

COMMANDO
WINDOWS
PROGRAMMING

COMMANDO
WINDOWS’

PROGRAMMING

W W W W

AL WILLIANS

A
vv
Addison-Wesley Publishing Company
Reading, Massachusetts = Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book and Addison-Wesley was aware of the trademark claim, the designations
have been printed in initial capital letters.

The author and publishers have taken care in preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential dam-
ages in connection with or arising out of the use of the information or programs
contained herein.

Library of Congress Cataloging-in-Publication Data

Williams, Al, 1963-
Commando Windows programming : fast and easy programming solutions
in C / Al Williams.
p. cm.
Includes index.
ISBN 0-201-62484-2
1. Windows (Computer programs) I. Title.
QA76.6.W56W49 1993
005.4’3--dc20 93-24862
CIP
Copyright © 1993 by Al Williams

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Managing Editor: Amorette Pedersen
Production Editor: Jennifer Noble
Set in 11-point Palatino by Benchmark Productions, Inc.

123456789-MA-97 96 95 94 93
First Printing, July 1993

For my mother, Jerid, Amy, and always for Pat.

Contents

Contents
Acknowledgment xvii
Introduction xix
Special Features xxi
What You Will Need xxi
The Road Map xxi
1
Windows Myths 1
Howdy World
Commando Programmers Have Shortcuts 5

Commando Windows Programming vii

Contents

Why Is Windows This Way?
When Using Windows Is Better 6
Where to Next? 7
2
Windows Basics 17
Anatomy of a Windows Program 19
Classy Windows 23
Creating a Window 23
Events and Messages 24
License to Export 26
Drawing to the Screen 27
Memory Allocation 28
Resources 30
Special Libraries 31
Compiling and Linking 32
Learning More 34
3
Unlimited Resources 45
How to Write Howdy 46
A Simple CD Player 48
Back to Basics 50
Forms for Free 52
Events 55

viii Commando Windows Programming

Contents

The GUI
Using Common Dialogs
Giving Good PHONE

Constructing Resources

4
Porting Without Pain

Why Not a DOS Box?

Available Tools
Borland

Microsoft
TWIN

Advanced QuickWin Features
Opening Windows
Closing Windows
Behaving Under Windows
Split-Personality Programs
QuickWin Graphics
QuickWin Limitations
A QuickWin Program

Using TWIN
TWIN Configuration

TWIN Global Variables
TWIN Menus
Advanced Use of TWIN

56
56

60
62

109
110

111
111

112
113

113
115

115
116
116
117
118
120

120
124

126
126
126

Commando Windows Programming ix

Contents

How TWIN Works 128
Summary 130

5

Objects of Desire 177
Constructing an Application 179
OWL Windows 180
Managing Resources 180
Commando OWL Programming 181
Creating MDI Applications 185
A Full OWL Application 185
OLWWIZ Templates 186
OWL Summary 187

6

Quick on the Draw:

Programming Visually 217
What VC++ Isn't 218
Elements of VC++ 219
Features Offered by App Wizard 221
MFC in Detail 222

Managing MFC Documents 223
Message Handling in MFC 223
Using Dialog Boxes 224
The Bottom Line 225
Three Special Views 225

x Commando Windows Programming

Contents

A Simple Example
Is VC++ for You?

7

Biting the Bullet (Or How | Learned
to Stop Worrying and Love the SDK)

Down with WM_PAINT!

The Problem with the SDK

New Age Programming

Details, Details...

Calling It Quits

Fancy VWINL Tricks

Breaking the Speed Limit

A Practical Example

Limits

Is VWINL for You?

How Does It Do That?

8
Things to Come

A
TWIN Calls

B
VWINL Call Reference

226
234

277

278
279
280
280
290
290
291
292
294
295
295

353

357

361

Commando Windows Programmihg xi

Contents

C

Annotated Bibliography 367
General Windows Programming 367
Commando Techniques 368

Index 371

xii Commando Windows Programming

Listings

Listings
Listing 1-1. HOWDY.C 8
Listing 1-2. CHOWDY.C 14
Listing 1-3. EZHOWDY.C 15
Listing 2-1. HOWDY.H 37
Listing 2-2. HOWDY.RC 37
Listing 2-3. HOWDY.DEF 39
Listing 2-4. ARGCARGV.C 39
Listing 2-5. ARGCARGV.H 41

Commando Windows Programming xiii

Listings

Listing 2-6. BORCOMP.BAT 42
Listing 2-7. MICCOMP.BAT 42
Listing 2-8. NTCOMP.BAT 42
Listing 2-9. NTLINK.RSP 43
3
Listing 3-1. MOTD.C 63
Listing 3-2. MOTD.DEF 64
Listing 3-3. CDPLAYER.C 64
Listing 3-4. CDPLAYER.H 72
Listing 3-5. CDPLAYER.RC 73
Listing 3-6. CDPLAYER.DEF 74
Listing 3-7. WPRINT.C 74
Listing 3-8. WPRINT.H 77
Listing 3-9. WPRINT.RC 78
Listing 3-10. CTOF.C 79
Listing 3-11. CTOF.RC 80
Listing 3-12. CTOF.DEF 81
Listing 3-13. PHONE.C 81
Listing 3-14. PHONEDB.C 90
Listing 3-15. PHONE.H 102
Listing 3-16. PHONE.RC 104
Listing 3-17. PHONE.DEF 107
4
Listing 4-1. QVIEW.C 131
Listing 4-2. TWIN.H 133

xiv Commando Windows Programming

Listings

Listing 4-3.
Listing 4-4.
Listing 4-5.
Listing 4-6.

Listing 5-1.
Listing 5-2.
Listing 5-3.
Listing 5-4.
Listing 5-5.
Listing 5-6.
Listing 5-7.
Listing 5-8.

Listing 6-1.
Listing 6-2.
Listing 6-3.
Listing 6-4.
Listing 6-5.
Listing 6-6.
Listing 6-7.
Listing 6-8.
Listing 6-9.

TMENU.C
TWIN.C
TWIN.RC
TWIN.DEF

TWEDIT.CPP
TWEDIT.RC
OWLCOMP.BAT
OWLWIZ.CPP
OWLWIZ.H
OWLWIZ.RC
OWLTWIN.TPL
OWLMDI.TPL

GROUPEXE.H
GROUPEXE.CPP
GROUPDOC.H
GROUPDOC.CPP
GROUPVW.H
GROUPVW.CPP
RUNSTATE.H
RUNSTATE.CPP
MAINFRM.H

Listing 6-10. MAINFRM.CPP
Listing 6-11. STDAFX.H

139
144
173
175

189
190
191
192
206
206
210
212

237
238
243
244
247
249
253
254
255
256
260

Commando Windows Programming xv

Listings

Listing 6-12. STDAFX.CPP 261
Listing 6-13. GROUPEXE.RC 261
Listing 6-14. RESOURCE.H 272
Listing 6-15. GROUPEXE.RC2 273
Listing 6-16. GRUPEXE.DEF 275
7
Listing 7-1. SIMPLE.C 297
Listing 7-2. VWINL.H 298
Listing 7-3. VWINL.DEF 303
Listing 7-4. BROWSE.C 303
Listing 7-5. BROWSE.H 311
Listing 7-6. BROWSE.RC 312
Listing 7-7. VWIN.RC 313
Listing 7-8. VWIN.C 313

xvi Commando Windows Programming

Acknowledgments

Acknowledgments

My appreciation to Andrea Mulligan, Amy Pedersen,
Andrew Williams, and Chris Williams along with every-
one else at Benchmark and Addison-Wesley for their
usual great job. Thanks to John Hamilton for showing me
the need for this book and Larry Coates for his excellent
editorial comments. And last, but never least, thanks to
my family for helping me make the leap to full-time writ-
ing and consulting.

A version of the VWINL library appeared in Dr. Dobb’s
Journal and is used here with permission (thanks to Jon
Erickson).

Commando Windows Programming xvii

Introduction

Open most Windows C/C++ programming books and
you’ll find information about event loops, GDI, device
contexts, and update routines—a daunting barrier to the
beginning Windows programmer.

The arcane approach is fine if you are a student with
plenty of time to learn Windows’ intricacies. But you live
in the real world. You don’t write drawing or word pro-
cessing programs; you write real applications to access
databases, fill in forms, and print reports. You need to
write these programs fast, and you don’t have much time
to learn every detail about Windows. You are a com-
mando programmer.

Luckily there are many techniques and tools to help com-
mando programmers code for Windows and Windows
NT. Commando Windows Programming covers:

o Writing dialog-only and menu-only programs

Commando Windows Programming

xix

Introduction

e Emulating text-based programs with edit controls
e Using libraries to simplify application creation

e Using C++ class libraries such as Borland’s OWL and
Microsoft’s Visual C++

Along with coverage of commercial tools, Commando
Windows Programming includes two original libraries—
TWIN and VWIN—that can simplify many common pro-
gramming tasks.. TWIN simplifies the writing of
text-based programs, and VWIN works for any type of
program. These libraries can simplify your programs or
can provide a starting point for developing your own
tools.

Using the techniques and tools in Commando Windows
Programming, you can write practical Windows programs
quickly and easily—often within a few hours of picking
up the book. The techniques are shortcuts, but they fre-
quently are the best way to write a practical program. As
a bonus, if you later decide to tackle a more conventional
Windows programming book, you’ll already understand
many of the concepts.

Commando Windows Programming offers a quick return on
your reading investment. Unlike most other Windows
books, you’ll start writing practical programs almost
right away. Depending on your interests, there are sev-
eral paths through the book. You can select chapters
according to your needs.

xx Commando Windows Programming

Introduction

Special Features

Because of the broad scope of

information in this book, there is

a special section at the beginning

of each chapter to help guide
you. This section describes what is in the chapter and
what you need to know to get the most out of it. Also,
some chapter sections have the commando paratrooper
symbol at the top of the paragraph. The paratrooper
identifies sections that will only interest advanced Win-
dow commandos. You might want to skip these sections
the first time you read through the book. You’ll need to
read the paratrooper sections only if you want to know
why a tool works.

What You Will Need

Most of the programs in this book will work with Bor-
land C/C++ or Microsoft C/C++. Some programs that
require proprietary libraries will work only with Borland
or only with Microsoft. Chapter 6 covers programs that
work exclusively with Microsoft Visual C++. You should
also have the Windows SDK documentation either in
book form or online.

The Road Map

You probably won’t read the chapters of this book in
sequence. Instead, you'll probably skip around to satisfy
your interests. But everyone should read Chapter 1 first.

Commando Windows Programming

xxi

Introduction

If you are an experienced Windows programmer, you
might want to skip Chapter 2; otherwise, read it after
Chapter 1. After that, you are on your own. The table

below will help you find the chapters that interest you

most.

IF YOU WANT TO...

Display simple text

Write form-based programs

Port existing text-based DOS programs

Use C++ to simplify your programs

Write programs that incorporate text editors
Use visual programming techniques with C++
Use Visual Basic controls in C++ programs

Write conventional Windows programs while
automatically managing updates, scroll bars,
resizing, etc.

GO TO CHAPTER...
3 or 4

5 or 6

6 or 7

xxii Commando Windows Programming

Windows Myths

WHAT’S IN THIS CHAPTER

You'll find an overview of C programming for
Windows and a discussion of why it is so difficult
compared to ordinary programming.

PREREQUISITES

None

Commando Windows Programming 1

Windows Myths

C programming for Windows has the reputation of being
difficult. In addition to your normal C programming
skills, you need to know about hundreds of Windows
API calls that allocate memory, create windows, and per-
form a variety of other functions.

Worse still, Windows programs don’t look like tradi-
tional C programs. Windows programs are event driven
(which is largely a good thing). They also require you to
cooperate with the system to conserve memory, multi-
task, and provide user interface operations (which is
largely a bad thing).

Commando programmers want a simpler way to write
Windows programs. However, they also want to retain
the power inherent in Windows.

The key question is: Why is Windows programming diffi-
cult? The extra Windows API calls are not that difficult.
You don’t need to know them all, and the ones you will
use are comparable to third-party library calls that do
DOS user interfaces and graphics.

Event-driven programming (see Chapter 2) is a little dif-
ferent from normal C programming, but not much. A
conventional C program that takes keyboard input and
maintains a timer might contain this code fragment:

while (1)
{
if (kbhit())
process_key(getch());
if (timer_flag)

2 Commando Windows Programming

Windows Myths

time_passed();

The same program fragment in a Windows program
might look like this:

event (HWND w,unsigned *m,WORD wParam,LONG LParam)
{
switch (m)
{
case WM_CHAR:
process_key(wParam);
break;
case WM_TIMER:
time_passed();
break;
}

Not much of a difference. The Windows kernel takes the
place of the original while loop and passes many events
(not just keyboard and timer events) to a function of your
choice.

For most Windows programs, this structure really is an
advantage. If you have written a Windows program
before, you may disagree. Actually, the bad part about
event-driven programming under Windows is not the
basic idea but some of the specific messages. Be careful
not to confuse the two.

Commando Windows Programming 3

Windows Myths

In reality, the culprits that give event-driven program-
ming a bad name are some of the specific events. For
example, suppose you want to write text to the screen.
You can’t just write it to the window and expect it to stay
there. At any time, Windows may decide to ask you to
redraw a part of it. For simple text, this isn’t much of a
problem, but for complex graphics or text documents, it
may be difficult to do. Other things that Windows should
take care of for you (scroll bars, for example) will barrage
your program with difficult events.

A traditional Windows program has four parts: the ini-
tialization section, an application model, an update rou-
tine, and program logic. The initialization section starts
up the program, of course. The model is a representation
of program data (for example, a word processing docu-
ment). The update routine decides how to display a por-
tion of the model on the screen. Finally, the program
logic takes input (usually from the user) and uses it to
modify the model.

Howdy World

A good example of Windows programming complexity is
the famous “Howdy World” program (if you aren’t from
Texas, you may know this as the “Hello World” pro-
gram). In case you haven’t seen it, Listing 1-1 has the
famous program written for Windows. Wow! It’s almost
200 lines of code—and that doesn’t include its resource
and DEF file (see Chapter 2). Even with great formatting
and comments, a DOS HOWDY.C is only ten lines of
code.

4 Commando Windows Programming

Windows Myths

Here the init() function handles initialization, the
update() routine displays the model, and the model is the
character array named model. The HOWDY program
doesn’t allow its model to change, so it has almost no
program logic. However, for the sake of illustration, the
menu() function causes the program to terminate—the
only program logic step HOWDY uses.

Some Windows programmers will tell you that this isn’t a
fair comparison. The Windows program has more to do.
However, commandos know that this isn’t really a far-
fetched comparison. For example, how many times do
you need to write a program that displays some data
from a database? Or print some status message to the
screen. Can you really afford 200 lines of code to do that?

Commando Programmers Have Shortcuts

Luckily, commando programmers have shortcuts that
make writing Windows programs easier. Listing 1-2
shows a short Windows HOWDY.C that uses the tech-
niques described in Chapter 3. That’s better, isn’t it? List-
ing 1-3 shows a program written with Borland’s EZWIN
product, which will also work with Microsoft’s
QuickWin. It looks just like a DOS program (of course, it
also acts just like a DOS program). You'll learn more
about these techniques in later chapters. For now, just
realize that traditional Windows programming tech-
niques are not always the best way to write a Windows
program.

Commando Windows Programming 5

Windows Myths

Why Is Windows This Way?

When Windows first appeared, it operated (barely) on a
conventional 8088 PC with less than 640K of memory.
Since even a moderate-sized screen image could take 64K
of memory (or more), it wasn’t very practical for Win-
dows to store screen images for later recall. Without this
ability, Windows cannot manage screen redisplay, scroll
bars, and other important functions. You must deal with
these yourself. Most of the commando techniques in this
book hide this complexity from you.

When Using Windows Is Better

If there are easier ways to write Windows programs, why
does the traditional method still persist? Although the
commando techniques are useful for many programs in
many situations, they are not right for every program.
Some commando techniques, for instance, consume large
amounts of memory, which may not be suitable for your
application.

Other programs naturally fit the Windows model. For
example, a word processor builds a document; this docu-
ment corresponds exactly to the model portion of a Win-
dows program. Directly placing text and formatting on
the screen is of little value when you must update the
model anyway.

Still, many programs can benefit from simplified Win-
dows techniques. Even a word processor will have por-
tions of code that don’t fit well with the traditional
programming model. Programs that work with databases

6 Commando Windows Programming

Windows Myths

are often good candidates for commando techniques.
Simple utilities that create files, set up printers or net-
work connections, or perform similar tasks can often ben-
efit from the commando approach.

Where to Next?

Although the commando techniques simplify Windows
programming, most of them still require some Windows
knowledge. Unless you are already an experienced Win-
dows programmer, you should read Chapter 2 next. It
will quickly teach you some basic Windows ideas and
terms. Once you are familiar with these concepts, you can
find chapters of interest in the roadmap at the end of the
Introduction.

Commando Windows Programming 7

Windows Myths

Listing 1-1. HOWDY.C

JAZE R R EEE R R R R EEEE R EREEEEEEEREEEEEEEREEEEREEEEEE SRS ES

* *
* File: HOWDY.C *
* *
* Typical (noncommando) Windows program *
* *
* Required to Compile: *
* HOWDY.C HOWDY.H HOWDY.RC HOWDY.DEF *
* *
*

LR R R R R R R R EEE RS EEEEE SRR EEEEEEREEEEEEEEEEEEEE SRS

#include <windows.h>
#include <string.h>
#include "howdy.h"

/* current instance */
HANDLE hlInst;
/* main window */

HWND topwindow;
/* String to display —-- the "model" */

char *model = "Howdy World!";

/* Main window function */
int PASCAL WinMain(HANDLE hInst, HANDLE prev,
LPSTR cmdline, int show)

MSG msg;

8 Commando Windows Programming

Windows Myths

if (!'initChInst, prev, show))
return FALSE;

/* Vanilla event Lloop */

while (GetMessage(&msg, NULL, NULL, NULL))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}

/* Exit program */

return (msg.wParam);

}

/* Start up stuff */
int init(HANDLE hInst, HANDLE prev, int show)
{
if (!prev)
{
if (!'init_app(hInst))
/* Exit if unable to initialize */
return FALSE;
}
/* Perform instance init */
if ('init_instChInst, show))
return FALSE;
return TRUE;
>

/* Create window class here */

Commando Windows Programming 9

Windows Myths

BOOL init_app(HANDLE hlnstance)
{
WNDCLASS wc;
wc.style = NULL;
wc.lpfnWndProc = (void FAR *) win_proc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hlnstance;
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
Wwc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = "HOWDYMENU";
wc.lpszClassName = "HOWDY_Class";
return (RegisterClass(&wc));
}

/* Create window here */
BOOL init_inst(HANDLE hlInstance, int nCmdShow)
{
HWND hWnd;
/* Save the instance handle in global variable */
hinst = hInstance;

/* Create a main window */

topwindow = hWnd = CreateWindow(
"HOWDY_Class",
"Howdy, Howdy, Howdy!'",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,

10 Commando Windows Programming

Windows Myths

CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,

NULL,
NULL,
hInstance,
NULL
);
if ('hWnd)

return FALSE;

/* Make the window visible, update its client area, and
* return "success" */

ShowWindow(hWnd, nCmdShow);

UpdateWindow(hWnd);

return (TRUE);

}

/* Window procedure */
long WINAPI _export win_proc(HWND hWnd, UINT message,
UINT wParam, LONG LParam)
{
switch (message)
{
case WM_COMMAND:
menu(hWnd, wParam);
break;

Commando Windows Programming 11

Windows Myths

case WM_DESTROY:
PostQuitMessage(0);
break;

case WM_PAINT:
update(hWnd);
break;

default:
return (DefWindowProc(hWnd, message,
wParam, LParam));
>
return NULL;
3

/* Update screen in response to WM_PAINT messages */
void update(HWND w)
{
HDC dc;
PAINTSTRUCT paint;
dc = BeginPaint(w, &paint);
TextOut(dc, GetDeviceCaps(dc, LOGPIXELSX) / 2,
GetDeviceCaps(dc, LOGPIXELSY) / 2,
model, strlen(model));
EndPaint(w, &paint);
}

void menu(HWND hWnd, UINT wParam)
{

12 Commando Windows Programming

Windows Myths

/* pointer for "About" function */
FARPROC aboutproc;

if (wParam == IDM_ABOUT)
{
aboutproc = MakeProcInstance(about, hInst);

DialogBox(hInst, "AboutBox", hWnd, aboutproc);
FreeProcInstance(aboutproc);
return;
}
else if (wParam == IDM_STOP)
{
DestroyWindow(hWnd);

return;
>

/* Ordinary about box */
BOOL WINAPI _export about(HWND hDlg, UINT message,

UINT wParam, LONG LParam)
{

switch (message)
{
case WM_INITDIALOG:
return (TRUE);

case WM_COMMAND:
/* Use LOWORD for Win32 compatibility */
if (LOWORD(wParam) == IDOK

|| LOWORD(wParam) == IDCANCEL)
{

Commando Windows Programming 13

Windows Myths

EndDialog(hDlg, TRUE);
return (TRUE);
>
break;
>
return FALSE;
¥

Listing 1-2. CHOWDY.C

AR X EE R R R R R EEEEREEREEEEEEEEEEEEEEEEEEREEEEEEEEEEEEES]

*

File: CHOWDY.C
Commando version of HOWDY

*
*
*
*
* Required to Compile:
* CHOWDY.C CHOWDY.DEF
*

*

#include <windows.h>

/* Main window function */
int PASCAL WinMain(HANDLE hInst, HANDLE prev,
LPSTR cmdline, int show)
{
MessageBox(NULL, "Howdy World!", "Howdy!'!",
MB_OK) ;
return FALSE;
>

kkhkkhkkkkkhkkhkkhkhkhkhkhkhhhhhhhhkhhhhkhhkhkhhkhkhkhkhkhkhkhkkhkkhkkkhkhkhkdkxx

*
*
*
*
*
*
*
*
*

/

14 Commando Windows Programming

Windows Myths

Listing 1-3. EZHOWDY.C

VA AR R R R R R EE R R EEE R R EEEEEEREEEREEEEEEEEEEEEEEEES]

* *
* File: EZHOWDY.C *
* *
* Simple Howdy world program for EZWIN or QuickWin. *
* *
* Required to Compile: *
* ezhowdy.c *
* *
***/

#include <stdio.h>

main()
{
printf("Howdy World\n");
}

Commando Windows Programming 15

Windows Basics

WHAT'’S IN THIS CHAPTER

Chapter 2 covers basic Windows programming
concepts (for example, event loops, windows, menus,
and resources). You will need a working
understanding of these concepts to apply most of the
commando techniques that appear in the remainder
of the book. If you already know how to write
conventional Windows programs, you may

wish to skip this chapter.

PREREQUISITES

To get the most from this chapter, you’ll need a
knowledge of C programming.

Commando Windows Programming

17

Windows Basics

Windows programs look different than ordinary C pro-
grams. Even the simplest Windows program usually has
several files and many functions. This chapter will help
you get oriented in the Windows world and introduce
some important new terms.

Windows programs are different from conventional pro-
grams in four major ways:

e The structure of the program is different.
e Windows programs are event driven.
e The compile-and-link cycle differs.

e Windows provides an enormous number of new API calls
and messages.

This chapter will focus mainly on the first three differ-
ences. You can pick up the new API calls as you go along.
Be sure that you have an API reference (either the book
or online help from the Microsoft or Borland compilers)
to answer your API questions.

The HOWDY program in Chapter 1 (see Listing 1-1) is a
simple Windows program that we will dissect in this
chapter. Windows programs are usually more complex,
but the principles are the same as in HOWDY. Listing 1-1
contains the C source code for HOWDY, but that isn’t all
it takes to build a Windows program. Listings 2-1, 2-2,
and 2-3 show HOWDY.H, HOWDY.RC, and HOWDY.
DEF. You'll need these three files to actually compile
HOWDY.

18 Commando Windows Programming

Windows Basics

Note that HOWDY is not a commando program—it is a
typical Windows application. If it takes a program this
large to write one string to a window, how big will your
program be? Luckily, Chapter 3 will show you better
ways to write this type of program. In fact, the examples
in Chapter 3 will do more with less code. Still, you
should wade through HOWDY to see how the other half
lives. It will greatly enhance your appreciation of the pro-
grams that follow.

Anatomy of a Windows Program

Conventional C programs begin execution at their main()
function. Windows programs begin at WinMain(). Like
main(), WinMain() is responsible for starting up your
program, and when it exits, so does your application.

Here is the prototype for WinMain():

int PASCAL WinMain(HANDLE hInst, HANDLE prev,
LPSTR cmdline, int show);

The PASCAL keyword signals the compiler to use a Pas-
cal-style calling convention for efficiency reasons. Most
functions that Windows supplies or calls use this calling
convention.

The arguments to WinMain() are straightforward. Win-
dows assigns each running program an instance handle.
This handle uniquely identifies the program in the same
way the PSP address identifies a DOS program. The hlnst
parameter is your program’s instance handle. Windows

Commando Windows Programming 19

Windows Basics

will often require you to pass this back to it as a parame-
ter to other API calls.

The second HANDLE argument, prev, is NULL if your
program is running for the first time or is a Windows NT
program. If there is another copy of your program run-
ning under Windows 3.x, Windows places its instance
handle in the prev parameter. By examining it, you could
prevent multiple copies of your program from executing.
You also can skip some initialization steps when you
know that another copy of your program has already
done them (see below). If you want to, you can even
write a program that simply issues requests to the older
copy of itself and terminate.

The cmdline parameter is a far pointer to your command
line. The command line is unparsed and null terminated.
This is not as handy as the argc and argv parameters you
usually get, so the Borland compilers provide global vari-
ables _argc and _argv to take their place. While Microsoft
doesn’t supply these variables, Listings 2-4 and 2-5
(ARGCARGV.C and ARGCARGV.H) allow you to use
them with either compiler.

ARGCARGV.C and ARGCARGV.H (Listings 2-4 and 2-5)
supply a simple command line parser for Microsoft pro-
grams. Although it isn’t as sophisticated as the standard
parser, it is more than adequate for most Windows pro-
grams. You can include ARGCARGV.H in your Borland
or Microsoft programs. You also need to call set_args()
before using the _argc or _argv variables. For Borland
programs, this call does nothing, and the header just
includes the proper header that defines _argc and _argv.

LiuuT 1UpTi i L Uil

20 Commando Windows Programming

Windows Basics

The MOTD program in Chapter 3 (Listing 3-1) shows
how to use ARGCARGV.

If you use Borland, you can either compile and link with
ARGCARGV.C or not—it expands to nothing under Bor-
land. For Microsoft programs, you must compile and link
ARGCARGYV.C. The version in Listing 2-4 limits you to a
maximum of 20 arguments. It also doesn’t understand
argument quoting. For example, the arguments:

"Hex Mode" On

would normally result in the following assignments:

argvL1]1="Hex Mode";
argvl[21="0n";

With ARGCARGV.C, the results are:

argv[11="\"Hex";
argvL21="Mode\"";
argv[31="0n";

The final parameter to WinMain() is show. This variable
indicates whether the program should start as a normal
window, an icon, or a full-screen window. Usually, you
just pass this parameter back to Windows in the Win-
Show() call and forget about it.

Commando Windows Programming 21

Windows Basics

WinMain() usually (but not always) has three main
functions:

e Do global initialization (if this is the first copy of your pro-
gram).

e Do instance initialization.

e Start the event loop.

If the prev parameter in WinMain() is NULL, you have to
do some global initialization that you would skip if it
was not NULL. You'll see more about that soon. Since
Windows NT programs are isolated from each other, this
parameter is always null under NT.

Nearly all programs will need to perform some private
initialization in WinMain(). Most often, this is the cre-
ation of the application’s main window.

HOWDY.C uses the init() function to perform both types
of initialization. The init_app() function does the global
setup (if required), and the init_inst() routine handles the
window creation.

Finally, WinMain() enters an event loop. This captures
messages sent by Windows and routes them to the cor-
rect functions in your program. We will look at messages
and events shortly.

The event loop is written so that it ends when you termi-
nate your program (say, by clicking close from the sys-
tem menu). Since the loop is the last thing in WinMain(),

ending it causes WinMain(} and your program to end.

22 Commando Windows Programming

Windows Basics

Classy Windows

A program’s windows serve as focal points for its activ-
ity. Windows receive events, own menus, and, of course,
display data. Each window you create must belong to a
window class. A window’s class defines its default behav-
ior. Windows provides some built-in classes (for exam-
ple, button, scroll bar, and so on), but usually you create
your own classes.

The init_app() routine in HOWDY.C creates a window
class named HOWDY_ Class. All windows of this class
will have the same menu (HOWDYMENU), the same icon
(IDI_APPLICATION), and the same cursor (IDC_
ARROW). The WNDCLASS structure holds the informa-
tion about the class, and the RegisterClass() call creates it.

Creating a Window

Creating a class does not create a window; that is the job
of init_inst(). There, the CreateWindow() call makes an
actual window of class HOWDY_Class.

The CreateWindow() call takes a number of parameters.
In HOWDY.C, the CW_USEDEFAULT constant requests
the default position and size for the window. Other
parameters specify the window’s title, the window’s
menu (if different from the default class menu), and the
window’s style (for example, whether it has scroll bars or
a system menu).

Since the window that HOWDY creates is its main win-
dow, it has no parent. Often windows will be children of
another window and therefore have a non-null value for
the parent parameter in CreateWindow(). Child windows

Commando Windows Programming 23

Windows Basics

fit inside their parent window and are only visible when
the parent is visible.

When you create a window, you may specify that it have
a certain style. The WS_SYSMENU style, for example,
causes the window to have a system menu box in the top-
left corner. For convenience, Windows provides some
common styles that consist of several styles merged
together. For instance, the WS_OVERLAPPEDWINDOW
style is equivalent to:

WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_THICKFRAME

WS_MINIZEBOX | WS_MAXIMIZEBOX

Events and Messages

Each window class specifies its window procedure when it
is created. HOWDY_Class windows, for example, use
win_proc() as their window procedure. Windows sends
all events that pertain to HOWDY to win_proc().

If you look at win_proc() in Listing 1-1, you will see that
it is just a big switch statement. The message parameter
contains an integer that defines which event happened.
For example, the WM_COMMAND message occurs when
the user clicks on a menu item (or uses a keyboard accel-
erator). The WM_DESTROY message occurs when the
window is closing. The WM_PAINT message indicates
that Windows wants you to redraw all or part of the win-
dow. You can find a complete list of messages and their
parameters in your API documentation.

You can intercept and process any windows messages
you want. If you don’t handle a message, you should

24 Commando Windows Programming

Windows Basics

pass it on to DefWindowProc(), which is part of Win-
dows. This default window procedure accounts for much
of the standard window behavior.

Some messages originate from Windows. These messages
occur when interesting events occur (for example, when
the mouse moves, or the user selects a menu choice).
Your program can also send messages to windows to
cause certain actions.

Some Windows operations take the form of conventional
function calls. For example, if you want a particular win-
dow to move to the front and respond to the keyboard,
you make the call:

SetFocus(w); /* w=window's handle */

Other operations take the form of messages. You can
send a message to a window and optionally wait for it to
respond to you. There are two primary methods of send-
ing a message: SendMessage() and PostMessage().
SendMessage() waits until the message completes and
returns a value. PostMessage() puts a message in the win-
dow’s queue but doesn’t wait for it.

There are many Windows messages, and some of them
mean slightly different things to different windows. For
example, the WM_SETTEXT message sets the title of a
normal window. However, for text-edit windows (con-
trols), the WM_SETTEXT message determines the text
inside the window.

Commando Windows Programming 25

Windows Basics

All messages take two parameters (by convention,
wParam and IParam). These arguments specify data for
the message. For example, to use WM_SETTEXT, you
must cast a string pointer to a long and pass it as IParam
like this:

SendMessage(w,WM_SETTEXT,0,(long)"Title!");

WM_SETTEXT ignores the wParam argument.

Under Windows NT, wParam is 32-bits (the same as
IParam). NT uses the extra 16-bits for additional informa-
tion. Programs that can compile for Windows 3.1 or Win-
dows NT often use lines like this:

switch (LOWORD(wParam))
{
}

This accomplishes nothing under Windows 3.1 and is
harmless. If the Windows NT version of a message
doesn’t change the meaning of the lower 16-bits of
wParam, the code will work on either platform.

License to Export

Functions that Windows will call (except for WinMain())
must be far and exportable. You will notice that the
MainWndProc() function, for example, uses the FAR and
_export keywords. These keywords allow Windows to
call the functions properly, even if more than one copy of

26 Commando Windows Programming

Windows Basics

your program is running. Functions that you only call
yourself—for example, init() or menu()—don’t require
the _export keyword and usually are not far functions.

When dealing with function addresses, you have to bind
the address to your instance for Windows to call it cor-
rectly. (The exception is for calls to RegisterClass(); that
function binds the window procedure for you.) For exam-
ple, the menu() function uses this code:

aboutproc=MakeProcInstance(about, hInst);

This code allows Windows to correctly call the about()
function via the pointer aboutproc. If you simply pass
Windows the address of about(), your function will not
be able to properly access its variables. When you are
done with a bound function address, you should free it.
HOWDY uses:

FreeProcInstance(aboutproc);

Drawing to the Screen

Most commando techniques don’t require you to draw
directly to a window. However, you should know how
it’s done. All Windows drawing functions (both graphics
and text) use a device context. This is a magic number that
references a particular window and set of drawing tools.

You should usually draw to a window only during
WM_PAINT message processing. For example, the
update() routine in HOWDY uses the BeginPaint() func-

Commando Windows Programming

27

Windows Basics

tion to get a device context, and the TextOut() function to
write text to it.

You can make calls to alter how a device context works
(for example, to change the color of drawings). You can
also query the context for information. HOWDY wants to
draw text one-half inch away from the top-left corner.
Therefore, it uses the call:

GetDeviceCaps(dc,LOGPIXELSX)

to find the number of pixels per inch.

If you draw to a window outside of the WM_PAINT con-
text, your drawing will be transient. When Windows asks
you to redraw that portion of your window, your
WM_PAINT routine won’t be able to re-create it. On rare
occasions (for example, drawing a selection), this may be
what you want to do. Most often, however, you will draw
only during WM_PAINT messages.

Memory Allocation

Although HOWDY doesn’t allocate any memory, you
should still have a general idea about Windows memory
management. Windows manages two separate heaps, or
areas, for memory allocation.

The local heap is in your program’s default data segment.
Because a segment must be 64K or less, the local heap can
never be larger than 64K and is almost always less
(except under Windows NT).

28 Commando Windows Programming

Windows Basics

The global heap can access the large pool of memory out-
side your program’s data segment. You can allocate items
nearly 16M in size using Window’s GlobalAlloc() call.

Under Windows 3.0 real mode, you had to be careful
with global memory. GlobalAlloc() returns a handle that
you have to convert to a far address using GlobalLock().
In real mode, locking memory hinders Windows, so you
had to keep locking and unlocking memory. In protected
mode, Windows doesn’t care if you keep memory locked
or not. So if you need a one million byte buffer, you
could say:

char far *p;
HANDLE p_handle;

p_handle=GlobalAlloc(GMEM_MOVEABLE|GMEM_ZEROINIT,1000000);

if (!p_handle) error();
p=GlobalLock(p_handle);
if (!p) error();

/* use p */
GlobalUnlock(p_handle);
GlobalFree(p_handle);

Note that you can call GlobalAlloc() from a small model
program—just be sure to use a far pointer (or the Win-
dows LPSTR type). You'll also need to use far-pointer
versions of any library functions you want to use. For
example, instead of strcpy(), you would use _fstrcpy(),
since it will accommodate a far pointer.

Avoid making large allocations using malloc(), calloc(),
and related calls in Windows 3.1 programs. By default,

Commando Windows Programming

29

Windows Basics

these allocate from your local heap and are not as useful
as GlobalAlloc(). They run out of space much quicker. Of
course, WIN32S and Windows NT programs don’t have
this limitation.

By the same token, in Windows 3.1 programs, avoid
using GlobalAlloc() for small allocations. There is a sys-
temwide limit on the number of memory regions that
GlobalAlloc() can return (around 8,000). If you use
GlobalAlloc() for many small memory allocations, you
can quickly cause the entire system to run out of memory.

Resources

Listing 2-2 is a resource file. Resources are data that you
can store inside your EXE file. These data can specify
menus, bitmaps, cursors, icons, or user-defined data.
Resources can also specify special-purpose windows
called dialogs. Dialogs are very important to the com-
mando programmer (see Chapter 3) because they will do
most of the dirty work for many Windows programs.

You can create resources in an ASCII text file (like Listing
2-2), or you can use a specialized resource editor (like
Borland’s Resource Workshop or Microsoft’s Application
Studio) to draw menus, bitmaps, and dialogs interac-
tively.

Resources, especially dialog boxes, are key to many com-
mando strategies. Unlike regular windows, dialog boxes
don’t require much work to use. They paint themselves
and only bother you when something interesting happens
(like when you press a button).

30 Commando Windows Programming

Windows Basics

When you need text-only input and output, you should
automatically think about dialog boxes. You’ll see how to
write some powerful dialog-only programs in Chapter 3.

Dialogs come in two flavors: modal and modeless. When
a modal dialog box is visible, you can’t access other win-
dows in your program. A modeless dialog box (which
requires a special event loop) is more like an ordinary
window. While it is present, you can still switch to
another window in your program. Later, you can switch
back to the dialog box.

Menus are also simple to use. You actually can write
some useful Windows programs that contain nothing but
a menu (if you don’t believe it, look at Listing 3-3).

Special Libraries

Don’t overlook the many special-purpose libraries that
ship with Windows. For example, how difficult would it
be to write an audio CD player? Without the Windows
Multimedia Control Interface (MCI) libraries, it would be
very difficult. With MCI, it becomes almost trivial. (We
will write this program soon.)

Windows comes with APIs to manage multimedia
devices, display online help, launch other programs, and
do a host of otherwise difficult tasks. Be sure to start each
project with a search for potentially useful Windows
calls.

Commando Windows Programming 31

Windows Basics

Compiling and Linking

Windows programs require a special compile-and-link
process since they have a more complicated structure
than the ordinary EXE format. Figure 2-1 shows the pro-
cess. As usual, the compiler converts C and H files to OB]J
files. However, the linker must make a different type of
EXE file. Since there is more information in the EXE file,
the linker now reads a DEF file (like HOWDY.DEF in
Listing 2-3) to gain additional information about the
program.

Although the linker creates a Windows EXE file, the file
has no resources in it. If you run it, it will work, but it
will have no menus, icons, and so on. To get your
resources in the EXE file, you need a resource compiler
like Microsoft’s RC program. You can use this program in
two ways. The easiest way is to directly bind the RC file
into the EXE file. For example:

rc HOWDY.RC HOWDY.EXE

However, if your resources don’t change often, this pro-
cedure wastes time because it compiles the resources
each time. You may want to compile the RC file into a
binary RES file. You do this with:

rc -r HOWDY.RC HOWDY.RES

32 Commando Windows Programming

Windows Basics

Figure 2-1. Windows Compile/Link Cycle

C&H
Files

DEF
File

RES
File

Stub
OBJ
Files

EXE
File

Optional: Use binary

RES file instead
of directly using
RC files.

Commando Windows Programming

33

Windows Basics

Then, you can quickly bind the RES file to an EXE file
like this:

rc HOWDY.RES HOWDY.EXE

If you forget to bind your resources, you'll figure it out
soon enough. When you run your program, you’'ll see a
window with no menu, and you won’t be able to see any
dialogs. Just double-click the system box (in the top-left
corner) to end the program and then run RC.

Listings 2-6, 2-7, and 2-8 are three batch files that will
compile and link HOWDY using Borland C/C++,
Microsoft C/C++, or the Microsoft Win32 tools,
repectively. The basic steps are the same as the ones used
to compile and link any Windows program. The NT batch
file also requires the NTLINK.RSP file (Listing 2-9) to
supply commands to the linker.

You should almost always use small model for Windows
programs. Small-model programs can still access as much
data as they need by using far pointers and Global-
Alloc(). If you have an extraordinary amount of code, you
could use medium model. However, Windows has diffi-
culty loading large and compact model programs—using
these models may prevent you from running more than
one copy of your application.

Learning More

This chapter has only scratched the surface of Windows
programming. If you want to learn more about Windows

34 Commando Windows Programming

Windows Basics

programming, you might check out some of the books in
the bibliography. However, for most of the commando
techniques in this book, you now know all you need to
know about Windows. See the sidebar The Commando
Commandments on the following page for some general
advice about commando techniques. You'll hear more
about the techniques in later chapters.

At this point, you may or may not want to proceed to
Chapter 3. Look at the roadmap in the Introduction to
this book to determine which chapter best suits your
interest.

Commando Windows Programming 35

Windows Basics

The Commando Commandments

v.

VL.
VIl
VIIL.

Ix.

Use dialogs instead of windows if possible.
Use the Windows API effectively.

Avoid creating resources by hand; instead, use a
graphical tool.

For text-based programs, use dialogs or text-
emulation tools.

Learn C++ and use class libraries to simplify your
programs.

Avoid writing WM_PAINT routines.
Program visually when possible.

Select the right commando technique for the
job.
Resort to traditional techniques only when

necessary.

Even when using traditional techniques, try to
find parts of your program that could benefit from
commando programming methods.

36

Commando Windows Programming

Windows Basics

Listing 2-1. HOWDY.H

[hhhhkhkhkhkhhhhhkhkhkhkhhkhkhkhkhhhhkhkhkhkhhhhhhkhhhhhhkhhhhhhkkkhhhdk

* *
* File: HOWDY.H *
* *
* Header for HOWDY.C *
* *
* Required to Compile: *
* HOWDY.C HOWDY.H HOWDY.RC HOWDY.DEF *
* *
***/

/* Menu defines */
#define IDM_ABOUT 100
#define IDM_STOP 101

/* prototypes */

BOOL init_app(HANDLE);

BOOL init_inst(HANDLE, int);

long WINAPI _export win_proc(HWND, UINT, UINT, LONG);
BOOL WINAPI _export about(HWND, UINT, UINT, LONG);
void menu(HWND, UINT);

void update(HWND);

int init(HANDLE, HANDLE, int);

Listing 2-2. HOWDY.RC

VAR EEEEE R EEEEEEEE SRR EEEEEEESEEEEEEE RS RS EEEEEEEEEE RS

* *
* File: HOWDY.RC *
* *

Commando Windows Programming 37

Windows Basics

* Resources (i.e., menus and dialogs) for HOWDY.C *
* *
* Required to Compile: *
* HOWDY.C HOWDY.H HOWDY.RC HOWDY.DEF *
* %*
LR R RS EEEEEEEEEEREREEEEEEEEEEEEEEEEEEEEEEEEN

#include "windows.h"
#include "howdy.h"

/* Main menu */
HOWDYMENU MENU

BEGIN
POPUP "&File"
BEGIN
MENUITEM "&About Howdy...",IDM_ABOUT
MENUITEM "&Exit",IDM_STOP
END
END

/* About dialog box */
AboutBox DIALOG 22,17,144,75
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About Howdy"
BEGIN
CTEXT "Howdy" -1,0,5,144,8
CTEXT "By AL Williams" -1,0,14,144,8
CTEXT "Version 1.0" 1,0,34,144,8

38 Commando Windows Programming

Windows Basics

DEFPUSHBUTTON "OK" IDOK,53,59,32,14,WS_GROUP

END

Listing 2-3. HOWDY.DEF
Name HOWDY

Description 'Hello World, Texas Style'

Exetype WINDOWS

Code PRELOAD MOVEABLE DISCARDABLE
Data PRELOAD MOVEABLE SINGLE
Heapsize 4096

Stacksize 5120

Stub "WINSTUB.EXE'

Listing 2-4. ARGCARGV.C

VAR R EE R R EEEE SRS EEEEEEEEEEEEEEEEEEEESEEESEEEEEEEES S

File: ARGCARGV.C

Module to allow Microsoft users to use _argc

and _argv.

Limitations:

1) Only 20 arguments are supported.

Required to Compile:

Many programs use ARGCARGV.C and ARGCARGV.H

*

*

*

*

*

*

* 2) No quotes are processed.
*

*

*

* They do not compile separately.
*
*

PR R EEEEEE SRR EEEERERREEEEEEREEEEEEEEEEEERERE S SR EEEEE N

* 0% Xk F X X X X X X F F *

Commando Windows Programming

39

Windows Basics

/* Only required for Microsoft */
#ifndef __BORLANDC__

#include <windows.h>

#include <string.h>

#include "argcargv.h"

/* local buffer for command Lline */
static char local_cmd[1297];
static char my_file_namel1291]1;

int _argc;
char *_argv[MAXARGI];

void set_args(LPSTR cmd, HANDLE dinst)

{

char *Lbuf = Llocal_cmd;

/* copy to local buffer */

while (*lbuf++ = *cmd++);

/* set up _argv[01 */

GetModuleFileName(inst, my_file_name,

sizeof(my_file_name));

_argvL0]l = my_file_name;

_argc = 1;

Lbuf = Llocal_cmd;

while (_argv[_argcl = strtok(lbuf, "™ \t\n\r"))
{
Lbuf = NULL; /* reset for next token */
_argc++; /* note valid argument */
if (_argc=MAXARG) break;

40 Commando Windows Programming

Windows Basics

#endif

Listing 2-5. ARGCARGV.H
Jhrkkkkkkkkhkkhkhkkhhhhhhhhhhkhkkhhhhkhhkhkkhhhkkhhkk

*

* File: ARGCARGV.H

* Header to allow Windows programs to use _argc

and _argv. Microsoft users also need ARGCARGV.C

*
*
*
*
* *
* *
* Required to Compile: *
* Many programs use ARGCARGV.C and ARGCARGV.H *
* They do not compile separately. *
* *
* *

khkkkkkhkhkkhkkkhkhkhkhkhkkhkkhkkhkhkhhkhkkhkhkkhkhkhkhkhkhkkhkhkkkkhkkkkkkkkkkk*k

/

#ifndef _ARGCARGV_H
#define _ARGCARGV_H

#ifdef __ _BORLANDC___
#include <dos.h>
#define set_args(a,b)
#else

Commando Windows Programming 41

Windows Basics

/* Limit to 20 arguments max */
#define MAXARG 20

extern int _argc;

extern char *_argv[MAXARGI];

void set_args(LPSTR cmd, HANDLE inst);
#endif

Hendif

Listing 2-6. BORCOMP.BAT

REM Batch file to compile HOWDY with Borland C
“bcc -v -W howdy.c
rc howdy.rc howdy.exe

Listing 2-7. MICCOMP.BAT

REM Batch file to compile HOWDY with Microsoft C
cl -Zi -GA howdy.c howdy.def
rc howdy.rc howdy.exe

Listing 2-8. NTCOMP.BAT

REM Batch file to compile HOWDY under Windows NT

REM (also needs NTLINK.RSP)

cl386 -c -G3 -W3 -Di386=1 -DWIN32 -Zi -0d -DNT -DWIN howdy.c
rc -r howdy.rc

cvtres -i386 howdy.res -o howdy.rbj

link —-out:howdy.exe howdy.obj howdy.rbj @NTLINK.RSP

42 Commando Windows Programming

Windows Basics

Listing 2-9. NTLINK.RSP

-debug:full
-debugtype:both
-subsystem:windows
-entry:WinMainCRTStartup
libc.lib

ntdlLl.Llib
kernel32.lib
user32.lib
gdi32.lib
winspool.lib
comdlg32.Llib

Commando Windows Programming 43

Unlimited Resources

WHAT'S IN THIS CHAPTER

In Chapter 3, you’ll learn how to write simple
text-oriented programs using menu and dialog
resources. You'll see how to write a message utility, an
audio CD player, a simple conversion calculator, and a
powerful phonebook program without drawing to a
single window.

PREREQUISITES

You’ll need to know C programming and basic
Windows concepts as well as have a
knowledge of resources.

Commando Windows Programming 45

Unlimited Resources

Resources form an integral part of nearly all Windows
applications. Resources allows a program to store data
inside its EXE file. These data specify items such as
menus, icons, and dialog boxes. The key to many com-
mando programs is to avoid using regular Windows—
only use resources (particularly dialogs and menus).

While windows are complicated to create and maintain,
dialogs and menus require almost no maintenance. Your
program can concentrate on the task it’s trying to per-
form and avoid user interface issues.

How to Write Howdy

The HOWDY program (Listing 2-1) is terrible. It is not a
commando program. Commando Commandment II (“Use
the Windows API effectively”) dictates that you should
use the MessageBox() function to display the “Howdy
World” string (see Listing 1-2).

Listings 3-1 and 3-2 contain a program inspired by Unix’s
MOTD file. It reads a line from the file of your choice and
displays it using MessageBox(). This program is useful to
run automatically when Windows starts on a network
workstation. You can display short messages to users (for
example, “Network will be down at noon,” “New com-
piler version in \newgizmo\compile”). Figure 3-1 shows
the calling details for MessageBox().

This is a true commando program—short and sweet. If
you want to display only a fixed string, the program
could be even simpler; the bulk of the code reads the
message from the file.

46 Commando Windows Programming

Unlimited Resources

Figure 3-1. Calling MessageBox()

int MessageBox(HWND parent, LPSTR text, LPSTR title, WORD
flags);

parent - Handle to parent window. May be NULL.
text - String to display in box.
title - Caption for box. If NULL, Windows uses "Error".

flags - Any combination of the following values joined by the or operator (1):

MB_ABORTRETRYIGNORE - Display three buttons: abort, retry,
and ignore.

MB_OK - Display OK button.

MB_OKCANCEL - Display OK and cancel button.
MB_RETRYCANCEL - Display two buttons: retry and cancel.
MB_YESNO - Display yes and no buttons.

MB_YESNOCANCEL - Display three buttons: yes, no, and cancel.
MB_APPLMODAL - Make box modal (default).

MB_SYSTEMMODAL - Suspend all applications until box is dismissed.

MB_TASKMODAL - Suspend current task (useful for acting like
MB_APPLMODAL when parent is NULL).

MB_DEFBUTTONT1 - First button is the default button (default).
MB_DEFBUTTON?2 - Second button is the default.
MB_DEFBUTTONS3 - Third button is the default.
MB_ICONASTERISK - Place info icon in box.
MB_ICONINFORMATION - Place info icon in box.
MB_ICONEXCLAMATION - Place exclamation icon in box.
MB_ICONHAND - Place stop icon in box.

(Cont.)

Commando Windows Programmihg 47

Unlimited Resources

Figure 3-1. Calling MessageBox() (Cont.)

MB_ICONSTOP - Place stop icon in box.
MB_ICONQUESTION - Place question mark icon in box.
Return value:

Returns zero if there was an error, otherwise the value indicates which button
the user picked: IDABORT, IDCANCEL, IDIGNORE, IDNO, IDOK, IDRETRY,
or IDYES.

A Simple CD Player

Although menus are easy to create, they can form the
basis for some useful Windows programs. Listings 3-3 to
3-6 (CDPLAYER) show a simple audio CD player that
only uses a menu. You'll need a CDROM drive and the
Windows MCICDA driver to use this program. Of course,
your platform must support the multimedia extensions
(WIN32s currently does not). Figure 3-2 shows
CDPLAYER’s window.

As you can see, CDPLAYER is just a slight variation on
the HOWDY program in Chapter 2. It has no model
string, no update routine, and a bigger menu() function.
In addition, its window is very small, making it more
attractive. CDPLAYER also replaces the complex about
box dialog code with a call to MessageBox(). (Remember
commando Commandment II.)

Figure 3-2. The CDPLAYER Application

_ CD Player
Eject *Track

File Play Stop Track

48 Commando Windows Programming

Unlimited Resources

As only one CD player should run at once, CDPLAYER
checks the prev field in WinMain(). It must be NULL or
CDPLAYER will refuse to run.

CDPLAYER uses Window’s MCI API. This API reduces
device control to the incredibly obvious. For example, to
play the CD, you use the following MCI call:

mciSendString("play cdaudio"” ,NULL,O0,NULL);

The second parameter is a string buffer for a return value
(if any), and the third argument is the length of the buff-
er. The final parameter is only useful if you are trying to
do other things while the MCI commands execute. Look
in your API reference for more about the MCI APIL.

Unlike most Windows programs, many of CDPLAYER’s
menu items don’t have a submenu. Although this is
unconventional, it closely models how a real CD player
works. Part of the power of Windows is this type of flexi-
bility. Just because most programs do something one
way, don’t be afraid to experiment with other techniques.

You probably can find many uses for menu-only pro-
grams. A program that sends commands over a network,
for example, might need only a menu. Coupling a menu
with WinExec() lets you quickly write custom launch
menus that start up other programs. Other possibilities
are programs that print forms or data to a printer, backup
or erase files, or make fixed entries into databases.

Commando Windows Programming

49

Unlimited Resources

Back to Basics

During Windows programming, you’'ll often find your-
self wishing for normal C I/O like printf() and gets().
Maybe you’d like to put some printf’s in your code for
debugging. Perhaps you need a single string entered for
some reason. Either way, you’ll miss these functions
eventually.

MessageBox() can replace printf() in many cases, but it is
awkward if you need to print variables. For example:

void error(int errno,char *errmsg)
{
char tbuf[10251;
sprintf(tbuf,"Error %d: %s",errno,errmsg);
MessageBox (NULL,tbuf, NULL,MB_OK|MB_ICONSTOP);
return;
>

Notice that if you pass a NULL title to MessageBox(), it
uses the default title, “Error”. Also, you can pass a NULL
as the window handle if you wish.

Unfortunately, there isn’t a simple function to get a line
of input. Luckily, however, it is simple to overcome both
this oversight and the awkwardness inherent in
MessageBox(). Listings 3-7, 3-8, and 3-9 contain the
WPRINT library. WPRINT provides you with two simple
functions: win_printf() and win_input().

Both of these functions take a variable number of argu-
ments. The first argument is a title for the input or output

50 Commando Windows Programming

Unlimited Resources

window that these functions create. The second argument
is a printf-style format string that will display inside the
window. Of course, other arguments depend on the con-
tents of the format string. For example:

win_printf("Presto","The magic number dis: 7%d",123);

s=win_input("Press Enter","Enter your id number(%d)",1);

The win_input() function returns a pointer to a static
buffer that contains the user’s input string. The pointer
will never be NULL, but, if the user did not enter any-
thing, the string may be (that is, the first byte may be
zero). Both functions use static buffers for input and out-
put strings, so they can’t exceed 512 bytes (unless you
change the print_buf and in_buf definitions, of course).

The win_input() function uses a custom dialog that you
must include in your program’s RC file. Just place the
line:

#include "wprint.rc"

in your RC file to get the required definition. WPRINT
also expects you to define a global variable, hlnst, that
contains your instance handle.

Listings 3-10, 3-11, and 3-12 show a simple example of
the power of WPRINT. CTOF is a basic centigrade to
Fahrenheit temperature converter. This program contains
no windows and no resources (except for WPRINT’s dia-
log box). A similar DOS text program could hardly be

Commando Windows Programming 51

Unlimited Resources

much simpler and probably would be more complex if it
allowed text editing, and windows. Windows gives us all
of that for free.

WPRINT allows you to provide more sophisticated
functionality in your programs. You should be careful
when using WPRINT inside programs that do not have a
normal window (like CTOF) under Windows 3.1. CTOF
(and other nonstandard programs) subverts the normal
Windows cooperative multitasking mechanism. Therefore,
other programs will not execute unless there is a call to
win_printf() or win_input(). These functions notify Win-
dows that it may switch to another task. CTOF does very
little processing between WPRINT calls, but if it did, you
would want to call yield() frequently to give other pro-
grams a chance to run. Windows NT will run programs like
CTOF with no problems since it preemptively multitasks.

Forms for Free

Data entry forms are pervasive, especially in GUI program-
ming. Windows recognizes this and provides dialogs to
simplify using forms from inside a Windows application.

However, many programs don’t just need forms—they are
forms. Many database applications fit this description.
You fill in a form and update the database. Perhaps you
fill in a form, query the database, and display one or
more forms to show the results. Even if you don’t ordi-
narily work with a full-scale database, you probably
write programs like this on occasion.

Consider a typical online telephone directory. You want
to store names, phone numbers, and perhaps some notes

52 dCommando Windows Programming

Unlimited Resources

in a disk file. You’ll need to allow for database insertions,
deletions, and queries. Users also will want to browse
randomly through the database.

This typical program clearly consists of two parts: a GUI
interface and a database. With this in mind, our pho-
nebook example consists of two main files: PHONE.C
(Listing 3-13) and PHONEDB.C (Listing 3-14). PHONE.C
contains the Windows GUI code—the event loop, the
menu code, and other interface-related functions. PHO-
NEDB.C is mainly database code. The only Windows-
specific code in PHONEDB.C relates to reading and
writing fields from the screen, using the built-in file to
open dialogs, and manipulating the cursor. You'll also
need the supporting file in Listings 3-15, 13-16, and 3-17
to compile PHONE.

Figure 3-3 on the next page shows the complete PHONE
application’s window. Unlike most dialog-based pro-
grams, PHONE has a menu bar and uses accelerators
(keyboard shortcuts). This is possible because PHONE
uses a regular window that the user can’t see. The sole
purpose of the window is to support the menu bar and
accelerators.

Since the menu window must be active at the same time
as the data entry screen, you must use a modeless dialog.
The size of the window is adjusted so that the dialog just
fits inside. When the window receives a WM_SETFOCUS
message, it immediately transfers control to the dialog. In
this way, the window is never in control.

Commando Windows Programming 53

Unlimited Resources

Figure 3-3. The Phone Application

Phone Boaok - TESTING.PHO

File Edit

Name: |Pat Williams |

Company: I NASA l

Phone: (4835062 Fax

lNone l

E-mail:

Notes: |Press'1"to bypass phone mail. Usually in
from D800-1130 & 1200-1630.

I I»

You specify the dimensions of a dialog box in device-in-
dependent units. Windows transforms these units at run
time into reasonable sizes depending on the current dis-
play. You can obtain the dialog base unit by calling
GetDialogBaseUnits(). To convert the height of a dialog
box to device units, use:

deviceHi=dialogHi*HIWORD(GetDialogBaseUnits())/8;

The width is similar:

deviceWide=dialogWide*LOWORD(GetDialogBaseUnits())/4;

Of course, when adjusting the window’s size, you have to
add the height of the menu (GetSystemMetrics(SM_CY-

54 Commando Windows Programming

Unlimited Resources

MENU)) and the caption bar (GetSystemMetrics(SM_ CY-
CAPTION)).

Events

PHONE'’s event loop looks a little different from the one
you have typically used in the past:

while (GetMessage(&msg,NULL,NULL,NULL))
{
if (!TranslateAccelerator(topwindow,acctable,&msg))
{
if (!'maindlg]||!IsDialogMessage(maindlg,&msg))
{
TranslateMessage(&msg);
DispatchMessage(&msg) ;
}

PHONE allows accelerator shortcut keys (like F1 for
find). The TranslateAccelerator() call intercepts these
keys and transforms them into conventional menu
(WM_COMMAND) messages. The RC file defines the
accelerator keys, and PHONE loads them into the acc-
table variable.

Since modeless dialogs coexist with other windows
in your program, the dialog events come to your event
loop. If the IsDialogMessage() call returns TRUE, you are
processing an event for the specified dialog. The IsDialog-

Commando Windows Programming 55

Unlimited Resources

Message() call automatically routes the message to the
dialog for you.

The GUI

PHONE uses three tools to simplify its GUI. It uses
MessageBox() everywhere it can to avoid custom dialogs.
The WPRINT module from earlier in the chapter provides
the win_input() function that PHONE uses to prompt for
queries. Finally, PHONE’s file open-and-save routines
use the Windows common-file dialogs. For just a little
effort, these dialogs give your programs a polished look.

The form portion of PHONE makes heavy use of Win-
dow’s built-in dialog processing. The disp_record() rou-
tine uses the WM_SETTEXT message to set the contents
of each field, and the SetFocus() call to place the cursor
on the first field.

The commit_record() routine is slightly more complex. It
scans the modify flag in each field using the
EM_GETMODIFY message. If the modify flag is set, the
user has changed the field. Then, commit_record() uses
the WM_GETTEXT message to retrieve the new text.
Finally, calling EM_SETMODIFY with a zero argument
resets the modify flag.

Using Common Dialogs

Common dialogs are a powerful Windows programming
tool. Why write your own dialogs when Windows makes
these powerful dialogs available to you?

Before using a common file dialog, you must initialize an
OPENFILENAME structure (see Tables 3-1 and 3-2). You

56 Commando Windows Programming

Unlimited Resources

must make sure that the entire structure is set to zero.
Next, you place the size of the structure in its IStructSize
field to allow future versions of Windows to accommod-
ate older programs. Below is some typical code:

OPENFILENAME ofile;
memset(&ofile,0,sizeof (OPENFILENAME));
ofile.lStructSize=sizeof (OPENFILENAME) ;

Table 3-1. The OPENFILENAME Structure

Element
IStructSize
hwndOwner

hInstance

lpstrFilter
lpstrCustomFilter
nMaxCustFilter
nFilterIndex
lpstrFile
nMaxFile
IpstrFileTitle

nMaxFileTitle
IpstrInitialDir

Type
DWORD
HWND
HINSTANCE

LPCSTR
LPSTR
DWORD
DWORD
LPSTR
DWORD
LPSTR

DWORD
LPCSTR

Description

Size of this structure in bytes.
Owner of dialog (could be NULL).

Program’s instance handle (only used
when templates are used).

Pointer to file filter strings.
Buffer to hold custom file filters.
Size of above buffer.

Initial filter index (starts at 1).
Buffer to hold filename.

Size of above buffer.

Buffer to hold file title (see text). May
be NULL if you don’t need the file title.

Size of above buffer.

Initial directory. If NULL, use current
directory.

(Cont.)

Commando Windows Programming 57

Unlimited Resources

Table 3-1. The OPENFILENAME Structure (Cont.)

Element Type

lpstrTitle LPCSTR

Flags DWORD
nFileOffset UINT
nFileExtension UINT
lIpstrDefExt LPCSTR
1CustData LPARAM
IpfnHook Function Pointer
IpTemplateName LPCSTR

Table 3-2. OPENFILENAME Flags.

Description

Title of dialog. If NULL, Windows
provides a default.

Controls dialog operation (see Table
3-2).

Length of directory information in
filename.

Offset in filename of extension.
Default extension.

Available for your use.

Custom message handler, if required.

Name of custom dialog template if
required.

Flag Meaning

OFN_ALLOWMULTISELECT Allows multiple selections.
OFN_CREATEPROMPT Prompt before creating file that doesn’t exist.
OFN_ENABLEHOOK Use hook function (see IpfnHook).
OFN_ENABLETEMPLATE Use custom template (see lpTemplateName).
OFN_ENABLETEMPLATE- Use custom template already loaded. hlnstance
HANDLE actually contains a handle to the data block.
OFN_FILEMUSTEXIST User can’t select a nonexistent file.
OFN_HIDEREADONLY Hides the read-only checkbox.

(Cont.)

58 Commando Windows Programming

Unlimited Resources

Table 3-2. OPENFILENAME Flags. (Cont.)

Flag
OFN_NOCHANGEDIR

OFN_NOREADONLY-RETURN
OFN_NOTESTFILECREATE
OFN_NOVALIDATE
OFN_OVERWRITEPROMPT
OFN_PATHMUSTEXIST
OFN_SHAREAWARE
OFN_READONLY

OFN_EXTENSION-
DIFFERENT

Meaning

Forces the dialog to reset the current directory
before returning.

Disallow files that are read-only.
Don’t try to create file.

Allows illegal characters in filenames.
Prompt if selected file already exists.
Selected directory must exist.

Ignore sharing errors.

Initially check the read-only checkbox. Also
reflects the state of the read-only checkbox
upon return.

Set to indicate that the returned fil name does
not match the default extension.

The remaining fields allow you to set up options for the
box. Some options are very simple; others can quickly get
complicated. At a minimum, you’ll want to set the hwnd-
Owner, lpstrFilter, nFilterIndex, lpstrFile, nMaxFile,
lpstrFileTitle, nMaxFileTitle, and Flags fields.

You can pass the OPENFILENAME structure to GetOpen-
FileName() or GetSaveFileName(). These common dia-
logs return two forms of the filename to your program
(via the lpstrFile and lpstrFileTitle fields). The filename is
the entire pathname the user selected. The file title is just
the base name of the file and is useful for placing in title
bars, for example.

Commando Windows Programming

Unlimited Resources

The return value from GetOpenFileName() is ordinarily
nonzero. If it is zero, the user must have pressed cancel
or there was an error. You can call CommDlg-
ExtendedError() to detect an error. If the return value
from CommDlgExtendedError() is zero, the user simply
cancelled the operation.

Giving Good PHONE

PHONE is a useful program in its own right. But it has
certain limitations you might not tolerate in a real pro-
gram. One obvious addition to the program would be a
sort routine. Such a routine is not difficult to add since
the database is separate from the Windows portion of the
program.

PHONE’s memory allocation strategy is simple. It uses
the standard library call calloc() to allocate zero-filled
memory regions. For Windows NT, this isn’t a problem.
However, Windows 3.1 users will run out of memory
when the database approaches 64K. Of course, a real ver-
sion of PHONE would probably use an external database
instead of storing each entry in memory.

PHONE could use GlobalAlloc() to access much more
memory. You could rewrite zmalloc() like this:

LPSTR zmalloc(unsigned long siz)
{
return
GlobalLock(

60 Commando Windows Programming

Unlimited Resources

GlobalAlLLoc(GMEM_MOVEABLE|GMEM_ZEROINIT,siz));

You would also have to replace free() with:

#define free(p) \
GlobalFree(GlobalHandle(HIWORD(p)));

or for Windows NT:

#define free(p) \
GlobalFree(GlobalHandle(p));

However, for Windows 3.1, you then face the LDT seg-
ment limit: you can only allocate about 8,000 regions
from GlobalAlloc() before you exhaust the LDT. Each
phone entry requires seven allocations, so you could run
out quickly. Worse, the 8,000 limit applies to the system
as a whole, not just your program. A better alternative is
to allocate large chunks of memory from GlobalAlloc()
and then parcel out smaller pieces to your program as
you need them needed.

Printing the database would be a difficult task. Windows
printing is somewhat complex and differs from Windows
3.1 to Windows NT. If you need printing, you might con-
sider using an application framework (see Chapters 4, 6,
and 7). Microsoft’s MFC, for example, gives you printing
and print preview with very little effort on your part.

Commando Windows Programming 61

Unlimited Resources

Constructing Resources

Although the RC files in this chapter are simple, you
should never create RC files by hand. Instead, use a
resource editor, such as Borland’s Resource Workshop,
Microsoft’s Application Studio, or the Whitewater
Resource Toolkit. Remember Commandment VII: pro-
gram visually when possible.

Modern resource editors allow you to create menus, dia-
logs, bitmaps, cursors, and icons. You can align elements
of dialogs, and changing the location or text of a button is
painless. Most resource editors allow you to run a simu-
lation of a dialog or menu to check out its operation.

62 Commando Windows Programming

Unlimited Resources

Listing 3-1. MOTD.C
IEAEEEEEEEEE R EEEREEEEEREEEEEEEEEEEEREREEEEEREEEEESEEESESS
*

* File: MOTD.C
*

* Display a Message Of The Day (MOTD).
*

MOTD.C MOTD.DEF ARGCARGV.C ARGCARGV.H

*
*
*
*
*
* Required to Compile: *
* *
* (ARGCARGV.C only required for Microsoft) *
* *
* *

LR R EE R R EEEEEEEREEEEEEEEEEEREEEEEEEEEEEEEEEEEE RS EEEE]

/
#include <windows.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include "argcargv.h"

/* String to hold message */
char stringl10251;

/* Main window function */
int PASCAL WinMain(HANDLE hInst, HANDLE prev,
LPSTR cmdline, int show)
{
FILE *f;
/* set up _argc,_argv (not req'd for Borland, but
* harmless) */
set_args(cmdline, hlInst);
if (_argc > 1)

Commando Windows Programming 63

Unlimited Resources

f = fopen(_argv[11, "r");

/* If no argument or file won't open... */
if (_argc == 1 || !'f)
strcpy(string, "No message today");
else
{

/* read string from file if 0K */
fgets(string, sizeof(string), f);
fclose(f);
H

/* Show it... */

MessageBox(NULL, string, "Message for today",

MB_OK | MB_ICONINFORMATION);
return FALSE;
}

Listing 3-2. MOTD.DEF
Name MOTD

Description '"Message of the day'
Exetype WINDOWS ‘
Code PRELOAD MOVEABLE DISCARDABLE
Data PRELOAD MOVEABLE SINGLE
Heapsize 4096

Stacksize 5120

Stub '"WINSTUB.EXE'

Listing 3-3. CDPLAYER.C
[Rhkkkkkkkhhkhkhhhhhhhhhhhhhkkhhhkhhdkhkhkdkdkdkkdkdkkhk
* *

* File: CDPLAYER.C *

64 Commando Windows Programming

Unlimited Resources

*
MCI Audio CD Player. Uses only a menu. *
You must Llink with MMSYSTEM.LIB (a standard *
Windows Llibrary). *

*
*
*
*
* *
* Required to Compile: *
* CDPLAYER.C CDPLAYER.H CDPLAYER.RC CDPLAYER.DEF *
* *
* *

khkkhkkkhkhkhkhkkhkhkhkhkhhkkhkhkhkhkhkhkhkhkhhkhkhkhkhkkhkkhkkhkhkhkhkhkhkhkkkhkkhkkkkkkkk

/
#include <windows.h>

#include <mmsystem.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "cdplayer.h"

/* current instance */
HANDLE hlnst;

/* main window */

HWND topwindow;

/* Door open? */

int door_open = 0;

/* This routine calls MCI and displays an error box if
* needed */
void mci_call(char *cmd, char *ret, unsigned siz,
HWND w, int noerr)
{
DWORD rc;

Commando Windows Programming 65

Unlimited Resources

char msgbuf[257]1, *msg = msgbuf;

rc = mciSendString(cmd, ret, siz,

if (rc && !'noerr)

{
rc = mciGetErrorString(rc, msgbuf,
if (lrc)

msg = "Unknown MCI error";

MessageBox(NULL, msg, NULL,
}

/* Main window function */

sizeof(msgbuf));

MB_ICONSTOP);

int PASCAL WinMain(HANDLE hInst, HANDLE prev,

LPSTR cmdline, int show)

{
MSG msg;

/* Only allow 1 CDPLAYER at a time */

if (prev)
{

MessageBox(NULL, "CDPLAYER already running!",

"Error", MB_ICONSTOP | MB_0K);

return FALSE;
}

if (!'initChInst, prev, show))
return FALSE;
