function creates. This
makes it possible for the server to share the data handle with multiple clients in-
stead of creating a separate handle for each request. If this flag is set, the server

DdeCreateDataHandle 167

Return Value

Errors

Comments

Example

must eventually free the shared memory object associated with this handle by
using the DdeFreeDataHandle function. If this flag is not set, after the data
handle is returned by the server’s DDE callback function or used as a parameter
in another DDE Management Library function, the handle becomes invalid in
the application that creates the handle.

The return value is a data handle if the function is successful. Otherwise, it is
NULL.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_ERROR

Any locations in the global memory object that are not filled are undefined.

After a data handle has been used as a parameter in another DDEML function or
has been returned by a DDE callback function, the handle may be used only for
read access to the global memory object identified by the handle.

If the application will be adding data to the global memory object (using the
DdeAddData function) so that the object exceeds 64K in length, then the applica-
tion should specify a total length (cbInitData + offSrcData) that is equal to the an-
ticipated maximum length of the object. This avoids unnecessary data copying and
memory reallocation by the system.

The following example processes the XTYP_WILDCONNECT transaction by re-
turning a data handle to an array of HSZPAIR structures—one for each topic
name supported:

f#define CTOPICS 2

UINT type;

UINT fmt;

HSZPAIR ahp[(CTOPICS + 1)1;
HSZ ahszTopicList[CTOPICS];
HSZ hszServ, hszTopic;

WORD i, j;

if (type == XTYP_WILDCONNECT) {

/*

* Scan the topic 1ist and create array of HSZPAIR data
* structures.

*/

168 DdeCreateStringHandle

Jj=0;
for (i = @; i < CTOPICS; i++) {
if (hszTopic == (HSZ) NULL ||
hszTopic == ahszTopicList[i]l) {
ahp[jl.hszSvc = hszServ;
ahp[j++].hszTopic = ahszTopiclList[i];

}

/%

* End the 1ist with an HSZPAIR structure that contains NULL
string handles as its members.

*/

ahp[jl.hszSvc = NULL;
ahp[j++].hszTopic = NULL;

/*
* Return a handle to a global memory object containing the
* HSZPAIR structures.

*/

return DdeCreateDataHandle(
idInst, /* instance identifier */
&ahp, /* points to HSZPAIR array */
sizeof(HSZ) * j, /% length of the array */
Q, /* start at the beginning =/
NULL, /* no item-name string */
fmt, /* return the same format =*/
0); /* let the system own it */

}
See Also . DdeAccessData, DdeFreeDataHandle, DdeGetData, Ddelnitialize

DdeCreateStringHandle [31]

#include <ddeml.h>

HSZ DdeCreateStringHandle(idInst, IpszString, codepage)
DWORD idiInst; /* instance identifier */
LPCSTR IpszString; /* address of null-terminated string */
int codepage; /* code page */

The DdeCreateStringHandle function creates a handle that identifies the string
pointed to by the IpszString parameter. A dynamic data exchange (DDE) client or
server application can pass the string handle as a parameter to other DDE Manage-
ment Library functions.

DdeCreateStringHandle 169

Parameters

Return Value

Errors

Comments

idInst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

IpszString
Points to a buffer that contains the null-terminated string for which a handle is
to be created. This string may be any length.

codepage
Specifies the code page used to render the string. This value should be either
CP_WINANTSI or the value returned by the GetKBCodePage function. A
value of zero implies CP_WINANSIL

The return value is a string handle if the function is successful. Otherwise, it is
NULL.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

Two identical strings always correspond to the same string handle. String handles
are unique across all tasks that use the DDEML.. That is, when an application
creates a handle for a string and another application creates a handle for an identi-
cal string, the string handles returned to both applications are identical—regardless
of case.

The value of a string handle is not related to the case of the string it identifies.

When an application has either created a string handle or received one in the call-
back function and has used the DdeKeepStringHandle function to keep it, the ap-
plication must free that string handle when it is no longer needed.

An instance-specific string handle is not mappable from string handle to string
to string handle again. This is shown in the following example, in which the
DdeQueryString function creates a string from a string handle and then
DdeCreateStringHandle creates a string handle from that string, but the

two handles are not the same:

DWORD idInst;

DWORD cb;

HSZ hszInst, hszNew;
PSZ pszInst;

DdeQueryString(idInst, hszInst, pszInst, cb, CP_WINANSI);
hszNew = DdeCreateStringHandle(idInst, pszInst, CP_WINANSI);
/* hszNew != hszInst ! */

170 DdeDisconnect

Example

See Also

The following example creates a service-name string handle and a topic-name
string handle and then attempts to establish a conversation with a server that sup-
ports the service name and topic name. If the attempt fails, the example obtains an
error value identifying the reason for the failure.

DWORD idInst = @L;
HSZ hszClock;

HSZ hszTime;

HCONV hconv;

UINT uError;

hszClock = DdeCreateStringHandle(idInst, "Clock™, CP_WINANSI);
hszTime = DdeCreateStringHandle(idInst, "Time", CP_WINANSI);

if ((hconv = DdeConnect(
idInst, /* instance identifier */
hszClock, /* server's service name */
hszTime, /* topic name */
NULL)) == NULL) { /* use default CONVCONTEXT */

uError = DdeGetLastError(idInst);

DdeAccessData, DdeCmpStringHandles, DdeFreeStringHandle,
Ddelnitialize, DdeKeepStringHandle, DdeQueryString

DdeDisconnect

#include <ddeml.h>

BOOL DdeDisconnect(2Conv)

HCONY hConv;

Parameters

Return Value

Errors

/* handle of conversation */

The DdeDisconnect function terminates a conversation started by either the Dde-
Connect or DdeConnectList function and invalidates the given conversation
handle.

hConv
Identifies the active conversation to be terminated.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DdeDisconnectList 171

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

Comments Any incomplete transactions started before calling DdeDisconnect are immedi-
ately abandoned. The XTYP_DISCONNECT transaction type is sent to the dy-
namic data exchange (DDE) callback function of the partner in the conversation.
Generally, only client applications need to terminate conversations.

See Also DdeConnect, DdeConnectList, DdeDisconnectList

DdeDisconnectList [34]

#finclude <ddeml.h>

BOOL DdeDisconnectList(72ConvList)
HCONVLIST hConvList; /* handle of conversation list */

Parameters

Return Value

Errors

Comments

See Also

The DdeDisconnectList function destroys the given conversation list and termi-
nates all conversations associated with the list.

hConvList
Identifies the conversation list. This handle must have been created by a pre-
vious call to the DdeConnectList function.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

. DMLERR_DLL_NOT_INITIALIZED

DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

An application can use the DdeDisconnect function to terminate individual con-
versations in the list.

DdeConnect, DdeConnectList, DdeDisconnect

172 DdeEnableCallback

DdeEnableCallback

#include <ddemLh>

BOOL DdeEnableCallback(idInst, hConv, uCmd)

DWORD idinst; /* instance identifier */

HCONY hConv; /* handle of conversation */

UINT uCmd,; /* the enable/disable function code */
The DdeEnableCallback function enables or disables transactions for a specific
conversation or for all conversations that the calling application currently has es-
tablished.
After disabling transactions for a conversation, the system places the transactions
for that conversation in a transaction queue associated with the application. The ap-
plication should reenable the conversation as soon as possible to avoid losing
queued transactions.

Parameters idInst

Return Value

Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hConv
Identifies the conversation to enable or disable. If this parameter is NULL, the
function affects all conversations.

uCmd
Specifies the function code. This parameter can be one of the following values:

Value Meaning

EC_ENABLEALL Enables all transactions for the specified conversation.
EC_ENABLEONE Enables one transaction for the specified conversation.
EC_DISABLE Disables all blockable transactions for the specified conver-

sation. ,

A server application can disable the following transactions:

XTYP_ADVSTART

XTYP_ADVSTOP

XTYP_EXECUTE

XTYP_POKE

XTYP_REQUEST

A client application can disable the following transactions:

XTYP_ADVDATA
XTYP_XACT_COMPLETE

The return value is nonzero if the function is successful. Otherwise, it is zero.

DdeFreeDataHandle 173

" Errors

Comments

See Also

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following: .

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_ERROR
DMLERR_INVALIDPARAMETER

An application can disable transactions for a specific conversation by returning
CBR_BLOCK from its dynamic data exchange (DDE) callback function. When
the conversation is reenabled by using the DdeEnableCallback function, the sys-
tem generates the same transaction as was in process when the conversation was
disabled.

DdeConnect, DdeConnectList, DdeDisconnect, DdelInitialize

DdeFreeDataHandle [31]

#include <ddeml.h>

BOOL DdeFreeDataHandle(hData)

HDDEDATA hData;

Parameters

Return Value

Errors

Comments

/* handle of global memory object */

The DdeFreeDataHandle function frees a global memory object and deletes the
data handle associated with the object.

hData ;
Identifies the global memory object to be freed. This handle must have been
created by a previous call to the DdeCreateDataHandle function or returned
by the DdeClientTransaction function.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
An apblication must call DdeFreeDataHandle under the following circumstances:

= To free a global memory object that the application allocated by calling the
DdeCreateDataHandle function if the object’s data handle was never passed

174 DdeFreeDataHandle

by the application to another Dynamic Data Exchange Management Library
(DDEML) function

= To free a global memory object that the application allocated by specifying the
HDATA_APPOWNED flag in a call to the DdeCreateDataHandle function

= To free a global memory object whose handle the application received from the
DdeClientTransaction function

The system automatically frees an unowned object when its handle is returned by
a dynamic data exchange (DDE) callback function or used as a parameter in a
DDEML function.

Example The following example creates a global memory object containing help informa-
tion, then frees the object after passing the object’s handle to the client application:

DWORD idInst;
HSZ hszltem;
HDDEDATA hDataHelp;

char szDdeHelp[] = "DDEML test server help:\r\n"\
"\tThe 'Server' (service) and 'Test' (topic) names may change.\r\n"\
"Items supported under the 'Test' topic are:\r\n"\
"\tCount:\tThis value increments on each data change.\r\n"\
"\tRand:\tThis value is changed after each data change. \r\n"\
"\t\tIn Runaway mode, the above items change after a request.\r\n"\
"\tHuge:\tThis is randomly generated text data >64k that the\r\n"\
"\t\ttest client can verify. It is recalculated on each\r\n"\
"\t\trequest. This also verifies huge data poked or executed\r\n"\
"\t\tfrom the test client.\r\n"\
"\tHelp:\tThis help information. This data is APPOWNED.\r\n";

/* Create global memory object containing help information. */
if (lhDataHelp) {

hDataHelp = DdeCreateDataHandle(idInst, szDdeHelp,
strien(szDdeHelp) + 1, @, hszItem, CF_TEXT, HDATA_APPOWNED);

. /* Pass help information to client application. */

/* Free the global memory object. */

if (hDataHelp)
DdeFreeDataHandle(hDataHelp);

See Also DdeAccessData, DdeCreateDataHandle

DdeFreeStringHandle 175

DdeFreeStringHandle | [34]

#include <ddeml.h>

BOOL DdeFreeStringHandle(idInst, hsz)
DWORD idInst; /* instance identifier */

HSZ hsz; /* handle of string */
The DdeFreeStringHandle function frees a string handle in the calling applica-
tion.

Parameters idInst

Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function. '

hsz
Identifies the string handle to be freed. This handle must have been created by a
previous call to the DdeCreateStringHandle function.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments An application can free string handles that it creates with the DdeCreateString-
Handle function but should not free those that the system passed to the applica-
tion’s dynamic data exchange (DDE) callback function or those returned in the
CONVINFO structure by the DdeQueryConvInfo function.

Example The following example frees string handles during the XTYP_DISCONNECT
transaction:

DWORD idInst = OL;
HSZ hszClock;

HSZ hszTime;

HSZ hszNow;

UINT type;

if (type == XTYP_DISCONNECT) {
DdeFreeStringHandle(idInst, hszClock); :
DdeFreeStringHandle(idInst, hszTime);
DdeFreeStringHandle(idInst, hszNow);

return (HDDEDATA) NULL;
}

See Also DdeCmpStringHandles, DdeCreateStringHandle, Ddelnitialize,
DdeKeepStringHandle, DdeQueryString

176 DdeGetData

DdeGetData

#include <ddeml.h>

DWORD DdeGetData(hData, pDest, cbMax, offSrc)

HDDEDATA hData;
void FAR* pDest;
DWORD chMax;
DWORD offSrc;

Parameters

Return Value

Errors

Example

/* handle of global memory object */
/* address of destination buffer */
/* amount of data to copy */
/* offset to beginning of data */

The DdeGetData function copies data from the given global memory object to the
specified local buffer.

hData
Identifies the global memory object that contains the data to copy.

pDest
Points to the buffer that receives the data. If this parameter is NULL, the
DdeGetData function returns the amount, in bytes, of data that would be
copied to the buffer.

cbMax
Specifies the maximum amount, in bytes, of data to copy to the buffer pointed
to by the pDest parameter. Typically, this parameter specifies the length of the
buffer pointed to by pDest.

offSrc
Specifies an offset within the global memory object. Data is copied from the ob-
ject beginning at this offset.

If the pDest parameter points to a buffer, the return value is the size, in bytes, of
the memory object associated with the data handle or the size specified in the
cbMax parameter, whichever is lower.

If the pDest parameter is NULL, the return value is the size, in bytes, of the
memory object associated with the data handle.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLIL_NOT_INITIALIZED
DMLERR_INVALID_HDDEDATA
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

The following example copies data from a global memory object to a local buffer
and then fills the TIME structure with data from the buffer:

DdeGetLastError 177

See Also

HDDEDATA hData;
char szBuf[32];

typedef struct {
int hour;
int minute;
int second;
} TIME;

DdeGetData(hData, (LPBYTE) szBuf, 32L, 0OL);

sscanf(szBuf, "%d:%d:%d", &nTime.hour, &nTime.minute,
&nTime.second);

DdeAccessData, DdeCreateDataHandle, DdeFreeDataHandle

DdeGetLastError [31]

#include <ddeml.h>

UINT DdeGetLastError(idinst)

DWORD idInst;

| Parameters

Return Value

/* instance identifier */

The DdeGetLastError function returns the most recent error value set by the
failure of a Dynamic Data Exchange Management Library (DDEML) function and
resets the error value to DMLERR_NO_ERROR.

idInst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

The return value is the last error value. Following are the possible DDEML error
values:

Value Meaning

DMLERR_ADVACKTIMEOUT A request for a synchronous advise trans-
action has timed out.

DMLERR_BUSY The response to the transaction caused
the DDE_FBUSY bit to be set.

DMLERR_DATAACKTIMEOUT A request for a synchronous data transac-

tion has timed out.

DdeGetLastError

Value

Meaning

DMLERR_DLL_NOT_INITIALIZED

DMLERR_DLL_USAGE

DMLERR_EXECACKTIMEOUT

DMLERR_INVALIDPARAMETER

DMLERR_LOW_MEMORY

DMLERR_MEMORY_ERROR
DMLERR_NO_CONV_ESTABLISHED

DMLERR_NOTPROCESSED
DMLERR_POKEACKTIMEOUT

DMLERR_POSTMSG_FAILED

A DDEML function was called without
first calling the Ddelnitialize function,
or an invalid instance identifier was
passed to a DDEML function.

An application initialized as
APPCLASS_MONITOR has attempted
to perform a DDE transaction, or

an application initialized as
APPCMD_CLIENTONLY has
attempted to perform server transactions.

A request for a synchronous execute
transaction has timed out.

A parameter failed to be validated by the
DDEML. Some of the possible causes
are as follows:

= The application used a data handle ini-
tialized with a different item-name
handle than that required by the trans-
action.

= The application used a data handle that
was initialized with a different clip-
board data format than that required by
the transaction.

® The application used a client-side con-
versation handle with a server-side
function or vise versa.

= The application used a freed data
handle or string handle.

= More than one instance of the applica-
tion used the same object.

A DDEML application has created a pro-
longed race condition (where the server
application outruns the client), causing
large amounts of memory to be con-
sumed.

A memory allocation failed.

A client’s attempt to establish a conversa-
tion has failed.

A transaction failed.

A request for a synchronous poke transac-
tion has timed out.

An internal call to the PostMessage func-
tion has failed.

DdeGetLastError

179

Example

Value Meaning

DMLERR_REENTRANCY An application instance with a syn-
chronous transaction already in progress
attempted to initiate another synchronous
transaction, or the DdeEnableCallback
function was called from within a
DDEML callback function.

DMLERR_SERVER_DIED A server-side transaction was attempted
on a conversation that was terminated by
the client, or the server terminated before
completing a transaction.

DMLERR_SYS_ERROR An internal error has occurred in the
DDEML.

DMLERR_UNADVACKTIMEOUT A request to end an advise transaction
has timed out.

DMLERR_UNFOUND_QUEUE_ID An invalid transaction identifier was

passed to a DDEML function. Once the
application has returned from an
XTYP_XACT_COMPLETE callback,
the transaction identifier for that callback
is no longer valid.

The following example calls the DdeGetLastError function if the DdeCreate-
DataHandle function fails:

DWORD idInst;

HDDEDATA hddeMyData;
HSZPAIR ahszp[2];

HSZ hszClock, hszTime;

/* Create string handles. */

hszClock = DdeCreateStringHandle(idInst, (LPSTR) "Clock",
CP_WINANSI);

hszTime = DdeCreateStringHandle(idInst, (LPSTR) "Time",
CP_WINANSI);

/* Copy handles to an HSZPAIR structure. */

ahszp[@].hszSvc = hszClock;
ahszp[@].hszTopic = hszTime;
ahszp[1].hszSvc = (HSZ) NULL;
ahszp[1l].hszTopic = (HSZ) NULL;

/* Create a global memory object. */

hddeMyData = DdeCreateDataHandle(idInst, ahszp,
sizeof(ahszp), @, NULL, CF_TEXT, 0);
if (hddeMyData == NULL)

180 Ddelnitialize

/*

* Pass error value to application-defined error handling
* function.

*/

HandleError(DdeGetLastError(idInst));

See Also Ddelnitialize
Ddelnitialize [31]

#finclude <ddeml.h>

UINT Ddelnitialize(lpidinst, pfnCallback, afCmd, uRes)

DWORD FAR* lpidinst; /* address of instance identifier */

PFNCALLBACK pfnCallback; /* address of callback function */

DWORD afCmd; /* array of command and filter flags */

DWORD uRes; /* reserved */

Parameters

The Ddelnitialize function registers an application with the Dynamic Data Ex-
change Management Library (DDEML). An application must call this function
before calling any other DDEML function.

IpidInst
Points to the application-instance identifier. At initialization, this parameter
should point to OL. If the function is successful, this parameter points to the in-
stance identifier for the application. This value should be passed as the idInst
parameter in all other DDEML functions that require it. If an application uses
multiple instances of the DDEML dynamic link library, the application should
provide a different callback function for each instance.

If Ipidinst points to a nonzero value, this implies a reinitialization of the
DDEML. In this case, [pidInst must point to a valid application-instance identi-
fier.

pfnCallback
Points to the application-defined DDE callback function. This function
processes DDE transactions sent by the system. For more information, see the
description of the DdeCallback callback function.

afCmd
Specifies an array of APPCMD_ and CBF_ flags. The APPCMD_ flags pro-
vide special instructions to the Ddelnitialize function. The CBF_ flags set fil-
ters that prevent specific types of transactions from reaching the callback

Ddelnitialize 181

function. Using these flags enhances the performance of a DDE application by
eliminating unnecessary calls to the callback function.

This parameter can be a combination of the following flags:
Flag Meaning

APPCLASS_MONITOR Makes it possible for the application to
monitor DDE activity in the system. This
flag is for use by DDE monitoring appli-
cations. The application specifies the
types of DDE activity to monitor by com-
bining one or more monitor flags with
the APPCLASS_MONITOR flag. For
details, see the following Comments sec-

tion.
APPCLASS_STANDARD Registers the application as a standard
(nonmonitoring) DDEML application.
APPCMD_CLIENTONLY Prevents the application from becoming

a server in a DDE conversation. The ap-
plication can be only a client. This flag
reduces resource consumption by the
DDEML. It includes the functionality of
the CBF_FAIL_ALLSVRXACTIONS
flag.

APPCMD_FILTERINITS Prevents the DDEML from
sending XTYP_CONNECT and
XTYP_WILDCONNECT transactions to
the application until the application has
created its string handles and registered
its service names or has turned off
filtering by a subsequent call to the
DdeNameService or Ddelnitialize func-
tion. This flag is always in effect when
an application calls Ddelnitialize for the
first time, regardless of whether the appli-
cation specifies this flag. On subsequent
calls to Ddelnitialize, not specifying this
flag turns off the application’s service-
name filters; specifying this flag turns on
the application’s service-name filters.

CBF_FAIL_ALLSVRXACTIONS Prevents the callback function from re-
ceiving server transactions. The system
will return DDE_FNOTPROCESSED to
each client that sends a transaction to this
application. This flag is equivalent to
combining all CBF_FAIL_ flags.

182

Ddelnitialize

Flag

Meaning

CBF_FAIL_ADVISES

CBF_FAIL_CONNECTIONS

CBF_FAIL_EXECUTES

CBF_FAIL_POKES

CBF_FAIL_REQUESTS

CBF_FAIL_SELFCONNECTIONS

CBF_SKIP_ALLNOTIFICATIONS

CBF_SKIP_CONNECT_CONFIRMS

Prevents the callback function from
receiving XTYP_ADVSTART and
XTYP_ADVSTOP transactions.

The system will return
DDE_FNOTPROCESSED to each client
that sends an XTYP_ADVSTART or
XTYP_ADVSTORP transaction to the
Server.

Prevents the callback function from
receiving XTYP_CONNECT and
XTYP_WILDCONNECT transactions.

Prevents the callback function

from receiving XTYP_EXECUTE
transactions. The system will return
DDE_FNOTPROCESSED to a client
that sends an XTYP_EXECUTE transac-
tion to the server.

Prevents the callback function from
receiving XTYP_POKE trans-

actions. The system will return
DDE_FNOTPROCESSED to a client
that sends an XTYP_POKE transaction
to the server.

Prevents the callback function

from receiving XTYP_REQUEST
transactions. The system will return
DDE_FNOTPROCESSED to a client
that sends an XTYP_REQUEST transac-
tion to the server.

Prevents the callback function from re-
ceiving XTYP_CONNECT transactions
from the application’s own instance. This
prevents an application from establishing
a DDE conversation with its own in-
stance. An application should use this
flag if it needs to communicate with
other instances of itself but not with it-
self.

Prevents the callback function from re-
ceiving any notifications. This flag is
equivalent combining all CBF_SKIP_
flags.

Prevents the callback function from re-
ceiving XTYP_CONNECT_CONFIRM
notifications.

Ddelnitialize 183

Return Value

Comments

Flag ' Meaning

CBF_SKIP_DISCONNECTS Prevents the callback function from re-
ceiving XTYP_DISCONNECT notifica-
tions.

CBF_SKIP_REGISTRATIONS Prevents the callback function from re-
ceiving XTYP_REGISTER notifications.

CBF_SKIP_UNREGISTRATIONS Prevents the callback function from re-
ceiving XTYP_UNREGISTER notifica-
tions.

uRes

Reserved; must be set to OL.

The return value is one of the following:

DMLERR_DLIL_USAGE
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

An application that uses multiple instances of the DDEML must not pass DDEML
objects between instances.

A DDE monitoring application should not attempt to perform DDE (establish con-
versations, issue transactions, and so on) within the context of the same applica-
tion instance.

A synchronous transaction will fail with a DMLERR_REENTRANCY error if any
instance of the same task has a synchronous transaction already in progress.

A DDE monitoring application can combine one or more of the following monitor
flags with the APPCLASS_MONITOR flag to specify the types of DDE activity
to monitor:

Flag Meaning

MF_CALLBACKS Notifies the callback function whenever a transaction is sent to
any DDE callback function in the system.

MF_CONV Notifies the callback function whenever a conversation is estab-
lished or terminated.

MF_ERRORS Notifies the callback function whenever a DDE error occurs.

MF_HSZ_INFO Notifies the callback function whenever a DDE application

creates, frees, or increments the use count of a string handle or
whenever a string handle is freed as a result of a call to the
DdeUninitialize function.

184 DdeKeepStringHandle

Example

See Also

Flag Meaning

MF_LINKS Notifies the callback function whenever an advise loop is
started or ended.

MF_POSTMSGS Notifies the callback function whenever the system or an appli-

cation posts a DDE message.

MF_SENDMSGS Notifies the callback function whenever the system or an appli-
cation sends a DDE message.

The following example obtains a procedure-instance address for a DDE callback
function, then initializes the application with the DDEML.

DWORD idInst = 0OL;
FARPROC 1pDdeProc;

1pDdeProc = MakeProcInstance((FARPROC) DDECallback, hInst);
if (DdeInitialize((LPDWORD) &idInst, (PFNCALLBACK) 1pDdeProc,
APPCMD_CLIENTONLY, 0L))
return FALSE;

DdeClientTransaction, DdeConnect, DdeCreateDataHandle, DdeEnable-
Callback, DdeNameService, DdePostAdvise, DdeUninitialize

DdeKeepStringHandle

#include <ddeml.h>

BOOL DdeKeepStringHandle(idInst, hsz)

DWORD idInst;
HSZ hsz;

Parameters

/* instance identifier */
/* handle of string */

The DdeKeepStringHandle function increments the usage count (increases it by
one) associated with the given handle. This function makes it possible for an appli-
cation to save a string handle that was passed to the application’s dynamic data ex-
change (DDE) callback function. Otherwise, a string handle passed to the callback
function is deleted when the callback function returns.

idInst

Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hsz
Identifies the string handle to be saved.

DdeNameService 185

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.
Example The following example is a portion of a DDE callback function that increases the
usage count and saves a local copy of two string handles:
HSZ hszl;
HSZ hsz2;

static HSZ hszServerBase;
static HSZ hszServerlInst;
DWORD idInst;

case XTYP_REGISTER:
/* Keep the handles for Tlater use. */
DdeKeepStringHandle(idInst, hszl);
DdeKeepStringHandle(idInst, hsz2);

hszServerBase hszl;
hszServerlinst hsz2;

. /= Finish processing the transaction. */

See Also DdeCreateStringHandle, DdeFreeStringHandle, Ddelnitialize,
DdeQueryString

DdeNameService [31]

#include <ddeml.h>

HDDEDATA DdeNameService(idInst, hsz1, hszRes, amed)
DWORD idInst; /* instance identifier

HSZ hsz1; /* handle of service-name string */
HSZ hszRes; /* reserved */
UINT afCmd; /* service-name flags */

The DdeNameService function registers or unregisters the service names that a
dynamic data exchange (DDE) server supports. This function causes the system to
send XTYP_REGISTER or XTYP_UNREGISTER transactions to other running
DDE Management Library (DDEML) client applications.

A server application should call this function to register each service name that it
supports and to unregister names that it previously registered but no longer sup-
ports. A server should also call this function to unregister its service names just
before terminating.

186 DdeNameService

Parameters

Return Value

Errors

Comments

idInst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hszl
Identifies the string that specifies the service name that the server is registering
or unregistering. An application that is unregistering all of its service names
should set this parameter to NULL.

hszRes
Reserved; should be set to NULL.

afCmd
Specifies the service-name flags. This parameter can be one of the following
values:

Value Meaning

DNS_REGISTER Registers the given service name.

DNS_UNREGISTER Unregisters the given service name. If the szl parameter
is NULL, all service names registered by the server will
be unregistered.

DNS_FILTERON Turns on service-name initiation filtering. This filter pre-
vents a server from receiving XTYP_CONNECT transac-
tions for service names that it has not registered. This is
the default setting for this filter.

If a server application does not register any
service names, the application cannot receive
XTYP_WILDCONNECT transactions.

DNS_FILTEROFF Turns off service-name initiation filtering. If this flag is
set, the server will receive an XTYP_CONNECT transac-
tion whenever another DDE application calls the Dde-
Connect function, regardless of the service name.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_DLIL_USAGE
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

The service name identified by the Asz/ parameter should be a base name (that is,
the name should contain no instance-specific information). The system generates
an instance-specific name and sends it along with the base name during the
XTYP_REGISTER and XTYP_UNREGISTER transactions. The receiving appli-
cations can then connect to the specific application instance.

DdePostAdvise 187

Example The following example initializes an application with the DDEML, creates
frequently used string handles, and registers the application’s service name:

HSZ hszClock;

HSZ hszTime;

HSZ hszNow;
HINSTANCE hinst;
DWORD idInst = OL;
FARPROC T1pDdeProc;

/* Initialize the application for the DDEML. */

‘IpDdeProc = MakeProcInstance((FARPROC) DdeCallback, hinst);

if (!Ddelnitialize((LPDWORD) &idInst, (PFNCALLBACK) 1pDdeProc,

APPCMD_FILTERINITS | CBF_FAIL_EXECUTES, @L)) {

/* Create frequently used string handles. */
hszTime = DdeCreateStringHandle(idInst, "Time", CP_WINANSI);
hszNow = DdeCreateStringHandle(idInst, "Now", CP_WINANSI);
hszClock = DdeCreateStringHandle(idInst, "Clock", CP_WINANSI);

/* Register the service name. */

DdeNameService(idInst, hszClock, (HSZ) NULL, DNS_REGISTER);

See Also DdeConnect, DdeConnectList, DdeInitialize

DdePostAdvise | [31]

#include <ddeml.h>

BOOL DdePostAdvise(idInst, hszTopic, hszltem)
DWORD idInst; /* instance identifier */
HSZ hszTopic; /* handle of topic-name string */
HSZ hszltem; /* handle of item-name string */

The DdePostAdvise function causes the system to send an XTYP_ADVREQ
transaction to the calling (server) application’s dynamic data exchange (DDE) call-
back function for each client that has an advise loop active on the specified topic
or item name pair. A server application should call this function whenever the data
associated with the topic or item name pair changes.

188 DdePostAdvise

Parameters

Return Value

Errors

Comments

Example

idInst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hszTopic
Identifies a string that specifies the topic name. To send notifications for all top-
ics with active advise loops, an application can set this parameter to NULL.

hszltem
Identifies a string that specifies the item name. To send notifications for all
items with active advise loops, an application can set this parameter to NULL.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_DLL_USAGE
DMLERR_NO_ERROR

A server that has nonenumerable topics or items should set the hszTopic and
hszltem parameters to NULL so that the system will generate transactions for all
active advise loops. The server’s DDE callback function returns NULL for any ad-
vise loops that do not need to be updated.

If a server calls DdePostAdvise with a topic/item/format name set that includes
the set currently being handled in a XTYP_ADVREQ callback, a stack overflow
may result.

The following example calls the DdePostAdvise function whenever the time
changes:

typedef struct { /* tm */
int hour;
int minute;
int second;

} TIME;

TIME tmTime;
DWORD idInst;
HSZ hszTime;
HSZ hszNow;
TIME tmCurTime;

. /* Fill tmCurTime with the current time. */

DdeQueryGonvinfo 189

/* Check for any change in second, minute, or hour. */
if ((tmCurTime.second != tmTime.second) ||
(tmCurTime.minute != tmTime.minute) ||
(tmCurTime.hour != tmTime.hour)) {
/* Send the current time to the clients. */

DdePostAdvise(idInst, hszTime, hszNow);

See Also Ddelnitialize

DdeQueryConvinfo [34]

#include <ddeml.h>

UINT DdeQueryConvinfo(hConv, idTransaction, IpConvinfo)

HCONY hConv; /* handle of conversation */
DWORD idTransaction; /* transaction identifier */
CONVINFO FAR* IpConvinfo; /* address of structure with conversation data */

The DdeQueryConvInfo function retrieves information about a dynamic data ex-
change (DDE) transaction and about the conversation in which the transaction
takes place.

Parameters hConv
Identifies the conversation.

idTransaction
Specifies the transaction. For asynchronous transactions, this parameter should
be a transaction identifier returned by the DdeClientTransaction function. For
synchronous transactions, this parameter should be QID_SYNC.

IpConviInfo
Points to the CONVINFO structure that will receive information about the
transaction and conversation. The ¢cb member of the CONVINFO structure
must specify the length of the buffer allocated for the structure.

The CONVINFO structure has the following form:

190 DdeQueryConvinfo

Return Value

Errors

Example

#include <ddeml.h>

typedef struct tagCONVINFO { /% ci */
DWORD cb;
DWORD hUser;
HCONV hConvPartner;

HSZ hszSvcPartner;
HSZ hszServiceReq;
HSZ hszTopic;

HSZ hszltem;

UINT wFmt;

UINT wlype;

UINT wStatus;

UINT wConvst;

UINT wLastError;

HCONVLIST hConvList;

CONVCONTEXT ConvCtxt;
} CONVINFO;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

The return value is the number of bytes copied into the CONVINFO structure, if
the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

The following example fills a CONVINFO structure with information about a syn-
chronous conversation and then obtains the names of the partner application and
topic:

DWORD idInst;

HCONV hConv;

CONVINFO ci;

WORD wError;

char szSvcPartner[32];
char szTopic[32];

DWORD cchServ, cchTopic;

if (!DdeQueryConvInfo(hConv, QID_SYNC, &ci))
wError = DdeGetlLastError(idInst);

DdeQueryNextServer 191

See Also

else {
cchServ = DdeQueryString(idInst, ci.hszSvcPartner,
(LPSTR) &szSvcPartner, sizeof(szSvcPartner),
CP_WINANSI);
cchTopic =DdeQueryString(idInst, ci.hszTopic,
(LPSTR) &szTopic, sizeof(szTopic),
CP_WINANSI);

DdeConnect, DdeConnectList, DdeQueryNextServer

DdeQueryNextServer [34]

#include <ddeml.h>

HCONY DdeQueryNextServer(2ConvList, hConvPrev)
HCONVLIST hConvlList; /* handle of conversation list */
HCONY hConvPrev; /* previous conversation handle */

Parameters

Return Value

Example

The DdeQueryNextServer function obtains the next conversation handle in the
given conversation list.

hConvList

Identifies the conversation list. This handle must have been created by a pre-
vious call to the DdeConnectList function.

hConvPrev :
Identifies the conversation handle previously returned by this function. If this
parameter is NULL, this function returns the first conversation handle in the list.

The return value is the next conversation handle in the list if the list contains any
more conversation handles. Otherwise, it is NULL.

The following example uses the DdeQueryNextServer function to count the num-
ber of conversation handles in a conversation list and to copy the service-name
string handles of the servers to a local buffer:

HCONVLIST hconvList; /* conversation list */
DWORD idInst; /* instance identifier */
HSZ hszSystem; /* System topic */
HCONV hconv = NULL; /* conversation handle */
CONVINFO ci; /* holds conversation data */
UINT cConv = 0; /* count of conv. handles */

HSZ *pHsz, *aHsz; /* point to string handles */

192 DdeQueryString

/* Connect to all servers that support the System topic. */

hconvList = DdeConnectlList(idInst, (HSZ) NULL, hszSystem,
(HCONV) NULL, (LPVOID) NULL);

/* Count the number of handles in the conversation list. =/

while ((hconv = DdeQueryNextServer(hconvList, hconv)) != (HCONV) NULL)
cConv++t;

/* Allocate a buffer for the string handles. */

hconv = (HCONV) NULL;
aHsz = (HSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof(HSZ));

/* Copy the string handles to the buffer. */

pHsz = aHsz;

while ((hconv = DdeQueryNextServer(hconvList, hconv)) != (HCONV) NULL) {
DdeQueryConvInfo(hconv, QID_SYNC, (PCONVINFO) &ci);

DdeKeepStringHandle(idInst, ci.hszSvcPartner);
*pHsz++ = ci.hszSvcPartner;

. /* Use the handles; converse with servers. */

/* Free the memory and terminate conversations. */

LocalFree((HANDLE) aHsz);
DdeDisconnectList(hconvList);

See Also DdeConnectList, DdeDisconnectList

DdeQueryString [31]

#include <ddemlLh>

DWORD DdeQueryString(idinst, hsz, Ipsz, cchMax, codepage)
DWORD idInst; /* instance identifier */
HSZ hsz; /* handle of string */
LPSTR Ipsz; /* address of destination buffer */
DWORD cchMax; /* length of buffer */

int codepage; /* code page */

DdeQueryString 193

Parameters

Return Value

Example

The DdeQueryString function copies text associated with a string handle into a
buffer.

The string returned in the buffer is always null-terminated. If the string is longer
than (cchMax — 1), only the first (cchMax — 1) characters of the string are copied.

If the Ipsz parameter is NULL, this function obtains the length, in bytes, of the
string associated with the string handle. The length does not include the terminat-
ing null character.

idInst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hsz
Identifies the string to copy. This handle must have been created by a previous
call to the DdeCreateStringHandle function.

Ipsz
Points to a buffer that receives the string. To obtain the length of the string, this
parameter should be set to NULL.

cchMax
Specifies the length, in bytes, of the buffer pointed to by the Ipsz parameter. If
the string is longer than (cchMax — 1), it will be truncated. If the Ipsz parameter
is set to NULL, this parameter is ignored.

codepage
Specifies the code page used to render the string. This value should be either
CP_WINANSI or the value returned by the GetKBCodePage function.

The return value is the length, in bytes, of the returned text (not including the ter-
minating null character) if the lpsz parameter specified a valid pointer. The return
value is the length of the text associated with the hsz parameter (not including the
terminating null character) if the Ipsz parameter specified a NULL pointer. The re-
turn value is NULL if an error occurs.

The following example uses the DdeQueryString function to obtain a service
name and topic name that a server has registered:

UINT type;

HSZ hszl;
HSZ hsz2;
char szBaseName[16];
char szInstName[16];

if (type == XTYP_REGISTER) {

194 DdeReconnect

/* Copy the base service name to a buffer. */

DdeQueryString(idInst, hszl, (LPSTR) &szBaseName,
sizeof(szBaseName), CP_WINANSI);

/* Copy the instance-specific service name to a buffer. */
DdeQueryString(idinst, hsz2, (LPSTR) &szInstName,

sizeof(szInstName), CP_WINANSI);
return (HDDEDATA) TRUE;

}
See Also DdeCmpStringHandles, DdeCreateStringHandle, DdeFreeStringHandle,
Ddelnitialize
DdeReconnect [31]
#include <ddeml.h>
HCONY DdeReconnect(hConv)
HCONY #hConv; /* handle of conversation to reestablish */
The DdeReconnect function allows a client Dynamic Data Exchange Manage-
ment Library (DDEML) application to attempt to reestablish a conversation with a
service that has terminated a conversation with the client. When the conversation
is reestablished, the DDEML attempts to reestablish any preexisting advise loops.
Parameters hConv
Identifies the conversation to be reestablished. A client must have obtained the
conversation handle by a previous call to the DdeConnect function.
Return Value The return value is the handle of the reestablished conversation if the function is
successful. The return value is NULL if the function fails.
Errors Use the DdeGetLastError function to retrieve the error value, which may be one

of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

DdeSetUserHandle 195

Example

See Also

The following example shows the context within which an apphcatlon should call
the DdeReconnect function:

HDDEDATA EXPENTRY DdeCallback(wType, wFmt, hConv, hszl,
hsz2, hData, dwDatal, dwData2)

WORD wType; /* transaction type */
WORD wFmt; /* clipboard format */
HCONV hConv; /* handle of the conversation */
HSZ hszl; /* handle of a string */
HSZ hsz2; /* handle of a string */
HDDEDATA hData; /* handle of a global memory object */
DWORD dwDatal; /* transaction-specific data */
DWORD dwData2; /* transaction-specific data */
{

BOOL fAutoReconnect;

switch (wType) {
case XTYP_DISCONNECT:
if (fAutoReconnect) {
DdeReconnect(hConv); /* attempt to reconnect */
}
return 0;

. /* Process other transactions. */

DdeConnect, DdeDisconnect

DdeSetUserHandle [31]

#include <ddeml.h>

BOOL DdeSetUserHandle(hConv, id, hUser)

HCONY hConv;
DWORD id;
DWORD hUser;

/* handle of conversation */
/* transaction identifier */
/* application-defined value */

The DdeSetUserHandle function associates an application-defined 32-bit value
with a conversation handle and transaction identifier. This is useful for simplifying
the processing of asynchronous transactions. An application can use the Dde-
QueryConvlInfo function to retrieve this value.

196 DdeUnaccessData

Parameters

Return Value

Errors

See Also

hConv
Identifies the conversation.

id
Specifies the transaction identifier of an asynchronous transaction. An applica-
tion should set this parameter to QID_SYNC if no asynchronous transaction is
to be associated with the hUser parameter.

hUser
Identifies the value to associate with the conversation handle.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

DdeQueryConvInfo

DdeUnaccessData

#include <ddeml.h>

BOOL DdeUnaccessData(izData)

HDDEDATA hData

Parameters

Return Value

Errors

/* handle of global memory object */

The DdeUnaccessData function frees a global memory object. An application
must call this function when it is finished accessing the object.

hData
Identifies the global memory object.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DdeUninitialize 197

Example

See Also

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

The following example obtains a pointer to a global memory object, uses the
pointer to copy data from the object to a local buffer, and then uses the Dde-
UnaccessData function to free the object:

HDDEDATA hData;

LPBYTE TpszAdviseData;
DWORD cbDatalen;

DWORD i3

char szData[128];

1pszAdviseData = DdeAccessData(hData, &cbDatalen);
for (i = @; i < cbDatalLen; i++)

szData[i] = *1pszAdviseData++;
DdeUnaccessData(hData);

DdeAccessData, DdeAddData, DdeCreateDataHandle, DdeFreeDataHandle

DdeUninitialize

#include <ddeml.h>

BOOL DdeUninitialize(idInst)

DWORD idInst;

Parameters

Return Value

Comments

/* instance identifier */

The DdeUninitialize function frees all Dynamic Data Exchange Management
Library (DDEML) resources associated with the calling application.

idInst

Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The DdeUninitialize function terminates any conversations currently open for the
application. If the partner in a conversation fails to terminate its end of the conver-
sation, the system may enter a modal loop while it waits for the conversation to ter-
minate. A timeout period is associated with this loop. If the timeout period expires

198 DebugBreak

before the conversation has terminated, a message box appears that gives the user
the choice of waiting for another timeout period (Retry), waiting indefinitely
(Ignore), or exiting the modal loop (Abort).

An application should wait until its windows are no longer visible and its message
loop has terminated before calling this function.

See Also DdeDisconnect, DdeDisconnectList, Ddelnitialize

DebugBreak

void DebugBreak(void)

The DebugBreak function causes a breakpoint exception to occur in the caller.
This allows the calling process to signal the debugger, forcing it to take some ac-
tion. If the process is not being debugged, the system invokes the default break-
point exception handler. This may cause the calling process to terminate.

Parameters This function has no parameters.
Return Value This function does not return a value.
Comments This function is the only way to break into a WEP (Windows exit procedure) in a

dynamic-link library.

For more information about using the debugging functions with Microsoft debug-
ging tools, see Microsoft Windows Programming Tools.

Example The following example uses the DebugBreak function to signal the debugger im-
mediately before the application handles the WM_DESTROY message:

case WM_DESTROY:
DebugBreak();

PostQuitMessage(0);
break;

See Also WEP

DebugOutput 199

DebugOutput

void FAR _ cdecl DebugQOutput(flags, [pszFmt, ...)

UINT flags;
LPCSTR IpszFmt;

Parameters

Return Value

/* type of message

[31]

*/

/* address of formatting string */

The DebugOutput function sends a message to the debugging terminal. Applica-
tions can apply the formatting codes to the message string and use filters and op-
tions to control the message category.

flags

Specifies the type of message to be sent to the debugging terminal. This parame-
ter can be one of the following values:

Value

Meaning

DBF_TRACE

DBF_WARNING

DBF_ERROR

DBF_FATAL

IpszFmt

The message reports that no error has occurred and supplies
information that may be useful during debugging. Example:
“t Kernel: LoadResource(14AE of GDI)”

The message reports a situation that may or may not be an
error, depending on the circumstances. Example: “wn Kernel:
GlobalWire(17BE of GDI) (try GlobalLock)”

The message reports an error resulting from a failed call to a
Windows function. The application continues to run. Ex-
ample: “err Kernel: LocalShrink(15EA of GDI) (invalid local
heap)”

The message reports an error that will terminate the applica-

tion. Example: “fatl User: SetDeskWallpaper(16CA of
USER)”

Points to a formatting string identical to the formatting strings used by the Win-
dows function wsprintf. This string must be less than 160 characters long. Any
additional formatting can be done by supplying additional parameters following

IpszFmt.

Specifies zero or more optional arguments. The number and type of arguments
depends on the corresponding format-control character sequences specified in
the IpszFmt parameter.

This function does not return a value.

200 DebugProc

Comments The messages sent by the DebugOutput function are affected by the system
debugging options and trace-filter flags that are set and retrieved by using the
GetWinDebuglInfo and SetWinDebuglInfo functions. These options and flags are
stored in a WINDEBUGINFO structure.

Unlike most other Windows functions, DebugOutput uses the C calling conven-
tion (_cdecl), rather than the Pascal calling convention. As a result, the caller must
pop arguments off the stack. Also, arguments must be pushed on the stack from
right to left. In C-language modules, the C compiler performs this task.

See Also GetWinDebuglInfo, OutputDebugString, SetWinDebugInfo, wsprintf

DebugProc (57

LRESULT CALLBACK DebugProc(code, wParam, I[Param)

int code; /* hook code */
WPARAM wParam; /* type of hook about to be called */
LPARAM [Param; /* address of structure with debugging information */

The DebugProc function is a library-defined callback function that the system
calls before calling any other filter installed by the SetWindowsHookEx function.
The system passes information about the filter about to be called to the Debug-
Proc callback function. The callback function can examine the information and de-
termine whether to allow the filter to be called.

Parameters code
Specifies the hook code. Currently, HC_ACTION is the only positive valid
value. If this parameter is less than zero, the callback function must call the
CallNextHooKkEx function without any further processing.

wParam
Specifies the task handle of the task that installed the filter about to be called.

[Param
Contains a long pointer to a DEBUGHOOKINFO structure. The
DEBUGHOOKINFO structure has the following form:

DefDIgProc 201

Return Value

Comments

See Also

typedef struct tagDEBUGHOOKINFO {
HMODULE hModuleHook;
LPARAM reserved;
LPARAM 1Param;
WPARAM wParam;
int code;
} DEBUGHOOKINFO;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

The callback function should return TRUE to prevent the system from calling
another filter. Otherwise, the callback function must pass the filter information to
the CallNextHooKkEx function.

An application must install this callback function by specifying the WH_DEBUG
filter type and the procedure-instance address of the callback function in a call to
the SetWindowsHookEx function.

CallWndProc is a placeholder for the library-defined function name. The actual

name must be exported by including it in an EXPORTS statement in the library’s
module-definition file.

CallNextHookEx, SetWindowsHookEx

DefDigProc

LRESULT DefDIgProc(hwndDlg, uMsg, wParam, [Param)

HWND hwndDlg;
UINT uMsg;
WPARAM wParam;
LPARAM [Param;

Parameters

/* handle of dialog box */
/* message */
/* first message parameter */
/* second message parameter */

The DefDIgProc function provides default processing for any Windows messages
that a dialog box with a private window class does not process.

hwndDlg
Identifies the dialog box.

uMsg
Specifies the message to be processed.

wParam
Specifies 16 bits of additional message-dependent information.

202 DefDriverProc

IParam
Specifies 32 bits of additional message-dependent information.

Return Value The return value specifies the result of the message processing and depends on the
message sent.
Comments The DefDIgProc function is the window procedure for the DIALOG window

class. An application that creates new window classes that inherit dialog box
functionality should use this function. DefDIgProc is not intended to be called as
the default handler for messages within a dialog box procedure, since doing so
will result in recursive execution.

An application creates a dialog box by calling one of the following functions:

Function Description
CreateDialog Creates a modeless dialog box.
CreateDialogIndirect Creates a modeless dialog box.

CreateDialogIndirectParam Creates a modeless dialog box and passes data to it
when it is created.

CreateDialogParam Creates a modeless dialog box and passes data to it
when it is created.

DialogBox Creates a modal dialog box.

DialogBoxIndirect Creates a modal dialog box.

DialogBoxIndirectParam Creates a modal dialog box and passes data to it
when it is created.

DialogBoxParam Creates a modal dialog box and passes data to it

when it is created.

See Also DefWindowProc

DefDriverProc [31]

LRESULT DefDriverProc(dwDriverldentifier, hdrvr, uMsg, IParaml, IParam?2)
DWORD dwDriverldentifier; /* installable-driver identifier */

HDRVR #hdrvrs /* handle of installable driver */
UINT uMsg; /* message number */
LPARAM [Paraml; /* first message parameter */
LPARAM [Param?2; /* second message parameter */

The DefDriverProc function provides default processing for any messages not
processed by an installable driver.

DeferWindowPos 203

Parameters dwDriverldentifier
Identifies an installable driver. This parameter must have been obtained by a
previous call to the OpenDriver function.

hdrvr
Identifies the installable driver.

uMsg
Specifies the message to be processed.

IParaml
Specifies 32 bits of additional message-dependent information.

[Param?
Specifies 32 bits of additional message-dependent information.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments The DefDriverProc function processes messages that are not handled by the
DriverProc function.

See Also OpenDriver, SendDriverMessage

DeferWindowPos

HDWP DeferWindowPos(kdwp, hwnd, hwndInsertAfter, x, y, cx, cy, ﬂags)

HDWP hdwp; /* handle of internal structure

HWND hwnd; /* handle of window to position */
HWND hwndlnsertAfter; /* placement-order handle */
int x; /* horizontal position */
int y; /* vertical position */
int cx; /* width */
int cy; /* height */
UINT flags; /* window-positioning flags */

The DeferWindowPos function updates the given internal structure for the given
window. The function then returns the handle of the updated structure. The End-
DeferWindowPos function uses the information in this structure to change the
position and size of a number of windows simultaneously.

Parameters hdwp
Identifies an internal structure that contains size and position information for
one or more windows. This structure is returned by the BeginDefer Window-
Pos function or by the most recent call to the DeferWindowPos function.

204 DeferWindowPos

hwnd
Identifies the window for which to store update information in the structure.

hwndlnsertAfter
Identifies a window that will precede the positioned window in the Z-order.
This parameter must be a window handle, or one of the following values:

Value Meaning

HWND_BOTTOM Places the window at the bottom of the Z-order. If
hwnd identifies a topmost window, the window loses
its topmost status.

HWND_TOP Places the window at the top of the Z-order.

HWND_TOPMOST Places the window above all non-topmost windows.
The window maintains its topmost position even when
the window is deactivated.

HWND_NOTOPMOST Repositions the window to the top of all non-topmost
windows (that is, behind all topmost windows).

This parameter is ignored if SWP_NOZORDER is set in the flags parameter.

x
Specifies the x-coordinate of the window’s upper-left corner.

Specifies the y-coordinate of the window’s upper-left corner.

cx
Specifies the window’s new width.

cy
Specifies the window’s new height.

flags
Specifies one of eight possible 16-bit values that affect the size and position of
the window. This parameter can be a combination of the following values:

Value Meaning

SWP_DRAWFRAME Draws a frame (defined in the window’s class descrip-
tion) around the window.

SWP_HIDEWINDOW Hides the window.

SWP_NOACTIVATE Does not activate the window.
SWP_NOMOVE Retains current position (ignores x and y parameters).
SWP_NOREDRAW - Does not redraw changes. If this flag is set, no repaint-

ing occurs. This applies to the client area, the non-
client area (including the title and scroll bars), and any
part of the parent window uncovered as a result of the
moved window. When this flag is set, the application
must explicitly invalidate or redraw any parts of the
window and parent window that must be redrawn.

DeferWindowPos 205

Return Value

Comments

Value Meaning

SWP_NOSIZE Retains current size (ignores the cx and cy parameters).

SWP_NOZORDER Retains current ordering (ignores the hwndlInsertAfter
parameter).

SWP_SHOWWINDOW Displays the window.

The return value is a handle of the updated structure if the function is successful.
This handle may differ from the one passed to the function as the Adwp parameter
and should be passed to the next call to DeferWindowPos or to the EndDefer-
WindowPos function.

The return value is NULL if insufficient system resources are available for the
function to complete successfully and the repositioning process is terminated.

If a call to Defer WindowPos fails, the application should abandon the window-
positioning operation without calling the EndDefer WindowPos function.

If SWP_NOZORDER is not specified, Windows places the window identified

by hwnd in the position following the window identified by hwndInsertAfter. If
hwndlnsertAfter is NULL, Windows places the window identified by Awnd at the
top of the list. If hwndInsertAfter is HWND_BOTTOM, Windows places the win-
dow identified by Awnd at the bottom of the list.

All coordinates for child windows are relative to the upper-left corner of the parent
window’s client area.

A window can be made a topmost window either by setting hwndlnsertAfter to
HWND_TOPMOST and ensuring that SWP_NOZORDER is not set, or by setting
a window’s Z-order so that it is above any existing topmost windows. When a non-
topmost window is made topmost, its owned windows are also made topmost. Its
owners are not changed.

If neither SWP_NOACTIVATE nor SWP_NOZORDER is specified (that is,
when the application requests that a window be simultaneously activated and
placed in the specified Z-order), the value specified in ~wndlnsertAfter is used
only in the following circumstances:

= Neither HWND_TOPMOST nor HWND_NOTOPMOST is specified in the
hwndlnsertAfter parameter.

= The window specified in the hwnd parameter is not the active window.

An application cannot activate an inactive window without also bringing it to the
top of the Z-order. Applications can change the Z-order of an activated window
without restrictions or activate a window and then move it to the top of the top-
most or non-topmost windows.

206 DefFrameProc

A topmost window is no longer topmost if it is repositioned to the bottom *
(HWND_BOTTOM) of the Z-order or after any non-topmost window. When a
topmost window is made non-topmost, the window and all of its owners, and its
owned windows, are also made non-topmost.

A non-topmost window may own a topmost window, but not vice versa. Any win-
dow (for example, a dialog box) owned by a topmost window is itself made top-
most to ensure that all owned windows stay above their owner.

See Also BeginDefer WindowPos, EndDefer WindowPos

DefFrameProc

LRESULT DefFrameProc(hwnd, hwndMDIClient, uMsg, wParam, [Param)

HWND hwnd; /* handle of frame window */
HWND hwndMDIClient; /* handle of client window */
UINT uMsg; /* message */
WPARAM wParams; /* first message parameter */
LPARAM [Param; /* second message parameter */

The DefFrameProc function provides default processing for any Windows mes-
sages that the window procedure of a multiple document interface (MDI) frame
window does not process. All window messages that are not explicitly processed
by the window procedure must be passed to the DefFrameProc function, not the
DefWindowProc function.

Parameters hwnd
Identifies the MDI frame window.

hwndMDIClient
Identifies the MDI client window.

uMsg
Specifies the message to be processed.

wParam
Specifies 16 bits of additional message-dependent information.

IParam
Specifies 32 bits of additional message-dependent information.

Return Value The return value specifies the result of the message processing and depends on the
message sent. If the h(wndMDIClient parameter is NULL, the return value is the
same as for the DefWindowProc function.

DefHookProc 207

Comments Typically, when an application’s window procedure does not handle a message, it
passes the message to the DefWindowProc function, which processes the mes-
sage. MDI applications use the DefFrameProc and DefMDIChildProc functions
instead of DefWindowProc to provide default message processing. All messages
that an application would usually pass to DefWindowProc (such as nonclient mes-
sages and WM_SETTEXT) should be passed to DefFrameProc instead. In addi-
tion to handling these messages, DefFrameProc also handles the following

messages:

Message

Response

WM_COMMAND

WM_MENUCHAR

WM_SETFOCUS

WM_SIZE

The frame window of an MDI application receives the
WM_COMMAND message to activate a particular MDI child
window. The window identifier accompanying this message
will identify the MDI child window assigned by Windows,
starting with the first identifier specified by the application
when it created the MDI client window. This value of the first
identifier must not conflict with menu-item identifiers.

When the user presses the ALT+- key combination, the Systém
menu (often called Control menu) of the active MDI child win-
dow will be selected.

DefFrameProc passes focus on to the MDI client, which in
turn passes the focus on to the active MDI child window.

If the frame window procedure passes this message to Def-
FrameProc, the MDI client window will be resized to fit in
the new client area. If the frame window procedure sizes the
MDI client to a different size, it should not pass the message to
DefWindowProc.

See Also DefMDIChildProc, DefWindowProc

DefHookProc

DWORD DefHookProc(nCode, uParam, dwParam, [phhook)

int nCode; /* process code ¥/
UINT uParam; /* first message parameter */
DWORD dwParam; /* second message parameter */
HHOOK FAR¥* Iphhook; /* points to address of next hook function */

This function is obsolete but has been retained for backward compatibility with
Windows versions 3.0 and earlier. Applications written for Windows version 3.1
should use the CallNextHookEx function.

208 DefMDIChildProc

Parameters

Return Value

Comments

See Also

The DefHookProc function calls the next function in a chain of hook functions. A
hook function is a function that processes events before they are sent to an applica-
tion’s message-processing loop in the WinMain function. When an application de-
fines more than one hook function by using the SetWindowsHook function,
Windows forms a linked list or hook chain. Windows places functions of the same
type in a chain.

nCode
Specifies a code used by the Windows hook function (also called the message-
filter function) to determine how to process the message.

uParam
Specifies 16 bits of additional message-dependent information.

dwParam
Specifies 32 bits of additional message-dependent information.

Iphhook
Points to the variable that contains the procedure-instance address of the pre-
viously installed hook function returned by the SetWindowsHook function.

The return value specifies the result of the event processing and depends on the
event.

Windows changes the value at the location pointed to by the [phhook parameter
after an application calls the UnhookWindowsHook function. For more informa-
tion, see the description of the UnhookWindowsHook function.

SetWindowsHook, UnhookWindowsHook

DefMDIChildProc

LRESULT DefMDIChildProc(hwnd, uMsg, wParam, IParam)

HWND hwnd;
UINT uMsg;
WPARAM wParams;
LPARAM [Params;

/* handle of child window */
/* message */
/* first message parameter */
/* second message parameter */

The DefMDIChildProc function provides default processing for any Windows
messages that the window procedure of a multiple document interface (MDI) child

~ window does not process. All window messages that are not explicitly processed

by the window procedure must be passed to the DefMDIChildProc function, not
the DefWindowProc function.

DefMDIChildProc 209

Parameters

Return Value

Comments

See Also

hwnd
Identifies the MDI child window.

uMsg
Specifies the message to be processed.

wParam
Specifies 16 bits of additional message-dependent information.

IParam
Specifies 32 bits of additional message-dependent information.

The return value specifies the result of the message processing and depends on the
message sent.

This function assumes that the parent of the window identified by the Awnd pa-
rameter was created with the MDICLIENT class.

Typically, when an application’s window procedure does not handle a message, it
passes the message to the DefWindowProc function, which processes the mes-
sage. MDI applications use the DefFrameProc and DefMDIChildProc functions
instead of DefWindowProc to provide default message processing. All messages
that an application would usually pass to DefWindowProc (such as nonclient mes-
sages and WM_SETTEXT) should be passed to DefMDIChildProc instead. In ad-
dition to handling these messages, DefMDIChildProc also handles the following
messages:

Message Response

WM_CHILDACTIVATE Performs activation processing when child windows are
sized, moved, or shown. This message must be passed.

WM_GETMINMAXINFO Calculates the size of a maximized MDI child window
based on the current size of the MDI client window.

WM_MENUCHAR Sends the keystrokes to the frame window.

WM_MOVE Recalculates MDI client scroll bars, if they are present.

WM_SETFOCUS Activates the child window if it is not the active MDI
child window.

WM_SIZE Performs necessary operations when changing the size

of a window, especially when maximizing or restoring
an MDI child window. Failing to pass this message to
DefMDIChildProc will produce highly undesirable re-
sults.

WM_SYSCOMMAND Also handles the next window command.

DefFrameProc, DefWindowProc

210 DefWindowProc

DefWindowProc

LRESULT DefWindowProc(hwnd, uMsg, wParam, IParam)

HWND hwnd;
UINT uMsg;

WPARAM wParam;

LPARAM [Param;

Parameters

Return Value

Comments

Example

/* handle of window */
/* type of message */
/* first message parameter */
/* second message parameter */

The DefWindowProc function calls the default window procedure. The default
window procedure provides default processing for any window messages that an
application does not process. This function ensures that every message is
processed. It should be called with the same parameters as those received by the
window procedure.

hwnd
Identifies the window that received the message.

uMsg
Specifies the message.

wParam
Specifies 16 bits of additional message-dependent information.

[Param
Specifies 32 bits of additional message-dependent information.

The return value is the result of the message processing and depends on the mes-
sage sent.

The source code for the DefWindowProc function is provided on the Microsoft
Windows 3.1 Software Development Kit (SDK) disks.

The following example shows a typical window procedure. A switch statement is
used to process individual messages. All messages not processed are passed on to
the DefWindowProc function.

LONG FAR PASCAL MainWndProc(hwnd, message, wParam, 1Param)

HWND hwnd; /* handle of window */
WORD message; /* type of message */
WORD wParam; /* additional information */
LONG 1Param; /* additional information */
{

switch (message) {

DeleteAtom 211

See Also

/*

* Process whatever messages you want here and send the
* rest to DefWindowProc.

*/

default:
return (DefWindowProc(hwnd, message, wParam, 1Param));

DefDIgProc

DeleteAtom

(2]

ATOM DeleteAtom(atm)

ATOM aitm;

Parameters

Return Value

Comments

Example

/* atom to delete */

The DeleteAtom function decrements (decreases by one) the reference count of a
local atom by one. If the atom’s reference count is reduced to zero, the string as-
sociated with the atom is removed from the local atom table.

An atom’s reference count specifies the number of times the atom has been added
to the atom table. The AddAtom function increments (increases by one) the count
on each call. DeleteAtom decrements the count on each call and removes the
string only if the atom’s reference count is reduced to zero.

atm
Identifies the atom and character string to be deleted.

The return value is zero if the function is successful. Otherwise, it is equal to the
atm parameter.

The only way to ensure that an atom has been deleted from the atom table is to call
this function repeatedly until it fails. When the count is decremented to zero, the
next call to the FindAtom or DeleteAtom function will fail.

DeleteAtom has no effect on integer atoms (atoms created by using the MAKE-
INTATOM macro). The function always returns zero for integer atoms.

The following example uses the DeleteAtom function to decrement the reference
count for the specified atom:

ATOM at;

at = DeleteAtom(atTest);

212 DeleteDC

See Also

if (at == NULL)
MessageBox(hwnd, "atom count decremented",
"DeleteAtom”™, MB_O0K);
else
MessageBox(hwnd, "atom count could not be decremented”,
"DeleteAtom", MB_ICONEXCLAMATION);

AddAtom, FindAtom, GlobalDeleteAtom

DeleteDC

BOOL DeleteDC(kdc)
HDC hdc; /* handle of device context */

Parameters

Return Value

Comments

Example

The DeleteDC function deletes the given device context.

hdc
Identifies the device context.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If the hdc parameter identifies the last device context for a given device, the
device is notified and all storage and system resources used by the device are
released.

An application must not delete a device context whose handle was retrieved by
calling the GetDC function. Instead, the application must call the ReleaseDC
function to free the device context.

An application should not call DeleteDC if the application has selected objects
into the device context. Objects must be selected out of the device context before
it is deleted.

The following example uses the CreateDC function to create a device context for
a printer and then calls the DeleteDC function when the device context is no
longer needed:

/% Retrieves a device context for a printer. */

hdcPrinter = CreateDC(1pDriverName, 1pDeviceName, 1pOutput,
1pInitData);

. /* Use the device context. */

DeleteMenu 213

/* Delete the device context. */

DeleteDC(hdcPrinter);
See Also CreateDC, GetDC, ReleaseDC
DeleteMenu
BOOL DeleteMenu(hmenu, idltem, fuFlags)
HMENU hmenu; /* handle of menu */
UINT idltem; /* menu-item identifier */
UINT fuFlags; /* menu flags */
The DeleteMenu function deletes an item from a menu. If the menu item has an
associated pop-up menu, DeleteMenu destroys the handle of the pop-up menu and
frees the memory used by the pop-up menu.
Parameters hmenu
Identifies the menu to be changed.
idltem
Specifies the menu item to be deleted, as determined by the fuFlags parameter.
fuFlags

Return Value

Comments

See Also

Specifies how the idltem parameter is interpreted. This parameter can be one of
the following values:

Value Meaning

MF_BYCOMMAND The idltem parameter specifies the menu-item identifier.

MF_BYPOSITION The idItem parameter specifies the zero-based relative
position of the menu item.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Whenever a menu changes (whether or not the menu is in a window that is dis-
played), the application should call the DrawMenuBar function.

AppendMenu, CreateMenu, DrawMenuBar, InsertMenu, RemoveMenu

214 DeleteMetaFile

DeleteMetaFile [2x]

BOOL DeleteMetaFile(/mf)
HMETAFILE hmf; /* handle of metafile */

The DeleteMetaFile function invalidates the given metafile handle.

Parameters hmf
~ Identifies the metafile to be deleted.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments The DeleteMetaFile function does not destroy a metafile that is saved on disk.
After calling DeleteMetaFile, an application can retrieve a new handle of the
metafile by calling the GetMetaFile function.

Example The following example uses the CreateMetaFile function to create the handle of a
memory metafile device context, draws a line in that device context, retrieves a
handle of the metafile by calling the CloseMetaFile function, plays the metafile
by using the PlayMetaFile function, and finally deletes the metafile by using
DeleteMetaFile:

HDC hdcMeta;
HMETAFILE hmf;

hdcMeta = CreateMetaFile(NULL);
MoveTo(hdcMeta, 10, 10);
LineTo(hdcMeta, 100, 100);

hmf = CloseMetaFile(hdcMeta);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);

See Also CreateMetaFile, GetMetaFile

DeleteObject [2x]

BOOL DeleteObject(hgdiobj)
HGDIOBJ hgdioby; /* handle of object to delete */

The DeleteObject function deletes an object from memory by freeing all system
storage associated with the object. (Objects include pens, brushes, fonts, bitmaps,
regions, and palettes.)

DestroyCaret 215

Parameters

Return Value

hgdiobj
Identifies a pen, brush, font, bitmap, region, or palette.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments After the object is deleted, the handle given in the hgdiobj parameter is no longer
valid.

An appl