

(~()llll1lNJ)()
l\TJNJ)()ltrs™

11 ll()(. llilll II IN(.

f~f) 11111\Nl)f)
l\71NJ)()l\7S™

t• llf)fJ Il1lll II IN fJ
Fast and Easy Programming Solutions in C

IL llLLlllll

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book and Addison-Wesley was aware of the trademark claim, the designations
have been printed in initial capital letters.

The author and publishers have taken care in preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential dam­
ages in connection with or arising out of the use of the information or programs
contained herein.

Library of Congress Cataloging-in·Publication Data

Williams, Al, 1963-

Commando Windows programming : fast and easy programming solutions

in C I Al Williams.

p. cm.

Includes index.

ISBN 0-201-62484-2

1. Windows (Computer programs) I. Title.

QA76.6.W56W49 1993
005.4'3--dc20 93-24862

CIP

Copyright© 1993 by Al Williams

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Managing Editor: Amorette Pedersen

Production Editor: Jennifer Noble

Set in 1 l~point Palatino by Benchmark Productions, Inc.

1 2 3 4 5 6 7 8 9-MA-97 96 95 94 93

First Printing, July 1993

For my mother, Jerid, Amy, and always for Pat.

Acknowledgment

Introduction

1

Special Features

What You Will Need

The Road Map

Windows Myths

Howdy World

Contents

xvii

xix

xxi

xxi

xxi

1

Commando Programmers Have Shortcuts

4

5

Contents

Commando Windows Programming vii

Contents

Why Is Windows This Way? 6

When Using Windows Is Better 6

Where to Next? 7

2

Windows Basics 17

Anatomy of a Windows Program 19

Classy Windows 23

Creating a Window 23

Events and Messages 24

License to Export 26

Drawing to the Screen 27

Memory Allocation 28

Resources 30

Special Libraries 31

Compiling and Linking 32

Learning More 34

3

Unlimited Resources 45

How to Write Howdy 46

A Simple CD Player 48

Back to Basics 50

Forms for Free 52

Events 55

viii Commando Windows Programming

Contents

The GUI 56

Using Common Dialogs 56

Giving Good PHONE 60
Constructing Resources 62

4

Porting Without Pain 109

Why Not a DOS Box? 110

Available Tools 111
Borland 111

Microsoft 112

TWIN 113

Advanced QuickWin Features 113
Opening Windows 115

Closing Windows 115

Behaving Under Windows 116

Split-Personality Programs 116

QuickWin Graphics 117

QuickWin Limitations 118

A QuickWin Program 120

Using TWIN 120
TWIN Configuration 124

TWIN Global Variables 126

TWIN Menus 126

Advanced Use of TWIN 126

Commando Windows Programming ix

Contents

How TWIN Works 128

Summary 130

s
Objects of Desire 177

Constructing an Application 179

OWL Windows 180
Managing Resources 180

Commando OWL Programming 181
Creating MDI Applications 185

A Full OWL Application 185

OLWWIZ Templates 186
OWL Summary 187

6

Quick on the Draw:
Programming Visually 217

What VC++ Isn't 218

Elements of VC++ 219

Features Offered by App Wizard 221

MFC in Detail 222

Managing MFC Documents 223

Message Handling in MFC 223

Using Dialog Boxes 224

The Bottom Line 225

Three Special Views 225

x Commando Windows Programming

7

A Simple Example

Is VC++ for You?

226

234

Biting the Bullet (Or How I Learned
to Stop Worrying and Love the SDK) 277

Down with WM_P AINT! 278

The Problem with the SOK 279

New Age Programming 280

Details, Details... 280

Calling It Quits 290

Fancy VWINL Tricks 290

Breaking the Speed Limit 291

A Practical Example 292

Limits 294

Is VWINL for You? 295

How Does It Do That? 295

8

Things to Come 353

A

TWIN Calls 357

B

VWINL Call Reference 361

Contents

Commando Windows Programming xi

Contents

c
Annotated Blbllography

General Windows Programming

Commando Techniques

Index

367

367

368

371

xii Commando Windows Programming

Listings

Listings

1

Listing 1-1. HOWDY.C 8

Listing 1-2. CHOWDY.C 14

Listing 1-3. EZHOWDY.C 15

2

Listing 2-1. HOWDY.H 37

Listing 2-2. HOWDY.RC 37

Listing 2-3. HOWDY.DEF 39

Listing 2-4. ARGCARGV.C 39

Listing 2-5. ARGCARGV.H 41

Commando Windows Programming xiii

Listings

Listing 2-6. BORCOMP.BAT 42

Listing 2-7. MICCOMP.BAT 42

Listing 2-8. NTCOMP.BAT 42

Listing 2-9. NTLINK.RSP 43

3

Listing 3-1. MOTD.C 63

Listing 3-2. MOTD.DEF 64

Listing 3-3. CDPLA YER.C 64

Listing 3-4. CDPLA YER.H 72

Listing 3-5. CDPLA YER.RC 73

Listing 3-6. CDPLA YER.DEF 74

Listing 3-7. WPRINT.C 74

Listing 3-8. WPRINT.H 77

Listing 3-9. WPRINT.RC 78

Listing 3-10. CTOF.C 79

Listing 3-11. CTOF.RC 80

Listing 3-12. CTOF.DEF 81

Listing 3-13. PHONE.C 81

Listing 3-14. PHONEDB.C 90

Listing 3-15. PHONE.H 102

Listing 3-16. PHONE.RC 104

Listing 3-17. PHONE.DEF 107

4

Listing 4-1. QVIEW.C 131

Listing 4-2. TWIN.H 133

xiv Commando Windows Programming

Listings

Listing 4-3. TMENU.C 139

Listing 4-4. TWIN.C 144

Listing 4-5. TWIN.RC 173

Listing 4-6. TWIN.DEF 175

s
Listing 5-1. TWEDIT.CPP 189

Listing 5-2. TWEDIT.RC 190

Listing 5-3. OWLCOMP.BAT 191

Listing 5-4. OWLWIZ.CPP 192

Listing 5-5. OWLWIZ.H 206

Listing 5-6. OWLWIZ.RC 206

Listing 5-7. OWLTWIN.TPL 210

Listing 5-8. OWLMDI.TPL 212

6

Listing 6-1. GROUPEXE.H 237

Listing 6-2. GROUPEXE.CPP 238

Listing 6-3. GROUPDOC.H 243

Listing 6-4. GROUPDOC.CPP 244

Listing 6-5. GROUPVW.H 247

Listing 6-6. GROUPVW.CPP 249

Listing 6-7. RUNSTATE.H 253

Listing 6-8. RUNSTATE.CPP 254

Listing 6-9. MAINFRM.H 255

Listing 6-10. MAINFRM.CPP 256

Listing 6-11. STDAFX.H 260

Commando.Windows Programming xv

Listings

Listing 6-12. STDAFX.CPP 261

Listing 6-13. GROUPEXE.RC 261

Listing 6-14. RESOURCE.H 272

Listing 6-15. GROUPEXE.RC2 273

Listing 6-16. GRUPEXE.DEF 275

7

Listing 7-1. SIMPLE.C 297

Listing 7-2. VWINL.H 298

Listing 7-3. VWINL.DEF 303

Listing 7-4. BROWSE.C 303

Listing 7-5. BROWSE.H 311

Listing 7-6. BROWSE.RC 312

Listing 7-7. VWIN.RC 313

Listing 7-8. VWIN.C 313

xvi Commando Windows Programming

Acknowledgments

Acknowledgments

My appreciation to Andrea Mulligan, Amy Pedersen,
Andrew Williams, and Chris Williams along with every­
one else at Benchmark and Addison-Wesley for their
usual great job. Thanks to John Hamilton for showing me
the need for this book and Larry Coates for his excellent
editorial comments. And last, but never least, thanks to
my family for helping me make the leap to full-time writ­
ing and consulting.

A version of the VWINL library appeared in Dr. Dobb' s
Journal and is used here with permission (thanks to Jon
Erickson).

Commando Windows Programming xvii

Introduction

Open most Windows C/C++ programming books and
you'll find information about event loops, GDI, device
contexts, and update routines-a daunting barrier to the
beginning Windows programmer.

The arcane approach is fine if you are a student with
plenty of time to learn Windows' intricacies. But you live
in the real world. You don't write drawing or word pro­
cessing programs; you write real applications to access
databases, fill in forms, and print reports. You need to
write these programs fast, and you don't have much time
to learn every detail about Windows. You are a com­
mando programmer.

Luckily there are many techniques and tools to help com­
mando programmers code for Windows and Windows
NT. Commando Windows Programming covers:

• Writing dialog-only and menu-only programs

Commando Windows Programming xix

Introduction

• Emulating text-based programs with edit controls

• Using libraries to simplify application creation

• Using C++ class libraries such as Borland's OWL and
Microsoft's Visual C++

Along with coverage of commercial tools, Commando
Windows Programming includes two original libraries­
TWIN and VWIN-that can simplify many common pro­
gramming tasks. · TWIN simplifies the writing of
text-based programs, and VWIN works for any type of
program. These libraries can simplify your programs or
can provide a starting point for developing your own
tools.

Using the techniques and tools in Commando Windows
Programming, you can write practical Windows programs
quickly and easily-often within a few hours of picking
up the book. The techniques are shortcuts, but they fre­
quently are the best way to write a practical program. As
a bonus, if you later decide to tackle a more conventional
Windows programming book, you'll already understand
many of the concepts.

Commando Windows Programming offers a quick return on
your reading investment. Unlike most other Windows
books, you'll start writing practical programs almost
right away. Depending on your interests, there are sev­
eral paths through the book. You can select chapters
according to your needs.

xx Commando Windows Programming

Special Features

Introduction

Because of the broad scope of
information in this book, there is
a special section at the beginning
of each chapter to help guide

you. This section describes what is in the chapter and
what you need to know to get the most out of it. Also,
some chapter sections have the commando paratrooper
symbol at the top of the paragraph. The paratrooper
identifies sections that will only interest advanced Win­
dow commandos. You might want to skip these sections
the first time you read through the book. You'll need to
read the paratrooper sections only if you want to know
why a tool works.

What You Will Need
Most of the programs in this book will work with Bor­
land C/C++ or Microsoft C/C++. Some programs that
require proprietary libraries will work only with Borland
or only with Microsoft. Chapter 6 covers programs that
work exclusively with Microsoft Visual C++. You should
also have the Windows SDK documentation either in
book form or online.

The Road Map
You probably won't read the chapters of this book in
sequence. Instead, you'll probably skip around to satisfy
your interests. But everyone should read Chapter 1 first.

Commando Windows Programming xxi

Introduction

If you are an experienced Windows programmer, you
might want to skip Chapter 2; otherwise, read it after

Chapter 1. After that, you are on your own. The table
below will help you find the chapters that interest you
most.

IF YOU WANT TO ...

Display simple text

Write form-based programs

Port existing text-based DOS programs

Use C++ to simplify your programs

Write programs that incorporate text editors

Use visual programming techniques with C++

Use Visual Basic controls in C++ programs

Write conventional Windows programs while
automatically managing updates, scroll bars,
resizing, etc.

GO TO CHAPTER ...

3 or 4

5 or 6

6 or 7

xx ii Commando Windows Programming

Windows Myths

WHAT'S IN THIS CHAPTER

You'll find an overview of C programming for
Windows and a discussion of why it is so difficult

compared to ordinary programming.

PREREQUISITES

None

Commando Windows Programming 1

Windows Myths

C programming for Windows has the reputation of being
difficult. In addition to your normal C programming
skills, you need to know about hundreds of Windows
API calls that allocate memory, create windows, and per­
form a variety of other functions.

Worse still, Windows programs don't look like tradi­
tional C programs. Windows programs are event driven
(which is largely a good thing). They also require you to
cooperate with the system to conserve memory, multi­
task, and provide user interface operations (which is
largely a bad thing).

Commando programmers want a simpler way to write
Windows programs. However, they also want to retain
the power inherent in Windows.

The key question is: Why is Windows programming diffi­
cult? The extra Windows API calls are not that difficult.
You don't need to know them all, and the ones you will
use are comparable to third-party library calls that do
DOS user interfaces and graphics.

Event-driven programming (see Chapter 2) is a little dif­
ferent from normal C programming, but not much. A
conventional C program that takes keyboard input and
maintains a timer might contain this code fragment:

while C1>
{

if CkbhitO>

process_keyCgetchC>>;

if Ctimer_flag)

2 Commando Windows Programming

Windows Myths

time_passedC>;
}

The same program fragment in a Windows program
might look like this:

eventCHWND w,unsigned *m,WORD wParam,LONG LParam)
{

switch Cm)
{

}

case WM_CHAR:
process_keyCwParam);

break;
case WM_TIMER:

time_passedC);

break;
}

Not much of a difference. The Windows kernel takes the
place of the original while loop and passes many events
(not just keyboard and timer events) to a function of your
choice.

For most Windows programs, this structure really is an
advantage. If you have written a Windows program
before, you may disagree. Actually, the bad part about
event-driven programming under Windows is not the
basic idea but some of the specific messages. Be careful
not to confuse the two.

Commando Windows Programming 3

Windows Myths

In reality, the culprits that give event-driven program­
ming a bad name are some of the specific events. For
example, suppose you want to write text to the screen.
You can't just write it to the window and expect it to stay
there. At any time, Windows may decide to ask you to
redraw a part of it. For simple text, this isn't much of a
problem, but for complex graphics or text documents, it
may be difficult to do. Other things that Windows should
take care of for you (scroll bars, for example) will barrage
your program with difficult events.

A traditional Windows program has four parts: the ini­
tialization section, an application model, an update rou­
tine, and program logic. The initialization section starts
up the program, of course. The model is a representation
of program data (for example, a word processing docu­
ment). The update routine decides how to display a por­
tion of the model on the screen. Finally, the program
logic takes input (usually from the user) and uses it to
modify the model.

Howdy World
A good example of Windows programming complexity is
the famous "Howdy World" program (if you aren't from
Texas, you may know this as the "Hello World" pro­
gram). In case you haven't seen it, Listing 1-1 has the
famous program written for Windows. Wow! It's almost
200 lines of code-and that doesn't include its resource
and DEF file (see Chapter 2). Even with great formatting
and comments, a DOS HOWDY.C is only ten lines of
code.

4 Commando Windows Programming

Windows Myths

Here the init() function handles initialization, the
update() routine displays the model, and the model is the
character array named model. The HOWDY program
doesn't allow its model to change, so it has almost no
program logic. However, for the sake of illustration, the
menu() function causes the program to terminate-the
only program logic step HOWDY uses.

Some Windows programmers will tell you that this isn't a
fair comparison. The Windows program has more to do.
However, commandos know that this isn't really a far­
fetched comparison. For example, how many times do
you need to write a program that displays some data
from a database? Or print some status message to the
screen. Can you really afford 200 lines of code to do that?

Commando Programmers Have Shortcuts

Luckily, commando programmers have shortcuts that
make writing Windows programs easier. Listing 1-2
shows a short Windows HOWDY.C that uses the tech­
niques described in Chapter 3. That's better, isn't it? List­
ing 1-3 shows a program written with Borland's EZWIN
product, which will also work with Microsoft's
QuickWin. It looks just like a DOS program (of course, it
also acts just like a DOS program). You'll learn more
about these techniques in later chapters. For now, just
realize that traditional Windows programming tech­
niques are not always the best way to write a Windows

program.

Commando Windows Programming 5

Windows Myths

Why Is Windows This Way?
When Windows first appeared, it operated (barely) on a
conventional 8088 PC with less than 640K of memory.
Since even a moderate-sized screen image could take 64K
of memory (or more), it wasn't very practical for Win­
dows to store screen images for later recall. Without this
ability, Windows cannot manage screen redisplay, scroll
bars, and other important functions. You must deal with
these yourself. Most of the commando techniques in this
book hide this complexity from you.

When Using Windows Is Better
If there are easier ways to write Windows programs, why
does the traditional method still persist? Although the
commando techniques are useful for many programs in
many situations, they are not right for every program.
Some commando techniques, for instance, consume large
amounts of memory, which may not be suitable for your
application.

Other programs naturally fit the Windows model. For
example, a word processor builds a document; this docu­
ment corresponds exactly to the model portion of a Win­
dows program. Directly placing text and formatting on
the screen is of little value when you must update the
model anyway.

Still, many programs can benefit from simplified Win­
dows techniques. Even a word processor will have por­
tions of code that don't fit well with the traditional
programming model. Programs that work with databases

6 Commando Windows Programming

Windows Myths

are often good candidates for commando techniques.
Simple utilities that create files, set up printers or net­
work connections, or perform similar tasks can often ben­
efit from the commando approach.

Where to Next?

Although the commando techniques simplify Windows
programming, most of them still require some Windows
knowledge. Unless you are already an experienced Win­
dows programmer, you should read Chapter 2 next. It
will quickly teach you some basic Windows ideas and
terms. Once you are familiar with these concepts, you can
find chapters of interest in the roadmap at the end of the
Introduction.

Commando Windows Programming 7

Windows Myths

Listing 1-1. HOWDY .C

!***

*
* File: HOWDY.C

*
* Typical Cnoncommando) Windows program

*
*Required to Compile:
* HOWDY.C HOWDY.H HOWDY.RC HOWDY.DEF

*

*
*
*
*
*
*
*
*

***!
#include <windows.h>

#include <string.h>
#include "howdy.h"

I* current instance */

HANDLE hlnst;
I* main window */

HWND topwindow;

I* String to display -- the "model" */

char *model = "Howdy World!";

I* Main window function */
int PASCAL WinMainCHANDLE hlnst, HANDLE prev,

LPSTR cmdline, int show)
{

MSG msg;

8 Commando Windows Programming

if (!init(hlnst, prev, show))

return FALSE;

I* Vanilla event loop*/

Windows Myths

while (GetMessage(&msg, NULL, NULL, NULL))
{

TranslateMessage<&msg>;

DispatchMessage<&msg);
}

I* Exit program */

return (msg.wParam>;
}

I* Start up stuff */

int init<HANDLE hlnst, HANDLE prev, int show)
{

if (!prev>
{

if (!init_app(hlnst)}

I* Exit if unable to initialize */

return FALSE;
}

I* Perform instance init */

if (!init_inst(hlnst, show))

return FALSE;
return TRUE;
}

I* Create window class here */

Commando Windows Programming 9

Windows Myths

BOOL init_app(HANDLE hlnstance)
{

WNDCLASS we;

we.style = NULL;
wc.lpfnWndProc = (void FAR*> win_proc;

wc.cbClsExtra = O;
wc.cbWndExtra = O;

wc.hlnstance = hlnstance;
wc.hlcon = LoadlconCNULL, IDI_APPLICATION>;
wc.hCursor = LoadCursorCNULL, IDC_ARROW);

wc.hbrBackground = GetStockObject(WHITE_BRUSH>;
wc.lpszMenuName = "HOWDYMENU";

wc.lpszClassName = "HOWDY_Class";
return (RegisterClassC&wc>>;
}

I* Create window here */

BOOL init inst<HANDLE hlnstance, int nCmdShow>
{

HWND hWnd;
I* Save the instance handle in global variable */

hlnst = hlnstance;

I* Create a main window */

topwindow = hWnd = CreateWindow<
"HOWDY_Class",

"Howdy, Howdy, Howdy!",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,

10 Commando Windows Programming

) ;

CW_USEDEFAULT,
CW_USEDEFAULT,

CW_USEDEFAULT,

NULL,
NULL,

hlnstance,

NULL

if C!hWnd)

return FALSE;

Windows Myths

I* Make the window visible, update its client area, and

* return "success" *I

ShowWindow(hWnd, nCmdShow>;

UpdateWindow(hWnd>;

return <TRUE>;
}

I* Window procedure */

Long WINAPI _export win_proc<HWND hWnd, UINT message,

UINT wParam, LONG LParam)
{

switch (message)
{

case WM COMMAND:

menu(hWnd, wParam>;

break;

Commando Windows Programming 11

Windows Myths

case WM_DESTROY:
PostQuitMessageCO>;

break;

case WM_PAINT:

updateChWnd>;

break;

default:
return (DefWindowProc(hWnd, message,

wParam, lParam>>;
}

return NULL;
}

I* Update screen in response to WM_PAINT messages */

void update(HWND w>
{

HOC de;
PAINTSTRUCT paint;

de = BeginPaint<w, &paint>;
TextOutCdc, GetDeviceCapsCdc, LOGPIXELSX> I 2,

GetDeviceCaps(dc, LOGPIXELSY) I 2,

model, strlenCmodel>>;

EndPaintCw, &paint>;
}

void menuCHWND hWnd, UINT wParam)
{

12 Commando Windows Programming

I* pointer for "About" function */
FARPROC aboutproc;

if CwParam == IDM_ABOUT)
{

Windows Myths

aboutproc = MakeProclnstanceCabout, hlnst>;

DialogBoxChlnst, "AboutBox", hWnd, aboutproc>;
FreeProclnstanceCaboutproc>;

return;
}

else if CwParam == IDM_STOP)
{

}

DestroyWindowChWnd>;

return;
}

I* Ordinary about box */

BOOL WINAPI _export aboutCHWND hDlg, UINT message,
UINT wParam, LONG lParam)

{

switch (message)
{

case WM_INITDIALOG:

return CTRUE>;

case WM_COMMAND:

I* Use LOWORD for Win32 compatibility*/

if CLOWORDCwParam) == IDOK

I I LOWORDCwParam) == IDCANCEL>
{

Commando Windows Programming 13

Windows Myths

EndDialogChDlg, TRUE);
return CTRUE>;
}

break;
}

return FALSE;
}

Listing 1-2. CHOWDY .C

!***

*
* File: CHOWDY.C

*
* Commando version of HOWDY

*
*Required to Compile:
* CHOWDY.C CHOWDY.DEF

*

*
*
*
*
*
*
*
*

***/
#include <windows.h>

I* Main window function */
int PASCAL WinMainCHANDLE hlnst, HANDLE prev,

LPSTR cmdline, int show)
{

MessageBoxCNULL, "Howdy World!", "Howdy!",
MB_OK);

return FALSE;
}

14 Commando Windows Programming

Windows Myths

Listing 1-3. EZHOWDY.C

!***

* *
* File: EZHOWDY.C *
* *
* Simple Howdy world program for EZWIN or QuickWin. *
*
* Required to Compile:
* ezhowdy.c

*

*
*
*
*

***/

#include <stdio.h>

main<>
{

printf("Howdy World\n");
}

Commando Windows Programming 15

Windows Basics

WHAT'S IN THIS CHAPTER

Chapter 2 covers basic Windows programming
concepts (for example, event loops, windows, menus,

and resources). You will need a working
understanding of these concepts to apply most of the

commando techniques that appear in the remainder
of the book. If you already know how to write

conventional Windows programs, you may
wish to skip this chapter.

PREREQUISITES

To get the most from this chapter, you'll need a
knowledge of C programming.

Commando Windows Programming 17

Windows Basics

Windows programs look different than ordinary C pro­
grams. Even the simplest Windows program usually has
several files and many functions. This chapter will help
you get oriented in the Windows world and introduce
some important new terms.

Windows programs are different from conventional pro­
grams in four major ways:

• The structure of the program is different.

• Windows programs are event driven.

• The compile-and-link cycle differs.

• Windows provides an enormous number of new API calls
and messages.

This chapter will focus mainly on the first three differ­
ences. You can pick up the new API calls as you go along.
Be sure that you have an API reference (either the book
or online help from the Microsoft or Borland compilers)
to answer your API questions.

The HOWDY program in Chapter 1 (see Listing 1-1) is a
simple Windows program that we will dissect in this
chapter. Windows programs are usually more complex,
but the principles are the same as in HOWDY. Listing 1-1
contains the C source code for HOWDY, but that isn't all
it takes to build a Windows program. Listings 2-1, 2-2,
and 2-3 show HOWDY.H, HOWDY.RC, and HOWDY.
DEF. You'll need these three files to actually compile
HOWDY.

18 Commando Windows Programming

Windows Basics

Note that HOWDY is not a commando program-it is a
typical Windows application. If it takes a program this
large to write one string to a window, how big will your
program be? Luckily, Chapter 3 will show you better
ways to write this type of program. In fact, the examples
in Chapter 3 will do more with less code. Still, you
should wade through HOWDY to see how the other half
lives. It will greatly enhance your appreciation of the pro­
grams that follow.

Anatomy of a Windows Program
Conventional C programs begin execution at their main()
function. Windows programs begin at WinMain(). Like
main(), WinMain() is responsible for starting up your
program, and when it exits, so does your application.

Here is the prototype for WinMain():

int PASCAL WinMainCHANDLE hlnst, HANDLE prev,
LPSTR cmdline, int show>;

The PASCAL keyword signals the compiler to use a Pas­
cal-style calling convention for efficiency reasons. Most
functions that Windows supplies or calls use this calling
convention.

The arguments to WinMainO are straightforward. Win­
dows assigns each running program an instance handle.
This handle uniquely identifies the program in the same
way the PSP address identifies a DOS program. The hlnst
parameter is your program's instance handle. Windows

Commando Windows Programming 19

Windows Basics

will often require you to pass this back to it as a parame­
ter to other API calls.

The second HANDLE argument, prev, is NULL if your
program is running for the first time or is a Windows NT
program. If there is another copy of your program run­
ning under Windows 3.x, Windows places its instance
handle in the prev parameter. By examining it, you could
prevent multiple copies of your program from executing.
You also can skip some initialization steps when you
know that another copy of your program has already
done them (see below). If you want to, you can even
write a program that simply issues requests to the older
copy of itself and terminate.

The cmdline parameter is a far pointer to your command
line. The command line is unparsed and null terminated.
This is not as handy as the argc and argv parameters you
usually get, so the Borland compilers provide global vari­
ables _argc and _argv to take their place. While Microsoft
doesn't supply these variables, Listings 2-4 and 2-5
(ARGCARGV.C and ARGCARGV.H) allow you to use
them with either compiler.

ARGCARGV.C and ARGCARGV.H (Listings 2-4 and 2-5)
supply a simple command line parser for Microsoft pro­
grams. Although it isn't as sophisticated as the standard
parser, it is more than adequate for most Windows pro­
grams. You can include ARGCARGV.H in your Borland
or Microsoft programs. You also need to call set_args()
before using the _argc or _argv variables. For Borland
programs, this call does nothing, and the header just
includes the proper header that defines _argc and _argv.

20 Commando Windows Programming

Windows Basics

The MOTD program in Chapter 3 (Listing 3-1) shows
how to use ARGCARGV.

If you use Borland, you can either compile and link with
ARGCARGV.C or not-it expands to nothing under Bor­
land. For Microsoft programs, you must compile and link
ARGCARGV.C. The version in Listing 2-4 limits you to a
maximum of 20 arguments. It also doesn't understand
argument quoting. For example, the arguments:

"Hex Mode" On

would normally result in the following assignments:

argv(1J="Hex Mode";

argv(2]="0n";

With ARGCARGV.C, the results are:

argv(1J="\"Hex";

argv(2J="Mode\"";

argv(3J="On";

The final parameter to WinMain() is show. This variable
indicates whether the program should start as a normal
window, an icon, or a full-screen window. Usually, you
just pass this parameter back to Windows in the Win­
Show() call and forget about it.

Commando Windows Programming 21

Windows Basics

WinMain() usually (but not always) has three main
functions:

• Do global initialization (if this is the first copy of your pro­
gram).

• Do instance initialization.

• Start the event loop.

If the prev parameter in WinMain() is NULL, you have to
do some global initialization that you would skip if it
was not NULL. You'll see more about that soon. Since
Windows NT programs are isolated from each other, this
parameter is always null under NT.

Nearly all programs will need to perform some private
initialization in WinMain(). Most often, this is the cre­
ation of the application's main window.

HOWDY.C uses the init() function to perform both types
of initialization. The init_app() function does the global
setup (if required), and the init_inst() routine handles the
window creation.

Finally, WinMain() enters an event loop. This captures
messages sent by Windows and routes them to the cor­
rect functions in your program. We will look at messages
and events shortly.

The event loop is written so that it ends when you termi­
nate your program (say, by clicking close from the sys­
tem menu). Since the loop is the last thing in WinMain(),
ending it causes WinMainO and your program to end.

22 Commando Windows Programming

Windows Basics

Classy Windows

A program's windows serve as focal points for its activ­
ity. Windows receive events, own menus, and, of course,
display data. Each window you create must belong to a
window class. A window's class defines its default behav­
ior. Windows provides some built-in classes (for exam­
ple, button, scroll bar, and so on), but usually you create
your own classes.

The init_app() routine in HOWDY.C creates a window
class named HOWDY_Class. All windows of this class
will have the same menu (HOWDYMENU), the same icon
(IDI_APPLICATION), and the same cursor (IDC_
ARROW). The WNDCLASS structure holds the informa­
tion about the class, and the RegisterClass() call creates it.

Creating a Window

Creating a class does not create a window; that is the job
of init_inst(). There, the CreateWindow() call makes an
actual window of class HOWDY_ Class.

The CreateWindow() call takes a number of parameters.
In HOWDY.C, the CW_USEDEFAULT constant requests
the default position and size for the window. Other
parameters specify the window's title, the window's
menu (if different from the default class menu), and the
window's style (for example, whether it has scroll bars or
a system menu).

Since the window that HOWDY creates is its main win­
dow, it has no parent. Often windows will be children of
another window and therefore have a non-null value for
the parent parameter in CreateWindow(). Child windows

Commando Windows Programming 23

Windows Basics

fit inside their parent window and are only visible when
the parent is visible.

When you create a window, you may specify that it have
a certain style. The WS_SYSMENU style, for example,
causes the window to have a system menu box in the top­
left corner. For convenience, Windows provides some
common styles that consist of several styles merged
together. For instance, the WS_OVERLAPPEDWINDOW
style is equivalent to:

WS_OVERLAPPED I WS_CAPTION I WS_SYSMENU
WS_MINIZEBOX I WS_MAXIMIZEBOX

Events and Messages

WS_THICKFRAME

Each window class specifies its window procedure when it
is created. HOWDY_Class windows, for example, use
win_proc() as their window procedure. Windows sends
all events that pertain to HOWDY to win_proc().

If you look at win_proc() in Listing 1-1, you will see that
it is just a big switch statement. The message parameter
contains an integer that defines which event happened.
For example, the WM_COMMAND message occurs when
the user clicks on a menu item (or uses a keyboard accel­
erator). The WM_DESTROY message occurs when the
window is closing. The WM_P AINT message indicates
that Windows wants you to redraw all or part of the win­
dow. You can find a complete list of messages and their
parameters in your API documentation.

You can intercept and process any windows messages
you want. If you don't handle a message, you should

24 Commando Windows Programming

Windows Basics

pass it on to DefWindowProc(), which is part of Win­
dows. This default window procedure accounts for much
of the standard window behavior.

Some messages originate from Windows. These messages
occur when interesting events occur (for example, when
the mouse moves, or the user selects a menu choice).
Your program can also send messages to windows to
cause certain actions.

Some Windows operations take the form of conventional
function calls. For example, if you want a particular win­
dow to move to the front and respond to the keyboard,
you make the call:

SetFocus(w); /* w=window's handle */

Other operations take the form of messages. You can
send a message to a window and optionally wait for it to
respond to you. There are two primary methods of send­
ing a message: SendMessage() and PostMessage().
SendMessage() waits until the message completes and
returns a value. PostMessage() puts a message in the win­
dow's queue but doesn't wait for it.

There are many Windows messages, and some of them
mean slightly different things to different windows. For
example, the WM_SETTEXT message sets the title of a
normal window. However, for text-edit windows (con­
trols), the WM_SETTEXT message determines the text
inside the window.

Commando Windows Programming 25

Windows Basics

All messages take two parameters (by convention,
wParam and lParam). These arguments specify data for
the message. For example, to use WM_SETTEXT, you
must cast a string pointer to a long and pass it as lParam
like this:

SendMessageCw,WM_SETTEXT,0,(long)"Title!");

WM_SETTEXT ignores the wParam argument.

Under Windows NT, wParam is 32-bits (the same as
lParam). NT uses the extra 16-bits for additional informa­
tion. Programs that can compile for Windows 3.1 or Win­
dows NT often use lines like this:

switch (LOWORDCwParam))
{

}

This accomplishes nothing under Windows 3.1 and is
harmless. If the Windows NT version of a message
doesn't change the meaning of the lower 16-bits of
wParam, the code will work on either platform.

License to Export

Functions that Windows will call (except for WinMain())
must be far and exportable. You will notice that the
MainWndProc() function, for example, uses the FAR and
_export keywords. These keywords allow Windows to
call the functions properly, even if more than one copy of

26 Commando Windows Programming

Windows Basics

your program is running. Functions that you only call
yourself-for example, init() or menu()-don't require
the _export keyword and usually are not far functions.

When dealing with function addresses, you have to bind
the address to your instance for Windows to call it cor­
rectly. (The exception is for calls to RegisterClass(); that
function binds the window procedure for you.) For exam­
ple, the menu() function uses this code:

aboutproc=MakeProclnstanceCabout,hlnst>;

This code allows Windows to correctly call the about()
function via the pointer aboutproc. If you simply pass
Windows the address of about(), your function will not
be able to properly access its variables. When you are
done with a bound function address, you should free it.
HOWDY uses:

FreeProclnstanceCaboutproc>;

Drawing to the Screen
Most commando techniques don't require you to draw
directly to a window. However, you should know how
it's done. All Windows drawing functions (both graphics
and text) use a device context. This is a magic number that
references a particular window and set of drawing tools.

You should usually draw to a window only during
WM_P AINT message processing. For example, the
update() routine in HOWDY uses the BeginPaint() func-

Commando Windows Programming 27

Windows Basics

tion to get a device context, and the TextOut() function to
write text to it.

You can make calls to alter how a device context works
(for example, to change the color of drawings). You can
also query the context for information. HOWDY wants to
draw text one-half inch away from the top-left corner.
Therefore, it uses the call:

GetDeviceCaps(dc,LOGPIXELSX)

to find the number of pixels per inch.

If you draw to a window outside of the WM_P AINT con­
text, your drawing will be transient. When Windows asks
you to redraw that portion of your window, your
WM_PAINT routine won't be able to re-create it. On rare
occasions (for example, drawing a selection), this may be

what you want to do. Most often, however, you will draw
only during WM_P AINT messages.

Memory Allocation

Although HOWDY doesn't allocate any memory, you
should still have a general idea about Windows memory
management. Windows manages two separate heaps, or
areas, for memory allocation.

The local heap is in your program's default data segment.
Because a segment must be 64K or less, the local heap can
never be larger than 64K and is almost always less
(except under Windows NT).

28 Commando Windows Programming

Windows Basics

The global heap can access the large pool of memory out­
side your program's data segment. You can allocate items
nearly 16M in size using Window's GlobalAlloc() call.

Under Windows 3.0 real mode, you had to be careful
with global memory. GlobalAlloc() returns a handle that
you have to convert to a far address using GlobalLock().
In real mode, locking memory hinders Windows, so you
had to keep locking and unlocking memory. In protected
mode, Windows doesn't care if you keep memory locked
or not. So if you need a one million byte buffer, you
could say:

char far *p;
HANDLE p_handle;
p_handle=GlobalAllocCGMEM_MOVEABLEIGMEM_ZEROINIT,1000000);

if C!p_handle) error<>;
p=Globallock(p_handle);

if C!p) error();
I* use p */

GlobalUnlockCp_handle>;
GlobalFree(p_handle>;

Note that you can call GlobalAlloc() from a small model
program-just be sure to use a far pointer (or the Win­
dows LPSTR type). You'll also need to use far-pointer
versions of any library functions you want to use. For
example, instead of strcpyO, you would use _fstrcpy(),
since it will accommodate a far pointer.

Avoid making large allocations using malloc(), calloc(),
and related calls in Windows 3.1 programs. By default,

Commando Windows Programming 29

Windows Basics

these allocate from your local heap and are not as useful
as GlobalAlloc(). They run out of space much quicker. Of
course, WIN32S and Windows NT programs don't have
this limitation.

By the same token, in Windows 3.1 programs, avoid
using GlobalAlloc() for small allocations. There is a sys­
temwide limit on the number of memory regions that
GlobalAlloc() can return (around 8,000). If you use
GlobalAlloc() for many small memory allocations, you
can quickly cause the entire system to run out of memory.

Resources

Listing 2-2 is a resource file. Resources are data that you
can store inside your EXE file. These data can specify
menus, bitmaps, cursors, icons, or user-defined data.
Resources can also specify special-purpose windows
called dialogs. Dialogs are very important to the com­
mando programmer (see Chapter 3) because they will do
most of the dirty work for many Windows programs.

You can create resources in an ASCII text file (like Listing
2-2), or you can use a specialized resource editor (like
Borland's Resource Workshop or Microsoft's Application
Studio) to draw menus, bitmaps, and dialogs interac­
tively.

Resources, especially dialog boxes, are key to many com­
mando strategies. Unlike regular windows, dialog boxes
don't require much work to use. They paint themselves
and only bother you when something interesting happens
(like when you press a button).

30 Commando Windows Programmi.ng

Windows Basics

When you need text-only input and output, you should
automatically think about dialog boxes. You'll see how to
write some powerful dialog-only programs in Chapter 3.

Dialogs come in two flavors: modal and modeless. When
a modal dialog box is visible, you can't access other win­
dows in your program. A modeless dialog box (which
requires a special event loop) is more like an ordinary
window. While it is present, you can still switch to
another window in your program. Later, you can switch
back to the dialog box.

Menus are also simple to use. You actually can write
some useful Windows programs that contain nothing but
a menu (if you don't believe it, look at Listing 3-3).

Special Libraries

Don't overlook the many special-purpose libraries that
ship with Windows. For example, how difficult would it
be to write an audio CD player? Without the Windows
Multimedia Control Interface (MCI) libraries, it would be

very difficult. With MCI, it becomes almost trivial. (We
will write this program soon.)

Windows comes with APis to manage multimedia
devices, display online help, launch other programs, and
do a host of otherwise difficult tasks. Be sure to start each
project with a search for potentially .useful Windows
calls.

Commando Windows Programming 31

Windows Basics

Compiling and Linking

Windows programs require a special compile-and-link
process since they have a more complicated structure
than the ordinary EXE format. Figure 2-1 shows the pro­
cess. As usual, the compiler converts C and H files to OBJ
files. However, the linker must make a different type of
EXE file. Since there is more information in the EXE file,
the linker now reads a DEF file (like HOWDY.DEF in
Listing 2-3) to gain additional information about the

program.

Although the linker creates a Windows EXE file, the file
has no resources in it. If you run it, it will work, but it
will have no menus, icons, and so on. To get your
resources in the EXE file, you need a resource compiler
like Microsoft's RC program. You can use this program in
two ways. The easiest way is to directly bind the RC file
into the EXE file. For example:

re HOWDY.RC HOWDY.EXE

However, if your resources don't change often, this pro­
cedure wastes time because it compiles the resources
each time. You may want to compile the RC file into a
binary RES file. You do this with:

re -r HOWDY.RC HOWDY.RES

32 Commando Windows Programming

Figure 2-1. Windows Compile/Link Cycle

DEF
Fiie

RC
Flies

RES EXE
File File

: _______________________________ !

Optional: Use binary
RES file instead
of directly using
RC files.

Stub

Windows Basics

Commando Windows Programming 33

Windows Basics

Then, you can quickly bind the RES file to an EXE file
like this:

re HOWDY.RES HOWDY.EXE

If you forget to bind your resources, you'll figure it out
soon enough. When you run your program, you'll see a
window with no menu, and you won't be able to see any
dialogs. Just double-click the system box (in the top-left
corner) to end the program and then run RC.

Listings 2-6, 2-7, and 2-8 are three batch files that will
compile and link HOWDY using Borland CIC++,
Microsoft C/C++, or the Microsoft Win32 tools,
repectively. The basic steps are the same as the ones used
to compile and link any Windows program. The NT batch
file also requires the NTLINK.RSP file (Listing 2-9) to
supply commands to the linker.

You should almost always use small model for Windows
programs. Small-model programs can still access as much
data as they need by using far pointers and Global­
Alloc(). If you have an extraordinary amount of code, you
could use medium model. However, Windows has diffi­
culty loading large and compact model programs-using
these models may prevent you from running more than
one copy of your application.

Learning More
This chapter has only scratched the surface of Windows
programming. If you want to iearn more about Windows

34 Commando Windows Programming

Windows Basics

programming, you might check out some of the books in
the bibliography. However, for most of the commando
techniques in this book, you now know all you need to
know about Windows. See the sidebar The Commando
Commandments on the following page for some general
advice about commando techniques. You'll hear more
about the techniques in later chapters.

At this point, you may or may not want to proceed to
Chapter 3. Look at the roadmap in the Introduction to
this book to determine which chapter best suits your
interest.

Commando Windows Programming 35

Windows Basics

The Commando Commandments

I. Use dialogs instead of windows if possible.

II. Use the Windows API effectively.

Ill. Avoid creating resources by hand; instead, use a
graphical tool.

IV. For text-based programs, use dialogs or text­
emulation tools.

V. Learn C++ and use class libraries to simplify your
programs.

VI. Avoid writing WM_PAINT routines.

VII. Program visually when possible.

VIII. Select the right commando technique for the
job.

IX. Resort to traditional techniques only when
necessary.

X. Even when using traditional techniques, try to
find parts of your program that could benefit from
commando programming methods.

36 Commando Windows Programming

Windows Basics

Listing 2-1. HOWDY.H

!***

* *
* File: HOWDY.H *
* *
* Header for HOWDY.C *
* *
*Required to Compile: *
* HOWDY.C HOWDY.H HOWDY.RC HOWDY.DEF *
* *
***/

I* Menu defines */
#define IDM_ABOUT 100
#define IDM_STOP 101

I* prototypes */
BOOL init_app(HANDLE);

BOOL init_inst(HANDLE, int);
long WINAPI _export win_procCHWND, UINT, UINT, LONG);
BOOL WINAPI _export about(HWND, UINT, UINT, LONG>;
void menu(HWND, UINT);
void updateCHWND);
int initCHANDLE, HANDLE, int);

Listing 2-2. HOWDY.RC

/***

* *
* File: HOWDY.RC *
* *

Commando Windows Programming 37

Windows Basics

*Resources Ci.e., menus and dialogs) for HOWDY.C *

* *
*Required to Compile: *
* HOWDY.C HOWDY.H HOWDY.RC HOWDY.DEF *

* *
***!

#include "windows.h"
#include "howdy.h"

I* Main menu */
HOWDYMENU MENU
BEGIN

PO PUP
BEGIN

"&Fi le"

MENUITEM "&About Howdy •.. ",IDM_ABOUT
MENUITEM "&Exit",IDM_STOP

END
END

I* About dialog box */
AboutBox DIALOG 22,17,144,75
STYLE DS_MODALFRAME I WS_CAPTION
CAPTION "About Howdy"
BEGIN

CTEXT "Howdy" -1,0,5,144,8

WS_SYSMENU

CTEXT "By Al Williams" -1,0,14,144,8
CTEXT "Version 1.0" 1,0,34,144,8

38 Commando Windows Programming

Windows Basics

DEFPUSHBUTTON "OK" IDOK,53,59,32,14,WS_GROUP
END

Listing 2-3. HOWDY.DEF

Name HOWDY
Description 'Hello World, Texas Style'
Exetype WINDOWS
Code PRELOAD MOVEABLE DISCARDABLE
Data PRELOAD MOVEABLE SINGLE
Heapsize 4096
Stacksize 5120
Stub 'WINSTUB.EXE'

Listing 2-4. ARGCARGV .C

!***

* *
*File: ARGCARGV.C *

* *
* Module to allow Microsoft users to use _argc *
* and _argv. *

* Limitations: *
* 1) Only 20 arguments are supported.
* 2) No quotes are processed.

*
*Required to Compile:
* Many programs use ARGCARGV.C and ARGCARGV.H
*They do not compile separately.

*

*
*
*
*
*
*
*

***!

Commando Windows Programming 39

Windows Basics

I* Only required for Microsoft */

#ifndef ~BORLANDC

#include <windows.h>

#include <string.h>
#include "argcargv.h"

I* local buffer for command Line */

static char local_cmd[129J;

static char my_file_name[129J;

int _argc;
char *_argv[MAXARGJ;

void set_args(LPSTR cmd, HANDLE inst)
{

char *lbuf = local_cmd;

I* copy to local buffer */

while C*Lbuf++ = *cmd++>;
I* set up _argv[QJ */

GetModuleFileName(inst, my_file_name,

sizeof(my_file_name>>;

_argv[QJ = my_file_name;

_argc = 1;

lbuf = local_cmd;
while C_argv[_argc] = strtokCLbuf, " \t\n\r"))

{

Lbuf = NULL; /* reset for next token */

_argc++; I* note valid argument */

if C_argc=MAXARG) break;

40 Commando Windows Programming

Windows Basics

}

}

#endif

Listing 2-5. ARGCARGV.H

!**

* *
*File: ARGCARGV.H *

* *
* Header to allow Windows programs to use _argc *

* and _argv. Microsoft users also need ARGCARGV.C *

* *
*Required to Compile: *
* Many programs use ARGCARGV.C and ARGCARGV.H *

*They do not compile separately. *

* *
***!

#ifndef _ARGCARGV_H

#define _ARGCARGV_H

#ifdef ~BORLANDC
#include <dos.h>
#define set_args(a,b)

#else

Commando Windows Programming 41

Windows Basics

I* Limit to 20 arguments max */
#define MAXARG 20

extern int _argc;

extern char *_argv[MAXARGJ;

void set_args(LPSTR cmd, HANDLE inst>;

#endif

#endif

Listing 2-6. BORCOMP.BAT

REM Batch file to compile HOWDY with Borland C

bee -v -w howdy.c

re howdy.re howdy.exe

Listing 2-7. MICCOMP.BAT

REM Batch file to compile HOWDY with Microsoft C

cl -Zi -GA howdy.c howdy.def

re howdy.re howdy.exe

Listing 2-8. NTCOMP.BAT

REM Batch file to compile HOWDY under Windows NT

REM (also needs NTLINK.RSP)

cl386 -c -G3 -W3 -Di386=1 -DWIN32 -Zi -Od -DNT -DWIN howdy.c

re -r howdy.re
cvtres -i386 howdy.res -o howdy.rbj

link -out:howdy.exe howdy.obj howdy.rbj @NTLINK.RSP

42 Commando Windows Programming

Listing 2-9. NTLINK.RSP

-debug:full

-debugtype:both

-subsystem:windows

-entry:WinMainCRTStartup

libc.lib

ntdll.lib

kernel32.lib

user32.lib

gdi32.lib

winspool.lib

comdlg32.lib

Windows Basics

Commando Windows Programming 43

Unlimited Resources

WHAT'S IN THIS CHAPTER

In Chapter 3, you'll learn how to write simple
text-oriented programs using menu and dialog

resources. You'll see how to write a message utility, an
audio CD player, a simple conversion calculator, and a

powerful phonebook program without drawing to a
single window.

PREREQUISITES

You'll need to know C programming and basic
Windows concepts as well as have a

knowledge of resources.

Commando Windows Programming 45

Unlimited Resources

Resources form an integral part of nearly all Windows
applications. Resources allows a program to store data
inside its EXE file. These data specify items such as
menus, icons, and dialog boxes. The key to many com­
mando programs is to avoid using regular Windows­
only use resources (particularly dialogs and menus).

While windows are complicated to create and maintain,
dialogs and menus require almost no maintenance. Your
program can concentrate on the task it's trying to per­
form and avoid user interface issues.

How to Write Howdy
The HOWDY program (Listing 2-1) is terrible. It is not a
commando program. Commando Commandment II ("Use
the Windows API effectively") dictates that you should
use the MessageBox() function to display the "Howdy
World" string (see Listing 1-2).

Listings 3-1 and 3-2 contain a program inspired by Unix's
MOTD file. It reads a line from the file of your choice and
displays it using MessageBox(). This program is useful to
run automatically when Windows starts on a network
workstation. You can display short messages to users (for
example, "Network will be down at noon," "New com­
piler version in \newgizmo\compile"). Figure 3-1 shows
the calling details for MessageBox().

This is a true commando program-short and sweet. If
you want to display only a fixed string, the program
could be even simpler; the bulk of the code reads the
message from the file.

46 Commando Windows Programming

Unlimited Resources

Figure 3-1. Calling MessageBox()

int MessageBoxCHWND parent, LPSTR text, LPSTR title, WORD
flags);

parent - Handle to parent window. May be NULL.

text - String to display in box.

title - Caption for box. If NULL, Windows uses "Error".

flags - Any combination of the following values joined by the or operator (I):

MB_ABORTRETRYIGNORE - Display three buttons: abort, retry,
and ignore.

MB_OK - Display OK button.

MB_OKCANCEL - Display OK and cancel button.

MB_RETRYCANCEL - Display two buttons: retry and cancel.

MB_YESNO - Display yes and no buttons.

MB_YESNOCANCEL - Display three buttons: yes, no, and cancel.

MB_APPLMODAL - Make box modal (default).

MB_SYSTEMMODAL - Suspend all applications until box is dismissed.

MB_TASKMODAL - Suspend current task (useful for acting like
MB_APPLMODAL when parent is NULL).

MB_DEFBUTTONl - First button is the default button (default).

MB_DEFBUTTON2 - Second button is the default.

MB_DEFBUTTON3 -Third button is the default.

MB_ICONASTERISK - Place info icon in box.

MB_ICONINFORMATION - Place info icon in box.

MB_ICONEXCLAMATION - Place exclamation icon in box.

MB_ICONHAND - Place stop icon in box.

(Cont.)

Commando Windows Programming 47

Unlimited Resources

Figure 3-1. Calling MessageBox() (Cont.)

MB_ICONSTOP - Place stop icon in box.

MB_ICONQUESTION - Place question mark icon in box.

Return value:

Returns zero if there was an error, otherwise the value indicates which button
the user picked: IDABORT, IDCANCEL, IDIGNORE, IDNO, IDOK, IDRETRY,
or IDYES.

A Simple CD Player
Although menus are easy to create, they can form the
basis for some useful Windows programs. Listings 3-3 to
3-6 (CDPLA YER) show a simple audio CD player that
only uses a menu. You'll need a CDROM drive and the
Windows MCICDA driver to use this program. Of course,
your platform must support the multimedia extensions
(WIN32s currently does not). Figure 3-2 shows
CDPLAYER's window.

As you can see, CDPLAYER is just a slight variation on
the HOWDY program in Chapter 2. It has no model
string, no update routine, and a bigger menu() function.
In addition, its window is very small, making it more
attractive. CDPLAYER also replaces the complex about
box dialog code with a call to MessageBox(). (Remember
commando Commandment II.)

Figure 3-2. The CDPLAYER Application

4-8 Commando Windows Programming

Unlimited Resources

As only one CD player should run at once, CDPLA YER
checks the prev field in WinMain(). It must be NULL or
CDPLA YER will refuse to run.

CDPLAYER uses Window's MCI APL This API reduces
device control to the incredibly obvious. For example, to
play the CD, you use the following MCI call:

mciSendStringC"play cdaudio",NULL,O,NULL>;

The second parameter is a string buffer for a return value
(if any), and the third argument is the length of the buff­
er. The final parameter is only useful if you are trying to
do other things while the MCI commands execute. Look
in your API reference for more about the MCI APL

Unlike most Windows programs, many of CDPLAYER's
menu items don't have a submenu. Although this is
unconventional, it closely models how a real CD player
works. Part of the power of Windows is this type of flexi­
bility. Just because most programs do something one
way, don't be afraid to experiment with other techniques.

You probably can find many uses for menu-only pro­
grams. A program that sends commands over a network,
for example, might need only a menu. Coupling a menu
with WinExec() lets you quickly write custom launch
menus that start up other programs. Other possibilities
are programs that print forms or data to a printer, backup
or erase files, or make fixed entries into databases.

Commando Windows Programming 49

Unlimited Resources

Back to Basics

During Windows programming, you'll often find your­
self wishing for normal C I/0 like printf() and gets().
Maybe you'd like to put some printf's in your code for
debugging. Perhaps you need a single string entered for
some reason. Either way, you'll miss these functions
eventually.

MessageBox() can replace printf() in many cases, but it is
awkward if you need to print variables. For example:

void error(int errno,char *errmsg)
{

char tbuf[1025J;

sprintfCtbuf ,"Error %d: %s",errno,errmsg);

MessageBoxCNULL,tbuf,NULL,MB_OKIMB_ICONSTOP);

return;
}

Notice that if you pass a NULL title to MessageBox(), it
uses the default title, "Error". Also, you can pass a NULL
as the window handle if you wish.

Unfortunately, there isn't a simple function to get a line
of input. Luckily, however, it is simple to overcome both
this oversight and the awkwardness inherent in
MessageBox(). Listings 3-7, 3-8, and 3-9 contain the
WPRINT library. WPRINT provides you with two simple
functions: win_printf() and win_input().

Both of these functions take a variable number of argu­
ments. The first argument is a title for the input or output

50 Commando Windows Programming

Unlimited Resources

window that these functions create. The second argument
is a printf-style format string that will display inside the
window. Of course, other arguments depend on the con­
tents of the format string. For example:

win_printf("Presto","The magic number is: %d",123);

s=win_input("Press Enter","Enter your id numberC%d)",1);

The win_input() function returns a pointer to a static
buffer that contains the user's input string. The pointer
will never be NULL, but, if the user did not enter any­
thing, the string may be (that is, the first byte may be
zero). Both functions use static buffers for input and out­
put strings, so they can't exceed 512 bytes (unless you
change the print_buf and in_buf definitions, of course).

The win_input() function uses a custom dialog that you
must include in your program's RC file. Just place the
line:

#include "wprint.rc"

in your RC file to get the required definition. WPRINT
also expects you to define a global variable, hlnst, that
contains your instance handle.

Listings 3-10, 3-11, and 3-12 show a simple example of
the power of WPRINT. CTOF is a basic centigrade to
Fahrenheit temperature converter. This program contains
no windows and no resources (except for WPRINT's dia­
log box). A similar DOS text program could hardly be

Commando Windows Programming 51

Unlimited Resources

much simpler and probably would be more complex if it
allowed text editing, and windows. Windows gives us all
of that for free.

WPRINT allows you to provide more sophisticated
functionality in your programs. You should be careful
when using WPRINT inside programs that do not have a
normal window (like CTOF) under Windows 3.1. CTOF
(and other nonstandard programs) subverts the normal
Windows cooperative multitasking mechanism. Therefore,
other programs will not execute unless there is a call to
win_printf() or win_input(). These functions notify Win­
dows that it may switch to another task. CTOF does very
little processing between WPRINT calls, but if it did, you
would want to call yield() frequently to give other pro­
grams a chance to run. Windows NT will run programs like
CTOF with no problems since it preemptively multitasks.

Forms for Free
Data entry forms are pervasive, especially in GUI program­
ming. Windows recognizes this and provides dialogs to
simplify using forms from inside a Windows application.

However, many programs don't just need forms-they are
forms. Many database applications fit this description.
You fill in a form and update the database. Perhaps you
fill in a form, query the database, and display one or
more forms to show the results. Even if you don't ordi­
narily work with a full-scale database, you probably
write programs like this on occasion.

Consider a typical online telephone directory. You want
to store names, phone numbers, and perhaps some notes

52 Commando Windows Programming

Unlimited Resources

in a disk file. You'll need to allow for database insertions,
deletions, and queries. Users also will want to browse
randomly through the database.

This typical program clearly consists of two parts: a GUI
interface and a database. With this in mind, our pho­
nebook example consists of two main files: PHONE.C
(Listing 3-13) and PHONEDB.C (Listing 3-14). PHONE.C
contains the Windows GUI code-the event loop, the
menu code, and other interface-related functions. PHO­
NEDB.C is mainly database code. The only Windows­
specific code in PHONEDB.C relates to reading and
writing fields from the screen, using the built-in file to
open dialogs, and manipulating the cursor. You'll also
need the supporting file in Listings 3-15, 13-16, and 3-17
to compile PHONE.

Figure 3-3 on the next page shows the complete PHONE
application's window. Unlike most dialog-based pro­
grams, PHONE has a menu bar and uses accelerators
(keyboard shortcuts). This is possible because PHONE
uses a regular window that the user can't see. The sole
purpose of the window is to support the menu bar and
accelerators.

Since the menu window must be active at the same time
as the data entry screen, you must use a modeless dialog.
The size of the window is adjusted so that the dialog just
fits inside. When the window receives a WM_SETFOCUS
message, it immediately transfers control to the dialog. In
this way, the window is never in control.

Commando Windows Programming 53

Unlimited Resources

Figure 3-3. The Phone Application

1111 Phone Book lE~;flNG.PHO a
file f.dit

Name: I Pat Williams

Company: ~IN_ASA ______ ~

Phone: 1483-5062 Fax: J=N=on=e======

E-mail: ~IN_on_e _____ ~

Notes: Press "1" to bypass phone mail. Usually in ~
from 0800-1130 & 1200-1630. !-'

You specify the dimensions of a dialog box in device-in­
dependent units. Windows transforms these units at run
time into reasonable sizes depending on the current dis­
play. You can obtain the dialog base unit by calling
GetDialogBaseUnits(). To convert the height of a dialog
box to device units, use:

deviceHi=dialogHi*HIWORDCGetDialogBaseUnits())/8;

The width is similar:

deviceWide=dialogWide*LOWORDCGetDialogBaseUnits())/4;

Of course, when adjusting the window's size, you have to
add the height of the menu (GetSystemMetrics(SM_CY-

54 Commando Windows Programming

Unlimited Resources

MENU)) and the caption bar (GetSystemMetrics(SM_ CY­
CAPTION)).

Events

PHONE's event loop looks a little different from the one
you have typically used in the past:

while (GetMessageC&msg,NULL,NULL,NULL))
{

if C!TranslateAcceleratorCtopwindow,acctable,&msg))
{

}

if C!maindlgl I !IsDialogMessage(maindlg,&msg))
{

}

TranslateMessageC&msg);

DispatchMessageC&msg);
}

PHONE allows accelerator shortcut keys (like Fl for
find). The TranslateAccelerator() call intercepts these
keys and transforms them into conventional menu
(WM_COMMAND) messages. The RC file defines the
accelerator keys, and PHONE loads them into the acc­
table variable.

Since modeless dialogs coexist with other windows
in your program, the dialog events come to your event
loop. If the IsDialogMessage() call returns TRUE, you are
processing an event for the specified dialog. The IsDialog-

Commando Windows Programming 55

Unlimited Resources

Message() call automatically routes the message to the
dialog for you.

The GUI
PHONE uses three tools to simplify its GUI. It uses
MessageBox() everywhere it can to avoid custom dialogs.
The WPRINT module from earlier in the chapter provides
the win_input() function that PHONE uses to prompt for
queries. Finally, PHONE's file open-and-save routines
use the Windows common-file dialogs. For just a little
effort, these dialogs give your programs a polished look.

The form portion of PHONE makes heavy use of Win­
dow's built-in dialog processing. The disp_record() rou­
tine uses the WM_SETTEXT message to set the contents
of each field, and the SetFocus() call to place the cursor
on the first field.

The commit_record() routine is slightly more complex. It
scans the modify flag in each field using the
EM_GETMODIFY message. If the modify flag is set, the
user has changed the field. Then, commit_record() uses
the WM_GETTEXT message to retrieve the new text.
Finally, calling EM_SETMODIFY with a zero argument
resets the modify flag.

Using Common Dialogs
Common dialogs are a powerful Windows programming
tool. Why write your own dialogs when Windows makes
these powerful dialogs available to you?

Before using a common file dialog, you must initialize an
OPENFILENAME structure (see Tables 3-1 and 3-2). You

56 Commando Windows Programming

Unlimited Resources

must make sure that the entire structure is set to zero.
Next, you place the size of the structure in its lStructSize

field to allow future versions of Windows to accommod­

ate older programs. Below is some typical code:

OPENFILENAME ofile;

memsetC&ofile,O,sizeofCOPENFILENAME));

ofile.lStructSize=sizeof(OPENFILENAME);

Table 3-1. The OPENFILENAME Structure

Element Type Description

lStructSize DWORD Size of this structure in bytes.

hwndOwner HWND Owner of dialog (could be NULL).

hinstance HINSTANCE Program's instance handle (only used
when templates are used).

lpstrFilter LPCSTR Pointer to file filter strings.

1 ps trCustomFil ter LPSTR Buffer to hold custom file filters.

nMaxCustFilter DWORD Size of above buffer.

nFilterindex DWORD Initial filter index (starts at 1).

lpstrFile LPSTR Buffer to hold filename.

nMaxFile DWORD Size of above buffer.

lpstrFileTitle LPSTR Buffer to hold file title (see text). May
be NULL if you don't need the file title.

nMaxFileTitle DWORD Size of above buffer.

lpstrinitialDir LPCSTR Initial directory. If NULL, use current
directory.

(Cont.)

Commando Windows Programming 57

Unlimited Resources

Table 3-1. The OPENFILENAME Structure (Cont.)

Element Type Description

lpstrTitle LPCSTR Title of dialog. If NULL, Windows
provides a default.

Flags DWORD Controls dialog operation (see Table
3-2).

nFileOffset UINT Length of directory information in
filename.

nFileExtension UINT Offset in filename of extension.

lpstrDefExt LPCSTR Default extension.

lCustData LPARAM Available for your use.

lpfnHook Function Pointer Custom message handler, if required.

lpTemplateName LPCSTR Name of custom dialog template if
required.

Table 3-2. OPENFILENAME Flags.

Flag

OFN_ALLOWMUL TISELECT

OFN_CREATEPROMPT

OFN_ENABLEHOOK

OFN_ENABLETEMPLATE

OFN_ENABLETEMPLATE­
HANDLE

OFN_FILEMUSTEXIST

OFN_HIDEREADONL Y

Meaning

Allows multiple selections.

Prompt before creating file that doesn't exist.

Use hook function (see lpfnHook).

Use custom template (see lpTemplateName).

Use custom template already loaded. hlnstance
actually contains a handle to the data block.

User can't select a nonexistent file .

. Hides the read-only checkbox.

(Cont.)

58 Commando Windows Programming

Unlimited Resources

Table 3-2. OPENFILENAME Flags. (Cont.)

Flag

OFN_NOCHANGEDIR

OFN_NOREADONLY-RETURN

OFN_NOTESTFILECREATE

OFN_NOV ALIDA TE

OFN_ OVERWRITEPROMPT

OFN_PATHMUSTEXIST

OFN_SHAREAWARE

OFN_READONL Y

OFN_EXTENSION­
DIFFERENT

Meaning

Forces the dialog to reset the current directory
before returning.

Disallow files that are read-only.

Don't try to create file.

Allows illegal characters in filenames.

Prompt if selected file already exists.

Selected directory must exist.

Ignore sharing errors.

Initially check the read-only checkbox. Also
reflects the state of the read-only checkbox
upon return.

Set to indicate that the returned fil name does
not match the default extension.

The remaining fields allow you to set up options for the
box. Some options are very simple; others can quickly get
complicated. At a minimum, you'll want to set the hwnd­
Owner, lpstrFilter, nFilterlndex, lpstrFile, nMaxFile,
lpstrFileTitle, nMaxFileTitle, and Flags fields.

You can pass the OPENFILENAME structure to GetOpen­
FileName() or GetSaveFileName(). These common dia­
logs return two forms of the filename to your program
(via the lpstrFile and lpstrFileTitle fields). The filename is
the entire pathname the user selected. The file title is just
the base name of the file and is useful for placing in title
bars, for example.

Commando Windows Programming 59

Unlimited Resources

The return value from GetOpenFileName() is ordinarily
nonzero. If it is zero, the user must have pressed cancel
or there was an error. You can call CommDlg­
ExtendedError() to detect an error. If the return value
from CommDlgExtendedError() is zero, the user simply
cancelled the operation.

Giving Good PHONE

PHONE is a useful program in its own right. But it has
certain limitations you might not tolerate in a real pro­
gram. One obvious addition to the program would be a
sort routine. Such a routine is not difficult to add since
the database is separate from the Windows portion of the
program.

PHONE's memory allocation strategy is simple. It uses
the standard library call calloc() to allocate zero-filled
memory regions. For Windows NT, this isn't a problem.
However, Windows 3.1 users will run out of memory
when the database approaches 64K. Of course, a real ver­
sion of PHONE would probably use an external database
instead of storing each entry in memory.

PHONE could use GlobalAlloc() to access much more
memory. You could rewrite zmalloc() like this:

LPSTR zmalloc(unsigned long siz)
{

return

Global Lock(

60 Commando Windows Programming

Unllmlted Resources

GlobalAlloc(GMEM_MOVEABLEIGMEM_ZEROINIT,siz));
}

You would also have to replace free() with:

#define free(p) \

GlobalFree(GlobalHandle(HIWORD(p)));

or for Windows NT:

#define free(p) \

GlobalFree<GlobalHandle(p));

However, for Windows 3.1, you then face the LDT seg­
ment limit: you can only allocate about 8,000 regions
from GlobalAlloc() before you exhaust the LDT. Each
phone entry requires seven allocations, so you could run
out quickly. Worse, the 8,000 limit applies to the system
as a whole, not just your program. A better alternative is
to allocate large chunks of memory from GlobalAlloc()
and then parcel out smaller pieces to your program as
you need them needed.

Printing the database would be a difficult task. Windows
printing is somewhat complex and differs from Windows
3.1 to Windows NT. If you need printing, you might con­
sider using an application framework (see Chapters 4, 6,
and 7). Microsoft's MFC, for example, gives you printing
and print preview with very little effort on your part.

Commando Windows Programming 61

Unlimited Resources

Constructing Resources

Although the RC files in this chapter are simple, you
should never create RC files by hand. Instead, use a
resource editor, such as Borland's Resource Workshop,
Microsoft's Application Studio, or the Whitewater
Resource Toolkit. Remember Commandment VII: pro­
gram visually when possible.

Modern resource editors allow you to create menus, dia­
logs, bitmaps, cursors, and icons. You can align elements
of dialogs, and changing the location or text of a button is
painless. Most resource editors allow you to run a simu­
lation of a dialog or menu to check out its operation.

62 Commando Windows Programming

Unlimited Resources

Listing 3-1. MOTD.C

!***

*
* File: MOTD.C

*
*Display a Message Of The Day CMOTD).

*
*Required to Compile:
* MOTD.C MOTD.DEF ARGCARGV.C ARGCARGV.H

* (ARGCARGV.C only required for Microsoft)

*

*
*
*
*
*
*
*
*
*

***!
#include <windows.h>

#include <stdio.h>

#include <string.h>
#include <ctype.h>

#include "argcargv.h"

I* String to hold message */

char string[1025J;

I* Main window function */
int PASCAL WinMainCHANDLE hlnst, HANDLE prev,

LPSTR cmdline, int show)
{

FILE *f;

I* set up _argc,_argv (not req'd for Borland, but
* harmless) */

set_args(cmdline, hlnst>;
if (_argc > 1)

Commando Windows Programming 63

Unllmlted Resources

f = fopenC_argv[1J, "r");
I* If no argument or file won't open ... */

if c_argc == 1 11 !f>
strcpyCstring, "No message today");

else
{

I* read string from file if OK*/
fgetsCstring, sizeofCstring), f);
fclose(f);
}

I* Show it ... *I

MessageBoxCNULL, string, "Message for today",
MB_OK I MB_ICONINFORMATION);

return FALSE;
}

Listing 3-2. MOYD.DEF

Name MOTD
Description 'Message of the day'

Exetype WINDOWS

Code PRELOAD MOVEABLE DISCARDABLE
Data PRELOAD MOVEABLE SINGLE

Heapsize 4096
Stacksize 5120

Stub 'WINSTUB.EXE'

Listing 3-3. CDPLAYER.C

!***

* *
* File: CDPLAYER.C *

64 Commando Windows Programming

Unllmlted Resources

* *
* MCI Audio CD Player. Uses only a menu. *

* You must Link with MMSYSTEM.LIB Ca standard *
*Windows Library). *

* *
*Required to Compile: *

* CDPLAYER.C CDPLAYER.H CDPLAYER.RC CDPLAYER.DEF *

* *
***/

#include <windows.h>
#include <mmsystem.h>
#include <stdio.h>

#include <stdlib.h>
#include <string.h>

#include "cdplayer.h"

I* current instance *I
HANDLE hinst;

I* main window */
HWND topwindow;

I* Door open? */

int door_open = O;

I* This routine calls MCI and displays an error box if
* needed */

void mci callCchar *cmd, char *ret, unsigned siz,
HWND w, int noerr)

{

DWORD re;

Commando Windows Programming 65

Unlimited Resources

char msgbufC257J, *msg = msgbuf;
re = mciSendStringCcmd, ret, siz, w>;
if (re && !noerr)

}

{

re = mciGetErrorStringCrc, msgbuf, sizeof(msgbuf));

if C!rc>

msg = "Unknown MCI error";

MessageBoxCNULL, msg, NULL, MB_OK I MB_ICONSTOP>;
}

I* Main window function *I

int PASCAL WinMainCHANDLE hlnst, HANDLE prev,
LPSTR cmdline, int show)

{

MSG msg;

I* Only allow 1 CDPLAYER at a time */
if Cprev)

{

MessageBoxCNULL, "CDPLAYER already running!",
"Error", MB_ICONSTOP I MB_OK>;

return FALSE;
}

if C!init(hlnst, prev, show>>

return FALSE;

I* Vanilla event loop*/

while CGetMessageC&msg, NULL, NULL, NULL))
{

TranslateMessageC&msg>;

66 Commando Windows Programming

DispatchMessageC&msg);
}

I* Exit program */

return Cmsg.wParam>;
}

I* Start up stuff */

Unlimited Resources

int initCHANDLE hlnst, HANDLE prev, int show)
{

if C!prev)
{

if C!init_appChinst))

I* Exit if unable to initialize */

return FALSE;
}

I* Perform instance init */
if C!init_instChinst, show))

return FALSE;
return TRUE;
}

I* Create window class here *I

BOOL init_appCHANDLE hlnstance)
{

WNDCLASS we;
we.style = NULL;

wc.lpfnWndProc = (void FAR*> win_proc;

wc.cbClsExtra = O;
wc.cbWndExtra = O;
wc.hlnstance = hlnstance;

Commando Windows Programming 67

Unlimited Resources

wc.hlcon = LoadlconCNULL, IDI_APPLICATION);
wc.hCursor = LoadCursorCNULL, IDC_ARROW);

wc.hbrBackground = GetStockObjectCWHITE_BRUSH);
wc. lpszMenuName = "CDMENU";

wc. lpszClassName = "CD_Class";
return CRegisterClassC&wc>>;
}

I* Create window here */

BOOL init instCHANDLE hlnstance, int nCmdShow)
{

HWND hWnd;

I* Save the instance handle in global variable */

hlnst = hlnstance;

I* Create a main window */

topwindow = hWnd = CreateWindowC
"CD_Class",

"CD Player",

ws_ovERLAPPED 1 ws_cAPTION
WS_MINIMIZEBOX,
CW_USEDEFAULT,

CW_USEDEFAULT,

WS_SYSMENU

350,

GetSystemMetricsCSM_CYMENU)

+ GetSystemMetricsCSM_CYCAPTION) + 2,

NULL,
NULL,

68 Commando Windows Programming

) . ,

hlnstance,
NULL

if C!hWnd)

return FALSE;

Unlimited Resources

I* Make the window visible, update its client area, and
* return "success" */

ShowWindow(hWnd, nCmdShow>;

UpdateWindowChWnd>;

return <TRUE>;
}

I* Window procedure */

long WINAPI _export win_procCHWND hWnd, UINT message,

UINT wParam, LONG lParam)
{

switch (message)
{

case WM_CREATE:

I* Set door closed so we know the state. If you

* manually open/close the door, we get in trouble
*since door_open won't be correct .•. */

mci callC"set cdaudio door closed wait",

NULL, O, NULL, 1);

break;

Commando Windows Programming 69

Unlimited Resources

case WM_COMMAND:
menuChWnd, wParam>;

break;

case WM_DESTROY:

I* Simulate a STOP menu selection */

menuChWnd, IDM_STOP);

PostQuitMessageCO>;
break;

default:
return (DefWindowProcChWnd, message,

wParam, lParam>>;
}

return NULL;
}

I* Process menu events */

void menuCHWND hWnd, UINT wParam)
{

I* return from MCI */

char mciout[256J;

int value;
switch CLOWORDCwParam))

{

case IDM_ABOUT:
MessageBox(topwindow,

70 Commando Windows Programming

Unlimited Resources

"CDPLAYER Version 1.0 by Al Williams",
"About", MB_OK I MB_ICONINFORMATION);

return;

case IDM_QUIT:
DestroyWindowChWnd);

return;

case IDM_STOP:

mci_callC"stop cdaudio wait", NULL, O, NULL, O>;

return;

case IDM_EJECT:

if Cdoor_open>
mci_call("set cdaudio door closed wait",

NULL, 0, NULL, 1);

else
mci_callC"set cdaudio door open wait",

NULL, O, NULL, 1);

door_open "= 1;

return;

case IDM_TRACKUP:

case IDM_TRACKDN:
mci_callC"set cdaudio time format TMSF",

NULL, O, NULL, O>;
mci_call("status cdaudio current track wait",

mciout, sizeof(mciout), NULL, O>;

value= atoiCmciout>;

Commando Windows Programming 71

Unlimited Resources

O>;

}

value += wParam

if (value < 1)

value = 1;

IDM_TRACKUP ? 1 -1;

sprintf(mciout, "seek cdaudio to %d wait", value,

mci_callCmciout, NULL, 0, NULL, O>;

//Fall into play case

case IDM PLAY:
{

I* This will fail if the device is not ready ... */

mci_call("play cdaudio", NULL, 0, NULL, O>;

return;
}

}

Listing 3-4. CDPLAVER.H

!***

* *
* File: CDPLAYER.H *
* *
* Header for CDPLAYER.C *
* *
* Required to Compile: *
* CDPLAYER.C CDPLAYER.H CDPLAYER.RC CDPLAYER.DEF *
* *
***/

I* Menu defines */

#define IDM_ABOUT 100

72 Commando Windows Programming

Unllmlted Resources

#define IDM_QUIT 101

#define IDM PLAY 102 -
#define IDM STOP 103 -
#define IDM EJECT 104 -
#define IDM - TRACKUP 105

#define IDM_TRACKDN 106

I* Prototypes */
BOOL init_appCHANDLE>;

BOOL init_inst(HANDLE, int);

long WINAPI _export win_proc(HWND, UINT, UINT, LONG);
void menu(HWND, UINT>;

int initCHANDLE, HANDLE, int);

Listing 3-5. CDPLAYER.RC

!***

* *
* File: CDPLAYER.RC *

* *
* Menu for CDPLAYER.C *

* *
*Required to Compile: *
* CDPLAYER.C CDPLAYER.H CDPLAYER.RC CDPLAYER.DEF *

* *
***/

#include "windows.h"
#include "cdplayer.h"

CDMENU MENU

BEGIN

Commando Windows Programming 73

Unlimited Resources

END

POPUP
BEGIN

"&Fi le"

MENU ITEM " & About CDP layer ... ", I D M_A B 0 UT
MENUITEM "&Exit",IDM_GUIT

END
MENUITEM "&Play", IDM_PLAY

MENUITEM "&Stop", IDM_STOP

MENU ITEM " & E j e c t " , I D M_ E J E c T
MENUITEM "&+Track", IDM_TRACKUP

M EN U IT E M " & - T r a c k " , I D M_ T RA C K D N

Listing 3-6. CDPLA YER.DEF

Name CDPLAYER

Description 'MENU driven CD Player'
Exetype WINDOWS

Code PRELOAD MOVEABLE DISCARDABLE

Data PRELOAD MOVEABLE SINGLE
Heapsize 4096

Stacksize 5120
Stub 'WINSTUB.EXE'

Listing 3-7. WPRINT.C

!***

*
*File: WPRINT.C

*
* Supply win_printf() and win_input dialogs to

* other programs.

*

74 Commando Windows Programming

*
*
*
*
*
*

Unlimited Resources

*Required to Compile:

* Many programs use WPRINT.C, WPRINT.RC and

* WPRINT.H. They do not compile separately.

*

*
*
*
*

***!
#include <windows.h>

#include <stdio.h>

#include <stdarg.h>

I* Buffers for 1/0 */

static char print_buf[513J;

static char in_buf[513J;

I* current app's instance -- must be set by caller */

extern HANDLE hlnst;

I* Sort of printf for Windows -- maximum output is 512

* characters *I

int win_printfCchar *title, char *fmt, ...)
{

int re;
va_list alist;

va_startCalist, fmt>;

re = vsprintf(print_buf, fmt, alist>;
if Crc != -1>

MessageBoxCNULL, print_buf, title ? title
MB_OK>;

return re;
}

"Output",

Commando Windows Programming 75

Unlimited Resources

I* Dialog callback for input function */

BOOL FAR PASCAL _export inp_dlgCHWND hDlg,

unsigned message,
WORD wParam, LONG LParam)

{

switch (message)
{

case WM_INITDIALOG:

I* Set title */

SendMessage(hDlg, WM_SETTEXT, 0, LParam);

I* Set prompt *I

SetDLgltemTextChDLg, 101, print_buf);
return CTRUE);

case WM_COMMAND:

if CwParam == IDOK)
{

I* read input */

GetDLgltemTextChDLg, 102, in_buf, sizeofCin_buf));
EndDialogChDLg, TRUE);

return CTRUE);
}

break;
}

return FALSE;
}

I* Line input for Windows title is the dialog title -- the

76 Commando Windows Programming

Unlimited Resources

* remaining arguments are used as a prompt */
char *win_input(char *title, char *fmt, ...)

{

FARPROC dlgfunc;

int re;
va_list alist;

va_start(alist, fmt>;

I* print prompt to print_buf */
re = vsprintf(print_buf, fmt, alist>;

if (re != -1>
{

I* Get instance of inp_dlg() function */

dlgfunc = MakeProclnstance(inp_dlg, hlnst);
if C!dlgfunc)

win_printf("Error", "MakeProclnstance failed");

else
{

I* call dialog */

}

re = DialogBoxParamChlnst, "InputBox",

NULL,

dlgfunc, <Long) title);

FreeProclnstanceCdlgfunc>;
}

return in_buf;
}

Listing 3-8. WPRINT.H

/***

* *

Commando Windows Programming 77

Unlimited Resources

* File: WPRINT.H *

* *
* Supply win_printf() and win_input dialogs to *
* other programs. *

* *
* Required to Compile: *
* Many programs use WPRINT.C, WPRINT.RC and *
* WPRINT.H. They do not compile separately. *

* *
***/

#ifndef WPRINT_H
#define WPRINT_H
int win_printf(char *title, char *fmt, ... >;
char *win_input(char *title, char *fmt, ... >;
#endif

Listing 3-9. WPRINT.RC

!***

* *
* File: WPRINT.RC *

* *
* Supply win_printf() and win_input dialogs to *
* other programs. Programs that use WPRINT must *
* include this RC file in their own RC file. *

* *
* Required to Compile: *
* Many programs use WPRINT.C, WPRINT.RC, and *
* WPRINT.H. They do not compile separately. *

* *
***!

78 Commando Windows Programming

Unlimited Resources

InputBox DIALOG 100,100,144,75

STYLE OS MODALFRAME WS CAPTION WS SYSMENU

CAPTION "Input"

BEGIN

LTEXT "Prompt" 101,0,5,144,32

EDITTEXT 102,10,34,130,12,WS_TABSTOP I ES_AUTOHSCROLL

DEFPUSHBUTTON "OK" IDOK,53,59,32,14,WS_GROUP

END

Listing 3-10. CTOF.C

!***

* *
* File: CTOF.C *
* *
* Convert temperatures (C to F) using only dialogs. *
*
* Required to Compile:

* CTOF.C CTOF.DEF CTOF.RC WPRINT.C WPRINT.RC

* WPRINT.H

*

*
*
*
*
*

***!
#include <windows.h>

#include "wprint.h"

#include <stdlib.h>

#include <string.h>

I* WPRINT requires this global to be set *I

HANDLE hinst;

I* Main window function */

Commando Windows Programming 79

Unlimited Resources

int PASCAL WinMainCHANDLE hinstance, HANDLE prev,
LPSTR cmdline, int show)

{

char *input;

double deg;

hinst = hinstance;

I* Do "forever" */

while (1)

{

}

I* Get C value via win_input dialog */

input = win_input("Temperature Conversion C to F",

"Enter the temperature in C");

I* If user just hit enter, quit! */
if (!*input)

return FALSE;
I* Do calculations */

deg = atof(input>;

deg = 9.0 I 5.0 * deg + 32.0;
I* Show results */

win_printf("Result", "Degrees F=%.1f", deg>;
}

Listing 3-11. CTOF.RC

!***

* *
* File: CTOF.RC *

* *
*Includes the WPRINT.RC file required by CTOF.C *

* *

80 Commando Windows Programming

Unlimited Resources

*Required to Compile:
* CTOF.C CTOF.DEF CTOF.RC WPRINT.C WPRINT.RC

* WPRINT.H

*

*
*
*
*

***/
#include <windows.h>

#include "wprint.rc"

Listing 3-12. CTOF.DEF

Name CTOF

Description 'Convert temps'
Exetype WINDOWS

Code PRELOAD MOVEABLE DISCARDABLE
Data PRELOAD MOVEABLE SINGLE

Heapsize 4096

Stacksize 5120
Stub 'WINSTUB.EXE'

Listing 3-13. PHONE.C

/***

* *
* File: PHONE.C *

* *
* Windows portion of Phonebook application. *
* You must link with COMMDLG.LIB Ca standard *
*Windows library). *

* *
*Required to Compile: *

* PHONE.C PHONE.H PHONEDB.C PHONE.DEF PHONE.RC *
* WPRINT.C WPRINT.H WPRINT.RC *

Commando Windows Programming 81

Unlimited Resources

* *
***!

#include <windows.h>
#include "wprint.h"
#include "phone.h"

I* current instance */

HANDLE hlnst;
I* main window */

HWND topwindow;
I* main dialog */

HWND maindlg;

I* Main window function */

int PASCAL WinMainCHANDLE hlnst, HANDLE prev,
LPSTR cmdline, int show)

{

MSG msg;
HACCEL acctable;
if C!initChlnst, prev, show))

return FALSE;

I* load accelerators *I

acctable = LoadAcceleratorsChlnst, "PHONEMENU");
I* Event loop for modeless dialog with accel */

while CGetMessageC&msg, NULL, NULL, NULL))
{

if C!TranslateAcceleratorCtopwindow, acctable, &msg))
{

if C!maindlg I I !IsDialogMessageCmaindlg, &msg))
{

82 Commando Windows Programming

}

}

TranslateMessageC&msg>;
DispatchMessageC&msg>;
}

I* Exit program */

return Cmsg.wParam>;
}

I* Start up stuff */

Unlimited Resources

int initCHANDLE hlnst, HANDLE prev, int show)
{

if C!prev)
{

if C!init_appChlnst>>
I* Exit if unable to initialize */

return FALSE;
}

I* Perform instance init */

if C!init_inst(hlnst, show>>

return FALSE;

return TRUE;
}

I* Create window class here */
BOOL init_appCHANDLE hlnstance)

{

WNDCLASS we;

we.style = NULL;
wc.lpfnWndProc = (void FAR*> win_proc;

Commando Windows Programming 83

Unlimited Resources

wc.cbCLsExtra = O;
wc.cbWndExtra = O;

wc.hlnstance = hlnstance;
wc.hlcon = LoadlconCNULL, IDI_APPLICATION);
wc.hCursor = LoadCursorCNULL, IDC_ARROW);

wc.hbrBackground = GetStockObjectCWHITE_BRUSH>;

wc.lpszMenuName = "PHONEMENU";

w c . l p s z C L a s s N a me = " P H ON E_ C L a s s " ;
return CRegisterCLassC&wc>>;
}

I* Create window here */

BOOL init instCHANDLE hlnstance, int nCmdShow>
{

HWND hWnd;

I* Save the instance handle in global variable */

hlnst = hlnstance;

I* Create a main window */

topwindow = hWnd = CreateWindowC
"Phone_Class",
"Phone Book",

DS_MODALFRAME I WS_SYSMENU
WS_MINIMIZEBOX,

CW_USEDEFAULT,

CW_USEDEFAULT,

WS_VISIBLE

I* If you Look in the header and the RC file, you will see

* that the dialog is DLG_WID X DLG HI units in size.

84 Commando Windows Programming

Unlimited Resources

*
* We use GetDialogBaseUnitsC> to convert these numbers to

* window units and make the window exactly the same size
* as the dialog Cof course, we have to leave room for
* the caption bar and the menu, too). *I

) . ,

DLG_WID * LOWORDCGetDialogBaseUnits{)) I 4,

DLG_HI * HIWORDCGetDialogBaseUnits{)) I 8 +

GetSystemMetricsCSM_CYMENU)
+ GetSystemMetricsCSM_CYCAPTION),

NULL,
NULL,
hlnstance,

NULL

if C!hWnd)

return FALSE;
I* Make the window visible, update its client area, and

* return "success" *I

ShowWindowChWnd, nCmdShow>;
UpdateWindowChWnd);

return {TRUE>;
}

I* Main dialog callback for modeless dialog */

BOOL WINAPI _export dialog_func{HWND hDlg, UINT message,

UINT wParam, LONG lParam)
{

switch <message)
{

Commando Windows Programming 85

Unlimited Resources

case WM_INITDIALOG:

return TRUE;

case WM_COMMAND:

if CwParam == PREV_BUTTON)
{

I* commit current record */

commit_record(current);

I* display previous */

disp_record(

(current->prev && current->prev != &head) ?

(current = current->prev) : current);
}

if (wParam -- NEXT_BUTTON)
{

I* commit current record */

commit_record(current);

I* display next */

disp_record(current->next ?

<current = current->next)
}

break;
}

return FALSE;
}

I* Window procedure */

current);

Long WINAPI _export win_proc(HWND hWnd, UINT message,

UINT wParam, LONG LParam)

86 Commando Windows Programming

Unlimited Resources

{

switch (message)
{

static FARPROC dlgfunc;

case WM CREATE:

I* Init db */

new_record(); I* Init database */

current = head.next;
I* create modeless dialog *I

dlgfunc = MakeProclnstance(dialog_func, hlnst>;

maindlg = CreateDialog(hlnst, "PHONEDLG",

hWnd, dlgfunc);

break;

case WM_COMMAND:

menu<hWnd, wParam);

break;

case WM_DESTROY:

I* Reset db this will prompt for save if needed*/
reset_db();

DestroyWindow(maindlg);

FreeProclnstance(dlgfunc>;
PostQuitMessage(Q);

break;

case WM_SETFOCUS:

I* Never take focus -- always shift to maindlg */

SetFocus(maindlg);

break;

Commando Windows Programming 87

Unlimited Resources

default:

return CDefWindowProc(hWnd, message,

wParam, lParam));
}

return NULL;
}

void menu(HWND hWnd, UINT wParam)
{

switch (LOWORD(wParam))
{

case IDM_ABOUT:

MessageBox(topwindow,

"Phone Book Version 1.0 by Al Williams",

"About", MB_OK I MB_ICONINFORMATION);

return;

case IDM_EXIT:

DestroyWindowChWnd);

return;

case IDM_LOAD:

I* display first record */

read_fileC);

break;

case IDM_SAVE:

I* Commit current record */

commit_record(current);

I* write out file*/

88 Commando Windows Programming

write_fileCO>;

break;

case IDM_SAVEAS:

I* Commit current record */

commit_record(current>;

w r i t e_ f i le (1 > ;

break;

case IDM_FIND:
{

char *target;

struct record *p;

Unlimited Resources

target = win_input("Find Record", "Name to
find?">;

I* If user just hits enter, forget it */

if (!*target>

break;

p = find_record(target>;
if (!p)

MessageBox(topwindow, "Record not found", NULL,

MB_OK I MB_ICONSTOP);

else

disp_record(current = p);

break;
}

case IDM_DEL:

if CMessageBox<topwindow, "Delete record?",

"Confirm", MB_YESNO MB_ICONQUESTION) -- !DYES)

Commando Windows Programming 89

Unlimited Resources

}

current = del_recordCcurrent>;
disp_recordCcurrent>;

break;

case IDM_NEWDB:
new_dbC);

current = head.next;

break;

case IDM_NEWREC:

I* insert blank record *I

current = new_recordC>;
I* display it */
disp_recordCcurrent>;

break;
}

Listing 3-14. PHONEDB.C

!***

* *
* File: PHONEDB.C *
* *
* Database portion of Phonebook application. *
* *
* Required to Compile: *
* PHONE.C PHONE.H PHONEDB.C PHONE.DEF PHONE.RC *
* WPRINT.C WPRINT.H WPRINT.RC *
* *

90 Commando Windows Programming

Unlimited Resources

***/
#include <windows.h>

#include <stdio.h>

#include <string.h>

#include <commdlg.h>

#include <stdlib.h>

#include "phone.h"

#include "wpri nt. h"

I* set to 1 when phonebook was modified */

int dirty;

I* file name of current phonebook */

char fn[256J;

I* Phone book is stored as link list. head is a dummy

* record -- only its next field is used.

* The current variable always points to the current

* record *I
struct record head, *current;

I* Filters for common dialog*/

char filefilter[J = "Phone files C*.pho)\0*.pho\0"

"All files C*.*)\0*.*\0";

#ifndef NT
#define zmalloc(n) callocC1,n>

#else

I* Work around memset problem in some early NT versions

* also affected calloc() */

void *zmallocCunsigned int n>

Commando Windows Programming 91

Unlimited Resources

{

void *p = malloc(n);

char *fill= (char*) p;
if (p)

{

unsigned int i;

for Ci = O; i < n; i++)

fill[iJ = O;
}

return p;
}

#endif

I* make new record */
struct record *new_record()

{

struct record *db = &head;
int i;

while Cdb->next)

db = db->next;

I* zmalloc allocates zero-filled memory*/

db->next = zmalloc(sizeof(struct record));

db->next->prev = db;

for Ci = 0; i < NRFIELDS; i++)
db->next->fields[iJ = zmalloc(1);

return db->next;
}

I* delete current record, returns next record */

92 Commando Windows Programming

Unlimited Resources

struct record *del recordCstruct record * r)
{

struct record *n, *p;

int i;

n = r->next;
p = r->prev;
if (p)

p->next = n;

if C n >
n->prev = p;

for Ci = 0; i < NRFIELDS; i++)
freeCr->fields[iJ);

free(r);

r = n ? n : p;

if Cr == &head)

r = new_recordC);

dirty = 1;

return r;
}

I* Clear out database */

void reset_db()
{

struct record *db, *next;

int i;
if (head.next)

{

commit_recordCcurrent>;

if Cdirty &&

Commando Windows Programming 93

Unlimited Resources

MessageBoxCtopwindow, "Save current file?",

"Confirm",MB_YESNO MB_ICONQUESTION) == !DYES)

write_fi leC1>;

db = head.next;
while (db)

{

for Ci = 0; i < NRFIELDS; i++)

freeCdb->fields[iJ>;

next = db->next;

freeCdb>;

db = next;
}

head.next = NULL;
}

dirty = O;
*fn = '\0';
}

I* Make new empty database *I

void new_db()
{

reset_dbC>;

new_recordC>;
}

I* Display record, set cursor in name field and select

* contents *I

void disp_record(struct record * r)
{

int i;

94 Commando Windows Programming

Unlimited Resources

for Ci = 0; i < NRFIELDS; i++)
{

SendDlgitemMessage(maindlg, NAME_FIELD + i,

WM_SETTEXT, 0, (long) r->fields[iJ);
}

I* Put cursor in NAME FIELD */

SetFocus(GetDlgitem(maindlg, NAME_FIELD));

I* Select contents of NAME FIELD */

SendDlgitemMessage(maindlg, NAME_FIELD, EM_SETSEL,

0, MAKELONG(32767, 0));
}

I* If any fields in the dialog have been changed, update

* the indicated record */

void commit record(struct record * r)
{

int i;

char tbuf[256J;

for Ci = 0; i < NRFIELDS; i++)
{

I* continue if no change to field */

if (!SendDlgitemMessage(maindlg, NAME_FIELD + i,

EM_GETMODIFY, 0, 0))

continue;

I* set dirty flag */

dirty= 1;

I* free old field */

free(r->fields[iJ);

I* fetch text *I

SendDlgitemMessage(maindlg, NAME FIELD + i,

Commando Windows Programming 95

Unlimited Resources

}

WM_GETTEXT, sizeof(tbuf),

Clong) tbuf>;

I* make new field buffer */

I* zmalloc allocates zero-filled memory *I
r->fields[iJ = zmallocCstrlen(tbuf) + 1);

strcpyCr->fields[iJ, tbuf>;

I* clear modify flag */

SendDlgltemMessage(maindlg, NAME_FIELD + i,
EM_SETMODIFY, O, O>;

}

I* find a record by name -- compare is not case sensitive

* If no match is found, we look for a partial match. */

struct record *find_record(char *target>
{

struct record *db = head.next;

int len;
I* try whole name search first */

while (db)

if C!stricmp(db->fields[OJ, target))

return db;

else

db = db->next;

I* not found ... try partial search *I
db = head.next;

len = strten(target);

while (db)

if (!strnicmpCdb->fields[OJ, target, Len))

return db;

96 Commando Windows Programming

else
db = db->next;

I* None found */
return NULL;
}

Unlimited Resources

I* Write file out. If asflag is 1 or the global fn is not

* set, we bring up a save dialog box. Otherwise, we just
*save to the file in fn. */

void write_fileCint asflag)
{

OPENFILENAME ofile;

FILE *out;
char ft[256J, tbuf[256J;

int err, field, stat;

HCURSOR cursor;
struct record *db;

if Casflag I I !*fn)
{

asflag = 1;
I* common file save dialog setup *I

memsetC&ofile, 0, sizeofCOPENFILENAME>>;

*fn =*ft= '\0';
ofile.lStructSize = sizeofCOPENFILENAME);

ofile.hwndOwner = topwindow;

ofi le. lpstrFi lter = fi lefi lter;
ofile.nFilterindex = 1;

ofi le. lpstrFi le = fn;

Commando Windows Programming 97

Unlimited Resources

ofile.nMaxFile = sizeof(fn>;
ofi le. lpstrFi leTitle = ft;

ofile.nMaxFileTitle = sizeof(ft);
ofile.Flags = OFN_HIDEREADONLY I OFN_PATHMUSTEXIST

OFN_NOREADONLYRETURN I OFN_OVERWRITEPROMPT;
}

I* if asflag==O then save file under previous name *I
if C!asflag)

else

{

stat = (out = fopen(fn, "w")) -- NULL;

err = 1;
}

I* bring up dialog and open file*/

stat= !Cerr = GetSaveFileNameC&ofile>> I I
!(out = fopenCfn, "w">>;

if <stat>
{

I* If err is FALSE then might just be a cancel

* CommDlgExtendedError returns 0 if it was a
cancel */

if (err I I CommDlgExtendedError())
MessageBox(topwindow, "File open error", NULL,

MB_ICONSTOP I MB_OK>;

return;
}

if Casflag)
{

I* Set title if filename changed *I
I* wsprintf is Window's built-in version of sprintf().

98 Commando Windows Programming

Unlimited Resources

* Be sure to always cast near strings to far for

* this function */

wsprintf(tbuf, "Phone Book - %s", (char FAR *) ft);

SendMessage(topwindow, WM_SETTEXT, 0, (LONG) tbuf);
}

I* Wait cursor */

cursor = SetCursor(LoadCursor(NULL, IDC_WAIT>>;

I* write file*/

for (db = head.next;
{

for (field = a . ,
fprintf(out,

}

I* Done with f i le *I

fclose(out>;

dirty = O;

I* Restore cursor */

SetCursor(cursor);
}

db; db = db->next)

field < NRFIELDS; field++)

"%s%c", db->fields[fieldJ, O>;

I* Load file from disk*/
void read_ f i le ()

{

OPENFILENAME ofile;

FILE *in;
char tbuf[256J, ft[256J;

int err, field, cp;

HCURSOR cursor;

struct record *db;

I* clear database */

Commando Windows Programming 99

Unlimited Resources

reset_dbC>;
I* set up open file dialog*/

memsetC&ofile, O, sizeofCOPENFILENAME));

*fn =*ft= '\0';
ofile.lStructSize = sizeofCOPENFILENAME>;
ofile.hwndOwner = topwindow;

ofi le. lpstrFi lter = fi lefi lter;

ofile.nFilterindex = 1;
ofi le. lpstrFi le = fn;
ofile.nMaxFile = sizeof(fn);
ofile.lpstrFileTitle =ft;

ofile.nMaxFileTitle = sizeofCft>;
ofile.Flags = OFN_HIDEREADONLY I OFN_PATHMUSTEXIST

OFN_FILEMUSTEXIST;

I* bring up dialog and open file*/
if C!Cerr = GetOpenFileNameC&ofile)) I I

!Cin = fopenCfn, "r")))
{

I* If err is FALSE then might just be a cancel

* CommDlgExtendedError returns 0 if it was a
cancel */

if (err I I CommDlgExtendedError())

MessageBoxCtopwindow, "File open error", NULL,
MB_ICONSTOP I MB_OK);

return;
}

I* set title */

I* wsprintf is Window's built-in version of sprintf(). Be
* sure to always cast near strings to far for this
* function */

100 Commando Windows Programming

Unlimited Resources

wsprintf(tbuf, "Phone Book - %s", (char FAR *> ft>;
SendMessageCtopwindow, WM_SETTEXT, O, (LONG) tbuf);

I* Wait (hourglass) cursor */

cursor = SetCursorCLoadCursorCNULL, IDC_WAIT>>;
I* read file*/
db = &head;
while C!feof(in))

{

for (field = O; field < 6; field++)
{

int c;

cp = O;
I* read to NULL or EOF */

}

while Ctbuf[cp++] = c = getc(in))

if Cc == EOF>
break;

if Cc == EOF)

break;
if (field == O>

{

I* zmalloc allocates zero-filled memory*/

db->next = zmallocCsizeof(struct record>>;
db->next->prev = db;

db = db->next;
}

db->fields[fieldJ = zmallocCstrlenCtbuf) + 1>;

strcpyCdb->fields[fieldJ, tbuf>;
}

I* Done with file*/

Commando Windows Programming 101

Unlimited Resources

fcloseCin>;
disp_recordCcurrent = head.next>;

I* Restore cursor */
SetCursorCcursor>;
}

Listing 3-15. PHONE.H

!***

* *
* Fi le: PHONE.H *

* *
* Header for Phonebook application. *

* *
*Required to Compile: *

* PHONE.C PHONE.H PHONEDB.C PHONE.DEF PHONE.RC *

* WPRINT.C WPRINT.H WPRINT.RC *

* *
***/

#define IDM LOAD 1 -
#define IDM SAVE 2 -
#define IDM EXIT 3 -
#define IDM ABOUT 4 -
#define IDM FIND 5 -
#define IDM DEL 6 -
#define IDM NEWREC 7 -
#define IDM NEWDB 8 -
#define IDM _SAVEAS 9

#define NAME_FIELD 101

#define CO_FIELD 102

102 Commando Windows Programming

Unllmlted Resources

#define NR _FIELD 103
#define FAX FIELD 104 -
#define EMAIL FIELD 105 -
#define NOTES 106
#define PREV -BUTTON 107
#define NEXT_ BUTTON 108

I* 6 fields in dialog box ... we assume they are
* consecutive numbers (e.g., NAME_FIELD+1 is the field
* after NAME_FIELD) */

#define NRFIELDS CNOTES-NAME_FIELD+1)

extern HANDLE hinst;
extern HWND topwindow;
extern HWND maindlg;
extern int dirty;

extern char fnCJ;

extern struct record
{

char *fieldsCNRFIELDSJ;
struct record *prev;
struct record *next;
} head, *current;

struct record *new_recordCvoid>;
struct record *del recordCstruct record * r>;
void reset_dbCvoid>;

Commando Windows Programming 103

Unlimited Resources

void new_dbCvoid);
void disp_recordCstruct record * r>;

void commit_recordCstruct record * r);
struct record *find_recordCchar *target);

void write_fileCint asflag);
void read_fileCvoid);

int PASCAL WinMainCHANDLE hinst, HANDLE prev,
LPSTR cmdline, int show);

int initCHANDLE hinst, HANDLE prev, int show>;
BOOL init_appCHANDLE hinstance);

BOOL init_instCHANDLE hinstance, int nCmdShow>;
BOOL WINAPI _export dialog_funcCHWND hDlg,

UINT message, UINT wParam, LONG lParam>;
long WINAPI _export win_procCHWND hWnd, UINT message,

UINT wParam, LONG lParam>;

void menuCHWND hWnd, UINT wParam);

I* Size of dialog box (and, therefore, of PHONE 1 s window) */
#define DLG_WID 207
#define DLG_HI 160

Listing 3-16. PHONE.RC

/***

*
* File: PHONE.RC

*
* Resources for Phonebook application.

*

104 Commando Windows Programming

*
*
*
*
*

Unlimited Resources

*Required to Compile: *
* PHONE.C PHONE.H PHONEDB.C PHONE.DEF PHONE.RC *

* WPRINT.C WPRINT.H WPRINT.RC *

* *
***!

#include <windows.h>

#include "phone.h"

#include "wprint.rc"

PHONEMENU MENU
BEGIN

END

PO PUP
BEGIN

"&Fi le"

END

MENUITEM "&New", IDM_NEWDB
MENU I TE M " & Open ... " , I D M_ LO AD

MENUITEM "&Save",IDM_SAVE

MENU ITEM " S & ave a s ... " , I D M_ SAVE AS
MENUITEM SEPARATOR
MEN u ITEM II & Ex; t ",ID M_E x IT

M E N U I T E M " & Abo u t P h o n e Boo k . . . " , I D M_A B 0 U T

POP UP
BEGIN

"&Edit"

END

MENUITEM "&Find entry •.. \tF1",IDM_FIND
MENUITEM "&New entry\tShift+Ins",IDM_NEWREC
MENUITEM "&Delete entry\tShift+Del",IDM_DEL

Commando Windows Programming 105

Unlimited Resources

PHONEMENU ACCELERATORS
BEGIN

VK_F1, IDM_FIND, VIRTKEY
VK_INSERT, IDM_NEWREC, VIRTKEY,SHIFT

VK_DELETE, IDM_DEL, VIRTKEY,SHIFT
END

PHONEDLG DIALOG 0, 0, DLG_WID, DLG_HI

STYLE ws_CHILD I WS_VISIBLE
BEGIN

EDITTEXT NAME_FIELD, 39, 17, 95, 12, ES_AUTOHSCROLL

EDITTEXT CO_FIELD, 39, 36, 95, 12, ES_AUTOHSCROLL
EDITTEXT NR_FIELD, 39, 55, 59, 12, ES_AUTOHSCROLL

EDITTEXT FAX_FIELD, 137, 54, 59, 12, ES_AUTOHSCROLL
EDITTEXT EMAIL_FIELD, 39, 74, 95, 12, ES_AUTOHSCROLL

EDITTEXT NOTES, 39, 96, 158, 38,

WS_TABSTOP IWS_VSCROLL
IES_MULTILINE IES_AUTOVSCROLL

RTEXT "Name:", -1, 14, 19, 21, 8,

SS_RIGHT I WS_CHILD I WS_VISIBLE

RTEXT "Company:", -1, 1, 39, 33, 8,
SS_RIGHT I WS_CHILD I WS_VISIBLE

RTEXT "Phone:", -1, 7, 59, 26, 8,

SS_RIGHT I WS_CHILD I WS_VISIBLE

LTEXT "Fax:", -1, 116, 56, 16, 8,
WS_CHILD I WS_VISIBLE I WS_GROUP

RTEXT "E-mail:", -1, 8, 79, 25, 8,
SS_RIGHT I WS_CHILD I WS_VISIBLE

RTEXT "Notes:", -1, 10, 99, 23, 8,

WS_GROUP

WS_GROUP

WS_GROUP

WS_GROUP

106 Commando Windows Programming

Unlimited Resources

SS RIGHT I WS_CHILD I WS_VISIBLE I WS_GROUP
PUSHBUTTON "Prev", PREV_BUTTON, 35, 142, 24, 14,

WS CHILD I WS_VISIBLE I WS_TABSTOP

PUSHBUTTON "Next", NEXT_BUTTON, 169, 142, 24, 14,

WS CHILD WS_VISIBLE WS TABSTOP

END

Listing 3-17. PHONE.DEF

Name Phone

Description 'Phone Book by Al Williams'

Exetype WINDOWS

Code PRELOAD MOVEABLE DISCARDABLE

Data PRELOAD MOVEABLE SINGLE

Heapsize 4096

Stacksize 5120

Stub 'WINSTUB.EXE'

Commando Windows Programming 107

Porting Without Pain

WHAT'S IN THIS CHAPTER

Borland and Microsoft both supply tools that allow

you to directly port many text-based DOS programs
directly to Windows. (Microsoft's tools will even

support some graphics programs.) This chapter will
show you how to get the most from these tools. It

also includes a similar library, TWIN.

PREREQUISITES

You should understand C programming. Also, an
understanding of some basic Windows concepts will

help you get the most from this chapter.

Commando Windows Programming 109

Porting Without Pain

Many Windows programs started life as DOS programs.
As the Windows market has grown, more DOS programs
have been ported to Windows. Recognizing this fact, sev­
eral vendors supply tools that allow you to compile and
run text-based DOS programs as Windows applications.
Many programs will not require any changes to their
source code.

Of course, your program will still look like an ordinary
DOS program. These toolkits create a window that acts
like a terminal attached to the stdin and stdout streams of
your program. Microsoft's toolkit can also create win­
dows that support Microsoft graphics calls.

Why Not a DOS Box?
You may wonder why you would want such a tool. Why
not just run DOS programs in a DOS box? If you are in
386 enhanced mode, that approach might be viable. How­
ever, in standard or real mode, Windows can't multitask
DOS programs. Also, DOS programs might not run in a
window at all.

Of course, once you port your program using a DOS
emulation toolkit, you can begin to enhance the program
for Windows. For example, Microsoft's toolkit
(QuickWin) allows you to add multiple windows to your
programs.

These toolkits are mainly for porting DOS programs.
However, you may sometimes write original programs
with them. If the program you are writing needs (or
could use) a DOS "look and feel," you might as well use

110 Commando Windows Programming

Porting Without Pain

the toolkit and save the trouble of writing a real Win­
dows program.

Available Tools

Both Borland and Microsoft supply DOS-emulation
toolkits with their C compilers. In addition, this chapter
contains the complete source code for an emulation
toolkit named TWIN. Unlike its commercial counterparts,
TWIN supports both compilers and has some capabilities
the others lack (printing, for example).

Currently, none of these tools work with Windows NT,

although there is no reason why they could not. It seems
likely that Borland and Microsoft will soon support
EZWIN and QuickWin under Windows NT. TWIN would
be reasonably simple to port. The code that uses Catch()
and Throw() would have to change. Of course, you could
port DOS programs to NT by using the console I/ 0 API,
which allows text-based programs to run under NT.

Borland

Borland's EZWIN is the most barebones toolkit of the
three. It allows DOS programs to compile and run, but
that is all. You can't easily add any window functionality
such as menus to an EZWIN program, although you can
directly call the Windows APL

When you instruct Borland's linker to create a Windows
executable, the linker checks for a WinMain() function in

Commando Windows Programming 111

Porting Without Pain

your code. If WinMainO is not present, the linker
assumes the program is an EZWIN program.

Listing 1-3 (in Chapter 1) shows EZHOWDY.C. You
could compile this with the Borland compiler for DOS
using the following command:

bee ezhowdy.e

For EZWIN, just use:

bee -W ezhowdy.e

That's all you need to know about EZWIN. Like the other

products in this chapter, it won't port arcane DOS pro­
grams that hook interrupts or directly write to the screen.
EZWIN doesn't support graphics.

Microsoft

Microsoft's QuickWin library is similar to EZWIN in its
basic form. You supply the /Mq switch when you com­
pile a QuickWin program. If all you want is basic DOS
emulation, that's all you need to do.

Unlike the other toolkits in this chapter, QuickWin does
support graphic output. You can draw to a graphic win­
dow with the same calls Microsoft supplies for DOS pro­
grams in GRAPH.H.

QuickWin becomes more interesting when you want
to extend the functionality of your program. QuickWin
allows you to use special calls to create multiple win-

112 Commando Windows Programming

Porting Without Pain

dows of arbitrary size. You will see a QuickWin example
later in this chapter. Microsoft does not allow you to
directly call the Windows API from a QuickWin program.
QuickWin programs have a default menu that you can't
change. If your program runs other programs (via exec()
or system(), directly accesses the screen, or does BIOS
I/O, you must change these practices before your pro­
gram will work with QuickWin.

TWIN

TWIN is not quite as transparent as the commercial prod­
ucts. You need to include TWIN .H in your program, and
you may have to set a few constants (using #define) to
configure your program.

In return for this small amount of additional work, TWIN
allows you to create screens of any size and use custom
menus and icons. The default window size is 80 columns
by 25 rows, but you can easily create one window that is
40x10 and another that is 40x100. You also can use a
default menu or create one of your own, and you can eas­
ily extend TWIN programs by using the Windows APL

Advanced QuickWin Features
QuickWin programs can create additional windows, set
the text for the about box, and control window sizes and
behavior. Table 4-1 shows the available QuickWin func­
tions (see the Microsoft documentation for specifics).

Commando Windows Programming 113

Porting Without Pain

Table 4-1. QuickWin Functions

Function

_wopen()

_fwopen()

_wgopen()*

_wclose()

_wgclose()*

_wsetexit()

_wgetexit()

_wsetsize()

_wgetsize()

_ wsetscreenbuf ()

_ wgetscreenbuf()

_ wsetfocus()

_ wgetfocus()

_ wgsetactive()*

_ wggetactive()*

_ wmenuclick()

_wyield()

_wabout()

_inchar()*

*Graphics-only functions

Purpose

Opens a text window-returns a file handle

Opens a text window-returns a FILE pointer

Opens a graphic window

Closes a text window

Closes a graphic window

Sets exit behavior

Gets exit behavior

Sets text window's position and size

Gets window's position and size

Sets text window's screen buffer size

Gets text window's screen buffer size

Makes window active

Gets current active window

Sets the active graphics window

Gets the active graphics window

Simulates menu action

Yields processing time to other applications

Sets custom message for about box

Reads a character in a graphic window

Each QuickWin program starts with a default window
that represents the program's stdout and std err streams.
Additional windows appear to be separate files. You can

114 Commando Windows Programming

Porting Without Pain

use the _fwopen() function to create a FILE stream (for
use with fprintf(), etc.). If you prefer, you can create a
window with an unbuffered file handle with _wopen().
The file handle is for use with functions like write().

Opening Windows
Both _fwopen() and _ wopen() take _ wopeninfo and
_wsizeinfo structures as arguments. You can set either of
these fields to NULL to get default values for these struc­
tures. Both structures have a _version field that you must
set to _ QWINVER. The _ wopeninfo structure also con­
tains the window's title, and the size of the window's
buffer (in bytes). This size determines how much text the
window can hold. If you like, you can use _ WINBUFDEF
for the default size or _WINBUFINF if you don't want a
limit. The _ wsizeinfo structure contains information
about the window's size.

Closing Windows
You can close a QuickWin window by passing its file
handle to the _wclose() function. You also pass a constant
to _ wclose() that determines how to close the window. If
you use _ WINPERSIST, the window will remain visible.
Although your program can't operate on the window, the
user can examine the contents of the window (scrolling if
necessary) and use the window's menus. If you call
_ wclose() with _ WINNOPERSIST, the window will sim­
ply disappear.

By default, when your program exits, its windows remain
on the screen until the user chooses to exit from the

Commando Windows Programming 115

Porting Without Pain

menu. You can change this behavior by calling
_ wsetexit(_ WINEXITNOPERSIST).

Behaving Under Windows

While your QuickWin program is running, other Win­
dows programs may not get a chance to execute until
your program stops for input. To remedy this, you may
want to call _ wyield() during processing. This will allow
other Windows applications to share the processor with
you.

If you want to yield inside a loop, you may not want to
call _ wyield() on each iteration since this may slow your
processing. Often, you will only yield after the loop has
run a certain number of times. For example:

while (work_to_do)
{

static int yield_ctr=10;

if (!--yield_ctr)
{

yield_ctr=10;

_wyieldO;
}

I* do your thing here */

}

Split-Personality Programs

By default, QuickWin provides a DEF file (see Chapter 2)
for your program. However, you can provide your own
DEF file if you wish. Just copy Microsoft's CL.DEF to

116 Commando Windows Programming

Porting Without Pain

another file and modify it. Then, you supply the name of
your DEF file to the compiler. This process is useful if
you want to bind a DOS and Windows program together.
Consider the EZHOWDY program (Listing 1-3). This pro­
gram will compile under QuickWin or you can compile it
for DOS. Suppose you compile EZHOWDY for DOS and
rename the EXE file to DOSHOW.EXE. You can replace
the line in your DEF file that contains:

STUB 'WINSTUB.EXE'

to:

STUB 'DOSHOW.EXE'

After you compile and link EZHOWDY with QuickWin,
your EZHOWDY.EXE file will have an interesting prop­
erty. If you run it from Windows, you'll run the
QuickWin version. Running EZHOWDY from DOS, how­
ever, will cause the DOS version (which resides inside
EZHOWDY.EXE) to execute. Of course, you can do this
with any Windows and DOS program, not just QuickWin
programs.

QuickWin Graphics

Graphics windows are similar to text windows except
that you create them with _wgopen(), which always
returns a file handle. Before you draw to the window,
you need to pass the graphic window's file handle to the
_ wgsetactive() function. The standard Microsoft C graphics

Commando Windows Programming 117

Porting Without Pain

routines will then draw to the window. You can close a
graphic window with _wgclose(). If you don't create a
graphic window, your output goes to a default window.
QuickWin creates this default window when you make
your first graphics call.

Be careful if you are porting an existing graphics pro­
gram. Some calls work differently than their DOS coun­
terparts. For example, QuickWin graphics only support
left-to-right horizontal text.

QuickWin graphic windows are not as flexible as text
windows. You can't programatically resize or position
graphics windows, for example. Also, the window may
be larger than the graphic workspace. This can lead to
odd-looking displays since your graphics won't fill the
window. The user can ask QuickWin to scale the graphics
to fill the window, but this may distort the image.

Microsoft doesn't document this, but you can read and
write standard Windows BMP files using QuickWin. The
standard _getimage() and _putimage() calls will read and
write bitmaps in a memory array. The memory array cor­
responds to a BMP file. However, QuickWin ignores the
color palette information.

QuickWin Limitations

While QuickWin is very powerful, it does have some seri­
ous limitations. Your QuickWin programs can't call the

Windows API, which could be a problem if QuickWin
won't do something you need to do (like print, for exam­
ple). You can't directly respond to the mouse or display
your own menus.

118 Commando Windows Programming

Porting Without Pain

QuickWin doesn't have good keyboard handling. You
can't use functions like getch() to read single characters.
(You can use _inchar() in graphics windows.) You can't
even use kbhit() to check for an available keystroke. Pro­
grams that depend on trapping the break key won't work
under QuickWin either.

Although QuickWin programs can allocate multiple
megabytes of memory via Windows, single objects still
can't be larger than 64K (unless you resort to huge point­
ers). Still, many DOS programs will gain increased mem­
ory capacity under Quick Win.

QuickWin windows appear to be file handles. However,
don't take this analogy too seriously. Many file calls (like
dup() or dup20, for example) don't work with QuickWin
pseudofile handles. If you want to redirect stdout to
another window, you'll need to resort to something like
this:

FILE temp; /* Note: not pointer */

FILE *newwin=_fwopenCNULL,NULL,"w+");

temp=*stdout;
*stdout=*newwin;
printf ("This goes to new window");

I* more code here *I

*stdout=temp;

Although QuickWin has help, you can't customize it; it is
only about the QuickWin user interface. Still, for many
cases, QuickWin is a very simple way to write DOS-like
programs (or port existing programs). If you need menus

Commando Windows Programming 119

Porting Without Pain

or direct access to Windows, you might consider using
the TWIN library instead.

A QuickWin Program

Any simple DOS program (like EZHOWDY.C, Listing 1-3)
will compile and run under QuickWin with no changes.
However, you can write more interesting programs by
using the Quick Win extensions.

The QVIEW program (Listing 4-1) displays the
AUTOEXEC.BAT and CONFIG.SYS files from the root
directory of your C drive. In addition, it displays a sim­
ple graphic for no apparent reason. Since QVIEW doesn't
want a standard output window, it closes the window
using this line of code:

_wclose(_fileno(stdout),_WINNOPERSIST);

Figure 4-1 shows the QVIEW program in operation.

Using TWIN
TWIN supplies DOS-like functions for creating or porting
text-based programs to Windows (see Figure 4-2).
Although TWIN attempts to duplicate the look of some
DOS functions, it extends some functions and is not as
transparent as the other products examined in this chap­
ter. However, it offers some unique capabilities.

120 Commando Windows Programming

Porting Without Pain

Figure 4-1. The QVIEW Program

Figure 4-2. TWIN Calls

(IQenu)
HUHLOCK=OFF

EHUCOLOR=15, 1
EHUDEFAULT=,,indo"s, 1 U

HUI TEM=windo,.s, Windows auto-start
EHUITEM=111ain ,Normal setup

HEHllITEM=bare ,Bare setup
EHUITEM=Ilink ,Interlink host

MEHUITEM=ilinkO,DOS session as Interlink c
MEllJI TEM=PATRI CK ,PATH !CK
[PATRICK]

Note: many TWIN calls have aliases to standard library calls. For example, puts() maps to
twin_puts().

void twin_createCTWIN_INFO *old,char *title,int wid,int hi>;

Create TWIN window.

void twin_excreateCTWIN_INFO *old,char *title,DWORD style,

int x,int y,int wid,int hi,

HWND parent, HANDLE menu,int twid,int thi>;

Create TWIN window-arguments same as CreateWindow().

(Cont.)

Commando Windows Programming 121

Porting Without Pain

Figure 4-2. TWIN Calls (Cont.)

void twin_active(TWIN INFO *old,TWIN_INFO *new);

Switch active window.

void twin_puts(char *s);

Write string to window.

void twin_putc(int c);

Write character to window.

void twin_goxy(int x,int y);

Set cursor position.

int twin_wherex<void);

Get cursor X position.

int twin_wherey(void);

Get cursor Y position.

void twin_show(void);

Update display (only useful if you print with TF _HOLD set).

int twin_fflush(FILE *s);

Aliased to fflush(). Ifs is stdout, this maps to twin_show(). Otherwise,
twin_fflush() calls fflush().

void twin~putc(int c);

Write character without showing it (used internally).

void twin_cls(void);

Clear window.

122 Commando Windows Programming

(Cont.)

Porting Without Pain

Figure 4-2. TWIN Calls (Cont.)

void twin clreolCint x,int y);

Clear to end of line.

void twin_yieldCvoid);

Yield time to Windows.

int twin_keyhitCvoid);

Check for keystrokes waiting.

int twin_getchCint *scan);

Get character and scan code.

int twin_getcheCint *scan);

Get character and scan code and echo to current window.

int twin_setflagCint flagword);

Set TWIN flags.

int twin_getsCchar *buf,unsigned int siz);

Get input string.

int twin_printf(char *fmt, ...);

Printf-style output to window.

int twin_printCvoid);

Print current window to printer.

void twin_exitCint rv);

Exit TWIN program.

Commando Windows Programming 123

Porting Without Pain

TWIN Configuration
TWIN programs must include TWIN.H (Listing 4-2)
instead of STDIO.H. Before including this file, you'll
need to set some defines that control TWIN's operation.

The source file that contains your main() function must

define TWIN_MAIN before it includes TWIN.H. You can
also define several constants to set window titles, default
sizes, and so on (see Table 4-2).

Table 4-2. TWIN Configuration Definitions

Define Optional? Default Value Description

TWIN_NAME Yes "TWIN APP" Window class name

TWIN_TITLE Yes "TWIN Application" Window title

TWIN_ WIDTH Yes 80 Default text buffer
width

TWIN_HEIGHT Yes 25 Default text buffer
height

TWIN_ICON Yes Default program icon

TWIN_ABOUT Yes "A Twin App ... " About box text

TWIN_MENU Yes "TWIN_MENU_- Default menu's resource
DEFAULT" ID

TWIN_NOALIAS Yes None If defined, do not provide
aliases for printf (), etc.

TWIN_NOPRINT Yes None Do not provide twin_
print() and print menu.

NOEDITMENU Yes None Pass to RC to prevent
default EDIT menu.

124 Commando Windows Programming

Porting Without Pain

Table 4-3. TWIN Flags

Flag

TF _INCRXLAT

TF _ OUTCRXLAT

TF_HOLD

Meaning

Translate input \r to \n

Translate output \r to \n

Don't update display

The TWIN_WIDTH and TWIN_HEIGHT parameters
determine the rows and columns of text-not the win­
dow's actual size. If the window is too small to display
the text, TWIN will provide scroll bars as appropriate.
The maximum size depends on how large an edit control
can be. For Windows 3.1, the maximum width is 1,022
characters. The size of the buffer can't exceed 64K and

will probably be less since the buffer must reside in your
local heap.

Some TWIN options are set at runtime by flags (see Table
4-3). You modify TWIN flags by calling twin_setflag(). If
the value you pass to twin_setflag() contains the value
TF _SET or TF _RESET, the other flags you specify will be
set or reset respectively. If you omit both TF _SET and
TF _RESET, TWIN will use the flags you pass. For example:

twin_setflag(TF_INCRXLATITF_OUTCRXLAT);

will set the TF _INCRXLAT and TF _ OUTCRXLAT flags
and reset all the other flags. However:

twin_setflag(TF_SETITF_HOLD);

Commando Windows Programming 125

Porting Without Pain

will set the TF _HOLD flag and leave the other flags
undisturbed.

TWIN Global Variables
You may find some of TWIN's global variables useful. If
the twin_terminate variable is set when TWIN closes a
window, it terminates the application. If you create and
close multiple windows (you'll see how to do it soon),
you'll want to set this variable to 0 (it equals 1 by
default).

The twin_win variable contains a handle to the currently
active window. The twin_edit variable contains a handle
to the edit control that TWIN uses to display text. You'll
only need these variables if you want to directly access
the Windows APL You might also need the hINSTANCE
variable, which contains the program's instance handle.

TWIN Menus
If you don't set the TWIN_MENU define, TWIN provides
a default menu and a function, twin_menu(). However,
you can supply your own menu and menu function,
which must be named twin_menu(). When the user
selects a menu item, TWIN will call twin_menu() pass,
the command identifier as an argument.

Advanced Use of TWIN
TWIN supports multiple windows via the TWIN_INFO
data structure. When you create a new window
(twin_create() or twin_excreate(), or switch to another
window (twin_active()), you must supply a pointer to a

126 Commando Windows Programming

Porting Without Pain

TWIN_INFO structure. This structure receives the data
that applies to the current TWIN window. You can then
pass the structure to the twin_active() function to reacti­
vate the window later. All TWIN functions act on the cur­
rent active window.

The twin_create() function allows you to create a window
by specifying its title, text width, and text height (the
window may be smaller, in which case TWIN provides
scroll bars). With the twin_excreate() function, you can
specify most of the same parameters you use for the nor­
mal CreateWindow() call.

Listing 4-3 contains TMENU.C-a simple menu program
that uses TWIN for Windows or Borland C for DOS. To
compile it for DOS, use this command:

bee -v TMENU.C

For Windows, use:

bee -v -W -DWIN TMENU.C TWIN.C

re TWIN.RC TMENU.EXE

or:

cl -Zi -GA -DWIN TMENU.C TWIN.C TWIN.DEF
re TWIN.RC TMENU.EXE

You'll find TWIN.C, TWIN.RC, and TWIN.DEF in List­
ings 4-4, 4-5, and 4-6.

Commando Windows Programming 127

Porting Without Pain

Figure 4-3. TMENU

file fdit
Twin Menu Choices:

1 - Run notepad
2 - Play solitaire
3 - Calculator
4 - DOS editor
5 - Qbasic
6 - Exit

Your choice:I

Notice that you can use normal Windows calls like
MessageBox() inside TWIN programs. The initial window
could have been a MessageBox() dialog, but instead,
TMENU uses an alternate TWIN window.

Of course, most of the DOS-specific code could have been
left in place. The DOS exit-confirmation code, for exam­
ple, would work equally well under TWIN. However, the
MessageBox() dialog looks better, and was easy to add.

Figure 4-3 shows TMENU in operation. Notice that the
EDIT menu is not very appropriate for an application like
TMENU. If you don't want the EDIT menu to appear, use
this RC command:

re -DNOEDITMENU TWIN.RC TMENU.RC

How TWIN Works

128

TWIN subclasses the standard
Windows edit control to provide
text manipulation services. After
TWIN creates the edit control, it

Commando Windows Programming

Porting Without Pain

sets the text buffer to a private memory area allocated
with LocalAlloc(). TWIN sets the control to use a fixed
pitch font and limits its size to the exact size of the TWIN
window.

The TWIN edit-control subclass intercepts all WM_CHAR
messages. It stores the keys in the kqueue array so that
twin_getch() can return them. Since TWIN doesn't send
the WM_CHAR messages to the edit control, the user
can't directly modify it. TWIN forwards all other mes­
sages to the original edit-control function.

Each TWIN window consists of a main window
(twin_win) and a child subclassed edit control (twin_
edit). TWIN stores the child window handle as a window
property of the parent window. Given the main window,
TWIN can find the child edit window by using:

twin_edit=GetProp(twin_win,"EDIT_CHILD");

Of course, you can reverse the operation with Get­
Parent():

twin_win=GetParent(twin_edit);

With the edit-control handling scroll bars, clipboard
actions, and text drawing, all of TWIN' s functions
become very simple. By modifying the private buffer,
TWIN can alter what appears in the control.

Commando Windows Programming 129

Porting Without Pain

Summary

Although these toolkits are for porting DOS programs,
don't ignore them for writing simple Windows programs
from scratch. EZWIN is simplistic, but QuickWin and
TWIN can handle moderately sophisticated programs.
QuickWin can even do graphics. (Be sure to look at
VWIN in Chapter 7 for another simple graphics tech­
nique.)

130 Commando Windows Programming

Porting Without Pain

Listing 4-1. QVIEW.C

/***

* *
* File: QVIEW.C *
* *
*Microsoft QuickWin file viewer. *
* *
*Required to Compile: *
* QVIEW.C, Microsoft C with QuickWin libraries. *

* *
***!

#include <stdio.h>

#include <graph.h>
#include <io.h>

I* Open window structures */

struct _wopeninfo oinfo_a =
{

_QWINVER, "AUTOEXEC.BAT File", _WINBUFINF

};

struct _wopeninfo oinfo_c =
{

_QWINVER, "CONFIG.SYS File", _WINBUFINF

};

main()
{

FILE *autoexec, *awin;

Commando Windows Programming 131

Porting Without Pain

FILE *config, *cwin;

int gwin;

char line[1024J;

I* Close stdout window */

_wclose(_fileno(stdout), _WINNOPERSIST);

I* Close default graphics window */

_wgclose(_wggetactive<>>;

I* Set about text *I

_wabout("QVIEW system file viewer by Al Williams">;

I* Draw graphics for no good reason */

gwin = _wgopenC"Graphic Demo");
_wgsetactive(gwin);

_setvideomode(_MAXRESMODE);

_outtext("Graphics Demo:");

_movetoC40, 40);

_linetoC140, 140);

_movetoC140, 40>;

_linetoC40, 140>;

I* open window for autoexec and config.sys */

awin = _fwopenC&oinfo_a, NULL, "w+");

cwin = _fwopenC&oinfo_c, NULL, "w+");

I* open files*/

autoexec = fopenC"c:\\autoexec.bat", "r">;

config = fopenC"c:\\config.sys", "r">;

I* print text to correct window */

while CfgetsCline, sizeofCline), autoexec))

fprintfCawin, "%s", line>;

while CfgetsCline, sizeofCline), config))

132 Commando Windows Programming

Porting Without Pain

fprintfCcwin, "%s", line>;

I* Make sure windows hang around (this is the default
* anyway) */

_wsetexitC_WINEXITPERSIST);
I* We're done! */

exit CO>;
}

Listing 4-2. TWIN.H

!***

* *
*File: TWIN.H *
* *
* Header for TWIN.C *
* *
*Required to Compile: *
* TWIN.C TWIN.H TWIN.RC TWIN.DEF *
* *
***!

#ifndef TWIN _HEADER
#define TWIN HEADER -

#include <windows.h>
#ifndef RC
#include <stdio.h>
#endif

I* TWIN Flags *I

#define TF - INCRXLAT 1 I* translate input CR to \n */

Commando Windows Programming 133

Porting Without Pain

#define TF OUTCRXLAT 2 - I* translate output \n to

* \r\n *I
#define TF HOLD 4 I* - don't show output yet *I
#define TF - RESET Ox8000 I* reset bits specified *I
#define TF - SET

I* TWIN data *I
typedef struct

{

int bufsize;

Ox4000

HWND twin_win;

int editdirty;

int twin_flags;

HANDLE bstr;

HANDLE editbuf;

int cursoroff;

int twin_width;

int twin_height;
} TWIN_INFO;

I* set bits specified

I* Global variables for current window */

extern HWND twin_edit;

extern HWND twin_win;

extern int twin_terminate;
extern HINSTANCE hINSTANCE;

void twin_puts(char *s>;

void twin_putc(int c);

void twin~goxyCint x, int y);

134 Commando Windows Programming

*I

Porting Without Pain

int twin_wherexCvoid);
int twin_wherey(void);

void twin_showCvoid);
int twin_fflushCFILE * s>;

void twin~putcCint c>;
void twin_clsCvoid);
void twin_clreol(int x, int y);

void twin_yieldCvoid);
int twin_keyhitCvoid);

int twin_getchCint *scan>;

int twin_getcheCint *scan>;
int twin_setflagCint flagword);

int twin_getsCchar *buf, unsigned int siz);
int twin_printfCchar *fmt, ... >;

int twin_printCvoid);
void twin_exitCint rv>;

void twin_createCTWIN_INFO * old, char *title, int wid,

int hi>;
void twin_excreateCTWIN_INFO * old, char *title,

DWORD style, int x, int y, int wid, int hi,
HWND parent, HANDLE menu, int twid, int thi);

void twin_activeCTWIN_INFO * old, TWIN_INFO * new);

int twin_mainCHWND w>;
int twin_menuCint menuitem>;

#if definedCTWIN_MAINMODULE>I I !definedCTWIN_MAIN)

I* Non-main module extern's */
extern char twin_name[J;

extern char twin_title[J;

Commando Windows Programming 135

Porting Without Pain

#else

extern int twin_width;
extern int twin_height;

extern char twin_menuname[J;

extern char twin_about[J;
extern char twin_icon[J;

I* Main module, declare variables with defaults */

char twin_name[J =
#ifdef TWIN_NAME

TWIN_NAME;
#else

"TWINAPP";

#endif
char twin_title[J =

#ifdef TWIN_TITLE
TWIN_TITLE;

#else

"TWIN Application";
#endif

int twin_width =
#ifdef TWIN_WIDTH

TWIN_WIDTH;
#else

80;

#endif
int twin_height =

#ifdef TWIN_HEIGHT

TWIN_HEIGHT;
#else

25;

136 Commando Windows Programming

Porting Without Pain

#endif

char twin icon[] =
#ifdef TWIN_ICON

TWIN_ICON;

#else
II II • ,
#endif

char twin_about[J =

#ifdef TWIN_ABOUT

TWIN_ABOUT;

#else

"A Twin Application -- TWIN by Al Williams";

#endif

char twin_menuname[J =
#ifdef TWIN_MENU

TWIN_MENU;

#else

"TWIN_MENU_DEFAULT";

I* Default menu handler */

int twin_menu(int cmd)
{

if (cmd == 101)
{

DestroyWindow(twin_win>;
}

else if (cmd == 102)

Commando Windows Programming 137

Porting Without Pain

{

{

MessageBox(twin_win, twin_about, "About",

MB_OK I MB_ICONINFORMATION);
}

else if (cmd == 103)

SendMessage(twin_edit, WM_COPY, 0, O>;
}

else if (cmd == 104)
{

SendMessage(twin_edit, EM_SETSEL, 0,

MAKELONGCO, 32767));
}

else if (cmd == 105)
{

twin_print<>;
}

return 1;
}

#endif

#endif

#ifndef TWIN NOALIAS

#define clrscr() twin_cls()

#define goxy<x,y) twin_goxy(x,y)

#define wherey() twin_wherey()

#define wherex() twin wherex()

138 Commando Windows Programming

Porting Without Pain

#define clreolCx,y) twin_clreolCx,y)
#define ff lush(s) twin_show(s)

#undef putch
#define putch(c) twin_putc(c)

#define getche() twin_getcheCNULL)
#define getchC) twin_getchCNULL)

#define kbhit() twin_keyhit()

#define gets(s) twin_gets<s,OxFFFF)
#define printf twin_printf
#define exit(a) twin_exit(a)

#define main twin_main
#endif

I* End of header protection if */
#endif

Listing 4-3. TMENU.C

/***

* *
* File: TMENU.C *

* *
* Example menu program using TWIN. *

* Use /DWIN to create Window version. *
*Without /DWIN, this will work with Borland C *

* *
*Required to Compile: *

* TMENU.C TWIN.C TWIN.H TMENU.RC TWIN.RC TWIN.DEF *

* *
***/

#ifdef WIN

Commando Windows Programming 139

Porting Without Pain

I* TWIN configuration */

#define TWIN_NAME "TMENU"

#define TWIN_TITLE "Twin Menu System"

#define TWIN_ABOUT "This menu program demonstrates" \

" the TWIN text windowing system. Select a choice by" \

" pressing the number next to it."

#define TWIN_MAIN 1

#define TWIN_HEIGHT 10

#define TWIN_WIDTH 40

#include "twin.h"

#define WIDTH twin_width
#define HEIGHT twin_height

#else

I* DOS stuff */

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

#define WIDTH 80

#define HEIGTH 25

#endif

#include <string.h>

I* menu items */

struct
{

140 Commando Windows Programming

Porting Without Pain

char *item;

char *action;
} menu[] =

{

{ "Run notepad", "Notepad\0" },

{ "Play solitaire", "Sol" },

{ "Calculator", "Cale" },

I* NOTE: must have .COM extension for WinExec! */
{ "DOS editor", "Edit.com" },

{ "Qbasic", "Qbasic" },

{ "Exit", NULL }
} . ,

#define NRITEMS CsizeofCmenu)/sizeofCmenu[QJ))

I* Print string in center *I

void cenprintCchar *s)
{

int width = (WIDTH - strlen(s)) I 2;

printfC"%*s%s", width, " ", s);
}

#ifdef WIN

main(HWND w)

#else
main()

#end if
{

int i , key;

#ifdef WIN

Commando Windows Programming 141

Porting Without Pain

I* Demonstrate multiple windows under TWIN */
TWIN_INFO stdwin, window2;

twin_create<&stdwin, "New Window", 35, 2>;
printf("TWIN Menu system by Al Williams\n");
printf("Press any key to start">;
getchO;

twin_terminate = O;

DestroyWindow(twin_win);
twin_terminate = 1;
twin_active(NULL, &stdwin);

#else

printf("TWIN Menu system by Al Williams\n">;

printf("Press any key to start");
if C!getch())

getchO;
#endif

while (1)

{

142

clrscrO;
cenprint("Twin Menu Choices:");
printf("\n\n");

for Ci = O; i < NRITEMS; i++)
{

int width = WIDTH I 2 - 10;
printf("%*s%1d - %s\n", width, " ", i + 1,

menu[iJ.item>;
}

printf("\n">;

cenprint("Your choice:">;
while <<key= getch()) < '1' I I key> '9');

Commando Windows Programming

Porting Without Pain

putchCkey>;

key= key - '1';

if C!menu[keyJ.action)
{

#ifdef WIN

if (MessageBoxCtwin_win, "Quit?", "Confirm",

MB_YESNO MB_ICONSTOP) == !DYES)

#else

#end if

exit CO>;

else

continue;

int c;

printf("\nReally quit? CY/N) ");

do
{

c = getchO;

if C!c)

get ch();
} W hi le (C ! : I YI &'& C ! : I YI &&

c != 'n' && c != 'N');

if Cc== 'y' II c == 'Y')

exit CO>;

else

continue;

}

#ifdef WIN

if CWinExec(menu[keyJ.action, SW_SHOW> < 32)

MessageBoxCw, "Can't perform action",

NULL, MB_OK I MB_ICONSTOP);

Commando Windows Programming 143

Porting Without Pain

#else
systemCmenu[keyJ.action>;

#endif
}

}

Listing 4-4. TWIN.C

!***

*
* File: TWIN.C

*
* Text emulation library.

*
*Required to Compile:
* TWIN.C TWIN.H TWIN.RC TWIN.DEF

* Plus your program

*

*
*
*
*
*
*
*
*
*

* Use -DOLD on command line if you want Windows 3.0 *
* printing instead of Windows 3.1+ *

* *
***/

#include <windows.h>

#include <stdarg.h>
#include <string.h>

#include <ctype.h>
#ifndef OLDWIN
#include <commdlg.h>

#endif
#define TWIN_MAINMODULE 1

#define TWIN_NOALIAS 1

144 Commando Windows Programming

Porting Without Pain

#include "twin.h"

#ifndef GET_WM_COMMAND_ID

#define GET_WM_COMMAND_ID(wp,lp) Cwp)

#endif

#ifndef GET_WM_COMMAND_CMD

#define GET_WM_COMMAND_CMD(wp,Lp) HIWORDClp)
#endif

I* win_proc is the callback function (window proc) */

Long FAR PASCAL _export win_procCHWND, unsigned,

WPARAM, LONG>;

I* Global variables */

I* edit window */

HWND twin_edit;

I* main window */

HWND twin_win;

I* flags */

int twin_flags = TF_INCRXLAT I TF_OUTCRXLAT;

I* instance handle */

HINSTANCE hINSTANCE;

I* terminate on close window? */

int twin_terminate = 1;

I* buffer is dirty */

static int editdirty;

Commando Windows Programming 145

Porting Without Pain

I* Catch/throw buffer for exit() */

static CATCHBUF xitbuf;

I* value to return on exit<> */

static int xitvalue;

I* string of blanks */

static HANDLE bstr;

static char *bstring;

I* edit buffer */
static HANDLE editbuf;

static char *editbufp;

static int bufsize;

I* offset to cursor */

static int cursoroff;

I* number of tickyield() calls before true yield */

#define FORCEYIELD CSO>

static int yieldtick = FORCEYIELD;

I* Yield every FORCEYIELD times */
#define tickyield() if <--yieldtick==O> \

{ twin_yieldC); yieldtick=FORCEYIELD; }

I* edit subclass procedure *I

static FARPROC editproc;

I* Keyboard queue */

static unsigned int kqueue[16J;

static volatile int head;

static volatile int tail;

I* Main function */

146 Commando Windows Programming

Porting Without Pain

int PASCAL WinMain(HANDLE h!nstance, HANDLE hPrevinstance,

LPSTR lpszCmdLine, int nCmdShow)
{

WNDCLASS wndClass;

HWND hWnd;

hINSTANCE = h!nstance;

if C!hPrevinstance)
{

I* register class */

wndClass.style = CS_HREDRAW I CS_VREDRAW;

wndClass.lpfnWndProc = (WNDPROC) win_proc;

wndClass.cbClsExtra = O;

wndClass.cbWndExtra = O;

wndClass.hinstance = h!nstance;
if (*twin icon)

wndClass.hicon = Load!con(h!NSTANCE, twin_icon);

else
wndClass.hicon = Load!con(NULL, IDI_ASTERISK);

wndClass.hCursor = LoadCursor(NULL, IDC_ARROW);

wndClass.hbrBackground =
GetStockObject(WHITE_BRUSH);

wndClass.lpszMenuName = twin_menuname;

wndClass.lpszClassName = twin_name;

if (!RegisterClass(&wndClass))

return FALSE;
}

I* create twin window */

Commando Windows Programming 147

Porting Without Pain

twin_createCNULL, twin_title, twin_width, twin_height);
I* Catch/Throw work like setjmp/longjmp. The exit()

* function comes here */
if CCatchCxitbuf))

return xitvalue;

I* call main function and return value */
I* see twin_yield() for event loop! */

return twin_mainChWnd>;
}

void twin_yield()
{

MSG m;

yieldtick = FORCEYIELD;

I* Just in case */
if CinSendMessage())

ReplyMessageCO>;

I* While messages are waiting, process them*/

while CPeekMessageC&m, NULL, 0, O, PM_REMOVE))
{

148

TranslateMessageC&m>;

DispatchMessageC&m>;
I* if message was a quit, exit */

if Cm.message == WM_QUIT)
{

Throw(xitbuf, 1>;
}

Commando Windows Programming

Porting Without Pain

}

I* No more messages, return to program */
}

I* Create default twin window */

void twin_createCTWIN_INFO * old, char *title,

int wid, int hi>
{

twin_excreateCold, title, WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, 0, CW_USEDEFAULT, 0,

NULL, NULL, wid, hi);
}

I* Extended twin window create */
void twin_excreateCTWIN_INFO * old, char *title,

DWORD style, int x, int y,

{

int wid, int hi, HWND parent,

HANDLE menu, int twid, int thi)

I* Store current window */

twin_activeCold, NULL);

I* set up environment */

twin_width = twid;

twin_height = thi;

editdirty = O;

twin_flags = TF_INCRXLAT I TF_OUTCRXLAT;

cursoroff = O;

I* Create and show window */

CreateWindowCtwin_name, title,

Commando Windows Programming 149

Porting Without Pain

style, x, y,
wid, hi, parent, menu,

hINSTANCE, NULL);
ShowWindowCtwin_win, SW_SHOW);

UpdateWindowCtwin_win>;
}

I* Pass activation between two twin windows. The old pointer
* gets the old window data and the new pointer contains

* the new window data. Either pointer may be NULL. */
void twin activeCTWIN_INFO * old, TWIN_INFO * new)

{

if Cold)
{

old->bufsize = bufsize;
old->twin_width = twin_width;

old->twin_height = twin_height;

old->editdirty = editdirty;
old->twin_f lags = twin_f lags;

old->bstr = bstr;

old->editbuf = editbuf;

old->cursoroff = cursoroff;
old->twin_win = twin_win;
}

if (new)
{

150

bufsize = new->bufsize;

twin_width = new->twin_width;

twin_height = new->twin_height;

editdirty = new->editdirty;

Commando Windows Programming

Porting Without Pain

}

twin_flags = new->twin_f lags;
bstr = new->bstr;

editbuf = new->editbuf;
cursoroff = new->cursoroff;
twin_win = new->twin_win;
twin_edit = GetProp(twin_win, "EDIT_CHILD");

Setfocus<twin_edit>;
}

I* Twin out of memory error */

static nomemCHWND hWnd)
{

MessageBoxChWnd, "Out of memory", NULL,
MB_OK I MB_ICONHAND I MB_SYSTEMMODAL);

PostQuitMessage(1);

return O;
}

I* New edit control window procedure. This function makes a

* subclass of the existing edit control */
long FAR PASCAL _export newedproc(H'WND hWnd,

unsigned Message,

WPARAM wParam, LONG lParam)
{

int i;
I* on WM_CHAR, stuff keystroke in kqueue */

if (Message == WM_CHAR)

Commando Windows Programming 151

Porting Without Pain

{

i = LOWORDCLParam);

whi Le Ci--)
{

if ((tail+ 1) & 15 -- head)
{

MessageBeep{Q);

break;
}

I* Queue full! */

kqueue[taiLJ = wParam I ({LParam & Oxff0000) >> 8);

tail= (tail+ 1) & 15;
}

return O;
}

return CaLLWindowProc((FARPROC) editproc, hWnd, Message,

wParam, LParam>;
}

long FAR PASCAL _export win_proc(HWND hWnd,

unsigned Message, WPARAM wParam,

LONG LParam)
{

static FARPROC ep;

static POINT maxxy;

HANDLE tmp;

switch (Message)
{

RECT r;

I* Menu pick or edit memory error *I

152 Commando Windows Programming

Porting Without Pain

case WM_COMMAND:

if CGET_WM_COMMAND_CMDCwParam, LParam)

== EN_ERRSPACE &&
GET_WM_COMMAND_IDCwParam, lParam) -- 1)

{

nomemChWnd>;

return O;
}

twin_menuCGET_WM_COMMAND_IDCwParam, lParam));

return O;

I* Set minimum/maximum size *I
case WM_GETMINMAXINFO:

{

POINT pt;
LPPOINT rgpt = CLPPOINT) lParam;

HOC hDC;

HFONT font;
long tmp;

I* Get screen window since ours might not be around

* yet *I
hDC = GetDCCGetDesktopWindow<>>;

I* Set fixed font */

font = GetStockObjectCANSI_FIXED_FONT);

font = SelectObjectChDC, font>;

I* How big is X? *I
tmp = GetTextExtentChDC, "X", 1);

pt = MAKEPOINTCtmp);

I* Compute screen size */

pt.x *= twin_width;

Commando Windows Programming 153

Porting Without Pain

pt.y *= twin_height;

I* add overhead for menu, scroll bars, etc. */

maxxy.x = pt.x += GetSystemMetrics(SM_CXVSCROLL)

+ 2 * GetSystemMetrics(SM_CXFRAME);

maxxy.y = pt.y += GetSystemMetrics(SM_CYMENU) +

GetSystemMetricsCSM_CYHSCROLL) +

GetSystemMetricsCSM_CYCAPTION) +

2 * GetSystemMetricsCSM_CYFRAME);

I* Don't let size exceed screen! */

154

pt.x = min(pt.x, GetSystemMetrics(SM_CXSCREEN));

pt.y = min(pt.y, GetSystemMetrics(SM_CYSCREEN));

rgpt[1J = pt;

rgpt[2J.x = rgpt[2J.y = O;

rgpt[4J = pt;

SelectObject(hDC, font);

ReleaseDCCGetDesktopWindow(), hDC);

break;
}

case WM_CREATE:

I* Set twin_win ... can't do this:

* twin_win=CreateWindow(....) since this will

* execute with twin_win not set yet */

twin_win = hWnd;

I* compute size of buffer */

bufsize = (twin_width + 2) * (twin_height - 1) +

twin_width;

I* Allocate it */

editbuf = LocalAlloc(LMEM_MOVEABLE I LMEM_ZEROINIT,

bufsize + 1>;

Commando Windows Programming

Porting Without Pain

bstr = LocalAlloc(LMEM_MOVEABLE I LMEM_ZEROINIT,

twin_width + 3>;

bstring = LocalLock(bstr);

if C!editbuf 11 !bstring 11 !bstr)
nomem<hWnd);

I* set buffer to spaces with CRLF ending */

memset(bstring + 2, ' ', twin_width);

bstring[OJ = '\r';
bstring[1J = '\n';

LocalUnlock(bstr);

twin_cls<>;

cursoroff = O;

GetClientRect(hWnd, &r>;

I* Create window */

twin_edit = CreateWindow("edit", ,

WS_CHILD I WS_HSCROLL I WS_VSCROLL

ES_AUTOHSCROLL I ES_AUTOVSCROLL I
ES_MULTILINE I WS_VISIBLE

,0, 0, r.right, r.bottom, hWnd,

CHMENU) 1, hINSTANCE, 0);
if (!twin edit)

nomem(hWnd);

I* Subclass edit control */

if (!ep)

ep = MakeProclnstance((FARPROC) newedproc,

hINSTANCE);

editproc = (FARPROC) SetWindowLong(twin_edit,

GWL_WNDPROC,
(LONG) ep);

Commando Windows Programming 155

Porting Without Pain

156

I* Attach edit window handle to window as EDIT_CHILD
* property */

SetPropCtwin_win, "EDIT_CHILD", twin_edit);

tmp = SendMessageCtwin_edit, EM_GETHANDLE, O, OL>;
I* Set control's buffer */

SendMessageCtwin_edit, EM_SETHANDLE, editbuf, OL>;

I* Set text limit to the exact size needed */

SendMessage(twin_edit, EM_LIMITTEXT, bufsize, OL);
if Ctmp)

LocalFreeCtmp);

I* Set fixed font */

SendMessageCtwin_edit, WM_SETFONT,

GetStockObjectCANSI_FIXED_FONT), (LONG) TRUE);
break;

I* If window gets focus, find its EDIT_CHILD property

* and pass focus to it */
case WM_SETFOCUS:

{

HWND w = GetPropChWnd, "EDIT_CHILD");
if Cw)

SetFocusCw>;
break;
}

I* Resize ... resize child edit window, too *I

case WM_SIZE:
{

RECT r;
DWORD flag, old;

Commando Windows Programming

Porting Without Pain

HWND w = GetPropChWnd, "EDIT_CHILD");

I* But not if iconic */

if C!w I I wParam == SIZEICONIC)

break;

GetWindowRectChWnd, &r);

I* Compute if scroll bars needed *I
flag = GetWindowlongCw, GWL_STYLE);

if Cmaxxy.x <= r.right - r.Left)
flag &= -ws_HSCROLL;

else

f Lag I= WS_HSCROLL;

if Cmaxxy.y <= r.bottom - r.top)

flag &= -ws_VSCROLL;

else

f Lag I= WS_VSCROLL;
SetWindowlong(w, GWL_STYLE, flag);

I* Make scroll bars appear or disappear */

ShowWindowCw, SW_MINIMIZE);
ShowWindowCw, SW_RESTORE);

MoveWindowCw, O, O, LOWORDCLParam),

HIWORDCLParam), TRUE);

I* Force text to appear in proper place */

old = SendMessage(w, EM_GETSEL, 0, 0);

SendMessageCw, EM_SETSEL, 0, O>;

SendMessageCw, EM_SETSEL, 0, old);
}

break;

case WM_CLOSE:

Commando Windows Programming 157

Porting Without Pain

if C!twin_terminate>
DestroyWindowChWnd>;

else
twin_exitC1>;

break;

case WM_DESTROY:

DestroyWindowCGetProp(hWnd, "EDIT_CHILD"));
RemovePropChWnd, "EDIT_CHILD");

if Cbstr>
{

LocalFree(bstr>;

bstr = O;
}

break;

default:

return DefWindowProcChWnd, Message,
wParam, lParam>;

}

return O;
}

I* clear "screen" *I

void twin_clsC>
{

int i;

158 Commando Windows Programming

Porting Without Pain

editbufp = LocalLockCeditbuf>;
if C!editbufp)

nomemChINSTANCE);

memsetCeditbufp, ' ', bufsize);

for Ci = twin_width; i < bufsize;
{

+= twin_width + 2)

editbufp[iJ = '\r';

editbufp[i + 1J = '\n';
}

LocalUnlockCeditbuf);

twin_goxyCO, O>;
}

I* Set cursor position */

void twin_goxyCint x, int y)
{

cursoroff = y * Ctwin_width + 2> + x;
}

I* read cursor's y position */

int twin_wherey()
{

return cursoroff I Ctwin_width + 2);
}

I* read cursor's x position */

int twin_wherex()
{

return cursoroff -

Ccursoroff I Ctwin_width + 2)) * Ctwin_width + 2>;

Commando Windows Programming 159

Porting Without Pain

}

I* set twin flags */

int twin_setflag(int flagword)
{

int f = twin_f Lags;

if (flagword & TF RESET)
{

flagword = -cflagword & -rF_RESET);

twin_flags &= flagword;
}

else if (f Lagword & TF_SET)
{

else

flagword &= -TF_SET;

twin_flags I= flagword;
}

twin_f Lags = f Lagword;

return f;
}

I* clear to end of Line from x,y position */

void twin_clreol(int x, int y)
{

int s = (twin_width + 2) * y + x;

editbufp = Locallock(editbuf);

if (! edi tbufp)

nomemChINSTANCE);

memset(editbufp + s, ' ', Cy+ 1) *
<twin_width + 2) - 2 - s>;

160 Commando Windows Programming

LocalUnlock(editbuf);
twin_show<>;
}

I* alias for ff lush(stdout) */

int twin_ff lushCFILE * s>
{

if Cs == stdout)
{

else

twin_show<>;

return O;
}

return fflush(s);
}

Porting Without Pain

I* show changes to window (usually internal) */

void twin_show()
{

tickyieldC);

if Ctwin_flags & TF_HOLD)

return;
if Ceditdirty)

{

InvalidateRectCtwin_edit, NULL, O>;

SendMessageCtwin_edit, EM_SETSEL, O,

MAKELONGCcursoroff, cursoroff));

editdirty = O;
}

Commando Windows Programming 161

Porting Without Pain

}

I* put character on screen */

void twin_putcCint c>
{

t w i n_p u t c C c> ;
twin_showC>;
}

I* put character on screen Cno show> */

void twin_putcCint c)
{

int x, y;

DWORD p;

char s[2J;

tickyieldC>;

editdirty = 1;

p = cursoroff;
y = LOWORDCp) I Ctwin_width + 2>;

x = LOWORD(p) - y * Ctwin_width + 2>;
if Cc!= '\n' && c != '\r')

{

editbufp = LocaLLockCeditbuf>;
if C!editbufp)

nomemCtwin_win);

editbufp[cursoroffJ = c;

x++;

LocaLUnlockCeditbuf>;
}

if Cc== '\r')

162 Commando Windows Programming

Porting Without Pain

x

i f
=

(c
{

i f

; f

0. ,
-- '\n' I I x > Ctwin_width - 1))

Ctwin_flags & TF_OUTCRXLAT)

x = O;
(++y > twin_height - 1)
{

y = twin_height - 1;
I* SCROLL SCREEN */

}

editbufp = LocalLockCeditbuf>;
if C!editbufp)

nomem(twin_win>;

memcpy(editbufp, editbufp + twin_width + 2,

bufsize - Ctwin_width + 2>>;

}

bstring = LocalLockCbstr>;
memcpy(editbufp + Ctwin_height - 1> *

Ctwin_width + 2) - 2,

bstring, twin_width + 3>;
LocalUnlockCbstr>;
LocalUnlock(editbuf);

cursoroff = x + y * Ctwin_width + 2>;
}

I* Put string to screen */

void twin_puts(char *s)
{

while C*s>
twin __ putcC*s++>;

Commando Windows Programming 163

Porting Without Pain

twin_show<>;
}

I* Get character with echo (scan code to int *) */

int twin_getcheCint *scan)
{

int re;

re = twin_getch(scan>;
twin_putcCrc>;

return re;
}

I* Get character without echo */
int twin_getch(int *scan)

{

int re;

if Ceditdirty)

twin_show<>;
while (head== tail)

twin_yieldC>;

re = kqueue[headJ;

head= <head + 1) & 15;

if <scan)

*scan = (re & OxffQQ) >> 8;

re &= Oxff;
if ((twin_flags & TF INCRXLAT) && re -- '\r')

re= '\n';

return re;
}

164 Commando Windows Programming

Porting Without Pain

I* test for key in buffer */
int twin_keyhit()

{

tickyieldO;

return head !=tail;
}

I* Get string *I

int twin_getsCchar *s, unsigned int siz)
{

int c, x, y, oflags;

unsigned ct = O;
siz--;

oflags = twin_setflagCTF_INCRXLAT I TF_OUTCRXLAT>;
w hi le C C c = t w i n_g etch C NULL)) ! = • \ n • & & c ! = • \ x 1 b •)

{

if Cc == 8)
//backspace

{

if C!ct)
{

MessageBeepCO>;
continue;
}

ct--;
x = twin_wherex<>;

y = twin_whereyC>;
y = x ? y y - 1;

x = x ? x - 1 twin_width - 1;

Commando Windows Programming 165

Porting Without Pain

twin_goxyCx, y);
t W i n_p U t C (I I) ;

twin_goxyCx, y);

editdirty = 1;

continue;
}

if Cct >= siz)
{

MessageBeepCO>;

continue;
}

if C!isprint(c))

continue;
t w i n_p u t c (c) ;

editdirty = 1;
s[ct++] = c;
}

if Cc== '\n')

twin_putcCc>;

s[ctJ = '\0';

twin_setflag(oflags>;

return c == '\n' ? ct -1;
}

I* buffer for printf() */

static char printbuf[1025J;

I* printf to window */

int twin_printf(char *fmt, ...)

166 Commando Windows Programming

Porting Without Pain

{

int re;
va list args;
va_startCargs, fmt>;
re = vsprintf(printbuf, fmt, args>;
twin_puts(printbuf>;
va_end(args);

return re;
}

static BOOL FAR PASCAL _export win_killCHWND w, DWORD lp)
{

if C!w)
return O;

DestroyWindowCw>;
return 1;
}

I* exit program */

void twin_exitCint rv>
{

FARPROC fp;
fp = MakeProclnstanceCCFARPROC) win_kill,

hINSTANCE>;
EnumTaskWindows(GetCurrentTaskC>, fp, O>;
FreeProclnstanceCfp);

xitvalue = rv;
ThrowCxitbuf, 1>;
}

Commando Windows Programming 167

Porting Without Pain

#ifndef TWIN_NOPRINT
I* printing stuff */

static int print_abort;
static HWND print_dialog;

BOOL FAR PASCAL _export print_dlgCHWND dlg, WORD msg,

WPARAM wParam,
LONG lParam)

{

switch Cmsg)
{

case WM_INITDIALOG:

I* turn off close */

EnableMenuitemCGetSystemMenuCdlg, FALSE),

SC_CLOSE, MF_GRAYED);
return TRUE;

case WM_COMMAND:
I* Abort button! */

print_abort = 1;
EnableWindowCGetParentCdlg), TRUE>;
DestroyWindowCdlg);

print_dialog = NULL;
return TRUE;
}

return FALSE;
}

BOOL FAR PASCAL _export abort_procCHDC pcd, short code)
{

168 Commando Windows Programming

Porting Without Pain

MSG msg;
I* print abort proc */

while C!print_abort &&

PeekMessageC&msg, NULL, O, O, PM_REMOVE))

if C!print_dialog I I
!IsDialogMessageCprint_dialog, &msg))
{

TranslateMessageC&msg);
DispatchMessageC&msg);
}

return !print_abort;
}

I* print current buffer */

int twin_print<>
{

int err = O;

char pname[81J, *device, *driver, *output;

FARPROC abort, printproc;

TEXTMETRIC tm;

HOC printer;

short chary, lineperpage, totalpage, page,

line, linenr = O;
I* Get printer info */

#ifdef OLDWIN

GetProfileStringC"windows", "device", ",,,",

pname, sizeof(pname>>;

device = strtokCpname, ",">;

driver = strtokCNULL, ",">;

output = strtokCNULL, ",");

Commando Windows Programming 169

Porting Without Pain

I* Create print DC *I

if (device && driver && output)

printer = CreateDCCdriver, device, output, NULL);

else

return 1;
#else

DOCINFO docinfo;

PRINTDLG pdialog;
memsetC&pdialog, 0, sizeofCPRINTDLG));

pdialog.lStructSize = sizeof(PRINTDLG);

pdialog.Flags = PD_RETURNDC I PD_USEDEVMODECOPIES

PD_NOSELECTION I PD_NOPAGENUMS;

if C!PrintDlgC&pdialog))
{

if (CommDlgExtendedError())

MessageBox(NULL, "Can't Open Printer", NULL,

MB_OK I MB_ICONSTOP);

return 1;
}

printer = pdialog.hDC;
#endif

I* compute metrics */

GetTextMetrics(printer, &tm);

chary = tm.tmHeight + tm.tmExternalLeading;

lineperpage = GetDeviceCaps(printer, VERTRES) I chary;

totalpage = Ctwin_height + lineperpage - 1) I lineperpage;

EnableWindow(twin_win, FALSE);

print_abort = O;
printproc = MakeProclnstance(print_dlg, hINSTANCE);

print_dialog = CreateDialog(hlNSTANCE, "PrintDialogBox",

170 Commando Windows Programming

Porting Without Pain

twin_edit, printproc>;
abort = MakeProclnstanceCabort_proc, hINSTANCE);

#ifdef OLDWIN
EscapeCprinter, SETABORTPROC, 0, CLPSTR) abort, NULL);

#else
SetAbortProcCprinter, abort>;

#endif

I* get text buffer */

editbufp = LocallockCeditbuf);

if C!editbufp)

nomemChINSTANCE>;

I* Do printing */

#ifdef OLDWIN

if CEscapeCprinter, STARTDOC, 14,
CLPSTR) "TWIN Print Job", NULL) > 0)

#else

I* Win 3.1+ printing */

docinfo.cbSize = sizeofCDOCINFO>;

docinfo.lpszDocName ="TWIN Print Job";
docinfo.lpszOutput =NULL;
if CStartDocCprinter, &docinfo) > 0)

#endif
for Cpage = O; page < totalpage; page++)

{

#ifndef OLDWIN

StartPageCprinter>;

#endif

for Cline = O;
line < lineperpage && linenr < twin_height;

Commando Windows Programming 171

Porting Without Pain

linenr++, line++)

TextOut(printer, O, chary * line,

editbufp + line * (twin width + 2),

twin_width);

#i fdef OLDWIN

if (Escape(printer, NEWFRAME,

NULL, NULL, NULL) < 0)
{

err = 1;

break;
}

#else

EndPage(printer);

#endif

else

if (print_abort)

break;
}

err = 1;

I* Done *I

if (!err)

#ifdef OLDWIN

Escape(printer, ENDDOC, O, NULL, NULL);

#else

EndDoc(printer);

#end if

172

if C!print_abort)
{

EnableWindow(twin_win, TRUE);

Commando Windows Programming

Porting Without Pain

DestroyWindow(print_dialog);
}

if (err I I print_abort)
MessageBoxCtwin_win, "Can't Print", NULL,

MB_OK I MB_ICONSTOP);
FreeProcinstance(printproc);

FreeProcinstance(abort>;

DeleteDCCprinter>;
LocalUnlock(editbuf>;

return err I print_abort;
}

#endif

Listing 4-5. TWIN.RC

**

*
* File: TWIN. RC

*
* Resources for TWIN programs.

*
*Required to Compile:

* TWIN.C TWIN.H TWIN.RC TWIN.DEF

*

*
*
*
*
*
*
*
*

***!
#define RC
#include "twin.h"

TWIN_MENU_DEFAULT MENU

BEGIN

Commando Windows Programming 173

Porting Without Pain

POPUP "&Fi le"
BEGIN

Menuitem "&About", 102
Menuitem "e&Xit", 101

END
#ifndef NOEDITMENU

POPUP "&Edit"

BEGIN
Menuitem "&Copy", 103

Menuitem "&Select All", 104
#ifndef TWINNOPRINT

Menuitem "&Print",105
#endif

END
#endif
END

#ifndef TWINNOPRINT
PrintDialogBox DIALOG 100,100,120,40

STYLE WS_POPUPIWS_SYSMENUIWS_VISIBLEIWS_DLGFRAME

BEGIN
CTEXT "Now printing", -1, 4, 6, 120, 12
DEFPUSHBUTTON "Cancel", IDCANCEL, 44,22,32,14

END

#end if

174 Commando Windows Programming

Listing 4-6. TWIN.DEF

NAME TWIN

DESCRIPTION 'by Al Williams'
CODE MOVEABLE

DATA MOVEABLE MULTIPLE
HEAPSIZE 2048

STACKSIZE 2048

Porting Without Pain

Commando Windows Programming 175

Objects of Desire

WHAT'S IN THIS CHAPTER

This chapter familiarizes you with how to use
object-oriented programming (OOP)

libraries-particulary Borland's OWL-to simplify
Windows programming.

PREREQUISITES

You should have a good understanding of ordinary
C++ programming. Some understanding of

conventional Windows SDK programming
will also be helpful.

Commando Windows Programming 177

Objects of Desire

Object-oriented programming (OOP) can offer some
relief from the complexities of Windows programming.
However, OOP is no panacea; the simplicity in OOP pro­
grams depends on reusing existing classes. Although
C++ is object oriented, it provides no classes useful for
Windows programming. If you are intrepid, you can
build your own class libraries and then benefit from OOP
concepts in your future programs.

Of course, there is a better way. Many vendors offer class
libraries designed to simplify Windows programming.
Some of these class libraries are for Windows only; some
allow you to write programs for Windows and other
platforms.

Two of the most important class libraries are Borland's
Object Window Library (OWL) and Microsoft's Founda­
tion Classes (MFC). MFC (see Chapter 6) is more compre­
hensive than the current version of OWL, but it is also
correspondingly more difficult to learn.

OWL uses C++ classes to represent windows, but OWL
programs still require paint routines, window handles,
and other Windows necessities. OWL's advantage comes
from building on predefined classes. Borland supplies a
complete text editor, for example, that you can easily
extend to suit your needs. If you need something that
Borland doesn't supply, you still have to resort to con­
ventional Windows programming techniques. OWL and
C++ help you organize your programs and reuse your
code, but they don't do much to simplify Windows pro­
gramming per se.

178 Commando Windows Programming

Objects of Desire

Constructing an Application
All OWL programs require you to define at least one
class that represents your application (the application
object). In its simplest form, the application object must
only create the program's main window. Your applica­
tion objed inherits many things from its base class,
TApplication. TApplication provides a default event
loop, methods for running dialogs, and other useful func­
tions. For an example of a simple application class see
Listing 5-1.

The InitMainWindow() method creates the program's
main window (by setting the Main Window instance vari­
able). This simple application uses a text-editor window
(TFileWindow). However, many programs define their
own subclass of a standard window class like TWindow
or TFileWindow. Still, with the standard TFileWindow
(and its default menu and accelerator), this simple appli­
cation class provides a complete text-editing program
(see TWEDIT.CPP and TWEDIT.RC in Listings 5-1, and 5-
2). You can compile TWEDIT using the OWLCOMP batch
file (Listing 5-3). Just type:

OWLCOMP TWEDIT

Make sure you replace the directory names in
OWLCOMP.BAT with ones appropriate for your system.

OWL programs still require a WinMain() function. The
WinMainO function creates an instance of the application
object and calls its Run member function. Table 5-1

Commando Windows Programming 179

Objects of Desire

shows the most important member functions that
TApplication provides.

Table 5-1. Important TApplication Member Functions and Variables

Member

HAccTable

Main Window

Can Close()

InitApplication()

Initlnstance()

InitMain Window()

Message Loop()

OWL Windows

Description

Handle to application accelerator table

Pointer to WindowsObject for main window

Returns TRUE if application can close

Performs first-time initialization

Performs instance initialization

Constructs main window

Default message loop

Each nondialog window in your program is ap. instance
of TWindow or a subclass of TWindow. Usually, you
have to create a new subclass of TWindow to provide
useful windows. However, windows you create from the
TFileWindow or TEditWindow classes are directly useful.

The SimpleApp class (see Listing 5-1) uses a TFile­
Window to provide a functional text editor. If you need a

special window type, you must create a new subclass of
one of the existing classes.

Managing Resources
To attach a menu to an OWL window, call the window's
AssignMenu() member function. You can pass Assign-

180 Commando Windows Programming

Objects of Desire

Menu() a resource ID or a string. You can also use accel­
erators if your application overrides TApplication's
Initlnstance() function. During lnitlnstance(), you have to
load the accelerator table. For example:

HAccTable=LoadAccelerators(hlnstance,"FileCommands");

OWL supplies default menus and accelerator tables for
its predefined windows that need them (TFileWindow,
for example).

You can also set custom icons for your program by over­
riding the GetWindowClass() method of your window
class. The new method has to call the original method
and set the hlcon field of the WNDCLASS structure that
is passed to GetWindowClass(). For example:

void MyWindow::GetWindowCLassCWNDCLASS& classinfo)
{

TWindow::GetWindowCLass(classinfo);

classinfo.hlcon=icon_handle;
}

You can also use this method to change the window style,
cursor, and background color.

Commando OWL Programming
From the commando point of view, OWL programming
isn't much different from conventional Windows development.

Commando Windows Programming 181

Objects of Desire

Dialogs and menus still figure prominently in commando
programming. The big advantage comes when you can
start with a predefined class-either one that comes with
OWL or one you have created in the past.

OWL uses its TDialog class to represent dialogs. When
you use a TDialog object, you define a transfer buffer to
go with it. The transfer buffer is a structure that repre­
sents the dialog controls that you want to read or write.

For example, consider a dialog with two edit controls:

ssndialog dialog O, O, 150, 150

style ws child/ws visible

begin

edit text NAME.FIELD 39, 17, 95, 12

edit text SS.FIELD 39, 36, 95, 12

end

This dialog might have the following transfer buffer:

struct
{

char name[33J;

char ssn[12J;

} xferbuf;

182 Commando Windows Programming

Objects of Desire

You have to define the elements of the structure in the
same order in which the controls appear in the RC file.
Finally, you have to construct a subclass of the TDialog
object to represent the dialog. In the new classes con­
structor, you have to create a control object for each con­
trol in the dialog and set the transfer buffer. Here is what
the SSNDialog subclass looks like:

class SSNDialog
{

public:

public TDialog

SSNDialog(PTWindowsObject parent,xferbuf *xfer);
}

SSNDialog::SSNDialog(PTWindowsObject parent,

xferbuf *xfer) :

TDialog(parent,SSNDIALOG)
{

new TEditCthis,NAMEFIELD,33);

new TEdit(this,SSFIELD,13);

TransferBuffer=Cvoid *)xfer;
}

To create the dialog, you create a dialog object using new
and call your application object's ExecDialog() method.
For example:

SSNDialog *ssn=new SSNDialogCthis,&xfer);

if CGetModule()->ExecDialog(ssn)==IDCANCEL) return;

Commando Windows Programming 183

Objects of Desire

Always create dialog objects with new. Never declare
them on the stack as local variables. Modeless dialogs
operate the same way except that you call the
Make Window() function instead of ExecDialog().

When the dialog starts, each edit field will contain the
strings that are in the corresponding transfer buffer
fields. When the dialog exits, you can read the strings
that were in the edit buffers by reading the transfer buffer.

By default, most control types work with transfer buffers.
You can prevent a control from working with a transfer
buffer by calling its DisableTransfer() function. Static text
fields don't use transfer buffers by default. If you want to
set a static element, you have to call its EnableTransfer()
member function. For example, in the constructor, you
can write:

(new TStatic(this,STATICFLD,"",10,10,100,30,40))

->EnableTransferC>;

Your programs can use dialogs as main windows. Simply
derive your main window class from TDialog. This is
similar to the technique that the PHONE program in
Chapter 3 uses.

Just as OWL supplies predefined windows, it also has
several predefined dialogs that you can use. The
TlnputDialog class, for example, creates a simple line­
input window (similar to the win_input() routine in
Chapter 3). Another predefined class, the TFileDialog

184 Commando Windows Programming

Objects of Desire

dialog, allows you to select a filename. You'll see an
example of this shortly.

Creating MDI Applications
You can use OWL to create multiple document interface
(MDI) programs. Use the TMDIFrame class (or a subclass
of it) to construct your main window. Your program's
window (or windows) then becomes a child window of
TMDIFrame. The example in this chapter illustrates the
technique.

A Full OWL Application
OWLWIZ (Listings 5-4 to 5-6) is an MDI OWL application
that also uses a modal dialog. OWL WIZ is a simple text
editor that can also build the skeleton of an OWL applica­
tion for you. When you ask OWL WIZ to create a new
application, you must also select a template file. This file
provides the basic structure of different types of OWL
programs. The template contains references to variables
that OWLWIZ will supply.

OWL WIZ then presents a dialog box so you can enter
application information (see Figure 5-1 on the following
page). OWLWIZ uses this input as the values of the tem­
plate variables. Then OWL WIZ places the completed
application in an edit window that you can save.

OWLWIZ defines five classes: OwlWiz, OwlWizWin,
MDIFrame, WizDlg, and OwlTemplate. The OwlWiz class

Commando Windows Programming 185

Objects of Desire

Figure 5-1. OWLWIZ Dialog Box

Owl Wizard
fdit J;iearch

Application name: l._c_m_dA..:.p:....p _____ ___,

Application class name: l._c_om_m_a_n_do _____ -'

Main window class: ._I c_om_m_a_n_do_W_in ____ _J

Main window menu: I CommandoMenu

Main window title: ~lc_om_m_a_n_do_! ____ ~
Program comment: IA Commando OWL Program

Author: !Al Williams!

Template: c:\owl\owltwin.tpl

Template for ordinary application wnwlndow subclass

.....

is the required application class. MDIFrame is the MDI
frame window. The OwlWizWin class is a subclass of the
TFileWindow class. OwlWizWin is the main window
class of OWLWIZ. WizDlg manages the OWLWIZ main
input dialog. Finally, the OwlTemplate class reads tem­
plate files and provides methods that replace variables
with text.

OLWWIZ Templates
Listings 5-7 and 5-8 are sample OWL templates. The first
line of the template is a comment; it doesn't appear in the

186 Commando Windows Programming

Objects of Desire

final output. Each subsequent line will appear in the out­
put with its variables replaced by text. Each variable con­
sists of three characters: two grave marks (") followed by
a single character. Table 5-2 shows the available vari­
ables. The OwlTemplate class manages the templates.
You can easily customize the supplied templates or create
entirely new ones.

Table 5-2. OWLWIZ Variables

Variable Description

"1 Application name

"2 Application class name

"3 Main window class

"4 Main window menu

"5 Main window title

"6 Program comment

"7 Author

"d Current date/time

OWL Summary
While OWL offers some features of interest to the
commando programmer, it isn't very useful unless you
can use the predefined classes it supplies. Of course, if
you are writing conventional Window programs anyway,

Commando Windows Programming 187

Objects of Desire

OWL can help you reuse the code you have already
written.

This chapter is too short to cover OWL in its entirety. To
learn more, check out the Borland OWL manuals.

188 Commando Windows Programming

Objects of Desire

Listing 5-1. TWEDIT.CPP

I***

*
* File: TWEDIT.CPP

*
* Simple OWL text editor

*
*Required to Compile:

* TWEDIT.CPP TWEDIT.RC OWLCOMP.BAT

*

*
*
*
*
*
*
*
*

***I
#include <owl.h>

#include <filewnd.h>

I* Application class *I

class SimpleApp : public TApplication
{

public:
SimpleApp(LPSTR name,HINSTANCE hlnst,

HINSTANCE hPrev,

LPSTR lpCmdLine, int nCmdShow)

: TApplication(name,hinst,hPrev,
lpCmdLine,nCmdShow) {};

virtual void InitMainWindow<>;

};

II make file edit window
void SimpleApp::InitMainWindow()

{

MainWindow=new TFileWindowCNULL,"Simple editor","");

Commando Windows Programming 189

Objects of Desire

CCTWindow *)MainWindow)->AssignMenuC"FILECOMMANDS'');
}

int PASCAL WinMainCHINSTANCE hlnstance,
HINSTANCE hPrevlnstance,
LPSTR lpCmdLine,

int nCmdShow>
{

SimpleApp appC"Simple Application",
hlnstance, hPrevlnstance,
lpCmdLine, nCmdShow>;

app.RunO;
return app.Status;
}

Listing 5-2. TWEDIT.RC

!***

* *
* File: TWEDIT.RC *

* *
* Resources for simple text editor Call default *
* OWL resources). *

* *
*Required to Compile: *
* TWEDIT.CPP OWLCOMP.BAT *

* *
***!

#include <windows.h>
#include <owlrc.h>
#include <filedial.dlg>

190 Commando Windows Programming

#include <filemenu.rc>
#include <fileacc.rc>

#include <stdwnds.dlg>

Listing 5-3. OWLCOMP.BAT

Objects of Desire

REM Compile OWL application with single source file
REM Change directory to match your system

SET BCDIR=d:\borlandc
IF NOT EXIST %1.cpp goto err

SET OWLINC=%BCDIR\include

SET OWLINC=%0WLINC%;%BCDIR%\classlib\include
SET OWLINC=%0WLINC%;%BCDIR%\owl\include

SET OWLLIB=%BCDIR\lib;%BCDIR%\classlib\lib;%BCDIR%\owl\lib
SET OWLLIBS=owlwl.lib tclassl.lib

SET STDLIBS=import mathwl cwl
SET LOPT=-Tw -v -n -x -c -C -L%0WLLIB%
REM Compile

bee -ml -c -v -WE -DWIN31 -I%0WLINC% %1.cpp
IF ERRORLEVEL 1 goto cerr

echo %BCDIR%\LIB\c0wl.obj %1,%1, >OWLCOMP.TMP

echo %0WLLIBS% %STDLIBS% >>OWLCOMP.TMP
REM Link
tlink %LOPT% @OWLCOMP.TMP
IF ERRORLEVEL 1 goto cerr

REM RC

re -r -DWIN31 -I%0WLINC% %1.rc %1.res
IF ERRORLEVEL 1 goto cerr

REM Link RC
re %1.res %1.exe

IF ERRORLEVEL 1 goto cerr

Commando Windows Programming 191

Objects of Desire

goto end
:cerr

echo An error occured
goto end
:err
echo Usage: OWLCOMP filename

echo DO NOT include extension in filename argument

echo For example, to compile owlwiz.cpp use:
echo OWCOMP owlwiz

:end
if EXIST OWLCOMP.TMP ERASE OWLCOMP.TMP

Listing 5-4. OWLWIZ.CPP

!***

*
* File: OWLWIZ.CPP

*
* OWLWIZ creates skeletal OWL applications.

*
*Required to Compile:

* OWLWIZ.H OWLWIZ.RC OWLCOMP.BAT

*

*
*
*
*
*
*
*
*

***!
#include <combobox.h>

#include <filewnd.h>

#include <inputdia.h>
#include <stdio.h>

#include <stdlib.h>
#include <time.h>

#include <string.h>

192 Commando Windows Programming

Objects of Desire

#include <io.h>

#include <time.h>

#include "owlwiz.h"

#define NRFIELDS 7

#define VARLEN 81

class OwlWiz public TApplication
{

public:

OwlWiz(LPSTR name,HINSTANCE hlnstance,

HINSTANCE hPrevlnstance,

LPSTR lpCmdline, int nCmdShow)

TApplication(name,hlnstance,hPrevlnstance,

lpCmdline,nCmdShow)
{

};

virtual void InitMainWindow();

virtual void Initlnstance();

};

I* Transfer buffer */

struct xferbuf
{

char vars[NRFIELDSJ[VARLENJ; /* in */

char title[VARLENJ; /* 2 "outputs" */

char comment[VARLENJ;

};

I* Main window (not MDI frame) */

Commando Windows Programming 193

Objects of Desire

class OwlWizWin : public TFileWindow
{

char templ[VARLENJ; II template
xferbuf xfer; II transfer to dialog
public:

OwlWizWinCPTWindowsObject AParent,

LPSTR ATitle, LPSTR FileName);
char *get_templ(void) { return templ; };

II create new application

void newappO;
} . ,

II MDI frame
class MDIFrame

{

public:

public TMDIFrame

MDIFrameCLPSTR title) :

TMDIFrame(title,"FILECOMMANDS") {};

virtual PTWindowsObject CreateChildC>;
virtual void NewFileCRTMessage Msg) =

[CM_FIRST + CM_MDIFILENEWJ;

virtual void OpenFileCRTMessage Msg) =
[CM_FIRST + CM_MDIFILEOPENJ;

virtual void CloseCRTMessage Msg) =
[CM_FIRST + CM_CLOSEJ;

virtual void CMApplicationCRTMessage Msg)=

CCM_FIRST+CM_APPLJ;
} . ,

void MDIFrame::NewFileCRTMessage)

194 Commando Windows Programming

Objects of Desire

{

GetApplication()->MakeWindowCnew OwlWizWin

Cthis,"Owl Wizard", ""));
}

I* Respond _to "Open" command by constructing,

creating, and setting up a new TFileWindow

MDI child*/

void MDIFrame::OpenFileCRTMessage)
{

char filename[MAXPATHJ;

if C GetApplication()->ExecDialogC

}

new TFileDialog(this, SD_FILEOPEN,

strcpy(filename, "*.*"))) == IDOK >

GetApplication()->MakeWindowCnew

OwlWizWin(this,"",filename>>;

I* Close current window (if any) */

void MDIFrame::CloseCRTMessage)
{

if CActiveChild)

ActiveChild->CloseWindowC>;
}

I* Create new child*/

PTWindowsObject MDIFrame::CreateChild()
{

return GetApplication()->

Commando Windows Programming 195

Objects of Desire

MakeWindow(new OwlWizWin(this,"",NULU>;
}

I* Template class *I
class OwlTemplate

{

FILE *fp;
II pointer to data (not comment)

char *buffer;

II actual length of data in buffer

unsigned long buflen;

II size of buffer

unsigned bufsiz;

int OwlTemplate::adjustbuf(int size>;
II pointer to first line (comment) *I

char *first;

public:

OwlTemplate(char *filename>;

-owl Template<>
{

if (buffer) free(buffer>;
if (fp) fclose(fp);

};

int status(void) { return fp!=NULL; };

char *textbuffer(void) { return buffer; };

char *firstline(void) { return first; };

I* Replace variable with string *I
int replace(int n,char *str>;
};

196 Commando Windows Programming

Objects of Desire

I* Dialog class *I

class WizDlg : public TDialog
{

public:

WizDlgCPTWindowsObject AParent,

char *comment,xferbuf *xfer>;
} . ,

OwlWizWin::OwlWizWinCPTWindowsObject AParent,
LPSTR ATitle, LPSTR FileName)

{

}

: TFileWindowCAParent,ATitle,FileName)

I* New application:
create window and call its newapp method */

void MDIFrame::CMApplicationCRTMessage Msg)
{

OwlWizWin *w=COwlWizWin *)CreateChildC>;
w->newappC>;
}

void OwlWizWin::newapp()
{

PTinputDialog appnamedlg;

I* Check for dirty buffer and prompt

Commando Windows Programming 197

Objects of Desire

This will never happen unless you add
code that calls this for an existing

edit control */

if CEditor->IsModified())
{

if CMessageBoxCHWindow,

"Overwrite current file?",

"Confirm",MB_YESNOIMB_ICONQUESTION)
!=!DYES) return;

Editor->ClearModifyC>;
}

I* Select template *I
strcpy(templ,"*.tpl");

TFileDialog *fd=new TFileDialog(this,SD_FILEOPEN,

templ>;

fd->SetCaption("Select Application Template");

if CGetApplication()->ExecDialog(fd)!=IDOK) return;

I* Open template object */

OwlTemplate temp(templ>;

if (!temp.status<>> return;

I* Do dialog to get info */

WizDlg *dlg=new WizDlgCthis,

temp.firstlineC>,&xfer);
if (GetModule()->ExecDialog(dlg)==IDCANCEL)

return;

I* Set date */

char *tstr;

time_t tm;

198 Commando Windows Programming

Objects of Desire

timeC&tm>;
tstr=ctimeC&tm>;
tstrC24J='\0'; I* remove \n *I

temp.replaceC'd',tstr>;
I* Set replaceable text *I
for Cint i=O;i<NRFIELDS;i++)

if Ctemp.replace(i+'0'+1,xfer.varsCiJ)<Q) return;
I* Place in editor window *I

Editor->Insert<temp.textbuffer<>>;
if ClsNewFi le)

}

{

char tmpC66J;
strcpyCtmp,xfer.varsCOJ>;
strcat<tmp,".CPP">;
SetFileName(tmp>;
}

void OwlWiz::InitMainWindow<>
{

MainWindow=new MDIFrameC"Owl Wizard");
CCMDIFrame *>MainWindow>->ChildMenuPos=3;
}

II Load accelerators
void OwlWiz::Initlnstance()

{

TApplication::Initlnstance<>;
HAccTable=LoadAcceleratorsChlnstance,"FileCommands">;

Commando Windows Programming 199

Objects of Desire

}

OwlTemplate::OwlTemplate<char *filename)
{

I* open template file*/
fp=fopen(filename,"rb");
if (fp)

{

I* get memory */

buflen=filelength(fileno(fp));

buffer=NULL;
if Cbuflen<OxFOOOL)

{

bufsiz=(unsigned int)buflen+128;

buffer=Cchar *)malloc(bufsiz);
}

if (!buffer)
{

MessageBox(NULL,"Out of memory",

"Error",MB_OKIMB_ICONSTOP);

fclose(fp);

fp=NULL;
}

else
{

char *p;

I* read it all */

fread(buffer,1,buf len,fp);

I* consume AZ if present */

p=strchr(buffer,'\x1A');

200 Commando Windows Programming

Objects of Desire

if (p)

*p='\0';

else

bufferCbuflen++J='\0';

I* point buffer past comment *I

first=buffer;

buffer=strchrCbuffer,'\n')+1;

*Cbuffer-2)='\0';
}

}

else
{

}

MessageBoxCNULL,"Can't open template",

"Error",MB_OKIMB_ICONSTOP);
}

I* private method to resize buffer */
int OwlTemplate::adjustbufCint size)

{

while CCbuflen-3)+size>=bufsiz>
{

unsigned int bufoff=buffer-first;

first=Cchar *>realloc(first,bufsiz+=128>;

if (!first>
{

MessageBoxCNULL,"Out of memory",

NULL,MB_OKIMB_ICONSTOP);

return -1;
}

Commando Windows Programming 201

Objects of Desire

buffer=first+bufoff;
}

return O;
}

I* replace variable with text

to replace variable ''x use:
replaceC'x',"Text")

if n==-1 put in front
if n==-2 add to end *I

int OwlTemplate::replaceCint n,char *str>
{

char *point;
char target[4J;
int replen=strlenCstr>;

int ct=O;
target[OJ=target[1J=' '';
target[2J=n;
target[3J='\0';

point=buffer;

I* if replacing with nothing, use blanks *I

if C!replen>
{

str=" II•

replen=3;
}

,

if Cn==-2> II add to end
{

I* make sure enough room *I

202 Commando Windows Programming

Objects of Desire

if Cadjustbuf(buflen+replen)==-1) return -1;

strcatCbuffer,str>;

buflen+=replen;

return 1;
}

if Cn==-1) II add to begininning
{

I* make sure enough room *I
if CadjustbufCbuflen+replen>==-1> return -1;

II move data in

memmove(buffer+replen,buffer,buflen>;

memmove(buffer,str,replen>;

buflen+=replen;

return 1;
}

while (point>
{

int offset;

point=strstrCpoint,target);
if (point)

{

ct++;

if Creplen<=3)
{

I* short replacement -- fill with spaces *I
memcpyCpoint,str,replen>;

if Creplen<3)

memset(point+replen,' ',3-replen);

continue;
}

Commando Windows Programming 203

Objects of Desire

offset=point-buffer;
if Cadjustbuf(buflen-3+replen>==-1)

return -1;
I* Just in case realloc() moved buffer */

point=buffer+offset;
memmove(point+replen,point+3,

}

buflen-Cpoint-buffer)-3);

memcpy(point,str,replen);

buflen+=replen-3;
}

return ct;
}

I* Initial contents of dialog */
char *dlginit[J=

{

"Owl App",

"OwlApp",

"OwlWindow",

"MainMenu",

"Main Window",

"Another OWLWIZ Program",

"Your Name Here"

};

I* Dialog constructor */

WizDlg::WizDlg(PTWindowsObject parent,char *comment,

xferbuf *xfer)

: TDialog(parent,OWLWIZDLG)
{

204 Commando Windows Programming

Objects of Desire

new TEdit(this,APPID,VARLEN>;
new TEditCthis,APPNAME,VARLEN);

new TEditCthis,WINDCLASS,VARLEN>;

new TEditCthis,MAINMENU,VARLEN);

new TEdit(this,WINDTITLE,VARLEN);

new TEdit(this,PROGCOM,VARLEN);

new TEdit(this,AUTHOR,VARLEN>;

II !nit the two statics ...

new TStaticCthis,TEMPNAME,VARLEN)->EnableTransfer();

new TStaticCthis,TEMPCOM,VARLEN)->EnableTransfer();

for (int i=O;i<NRFIELDS;i++)

strcpy(xfer->vars[iJ,dlginit[iJ);

strcpy(xfer->title,

((OwlWizWin *)parent)->get_templ<>>;

strcpy(xfer->comment,comment>;
TransferBuffer=Cvoid *)xfer;
}

int PASCAL WinMain(HINSTANCE hinstance,

HINSTANCE hPrevinstance,

LPSTR lpCmdLine, int nCmdShow)
{

OwlWiz OwlWizApp ("OwlWiz", hinstance,

hPrevinstance, lpCmdLine, nCmdShow);
OwlWizApp.Run();

return OwlWizApp.Status;
}

Commando Windows Programming 205

Objects of Desire

Listing 5-5. OWLWIZ.H

!***

* *
* File: OWLWIZ.H *
* *
* Constants for OWLWIZ.CPP *
* *
*Required to Compile: *
* OWLWIZ.CPP OWLWIZ.RC OWLCOMP.BAT *
* *
***!

#define CM_APPL 1

#define CM CLOSE 2 -

#define OWLWIZDLG
#define TEMPNAME
#define TEMPCOM 103

#define APPID 109

#define APPNAME 110

#define WINDCLASS
#define MAINMENU
#define WINDTITLE
#define PROGCOM 114

#define AUTHOR 11 5

Listing 5-6. OWLWIZ.RC

101

102

111

11 2

113

!***

* *
* File: OWLWIZ.RC *
* *

206 Commando Windows Programming

Objects of Desire

* Resources for OWLWIZ *
* *
*Required to Compile: *
* OWLWIZ.CPP OWLWIZ.H OWLCOMP.BAT *
* *
***/

#include <windows.h>

#include <owlrc.h>
#include <filedial.dlg>

#include <stdwnds.dlg>
#include "owlwiz.h"

OWLWIZDLG DIALOG 10, 17, 248, 149
STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION

CAPTION "Enter Application Information"
BEGIN

WS SYSMENU

CONTROL "OwlApp", APPID, "EDIT", ES_LEFT I
ES_AUTOHSCROLL I WS_CHILD I WS_VISIBLE I

WS_BORDER I WS_TABSTOP, 101, 6, 104, 12
CONTROL "OwlApp", APPNAME, "EDIT", ES_LEFT

I ES_AUTOHSCROLL I WS_CHILD I WS_VISIBLE

WS_BORDER I WS_TABSTOP, 101, 24, 104, 12

CONTROL "OwlWindow", WINDCLASS, "EDIT",
ES_LEFT I ES_AUTOHSCROLL I WS_CHILD I

ws_visIBLE 1 ws_soRDER 1 ws_TABSTOP, 101,
40, 104, 12

CONTROL "MainMenu", MAINMENU, "EDIT",

ES_LEFT I ES_AUTOHSCROLL I WS_CHILD

WS_VISIBLE I WS_BORDER I WS_TABSTOP, 101,
57, 104, 12

Commando Windows Programming 207

Objects of Desire

208

CONTROL "Owl Window", WINDTITLE, "EDIT",
ES_LEFT I ES_AUTOHSCROLL I WS_CHILD I
WS_VISIBLE I WS_BORDER I WS_TABSTOP, 101,

72, 104, 12
CONTROL "Program created by OWLWIZ",

PROGCOM, "EDIT", ES_LEFT I ES_AUTOHSCROLL

I WS_CHILD I WS_VISIBLE I WS_BORDER I
WS_TABSTOP, 101, 88, 104, 12

CONTROL "Your Name Here", AUTHOR, "EDIT",

ES_LEFT 1 ES_AUTOHSCROLL 1 ws_CHILD I

WS_VISIBLE I WS_BORDER I WS_TABSTOP, 101,

104, 104, 12

DEFPUSHBUTTON "OK", IDOK, 214, 4, 28, 14,
WS_CHILD I WS_VISIBLE I WS_TABSTOP

PUSHBUTTON "Cancel", IDCANCEL, 214, 38, 28,
14, WS_CHILD I WS_VISIBLE I WS_TABSTOP

RTEXT "Application class name:", -1, 12,

28, 83, 8, SS_RIGHT I WS_CHILD I
WS_VISIBLE I WS_GROUP

RTEXT "Main window class:", -1, 12, 44, 83,
8, SS_RIGHT I WS_CHILD I WS_VISIBLE I WS_GROUP

RTEXT "Main window menu:", -1, 12, 60, 83,
8, SS_RIGHT I WS_CHILD I WS_VISIBLE I WS_GROUP

RTEXT "Main window title:", -1, 12, 76, 83,

8, ss_RIGHT I ws_CHILD I ws_VISIBLE I ws_GROUP
RTEXT "Program comment:", -1, 12, 92, 83, 8

, ss_RIGHT I ws_cHILD I ws_vISIBLE I ws_GROUP

RTEXT "Author:", -1, 12, 108, 83, 8,
SS_RIGHT I WS_CHILD I WS_VISIBLE WS_GROUP

LTEXT "Template:", -1, 2, 126, 35, 8

Commando Windows Programming

Objects of Desire

CONTROL "", TEMPNAME, "STATIC", SS_SIMPLE
SS_NOPREFIX I WS_CHILD I WS_VISIBLE I
WS_GROUP, 41, 126, 201, 8

CONTROL "", TEMPCOM, "STATIC", SS_SIMPLE

SS_NOPREFIX I WS_CHILD I WS_VISIBLE I
WS_GROUP, 2, 138, 241, 8

RTEXT "Application name:", -1, 12, 10, 83,

8, SS_RIGHT WS_CHILD WS_VISIBLE WS GROUP
END

I* This is a modified copy of the standard filemenu.rc */

FILECOMMANDS MENU LOADONCALL MOVEABLE PURE DISCARDABLE

BEGIN
POPUP "&Fi le"

BEGIN
Menuitem "&New", CM_MDIFILENEW

M e n u I t em " & O p e n . . . " , C M_M D I F I L E 0 P E N

Menuitem "&Save", CM_FILESAVE
Menultem "Save &As ... ", CM_FILESAVEAS

Menuitem "&Close", CM_CLOSE
Menuitem "C&lose all", CM_CLOSECHILDREN

Menuitem SEPARATOR

Menuitem "New A&pplication .. ", CM_APPL
Menuitem SEPARATOR

Menu!tem "E&xit", CM_EXIT
END

POPUP "&Edit"

BEGIN
Menuitem "&Undo\aAlt+BkSp", CM_EDITUNDO

Menuitem SEPARATOR

Commando Windows Programming 209

Objects of Desire

Menultem "&Cut\aShift+Del", CM_EDITCUT
Menultem "C&opy\aCtrl+Ins", CM_EDITCOPY

Menuitem "&Paste\aShift+Ins", CM_EDITPASTE
Menuitem "&Delete\aDel", CM_EDITDELETE
Menuitem "C&lear All\aCtrl+Del", CM_EDITCLEAR

END

POPUP "&Search"

BEGIN
Menuitem "&Find ... ", CM_EDITFIND

Menuitem "&Replace ... ", CM_EDITREPLACE
Menultem "&Next\aF3", CM_EDITFINDNEXT

END
POPUP "&Window"

END

BEGIN

MENUITEM "&Tile", CM_TILECHILDREN,
MENUITEM "&Cascade", CM_CASCADECHILDREN,

MENUITEM "Arrange &Icons", CM_ARRANGEICONS,

MENUITEM "C&lose All", CM CLOSECHILDREN
END

#include <fileacc.rc>
#include <inputdia.dlg>

Listing 5-7. OWLTWIN.TPL

Template for ordinary application wlTWindow subclass
II Program "1 Created "d by "7
I I II 6

#include <owl.h>

210 Commando Windows Programming

Objects of Desire

I* Application class */

class 11 2 : public TApplication
{

public:

' 1 2CLPSTR n,HINSTANCE hi,HINSTANCE hprev,

LPSTR cmd,int show)

: TApplicationCn,hi,hprev,cmd,show) {};

virtual void InitMainWindow<>;

virtual void InitlnstanceC>;
};

I* Window class */

class • 1 3 : public TWindow
{

public:

' 1 3CPTWindows0bject parent, LPSTR title>;
I* Add your methods here ... *I

};

11 3:: 11 3CPTWindows0bject parent, LPSTR title)

: TWindowCparent,title)
{

I* Set menu */

AssignMenuC" 11 4">;

I* Do other window constructor things here ••. *I
}

I* Create main window */

Commando Windows Programming 211

Objects of Desire

void ''2::InitMainWindow()
{

MainWindow=new ''3CNULL,"' '5");
}

I* Load accelerators. Doesn't matter if there isn't

one *I

void ''2::Initlnstance0
{

TApplication::Initlnstance();

HAccTable=LoadAccelerators(hlnstance,"YourAccel");

II Other init here ...
}

int PASCAL WinMain(HINSTANCE hlnstance, HINSTANCE
hPrevlnstance, LPSTR lpCmdLine, int nCmdShow)

{

''2 Main("' '1",hlnstance,hPrevlnstance,

lpCmdLine,nCmdShow);

Main.Run<>;

return Main.Status;
}

Listing 5-8. OWLMDI. TPL

Template for MDI application wlTWindow subclass

II Program "1 Created "d by "7
I I II 6

#include <owl.h>

#include <string.h>

212 Commando Windows Programming

Objects of Desire

#include <filedial.h>

I* Application class *I

class ''2 : public TApplication
{

public:

''2CLPSTR n,HINSTANCE hi,HINSTANCE hprev,

LPSTR cmd,int show>
: TApplicationCn,hi,hprev,cmd,show) {};

virtual void InitMainWindowC>;

virtual void InitlnstanceC>;
};

class MDIFrame
{

public:

public TMDIFrame

MDIFrameCLPSTR title) : TMDIFrameCtitle,"''4") {};
virtual PTWindowsObject CreateChildC>;

virtual void NewFileCRTMessage Msg) =
[CM_FIRST + CM_MDIFILENEWJ;

virtual void OpenFileCRTMessage Msg) =
rcM_FIRST + CM_MDIFILEOPENJ;

};

I* Main child window class *I

class ''3 : public twindow
{

public:

Commando Windows Programming 213

Objects of Desire

''3CPTWindowsObject parent, LPSTR title>;

I* Add your methods here ... *I

};

void MDIFrame::NewFileCRTMessage)
{

GetApplication()->MakeWindow(new ''3Cthis,"' '5"));
}

I* Respond to "Open" command by constructing, creating,

and setting up a new MDI child*/

void MDIFrame::OpenFileCRTMessage)
{

char filename[66J;

if (GetApplication()->ExecDialog(new

TFileDialog(this, SD_FILEOPEN,

strcpy(filename, "*·*"))) == IDOK >

GetApplication()->MakeWindow<new

''3Cthis,filename));
}

PTWindowsObject MDIFrame::CreateChild()
{

return GetApplication()->MakeWindow(

new ''3Cthis,""));
}

''3::''3CPTWindows0bject AParent, LPSTR ATitle)

214 Commando Windows Programming

Objects of Desire

{

}

TWindowCAParent,ATitle)

void ''2::InitMainWindow()
{

MainWindow=new MDI Frame("' '1");

!**!
./*Set ChildMenuPos to correct number here •.. */

CCMDIFrame *>MainWindow)->ChildMenuPos=3;
}

void ''2: :InitlnstanceO
{

TApplication::InitlnstanceC>;
!**/
I* Set your accelerator table here *I

HAccTable=LoadAccelerators(hlnstance,"Youracc");
}

int PASCAL WinMainCHINSTANCE hlnstance, HINSTANCE
hPrevlnstance,

LPSTR lpCmdLine, int nCmdShow)
{

''2 Main ("' '1", hlnstance, hPrevlnstance,
lpCmdLine, nCmdShow);

Main.Run<>;
return Main.Status;
}

Commando Windows Pr.ogrammlng 215

Quick on the Draw:

Programming Visually

WHAT'S IN THIS CHAPTER

This chapter familiarizes you with how to use visual
programming tools (especially Microsoft's Visual C++)

to create Windows applications.

PREREQUISITES

To get the most from this chapter, you should have a
working knowledge of C++ and basic Windows

programming.

Commando Windows Programming 217

Quick on the Draw: Programming Visually

Several vendors offer products that generate code from
your sketches of windows, dialogs, and menus. Some of
these products do very little; others are quite ambitious.

Borland' s ProtoGen, for example, allows you to create a
main window, menu, and dialog boxes. Protogen will cre­
ate a skeletal application for C or Borland's OWL (see
Chapter 5). This skeleton has the code necessary to create
your window and dialogs. ProtoGen also writes code that
allows menu items and dialog buttons to activate dialogs.
You have to write all remaining code yourself.

Perhaps the best-known product of this type is the
Microsoft Visual C++ (VC++) environment. The entire
user interface of this product is geared toward visual
Windows programming. Still, there is a price to pay:
VC++ only supports visual programming with the
Microsoft Foundation Classes (MFC), a C++ class library
that partially replaces the Windows APL If you don't
want to use MFC, VC++ is just the Microsoft CIC++ com­
piler with a Windows-based front end.

What VC++ Isn't
While Microsoft calls VC++ a "visual" language, it isn't
actually very visual. If you are expecting a Visual Basic
environment or something similar to the NeXTSTEP
Interface Builder, you will be disappointed.

Most visual products treat your user interface as the cen­
tral part of the program-code resides in user interface
elements or in objects that link to interface elements.
VC++ is code centered. As with any resource editor, you

218 Commando Windows Programming

Quick on the Draw: Programming Visually

visually design dialogs, menus, and other resources.
VC++ allows you to automatically link objects and inter­
faces, but the process is not truly visual.

Elements of VC++

The core of VC++ is the Visual Workbench. The work­
bench is a Windows text editor and project manager. It
contains a project manager that uses standard make files
to build your program. You can modify files and use a
simple debugger from within the text editor. The work­
bench also provides a source browser that allows you to
cross-reference your code.

The App Studio is Microsoft's resource editor. You can
create and modify dialogs, menus, bitmaps, tables, etc.
Although App Studio is a separate program, it works best
if you launch it from the workbench. The studio is ade­
quate, but it is missing some things that other vendors
offer (text entry in icons, for example).

So far, none of these tools are significantly different from
other C/C++ compilers. However, VC++ also comes with
MFC and with special tools dedicated to it.

The first MFC tool you will encounter is App Wizard.
This is essentially a super editor macro that builds skele­
tal programs for you. You supply the program's name,
select some options (see Figure 6-1), and App Wizard
copies some boilerplate code into a directory substituting

appropriate names throughout. Notice that App Wizard
doesn't write any unique code; it only selects chunks of

Commando Windows Programming 219

Quick on the Draw: Programming Visually

boilerplate code and substitutes text strings in the right
places.

After App Wizard builds your files, you must edit them
to provide the functions you need. You'll also need to
modify the default resources App Wizard supplies. App
Wizard uses its own indentation style. If you use a differ­
ent style, you will either have to manually change it or
change the way you indent code. On the other hand, if
you don't make changes, you can easily tell what code

App Wizard wrote and what code you added.

Figure 6-1. App Wizard option dialog

MFC AppWizard

Options

LJ Multiple Document Interface

LJ Initial !oolbar

o !erfo:t:i~ii:~:~~:::e:~fof:e:~:~Y.:~~:~;
D Custom :!l_BX Controls
D Context Sensitive H!!.IP
D !!LE Client

D El[ternal Makefile
LJ Generate Source Comments

Drixe:

I 8 d: drive-d w

OK

Cancel

.!:!elp

I
I
I

220 Commando Windows Programming

Quick on the Draw: Programming Visually

While adding resources, you will find Class Wizard-the
final major component of VC++-useful. Class Wizard
allows you to connect user interface items and Windows
messages to objects in your program. Like App Wizard,
Class Wizard doesn't really write any real code. It just
leaves function stubs in your program, which you must
complete. Even a simple action like popping up a dialog
in response to a menu click will require you to write
code.

Features Offered by App Wizard

App Wizard gives a basic MFC application many features
for free. For example, you can get a tool bar and status
bar with practically no effort. You can also use Visual
Basic 1.0 VBX controls (see the sidebar C++ Meets Basic).
App Wizard also knows how to build basic Multiple
Document Interface (MDI) and Object Linking and
Embedding (OLE) applications.

App Wizard can put basic printing code in your application.
However, in nearly all cases, you will want to modify its
code to properly scale the printed image.

MFC provides several predefined classes to create
common documents like forms and text editors. Unfortu­
nately, App Wizard doesn't know about these classes. If
you want to use them, you have to modify App Wizard's
code. (You'll see how shortly.)

Commando Windows Programming 221

Quick on the Draw: Programming Visually

MFC in Detail

MFC applications all have a similar architecture. MFC
programs center around documents. An MFC document
is a data structure that the user needs to view and possi­
bly modify.

Every MFC program has:

• Exactly one application object (similar to WinMain).

• A Frame window object (controls the application window).

• One or more document templates (controls document cre­
ation).

• One or more document objects (contains open documents).

• One or more view objects (displays a document and accepts
commands that relate to it).

You need one document template for each type of docu­
ment your program handles. Each open document has its
own document object and may have one or more views.
With multiple views, you can have several windows open
on one document simultaneously.

MFC provides root classes for these objects. Ordinarily,
you (or App Wizard) will subclass them to create similar
objects that have additional functions specific to your
program.

If this sounds like the traditional Windows programming
model, that's because it is. If you recall Chapter 1, docu­
ment objects correspond to the application model; the

222 Commando Windows Programming

Quick on the Draw: Programming Visually

view object stands in for a traditional program's update
routine and some program logic.

Managing MFC Documents

Most MFC objects derive from a common ancestor,
CObject. CObject provides some basic runtime support
for objects. Perhaps the most important operation
CObject supports is serialization-that is, reading and
writing representations of objects. You can serialize an
object to a disk file, for example, and later read the object
back from the disk. (You can also serialize an object over
a network connection or modern to another prograrn­
but that is another subject.)

MFC uses serialization as its primary means of reading
and writing documents to disk. When you open a docu­
ment, MFC reads the file as a serialization archive. This
creates copies of all the objects in the document in the
same state in which they were saved. As long as each
document object you use knows how to read and write
itself to an archive (a special type of stream), MFC will

take care of your file open and save commands automat­
ically.

Message Handling in MFC

Traditional Windows programs use giant switch state­

ments to process incoming messages. For example:

switch (cmd)
{

case WM_COMMAND:

Commando Windows Programming 223

Quick on the Draw: Programming Visually

case WM_CREATE:

}

MFC dispenses with switch-statement message dispatch­
ers. Instead, MFC and Class Wizard automatically man­
age message maps for you. For example, you can tell
Class Wizard to route all WM_ CREATE messages to a
member function in an object (OnCreate()). For

WM_ COMMAND messages, you can select specific IDs
to associate with a member function. For example, when
the user selects a menu item with an ID of IDM_CROP,
the OnCrop() function can automatically get control.

Using Dialog Boxes

Class Wizard allows you to easily use dialog boxes from
MFC. The idea is that each control in a dialog box (except
buttons) can have a corresponding variable in your dia­
log object (derived from CDialog). When you start the
dialog, it sets the values for the fields from these vari­
ables. When a modal dialog ends, MFC automatically
transfers the values back into the variables. For a mode­
less dialog, you can force a transfer either way, any time.

MFC can also validate values in dialog fields. You could
specify that an edit field only accept integers between 0
and 100, for example. MFC will automatically enforce the
range at runtime.

224 Commando Windows Programming

Quick on the Draw: Programming Visually

The Bottom Line

If you moved from C to C++ expecting to simplify pro­
gramming, you were probably disappointed. Sure, there
are advantages to writing in C++ (encapsulation and
object reuse, for example). But, your C++ programs prob­
ably are not substantially simpler to create than compara­
ble C programs. The trick to increasing productivity is to
reuse existing objects.

Migrating from the SDK to MFC is similar to moving
from C to C++. MFC is little more than an object-oriented
Windows APL Although there are some advantages, your
programs won't just write themselves. However, you can
get some relief from Microsoft's predefined view classes.
Also, as time passes, you should be building your own
library of useful objects.

Three Special Views
Like other class libraries (for example, Borland's OWL in
Chapter 5), MFC provides some predefined classes to

simplify certain types of programs. MFC supplies three
interesting view objects: CScrollView, a window that
automates scrolling; CEditView, a text editor; and
CFormView, a dialog-style form.

The CScrollView object automates scroll bar handling for
you. You can ask it to scroll a large document in a small
window or scale the window to fit. CScrollView manipu­
lates the origin of your drawing surface so that you sim­
ply draw the entire document regardless of the scroll bar
position. While this can be handy, it also may be too slow
to be of use for many programs.

Commando Windows Programming 225

Quick on the Draw: Programming Visually

CEditView is unusual because it essentially combines the
document object and the view object-that is, the

CEditView object holds the edited text and displays it.
You have to create a small document object that delegates
all of the work to the view object. (You'll see how soon.)

CForm View allows you to create form-based programs
using a dialog template. This process is similar to the
effect achieved by PHONE.C (see Chapter 3). Unlike
PHONE.C, however, a CForm View document is a proper
window. This allows MFC to automatically provide scroll
bars, for example.

A Simple Example

GROUPEXE is a complete MFC application that uses the
CEditView class. It takes a list of programs and executes
them on demand. App Wizard built most of it (see Table
6-1). Only the lines marked with the grey shadows in the
listings were added or modified. See the sidebar Creating
GROUPEXE for more details on using the visual tools of
VC++ to duplicate GROUPEXE.

Table 6-1. GROUPEXE Source Files.

File Contents

GROUPEXE.H Header

GROUPEXE.CPP Main framework file

Listing

Listing 6-1

Listing 6-2

Manual
Changes

None

None

(Cont.)

226 Commando Windows Programming

Quick on the Draw: Programming Visually

Table 6-1. GROUPEXE Source Files (Continued)

Manual
File Contents Listing Changes

GROUPDOC.H Document object header Listing 6-3 Yes

GROUPDOC.CPP Document object Listing 6-4 Yes

GROUPVW.H View object header Listing 6-5 Yes

GROUPVW.CPP View object Listing 6-6 Yes

RUNSTATE.H Header for dialog Listing 6-7 Yes

RUNSTATE.CPP Dialog box code Listing 6-8 Yes

MAINFRM.H Main window header Listing 6-9 None

MAINFRM.CPP Main window object Listing 6-10 None

STDAFX.H MFC header Listing 6-11 None

GROUPEXE.RC App Studio resources Listing 6-13 None

RESOURCE.H Other resources Listing 6-14 None

GROUPEXE.RC2 Non-App Studio resources Listing 6-15 None

GROUPEXE.DEF Linker DEF file Listing 6-16 None
Note: See the Sidebar "Creating GROUPEXE" for more details. In the listings, a grey
shadow indicates areas of code that require manual changes.

GROUPEXE uses CEditView to provide a complete text
editor. Since App Wizard doesn't know how to create a
CEditView object, your first task is to change all occur­
rences of CView to CEditView in GROUPVW.H and
GROUPVW.CPP (Listings 6-5 and 6-6).

Although CEditView is the true document, MFC still
requires a separate document object. GROUPDOC.CPP

Commando Windows Programming 227

Quick on the Draw: Programming Visually

(Listing 6-4) provides a simple surrogate document that
passes all of its work to the Group View object.

Notice that GroupDoc's Serialize function is unusual.
Ordinarily, documents read and write their internal rep­
resentations to a binary format file. Text-editing pro­
grams like GROUPEXE often want to read and write
ASCII files. The SerializeRaw() function of CEditView
provides this capability.

GROUPEXE uses a dialog box to set the mode it uses
when running programs (see Figure 6-2 and Listing 6-8).
You can easily sketch this dialog box with App Studio.
(The dialog box's ID is IDD_STATEDLG.) Then, using
Class Wizard, you can create a new object to represent
the dialog. First, derive CRunStateDlg from the standard
CDialog class. Then, attach the radio buttons to the runstate

Figure 6-2. GROUPEXE options dialog

GROUPEXE Windows Appllcatlon - GROUPl .GEX

GROUPl.GEX

228 Commando Windows Programming

Quick on the Draw: Programming Visually

variable in the new class. This variable takes on values
from 0 to 2, depending on which radio button is active.

You can also use A pp Studio to add the two nonstandard
menu items (ID_EXEC and ID_EXECOPT). Use Class
Wizard to automatically put function stubs in your view
object to correspond with these menu items. Note that
you must write the code that makes the actions happen­
no matter how simple they are.

Commando Windows Programming 229

Quick on the Draw: Programming Visually

Creating GROUPEXE

230

If you want to build GROUPEXE yourself, you can
use App Wizard and Class Wizard to create the
source files. These instructions assume you have
some basic familiarity with VC++'s tools. Just fol­
low these steps:

1. Run App Wizard.

2. From the initial App Wizard dialog box, enter
GROUPEXE as the project name and select the
directory you want to use (see below).

MFC AppWizard

Project.t!_ame: ~jgr_ou_pe_xe __ ~ :==O=K ===:
Project Path Cancel

d:\ groupexe\groupexe.mak Help

D_irectory:
I rprti~n·s·~·~·~·t

LI p1oposal

Li pwrscoi!
Li run286
Li vwin
Li vwinnt

~ I !;lasses ...

New ~ubdirectorJ':

lgroupexe

Dril!.e:

I liS d: drive-d [i)

App Wizard main dialog for GROUPEX

3. Push App Wizard's Options button. Turn off
the checkbox that enables printing and print
preview. Return to the main dialog by press­
ing the OK button.

Commando Windows Programming

Quick on the Draw: Programming Visually

4. Push the Classes button. Change the class
names as follows:

Change

CGroupexeApp

CGroupexeDoc

CGroupexeView

To

CGroupApp

CGroupDoc

CGroupView

Select the CGroup View class and set the file
extension to .GEX. Change the document
name from Groupe to Group. Return to the
main dialog by pressing the OK button.

5. Press the OK button followed by the Create
button. App Wizard will generate most of the
source files.

6. Although you told App Wizard you didn't
want printing code, it fails to remove the
print icon from the toolbar .Edit MAINFRM.
CPP and change ID _FILE_PRINT to ID _EXEC
in the buttons[] array. You can also invoke
App Studio to modify the toolbar's printer
bitmap (see below).

f.dit !liew Window

.Qpen... Ctrl+O

.!;.lose

.S.ave Ctrl+S
Save{!,s •••
.Execute
Execute Oatlons •..

GROUPEXE file menu

Commando Windows Programming 231

Quick on the Draw: Programming Visually

7. Use App Studio to modify the IDR_GROUP­
TYPE File menu to match the one shown below.
Set the identifiers of the new menu items to
ID_EXEC and ID_EXECOPT. Use "Execute
programs in list" and "Set execution options"
as prompts for the new menu items.

GROUPEXE too/bar

8. Activate Class Wizard (use App Studio's
Resource menu) and connect ID _EXEC' s
COMMAND message to the OnExec() func­
tion in the GroupView object (use Class Wiz­
ard's Add Function button). Then, connect
ID_EXECOPT to OnExecOpt(). Close Class
Wizard with the OK button.

9. Use App Studio to create a dialog similar to
the one in Figure 6-2. Use IDD_STATEDLG as
the dialog ID. The radio buttons should have
IDs of IDC_NORMAL, IDC_MAX, and
IDC_MIN. Only the IDC_NORMAL button
should have its group and tab-stop options
set.

10. Start Class Wizard from the App Studio
Resource menu and create the CRunStateDlg
class to represent the dialog. Enter CRunState­
Dlg in the Class Name field and press the Cre­
ate Class button.

232 Commando Windows Programming

Quick on the Draw: Programming Visually

11. Use Class Wizard's Edit Variables button to
attach the first radio button (IDC_NORMAL)
to the runstate variable in the CRunStateDlg
class. Use the Add Variable button, set the
member variable name to runstate, and press
OK. Then, press Close and OK to return to
App Studio.

12. Edit the new files so that they match Listings
6-1 to 6-16. The areas you need to change are
shown in a grey shade. Due to the listing for­
mat, your files may have different line breaks
and comments from the listings. These differ­
ence will not affect your program.

Commando Windows Programming 233

Quick on the Draw: Programming Visually

Is VC++ for You?
Of course, VC++ is too complex to cover in one short
chapter. Still, you now should understand how VC++
and MFC work together. If you are comfortable with C++
and willing to give us the standard SDK, you may be
very happy with VC++.

However, VC++ isn't a true commando tool. It isn't much
easier to write an MFC application than to write a con­
ventional SDK program. You do get the advantages of
C++ (class reuse, for example), but most programs that
are simple to write for MFC are simple to write with the
SDK (with a few exceptions).

On the other hand, MFC does simplify advanced features
like MDI, OLE, and print preview. However, the result­
ing programs are not simple-just simpler than their SDK
counterparts.

234 Commando Windows Programming

Quick on the Draw: Programming Visually

C++ Meets Basic

One of the most touted features of VC++ is its ability
to use Visual Basic VBX controls. VBX controls can
be simple (three-dimensional push buttons) or com­
plex (multimedia controllers-or even spread­
sheets). With the surge in popularity of Visual
Basic, many vendors now offer VBX controls.

Like ordinary controls, you can create VBX controls

dynamically at runtime or design them into dialogs
using App Studio. However, be aware of the
following:

• VC++ only supports VBXs that work with Visual
Basic 1.0. VC++ can't use version 2.0 controls.

• To allow VBX controls to run, MFC emulates a por­
tion of Visual Basic. However, this emulation is not
complete. Some controls may not work; others may
behave erratically.

• If you distribute applications that use VBX controls,
you must include the . VBX files that contain them.
Different vendors may have different policies on
redistribution of their VBX controls.

Once you install a VBX control into App Studio,
you can use it just like any other control. A VBX
control's property sheet has an extra page that con­
tains control properties. For example, the

Commando Windows Programming 235

Quick on the Draw: Programming Visually

236

CIRC3.VBX control that comes with VC++ has
properties like Caption and CircleShape. The Cap­
tion property determines what text the circle will
display. CircleShape causes the control to be per­
fectly circular if it is 0 and elliptical if it is 1.

You can set control properties from App Studio or
from inside your program. If the control is in a dia­
log, you need to use Class Wizard's Add Variables
command to set a pointer to the VBX control in
your program. Then, you can use the
SetNumProperty() and SetStrProperty() member
functions to change any properties you like. You
also can assign variables to specific properties
using Class Wizard. Each VBX control defines dif­
ferent properties; you'll need the control's docu­
mentation to learn about its properties.

VBX controls also have their own messages (like
VBN_CLICKIN, for example). Class Wizard can
associate these messages with functions just as it
does for ordinary Windows messages. Again, each
control defines its own messages, so you'll need its
documentation to learn about a particular control.

Commando Windows Programming

Quick on the Draw: Programming Visually

Listing 6-1. GROUPEXE.H

II groupexe.h : main header file for the GROUPEXE

II application

II

#ifndef __ AFXWIN_H __

#error include 'stdafx.h' before including this file for PCH

#endif

#include "resource.h" II main symbols

lll

II CGroupApp:

II See groupexe.cpp for the implementation of this class

II

class CGroupApp
{

public CWinApp

public:

CGroupApp();

II Overrides

virtual BOOL Initinstance<>;

II Implementation

ll{{AFX_MSGCCGroupApp)

afx_msg void OnAppAboutC>;

II NOTE - the ClassWizard will add and remove member

II functions here. DO NOT EDIT what you see in these

Commando Windows Programming 237

Quick on the Draw: Programming Visually

II blocks of generated code !

};

I /} } A F X_M S G

DECLARE_MESSAGE MAP()

lll

Listing 6-2. GROUPEXE.CPP

II groupexe.cpp : Defines the class behaviors for

II the application.

#include "stdafx.h"

#include "groupexe.h"

#include "mainfrm.h"

#include "groupdoc.h"

#include "groupvw.h"

#ifdef DEBUG

#undef THIS FILE
static char BASED_CODE THIS FILE[] = __ FILE __ ;

#endif

lll

II CGroupApp

BEGIN_MESSAGE_MAP(CGroupApp, CWinApp)

ll{{AFX_MSG_MAPCCGroupApp)

ON_COMMANDCID~APP~ABOUT, OnAppAbout)

238 Commando Windows Programming

Quick on the Draw: Programming Visually

II NOTE - the ClassWizard will add and remove

II mapping macros here.

II DO NOT EDIT what you see in these blocks

II of generated code !

I /} } A F X_M S G_M AP

II Standard file based document commands

ON_COMMANDCID_FILE_NEW, CWinApp::OnFileNew)

ON_COMMANDCID_FILE_OPEN, CWinApp::OnFileOpen)

END_MESSAGE_MAP()

lll//

II CGroupApp construction

CG roupApp:: CG roupApp ()
{

}

II TODO: add construction code here,

II Place all significant initialization

II in Initlnstance

ll/111111

II The one and only CGroupApp object

CGroupApp NEAR theApp;

11111111111/lllllllllllllllllllllllllllllllllllll

II CGroupApp initialization

BOOL CGroupApp::Initlnstance()
{

Commando Windows Programming 239

Quick on the Draw: Programming Visually

II Standard initialization

II If you are not using these features and

II wish to reduce the size of your final

II executable, you should remove from the following

II the specific initialization routines you

II do not need.

II set dialog background color to gray

SetDialogBkColor();

II Load standard IN! file options (including MRU)

LoadStdProfileSettings();

II Register the application's document templates.

II Document templates serve as the connection between

II documents, frame windows and views.

AddDocTemplate(new CMultiDocTemplateCIDR_GROUPTYPE,

RUNTIME_CLASS(CGroupDoc),

II standard MDI child frame

RUNTIME_CLASSCCMDIChildWnd),

RUNTIME_CLASSCCGroupView)));

II create main MDI Frame window

CMainFrame* pMainFrame = new CMainFrame;

if (!pMainFrame->LoadFrame(IDR_MAINFRAME))

return FALSE;

pMainFrame->ShowWindow(m_nCmdShow);

pMainFrame->UpdateWindow();

m_pMainWnd = pMainFrame;

II enable file manager drag/drop and DDE Execute open

240 Commando Windows Programming

Quick on the Draw: Programming Visually

m_pMainWnd->DragAcceptFiles<>;

EnableShellOpen<>;

RegisterShellFileTypes();

II simple command line parsing

if (m_lpCmdLine[OJ == '\0')
{

}

II create a new (empty) document

OnFileNew();

else if ((m_lpCmdLine[OJ == '-' I I
m_lpCmdLine[OJ == 'I') &&

(m_lpCmdLine[1J == 'e' I I
m_lpCmdLine[1J == 'E'))

{

II program launched embedded - wait for DDE or OLE open
}

else
{

II open an existing document

OpenDocumentFile(m_lpCmdLine);
}

return TRUE;
}

lllllllllllllllll!lllllllllllllllllllllllllllllll

II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

Commando Windows Programming 241

Quick on the Draw: Programming Visually

{

public:

CAboutDlgC);

II Dialog Data
ll{{AFX_DATACCAboutDlg)

enum { IDD = IDD_ABOUTBOX };
ll}}AFX_DATA

II Implementation
protected:

};

II DDXIDDV support

virtual void DoDataExchangeCCDataExchange* pDX);
ll{{AFX_MSGCCAboutDlg)

II No message handlers
ll}}AFX_MSG

DECLARE_MESSAGE_MAPC>

CAboutDlg::CAboutDlg() : CDialogCCAboutDlg::IDD)
{

}

ll{{AFX_DATA_INITCCAboutDlg)
ll}}AFX_DATA_INIT

void CAboutDlg::DoDataExchangeCCDataExchange* pDX)
{

242

CDialog::DoDataExchangeCpDX>;
ll{{AFX_DATA_MAPCCAboutDlg)
ll}}AFX_DATA_MAP

Commando Windows Programming

Quick on the Draw: Programming Visually

}

BEGIN_MESSAGE_MAPCCAboutDlg, CDialog)

//{{AFX_MSG_MAPCCAboutDlg)

II No message handlers

I/}} AF X MS G_M AP

END_MESSAGE_MAPC)

II App command to run the dialog

void CGroupApp::OnAppAbout()
{

}

CAboutDlg aboutDlg;

aboutDlg.DoModalC>;

/////////////////II//////////////////////////////

II CGroupApp commands

Listing 6-3. GROUPDOC.H

II groupdoc.h : interface of the CGroupDoc class

II

//////////////////////////l/////l///////I////////

class CGroupDoc : public CDocument
{

protected: // create from serialization only

CGroupDocC>;

DECLARE_DYNCREATECCGroupDoc)

II Attributes

Commando Windows Programming 243

Quick on the Draw: Programming Visually

public:

II Operations

public:

II Implementation

public:

virtual -cGroupDoc();

II overridden for document ilo

virtual void Serialize(CArchive&

#ifdef DEBUG

ar);

virtual void AssevtValid() const;

virtual

#endif

protected:

void

virtual BOOL

Dump(CDumpContext&

OnNewDocument<>;

II Generated message map functions

protected:

ll{{AFX_MSG(CGroupDoc)

de) con st;

II NOTE - the ClassWizard will add and remove member

II functions here. DO NOT EDIT what you see in these

II blocks of generated code !

lf}}AFX MSG

DECLARE MESSAGE_MAP()

};

lll

Listing 6-4. GROUPDOC.CPP

II groupdoc.cpp : implementation of the CGroupDoc class

244 Commando Windows Programming

Quick on the Draw: Programming Visually

II

#include "stdafx.h"

#include "groupexe.h"

#include "groupdoc.h"

#ifdef _DEBUG
#undef THIS_FILE

static char BASED_CODE THIS_FILE[] = __ FILE __ ;

#end if

///II//

II CGroupDoc

IMPLEMENT_DYNCREATECCGroupDoc, CDocument)

BEGIN_MESSAGE_MAPCCGroupDoc, CDocument)
//{{AFX_MSG_MAPCCGroupDoc)

II NOTE - the ClassWizard will add and

II remove mapping macros here.

II DO NOT EDIT what you see in these blocks

II of generated code !

I/} }A FX_MSG_MAP

END_MESSAGE_MAP()

//////////////////////////////////////ll///////ll

II CGroupDoc construction/destruction

CGroupDoc::CGroupDoc()

Commando Windows Programming 245

Quick on the Draw: Programming Visually

{

II TODO: add one-time construction code here
}

CGroupDoc::-CGroupDoc()
{

}

BOOL CGroupDoc::OnNewDocument()
{

}

if C!CDocument::OnNewDocument())

return FALSE;

II TODO: add reinitialization code here

II CSDI documents will reuse this document)

return TRUE;

lll
II CGroupDoc serialization

void CGroupDoc::SerializeCCArchive& ar)
{

POSITION tmppos;

C.Edi tView 1t,cv· . ·. . .. , , . ,
I* Get first·. vi'ew. ·•1

t.!llppos=Getfi rstVi ewPo~i t 1 on();

·. cv=<ci;dftView. *>GetNe'xtView<tmppo$);

I* Make it serialhe in ASC)I *I

.cv-:->Se'r ia l i zeRa w.<a r);

246 Commando Windows Programming

Quick on the Draw: Programming Visually

}

lll
II CGroupDoc diagnostics

#ifdef _DEBUG

void CGroupDoc::AssertValid() canst
{

CDocument::AssertValidC>;
}

void CGroupDoc::DumpCCDumpContext& de) canst
{

CDocument::DumpCdc);
}

#endif //_DEBUG

lll
II CGroupDoc commands

Listing 6-5. GROUPVW.H

II groupvw.h : interface of the CGroupView class

II
lll

~,,~1-;j;.~'d't,$1~Q:,~:l),,1:19il:·'.:'•1':'r):\iblJ·i{,:¢~(t;f:t:V';:i ~ti,
{

protected: II create from serialization only

Commando Windows Programming 247

Quick on the Draw: Programming Visually

CGroupViewC>;
DECLARE_DYNCREATECCGroupView)

II Attributes

pf9t e:~.~et;
ll curt"erit run ~·tate (normal, 'lll'i-n; ni!!JX >

public:

CGroupDoc* GetDocumentC>;

II Operations

public:

II Implementation

public:
virtual -cGroupViewC>;

II overridden to draw this view

virtual void OnDrawCCDC* pDC);
#ifdef DEBUG

virtual void AssertValidC) canst;

virtual void DumpCCDumpContext& de) canst;

#endif

II Generated message map functions

protected:

248

ll{{AFX_MSGCCGroupView>

afx_msg void OnExecC>;

afx_msg void OnExecoptC>;
//}}AFX_MSG

Commando Windows Programming

Quick on the Draw: Programming Visually

DECLARE MESSAGE MAP()
} . ,

#ifndef DEBUG II debug version in groupvw.cpp

inline CGroupDoc* CGroupView::GetDocument()

{ return (CGroupDoc*) m_pDocument; }

#endif

lll

Listing 6-6. GROUPVW.CPP

II groupvw.cpp : implementation of the CGroupView class

II

#include "stdafx.h"

#inelude <etype.h>

#include "groupexe.h"

#include "groupdoc.h"

#include "groupvw.h"

#in~lude "runstate.h"

#ifdef DEBUG

#undef THIS FILE

static char BASED CODE THIS FILE[] = __ FILE __ ;

#endif

111

II CGroupView

Commando Windows Programming 249

Quick on the Draw: Programming Visually

BE(i·X-N.;.JUSSA'GELMAP(CGr9up\ti ewj .· CEd i:tV'iew)
' •' > '· • • ' ', '' • ' - • •• • •

//{{AFX_MSG_MAPCCGroupView)

ON_COMMANDCID_EXEC, OnExec)

ON_COMMANDCID_EXECOPT, OnExecopt)
//}}AFX_MSG_MAP

END MESSAGE_MAP{)

///l//llllllllllllllllll///l/llll/l/l/ll/llllllll
II CGroupView construction/destruction

CGroupView::CGroupView()
{

... ·:·:·· · .. · .. ' . .ruAsta:te_=Q;:
}

CGroupView::NCGroupView<>
{

}

l/ll/llllllllllllllllllllll//l//llllll/l/l//lllll
II CGroupView drawing

void CGroupView::OnDrawCCDC* pDC)
{

· _· CEdi.tVi ew: : Onf) rawJpl> C);
}

250 Commando Windows Programming

Quick on the Draw: Programming Visually

////II///

II CGroupView diagnostics

#ifdef DEBUG

void CGroupView::AssertValid() const
{

CEditView::AssertValidC);
}

void CGroupView::Dump(CDumpContext& de) const
{

CEditView::Dump(dc);
}

II non-debug version is inline
CGroupDoc* CGroupView::GetDocument()
{

}

ASSERTCm_pDocument->
IsKindOfCRUNTIME_CLASS(CGroupDoc)));

return CCGroupDoc*) m_pDocument;

#endif //_DEBUG

///

II CGroupView message handlers

void CGroupView::OnExec()
{

Commando Windows Programming 251

Quick on the Draw: Programming Visually

):.':··:.;rs;·, .. ::.;;?~.:··£~'.h:'8'·~: .. :~.~1't:·4&•.:t .. ki'fJ>'u~p·;:
;•····.~}".i\F:··tss-7-:1ir(~;;j!,.~~:,f¢'..Q:irii1P)·~:~fo:'·~i~;~.,f';'~;c·,1:·'.t'.¥·~>;y@:e.t.t;:t~~~i~~'rtt··~·1:;

·• ·~(f:~:~:;::<f!f::~)tn'~::~YJL,;i
'1+:t'~f?'.'f·.'.J'~~,··.;~'.~iJ~t::Y:~:ir~:r:q'ff~·t,:~f'.~·~~¥'Qt~~-z.~;g;~Jt'.~~~#-:<':<·r·iji\'~t~.;t.•#~1·}?

;·t'.~:-s.w;:..s11~\i~A:X:t,'~1:i~.l);'.t~"J;$:ff'Q'.WH,~t4 ·~Kl(Z·E:D. r;·

~ii,@)\:;.::;'.\;(\;>:l·~~:~:J;:d~i':t:c.~fi~<>. ;·~~:~t.i·n'e$"ti1'hP:+.+··~ 'D:t1 f ·i·.~·.;·~·-~;f·.~ bU'.f. >,;> ;:

';i •. ·, ',•\ ·:··•\'•::1:'T•:.' .. >>·.1· .. r:·• ·t.!~'b:u,:f~.·=.t•;:;·.t.•'~···.r~:~:ri -e:~r fi((.~'.:;t
::?·• ;>, ,iiti\;'f,p~tJ'.~'.:f:i'

::•':f: ':\;>i't'.~:qif'~J;l~} i\"'.1ft'.~:i;' ·:.:l]:':·:~.~·~Jif:l;~~/;i,d:.(j;,~·rf 1'.l,·:~N:Ut; !,;'.;'te ~lfl.i'.n'ff~ e'!•

. ~hl~:~· .:\J~:~Y'tl>:~&;i. ~,'.P.il!i¢.,~>~ .. ~~ltµ .. ~·p'}:> •. · t>~·'tli.:t ,f;·
'i'\t::·,,,;:·:>;>W;:·.:J>.;)~.:t.f:::::~··.~.~·#~:P-~·~'·i\.~M.·•:>·.;•'.c.,f'!:;t:~~.~.~·~;:

·.f.::~~b::;:y<i1J:'.? Y':•·i'1'~:S~Vi;•p:~;*,#~~fitt·:f~i'~·#,l':ii~·*~·.~\~·f~ll:•~·

}

·: ::.•;:: ~~·:x~~·s.A.~o;~a,9~t)r;.c;~#J:~.·K~x:-,·~~.~ ~··· :.c:.?mill'a'n-d?f';:
.. ..· PIJt.~():f<l.M:ftttc .o·~ s ,'f'o.e;t:;

void CGroupView::OnExecopt()
{

... ~:.~~ri$'t:i)'.ti4'~J g .·. ~'.l.:.SJ..;

··· " Aft: .. ¢~ x,:µ ij~'~ ·~ ~;:~·#r µ.r, ~ t·~~~:i
···;.:t ·,.<<tl:~t··~~9:ft.~·aa ;~ <:.{.§',=i:;.t;1>:01<.i;:";ti;J·~ S::~:a1:.~f~CJ l 9.··~it~n&~·• t:e·;·

}

252 Commando Windows Programming

Quick on the Draw: Programming Visually

Listing 6-7. RUNSTATE.H

II runstate.h : header file

II

lll
II CRunStateDlg dialog

class CRunStateDlg : public CDialog
{

II Construction

public:

II standard constructor

CRunStateDlgCCWnd* pParent = NULL>;

II Dialog Data

ll{{AFX_DATACCRunStateDlg)

enum { IDD = IDD_STATEDLG };

int
ll}}AFX_DATA

II Implementation

protected:

II DDXIDDV support

runstate;

virtual void DoDataExchangeCCDataExchange* pDX);

II Generated message map functions
ll{{AFX_MSGCCRunStateDlg)

II NOTE: the ClassWizard will add member functions here
ll}}AFX_MSG

DECLARE_MESSAGE_MAP()
} . ,

Commando Windows Programming 253

Quick on the Draw: Programming Visually

Listing 6-8. RUNSTATE.CPP

II runstate.cpp : implementation file

II

#include "stdafx.h"
#include "groupexe.h"

#include "runstate.h"

#ifdef _DEBUG

#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __ FILE __ ;

#endif

l//////////////////////////ll////////ll////I/////

II CRunStateDlg dialog

CRunStateDlg::CRunStateDlgCCWnd* pParent /*=NULL*/)

: CDialogCCRunStateDlg::IDD, pParent)
{

}

//{{AFX_DATA_INITCCRunStateDlg)

:•·· .. +.,::;)~;uij;sti~'.~~\ .• ·~;~q:;:
//}}AFX_DATA_INIT

void CRunStateDlg::DoDataExchangeCCDataExchange* pDX)
{

254

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAPCCRunStateDlg)

DDX_Radio(pDX, IDC_NORMAL, runstate);
//}}AFX_DATA_MAP

Commando Windows Programming

Quick on the Draw: Programming Visually

}

BEGIN_MESSAGE_MAPCCRunStateDlg, CDialog)
ll{{AFX_MSG_MAPCCRunStateDlg)

II NOTE: the ClassWizard will add message map macros here
I/}} A FX_MSG_MAP

END_MESSAGE_MAP()

lll
II CRunStateDlg message handlers

Listing 6-9. MAINFRM.H

II mainfrm.h : interface of the CMainframe class

II

lll

class CMainframe : public CMDIFrameWnd
{

DECLARE_DYNAMICCCMainframe)

public:

CMainframeO;

II Attributes
public:

II Operations
public:

II Implementation
public:

Commando Windows Programming 255

Quick on the Draw: Programming Visually

virtual -cMainFrameC>;
#ifdef DEBUG

virtual void AssertValid() const;

virtual void DumpCCDumpContext& de) const;

#endif

protected: II control bar embedded members
CStatusBar

CToolBar

m_wndStatusBar;

m_wndToolBar;

II Generated message map functions

protected:
ll{{AFX_MSGCCMainFrame)

afx_msg int OnCreate(LPCREATESTRUCT
lpCreateStruct>;

II NOTE - the ClassWizard will add and remove

II member functions here. DO NOT EDIT what you see

II in these blocks of generated code !

ll}}AFX_MSG

DECLARE MESSAGE_MAP()
} . ,

lll

Listing 6-10. MAINFRM.CPP

II mainfrm.cpp : implementation of the CMainFrame class

II

#include "stdafx.h"

256 Commando Windows Programming

Quick on the Draw: Programming Visually

#include "groupexe.h"

#include "mainfrm.h"

#ifdef DEBUG
#undef THIS FILE

static char BASED_CODE THIS_FILE[] =~FILE~;

#endif

lll
II CMainFrame

IMPLEMENT_DYNAMICCCMainFrame, CMDIFrameWnd)

BEGIN_MESSAGE_MAPCCMainFrame, CMDIFrameWnd)
ll{{AFX_MSG_MAPCCMainFrame)

II NOTE - the ClassWizard will add and remove

II mapping macros here. DO NOT EDIT what you see in
II these blocks of generated code !

ON_WM_CREATEC)
ll}}AFX_MSG_MAP

END_MESSAGE_MAP()

lll
II arrays of IDs used to initialize control bars

II toolbar buttons - IDs are command buttons

static UINT BASED_CODE buttons[] =
{

II same order as in the bitmap 'toolbar.bmp'

Commando Windows Programming 257

Quick on the Draw: Programming Visually

ID_FILE_NEW,
ID_FILE_OPEN,
ID_FILE_SAVE,

ID_SEPARATOR,
ID_EDIT_CUT,
ID_EDIT_COPY,
ID_EDIT_PASTE,

ID_SEPARATOR,

~-j<.;; /.:t·.·:i~:~i0 :~)t'PSl~,£c::~:

ID_APP_ABOUT,
};

static UINT BASED_CODE indicators[] =
{

II status line indicator
ID_SEPARATOR,
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL,

};

///

II CMainframe construction/destruction

CMainframe::CMainFrameC>
{

II TODO: add member initialization code here
}

CMainFrame::-cMainFrameC>

258 Commando Windows Programming

{

}

Quick on the Draw: Programming Visually

int CMainFrame::OnCreateCLPCREATESTRUCT lpCreateStruct)
{

}

if CCMDIFrameWnd::OnCreateClpCreateStruct) == -1)

return -1;

if C!m_wndToolBar.CreateCthis) I I
!m_wndToolBar.LoadBitmapCIDR_MAINFRAME) I I
!m_wndToolBar.SetButtonsCbuttons,

sizeofCbuttons)/sizeofCUINT)))
{

TRACEC"Failed to create toolbar\n");

return -1; // fail to create
}

if C!m_wndStatusBar.CreateCthis) I I
!m_wndStatusBar.SetindicatorsCindicators,

sizeofCindicators)/sizeofCUINT)))
{

TRACEC"Failed to create status bar\n">;

return -1; // fail to create
}

return O;

llllllllllllllllllllllllllll//lllllllllllllllllll

Commando Windows Programming 259

Quick on the Draw: Programming Visually

II CMainFrame diagnostics

#ifdef DEBUG

void CMainFrame::AssertValid() canst
{

CMDIFrameWnd::AssertValidC);
}

void CMainFrame::Dump(CDumpContext& de) canst
{

CMDIFrameWnd::Dump(dc);
}

#endif II DEBUG

lll

II CMainFrame message handlers

Listing 6-11. STDAFX.H

II stdafx.h : include file for standard system include

II files, or project specific include files that are

II used frequently, but are changed infrequently

II

II MFC core and standard components

#include <<afxwin.h>>

II MFC extensions (including VB)

#include <<afxext.h>>

260 Commando Windows Programming

Quick on the Draw: Programming Vlsually

Listing 6-12. STDAFX.CPP

II stdafx.cpp : source file that includes just the

II standard includes

II stdafx.pch will be the pre-compiled header

II stdafx.obj will contain the pre-compiled

II type information

#include "stdafx.h"

Listing 6-13. GROUPEXE.RC

//Microsoft App Studio generated resource script.

II
#include "resource.h"

#define APSTUDIO_READONLY_SYMBOLS

l///llllll//l/lll/lllllllllllllllllllllllll/l/lll
II
II Generated from the TEXTINCLUDE 2 resource.
II
#include "afxres.h"

llllll/lll/l/lllll//lll/llll//lllllllllllllllllll

#undef APSTUDIO_READONLY_SYMBOLS

#ifdef APSTUDIO_INVOKED
llllllllllllllllllllllllllll//lll//l///ll/lll/lll

II
II TEXTINCLUDE
II

Commando Windows Programming 261

Quick on the Draw: Programming Visually

1 TEXTINCLUDE DISCARDABLE
BEGIN

"resource.h\0"

END

2 TEXTINCLUDE DISCARDABLE

BEGIN
"#include ""afxres.h""\r\n"
II \0"

END

3 TEXTINCLUDE DISCARDABLE
BEGIN
II non-App Studio edited resources\r\n"

"#include ""res\\groupexe.rc2""

"\ r \n"

"#include ""afxres.rc"" II Standard components\r\n"
II \0"

END

lll
#endif II APSTUDIO_INVOKED

llllllllll/llllllllll/lllllllllllllllllllll/11111
II

II Icon

II

IDR_MAINFRAME ICON DISCARDABLE "RES\\GROUPEXE.ICO"

262 Commando Windows Programming

Quick on the Draw: Programming Visually

IDR_GROUPTYPE ICON DISCARDABLE "RES\\GROUPDOC.ICO"

/////l/////////ll//ll///ll///ll/lll//ll//llll/ll/

II

II Bitmap
II

IDR_MAINFRAME BITMAP MOVEABLE PURE "RES\\TOOLBAR.BMP"

lllllllllllll//lllllllllll/ll/llllllllll/11111111
II

II Menu

II

IDR_MAINFRAME MENU PRELOAD DISCARDABLE
BEGIN

PO PUP "&Fi le"

BEGIN
MENUITEM "&New\tCtrl+N",

MENUITEM "&Open ... \tCtrl+O",
MENUITEM SEPARATOR

ID_FILE_NEW

ID_FILE_OPEN

MENUITEM "Recent File",
MENUITEM SEPARATOR
MENUITEM "E&xit",

ID_FILE_MRU_FILE1, GRAYED

END
POPUP "&View"

BEGIN

MENUITEM "&Toolbar",
MENUITEM "&Status Bar",

ID_APP_EXIT

ID_VIEW_TOOLBAR
ID_VIEW_STATUS_BAR

Commando Windows Programming 263

Quick on the Draw: Programming Visually

END

END
POPUP "&Help"

BEGIN
MENUITEM "&About GROUPEXE ... ",

END

IDR_GROUPTYPE MENU PRELOAD DISCARDABLE
BEGIN

POPUP "&Fi le"

BEGIN
MENUITEM "&New\tCtrl+N",

MENUITEM "&Open •.. \tCtrl+O",

MENUITEM "&Close",

MENUITEM "&Save\tCtrl+S",
MENUITEM "Save &As ... ",

MENUITEM "&Execute",

MENUITEM "Execute O&ptions ... ",
MENUITEM SEPARATOR

ID_APP_ABOUT

ID_FILE_NEW

ID_FILE_OPEN

ID_FILE_CLOSE

ID_FILE_SAVE
ID_FILE_SAVE_AS

ID_EXEC

ID_EXECOPT

MENU ITEM "Recent Fi le",
GRAYED

ID_FILE_MRU_FILE1,

END

MENUITEM SEPARATOR
MENUITEM "E&xit",

POPUP "&Edit"

BEGIN
MENUITEM "&Undo\tCtrl+Z",

MENUITEM SEPARATOR
MENUITEM "Cu&t\tCtrl+X",
MENUITEM "&Copy\tCtrl+C",

ID_APP_EXIT

ID_EDIT_UNDO

ID_EDIT_CUT
ID_EDIT_COPY

264 Commando Windows Programming

Quick on the Draw: Programming Visually

MENUITEM "&Paste\tCtrl+V", ID_EDIT_PASTE

END
POPUP "&View"

BEGIN
MENUITEM "&Toolbar",
MENUITEM "&Status Bar",

ID_VIEW_TOOLBAR
ID_VIEW_STATUS_BAR

END

POPUP "&Window"
BEGIN

MENUITEM "&Cascade",
MENU ITEM "&Ti le",
MENUITEM "&Arrange Icons",

ID_WINDOW_CASCADE
ID_WINDOW_TILE_HORZ
ID_WINDOW_ARRANGE

END
POPUP "&Help"

BEGIN
MENUITEM "&About GROUPEXE ... ", ID_APP_ABOUT

END

END

lll

II

II Accelerator

II

IDR_MAINFRAME ACCELERATORS PRELOAD MOVEABLE PURE

BEGIN
II N",

"O",

II S",

ID_FILE_NEW, VIRTKEY,CONTROL
ID_FILE_OPEN, VIRTKEY,CONTROL

ID_FILE_SAVE, VIRTKEY,CONTROL

Commando Windows Programming 265

Quick on the Draw: Programming Visually

END

II z II,
II X",

II c II,
II v II I

VK_BACK,
VK_DELETE,

VK_INSERT,

VK_INSERT,
VK_F6,

VK_F6,

ID_EDIT_UNDO, VIRTKEY,CONTROL
ID_EDIT_CUT, VIRTKEY,CONTROL

ID_EDIT_COPY, VIRTKEY,CONTROL
ID_EDIT_PASTE,VIRTKEY,CONTROL
ID_EDIT_UNDO, VIRTKEY,ALT
ID_EDIT_CUT, VIRTKEY,SHIFT

ID_EDIT_COPY, VIRTKEY,CONTROL

ID_EDIT_PASTE,VIRTKEY,SHIFT
ID_NEXT_PANE, VIRTKEY

ID_PREV_PANE, VIRTKEY,SHIFT

lll
II

II Dialog

II

IDD_ABOUTBOX DIALOG DISCARDABLE 34, 22, 217, 55
STYLE DS_MODALFRAME I WS_POPUP WS_CAPTION ws_SYSMENU
CAPTION "About GROUPEXE"

FONT 8, "MS Sans Serif"
BEGIN

LTEXT "byALWil-
liams",IDC_STATIC,16,24,119,8

DEFPUSHBUTTON "OK",IDOK,176,6,32,14,WS_GROUP
LTEXT

ti on"

END

"GROUPEXE - Group execution applica-

,IDC_STATIC,17,7,147,15

266 Commando Windows Programming

Quick on the Draw: Programming Visually

IDD_STATEDLG DIALOG DISCARDABLE
STYLE DS_MODALFRAME I WS_POPUP

WS CAPTION I WS_SYSMENU
CAPTION "Execute Options"
FONT 8, "MS Sans Serif"

BEGIN

o, o, 139, 92
WS_VISIBLE I

CONTROL "Normal",IDC_NORMAL,"Button",

BS_AUTORADIOBUTTON IWS_GROUP I WS_TABSTOP,
19,29,34,10

END

CONTROL

CONTROL

DEF PUSHBUTTON

PUSHBUTTON
GROUPBOX

"Maximized",IDC_MAX,"Button",
BS_AUTORADIOBUTTON,19,44,44,10
"Minimized",IDC_MIN,"Button",

BS_AUTORADIOBUTTON,19,59,43,10
"OK",IDOK,82,28,50,14

"Cancel",IDCANCEL,82,45,50,14
"Run state",IDC_STATIC,11,7,62,77

l!lll

II

II String Table

II

STRINGTABLE PRELOAD DISCARDABLE
BEGIN

I DR_MA INF RAME

IDR_GROUPTYPE
"GROUPEXE Windows Application"
"\nGroup\nGROUP Document\n\

GROUP Fi Les C*.gex)\n.gex\nGroupFi leType\nGROUP Fi le Type"

END

Commando Windows Programming 267

Quick on the Draw: Programming Visually

STRINGTABLE PRELOAD DISCARDABLE

BEGIN

END

AFX_IDS_APP_TITLE

AFX_IDS IDLEMESSAGE

STRINGTABLE DISCARDABLE
BEGIN

END

ID_INDICATOR_EXT
ID_INDICATOR_CAPS
ID_INDICATOR_NUM

ID_INDICATOR_SCRL
ID_INDICATOR_OVR

ID_INDICATOR_REC

STRINGTABLE DISCARDABLE
BEGIN

"GROUPEXE Windows Application"
"Ready"

II EXT"
II CAP"

"NUM"
II SCRL II

"OVR"

"REC"

ID_FILE_NEW

ID_FILE_OPEN

ID FILE CLOSE

"Create a new document"
"Open an existing document"

"Close the active document"
ID_FILE_SAVE "Save the active document"
ID_FILE_SAVE_AS "Save the active document with a new

name"

END

STRINGTABLE DISCARDABLE

BEGIN
ID_APP_ABOUT "Display program information, version \

268 Commando Windows Programming

Quick on the Draw: Programming Visually

number and copyright"

ID_APP_EXIT "Quit the application; prompts\

to save documents"

END

STRINGTABLE DISCARDABLE

BEGIN

ID FILE MRU FILE1 - - -
ID FILE MRU FILE2

ID FILE MRU FILE3 -
ID FILE MRU FILE4 -

END

STRINGTABLE DISCARDABLE

BEGIN

"Open this document"

"Open this document"

"Open this document"

"Open this document"

"Switch to the next window pane" ID_NEXT_PANE

ID_PREV_PANE

END

"Switch back to the previous window pane"

STRINGTABLE DISCARDABLE

BEGIN

ID_WINDOW_NEW "Open another window\

for the active document"

ID_WINDOW_ARRANGE "Arrange icons at the\

bottom of the window"

ID_WINDOW_CASCADE "Arrange windows so they overlap"

ID_WINDOW_TILE_HORZ "Arrange windows as \

non-overlapping ti Les"

ID_WINDOW_TILE_VERT "Arrange windows as \

non-overlapping ti Les"

Cpmmando Windows Programming 269

Quick on the Draw: Programming Visually

ID_WINDOW_SPLIT "Split the active window into panes"
END

STRINGTABLE DISCARDABLE

BEGIN

ID EDIT_CLEAR "Erase the selection"

ID EDIT CLEAR_ALL "Erase everything"

ID_EDIT_COPY "Copy the selection and put \
it on the Clipboard"

ID EDIT_CUT "Cut the selection and put \

it on the Clipboard"

ID EDIT_FIND "Find the specified text"

ID_EDIT_PASTE "Insert Clipboard contents"

ID_EDIT_REPEAT "Repeat the last action"

ID_EDIT_REPLACE "Replace specific text with\
different text"

ID_EDIT_SELECT_ALL "Select the entire document"

ID_EDIT_UNDO "Undo the last action"

ID EDIT REDO "Redo the previously undone action"

END

STRINGTABLE DISCARDABLE

BEGIN
ID_VIEW_TOOLBAR "Show or hide the toolbar"

ID_VIEW_STATUS BAR "Show or hide the status bar"

END

STRINGTABLE DISCARDABLE
BEGIN

AFX_IDS SCSIZE "Change the window size"

270 Commando Windows Programming

Quick on the Draw: Programming Visually

AFX_IDS_SCMOVE "Change the window position"
AFX_IDS_SCMINIMIZE "Reduce the window to an icon"

AFX_IDS_SCMAXIMIZE "Enlarge the window to full size"
AFX_IDS SCNEXTWINDOW "Switch to the next document window"
AFX_IDS_SCPREVWINDOW "Switch to the previous \

document window"

AFX_IDS_SCCLOSE "Close the active window and prompts\

to save the documents"
END

STRINGTABLE DISCARDABLE
BEGIN

AFX_IDS_SCRESTORE "Restore the window to normal size"
AFX_IDS_SCTASKLIST

AFX_IDS_MDICHILD
END

STRINGTABLE DISCARDABLE
BEGIN

"Activate Task List"

"Activate this window"

ID_EXEC "Execute programs in list"
ID_EXECOPT "Set execution options"

END

#ifndef APSTUDIO_INVOKED
lll

II

II Generated from the TEXTINCLUDE 3 resource.
II

II non-App Studio edited resources

Commando Windows Programming 271

Quick on the Draw: Programming Visually

#include "res\groupexe.rc2"

#include "afxres.rc" II Standard components

11/ll
#endif II not APSTUDIO_INVOKED

Listing 6-14. RESOURCE.H

{{NO_DEPENDENCIES}}

II App Studio generated include file.

II Used by GROUPEXE.RC
II

#define IDR MAINFRAME -
#define IDR GROUPTYPE -
#define IDD ABOUTBOX -
#define IDC NORMAL -
#define IDD _STATEDLG

#define IDC_ MAX
#define IDC MIN -
#define ID EXEC
#define ID _EXECOPT

II Next default values for new objects
II
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS

#define _APS_NEXT_RESOURCE_VALUE
#define _APS_NEXT_COMMAND_VALUE

#define _APS NEXT_CONTROL_VALUE

2

3

100

101

101

102

103

32768

32769

102

32770

104

272 Commando Windows Programming

Quick on the Draw: Programming Visually

#define _APS_NEXT_SYMED_VALUE
#endif

#endif

Listing 6-15. GROUPEXE.RC2

101

II GROUPEXE.RC2 - resources App Studio doesn't edit

II

#ifdef APSTUDIO_INVOKED

#error this file is not editable by App Studio

#endif llAPSTUDIO_INVOKED

lll
II Version stamp for this .EXE

#include "ver.h"

VS_VERSION_INFO

FI LEVERS ION

PRODUCTVERSION

FILEFLAGSMASK
#ifdef _DEBUG

VERSIONINFO
1,0,0,1

1,0,0,1

VS_FFI_FILEFLAGSMASK

FILEFLAGS vs_FF_DEBUGIVS_FF_PRIVATEBUILDIVS_FF_PRERE­
LEASE
#else

FILEFLAGS
#endif

FI LEOS

FILETYPE
FILESUBTYPE

0 II final version

vos_oos_WINDOWS16

VFT_APP

0 II not used

Commando Windows Programming 273

Quick on the Draw: Programming Visually

BEGIN

II

BLOCK "StringFi leinfo"

BEGIN

II Lang=US English, CharSet=Windows Multilingual

BLOCK "040904E4"

END

BEGIN

VALUE "CompanyName", "\0"

VALUE "FileDescription",

"GROUPEXE MFC Application\0"

VALUE "Fi leVersion", "1.0.001 \0"

VALUE "InternalName", "GROUPEXE\0"

VALUE "LegalCopyright", "\0"

VALUE "LegalTrademarks", "\0"

VALUE "OriginalFilename","GROUPEXE.EXE\0"
VALUE "ProductName", "GROUPEXE\0"

VALUE "ProductVersion", "1.0.001\0"

END

BLOCK "Var Fi le Info"

BEGIN

II English language COx409) and

II the Windows ANSI codepage (1252)

END

VALUE "Translation", Ox409, 1252

END

lllllllllllllllllllllllllllllllllllllll/111111111
II Add additional manually edited resources here ...

274 Commando Windows Programming

Quick on the Draw: Programming Visually

llllll//l//ll/llll/llll/ll/lll/lllll/llllll/l/lll

Listing 6-16. GROUPEXE.DEF

; groupexe.def : Declares the module parameters
; for the application.

NAME GROUPEXE

DESCRIPTION 'GROUPEXE Windows Application'
EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 1024 ; initial heap size

; Stack size passed as argument to linker's /STACK option

Commando Windows Programming 275

Biting the Bullet (Or How I Learned

to Stop Worrying and Love the SDK)

WHAT'S IN THIS CHAPTER

You will learn how to apply commando principles to
traditional Windows programming.

PREREQUISITES

To get the most from this chapter, you'll need a
working knowledge of how to program Windows

applications in C using the SDK.

Commando Windows Programming 277

Biting the Bullet

As powerful as the commando techniques are, sometimes
you have to bite the bullet and write traditional Windows
programs. This may occur when your program is too
complex (a word processor, for example). Although
Visual C++ can help with complex programs, if you
aren't comfortable with C++, you can't expect too much
help from it.

Remember Commando Commandment IX in Chapter 2.
Before you turn to the Windows Software Development
Kit (SOK), be sure you have exhausted your simpler
options. Could you use a non-C application generator
like Toolbook or Visual Basic?

Even if you must use the SDK, parts of your program
may still benefit from some commando techniques. For
example, the win_printf() and win_input() routines in
Chapter 3 are usually helpful. How much functionality
can you put in dialogs or text-edit windows (Chapters 3
and 4)?

Down with WM_P AINT!
When you write a traditional Windows program, you get
stuck with many tasks that don't directly relate to your
program's function. No matter what kind of program you
want to write, you have to write code to manage your
windows. WM_P AINT routines, scrolling functions, and
all the other Windows overhead often take more effort
than the actual algorithms of your program. Commando
techniques, however, focus on making Windows do the

278 Commando Windows Programming

Biting the Bullet

work via dialogs, edit controls, and other Windows fea­
tures.

For more general programs, a special commando library
can help. The Virtual Window Library, VWINL, will
automatically manage your Windows 3.1, Windows NT,
or Win32s windows. When you want to display some­
thing, you draw it with the usual Windows calls once.
VWINL makes sure it stays there and can automatically
manage scroll bars, scaling, and other common, tedious
tasks. VWINL can even output your windows to a
printer.

The Problem with the SDK
Part of the difficulty in writing for Windows lies in the
architecture of the typical GUI program. (Chapter 2 covers
this in detail.) Windows (and many other GUI systems)
dictates a seemingly strange approach. Ordinary Windows
programs don't manipulate their display in response to
user input (or other events). Instead, they update an
internal application model to reflect the program's current
state. Upon request from Windows, the program (via its
WM_PAINT handler) renders a representation (or view,
if you prefer) of the model in a window.

This model of computing is counterintuitive to most pro­
grammers. For some applications (word processors and
spreadsheets come to mind), this type of architecture
works well. For these applications, the model correlates
to what you need to create anyway (a document or an

Commando Windows Programming 279

Biting the Bullet

array of values). But many programs don't need a model
except to satisfy the WM_P AINT message.

New Age Programming
VWINL creates virtual drawing surfaces (VMAPs) that
you can draw on with standard Windows GDI calls. You
can optionally associate a VMAP with one or more physi­
cal windows. You can ask VWINL to scale the VMAP to
fit in the window or show as much of the VMAP as will
fit. If the VMAP is too large to fit in the window, VWINL
can automatically manage scroll bars for you.

Each physical window has an independent view of its
VMAP. You can have two (or more) windows on the
screen viewing the same VMAP in different ways. For
example, one window might show the VMAP scaled to
fit, while two others are scrolled to show different areas
of the VMAP without scaling.

Once you draw something to a VMAP with a window
attached, you won't need to draw it again. If you iconify
the window or cover it up and expose it, the image stays
in place, with no further action on your part. As an extra
bonus, screen updates are unusually fast-often faster
than with traditional Windows programs.

Details, Details ...
Listing 7-1 shows a very simple program that uses
VWINL. (You'll find a summary of VWINL calls in Figure
7-1 and in Appendix B.) Notice that it includes the

280 Commando Windows Programming

Biting the Bullet

VWINL.H file (Listing 7-2) and compiles with
VWINL.DEF (Listing 7-3). VWINL programs have a

main() function (which is more like a WinMain() function

in form) and window callbacks like normal Windows
programs. VWINL programs don't have WM_PAINT rou­

tines or event loops like ordinary Windows programs.

Figure 7-1. VWINL Calls

int Vcreate_windowCchar *title,DWORD style,int x,int y,int
width, int height,HWND parent,LPCSTR menu,long C*call­
back>C>,unsigned vflags,HDC *dc,HWND *win,int show)
The Vcreate_window function mostly mimics CreateWindow(). The menu
parameter is actually a resource name or ID. The vflags field is a VWINL flag
(see Figure 3). The window handle returns via the win pointer, and the VMAP
DC (if any) goes to the de pointer (unless the de pointer is NULL). The function
returns zero upon success. Any other value indicates failure.

VMAP *Vcreate_mapCint width, int height)

Creates a VMAP of the specified width and height. This VMAP will match your
current display unless you have set the monochrome mode (see
Vset_monomode()).

VMAP *Vget_map(HWND w)

Returns a pointer to the VMAP associated with the window.

void Vdestroy_map(VMAP *map)

Releases a VMAP's resources. When a window closes, VWINL attempts to free
its VMAP unless the V _NOFREEMAP flag is set.

VMAP *Vselect_mapCHWND w, VMAP *new)

Changes the VMAP associated with a window. If the VMAP pointer is NULL,
the window will have no VMAP. The function returns a pointer to the pre­
viously selected VMAP.

(Cont.)

Commando Windows Programming 281

Biting the Bullet

Figure 7-1. VWINL Calls (Cont.)

void Vcommit_drawCHWND w)

Forces the contents of the window's VMAP to appear in the window. Until you
call Vcommit_draw(), any output to the VMAP may or may not be visible. This
call is actually a macro.

HDC Vget_mdcCVMAP *map)

Returns the DC associated with the specified VMAP. This call is actually a
macro.

int Vget_stretchmodeCVMAP *map)

Returns the stretch mode for the specified VMAP. For more about stretch
modes, see the SetStretchBltMode() function in the Windows API reference.
This function is actually a macro.

void Vget_info(HWND w,MEMWINFO *info)

Returns a read-only structure of information pertaining to the window.

unsigned long Vset_flagsCHWND w,unsigned long f lags,int cmd)

You can use Vset_flags() to change a VWINL window's flags. You may need to
call Vcommit_draw() after changing some flags. The cmd argument specifies
how VWINL interprets the flag's argument. If cmd is VF _STO, VWINL copies
the flags to the window. VF _SET sets the specified flags leaving the other bits
unchanged; VF _CLR clears them. The VF _TOG command causes the specified
flags to change state. The return value is the previous flag value.

void Vset_offsetCHWND w,int x,int y)

Sets the offset of the specified window. When VWINL draws the VMAP to the
window, it will use the offset as the VMAP's starting point (unless V _SCALE is
set). The x and y parameters are in pixels.

(Cont.)

282 Commando Windows Programming

Biting the Bullet

Figure 7-1. VWINL Calls (Cont.)

void Vget_offsetCHWND w,int *x,int *y}

This function returns the window's offset (see Vset_offset() on the previous
page).

HOC Vget_vdcCHWND w}

This function returns the VMAP de associated with the given window.

int Vresize_winmapCHWND w,int width,int height}

Resizes the VMAP associated with the specified window. This function automat­
ically adjuststhe window's scroll bars and handles other details.

int Vresize_mapCVMAP *m,int wid,int hi}

Use Vresize_mapO to change the size of a VMAP. If the VMAP is attached to a
window, you will usually want to use Vresize_winmap() instead.

void Vset_scrollCVMAP *m,int xstep,int ystep,int xpage,int
ypage}

This function sets the scroll increments for a VMAP. By default, the xstep and
ystep variables equal 1, and the page variables equal 10. This function causes
smooth scrolling when you click the scroll bar arrows. When you scroll a page,
ten pixels go by.

void Vclear_mapCVMAP *m}

Use Vclear_map() to erase the entire drawing surface of a VMAP using the back­
ground color.

void Vclear_winCHWND *w}

A macro that clears the VMAP associated with a window.

(Cont.)

Commando Windows Programming 283

Biting the Bullet

Figure 7-1. VWINL Calls (Cont.)

int Vset_stretchmodeCVMAP *m,int mode)

Sets the VMAP's stretch mode (used when V _SCALE is set). For more about
stretch modes, look up SetStretchBltMode() in the Windows API documenta­
tion. This function returns the previous stretch mode.

void Vdont_quitCvoid)

During a WM_CLOSE message, you may call Vdont_quit() to prevent VWINL
from terminating the application.

int Vset_monomodeCint mode)

Sets or clears VWINL's monochrome mode. When monochrome mode is set, all
Vcreate_window() and Vcreate_map() calls create monochrome bitmaps. These
bitmaps may take up less space, but they support only two colors.

HWND Vmodeless_dlgCHANDLE inst, LPSTR dlgname, HWND parent,
FARPROC f p)

This call works just like the standard CreateDialog() call except that it registers
the modeless dialog with VWINL. Don't directly call CreateDialog().

int Vend_dlgCHWND w)

Use Vend_dlg() to terminate a modeless dialog created with Vmodeless_dlg().

Vuser_loopCint C*ul)())

You may install your own Windows event loop using this function. The event
loop is exactly like an ordinary Windows event loop and completely replaces
VWINL's default loop. You must either call this function in your main() routine
or not at all.

(Cont.)

284 Commando Windows Programming

Biting the Bullet

Figure 7-1. VWINL Calls (Cont.)

Vprint_map(VMAP *)

Invokes the standard print dialog to send the VMAP to the printer at its actual
size. Vprint_map() prints multiple pages if required.

Vsprint_map(VMAP *)

Invokes the standard print dialog to send the VMAP, scaled to fit on a page, to
the printer.

Although a VWINL callback looks like a conventional
callback, there are several important differences:

• You don't need to export a VWINL callback.

• You don't need a WM_PAINT case.

• You will handle the WM_VCREATE message instead of
WM_ CREATE.

• You will need to take special steps if you don't want a
WM_DESTROY message to terminate your application.

The main() function is the place to create your primary
application window. However, don't draw to it from
inside main()-VWINL hasn't properly initialized the
window yet. Use the WM_ VCREATE message processing
in your callback routine if you want to draw to the new
window. VWINL callbacks don't receive WM_ CREA TE
messages at all; they receive only WM_ VCREA TE
messages.

Commando Windows Programming 285

Biting the Bullet·

Most VWINL main() functions are just calls to Vcre­
ate_window() (see Figure 7-2). This call mimics

CreateWindow() for the most part. One difference be­
tween Vcreate_window() and CreateWindow() is the
menu parameter. CreateWindow() expects a handle to a
menu. Vcreate_window() takes an ASCII string or

resource ID just as in LoadMenu(). If you create a child
window, cast the integer child ID to an LPCSTR and pass
it as if it were a menu name.

Figure 7-2. The Vcreate_window() Function in Detail

int Vcreate_windowCchar *title,DWORD style,int x,int y,
int wid, int hi, HWND parent, LPCSTR menu,

long C*cb)CHWND,UINT,UINT,LONG),

unsigned long vflags,HDC *dc,HWND *win, int show>;

Parameters:

title - The windows title that appears in the caption bar.

style - The same style bits used by CreateWindow.

x - The X coordinate for the window; often CW _USEDEFAULT.

y -The Y coordinate for the window.

wid - The width of the window; often CW _USEDEFAULT.

hi - The window's height.

parent - A handle to the window's parent window. If NULL, create a top-level
window.

menu - If the parent is NULL, this is a string that identifies the window's menu
(or NULL if there is no menu). If the parent is not NULL, this is the child win­
dow ID (see CreateWindow).

(Cont.)

286 Commando Windows Programming

Biting the Bullet

cb - Pointer to your callback function. Unlike a normal callback, you don't need
to export this function or call MakeProclnstance() to get the pointer.

vflags - VWINL flags (see Figure 3).

de - A pointer to the new window's VMAP DC (use NULL if you don't need
this value).

win - Pointer to an HWND that receives the new window handle. You must sup­
ply this pointer.

show - Same as the nShow parameter in CreateWindow.

Returns: Zero if successful; nonzero on failure.

The other major difference between Vcreate_window()
and CreateWindow() is the addition of a parameter for

VWINL flags. These flags control the operation of
VWINL (see Figure 7-3). For example, the V _SCALE flag
causes VWINL to scale a VMAP to fit its window. The
flags are set for each window. By default, Vcreate_win­
dow() creates both a window and VMAP simultaneously.
However, you can specify the V _NOMAP flag to create a
bare window. You'll then need to use Vselect_map() to
associate a VMAP with the window.

Figure 7-3. VWINL Flags

V _SCALE - Causes VWINL to scale the window's VMAP to fit the window's cli­
ent area. If this flag is not set, VWINL clips the VMAP to the window. When
clipping, VWINL can offset the VMAP (see Vset_offset()) or automatically man­
age scroll bars.

V _RESIZE - Causes the window's VMAP to automatically resize when the win­
dow resizes. This causes the VMAP's size to always match the window's size.

(Cont.)

Commando Windows Programming 287

Biting the Bullet

Figure 7-3. VWINL Flags (Cont.)

V _AUTOHSCROLL - When set, VWINL will automatically manage horizontal
scroll bars for this window. When passed to Vcreate_window(), this flag forces
the window to use the WS_HSCROLL style.

V _AUTOVSCROLL - When set, VWINL will automatically manage vertical
scroll bars for this window. When passed to Vcreate_window(), this flag forces
the window to use the WS_ VSCROLL style.

V _NOMAP - Pass this flag to Vcreate_window to prevent VWINL from automat-
ically creating a VMAP with the window. Presumably, you will use .
Vselect_map() to use a VMAP from another window or from Vcreate_map().
V _NOMAP is only meaningful during V create_ window().

V _NOQUIT - Ordinarily, closing a VWINL window will cause the entire appli­
cation to terminate. If V _NOQUIT is set for a window, you may close the win­
dow without disturbing your applications.

V _NOFREEMAP- This flag prevents VWINL from automatically freeing the
window's VMAP when you close the window. You are responsible for calling
Vdestroy_map() yourself. This is useful when more than one window shares a
VMAP.

V _KSCROLL - Allows VWINL to intercept scrolling keys and translate them
into scroll bar events. This is especially useful in conjunction with
V _AUTOHSCROLL and V _AUTOVSCROLL.

V _ZEROSELECT - If this flag is set, a Vselect_map() call will also force the dis­
play offsets to zero. This causes the top left corner of the image to be visible. If
you are animating with Vselect_map(), you don't want this flag set.

V _INIT - V _INIT is an internal flag used by VWINL. Don't set this flag at home.

Note: V _SCALE is incompatible with V _RESIZE, V _AUTOHSCROLL, or V _AUTOV­
SCROLL. The V _RESIZE flag is not compatible with V _AUTOHSCROLL or V _AUTOV­
SCROLL.

288 Commando Windows Programming

Biting the Bullet

During window creation, VWINL looks for a resource
named VAPPICON to specify your application's icon. If
you want to add accelerators, name the table V ACCEL so
that VWINL can find it.

When you want to draw to a VMAP, you obtain a device
context using Vget_mdc() or Vget_vdc(). Use Vget_mdc()
if you have a pointer to the VMAP, and Vget_vdc() if you
have a window handle and want the underlying VMAP.
You can freely use the device context with any GDI call.
However, don't call ReleaseDC() or DestroyDC(). If you
want to release the resources associated with a VMAP,
call Vdestroy_map(). If more than one window is using
the VMAP, the call will not do anything, so be careful to
destroy VMAPs at the proper time. (VWINL attempts to
destroy a window's VMAP when the window closes.
More about that later.)

When you draw to a VMAP associated with a window,
the changes may not be immediately visible. You can
force the drawing to appear by calling Vcommit_draw().
Vselect_map() also forces the window to update.

Don't draw to a VMAP when you want to draw some­
thing transient (for example, when you drag a selection
box or stretch an object in sync with the mouse). Instead,
get the window's real DC (using GetDC() or another Win­
dows call) and draw with it. Then, to restore the window
to its original state, you can call Vcommit_draw().

Make sure you use a solid brush for your window back­
grounds if you use the V _SCALE mode. A patterned
brush will look strange when VWINL scales it to fit in the
window.

Commando Windows Programming 289

Biting the Bullet

Calling It Quits
When Windows sends your program a WM_DESTROY
message, VWINL intercepts it. VWINL then sends your
callback routine a WM_DESTROY message. If you want
the program to end, you don't need to do anything. If
you want the program to continue, call the V dont_quit()
function.

When VWINL detects a WM_DESTROY message, it will
try to delete the window's VMAP (if it has one). Still, you
should try to clean up any VMAPs you have open in your
main WM_DESTROY routine. If you destroy a VMAP,
detach it from its window, using Vselect_map(w,NULL),
so VWINL will not try to destroy VMAP again.

Since VMAPs can be large, make sure your cleanup rou­
tine (or VWINL's) executes. For example, don't call
PostQuitMessage() in response to an exit menu com­
mand. The application will terminate immediately,
and you will lose memory. Instead, pass your main
application window to DestroyWindow(). This will close
the window, causing VWINL to cleanly terminate
your program.

Fancy VWINL Tricks
VWINL uses a default event loop so you don't have to
supply one.

However, if you need to use modeless dialogs, this
default event loop can present a problem. There are two
solutions:

290 Commando Windows Programming

Biting the Bullet

• Use Vmodeless_dlg() instead of CreateDialog(). Vmode­
less_dlg() is a direct replacement for CreateDialog(), but it
registers the dialog with VWINL. You can't have more
than 25 modeless dialogs active at once (see the MAX­
MODELESS constant in VWINL.H). You can change this
constant to any reasonable number. Always use
Vend_dlg() to destroy a modeless dialog you have created
this way.

• Call Vuser _loop() to install your own event loop from
inside main(). Your event loop will replace the one VWINL
normally uses. You can start with a copy of VWINL's
event loop and modify it to suit your own purposes or roll
your own from scratch.

Breaking the Speed Limit
Although VWINL repaints the entire window on each
WM_PAINT message, it still is fast. You may notice that
many VWINL programs are faster than comparable ordi­
nary programs when you resize them or restore them
from an icon. An ordinary program to display text, for
example, must redraw the text in the selected font each
time it processes a WM_P AINT message. Windows must
calculate the position of each pixel every time. VWINL
programs calculate these coordinates only once when you
first draw the text. On subsequent paints, the BitBlt()
function rapidly transfers the pixels directly to the
screen. This function often makes VWINL programs
faster than their conventional counterparts.

Commando Windows Programming 291

Biting the Bullet

Be careful if you use the V _SCALE flag to force VMAPs
to fit into a window. The StretchBlt() call that VWINL
uses to do scaling is much slower than the ordinary
BitBlt(). StretchBlt() is especially slow when the window
is much larger than the VMAP. You might consider mak­
ing the VMAP larger than the maximum window size or
restricting the window's size by intercepting the
WM_MINMAXINFO message.

Of course, there is no free lunch. VWINL's increased

speed and ease of use come at the expense of memory­
lots of memory. If your application doesn't need color,
you should consider calling Vset_monomode() in your
main routine before calling Vcreate_window() or Vcre­
ate_map(). By doing this, you will considerably reduce
the number of bytes VWINL uses to store VMAPs (unless
you are on a monochrome display anyway; then it won't
make any difference).

A Practical Example
Listings 7-4 to 7-6 show a complete text-browser pro­
gram, BROWSE. BROWSE displays an ASCII file with
scroll bars if required. You can print the file by using
BROWSE's menu. In reality, TWIN (see Chapter 4) would
probably be a better choice for writing a program like
BROWSE. However, since BROWSE demonstrates some
strengths and weaknesses of VWINL, it is worth studying.

All of BROWSE' s functionality is embodied in the
open_file() function. Here, the standard-file open dialog

292 Commando Windows Programming

Biting the Bullet

retrieves a file name. After opening the file, BROWSE
makes two passes through it. First, the program com­
putes the number of lines in the file and the width of the
longest line. Next, it creates a VMAP that is large enough
to hold the entire text. Finally, BROWSE reads the file
and prints the text into the new VMAP. Now, VWINL
handles all display and scrolling of the text buffer.
Although an edit control can do this just as well, the
VWINL program could easily contain graphics or multi­
ple fonts.

The do_menu() function contains one line that prints the
entire file:

Vprint_map(Vget_map(w));

This invokes the standard print dialog and writes the
VMAP to the printer. VWINL scales the image so that a
logical inch on the screen equates to an inch on the
printed page. The printing routine will only create multi­
ple pages for the y dimension of the VMAP; images too
wide to print will be truncated.

Instead of Vprint_map(), you can call Vsprint_map() to
print a VMAP. This call scales the image to force it to fit
on the page. This doesn't work very well for BROWSE,
but it is useful for many graphics programs.

The usr_cb() function is the VWINL callback. If BROWSE
were content to use the default scrolling behavior, this
function would be absurdly simple (it would only handle
WM_COMMAND events). However, BROWSE adjusts

Commando Windows Programming 293

Biting the Bullet

the page scroll size when the window changes size. To do
this, usr_cb() must process WM_SIZE messages. A simple
call to V set_scroll() modifies the page size.

Limits
BROWSE illustrates two VWINL limitations: memory size
and printer resolution. If a file is too large for memory or
too large to fit in a bitmap, BROWSE can't display it.

If you print a file from BROWSE, you will quickly see the
printer resolution problem. BROWSE essentially prints a
screen dump of its text. The fonts are not high resolution
as they would be if you printed text directly to the
printer (see Figure 7-4).

For a page-oriented graphics program, you could make a
VMAP that is the same size as a printed page and scale it
to fit inside the window. Then when you use
Vprint_map(), the printout would match the printer's res­
olution. However, BROWSE shouldn't display the entire
file inside a window-it would be too difficult to read.

Figure 7-4. Browse Printed Output

#define MENU OPEN 101
#define MENU ABOUT 1 02
#define MENU EXIT 103
#define MENU PRINT 104

On the positive side, BROWSE does a lot of work with
just a few hundred lines of code, thanks to the VWINL

294 Commando Windows Programming

Biting the Bullet

library. With surprisingly little effort, you can write quite
complex applications using VWINL.

Is VWINL for You?

VWINL can simplify many types of Windows programs.
In the future, Windows (or another GUI) may support
VMAP-style programming. With built-in support, the
VMAPs could be stored as a sparse array and perhaps be
compressed. Until then, you can use VWINL to experi­
ment with this technique. You will notice that the source
code of a VWINL program more closely resembles an
ordinary DOS graphics program than a Windows applica­
tion.

VWINL will work with Windows NT and Win32s. Since
these 32-bit environments offer improved memory man­
agement, VWINL makes even more sense for them. The
next time you write a Windows program, try VWINL and
see how simple a Windows program can be.

If you want to know how VWINL
works, continue reading. Other­
wise, you may skip the remainder
of this chapter.

How Does It Do That?
VMAPs take advantage of two special Windows features:
bitmaps and memory device contexts. All GDI (drawing)
functions operate on a device context (DC). Typically,

Commando Windows Programming

Biting the Bullet

output to a DC appears on a window. VWINL uses the
CreateCompatibleDC() function to create a memory
device context. A memory device context must have a
bitmap associated with it via a SelectObject() call. Draw­
ing operations you perform against the memory DC don't
appear anywhere on the screen. Instead, the drawing
operations act on the associated bitmap.

Windows only allows bitmaps to be 65535 by 65535.
VMAPs can't exceed this size. If you use the autoscroll
feature, you must restrict your VMAPs to 32767 by 32767.
Windows doesn't allow scroll bar ranges to exceed 32K.

The key to VWINL is its default WM_PAINT handler,
do_paint(). This routine copies the bitmap from the win­
dow's VMAP to the client area. If the V _SCALE flag is
set, VWINL uses StretchBlt() to scale the image as it cop­
ies it. Otherwise, the BitBlt() function simply copies the
bitmap.

If the bitmap is smaller than the window's client area,
do_paint() erases the region outside the bitmap using the
PatBlt() function. This erasure ensures a consistent back­
ground when you resize the window.

Windows may send your program a WM_PAINT mes­
sage for many different reasons. When you iconify your
window and restore it, you'll get a WM_PAINT message.
You'll also get a WM_P AINT when another window
obscures yours and then moves to expose it again. The
Vcommit_draw() function is a macro that calls
InvalidateRect(). The InvalidateRect() call also generates
WM_P AINT messages.

296 Commando Windows Programming

Biting the Bullet

Listing 7-1. SIMPLE.C

!***

*
* File: SIMPLE.C

*
* Very simple VWINL program.

*
*Required to Compile:

* VWIN.C VWINL.H SIMPLE.C

*
*To compile with Borland C:

* bee -W simple.c vwinl.c

*To compile with Microsoft C:

* cl -GA simple.c vwinl.c vwinl.def

*

*
*
*
*
*
*
*
*
*
*
*
*
*

***!

#include "vwinl.h"

I* User's callback */
long usr cbCHWND hWnd, UINT Message,

UINT wParam, LONG lParam)
{

if (Message
{

WM_VCREATE)

Vresize_winmap(hWnd, 150, 100>;

I* Why limit ourselves? */

TextOut(Vget_vdc(hWnd), 5, 50, "Hello Universe", 14>;

Vcommit_draw(hWnd>;

Commando Windows Programming 297

Biting the Bullet

}

return DefWindowProc(hWnd, Message, wParam, lParam);
}

I* Start here */
int main(HANDLE hlnstance, HANDLE hPrevlnstance,

LPSTR lpszCmdLine, int nCmdShow)
{

HWND hWnd;

I* Create window or die */

if (Vcreate_window("Simple Test Program",

WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, 0,

CW_USEDEFAULT, O, NULL, NULL,
usr_cb, V_SCALE,

NULL, &hWnd, nCmdShow))
{

MessageBoxCNULL, "Can't create window", NULL, MB_OK);

return O;
}

return 1;
}

Listing 7-2. VWINL.H

!***

*
* Fi le: VWINL.H

*
* Virtual Window Library

*

298 Commando Windows Programming

*
*
*
*
*

Biting the Bullet

* Required to Compile: *
* VWIN.C VWIN.H VWIN.DEF + your program *
* *
***/

#ifndef _VWINL_H
#define _VWINL_H

#include <windows.h>

I* Maximum # of modeless dialogs *I
#define MAXMODELESS 25

#ifndef WIN32

#define APIENTRY FAR PASCAL
I* Check for message cracker definition if 1 is there

* assume they all are */
#ifndef GET_WM_VSCROLL_CODE

#define GET_WM_VSCROLL_CODECw,l) Cw)

#define GET_WM_HSCROLL_CODECw,l) Cw)
#define GET_WM_VSCROLL_HWNDCw,l) CCHWND)HIWORDCl))

#define GET_WM_HSCROLL_HWNDCw,l) CCHWND)HIWORDCl))
#define GET_WM_VSCROLL_POSCw,l) CLOWORDCl))

#define GET_WM_HSCROLL_POSCw,l) CLOWORDCl))

#endif

#endif /* End of non-WIN32 definitions */

I* Flags */

I* V_SCALE doesn't make sense with V_RESIZE,
V_AUTOHSCROLL,

Commando Windows Programming 299

Biting the Bullet

* or V_AUTOVSCROLL. V_RESIZE, doesn't make sense with any

* of the AUTOXSCROLL flags. V_NOMAP is only valid during

* window creation. V_INIT is reserved for internal use. *I

#define v SCALE 1 L -
#define v RESIZE 2L -
#define v AUTOHSCROLL 4L -
#define v AUTOVSCROLL 8L -
#define v NOMAP Ox10L -
#define v NOQUIT Ox20L -
#define v NOFREEMAP Ox40L -
#define v KS CROLL Ox80L -
#define v ZEROS ELECT Ox100L -
#define v INIT Ox80000000L

I* Flags for Vset_flags(} */

#define VF STO 0

#define VF_SET 1

#define VF_CLR 2

#define VF_TOG 3

#define WM_VCREATE WM_USER

#define Vcommit_draw(w) InvalidateRect<w,NULL,FALSE)

I* Get VMAP de */

#define Vget_mdc(m) ((m)->dc)

#define Vget_stretchmode(m) ((m)->stretch_mode)

#define Vclear_win(w) Vclear_mapCVget_map(w))

long APIENTRY VWndProc(HWND, UINT, UINT, LONG);

300 Commando Windows Programming

Biting the Bullet

int main(HANDLE hlnstance, HANDLE hPrevlnstance,

LPSTR lpszCmdLine, int nCmdShow>;

typedef struct
{

HBITMAP bitmap;

HOC de;

HBITMAP defbitmap;

int xstep, ystep, xpage, ypage;

unsigned refct;

int stretch_mode;

} VMAP;

typedef struct
{

VMAP *map;

I* dimensions of bitmap (not window) */

unsigned int width;

unsigned int height;

I* flags */

unsigned long flags;

I* display offset */

unsigned int xoff;

unsigned int yoff;

long (*cb) (HWND, UINT, UINT, LONG>;

} MEMWINFO;

void Vget_info(HWND w, MEMWINFO * info);

Commando Windows Programming 301

Biting the Bullet

VMAP *Vget_map(HWNO w);

VMAP *Vcreate_map(int wid, int hi);

void Vdestroy_map(VMAP * map);

VMAP *Vselect_map(HWNO w, VMAP * new);

unsigned long Vset_flags(HWNO w, unsigned long flags,

int cmd);

void Vset_offset(HWNO w, int x, int y);

void Vget_offset(HWNO w, int *x, int *y);

int Vcreate_window(char *title, OWORO style, int x, int y,

int wid, int hi, HWNO parent,
LPCSTR menu,

long C*cb) CHWNO, UINT, UINT, LONG),

unsigned long vflags, HOC * de, HWNO * win, int show);

HOC Vget_vdc(HWNO w);

int Vresize_winmap(HWNO w, int wid, int hi);

int Vresize_map(VMAP * m, int wid, int hi);

void Vdont_quit(void);

void Vset scrollCVMAP * m, int xstp, int ystp, int xpg,

int ypg);

void Vclear_map(VMAP * m);

int Vset stretchmode(VMAP * m, int mode);

int Vset_monomode(int mode);

HWNO Vmodeless_dlg(HANOLE inst, LPSTR title, HWNO parent,

FARPROC fp);

int Vend_dlg(HWNO w);

I* Set user loop -- must call in main() or not at all */

void Vuser_loop(int (*ul) (});

int Vprint_map(VMAP *>;

int Vsprint_map(VMAP *>;

302 Commando Windows Programming

Biting the Bullet

#ifndef ~BORLANDC
#define main vwin_main

int vwin_mainCHANDLE, HANDLE, LPSTR, int);
#else

int mainCHANDLE, HANDLE, LPSTR, int);
#endif

#end if

Listing 7-3. VWINL.DEF
NAME VWINAPP
DESCRIPTION 'by Al Williams'

CODE MOVEABLE PRELOAD
DATA MOVEABLE MULTIPLE PRELOAD
HEAPSIZE 8192

STACKSIZE 8192
EXPORTS VWndProc

Listing 7-4. BROWSE.C
!***

*
* File: BROWSE.C

*
*File browser that uses VWINL library.

*

*
*
*
*
*

*Required to Compile: *

* BROWSE.C VWIN.C VWIN.H VWIN.RC BROWSE.RC VWIN.DEF *

* BROWSE.H MAKEFILE *

* *

Commando Windows Programming 303

Biting the Bullet

***!

#include "vwinl.h"

#include "browse.h"

#include <stdio.h>

#include <string.h>

#include <commdlg.h>

#define TOPMARGIN 5

#define LEFTMARGIN 5

I* Filters for common dialog*/

char fi Lefi Lter[J = "ALL fi Les (*.*)\0*.*\0"

"Text files (*.txt)\0*.c\0"

"C files (*.c)\0*.c\0"

"H files (*.h)\0*.h\0"

"C++ files (*.cpp)\0*.cpp\0"

"DEF files <*.def)\0*.def\0"

"RC files (*.rc)\0*.rc\0\0";

I* Scroll sizes *I

int xscroll, yscroll, xpage, ypage;

I* This routine computes the text extent and properly

* modifies the wid and hi variables for the caller. You

* could use GetTextExtent() inline for this except that

* WIN32 requires a slightly different approach */

304 Commando Windows Programming

Biting the Bullet

void text_extentCHDC de, char *s, UINT ct, UINT * wid,
UINT * hi)

{

#ifdef WIN32

SIZE extent;
GetTextExtentPoint(dc, s, ct, &extent>;
if Cwid)

*wid = max(*wid, CUINT) extent.ex>;
if Chi>

*hi += extent.cy;
#else

DWORD extent;

extent = GetTextExtent(dc, s, ct>;
if Cwid)

*wid = max(*wid, LOWORD(extent>>;
if (hi)

*hi += HIWORDCextent);

#end if
}

I* Open file -- this does *ALL* the work! */
void open_fileCHWND w)

{

OPENFILENAME ofile;

FILE *in;
VMAP *map;

HCURSOR cursor;
char fn[256J, ft[256J;

int err;

unsigned wid = 0, hi = 0, y = TOPMARGIN;

Commando Windows Programming 305

Biting the Bullet

unsigned scr_wid = 0, scr_hi = O;

HDC de;

I* Use common dialog to get file name *I
memsetC&ofile, O, sizeofCOPENFILENAME));

*fn =*ft = 1 \0 1 ;

ofile.lStructSize = sizeof(OPENFILENAME);

ofile.hwndOwner = w;

ofi le. lpstrFi lter = fi lefi lter;

ofile.nFilterlndex = 1;

ofi le. lpstrFi le = fn;
ofile.nMaxFile = sizeof(fn);

ofile.lpstrFileTitle =ft;

ofile.nMaxFileTitle = sizeof(ft);

ofile.Flags = OFN_HIDEREADONLY I OFN_PATHMUSTEXIST

OFN_FILEMUSTEXIST;
if (!(err= GetOpenFileNameC&ofile)) 11

!Cin = fopen(fn, "r")))
{

I* If err is FALSE then might just be a cancel

* CommDlgExtendedError returns 0 if it was a
cancel */

if (err I I CommDlgExtendedError())

MessageBoxCw, "Fi le open error", NULL,

MB_ICONSTOP MB_OK);

return;
}

I* Set window title */

wsprintf(fn, "BROWSE - %s", (char far *) ft);

SendMessageCw, WM_SETTEXT, 0, (LONG) fn);

I* Wait cursor */

306 Commando Windows Programming

Biting the Bullet

cursor = SetCursorCLoadCursorCNULL, IDC_WAIT));

I* Make window have no map */

map = Vselect_mapCw, NULL);

I* If there was a map here, kill it */

if (map)

Vdestroy_mapCmap);

de = GetDCCw>;

I* Read file to compute width and length of VMAP */

while CfgetsCft, sizeof(ft>, in>>
{

int l;
ft[l = CstrlenCft) - 1)] = '\0';

I* Make empty lines have one blank */

if C!l)
{

ft[OJ =

ft[1] =

l = 1;
}

I I • ,
I \0 I;

I* compute extents */

text_extentCdc, ft, l, &wid, &hi);
}

ReleaseDCCw, de>;

I* create map of the right size *I

map = Vcreate_mapCwid + 2 * LEFTMARGIN,
hi + 2 * TOPMARGIN);

if C!map)
{

MessageBoxCw, "File too large!", NULL,

MB_ICONSTOP I MB_OK>;

Commando Windows Programming 307

Biting the Bullet

SendMessageCw, WM_SETTEXT, 0, (LONG) "BROWSE");
SetCursor(cursor>;

return;
}

I* Start file over*/
rewind(in>;

I* Select map into window */

Vselect_map<w, map);

de = Vget_vdc<w>;

I* Set scroll dimensions */
text_extent(dc, " ", 1, &scr_wid, &scr_hi>;

Vset_scrollCmap, xscroll = scr_wid, yscroll = scr_hi,

xpage - scr_wid, ypage - scr_hi);

I* Read file into VMAP */

while (fgets<ft, sizeof(ft), in))
{

int l;

ft[l = (strlen(ft) - 1)] = '\0';

I* Empty lines = 1 space */

if (!l)

{

ft[OJ = I I • ,
ft[1] = '\0';

l = 1;
}

I* Instead of TextOut(), you could use any GDI calls here */

TextOut(dc, LEFTMARGIN, y, ft, l>;

text_extent<dc, ft, l, NULL, &y>;
}

I* Done with file*/

308 Commando Windows Programming

Biting the Bullet

fcloseCin>;
I* Restore cursor */

SetCursorCcursor>;
I* Force drawing update */
Vcommit_draw(w);
}

I* Do menu functions *I

void do_menuCHWND w, UINT wParam)
{

I* LOWORD for WIN32 compatibility*/
switch CLOWORDCwParam))

{

case MENU_ABOUT:

MessageBoxCw,
"Browse -- A VWINL File Browser by Al Williams",

"About BROWSE", MB_OK);

break;

case MENU_EXIT:

DestroyWindowCw>;

break;

case MENU_OPEN:
open_file(w);

break;

case MENU_PRINT:
Vprint_mapCVget_mapCw>>;

break;

Commando Windows Programming 309

Biting the Bullet

}

}

I* Our callback */
long usr_cbCHWND w, UINT Message,

UINT wParam, LONG lParam)
{

switch (Message)
{

VMAP *map;

I* Handle menu commands */
case WM_COMMAND:

do_menuCw, wParam>;

break;

I* If window resizes, recompute size of a scrolling

* page */
case WM_SIZE:

xpage = LOWORDClParam>;
ypage = HIWORDClParam>;

map = Vget_mapCw>;
if <map)

Vset_scrollCmap, xscroll, yscroll,

xpage - xscroll, ypage - yscroll>;

break;

default:
return DefWindowProcCw, Message, wParam, lParam>;
}

310 Commando Windows Programming

Biting the Bullet

return O;
}

I* VWINL main function */
int mainCHANDLE hlnstance, HANDLE hPrevinstance,

LPSTR lpszCmdLine, int nCmdShow)
{

HWND w;

I* Save space -- use monochrome mode *I

Vset_monomodeCTRUE>;

if CVcreate_windowC"BROWSE",
ws_OVERLAPPEDWINDOW, CW_USEDEFAULT, 0,
CW_USEDEFAULT, 0, NULL, "mainmenu",

usr_cb, V_AUTOHSCROLL I V_AUTOVSCROLL
V_NOMAP I V_KSCROLL, NULL, &w, nCmdShow>>

{

MessageBoxCNULL, "Can't create window", NULL, MB_OK>;

return O;
}

return 1;
}

Listing 7-5. BROWSE.H
**

*
* Fi le: BROWSE.H

*
* Header for BROWSE program.

*

Commando Windows Programming

*
*
*
*
*

311

Biting the Bullet

* Required to Compile: *
* BROWSE.C VWIN.C VWIN.H VWIN.RC BROWSE.RC VWIN.DEF *
* BROWSE.H MAKEFILE *
* *
***!

#define MENU_OPEN 101

#define MENU_ABOUT 102

#define MENU EXIT 103
#define MENU_PRINT 104

!***

Listing 7-6. BROWSE.RC

I* Resources for BROWSE.C */

#include "browse.h"

#include "vwin.rc"

mainmenu MENU PRELOAD

BEGIN
POPUP "&Fi le"

BEGIN

MENUITEM "&Open", MENU_OPEN
MENUITEM "&Print", MENU_PRINT

MENUITEM "&About", MENU_ABOUT
MENUITEM "&Exit", MENU_EXIT

END

END

vappicon ICON "vwin.ico" PRELOAD

312 Commando Windows Programming

Biting the Bullet

Listing 7-7. VWIN.RC
!***

*
* File: VWIN.RC

*
* Virtual Window Library

*
* Required to Compile:
* VWIN.C VWIN.H VWIN.DEF + your program

*

*
*
*
*
*
*
*
*

***/
#include <windows.h>

PrintDialogBox DIALOG 100,100,120,40

STYLE WS_POPUPIWS_SYSMENUIWS_VISIBLEIWS_DLGFRAMEIWS_CAP­
TION

CAPTION "Printing ... "
BEGIN

CTEXT "Now printing", -1, 4, 6, 120, 12
DEFPUSHBUTTON "Cancel", IDCANCEL, 44,22,32,14

END

Listing 7-8. VWIN.C
!***

*
* File: VWIN.C

*
* Virtual Window Library

*
*Required to Compile:

Commando Windows Programming

*
*
*
*
*
*

313

Biting the Bullet

* VWIN.C VWIN.H VWIN.DEF + your program

*
*
*

***/
#include "vwinl.h"

#include <windowsx.h>
#include <commdlg.h>

#include <string.h>

I* Local prototypes */

static void do_paintCHWND);
long Wl~API VWndProcCHWND w, UINT Message,

UINT wParam, LONG LParam);
static void save_infoCHWND w, MEMWINFO * info);
static void set_sbCHWND w, MEMWINFO * minfo, UINT wid,

UINT hi, int save>;
static void scrollitCHWND w, MEMWINFO * minfo, int type,

WORD code, HWND sb, WORD pos);

static void key_scroLLCHWND w, UINT key>;

I* Global variables */

static HANDLE Hinstance; /* Our instance */
static int monomode; /* Make mono bitmaps? */
I* Flag to tell us if user allows us to quit */

static int V_quit = O;
static HWND dlgtbl[MAXMODELESSJ;
static int C*user_Loop) <>;

I* VWINL WinMain -- this calls our main() function. If
* main() returns O, then we abort. */

314 Commando Windows Programming

Biting the Bullet

int PASCAL WinMainCHANDLE hlnstance, HANDLE hPrevlnstance,

LPSTR lpszCmdLine, int nCmdShow)
{

WNDCLASS wndClass;
MSG msg;

HACCEL haccel;

I* Register window class style if first instance of this

* program. */
Hinstance = hlnstance;
if C!hPrevlnstance)

{

I* NOTE: VWINL assumes the window will have a common

* DC! Don't use CS_OWNDC or CS_PARENTDC unless you
* know what you are getting into! */

wndClass.style = cs_HREDRAW I cs_VREDRAW I cs_DBLCLKS;

wndClass.lpfnWndProc = CWNDPROC) VWndProc;
wndClass.cbClsExtra = O;

wndClass.cbWndExtra =
sizeof(MEMWINFO) + CsizeofCMEMWINFO) % 2);

wndClass.hinstance = hlnstance;
wndClass.hicon = LoadlconChinstance, "vappicon'');
wndClass.hCursor = LoadCursorCNULL, IDC_ARROW>;

wndClass.hbrBackground = GetStockObjectCWHITE_BRUSH>;
wndClass.lpszMenuName =NULL;

wndClass.lpszClassName = "VWINL";

if C!RegisterClassC&wndClass>>
return FALSE;

Commando Windows Programming 315

Biting the Bullet

}

if C!main(hlnstance, hPrevlnstance,

LpszCmdLine, nCmdShow>>

return FALSE;
if <user _Loop)

{

return

}

user_LoopChlnstance, hPrevlnstance,

LpszCmdLine, nCmdShow>;

I* Try to Load an accelerator -- no big deal if it isn't

* there */
haccel = LoadAcceleratorsChlnstance, "VACCEL");

I* Sorta ordinary message loop -- will translate

* accelerators only if appropriate */

while CGetMessageC&msg, NULL, 0, Q))

316

{

int i;

int dlgf Lag = O;

I* look for modeless dialogs *I

for Ci = O; i < MAXMODELESS; i++)
{

if Cdlgtbl[iJ && IsDialogMessageCdlgtbl[iJ, &msg))
{

}

dlgflag = 1;

break;
}

Commando Windows Programming

Biting the Bullet

if Cdlgflag)

continue;

if C!haccel II
!TranslateAcceleratorCmsg.hwnd, haccel, &msg))

}

{

TranslateMessageC&msg>;

DispatchMessageC&msg);
}

return O;
}

I* Main Window procedure */

long APIENTRY VWndProcCHWND w, UINT Message,

UINT wParam, LONG lParam)
{

MEMWINFO minfo;

Vget_infoCw, &minfo>;
switch <Message)

{

I* Don't let user see WM_CREATE -- we aren't ready

* for him yet */
case WM_CREATE:

return DefWindowProcCw, Message, wParam, lParam>;

I* Always do painting and don't tell user *I

case WM_PAINT:
do_paint(w);

Commando Windows Programming 317

Biting the Bullet

318

return O;

case WM_SIZE:

I* Catch 1st size */

if Cminfo.flags & V_INIT)
{

if CCLOWORDClParam) != minfo.width I I
HIWORDClParam) != minfo.height) && minfo.map)

{

Vresize_winmapCw, LOWORDClParam>, HIWORDClParam>>;
}

minfo.flags &= -v_INIT;

save_infoCw, &minfo);

break;
}

I* Set scrollbars */

if Cminfo.map)
{

I* Everytime you toggle a scroll bar from on to

* off or off to on you get a WM_SIZE message!

* This Little state machine Lets us turn off the
* bars without getting into an endless Loop. */

static size lock = 0 . ,
RECT r;
if Csizelock -- 1)

return O;
if Csizelock ! = 2)

{

Commando Windows Programming

Biting the Bullet

I* Turn off both scroll bars so set sb() can
* use the whole cl;ent area ;f that's what

* ;t needs *I
s;zelock = 1;
;f Cm;nfo.flags & V_AUTOVSCROLL)

SetScrollRangeCw, SB_VERT, O, 0, FALSE>;

if Cminfo.flags & V_AUTOHSCROLL)

SetScrollRangeCw, SB_HORZ, O, O, FALSE);
I* s;ze might have changed, so reset it */

Getcl;entRectCw, &r>;
lParam = MAKELONGCr.right - r.left,

r.bottom - r.top);
}

I* Turn scroll bars on or off */

sizelock = 2;
set_sbCw, &minfo, LOWORDClParam), HIWORDClParam),

TRUE);

I* Size might have changed again, so reset it */

GetClientRectCw, &r>;
lParam = MAKELONGCr.right - r.left, r.bottom -

r.top>;

sizelock = O;
}

I* Handle V_RESIZE if active */

if Cminfo.flags & V_RESIZE && minfo.map)
{

Vresize_winmapCw, LOWORDClParam), HIWORDClParam>>;
}

break;

I* Scroll cases *I

Commando Windows Programming 319

Biting the Bullet

320

case WM_VSCROLL:
if Cminfo.flags & V_AUTOVSCROLL)

scrollitCw, &minfo, SB_VERT,
GET_WM_VSCROLL_CODECwParam, lParam),

GET_WM_VSCROLL_HWNDCwParam, lParam),
GET_WM_VSCROLL_POSCwParam, lParam));

break;

case WM_HSCROLL:

if Cminfo.flags & V_AUTOHSCROLL)
scrollitCw, &minfo, SB_HORZ,

GET_WM_HSCROLL_CODECwParam, lParam),

GET_WM_HSCROLL_HWNDCwParam, lParam),
GET_WM_HSCROLL_POSCwParam, lParam>>;

break;

case WM_KEYDOWN:

if Cminfo.flags & V_KSCROLL)
key_scrollCw, wParam);

break;

case WM_DESTROY:

I* pass to user if V_NOQUIT sel */

if Cminfo.flags & V_NOQUIT)

break;
V_quit = 1;

I* Pass to user, if V_quit is set, go ahead and kill

* ourselves */
if C!minfo.cbCw, Message, wParam, lParam) && V_quit)

{

Commando Windows Programming

Biting the Bullet

I* Clean up window's resources here ... */

if (minfo.map && minfo.map->refct &&
!Cminfo.flags & V_NOFREEMAP))
{

minfo.map->refct--;
Vdestroy_map(minfo.map);
}

PostQuitMessageCO>;
return O;
}

return O;
}

I* pass to user's callback */

if Cminfo.cb)

return minfo.cb(w, Message, wParam, lParam>;
else

return DefWindowProc<w, Message, wParam, lParam>;

}

I* Create a VWIN -- see text for description Returns 0 for
* success */

int Vcreate_window<char *title, DWORD style, int x, int y,

int wid, int hi, HWND parent, LPCSTR menu,
long C*cb) (HWND, UINT, UINT, LONG),

unsigned long vf lags, HDC * de, HWND * win,
int show)

{

HWND w;

Commando Windows Programming 321

Biting the Bullet

HMENU hMenu = NULL;
RECT r;

MEMWINFO minfo;
if <menu && !parent>

hMenu = LoadMenuCHinstance, menu>;
else

hMenu = CHMENU) menu;

I* Auto set scroll style *I
if Cvflags & V_AUTOHSCROLL)

style I= WS_HSCROLL;
if (vflags & V_AUTOVSCROLL)

style I= WS_VSCROLL;
memsetC&minfo, O, sizeofCMEMWINFO>>;

minfo.flags = vflags I V_INIT;

minfo.cb = cb;
w = *win = CreateWindowC"VWINL", title, style, x, y,

wid, hi, parent, hMenu, Hinstance, NULL>;

if C!*win)
return 1;

save_infoC*win, &minfo>;

SetScrollRangeC*win, SB_HORZ, O, O, TRUE);

SetScrollRangeC*win, SB_VERT, 0, 0, TRUE>;

GetClientRectCw, &r>;

I* create DC the same size */
minfo.xoff = minfo.yoff = O;

minfo.width = r.right - r.left;

322 Commando Windows Programming

Biting the Bullet

minfo.height = r.bottom - r.top;
if ((minfo.flags & V_NOMAP) == 0)

{

minfo.map = Vcreate_map(minfo.width, minfo.height>;

if (!minfo.map)

else

return 2;

if Cdc)

*de = minfo.map->dc;
}

minfo.map = NULL;

I* Store cb and other data in extra words */

save_infoCw, &minfo);

I* finish up */
ShowWindowC*win, show>;

I* Call user's callback with WM_VCREATE */

minfo.cbC*win, WM_VCREATE, 0, 0);

UpdateWindowC*win>;

return O;
}

I* Make a VMAP -- respects monomode flag */

VMAP *Vcreate_mapCint wid, int hi)
{

HOC de;

VMAP *bm;

HWND w;

w = GetDesktopWindow<>; /*any window will do*/

Commando Windows Programming 323

Biting the Bullet

de = GetDCCw>;
if C!dc)

return NULL;
I* temp use of malloc */

bm = CVMAP *) LocalAllocCLPTR, sizeofCVMAP));

if C!bm>

return NULL;

bm->dc = CreateCompatibleDCCdc>;
I* release Desktop DC */

ReleaseDCCw, de);
if C!bm->dc)

{

LocalFreeCCHLOCAL> bm);
return NULL;
}

I* Make the bitmap */

I* NOTE: Windows won't let you make an arbitrary colored

* bitmap. You must have a device that corresponds to the
* color-size of the bitmap */

if C!monomode)

bm->bitmap = CreateBitmapCwid, hi,

GetDeviceCapsCdc, PLANES),
GetDeviceCapsCdc, BITSPIXEL), NULL);

else I* mono */

bm->bitmap = CreateBitmapCwid, hi, 1, 1, NULL>;

if C!bm->bitmap)

324

{

DeleteDCCbm->dc>;
LocalFreeCCHLOCAL) bm);

Commando Windows Programming

Biting the Bullet

return NULL;
}

I* Note: This is supposed to be in .1 mm units, but since

* no one else uses it, who cares! */
#ifndef WIN32

SetBitmapDimensionCbm->bitmap, wid, hi>;

#else

SetBitmapDimensionExCbm->bitmap, wid, hi, NULL>;
#endif

bm->defbitmap = SelectObjectCbm->dc, bm->bitmap);

if C!bm->defbitmap)
{

DeleteDCCbm->dc);
LocalFree((HLOCAL) bm);

return NULL;
}

I* Set default stuff */

bm->xstep = bm->ystep = 1;

bm->xpage = bm->ypage = 10;

bm->refct = 1;

bm->stretch_mode = BLACKONWHITE;
Vclear_map(bm);

return bm;
}

I* Free up a valid VMAP if its refct is 1 or 0 *I

void Vdestroy_mapCVMAP * map)
{

if Cmap->refct > 1)

Commando Windows Programming 325

Biting the Bullet

return;
SelectObjectCmap->dc, map->defbitmap>;

DeleteObjectCmap->bitmap>;
DeleteDC(map->dc);

LocalFreeCCHLOCAL) map);
}

I* Associate a new map <or NULL for no map) with a window
* -- returns the old map */

VMAP *Vselect_map(HWND w, VMAP * new)
{

MEMWINFO minfo;

VMAP *re;
#ifndef WIN32

DWORD dims;
#else

SIZE dims;
#end if

RECT r;

GetClientRectCw, &r>;
Vget_info(w, &minfo>;

re = minfo.map;
minfo.map = new;
if <re)

rc->ref ct--;
I* NULL is OK here in which case we don't do much */

if (new)
{

new->refct++;
#ifndef WIN32

326 Commando Windows Programming

Biting the Bullet

#else

dims = GetBitmapDimensionCminfo.map->bitmap>;
minfo.width = LOWORDCdims>;

minfo.height = HIWORDCdims>;

GetBitmapDimensionExCminfo.map->bitmap, &dims);

minfo.width = dims.ex;
minfo.height = dims.cy;

#endif
}

else
{

minfo.width = minfo.height = O;
}

if Cminfo.flags & V_ZEROSELECT)

minfo.xoff = minfo.yoff = O;
save_infoCw, &minfo);

set_sbCw, &minfo, r.right - r.left,

r.bottom - r.top, TRUE>;
Vcommit_draw<w>;

return re;
}

I* Set stretch mode for map returns old mode */

int Vset_stretchmodeCVMAP * m, int mode>
{

int rv;

rv = m->stretch_mode;
m->stretch_mode = mode;

return rv;

Commando Windows Programming 327
I

Biting the Bullet

}

I* Sets global monomode flag which causes VWINL to create
* monochrome bitmaps to save space. Returns old value (of
* course) */

int Vset_monomodeCint mode)
{

int rv;
rv = monomode;

monomode = mode;
return rv;
}

I* Get window's map */

VMAP *Vget_mapCHWND w)
{

MEMWINFO minfo;
Vget_infoCw, &minfo);

return minfo.map;
}

I* Erase a map's surface */

void Vclear_mapCVMAP * m)
{

HBRUSH brush;

unsigned int wid, hi;
#ifndef WIN32

DWORD dims;
#else

328 Commando Windows Programming

Biting the Bullet

SIZE dims;
#endif

I* We store bitmap dimension this way. Units are pixels

* contrary to the .1mm convention *I

#ifndef WIN32

dims = GetBitmapDimensionCm->bitmap);
wid = LOWORDCdims);

hi = HIWORDCdims);
#else

GetBitmapDimensionExCm->bitmap, &dims>;
wid = dims.ex;

hi = dims.cy;
#endif

I* make background brush */

brush = CreateSolidBrushCGetBkColorCm->dc>>;
brush = SelectObject<m->dc, brush);

I* Brush area *I

PatBltCm->dc, 0, 0, wid, hi, PATCOPY>;
DeleteObjectCSelectObjectCm->dc, brush>>;
}

I* Change a window's VWINL flags -- this only makes sense

* for some flags. For example, V_NOMAP is meaningless
* here. If you ever plan to set V_AUTOHSCROLL or

* V_AUTOVSCROLL, make sure to set the scroll bar style
* flags during Vcreate_window <this happens automatically

* when you set V_AUTOxSCROLL during the create.

*
* Returns old flag value */

Commando Windows Programming

Biting the Bullet

unsigned long Vset_flagsCHWND w, unsigned long flags,
int cmd)

{

unsigned long rv;

MEMWINFO minfo;
RECT r;
Vget_info(w, &minfo);

GetClientRectCw, &r>;
rv = minfo.flags;
switch Ccmd)

{

case VF_SET:

minfo.flags I= flags;

break;
case VF_CLR:

minfo.flags &= -flags;

break;
case VF_TOG:

minfo.flags A: flags;

break;
default:

minfo.flags = flags;

break;
}

save_infoCw, &minfo);
if <<<rv & V_AUTOHSCROLL) A Cminfo.flags &

V_AUTOH SCROLL>)

330

I I CCrv & V_AUTOVSCROLL) A

Cminfo.flags & V_AUTOVSCROLL)))
{

Commando Windows Programming

Biting the Bullet

I* scroll changed */

if (!(minfo.flags & V_AUTOHSCROLL))
{

minfo.xoff = O;
SetScrollRange(w, SB_HORZ, 0, 0, TRUE);
}

if (!(minfo.flags & V_AUTOVSCROLL))
{

minfo.yoff = O;

SetScrollRange(w, SB_VERT, 0, 0, TRUE);
}

save_info(w, &minfo);

if (minfo.flags & CV_AUTOHSCROLL I V_AUTOVSCROLL))

set_sb(w, &minfo, r.right - r.left,

r.bottom - r.top, TRUE);
Vcommit_draw(w);
}

return rv;
}

I* Set the VMAP offset in pixels */

void Vset_offset(HWND w, int x, int y)
{

MEMWINFO minfo;

Vget_info(w, &minfo);

minfo.xoff = x;

minfo.yoff = y;

save_info(w, &minfo);
}

Commando Windows Programming 331

Biting the Bullet

I* Read the VMAP pixel offsets */
void Vget_offsetCHWND w, int *x, int *y)

{

MEMWINFO minfo;

Vget_infoCw, &minfo);
if Cx)

*x = minfo.xoff;
if Cy)

*y = minfo.yoff;
}

I* Get window's VMAP de *I

HDC Vget_vdcCHWND w)
{

MEMWINFO minfo;

Vget_infoCw, &minfo>;

return minfo.map->dc;
}

I* Resize a map Returns 0 if OK */

int Vresize_mapCVMAP * m, int wid, int hi)
{

VMAP *newmap;

int oldstate;

HBITMAP oldbm = m->bitmap;

newmap = Vcreate_mapCwid, hi);
if C!newmap)

return 1;

332 Commando Windows Programming

Biting the Bullet

oldstate = SetMapMode(m->dc, MM_TEXT>;
BitBlt(newmap->dc, O, O, wid, hi, m->dc, O, O, SRCCOPY);

I* copy the right parts from newmap */

m->bitmap = newmap->bitmap;

SetMapModeCm->dc, oldstate);

I* Except for bitmap! */

SelectObject(newmap->dc, newmap->defbitmap);

SelectObject(m->dc, m->bitmap);

I* Delete old de and bitmap */

DeleteDC(newmap->dc);

DeleteObjectColdbm>;

LocalFreeCCHLOCAL) newmap);

return O;
}

I* Resize VMAP attached to window -- returns 0 if OK*/

int Vresize_winmapCHWND w, int wid, int hi)
{

MEMWINFO minfo;

RECT r;

GetClientRect(w, &r>;

Vget_info(w, &minfo);

if (Vresize_map(minfo.map, wid, hi))

return 1;

minfo.width = wid;

minfo.height = hi;
save_info(w, &minfo);

set_sb(w, &minfo, r.right - r.left,

r.bottom - r.top, TRUE>;

return O;

Commando Windows Programming 333

Biting the Bullet

}

I* Clear quit flag for user */
void Vdont_quit()

{

V_qui t = O;
}

I* Get VWIN info -- public */

void Vget_info(HWND w, MEMWINFO * info)
{

int i;
for Ci = 0; i < sizeofCMEMWINFO>; i += 2)

}

*<unsigned short *) (((unsigned char*) info) + i)

= GetWindowWordCw, i);

I* Modeless dialog stuff */

HWND Vmodeless_dlgCHANDLE inst, LPSTR title,

HWND parent, FARPROC fp)
{

int i;
for Ci = 0; i < MAXMODELESS; i++)

if C!dlgtbl[iJ)

break;

if Ci >= MAXMODELESS)

return NULL;

334 Commando Windows Programming

Biting the Bullet

return Cdlgtbl[iJ = CreateDialogCinst, title, parent,
fp));

}

int Vend_dlgCHWND w)
{

int i;

DestroyWindowCw>;
for Ci = 0; i < MAXMODELESS; i++)

if CdlgtblCiJ == w>

break;
if Ci >= MAXMODELESS)

return 1;

dlgtbl[iJ = NULL;
return O;
}

I* huh? */

I* Set user loop -- must call in main() */
void Vuser_loopCint C*ul) ())

{

user_loop = ul;
}

I* printing stuff */
static int print_abort;

static HWND print_dialog;

BOOL FAR PASCAL _export print_dlgCHWND dlg, WORD msg,

WPARAM wParam,
LONG lParam)

Commando Windows Programming 335

Biting the Bullet

{

switch (msg)
{

case WM INITDIALOG:

I* turn off close */

EnableMenultem(GetSystemMenuCdlg, FALSE),

SC_CLOSE, MF_GRAYED);

return TRUE;

case WM COMMAND:

I* Abort button! */

print_abort = 1;

EnableWindow(GetParentCdlg), TRUE);

DestroyWindow(dlg);

print_dialog = NULL;

return TRUE;
}

return FALSE;
}

BOOL FAR PASCAL _export abort_proc(HDC pcd, short code)
{

MSG msg;

I* print abort proc */

while C!print_abort &&

336

PeekMessageC&msg, NULL, 0, 0, PM_REMOVE))

if C!print_dialog I I
!IsDialogMessage(print_dialog, &msg))
{

TranslateMessageC&msg);

Commando Windows Programming

Biting the Bullet

DispatchMessageC&msg);
}

return !print_abort;
}

static int print_map(VMAP * map, int mode)
{

int err = O, blterr = O;

#ifndef WIN32

DWORD dims;

#else

SIZE dims;

#endif

FARPROC abort, printproc;

HDC printer, temp;

HBITMAP tempbit, orig;

PRINTDLG prdlginfo;

int wid, hi;

RECT band;

DOCINFO docinfo;

int pgnr = 1;

I* Create print DC */

memsetC&prdlginfo, 0, sizeof(PRINTDLG));

prdlginfo.lStructSize = sizeof(PRINTDLG);

prdlginfo.Flags = PD_RETURNDC PD USEDEVMODECOPIES

PD_NOSELECTION;

if <mode)

prdlginfo.Flags I= PD_NOPAGENUMS;

Comma'ndo Windows Programming 337

Biting the Bullet

prdlginfo.nMinPage = prdlginfo.nFromPage = 1;
prdlginfo.nMaxPage = prdlginfo.nToPage = 9999;

I* Use standard print dialog */

if (!PrintDLgC&prdlginfo))
{

if (CommDLgExtendedError())

MessageBox<NULL, "Can't Open Printer", NULL,

MB_OK I MB_ICONSTOP);

return 1;
}

printer = prdlginfo.hDC;

I* Printer must support BitBLt */

if ((GetDeviceCa~s(printer, RASTERCAPS) & RC_BITBLT) -- Q)

{

MessageBox(NULL,

"Printer doesn't support bit map images",

NULL, MB_OK I MB_ICONSTOP);
err = 1;

goto dc_err;
}

I* Create memory drawing surface *I

tempbit = CreateCompatibleBitmap(printer,

wid = GetDeviceCapsCprinter, HORZRES),

hi = GetDeviceCapsCprinter, VERTRES));
if <tempbit)

{

338

temp = CreateCompatibleDC(printer);
if (temp)

Commando Windows Programming

Biting the Bullet

orig = SelectObject(temp, tempbit);
}

if (!temp 11 !tempbit 11 !orig)
{

MessageBoxCNULL, "Out of memory",

NULL, MB_OK I MB_ICONSTOP);

err = 1;

goto dc_err;
}

#ifndef WIN32

dims = GetBitmapDimension(map->bitmap);

#else

GetBitmapDimensionEx(map->bitmap, &dims);

#endif

print_abort = O;

I* Set up printing abort dialog, etc. *I

printproc = MakeProcinstance(print_dlg, Hinstance);

print_dialog = CreateDialog(Hinstance, "PrintDialogBox",

NULL, printproc);

abort = MakeProcinstance(abort_proc, Hinstance);

SetAbortProc(printer, abort);

I* Start document */

docinfo.cbSize = sizeof(DOCINFO);

docinfo.lpszDocName = "VWIN Print Job";

docinfo.lpszOutput =NULL;
if (StartDoc(printer, &docinfo) > 0)

{

unsigned pgx, pgy, imx, imy;

unsigned imlen, imwid, nrpgs = 1;

unsigned int y = 0, yoff;

Commando Windows Programming 339

Biting the Bullet

pgx = GetDeviceCaps(printer, LOGPIXELSX);

pgy = GetDeviceCaps(printer, LOGPIXELSY);

#ifndef WIN32

#else

imlen = HIWORD(dims);

imwid = LOWORDCdims);

imlen = dims.cy;

imwid = dims.ex;

#endif

340

imx = GetDeviceCaps(map->dc, LOGPIXELSX>;

imy = GetDeviceCaps(map->dc, LOGPIXELSY);

nrpgs = (imlen I imy * pgy) I hi;

yoff = hi * (long) imy I pgy;

if (nrpgs * (long) hi < imlen * (long) pgy I imy)

nrpgs++;

do
{

if (!mode &&

{

(prdlginfo.Flags & PD PAGENUMS) &&
prdlginfo.nFromPage > pgnr)

I* Not at 1st selected page yet *I

pgnr++;

y += yoff;

continue;
}

I* Finished printing last selected page */

if (!mode &&
(prdlginfo.Flags & PD PAGENUMS) &&
prdlginfo.nToPage < pgnr)

Commando Windows Programming

Biting the Bullet

break;

I* Clear surface */

PatBlt(temp, 0, 0, wid, hi, WHITENESS);

I* Scale VMAP bitmap to quasi-printer surface

* (many printers don't support StrecthBLt) */

if (mode)

blterr = !StretchBLtCtemp, 0, O,

wid, hi, map->dc, O, O,

imwid, imlen, SRCCOPY);

else

blterr = !StretchBLt(temp, 0, 0,

min(wid, imwid * <Long) pgx I imx),

minChi, Cimlen - y) * <Long) pgy I

if Cblterr)

break;

imy),

map->dc, 0, y, min(imwid,

<Long) wid * imx I pgx),

min(yoff, imlen - y),

SRCCOPY);

I* Print surface to printer using Bands -- if you

* don't use Bands for big bitmaps, Windows acts

* erratically! */

I* don't use Escape(.. NEWFRAME ..) here!*/

StartPage(printer>;

Escape(printer, NEXTBAND, 0, NULL, (LPSTR) & band);

while (!IsRectEmptyC&band))
{

(*abort) (printer, O>;

if C!BitBlt(printer, band.left, band.top,

Commando Windows Programming 341

Biting the Bullet

{

band.right - band.left,

band.bottom - band.top,

temp, band.left, band.top, SRCCOPY))

blterr = 2;

break;
}

Escape(printer, NEXTBAND, 0, NULL, CLPSTR) &
band);

}

y += yoff; I* advance page */

pgnr++;

EndPage(printer);

} while (!mode && !err && --nrpgs);

DeleteObject(SelectObject(temp, orig));

DeleteDC(temp);
}

else

err = 1;

if (!err)

EndDoc(printer);

if C!print_abort)

DestroyWindow(print_dialog);

if (err I I blterr)

MessageBoxCNULL, "Can't Print", NULL,

MB_OK I MB_ICONSTOP);

else if (print_abort)

MessageBox(NULL, "Printing Aborted", NULL,

342 Commando Windows Programming

Biting the Bullet

MB_OK I MB_ICONSTOP>;
FreeProclnstanceCprintproc>;

FreeProclnstanceCabort>;
dc_err:

DeleteDC(printer>;
if Cprdlginfo.hDevMode)

GlobalFreeCprdlginfo.hDevMode>;
if Cprdlginfo.hDevNames)

GlobalFree(prdlginfo.hDevNames>;

return err I print_abort I blterr;
}

I* print a VMAP */

int Vprint_map(VMAP * map)
{

return print_mapCmap, 0);
}

I* print a scaled VMAP */

int Vsprint_map(VMAP * map)
{

return print_mapCmap, 1>;
}

I* Save VWIN info (local use only) */

static void save_infoCHWND w, MEMWINFO * info)
{

int i;
for Ci = O; i < sizeofCMEMWINFO>; i += 2)

Commando Windows Programming 343

Biting the Bullet

SetWindowWord(w, i, *(unsigned short *)
(((unsigned char*) info) + i));

}

I* Scroll handler <Local) */

static void scrollitCHWND w, MEMWINFO * minfo, int type,

WORD code, HWND sb, WORD pos)
{

unsigned int *offset;

I* Store as Long to avoid unsigned underf Low */

Long newoffset;

int step, page;

RECT r;

GetCLientRect(w, &r);

I* Set up off set and steps */

if (type == SB_VERT)
{

offset = &mi nfo->yoff;

step = minfo->map->ystep;

page = minfo->map->ypage;
}

else
{

offset = &minfo->xoff;

step = minfo->map->xstep;

page = minfo->map->xpage;
}

344 Commando Windows Programming

Biting the Bullet

newoffset = *offset;

I* Process scroll command */

switch (code)
{

case SB_TOP:

newoffset = O;

break;

case SB_BOTTOM:

if (type == SB_VERT)

newoffset = minfo->height - Cr.bottom - r.top);

else

newoffset = minfo->width - Cr.right - r.left>;

break;

case SB_LINEUP:

step = -step;

I* fall thru */

case SB_LINEDOWN:

newoffset += step;

break;

case SB_PAGEUP:

page = -page;

I* fall thru */

case SB_PAGEDOWN:

newoffset += page;

break;

Commando Windows Programming 345

Biting the Bullet

case SB_THUMBPOSITION:

newoffset = pos;

break;

I* I didn't process SB_THUMBTRACK since a big hires

* VMAP can take too long to paint */
}

if Cnewoffset < 0)

newoffset = O;
I* Update the offset *I
if (type == SB_VERT)

else

{

if Cnewoffset + Cr.bottom - r.top) > minfo->height)

newoffset = minfo->height - Cr.bottom - r.top>;
}

{

if Cnewoffset + Cr.right - r.left) > minfo->width)

newoffset = minfo->width - Cr.right - r.left);
}

I* Update position */

SetScrollPosCw, type, (unsigned) newoffset, TRUE);

*offset = newoffset;

save_infoCw, minfo>;
Vcommit_drawCw>;
}

I* Set scroll parameters Currently you can't read them back

*unless you call Vget_info(). If you must have a

* Vget_scroll call you can write it! */

void Vset_scrollCVMAP * m, int xstep, int ystep,

346 Commando Windows Programming

Biting the Bullet

int xpage, int ypage)
{

m->xstep = xstep;
m->ystep = ystep;
m->xpage = xpage;
m->ypage = ypage;

return;
}

I* Process "scroll" keys */

static void key_scrollCHWND w, UINT key)
{

switch Ckey)
{

case VK_HOME:
SendMessageCw, WM_VSCROLL, SB_TOP, OL>;

break;

case VK_END:

SendMessageCw, WM_VSCROLL, SB_BOTTOM, OL>;
break;

case VK_PRIOR:
SendMessageCw, WM_VSCROLL, SB_PAGEUP, OL);

break;

case VK_NEXT:

SendMessageCw, WM_VSCROLL, SB_PAGEDOWN, OL>;
break;

Commando Windows Programming 347

Biting the Bullet

case VK_UP:

}

SendMessageCw, WM_VSCROLL, SB_LINEUP, OL>;

break;

case VK_DOWN:
SendMessageCw, WM_VSCROLL, SB_LINEDOWN, OL>;

break;

case VK_LEFT:

SendMessageCw, WM_HSCROLL, SB_LINEUP, OL);

break;

case VK_RIGHT:
SendMessageCw, WM_HSCROLL, SB_LINEDOWN, OL>;

break;
}

I* Local function to set scroll bars up */

static void set_sbCHWND w, MEMWINFO * minfo, UINT wid,

UINT hi, int save)
{

RECT r;
if Cminfo->flags & V_INIT)

return;
if Cminfo->flags & V_AUTOHSCROLL)

{

348

if Cminfo->xoff && minfo->width <= wid)
{

Commando Windows Programming

Biting the Bullet

I* If bitmap will fit in client area, make it do

* so *I
minfo->xoff = O;
if (save)

save_infoCw, minfo);
}

I* Set up H bar */

SetScrollPosCw, SB_HORZ, minfo->xoff, FALSE);
SetScrollRangeCw, SB_HORZ, 0,

(unsigned)

maxCOL, (long) minfo->width - Clong) wid)
,TRUE);

I* Recompute size -- may have changed if scroll bar
* enabled by above step */

GetClientRectCw, &r>;
wid = r.right - r.left;

hi = r.bottom - r.top;
}

if Cminfo->flags & V_AUTOVSCROLL)
{

if Cminfo->yoff && minfo->height <= hi>
{

I* If bitmap will fit in client area, make it do

* so *I
minfo->yoff = O;
if <save>

save_infoCw, minfo);
}

I* Set up V bar */

SetScrollPosCw, SB_VERT, minfo->yoff, FALSE);

Commando Windows Programming 349

Biting the Bullet

}

SetScroLLRangeCw, SB_VERT, O,

}

(unsigned) maxCOL, (Long) minfo->height -
(Long) hi>,

TRUE);

I* Magic paint routine *I

static void do_paint(HWND w)
{

HDC hdc;

PAINTSTRUCT ps;
MEMWINFO minfo;

RECT r;

int oldmode;
#ifndef WIN32

DWORD oldworg, oldvorg;
#else

POINT oldworg, oldvorg;
#endif

hdc = BeginPaintCw, &ps);

GetCLientRectCw, &r>;
Vget_info(w, &minfo>;

if Cminfo.map == NULL I I minfo.map->dc -- O>
{

350

EndPaintCw, &ps>;

return;

Commando Windows Programming

Biting the Bullet

}

I* Set up DC the way we like it */

oldmode = SetMapMode(minfo.map->dc, MM_TEXT);

#ifndef WIN32

oldworg = SetWindowOrg(minfo.map->dc, O, 0);

oldvorg = SetViewportOrg(minfo.map->dc, O, 0);

#else

SetWindowOrgEx(minfo.map->dc, O, 0, &oldworg);

SetViewportOrgEx(minfo.map->dc, 0, 0, &oldvorg);

#endif

I* Do something different for scale window */

if (minfo.flags & V SCALE)

else

{

int oldmode;

oldmode = SetStretchBltMode(hdc,

minfo.map->stretch_mode);

StretchBlt(hdc, 0, O, r.right - r.left,

r.bottom - r.top,

minfo.map->dc, minfo.xoff, minfo.yoff,

minfo.width, minfo.height, SRCCOPY);

SetStretchBltMode(hdc, oldmode);
}

{

I* if VMAP doesn't entirely cover window, clear first */

if Cr.right - r.left > minfo.width - minfo.xoff I I
r.bottom - r.top > minfo.height - minfo.yoff)

{

HBRUSH brush;

brush = CreateSolidBrushCGetBkColor(minfo.map->dc));

Commando Windows Programming 351

Biting the Bullet

brush = SelectObject(hdc, brush>;
I* erase "under" bitmap */

PatBlt(hdc, O, minfo.height,

r.right - r.left, r.bottom - r.top, PATCOPY>;

I* erase to "right" of bitmap */

PatBltChdc, minfo.width, 0,

r.right - r.left, r.bottom - r.top, PATCOPY);

DeleteObject(SelectObject(hdc, brush>>;
}

I* Draw it */

BitBltChdc, 0, 0, minfo.width - minfo.xoff,

minfo.height - minfo.yoff, minfo.map->dc,

minfo.xoff, minfo.yoff, SRCCOPY);
}

SetMapMode(minfo.map->dc, oldmode);
#ifndef WIN32

SetWindowOrgCminfo.map->dc, LOWORD(oldworg),

HIWORD(oldworg));

SetViewportOrg(minfo.map->dc, LOWORDColdvorg),

HIWORD(oldvorg));

#else

SetWindowOrgExCminfo.map->dc, oldworg.x, oldworg.y, NULL);

SetViewportOrgExCminfo.map->dc, oldvorg.x, oldvorg.y,

NULL);

#end if

EndPaint(w, &ps);
}

352 Commando Windows Programming

Things to Come

WHAT'S IN THIS CHAPTER

A look into the Windows crystal ball.

PREREQUISITES

None

Commando Windows Programming 353

Things to Come

Not so long ago, Windows was an oddity. There were
only a few Windows applications, and most people only
used Windows to run these applications. They would exit
Windows to do most of their work. Today, things are
quite different. Most PCs now come with Windows pre­
installed. Many users never leave Windows, and there
are numerous Windows applications available.

With the advent of Windows NT, Windows is no longer a
thin shell over MSDOS. Windows NT is a complete oper­

ating system and can run on multiple platforms.
Although it isn't very important now, in the future, many
machines will take advantage of the ability of Windows
NT to use multiple processors.

GUI systems, even Windows NT, are in their infancy.
They will mature just as other operating software has
matured over the years. Disk I/O is a good example of
this.) Older operating systems for mainframes dealt with
disk (or tape) data in a fixed block size (determined by
the hardware). If the block size was lK, for example, you
were forced to read and write records in lK chunks. If
you needed 133 byte records, you had to write code to
block and deblock these records into the lK block. One
day, someone realized that this blocking and deblocking
process could be written once and put in the operating
system. Very few programmers still write blocking and
deblocking code.

As the amount of memory and processing power avail­
able to operating systems increases, techniques like
VWIN (see Chapter 7) and TWIN (see Chapter 4) become
more attractive. Eventually, most of the arcane code that

354 Commando Windows Programming

Things to Come

you write for GUI programs will reside in the GUI sys­
tem-not in your program. A WM_P AlNT handler will
be as arcane as a disk deblocking routine is today.

Visual . programming is another exciting frontier.
Although products like Visual C++ purport to be visual,
they are not as complete as other visual environments
available on other platforms. However, you can expect
more visual programming tools to appear soon.

Applications like Microsoft Word and Excel have started a
trend that will certainly continue in the future. These pro­
grams provide powerful macro languages that are accessi­
ble via DDE (dynamic data exchange). You can also create
compound documents with these programs using OLE
(object linking and embedding). A compound document
might contain a memo with an embedded spreadsheet
and two graphic images. In the future, most major appli­
cations will support DDE and OLE. Future GUI operating
systems may even support a universal macro language to
control applications. As these trends continue, you'll find
that your programs have to interact with these OLE and
DDE applications more often. Although OLE and DDE are
outside the scope of this book, you'll do well to become
familiar with them. (See Windows Programming for Mere
Mortals in the bibliography.)

GUI programming is here to stay. While today's GUI
environments are somewhat difficult to work with, this
won't always be the case. Commando techniques can
help ease the transition, and they probably parallel the
direction in which GUI systems are heading. Still, don't
wait until tomorrow-start writing those programs
today.

Commando Windows Programming 355

TWIN Calls

Note: many TWIN calls have aliases to standard library calls. For example, puts() maps to
twin_puts().

·v~i:d·"jjti)i~~J:'tea.teJ(fW~N,;_;:lNFQ ~ot.djcliar. *title~ i ot :~fd)fn~; ~t) j.
Create TWIN window.

Create TWIN window-arguments same as Create Window().

v.O~<,if< iwf~i_a_AtJ"''~{trlrl.l)C:~.NFO .• *.otd;:JWlN~l.NF 0 ~new);
Switch active window.

y~.~\¢\:t)\ifhJjiu'.t"~~l\:•r·y•sr;·T··-,.··o: ·~· , ' ..

Write string to window.

Commando Windows Programming 357

TWIN Calls

vo'i.d':tw:in.:.;;putc(in:t c)f
Write character to window.

void .fwin_goxy(iht x,irit y);.
Set cursor position.

int twin,....w·herexCv.oid>;
Get cursor X position.

int .twi n~wherey(void);
Get cursor Y position.

v~id twin_ah~w<void>;

Update display (only useful if you draw with TF _HOLD set).

int twin_fflushCFILE *s>;
Aliased to fflush(). Ifs is stdout, this maps to twin_show(). Otherwise,
twin_fflush() calls fflush().

void tw.1n_putc(int cl;.
Write character without showing it (used internally).

vo; d. ·bii r(:c L ·s < voia r;
Clear window.

void tvfn_cLre!>LCint x,int _y)_;_
Clear to end of line.

v.o.id twfn_yieldCvoid); ·
Yield time to Windows.

358 Commando Windows Programming

Windows Myths

;in~ t 'i!trt;_;k;eyh i t (VO id>;.
Check for keystrokes waiting.

i·ti·t·'.t~inJS';'l:q"J\110~ *'s:cirn)r ·· ...
Get character and scan code.

fn::i'.\ t'.'*"ih~•:~~t~ctie(d'rft ;: .. ~s~a·.n>·; .
Get character and scan code and echo to current window.

'1:#t:/f~fi.~i•~t;tt.ag:(si.n't(fta~ward.) ; .. ··· ··
Set TWIN flags.

'1(ft;•\jj)il,~~4;9~~;.J<\<~·h~ r{*.b;uf;~ns•i.gn ed i ,ot s i zJ;
Get input string.

i.:~~'.';.:t,~':n~pf~;;n:tJ•Uc!h ~·h·:~+m~ ,_;,, r;. · ~·.}
Printf-style output to window.

f6ltff:t~·tn:1~·r:11;;r:tt!<vot!J'~i···· ... · ·•···
Print current window to printer.

v~J\:dJ'.~t;\ifK • .:~x.i,:t:(f~tct/rx1);• .• ·
Exit TWIN program.

Commando Windows Programming 359

VWINL Call Reference

int Vcreate_window(char *title,DWORD style,int x,int
y,int width, int height,HWND parent,LPCSTR menu,long
(*callback)(),unsigned vflags,HDC *dc,HWND *win,int show)
The Vcreate_window function mostly mimics CreateWindow(). The menu
parameter is actually a resource name or id. The vflags field is a VWINL flag.
The window handle returns via the win pointer and the VMAP DC (if any) goes
to the de pointer (unless the de pointer is NULL). The function returns zero
upon success-any other value indicates failure.

VMAP *Vcreate_map(int width, int height)
Creates a VMAP of the specified width and height. This VMAP will match your
current display, unless you have set the monochrome mode (see
Vset_monomode()). The map will not display until you attach it to a window
using Vselect_map().

VMAP *Vget_map(HWND w)
Returns a pointer to the VMAP associated with the window.

Commando Windows Programming 361

VWINL Call Reference

void Vdestroy_map(VMAP *map)
Releases a VMAP's resources. When a window closes, VWINL attempts to free
its VMAP unless the V _NOFREEMAP flag is set.

VMAP *Vselect_mapCHWND w, VMAP *new)
Changes the VMAP associated with a window. If the VMAP pointer is NULL,
the window will have no VMAP. The function returns a pointer to the pre­
viously selected VMAP. By calling Vselect_map() repeatedly with different
maps you can perform simple animations.

void Vcommit_drawCHWND w)
Force the contents of the window's VMAP to appear in the window. Until you
call Vcommit_draw(), any output to the VMAP may or may not be visible. This
call is actually a macro.

HDC Vget_mdc(VMAP *map)
Returns the DC associated with the specified VMAP. Actually a macro.

int Vget_stretchmodeCVMAP *map)
Returns the stretch mode for the specified VMAP. For more about stretch
modes, see the SetStretchBltMode() function in the Windows API reference.
This function is actually a macro.

void Vget_infoCHWND w,MEMWINFO *info)
Returns a read-only structure of information pertaining to the window.

unsigned long Vset_flagsCHWND w,unsigned long flags,int
cmd)
You can use Vset_flags() to change a VWINL window's flags. You may need to
call Vcommit_draw() after changing some flags. The cmd argument specifies
how VWINL interprets the flags argument. If cmd is VF _STO, VWINL copies
the flags to the window. VF _SET sets the specified flags leaving the other bits
unchanged; VF_ CLR clears them. The VF_ TOG command causes the specified
flags to change state. The return value is the previous flag value.

362 Commando Windows Programming

VWINL Call Reference

V _SCALE - Causes VWINL to scale the window's VMAP to fit the win­
dow's client area. If this flag is not set, VWINL clips the VMAP to the
window. When clipping, VWINL can offset the VMAP (see Vset_offset())
or automatically manage scroll bars.

V _RESIZE - Causes the window's VMAP to automatically resize when
the window resizes. This causes the VMAP's size to always match the
window's size.

V _AUTOHSCROLL - When set, VWINL will automatically manage hori­
zontal scroll bars for this window. When passed to Vcreate_window(),
this flag forces the window to use the WS_HSCROLL style.

V _AUTOVSCROLL - When set, VWINL will automatically manage verti­
cal scroll bars for this window. When passed to Vcreate_window(), this
flag forces the window to use the WS_ VSCROLL style.

V _NOMAP - Pass this flag to Vcreate_window to prevent VWINL from
automatically creating a VMAP with the window. Presumably, you will
use Vselect_map() to use a VMAP from another window or from Vcre­
ate_map(). V _NOMAP is only meaningful during Vcreate_window().

V _NOQUIT - Ordinarily, closing a VWINL window will cause the entire
application to terminate. If V _NOQUIT is set for a window, you may
close it without disturbing your applications.

V _NOFREEMAP - This flag prevents VWINL from automatically freeing
the window's VMAP when you close the window. You are responsible
for calling V destroy _map() yourself. This is useful when more than one
window shares a VMAP.

V _KSCROLL - Allow VWINL to intercept scrolling keys and translate
them into scroll bar events. This is especially useful in conjunction with
V _AUTOHSCROLL and V _AUTOVSCROLL.

V _ZEROSELECT - If this flag is set, a Vselect_map() call will also force
the display offsets to zero. This causes the top left corner of the image to
be visible. If you are animating with Vselect_map(), you don't want this
flag set.

V _INIT - An internal flag used by VWINL. Don't set this flag at home.

Commando Windows Programming 363

VWINL Call Reference

Note: V _SCALE is incompatible with V _RESIZE, V _AUTOHSCROLL, or
V _AUTOVSCROLL. The V _RESIZE flag is not compatible with
V _AUTOHSCROLL, or V _AUTOVSCROLL.

void Vset_offset(HWND w,int x,int y)
Sets the offset of the specified window. When VWINL draws the VMAP to the
window, it will use the offset as the VMAP's starting point (unless V _SCALE is
set). The x and y parameters are in pixels.

void Vget_offset(HWND w,int *x,int *y)
This function returns the window's offset (see Vset_offset(), above).

HOC Vget_vdc(HWND w)
This function returns the VMAP DC associated with the given window. You use
the DC to draw on the VMAP using Windows GDI calls.

int Vresize_winmap(HWND w,int width,int height>
Resize the VMAP associated with the specified window. This function automat­
ically adjusts the window's scroll bars and handles other details.

int Vresize_map(VMAP *m,int wid,int hi)
Use Vresize_map() to change the size of a VMAP. If the VMAP is attached to a
window, you will usually want to use Vresize_winmap() instead.

void Vset_scrollCVMAP *m,int xstep,int ystep,int
xpage,int ypage)
This function sets the scroll increments for a VMAP. By default the xstep and
ystep variables equal 1 and the page variables equal 10. This causes smooth
scrolling when you click the scroll bar arrows. When you scroll a page, 10
pixels go by.

void Vclear_mapCVMAP *m)
Use Vclear_map() to erase the entire drawing surface of a VMAP using the back­
ground color.

364 Commando Windows Programming

VWINL Call Reference

void Vclear_winCHWND *w>
A macro that clears the VMAP associated with a window.

int Vset_stretchmode(VMAP *m,int mode)
Sets the VMAP's stretch mode (used when V _SCALE is set). For more about
stretch modes, look up SetStretchBltMode() in the Windows API documenta­
tion. Returns the previous stretch mode.

void Vdont_quit<void)
During a WM_ CLOSE message, you may call Vdont_quit() to prevent VWINL
from terminating the application.

int Vset_monomode(int mode)
Sets or clears VWINL's monochrome mode. When monochrome mode is set, all
Vcreate_window() and Vcreate_map() calls create monochrome bitmaps. These
bitmaps may take up less space, but only support two colors.

HWND Vmodeless_dlgCHANDLE inst, LPSTR dlgname, HWND par­
ent, FARPROC fp)
This call works just like the standard CreateDialog() call except that it registers
the modeless dialog with VWINL. Don't directly call CreateDialog(). Always
destroy the dialogs you create with this call by using Vend_dlg().

int Vend_dlgCHWND w)
Use Vend_dlg() to terminate a modeless dialog created with Vmodeless_dlg().

Vuser_loop(int C*ul)())
You may install your own Windows event loop using this function. The event
loop is exactly like an ordinary Windows event loop, and completely replaces
VWINL's default loop. You must call this function in your main() routine, or
not at all.

Commando Windows Programming 365

VWINL Call Reference

Vprint_map(VMAP *)

Invokes the standard print dialog to send the VMAP to the printer at its actual
size. Vprint_map() prints multiple pages if required.

Vsprint_mapCVMAP *)

Invokes the standard print dialog to send the VMAP to the printer scaled to fit
on a page.

366 Commando Windows Programming

Annotated Bibliography

General Windows Programming

Microsoft Windows Guide to Programming, Redmond WA:
Microsoft Press, 1992.

This book is a concise guide to programming Windows. Armed
with what you learned in Chapter 2, this book may be all you
need to start writing "real" Windows programs. Not surpris­
ingly, this books seems to be Programming Windows with
about half the pages removed (see below).

Charles Petzold, Programming Windows, Redmond WA:
Microsoft Press, 1990.

The original (and best) Windows programming book. Sooner or
later you will have to read it. Plan to spend quite some time
digesting the 900+ pages. Still, it will be time well spent.

Commando Windows Programming 367

Annotated Bibliography

Commando Techniques

Woody Leonhard, Windows 3.1 Programming for Mere Mor-
tals, Reading MA: Addison-Wesley, 1992.

If you are interested in non-C ways to write Windows pro­
gramming, this irreverent book is a must. Even if, like me, you
want to use C, Woody's explanations of OLE and DDE are
excellent.

Andrew Schulman, et al., Undocumented Windows, Read-
ing MA: Addison-Wesley, 1992.

Although this book covers the intimate details of Windows
internal architecture, it contains some material relevant to
commando programming. For example, it reveals simple ways
to determine the amount of memory available to Windows. It
also contains the WINIO library, which is similar to TWIN
(see Chapter 4).

Al Williams, "A Quick Port With QuickWin," Dr. Dobb's
Journal, August, 1993.

You can find an example of using Microsoft's QuickWin to
port a large DOS-extended graphics program to Windows here.

Al Williams, "Simplified Windows User Interfaces," Win-
dows and DOS Developer's Journal, July, 1993.

This article develops a program launcher using the same
menu-only techniques that CDPLAYER illustrates (see Chap­
ter 3).

368 Commando Windows Programming

Annotated Bibliography

Al Williams, "VWinL, A Virtual Window Library/' Dr.
Dobb's Journal, November, 1993 (forthcoming).

This version of VWINL doesn't do printing, but the technical
details will be helpful if you want to modify the VWINL code
in this book.

Al Williams, /1 A Quick BMP Viewer," PC Techniques, Sep-
tember I October 1993 (forthcoming).

Another QuickWin article, this one displays ordinary Win­
dows BMP files by using the undocumented behavior of
_putimage(). The viewer code sets the palette correctly-the
only real tricky part of using Quick Win to manipulate
bitmaps.

Commando Windows Programming 369

A

Accelerators, 53, 55, 181, 289

API, 2, 18, 31, 46, 49, 113, 118, 225

App Studio, 219, 229, 235-236

App Wizard, 219-222, 226-227

_argc, 20-21

_argv, 20-21

Audio CD, 48

B

BeginPaint(), 27

BitBlt(), 291-292, 296

Bitmaps, 30, 296

BMP Files, 118

c
C++, 178, 234

Catch(), 111

CDialog, 224, 228

CDROM,48

CEditView, 226-227

CForm View, 226

Index

Commando Windows Programming 371

Index

Class Libraries, 178

Class Wizard, 221, 224, 228-229,
236

CObject, 223

Command Line, 20-21

Commando Commandments, 6,
46, 48, 62, 278

CommDlgExtendedError(), 60

Common Dialogs, 56-60, 292-293

Compact Model, 34

Compiling, 18, 32, 34, 112, 117,
127, 179

Compound Documents, 355

CreateCompatibleDC(), 296

CreateWindow, 23, 127, 286

CScrollView, 225

Cursors, 30

CView, 227

D

DC, 27-28, 289, 295-296

DDE, 355

DEF File, 32, 116-117

DefWindowProc, 25

Device Context, 27-28, 289, 295-296

Dialog

common, 56-60, 292-293

modal, 31, 184, 224

modeless, 31, 184, 53-54, 224,
290-291

open file, 56-60

save file, 59

Dialog Box, 30-31, 46, 53-56, 182-
184, 218, 224, 228, 290-291

Dialog Field Validation, 224

Document, 222-223, 227

DOS Box, 110

DOS Programs

porting, 110

Dynamic Data Exchange (DDE),
355

E

Edit Control, 128-129

EM_GETMODIFY, 56

EM_SETMODIFY, 56

Event Driven Programming, 2-4,
18

Event Loop, 3-4, 22, 31, 53, 55, 179,
281, 290- 291

372 Commando Windows Programming

Events, 24-25, 55

EXE File, 32, 46, 117

Exec Dialog(), 183

Export, 26, 285

EZWIN5, 111-112

F

Far Pointers, 29

Files

BMP, 118

DEF, 32, 116-117

DOS and Windows EXE, 117

EXE, 32, 46, 117

RC, 32, 34, 55, 62

RES, 2

stub, 117

Font, 129

Forrns,52-53,221,225-226

Frame, 222

FreeProclnstance(), 27

_fwopen(), 115

G

GDI, 280, 295

GetDeviceCaps(), 28

GetDialogBaseUnits(), 54

_getirnage(), 118

GetOpenFileN arne(), 59-60

GetParent(), 129

Index

GetProp(), 129

GetSaveFileNarne(), 59

GetSysternMetrics(), 54-55

Global Heap, 29

GlobalAlloc(), 29-30, 34, 60-61

GlobalFree(), 61

GlobalLock(), 29.

Graphics, 112, 117-118

H

Handle

instance, 19-20, 27, 49, 51

window, 50, 129, 286

Heap, 28-30, 125

global, 29

local, 28, 30, 125

Help, 119

I

Icons, 30, 181

Commando Windows Programming 373

Index

Instance, 19-20, 22

Instance Handle, 19-20, 27, 49, 51

InvalidateRect(), 296

IsDialogMessage(), 55-56

L

Large Model, 34

Linking, 32

Local Heap, 28, 30, 125

LocalAlloc(), 129

LPSTR, 29

M

MakeProclnstance(), 27

MCI31, 48-49

MciSendString(), 49

MDI, 185-186, 221, 234

Medium Model, 34

Memory Allocation, 28-29, 60, 119

Menus, 30-31, 46, 49, 53, 118, 126,
181-182,218,286,293

Message Maps, 224

MessageBox(), 46-48, 50, 56, 128

Messages, 24-26, 223

MFC, 178, 218-219, 222-229, 234-
236

Microsoft Foundation Classes,
178,218-219,222-229,234-236

Modal Dialogs, 31

Model, 4-6, 222, 279-280

Model

compact, 34

large, 34

medium, 34

small, 34

Modeless Dialogs, 31, 53-54

Multimedia Control Interface, 31,
49

Multiple Document Interface, 185-
186, 221, 234

N

NOEDITMENU, 128

0

Object Linking and Embedding,
221, 234, 355

Object Oriented Programming,
178, 225

374 Commando Windows Programming

Object Window Library, 178-187,
218

OLE, 221, 234, 355

OOP, 178, 225

Open File Dialog, 56-60, 292-293

OPENFILENAME Structure, 56-59

OWL, 178-187, 218

OWLWIZ, 185-187

p

PASCAL Keyword, 19

PatBlt(), 296

Pointer

far, 29

Porting, 110

PostMessage(), 25

printf(), 50-51

Printing, 123, 221, 293-294

Program Model, 4-6

Program Structure, 18

ProtoGen, 218

_putimage(), 118

Q

QuickWin5, 110-120

_QWINVER, 115

R

RC, 32, 34

RC File, 32, 34, 55, 62

RegisterClass(), 27

RES File, 32, 34

Index

Resources, 30-32, 34, 46, 180-181,
219

s
Save File Dialog, 59

Segment Limit, 61

Segments, 28

SelectObject(), 296

SendMessage(), 25

Serialization, 223, 228

SetFocus(), 25, 56

SetNumProperty(), 236

SetStrProperty(), 236

Small Model, 34

StretchBlt(), 292, 296

Stub File, 117

Subclass, 129, 183

Commando Windows Programming 375

Index

T

TApplication, 179-180

TDialog, 182-184

TEditWindow, 180

TextOut(), 28

TFileDialog, 184

TFileWindow, 180

Throw(), 111

TinputDialog, 184

TMDIFrame, 185

Transfer Buffer, 182-184

TranslateAccelerator(), 55

TStatic, 184

TWIN, 111, 113, 120-124, 126-129,
354

TWIN API, 121-123

TWIN Calls, 121-123

TWIN Configuration, 124

TWIN Flags, 125

TWIN Global Variables, 126-127

TWIN Menus, 126

twin_active(), 127

twin_create(), 127

twin_excreate(), 127

TWIN_INFO Structure, 126-127

twin_setflag(), 125

TWindow, 180

v
VBN_CLICKIN, 236

VBX221, 235-236

VC++, 218-229, 234-236, 278, 355

Vcreate_window(), 286-287

View, 222, 225

Visual Basic, 235-236, 278

Visual Basic Controls, 221

Visual C++, 218-229, 234-236, 278,
355

Visual Workbench, 219

VMAP, 280, 289-290, 292-296

VWINL, 279, 281-296, 354

VWINL API, 281-285

VWINL Calls, 281-285

VWINL Flags, 287-288

w
_wclose(), 115, 120

_wgclose(), 118

376 Commando Windows Programming

_wgopen(), 117

_ wgsetactive(), 117

win_input(), 50-52, 56, 278

win_printf(), 50-52, 278

WIN32s, 30, 48, 279, 295

_WINBUFDEF, 115

_WINBUFINF, 115

Window Classes, 23

Window Handle, 50, 129, 286

Window Procedure, 24-25

Window Styles, 24

Windows, 23-25

Windows NT, 20, 22, 26, 28, 30, 34,
60, 111,279,295,354

WinExec(), 49

WinMain(), 19-20, 26, 49, 111-112,
179, 281

_WINNOPERSIST, 115

_WINPERSIST, 115

Index

WM_CHAR, 129

WM_COMMAND, 24, 55, 224, 293

WM_ CREA TE, 224, 285

WM_DESTROY, 24, 285, 290

WM_ GETTEXT I 56

WM_MINMAXINFO I 292

WM_PAINT24, 27-28, 278-280,
285, 291, 296, 355

WM_SETFOCUS, 53

WM_SETTEXT, 25-26, 56

WM_SIZE, 294

WM_ VCREATE, 285

_ wopen(), 115

_ wopeninfo Structure, 115

WPRINT I 50-52, 56

_wsetexit(), 116

_ wsizeinfo Structure, 115

_wyield(), 116

Commando Windows Programming 377

Windows Programming

Fast and Easy Programming Solutions In C

Most Windows™ programming books talk about event loops, GDI, device
contexts, and update routines-which is fine if you have plenty of time to
learn the intricacies of Windows programming. But you live in the real world.
You write real applications to access databases, fill in forms, and print reports.
Commando Windows Programming shows you how to write these
programs fast without having to learn every detail about Windows.

The book covers many techniques and tools to help you code for Windows
and Windows NT. including:

• Writing dialog-only and menu-only programs
• Emulating text-based programs with edit controls
• Using libraries to simplify application creation
•Using Borland's OWL, Microsoft's Visual C++,

and similar products.

Commando Windows Programming also includes two original libraries­
TWIN and VWIN-that simplify many common programming tasks. TWIN
simplifies the writing of text-based programs, and VWIN works for any type
of program. These libraries also provide a starting point for developing your
own tools.

Commando Windows Programming offers a quick return on your reading
investment. Unlike other Windows books, you'll start writing practical
programs right away.

Al Williams is author of DOS
and Windows Protected Mode
(Addison-Wesley, 1993) and
DOS 6 Developer's Guide.

Addison-Wesley Publishing Company

52795

9 780201 624847

ISBN 0-201 -62484-2

$27.95 us
$35.95 Canada

