THE ANDREW SCHULMAN # PROGRAMMING SERIES §

Undo cumented
Windows

A Programmer’s Guide to
 Reserved Microsoft* Windows API Functions

TWill take a place of honor on your]
3 bookshelf & 5 Magazm,e |

ANDREW SCHULMAN
DAVID MAXEX Disi]
MATT PLETEEK

Undocumented Windows

ANDREW SCHULMAN
DAVID MAXEY
MATT PIETREK

Series Editor:

Andrew Schulman

A
vv

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California
New York Don Mills, Ontario Wokingham, England
Amsterdam Bonn Sydney Singapore Tokyo Madrid

San Juan Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book and
Addison-Wesley was aware of the trademark claim, the designations have been printed
in initial capital letters.

The author and publisher have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Schulman, Andrew.
Undocumented Windows : a programmer’s guide to reserved Microsoft
Windows API functions / by Andrew Schulman, David Maxey, and Matt
Pietrek.
p- cm.
Includes index.
ISBN 0-201-60834-0
1. Windows (Computer programs) 2. Microsoft Windows (Computer
program) I. Maxey, David. IIL Pietrek, Matt. IIL Title.
QA76.76.W56S38 1992
005.43--dc20 92-14831
CIpP

Copyright © 1992 by Andrew Schulman and David Maxey

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocop-
ying, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

Series Editor: Andrew Schulman

Managing Editor: Amorette Pedersen

Production Editor: Andrew Williams

Line drawings: Jennifer Noble

Set in 10.5-point ITC Galliard by Benchmark Productions

345 6-ARM-96959493
Third printing, December 1993

Thanks to Phar Lap for providing the foundation on which we based the graphics.

CONTENTS

Preface ix
Acknowledgments xvi
CHAPTER 1 This Was Not Supposed to Happen 1
Backdoor Programming 5
Dynamic Linking Aids Snooping 5
Inside NDW 7
Open Tools: No Longer Undocumented Windows 12
Finally, Undocumented Windows 14
The Saga of Free System Resources 14

The Problem with Protected Mode 21
Further Inside the Norton Desktop 26
Microsoft’s Use of Undocumented Windows 28
Undocumented Debugging 34
Microsoft Commercial Applications and Language Products 36
The “Chinese Wall” and FTC’s Investigation of Microsoft 40

The Geary Incident 42
Inside Windows 46
Why Aren’t They Documented? 48

Fear, Loathing, and Portability 51

iv. UNDOCUMENTED WINDOWS

What About NT? 55
Safe Use of Undocumented Functions 56

CHAPTER 2 Examining Windows Executables 59

Using MAPWIN 64
Using EXEDUMP 73
Producing .DAT Files with EXEDUMP -EXPORTS 79
Quickie Examinations with EXEDUMP -MAGIC and -DESC 80
EXEUTIL 81

Finding Undocumented Functions with EXEUTIL -FINDUNDOC 82
Finding Calls to Undocumented Functions with EXEUTIL -UNDOC 85

Finding Calls to API Functions with EXEUTIL -IMPORTS 89
Finding DLL Changes with EXEUTIL -DIFF 90
Finding Function Equivalences with EXEUTIL -DUPES 92
CHAPTER 3 Disassembling Windows 95
Disassembling TASKMAN 103
TASKMAN Technigues 122
Examining API Functions and Data Structures 126
CHAPTER 4 Tools for Exploring Windows 135
Windows Spies, Walkers, and Debuggers 135
HEAPWALK 136

SPY 136
CodeView for Windows 137
WDEB386 137
Debug Version of Windows 138

Other Snooping Utilities 139
Soft-ICE /Windows 142
Disassembly with WINICE 143
WINICE Breakpoints 145
WINICE System-Information Commands 148

The WINIO Library 151

An Interactive Command Shell 153

CONTENTS v

Going Resident 156
Installing Event Handlers 157
WINIO Menus 159
WINIO Clickable Lines 161
CALLFUNC: Dynamic Linking at Your Fingertips! 165
CALLFUNC GP Fault Handling 171
Watching Undocumented WM_ Messages with SNOOP 173
Tracing Messages Through WndProc Calls 177
Deliberately-Intrusive Debugging 179
Watching Interrupts with WISPY 180
Starting a DOS Box 184
Fixing WINIO 185
Windows Browsers 188
CHAPTER 5 KERNEL: Windows System Services 189
Versions of KERNEL 189
KERNEL Data Structures 191
Handles, Handles Everywhere 193
KERNEL Exports and Imports 202
KERNEL Initialization 202
Undocumented KERNEL Functions 204
Using the Undocumented Functions 207
CHAPTER 6 USER: Microsoft
Windows User Interface 399
USER Data Structures 399
USER Heaps 400
USER Objects 402
Global Heap Objects 402
User Local Heap Objects 402
USERWALK 406
USER Exports and Imports 411

USER Undocumented Functions 411

Vi

UNDOCUMENTED WINDOWS

USER Composition
Using Undocumented USER Functions

412
413

CHAPTER 7 Undocumented Windows Messages 517

Built-in WndProcs
Undocumented Control Messages

CHAPTER 8 GDI

GDI Data Structures

GDIWALK

GDI Heaps

GDI Exports and Imports

GDI Undocumented Functions
Using Undocumented GDI functions

CHAPTER 9 SYSTEM

CHAPTER 10 ToolHelp: A Partial
Replacment for Undocumented Windows

What Undocumented Functionality Can ToolHelp Replace?
Assorted ToolHelp Programming Considerations
Using ToolHelp in Your Product
The ToolHelp Functions
The Heap Functions
The Windows Data Structure Walking Functions
Debugger and Miscellaneous Functions
Sample Program: WinWalk

Global Heap, Hex Dump, and Local Walk

Task List

Module List

Class List
Sample Program: Coroner

Running Coroner

The Coroner Code

Suggested Enhancements

533
533

535

536
537
543
543
544
545

601

611

612
614
616
617
617
623
626
639
639
641
641
641
652
652
653
668

CONTENTS vii

APPENDIX A WINIO Library Reference

671

WINIO Differences from Stdio 673
WINIO Functions 674
WMHANDLER Functions 680
APPENDIX B Annotated Bibliography 683

Index 693

PREFACE

Welcome to the exciting world of Windows internals!

Most Windows programming books, even the good ones, have a certain predict-
ability: you know in advance what topics are going to be covered and what the code
will look like. Open the book to a random page, and you’ll find calls to TextOut(),
BeginPaint(), and other familiar Windows functions.

We feel confident that, if nothing else, the contents of this book will surprise most
Windows programmers. Open the book to a random page, and the chances are good
that you will find something you’ve never seen before. The topics covered—walking
task lists, disassembling Windows functions, treating HWNDs as pointers, seeing what
interrupts WinExec generates, shifting atom handles right by 2, and so on—are impor-
tant aspects of Windows programming, but have been neglected in most treatments of
the subject. Furthermore, even the “look” of our code is different: you see main()
instead of WinMain(), printf{) instead of TextOut(), and tiny functions that handle a
single message, instead of massive fourteen-page switch statements.

Why Undocumented Windows?

We might as well tell you that, at first, at least one of us did not want to do this book.
For sure, we wanted to do a book on Windows programming. We had just finished
the book Undocumented DOS, and were looking forward to working for a change with
a nice, clean, documented interface: the Windows API.

What happened was that, almost immediately, we stumbled into the problem of
undocumented Windows. At work, one of the authors needed to look at some com-
mercial Windows programs, and kept running into calls to functions that weren’t
documented in the Windows Software Development Kit (SDK), the Device Driver
Kit (DDK), or even in Microsoft’s “Open Tools” material. Mainstream Windows

x UNDOCUMENTED WINDOWS

programs were calling functions like GlobalMasterHandle(), GetHeapSpaces(), and
SetInternalWindowPos(), that just weren’t documented anywhere. Weird!

Well, not so weird. The experience of working on Undocumented DOS didn’t
leave us completely unprepared for the possibility that Windows too, despite the rela-
tive newness of its first usable version (3.0, May 1990), would already have “insider”
knowledge and undocumented functions.

We also began to see a lot of scattered notes about undocumented Windows flying
around networks like CompuServe and Usenet. As with undocumented DOS, the ran-
domness of these notes was bothersome. For example, someone would see that some
Microsoft program was calling InitTask(). Hmm, InitTask() isn’t in WINDOWS.H!
Aha, they would say, here’s the “smoking gun”: proof that Microsoft uses undocu-
mented functions and that the FTC ought to do something about it. A few messages
later, it would turn out that InitTask() is part of the startup code used by every Win-
dows program in existence. Anyhow, it quickly became clear that it would be good to
systematize all of this, and turn out a standard document on undocumented Windows.

Almost two years later, here it is. Undocumented Windows is about as complete as
possible for the core of Windows: KERNEL, USER, and GDI. This book systemati-
cally covers undocumented functions, data structures, and messages in Windows 3.0
and 3.1, retail and debug versions, in Standard and Enhanced mode. In addition, we
cover various undocumented aspects of documented functions and messages, such as
the true meaning of InSendMessage()’s return value, or the wParam for WM_
NCPAINT.

In other words, it took an entire book just to cover KERNEL, USER, and GDI.
There is another entire low-level area, some of it undocumented and some of it just
very obscurely documented, that includes DPMI, virtual device drivers (VxDs), the
Virtual Machine Manager (VMM), INT 2Fh and other software-interrupt services
provided by Windows, device drivers, the Windows DOS extenders, file formats,
WinDebug, Windows’ interactions with TSRs and memory managers, the SmartDrive
interfaces, and so on, that requires an entire separate book. (Yes, we’re working on it!
We’re thinking of calling it Dirty Windows.)

Most of the work on this book was done during the two-year reign of Windows
3.0 (some might call this period Life Under the UAE). Some of the functions that
were undocumented in 3.0 become documented in 3.1. “Became”? Actually, this hap-
pened because of mounting pressure on Microsoft to document some of the key func-
tions that many commercial developers were using anyhow. That some of these
functions have been documented in 3.1 underlines, rather than undermines, the use-
fulness of this material: if, as the record shows, some of the most useful undocu-
mented functions are eventually going to be documented by Microsoft, you might as
well use them #ow. Think of it as a way to get a two-year jump on your more stodgy
competition.

What’s In This Book?
If you’re looking at someone else’s copy of this book, hopefully it will simply fall open
to “the good parts.” If not, here are some of the parts we’re most pleased with:

PREFACE «xi

* How to be a “drag and drop” server in 3.1 and 3.0 (See DragObject() in
chapter 6.)

= Where are the five famous DCs? (See DCE in chapter 6.)
* How are atoms managed? (See Atom Table in chapter 5.)

* How do all the different Windows handles (tasks, instances, modules,
PSP/PDB, task queues) relate? And, given one type of handle, how do I
derive another? (See the introduction to chapter 5.)

= What does an HWND point to? (See WND in chapter 6.)
* What does an HDC point to? (See DC in chapter 8.)

* What are those [compatibility] flags in Windows 3.1? (See GetAppCompat-
Flags() in chapter 5.)

» What exactly is the “free system resources” problem, and how did USER’s
local heaps change from Windows 3.0 to 3.1? (See the introduction to chap-
ter 6).

» Where do messages go? (See the Task Queue in chapter 5, and the System
Message Queue in chapter 6.)

» What does WinExec() return? (See chapter 5.)

Actually, there’s a lot more than this, but this list provides some idea of the ques-
tions that this book answers.

What Handles Point To

Of course, some of these undocumented functions, messages, and data structures
can—if used in accordance with the safety and hygiene tips in chapter 1—be incorpo-
rated into Windows programs. Beyond this, however, really what we hope this book
provides is understanding.

In the sense we mean it, “understanding” almost seems like a dirty word in Win-
dows programming circles. The phrase “you can use a handle without knowing what it
points to” is repeated so often, it has become the mantra of Windows programming.
Like any mantra, it is best repeated without thinking too carefully about its implica-
tions.

In this book, we tell you what handles point to. For example, an HTASK, such as
GetWindowTask() returns and EnumTaskWindows() expects, is the segment (selec-
tor) portion of a far pointer to the Task Database. Can you use an HTASK without
knowing what a Task Database is? Absolutely. Usually you should use an HTASK with-
out worrying about what it actually points to. But in some cases, knowing how Win-
dows’ internal data structures really look can yield crucial techniques. As an example,
check out HANDLES.H and HANDLES.C in the introduction to chapter 5.

More important, while “knowing and forgetting” is a good educational technique,
“not knowing” isn’t. Knowing what a Task Database is, and then choosing to forget

xii UNDOCUMENTED WINDOWS

this when working with an HTASK, is completely different from the being utterly
clueless about what an HTASK is.

At its extreme, the whole “you can use a handle without knowing what it points
to” abstraction encourages a state of deliberate cluelessness. This works okay in the
short run, but it also has the danger of producing programmers who program without
understanding, capable only of cautiously cut-and-pasting code fragments from
Petzold’s book and the SDK examples. This is the Windows-specific version of what
one recent engineering textbook describes as “programmers who lack a clear under-
standing of how or why their programs make real things happen.” Abstractions and
interfaces are a crucial engineering discipline, but:

The abstractions work sufficiently well now that our curricula (and, for
that matter, our job descriptions) accommodate specialists whose under-
standing of computer systems is cripplingly incomplete. We confer com-
puter science degrees on theorists who may be helpless when programming
is required, on hardware designers to whom the high-level structure of the
system to which they contribute is a mystery, and on programmers who
lack a clear understanding of how or why their programs make real things
happen. Often what passes for technical breadth takes the form of multiple
specialties: Students exhibit pockets of local facility, unable to connect them
into an effective understanding of the system as a whole. Such people can
and do perform useful functions, but their potential for creativity is limited
by their acceptance of the boundaries of their specialties. They shy from the
challenge to venture beyond familiar approaches, to reshape problems, to
develop new interfaces and revise existing ones; they accept the mysterious
rather than unveiling it, over-sensitized to their own limitations. They are,
in effect, imprisoned by the abstractions they have been taught.

Outstanding students, in contrast, somehow develop a perspective that
illuminates the interfaces between technologies, rather than the technolo-
gies themselves, as the most important structural elements of their discipl-
ine. They view the interfaces with respect but not reverence; they examine
both sides of an abstraction, treating it as an object of study rather than a
boundary between the known and the intractably mystical (Stephen A.
Ward and Robert H. Halstead, Jr., Computation Structures, Cambridge
MA: MIT Press, 1990).

Sound familiar? If Windows programmers are to go beyond the state of fearful
cut-and-pasting, of using massive switch statements because that’s what the SDK
examples do, and of blindly following by rote all the other nasty and unnecessary prac-
tices put forward in the SDK, it will be helpful if they examine what’s on the other
sound of the boundary between a HANDLE on the one hand, and a real, live data
structure on the other.

Doesn’t this go against the whole notion of encapsulation, black boxes, and
“information hiding”? These are absolutely crucial tried-and-true engineering princi-
ples, yet they seem to dictate that everything be done on a “need to know” basis; it

PREFACE «xiii

would follow, then, that system internals, such as we present them in this book, are
one type of thing you should definitely not need to know, maybe even that it’s bad to
know them.

It’s absolutely true that encapsulation, black boxes, and information hiding are
good things. None of us could get anything done if #othing was hidden from us, if
everything was documented. (Jorge Luis Borges has a beautiful story, “Funes the
Memorious,” on this very theme.) In many ways, we wish the designers of the Win-
dows API had done more to hide what goes on in the internals of Windows. For
example, why should programmers have to mess with MakeProcInstance()? This
could, and should, have been hidden from us! Much of the mechanics of Windows
could have been hidden behind higher-level programming interfaces. As the WINIO
library presented in chapter 4 shows, one can present programmers with a simple,
familiar interface like printf{), and still have it internally “do the right thing.”

But, as with everything else, there is a price paid for hiding system internals. Jeff
Duntemann, in an article on “The Tragedy of the Black Box” (Dr. Dobb’s Journal,
December 1991) has noted what the price is: “my lack of understanding of the hidden
parts of the system cripples my understanding of those parts of the system that I can
see.” As Jeff points out, this is particularly true when the “black box™ isn’t complete,
and you have to tinker with the system.

At times, even Microsoft itself seems to understand that the idea of programming
on a “need to know” basis doesn’t work. For example, the Windows SDK includes the
source code for the default window procedure, DefWindowProc(). With this code,
you can see what default handling Windows provides for different messages. As a con-
sequence, the default window procedure is one of the few really well-understood parts
of the Windows API. As another example, the DDK includes source code for many of
the drivers that come with Windows; even just browsing through this code gives you a
much better feel for what Windows does.

Anyone who has ever traced through a Windows API routine in CVW or Soft-
ICE/Windows will know what we’re talking about here. One aim of this book is sim-
ply to provide a lot more information on what Windows looks like “inside,” and
(especially in chapters 1-4) to provide guidance on how to go about exploring its
internals on your own. Programmers necessarily construct mental models of the sys-
tems they work on; needless to say, it helps if this model actually reflects reality in
some way.

What’s on the Disk?

As with Undocumented DOS, the disk accompanying this book is not just a carbon
copy of the source code that appears in the book. Of course, all the sample programs
from the KERNEL, USER, and GDI chapters are here, but there are also many ready-
to-run utilities. For example:

*= MAPWIN (chapter 2) displays the names of Windows API functions called by
a program or DLL, and the names of functions provided by DLLs.

xiv. UNDOCUMENTED WINDOWS

« EXEUTIL (chapter 2) shows what undocumented Windows API functions a
program or DLL uses.

* RESDUMP (chapter 3) displays an textual representation of the resources
(dialog boxes, menus, string tables, accelerator tables, and so on) in a Win-
dows program or DLL.

*» CALLFUNC (chapter 4) is a Windows interpreter that provides instant access
to Windows API calls: to try out a function call, you can just type it in, with-
out having to write or compile a program.

= SNOOP (chapter 4) is a message “spy” that focuses on undocumented mes-
sages and on the behavior of the Windows built-in window procedures.

= WISPY (I Spy for Windows; chapter 4) is a protected-mode interrupt intercep-
tor that logs the interrupts in a window.

= ATOMWALK (chapter 5) displays every atom in every atom table on the sys-
tem.

» WINMOD and WINTASK (chapter 5) provide detailed information about
modules and tasks.

= USERWALK (chapter 6) and GDIWALK (chapter 8) provide detailed infor-
mation about USER’s and GDI’s local heaps, and of USER and GDI objects
such as WNDs and DCs.

= CORONER (chapter 10) is a postmortem analyzer, similar to Dr. Watson and
WinSpector.

For reasons of space, some of these utilities do not come with source code. How-
ever, there is enough depth to some of these programs that you will be able to use
them for quite some time, without worrying about source. By time you do want the
source, our forthcoming book on building Windows tools, The DOS Programmer’s
Guide to Windows, will hopefully be out. We’re really not practicing “information hid-
ing” here; we just ran out of room!

Most of these utilities are written using the WINIO library, which also comes on
the accompanying disk, as .LIB files for Borland C++ and Microsoft C/C++.

There are several general-purpose header files, such as HANDLES.H (with HAN-
DLES.C, for KERNEL data structures), USEROBJ.H, and GDIOB].H.

Who Are You?
You will get more out of this book if you know the C programming language than if
you don’t. All the source code is compatible with Borland C++ 3.0 and 3.1, and with
Microsoft C 6.0 and Microsoft C/C++ 7.0. On the other hand, almost everything here
is applicable to other languages, including Turbo Pascal for Windows (TPW) and Visual
Basic (VB). The bibliography recommends several books that you can use to bridge the
gap between, say, our C-centric explanation of GetHeapSpaces() in Undocumented
Windows and what you would have to do to call GetHeapSpaces() in TPW or VB.
Obviously, it will also aid your understanding of this book if you are familiar with
the documented Windows API. It would be difficult to fully appreciate

PREFACE «xv

GlobalMasterHandle(), for example, if you’ve never used GlobalAlloc(). On the other
hand, DOS programmers with only a smattering of Windows experience may find
that, seen from the angle of Undocumented Windows, Windows programming is a little
more interesting, and more open and accessible, than they first suspected. If you liked
mucking around in undocumented DOS, you’re going to love Windows, because
Windows is a much bigger mess than plain-vanilla DOS ever was.

For Windows “power users” who do not consider themselves programmers, there
are a few parts of this book that might prove interesting. For example, check out the
discussion of [compatibility] flags in chapter 5°s section on GetAppCompatFlags(), or
the dissection of Task Manager in chapter 3. Several of the utilities on disk should be
useful to someone who likes to go Easter Egging in Windows.

What Versions of Windows?
As noted earlier, our goal here is to cover KERNEL, USER, and GDI in Windows
3.0, 3.1, retail and debug versions, in Standard and Enhanced mode.

In other words: no real mode! This book simply assumes that Windows 3.0 real
mode doesn’t exist. Certainly, it ought never to have existed. Unlike many other Win-
dows programming books that are revisions of earlier books written during the bad
old days of Windows 2.x, this is an entirely new book and is not carrying around any
baggage from real mode. The assumption throughout is that Windows is a protected-
mode DOS extender. If, for whatever reason, you feel that Windows 3.0 real mode is
important, you are not going to be happy with us. Nor is there much here on Win-
dows versions prior to 3.0.

On the other hand, we think that version 3.0 is still quite important. Just because
3.1 is out doesn’t mean that 3.0 has fallen off the face of the earth. Remember, it was
almost two years from the release of 3.0 to the release of 3.1; there are a lot of copies
of 3.0 out there, still in use. Compatibility with 3.0 Standard and Enhanced modes is
important. In some cases, we show how to implement a new 3.1 feature on top of 3.0.

Looking to the future, how about Win32 and NT (New Technology)? It’s impor-
tant to separate the two: the Win32 API is the future of Windows programming, yet
NT seems as if it will be a niche product (how many of your customers have been
clamoring for C2-level security and the ability to run on RISC processors?). One
future product that seems like a winner is Win32s, Microsoft’s planned “subset” of
Win32 that will run right on top of Windows 3.1. The Win32 API is mentioned in
various places throughout this book. In some cases, functions and messages that were
undocumented in 3.x are documented in Win32. At the same time, even some docu-
mented features of Windows, such as the selector-manipulation functions, will not be
supported in Win32. In particular, it seems that ToolHelp will not be part of Win32.

Speaking of ToolHelp, it is a crucial part of this book. With ToolHelp, Microsoft
has opened up Windows a little to provide an interface to Windows 3.0 and 3.1 inter-
nals. ToolHelp does not provide access to the actual data structures used by Windows,
but to a (largely read-only) layer above them. For example, a ToolHelp TASKENTRY
structure is not identical to a Task Database, and changing fields in a TASKENTRY
will not alter the behavior of any tasks. But in many cases, ToolHelp does the job, and

xvi UNDOCUMENTED WINDOWS

should be used wherever possible instead of the actual undocumented data structures.
Chapter 10 of this book is devoted to ToolHelp, and is far more extensive than the
chapter on ToolHelp that Microsoft provides in the 3.1 SDK Programmer’s Reference.

There is no contradiction between using ToolHelp and using undocumented
Windows: in fact, they can work quite well together in the same program. There are
many examples throughout the book of using ToolHelp, and then dropping down to
undocumented Windows (the actual data structures) when the layering ToolHelp pro-
vides is not adequate.

How Did We Find This Stuff Out?

Something almost everyone asks us is, “How did you find this stuff out?” Chapters 1
through 4 of this book are really an extended answer to that question. To start with,
Microsoft doesn’t do very much to hide undocumented functions. The new execut-
able (NE) format used by Windows is almost designed to expose the names of undoc-
umented functions. We started reverse engineering using the tools Microsoft provides,
such as EXEHDR and CodeView for Windows (CVW). We gradually built better
tools for exploring Windows, many of which are on the accompanying disk. Other
tools we built became a new product, Windows Source, available from V Communica-
tions. When Nu-Mega’s Soft-ICE/Windows came out, we greedily pounced on that.
Finally, we built several disassemblers of our own which we found very handy, but
which are not yet quite ready for prime time.

Beta versions of the Windows 3.1 SDK came with debug versions of Windows
with complete CV debug symbol tables; coupled with a disassembler such as Windows
Source that can use CV symbol tables, this helped tremendously. Unfortunately, these
complete symbol tables were stripped down in the final release of the 3.1 SDK.

In addition to reverse engineering, we also tried to find as much information as we
could in sources like old Windows 2.x documentation, header files that come with the
DDK, and the Win32 API.

Acknowledgments

But really, the way we found out much of what’s in this book, was with a lot of help
from our friends. The following were especially helpful in helping us over the rough
spots:

Len Berk, John "Knuckles" Benfatto (Phar Lap), Paul Bonneau (Windows/DOS
Developer’s Journal), Ralf Brown, Ron Burk (Windows/DOS Developer’s Journal),
Geoff Chappell, Bob Chiverton, Alan Cobb, Thuan-Tit Ewe (Metaware), Michael
Geary, Frank Grossman (Nu-Mega Technologies), Brad Kingsbury (Symantec), David
Lection, Bill Lewis (Qualitas), Ron Mann (Praxsys), Mike Maurice, Darren Miclette
(IBM WIN-OS/2), Robert Moote (Phar Lap), Duncan Murdoch, Dan Norton,
Andrew Pargeter, Jeroen Pluimers, Jeff Richter, Art Rothstein, Enrique Salem (Sym-
antec), Brett Salter (Periscope), Michael Shiels, Richard Smith (Phar Lap), Victor

PREFACE xvii

Stone (Borland), Phil Taylor (Borland), Frank Van Gilluwe (V Communications), and
Jonathan Zuck.

Also, there are a surprisingly large number of people who, for one reason or
another, prefer to remain anonymous. All we can say is, thanks!

Our literary agent, Claudette Moore, got this book started.

The staff at Benchmark Productions and Addison-Wesley, especially Andrew Wil-
liams, Amy Pedersen, Jennifer Noble, Chris Williams, and Abby Cooper, made sure
this book got out.

This book could not have been produced without the CompuServe Information
Service. Practically all work on this book occurred over CompuServe. However,

there’s no need to formally express our indebtedness to CIS, because our monthly
credit-card bills already reflect this.

Andrew Schulman: During the long period that I was working on Undocumented
Windows, my employers at Phar Lap Software showed unusual forbearance and sup-
port. Considering how much this book cut into my work, Richard Smith, John
"Knuckles" Benfatto, and Robert Moote were absurdly understanding and supportive.
My coworkers, particularly Rob Adams, Andre Sant’Anna, Diego Escobar, Karl
Kinsella, Maria Vetrano, and Alan Convis, helped with this book in various ways.

Trudy Neuhaus and Neil Rubenking at PC Magazine helped immensely with a
two-part series on undocumented Windows that, much transformed, eventually
became chapter 1. Trudy has put up with intolerable delays in other articles because of
this book. Thanks!

Gretchen Bilson at Microsoft Systems Journal and Jon Erickson at Dr. Dobb’s Jour-
nal were also incredibly understanding about delays caused by this book.

Above all, T want to thank Ray Valdes, Ray Duncan, Claudette Moore, Pete
Olympia, Randy Wallin, Jon Udell, and Tony Rizzo, for providing opportunities and
encouragement over the years.

Especially during the last few months of working on this project, my son Matthew
and my wife Amanda Claiborne put up with me in various ways. Thanks ! In spite of
obstacles put in her way by this book, Amanda has won a Mellon Fellowship at Bran-
deis. Matthew’s fifth birthday is approaching, and he is nearing completion on his ini-
tiation into the Teenage Mutant Ninja Turtles. Cowabunga, dude!

David Maxey: I particularly want to acknowledge the contribution of my family, for
being so tolerant of the empty place at the dinner table, and especially of my wife, who
stood in for me in my role as a normally functioning human being.

Matt Pietrek: I would like to thank my wife, April, and my “boys,” Gunther and The-
odore, for letting me work the many nights and weekends that this book required. I
would also like to extend thanks to my coworkers, especially E.S., E.B, and P.E. [The
editor feels obligated to point out that the said “boys” are in fact two dachshunds.]

Andrew Schulman (CIS 76320,302; andvew@pharlap.com)
David Maxey (CIS 70401,3057)

Mastt Pietrek (CIS 76117,1720)

June 1992

CHAPTER =]

This Was Not Supposed to Happen

A key goal of Microsoft Windows is to be more orderly than MS-DOS. DOS is a
“house of cards,” with memory-resident (TSR) programs, device drivers, disk caches,
memory managers, DOS extenders, networks, and multitasking environments (such as
Windows itself) all competing for control of your machine. From the software devel-
oper’s perspective, Windows often looks a lot saner. It provides a wide-ranging and
seemingly all-inclusive collection of services—such as protected mode, multitasking,
dynamic linking, window management, and graphics—that plain-vanilla DOS doesn’t
offer. Often, Windows lets developers concentrate on making a program do what it is
supposed to do rather than on the underhanded shenanigans—including the use of
undocumented system functions—that are necessary to create a great DOS application.

For example, since Windows 3.x runs applications in protected mode, you no
longer need to worry about expanded memory, overlays, or other methods for shoe-
horning software into 640K. As with any other protected-mode DOS extender (which
is largely what Windows is), the 640K limit is gone, and along with it a whole class of
DOS programming problems.

Another example is TSR (terminate and stay resident) programming. To write a
robust TSR, you must use undocumented DOS functions; you simply have no choice.
But in the multitasking Windows environment, all applications are automatically
memory-resident, so the problem of writing TSRs disappears. (This holds for Win-
dows applications only; if you want to write DOS TSRs that behave properly under
Windows, you actually have an additional set of worries.) Furthermore, dynamic link-
ing in Windows largely (though not entirely) eliminates the need for programs to
hook interrupts to provide services to other programs.

The most visible contrast between Windows orderliness and DOS messiness is in
graphics programming. DOS doesn’t provide services for doing graphical or even full-
screen character-mode programs such as a spreadsheet, word processor, or CAD pro-
grams. The ROM BIOS video services that do exist are too slow. Consequently, most
major PC commercial applications write directly to video memory, program the video
controller, and generally perform various low-level, exotic dances with the video

2 UNDOCUMENTED WINDOWS

hardware. Windows, on the other hand, makes these sorts of tricks unnecessary—and,
in fact, pretty much forbids them—by providing a relatively device-independent collec-
tion of graphics functions, with moderately acceptable performance, that Windows
applications politely call.

The idea of “undocumented Windows,” then, is really somewhat alarming. Using
undocumented functions is exactly the sort of problem Windows was supposed to
solve! Making use of functions that Microsoft has implemented but not documented
fits in perfectly with the free-wheeling style of DOS, but it seems to contradict the
entire spirit and purpose of Windows. By providing an API much more extensive and
capable than DOS’s, Windows is supposed to make such low-level tricks unnecessary.

In much the same way that high-level programming languages are supposed to
shield programmers from having to know assembly language or understand micropro-
cessor architecture, the Windows API is supposed to shield programmers from low-
level tricks. This intent is a little amusing, because the Windows API itself is so
low-level that it is notorious for requiring eighty lines of code to spell “hello world!”
on the display. But these eighty lines of code are in fact quite high level in that they
should work on any machine that can run Windows, including machines that are not
fully PC-compatible, such as Japanese NEC computers.

That high-level coding is one of the key principles of Windows is spelled out nicely
in the text of a Microsoft invitation to a Windows hardware-engineering conference:

Why focus on Windows PCs?

Because Microsoft Windows creates the opportunity for PC hardware
vendors to innovate freely when designing new systems and subsystems.
Windows, unlike the MS-DOS standard that preceded it, leaves open the
door to engineering innovation by shielding the software writer from any
need to write directly to the hardware. Any personal computer capable of
running Windows smoothly can support all of the software written to the
Windows application programming interface (API). As a result, the engi-
neering focus has shifted. In the new Windows world, it’s hardware innova-
tion and performance that count, not hardware conformance. (“Windows
Hardware Engineering Conference,” 1-3 March 1992, Advance Invitation).

Wouldn’t it be great if Windows could really shift the engineering focus? By writ-
ing only to the documented Windows API, we could let Windows move us to radically
improved platforms. Intel wouldn’t be happy about it, perhaps, but if everyone played
by the rules and wrote to the documented Windows API, Microsoft might even be
able to move us, our code, and our customers to advanced RISC architectures and
away from the ugly world of segments, IBM compatibility, MS-DOS compatibility,
and all the other boring little issues that loom so large today.

In other words, one of the key ideas behind Windows is that developers should
write to the Windows API and to that alone (note that this API does at present
include at least some INT 21h DOS calls). Unless you’re writing a Windows device
driver, you don’t do any low-level coding. You certainly don’t make any undocu-

CHAPTER 1 B THIS WAS NOT SUPPOSED TO HAPPEN 3

mented Windows calls or rely on knowledge about internal Windows data structures.
That would just be resurrecting the evils of MS-DOS!

But how likely a scenario is this? How many commercial Windows applications can
really “play by the rules” and still be marketable, with decent performance and with
the features users expect? The idea that the Windows API can totally replace low-level
coding seems, unfortunately, no more reasonable than the idea that C++ can totally
replace assembly language—in other words, not very reasonable at all.

Actually, the idea that Windows shields programmers from low-level complexity is
a bit of a sham. Most Windows programmers would probably agree that you must be
intimately familiar with the Intel machine architecture (particularly the stack) to be a
really good Windows applications developer; in DOS you can get away without such
knowledge for a fairly long time. One programmer reports that it was not untl he
started doing Windows that he ever had occasion to use assembly language or to
examine his compiler’s startup code. Portable? High level? Huh?

What we will see in this chapter is that key commercial Windows applications,
including Microsoft’s own, use undocumented API calls. In some cases, these calls
have since been documented by Microsoft, though only after developers went ahead
and used them anyway, without Microsoft’s blessing. In other words, real-world use of
the Windows API has driven the documentation, rather than the other way around.
Writing only to the documented Windows API sounds great, but it has failed in the
real world.

What went wrong with the lovely notion of Windows programming without
tricks, without low-level, nonportable code, without undocumented shenanigans?
What went wrong, mostly, is that Windows succeeded. By winning the operating-system
wars Windows is now paying the price of success: large numbers of programmers are
banging on the system, and they need to make it do all sorts of things for which it was
probably never intended.

The use of undocumented features, in other words, is the inevitable price of suc-
cess. MS-DOS paid this price, and now Windows will. Interestingly, Windows too is
now being called a “house of cards.”

While solving many old problems, Windows has introduced a number of new
problems. If you think about it, this is hardly surprising: to provide so much more
functionality, the Windows API had to be that much “richer” than that of character-
mode DOS; that richness, of course, introduces much more complexity and, hence, a
number of entirely new programming problems.

For example, while Windows applications run in protected mode and can there-
fore enjoy multi-megabytes of memory, real-mode DOS has not gone away and prob-
ably won’t go away anytime soon. Some Windows programs need access to device
drivers, TSRs, network drivers, absolute memory locations, or even undocumented
DOS functions and data structures. The Windows API, extensive though it is, fails to
provide adequate functionality for communicating with real mode from a protected-
mode Windows application. There are plenty of undocumented Windows functions,
however, that do provide this needed functionality.

4 UNDOCUMENTED WINDOWS

Another example: Instead of the asynchronous interrupts that many DOS applica-
tions have to worry about, events in Windows arrive in the form of properly behaved
messages. This is a benefit to nonpreemptive multitasking; in fact, the requirement
that a Windows application explicitly ask for its next message is what makes Windows
multitasking nonpreemptive. Rather than hook INT 8 to get timer events, for
instance, a Windows application uses the documented SetTimer() API call to politely
ask for timer messages. Even such timer messages arrive synchronously only when the
application asks for them by calling the GetMessage() function. But, well regulated
though it may be, it is not the behavior that some applications need from a timer—or
from other message sources, for that matter. Often an application needs to know
about something as soon as it happens, even if it’s in the middle of doing something
else. Again, one solution is to use undocumented Windows API functions (in this
case, the system-timer functions provided by SYSTEM).

In Windows 3.1, Microsoft has rightly made a big fuss over “drag and drop.” It’s
a great feature. It was also provided in Windows 3.0 but used undocumented mes-
sages, data structures, and functions that only File Manager knew about. In 3.1,
Microsoft documented an entirely new drag-and-drop protocol, but it still has not
documented the original drag-and-drop protocol, which persists in 3.1, and which
allows for the creation of both drag-and-drop clients and servers. Microsoft has not
officially documented how to be a drag-and-drop server, and the publication of an
excellent Microsoft Systems Journal article on that subject (“Drop Everything,” by Jeff
Richter) faced opposition from within the company. Chapters 6 and 7 of this book
contain extensive discussions of how to be a drag-and-drop client or server in Win-
dows 3.1 or 3.0.

We’ve been discussing new problems raised by Windows 3.0, but not every situa-
tion where a programmer might use an undocumented Windows function is entirely
new. For example, just as DOS support for writing debuggers was until recently com-
pletely undocumented and is still incorrectly documented by Microsoft, existing Win-
dows debuggers, such as Turbo Debugger for Windows (TDW), Multiscope, and
Microsoft’s own CodeView for Windows (CVW), all rely heavily on undocumented
functions. With its “Open Tools” strategy (discussed later in this chapter) and its new
ToolHelp library, Microsoft is making a genuine effort to document some of the key
Windows interfaces needed to write debuggers and other Windows development tools.
However, Windows debuggers, “spy” programs, memory browsers, and the like will
probably continue to use undocumented Windows functions for some time.

For better or worse, Windows commercial application programming has a lot of
the chaos and unruliness that one associates with DOS programming. This is not terri-
bly surprising, considering that Windows is incredibly complex, and considering that,
for the foreseeable future, it is an extension to, and not a replacement for, good old
MS-DOS. The widespread use of undocumented functions in Windows applications is
not a deplorable fall from grace either, but a healthy sign of vitality. Developers are
stretching the system’s capabilities. As the economist Joseph Schumpeter noted in a
somewhat different context, “If the system was perfect, it wouldn’t work.” Bless this
mess!

CHAPTER 1 B THIS WAS NOT SUPPOSED TO HAPPEN 5

Backdoor Programming

Undocumented Windows API functions, messages, and data structures are just one
part of the Windows programming netherworld. Other parts of this netherworld
include

= The DOS Protected Mode Interface (DPMI)

* The Windows Device Driver Kit (DDK), in particular Enhanced mode Virtual
Device Drivers (VxDs, or .386 files)

= The “Open Tools” materials provided by Microsoft to Independent Software
Vendors (ISVs)

* The ToolHelp dynamic link library (made available in Windows 3.1 but also
backward-compatible with Windows 3.0)

Windows is much more than simply the functions described in the WINDOWS.H
header file that comes with the SDK and with SDK replacements such as Borland
C++. WINDOWS.H does not come close to defining the extent of the Windows pro-
gramming universe.

The interfaces listed above are of much wider interest than one might at first sus-
pect. For example, the Microsoft Windows Device Driver Kit (DDK) should interest
not just those few who are writing Windows device drivers. The DDK is the only place
that Microsoft documents the INT 2Fh interface that Windows provides to applica-
tions running in the Enhanced mode DOS box. Because it is provided to the legions
of DOS applications, this INT 2Fh interface is potentially of much wider interest than
the Windows API itself, which is only directly accessible to Windows applications, not
to DOS applications running under Windows.

Likewise, Enhanced mode “virtual device drivers” or VxDs (.386 files) are often
really not device drivers at all. VxDs are the most powerful Windows applications one
can write. Any time something looks impossible in Windows, it’s often trivial to do
from a tiny VxD. Some programmers even regard VxDs and the DDK as the “real”
Windows API, and the higher-level functions documented in the SDK as mere win-
dow dressing, so to speak. VxDs may also be important in DOS 6.0.

Dynamic Linking Aids Snooping

So how does one go about finding undocumented Windows functions? Ironically, by
using the very feature that makes Windows services better regulated, better docu-
mented, and quite simply less ad hoc than DOS services: dynamic linking. Whereas the
MS-DOS API uses interrupt vectors (whose ultimate expression is the TSR), the Win-
dows API uses dynamic linking (whose ultimate expression is the DLL, or dynamic
link library).

Windows is not, as is frequently believed, made up of components such as Program
Manager, Control Panel, and Task Manager. These are no more part of Windows than

6 UNDOCUMENTED WINDOWS

COMMAND.COM is truly part of DOS; replacements such as the Norton Desktop
for Windows (NDW) show, and even a cursory examination of the SHELL= state-
ment in the SYSTEM.INI configuration file reveals, that these various managers are all
dispensable.

Instead, Windows is made up of DLLs (dynamic link libraries). Three DLLs pro-
vide the core of the Windows API. In the earlier, unsuccessful real-mode versions of
Windows, these three DLLs were spliced together into one file, but in version 3.0 and
higher they are separate entities. They are

= KERNEL (system services—memory management, task management, dynamic
links, etc., with three different versions of this module: KERNEL.EXE for the
absurd Windows Real mode that disappeared in Windows 3.1,
KRNL286.EXE for 286 machines or Standard mode, and KRNL386.EXE for
386 and higher processors)

» GDI (Graphical Device Interface services: works with a DISPLAY device
driver such as VGA.DRYV to display text, rectangles, etc.)

= USER (user interface services: creating windows, sending messages, etc.)

Of course, there are many other DLLs whose exported functions make up the
Windows API. Some of these, such as WINS7EM.DLL, COMMDLG.DLL, and
TOOLHELP.DLL, even have DLL filename extensions. Others, such as SYS-
TEM.DRV and KEYBOARD.DRV, are Windows device drivers; device drivers in
Windows are simply DLLs under another name. In Windows 3.1 and in the Multime-
dia Extensions for Windows, the Control Panel is extensible via *.CPL files; these too
are nothing more than DLLs. Even Windows *.FON font files are also just DLLs that
export discardable, shareable, read-only data (resources) rather than code. Thus, aside
from the one very confusing fact that this single type of file goes under such an assort-
ment of different guises (EXE, DLL, DRV, CPL, FON, and so on), Windows is made
up of DLLs.

An important aside: A “module” in Windows is not quite the same as a DLL. For
example, we saw that the three DLLs, KERNEL.EXE, KRNL286.EXE, and
KRNL386.EXE, are three different implementations of the Windows KERNEL mod-
ule. Likewise, VZVGA.DRV and VGAMONO.DRY are two different implementations
of the Windows DISPLAY module. The possible distinction between a DLL’s or
DRV’s file name (“VGA.DRV™) and its module name (“DISPLAY”) is one of the
underpinnings of Windows device-independence.

Even Windows programs (such as WINWORD.EXE or PROGMAN.EXE) are
very similar to DLLs because both DLLs and Windows executables use the same “seg-
mented-executable” file format that is a superset of the .EXE format used under DOS.
Libraries (DLLs) export fanctions, and programs smport these functions: that’s what
dynamic linking is. Windows programs are similar to DLLs in that, in addition to
importing functions, they also export functions, which are “callbacks” to be used by
Windows itself. In effect, Windows treats programs as though they were libraries. This

CHAPTER 1 B THIS WAS NOT SUPPOSED TO HAPPEN 7

upside-down quality causes Windows, a library of functions, to treat your program as
though it, too, were a library, making this one of the most confusing aspects of Win-
dows programming. Similarly, DLLs #mport functions too, using the services of other
DLLs.

Given that the components of Windows itself (such as USER.EXE) and Windows
programs (such as MYPROG.EXE) look almost the same, it is not surprising that an
application can also provide its own DLLs that appear indistinguishable from the
DLLs that come “built in” to Windows. Another way of saying this is that the built-in
ones aren’t all that built-in—aside from their special knowledge of undocumented
functions and data structures, that is.

We will see in a few minutes (and chapter 2 of this book shows this in even
more detail) that we can find, by mere inspection, the name of every function that
a DLL exports. We can then see if a prototype for this function appears in WIN-
DOWS.H. This gives us a rough idea of what’s undocumented. More important,
we can also find the name of every function that a Windows program imports. By
then comparing this list against the list of documented functions, we can determine
which programs use undocumented functions and thereby come up with a rough
idea of which ones are important and genuinely useful.

The structure of segmented executable files makes it trivial, and almost enjoyable,
to do this sort of exploration. Actual disassembly of code becomes important at a
much later stage than it would in DOS. In other words, precisely because Windows is
so much more orderly about the way that services are provided and used than plain-
vanilla DOS ever was, it is very easy for us to see that maybe the Windows world isn’t
quite so orderly and well-regulated, after all.

Inside NDW

To reiterate, because of the way Windows works, Windows .EXE files are more struc-
tured than DOS .EXE (not to mention .COM) files. Windows dynamic linking makes
it easy to see what API calls a Windows application might use, without running the
program or even disassembling it.

Let’s take as an example the Norton Desktop for Windows (NDW). Peter Norton
first become a household name through his book, Inside the IBM PC. 1t’s fitting then
that we go “inside” NDW. The first release of NDW had some odd behavior and took
too long to load, but NDW is easily the coolest collection of Windows utilities avail-
able; it is a must-have replacement for Window’s own Program Manager, at least in
Windows 3.0 (the File Manager in 3.1 definitely gives NDW a run for its money).

NDW is a collection of programs, such as NDW.EXE itself, SIW.EXE (System
Information for Windows), SLEEPER.EXE (screen saver), NDDW.EXE (Norton Disk
Doctor), and so on, plus several dynamic link libraries, such as NWIN.DLL,
NDWDLL.DLL, and NDLL.DLL. Commercial Windows applications often use not
only the KERNEL, GDI, and USER DLLs that come bundled with Windows, but
also their own DLLs.

8 UNDOCUMENTED WINDOWS

Of the many executable files that come with NDW, let’s arbitrarily select one to
examine in detail: NBWIN.EXE (Norton Backup for Windows). NBWIN.EXE, like all
Windows programs, DLLs, and device drivers, is in Microsoft’s segmented-executable
(or “new executable,” or simply NE) file format.

Microsoft C comes with a utility, EXEHDR, to inspect NE files; similarly Borland
C++ comes with TDUMP. If we use TDUMP to examine NBWIN.EXE, we find, in
the middle of many other details about the file, a list of the “modules” (DLLs and
device drivers) whose services NBWIN directly uses:

C:\BORLANDC\BIN>tdump \ndw\nbwin.exe

Module Reference Table

Module 1: NDWDLL
Module 2: NDLL
Module 3: NBWRES
Module 4: NBWFD
Module 5: NWIN
Module 6: KERNEL
Module 7: GDI
Module 8: USER
Module 9: KEYBOARD

TDUMP and EXEHDR can also tell us exactly which Windows API functions
NBWIN (or any other Windows program, DLL, or device driver) uses. If you stop to
think about it, such snooping capabilities are simply amazing. In MS-DOS, it is com-
paratively difficult to learn which software interrupts and functions a program uses;
here, by seeing which Windows API functions a program uses (or at least which ones
it references, which is not quite the same thing), we can do a high-level disassembly,
without disassembling one line of code.

Unfortunately, the form in which TDUMP and EXEHDR present this material is
not terribly useful. You wouldn’t know it at first, but the following output from
EXEHDR shows some of the Windows API functions used by NBWIN:

C:\BIN>exehdr /v \ndw\nbwin.exe

PTR 0333 imp KERNEL.169

PTR 010b imp GDI.35
PTR 0013 imp KERNEL.47
PTR 00a8 imp USER.33
PTR 017d imp KERNEL.51
PTR 009b imp USER.36
PTR 01e2 imp KERNEL.52
PTR 02b0 imp USER.420
PTR 00e4 imp GDI.45
PTR 0089 imp USER.39
PTR 0133 imp USER.40

In the module.ordinal format—such as KERNEL.169, USER.33, or GDI.35—the
ordinal number is simply an identifier for a function exported by a given DLL. Win-
dows functions almost always have names, which appear in DLLs as NULL-terminated

CHAPTER 1 B THIS WAS NOT SUPPOSED TO HAPPEN 9

ASCII (ASCIIZ) strings such as “GETFREESPACE” or “STRETCHBLT,” but pro-
grams or other DLLs that use these services generally reference them with the shorter
module.ordinal form. Unfortunately, TDUMP and EXEHDR only show this short
form, leaving it up to us to figure out what KERNEL.169 or GDI.35 is.

When running a utility such as TDUMP or EXEHDR on a Windows program
like NBWIN.EXE, the program dumps out raw data that can be made useful by find-
ing the ASCIIZ names that correspond to each module.ordinal import reference. We
find these simply by running TDUMP or EXEHDR again, but this time on the DLLs
that export the functions that the program smports.

For example, we can see in the EXEHDR output above that one section of
NBWIN.EXE uses some functions from the Windows USER module. If we now
examine USER.EXE with the EXEHDR utility, we see a list of every function that
USER exports (unfortunately, it is not sorted in any way):

C:\BIN>exehdr \windows\system\user.exe

Library: USER

Description: Microsoft Windows User Interface
Exports:

ord seg offset name

465 14 03c6 DRAGDETECT exported, shared data

404 8 0296 GETCLASSINFO exported, shared data

175 12 0999 LOADBITMAP exported, shared data

88 24 22e4 ENDDIALOG exported, shared data

500 1 558e FARCALLNETDRIVER exported, shared data
272 1 1ac5 ISZOOMED exported, shared data

168 3 20bd SETCARETBLINKTIME exported, shared data
147 38 015a SETCLIPBOARDVIEWER exported, shared data

40 1 59cc ENDPAINT exported, shared data

In all, about 400 functions are listed in USER.EXE alone. Not surprisingly, if we
examine this list, we will see plenty of functions that, from their names alone, sound
useful, but that are not listed in the Windows Programmer’s Reference or in the WIN-
DOWS.H header file. These are usually, but not always, undocumented functions.

Let’s not approach undocumented Windows from this angle, however. Rather
than embark on an Easter egg hunt, trying to find every function exported from a
DLL that doesn’t happen to be listed in the Programmer’s Reference or in WIN-
DOWS.H, we can instead approach undocumented Windows from the perspective of
existing commercial Windows applications that #se undocumented functions. Other-
wise, the search for undocumented functions can become more like collecting baseball
cards and less like software engineering.

Examining the EXEHDR NBWIN output again, we can see that, for example,
NBWIN imports USER.40. Looking next at the last line of the EXEHDR USER list of
exports, we can see that ordinal #40 in the USER module corresponds to the function

10 UNDOCUMENTED WINDOWS

ENDPAINT. Thus, we now know that EndPaint() is one of the Windows API func-
tions called by NBWIN. This is hardly surprising, because it is almost impossible to
produce any screen output in Windows without calling this documented function. But
we could carry out this same import/export process for every module.ordinal refer-
enced by NBWIN; or any other Windows program or executable, and produce a com-
plete picture of the Windows services it uses. That is more interesting.

In fact, the picture that emerges is extremely interesting, but to do it this way
would also be extremely boring. This is just the sort of work that a computer is good
for! What we really need is a utility that prints out a list of all the Windows API func-
tions that a program uses, silently doing all the work of matching up module.ordinal
imports in one file with ASCIIZ name exports from another.

This utility is MAPWIN (provided on the accompanying disk), written by Richard
Smith, president of Phar Lap Software. We could have saved ourselves a lot of work
and simply used MAPWIN to begin with, instead of messing with EXEHDR and
TDUMP. But it is informative to step through once “by hand,” so to speak, the pro-
cess that MAPWIN carries out automatically, so you can see where its results come
from. For more details on MAPWIN, see chapter 2.

If we examine NBWIN.EXE with MAPWIN, we get a list of the Windows API
calls, both documented and undocumented, that NBWIN makes. A portion of the
output is shown below:

C:\BIN>mapwin awin30.imp \ndw\nbwin.exe

GETPROFILESTRING (KERNEL.58)
GETPROP (USER.25)
GETSELECTORBASE (KERNEL.186)
GETSTOCKOBJECT (GDI.87)
GETSUBMENU (USER.159)
GETSYSCOLOR (USER.180)
GETSYSTEMMENU (USER.156)
GETSYSTEMMETRICS (USER.179)
GETTEMPFILENAME (KERNEL.97)
GETTEXTEXTENT (GDI.91)
GETTEXTMETRICS (GDI.93)
GETTICKCOUNT (USER.13)
GETVERSION (KERNEL.3)
GETWINDOW (USER.262)
GETWINDOWLONG (USER.135)
GETWINDOWRECT (USER.32)
GETWINDOWTEXT (USER.36)
GETWINDOWWORD (USER.133)
GETWINFLAGS (KERNEL.132)
GLOBALADDATOM (USER.268)
GLOBALALLOC (KERNEL.15)
GLOBALCOMPACT (KERNEL.25)
GLOBALDOSALLOC (KERNEL.184)
GLOBALDOSFREE (KERNEL.185)
GLOBALFREE (KERNEL.17)
GLOBALHANDLE (KERNEL.21)
GLOBALLOCK (KERNEL.18)

CHAPTER 1T M THIS WAS NOT SUPPOSED TO HAPPEN 11

GLOBALNOTIFY (KERNEL.154)
GLOBALREALLOC (KERNEL.16)
GLOBALUNLOCK (KERNEL.19)
GRAYSTRING (USER.185)
INFLATERECT (USER.78)
INITAPP (USER.5)

INITTASK (KERNEL.91)
INVALIDATERECT (USER.125)
INVERTRECT (USER.82)
ISDIALOGMESSAGE (USER.90)

In all, MAPWIN lists 238 different functions referenced by NBWIN.EXE. As is
typical for Windows applications, a little over half the different functions used are in
the USER (window manager) module, about a quarter are in the KERNEL (system
services) module, and the remaining functions belong to other modules such as GDI
(graphics) and KEYBOARD. NBWIN also uses some functions from the DLLs that
come with the Norton Desktop.

Naturally, some functions used by NBWIN are also used by nearly every other
Windows application in existence. Functions such as RegisterClass(), CreateWindow(),
GetMessage(), and DefWindowProc(), for example, are essentially “boilerplate,” part
of the standard litany for creating a Windows application, and are called by 95% of all
Windows programs (the other 5% can be extremely useful Windows utilities, however).

What we’re interested in seeing are what undocumented features of Windows
NBWIN might be using. We need to filter out every “standard” call made by
NBWIN, that is, every function that appears either in the WINDOWS.H header file or
in the Microsoft Windows Programmer’s Reference or the Guide to Programming.
(The Guide to Programming documents several important items intended to be used
only in assembly language and therefore not included in the Programmer’s Reference.)
This topic is addressed in more detail in chapter 2 of this book. For now, we can sim-
ply say that if the documented calls are somehow filtered out, we’re eventually left
with seven items, referenced by Norton Backup for Windows but listed nowhere in the
Windows 3.0 SDK manuals or header files. They are

__0040h (KERNEL.193)
GETHEAPSPACES (KERNEL.138)
GETSELECTORBASE (KERNEL.186)
INITAPP (USER.5)

INITTASK (KERNEL.91)
SETSELECTORBASE (KERNEL.187)
WAITEVENT (KERNEL.30)

It seems, then, that we have finally arrived at our subject: here are Windows API
calls made by a major Windows application, produced by a firm known for producing
robust, high-quality software, and not found anywhere in the Windows 3.0 SDK.

12 UNDOCUMENTED WINDOWS

Open Tools: No Longer Undocumented Windows

Actually, we’re not quite there yet. We first need to deal with the three functions Init-
App(), InitTask(), and WaitEvent(). These sound interesting; what strange thing could
NBWIN be doing?

Nothing very strange at all. Whenever you run MAPWIN, you will see these same
three functions, for they are part of the standard Windows startup code, called from
any and every Windows application in existence!

When writing Windows applications in C or C++, your program’s perceived start
of execution is at the WinMain() function, rather than at the standard main() function
used everywhere else in the C world. This use of WinMain() rather than main() is
totally unnecessary and should be regarded as a design flaw of the Windows API. Be
that as it may, WinMain() is called with four arguments:

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR LlpszCmdLine, int nCmdShow)

Note the deliberate use of passive voice—“is called”—above. Who calls WinMain?
WinMain() is not the true entry point for your program. Instead, the initial entry point
is indicated, just as under plain-vanilla DOS, with an END statement in an assembly-
language module. It is the startup code, provided with your compiler’s run-time library,
that provides this END statement and that sets things up for, and calls, WinMain().
On entry to a Windows program (DLLs operate differently), the CPU registers hold
the following values:

BX Stack size

CX Heap size

DI Instance handle (hIntance)

SI Previous instance (hPrevInstance)
ES Program segment prefix (PSP)

The question is, what happens between here and WinMain()? What happens is
that the startup code provided by the compiler’s run-time library calls InitTask(),
WaitEvent(), and InitApp(). Although the Windows 3.0 SDK does not contain
source-code for the startup module, Borland C++ does; if you have Borland C++, you
can learn all about Windows startup by reading the nicely commented file
\BORLANDC\EXAMPLES\STARTUP\COW.ASM. (Microsoft C/C++ 7.0 includes
startup source too.)

Even though the details of these three calls are probably of interest to only those
working on a compiler with Windows support or to someone who has worked on
implementing custom versions of the KERNEL and USER modules, the politics
behind these three little function calls are rather interesting.

Until Windows 3.1, InitTask(), WaitEvent(), and InitApp() really were not docu-
mented anywhere in the Windows SDK. Thus, for years, every single Windows appli-
cation contained three undocumented calls. This is bizarre because the SDK is

CHAPTER 1 B THIS WAS NOT SUPPOSED TO HAPPEN 13

really not part of Windows itself, and therefore it ought to have no more privileged a
position than any other application or third-party development tool.

By not documenting these calls needed to take a Windows application from
startup to WinMain(), and thereby allow it to actually »## under Windows (talk about
a crucial feature!), Microsoft’s SDK for years had a near monopoly on the Windows
development-tools market. This was particularly annoying because, other than this
startup code, the SDK didn’t bring much to the party. The Windows API functions
are often referred to in third-party books as “Kit routines” or “SDK functions,” but,
as we’ve already noted, Windows dynamic linking means that these functions are actu-
ally part of the DLLs contained in every retail copy of Windows that someone buys off
the shelf at Egghead; they are definitely ot part of the SDK. The SDK, in other
words, provides remarkably little other than the “secret sauce” of making a Windows
program jump through the necessary hoops before it gets to WinMain().

Eventually someone at Microsoft must have figured out that although Microsoft
makes some money from the SDK, the company as a whole does much better by sales
of Windows itself. Therefore, it is in the interests of Microsoft to have excellent Win-
dows development tools available, even if they compete with its own SDK and with its
own C compiler.

The end result is what Microsoft calls the “Open Tools Strategy,” an attempt to
“level the playing field” in Windows development tools by making key pieces of pre-
viously undocumented information available to tools vendors, including direct com-
petitors with Microsoft C and the SDK, such as Borland and Zortech/Symantec. An
enormous three-ring binder of this material is available to “independent software ven-
dors” (ISVs) by sending Internet mail to isv@microsoft.com. Much of this material has
also been made available in the Windows 3.1 SDK as articles in the “Overviews” manual.

The Open Tools binder provides information on the following previously undocu-
mented topics:

* Windows Application Startup (how to call WinMain(): the InitApp(),
InitTask(), and WaitEvent() functions)

= Windows Prologs and Epilogs (initialization of the DS register for callback
functions)

* Windows 80x87 Floating Point Emulator (WIN87EM.DLL and OS fixups)

* Self-Loading Windows Applications (the PatchCodeHandle() function used
by some versions of Microsoft Word for Windows and Microsoft Excel; see
the description of PatchCodeHandle() in chapter 5 of this book).

* Creating Windows Hosted Debuggers (documents functions such as
DirectedYield() and SetEventHook())

* Resource Formats within Executable Files (however, what about resource for-
mats outside executable files, in the .RES files produced by the resource
compiler?)

= Executable File Format (most of this has already been documented in OS/2
1.x, which uses the same segmented-executable NE file format as Windows)

14 UNDOCUMENTED WINDOWS

= Object Module Format for Windows (in particular, IMPDEF and EXPDEF
records, which form the link between an application’s call to, for example,
GetVersion() on the one hand, and module.ordinal pairs such as KERNEL.3
on the other; these .OBJ records are also documented in yet another obscure
but useful Microsoft offering, the Microsoft C Developer’s Toolkit Reference.)

» Library and Import Library Formats (structure of a Windows import library as
produced by the IMPLIB utility)

Open Tools also helps underline the point that WINDOWS.H and the SDK do
not define the full extent of the Windows universe. As another example of the same
point—that there’s much more to Windows than what’s in WINDOWS.H and the
SDK—it should also be noted that some Windows API functions that seem undocu-
mented are actually described in the Windows Device Driver Kit (DDK).

There is a tendency among those exploring undocumented Windows to jump to
the conclusion that anything not in WINDOWS.H is therefore undocumented, and
there is a sentiment among Windows programmers that WINDOWS.H, Petzold, and
the Programmer’s Reference neatly encompass all of the Windows API. Those inter-
ested in undocumented Windows should also become familiar with lesser-known but
important documented aspects of Windows such as the DDK, DPMI, and Open
Tools.

Finally, Undocumented Windows

Returning to NBWIN, we are now left with four genuinely undocumented items. Two
of these are now documented in the 3.1 SDK, but they were not documented when
NBWIN was built, and they are still not documented for 3.0 (which hasn’t disap-
peared, remember). The only reason they eventually were documented is that pro-
grams like NBWIN were using them anyhow, documentation or no documentation:

__0040h (KERNEL.193)

GetHeapSpaces (KERNEL.138)
GetSelectorBase (KERNEL.186)
SetSelectorBase (KERNEL.187)

Four items may not seem like a lot, but remember that we’re looking at a single
program. As we’ll see later on, key Windows applications, including Microsoft’s own
applications, use many additional undocumented Windows API functions.

The Saga of Free System Resources

Let’s look at the GetHeapSpaces() function (KERNEL.138) first, because it relates to
one of the more visible and confusing aspects of Windows performance, stability, and
capacity: System Resources, that is, the percentage of free system resources shown

CHAPTER 1 B THIS WAS NOT SUPPOSED TO HAPPEN 15

(along with the amount of free memory) in the Program Manager About... box. This
number is important to end users of Windows because it determines—almost more
than the amount of free memory—the number of applications that can reasonably be
run at the same time. All Norton Desktop for Windows applications, including
NBWIN, show the free system resources percentage in their About... boxes.

Where does this information come from? And what does it really mean?

Like the 3.0 Program Manager, NDW computes the percentage of free system
resources on the basis of the undocumented GetHeapSpaces() function:

extern DWORD FAR PASCAL GetHeapSpaces(HANDLE hModule);

The window manager (USER) and the Graphical Device Interface (GDI) are just
modules in Windows. Like any other Windows DLL or application, they have default
local heaps, whose size is at most 64K bytes, and from which memory can be allocated
with the documented LocalAlloc() function. What makes USER and GDI special is
that these modules are used by all other modules in the system: every window or
menu an application creates looks to USER like just another LocalAlloc() from a local
heap; every device context (DC) handle, brush, pen, region, font, or bitmap an appli-
cation creates looks to GDI like just another LocalAlloc() from a local heap.

The implications of this in Windows 3.0 are rather frightening, and in Windows
3.1 they are still somewhat alarming. In 3.0, because all Windows applications share a
single 64K heap in USER and a single 64K heap in GDI, the amount of memory
remaining in these two heaps might be more important than the amount of total sys-
tem memory. Even with the megabytes of memory available in protected mode, the
number of applications that could be run simultaneously—and their stability—is still
constrained by these two 64K barriers. In Windows 3.1, USER and GDI have mult-
ple local heaps, thereby partially relieving the free system resources problem. Menus
were a particular problem and were moved out of USER’s default local heap. How-
ever, as the USERWALK and GDIWALK programs in chapters 6 and 8 show, there is
still a definite upper limit on how many windows, menus, DGs, pens, brushes, and so
on can be created at one time.

Why do USER and GDI use LocalAlloc() to allocate system resources for other
applications? Why not call GlobalAlloc() and thereby remove any 64K limit? Because it
is more efficient for USER and GDI to address resources with two-byte near pointers
than with the four-byte far pointers that would be necessary for objects created via
GlobalAlloc(). The designers of Windows made a time vs. space trade-off.

The free system resources percentage, then, is simply the percentage of USER’s
heaps that remains free or the percentage of GDI’s heaps that remains free, whichever
one is smaller. Given a module handle, the undocumented GetHeapSpaces() function
returns an unsigned long (DWORD) that contains in its high word the total number
of bytes in the module’s default local heap, and in its low word the number of free
bytes. As shown on the following page, it is up to the application that calls
GetHeapSpaces() to compute percentages and pick the one that’s smaller:

16 UNDOCUMENTED WINDOWS

/* undocumented Windows call: KERNEL.138 */
extern DWORD FAR PASCAL GetHeapSpaces(WORD hModule);

void heap_info(char *module, WORD *pfree, WORD *ptotal, WORD *ppercent)
{

DWORD info = GetHeapSpaces(GetModuleHandle(module));

*pfree = LOWORD(info);

*ptotal = HIWORD(info);

*ppercent = (WORD) C(((DWORD) *pfree) * 100L) / ((DWORD) *ptotal));
}

/! ...

WORD user_free, user_total, user_percent;
WORD gdi_free, gdi_total, gdi_percent;
WORD total_free;

heap_info("USER", &user_free, guser_total, &user_percent);
heap_info("GDI", &gdi_free, &gdi_total, &gdi_percent);
total_free = minCuser_percent, gdi_percent);

Note that GetHeapSpaces() is passed an arbitrary module handle, such as those
returned from the documented GetModuleHandle() function. Two points are impor-
tant here. First, all we need to get this information is the ASCIIZ name (such as
“USER” or “GDI”) of a module. Windows makes extensive use of strings rather than
magic numbers, making it a far more accessible and open system than plain-vanilla
DOS. Second, note that GetHeapSpaces() is passed an arbitrary module handle and is
not limited to use with GDI and USER. (On the other hand, the call GetHeapSpaces
(GetModuleHandle(“KERNEL”)) makes no sense because KERNEL has no local
heap.)

Accessing Undocumented Functions

Often, all that is necessary to use GetHeapSpaces() is a function prototype like the
one shown above. WINDOWS.H does not contain prototypes for undocumented
functions (this is pretty much what makes them undocumented!), so you need to
supply one yourself, as illustrated in the code above.

Import libraries such as LIBW.LIB in Microsoft C and IMPORT.LIB in Borland C++
usually contain the necessary IMPDEF records, even for undocumented functions.
However, if the linker complains about an “unresolved external” or “undefined sym-
bol” when you try to call an undocumented function, the import library you are
using does not contain the necessary IMPDEF record. For example, some undocu-
mented functions have been yanked from the Windows 3.1 SDK version of LIBW.LIB,
even when the functions still exist in 3.1 itself.

If you get an “unresolved external” or “undefined symbol” error from the
linker when trying to use an undocumented function, there are a couple of differ-
ent solutions:

continued

CHAPTER 1 M THIS WAS NOT SUPPOSED TO HAPPEN 17

continued

First you can use the IMPLIB utility to create your own import library, you can
use Windows run-time dynamic linking to access the function, or you can use the
import statement in a linker .DEF file. We'll discuss the first two here.

The IMPLIB utility (included with the Microsoft Windows SDK, but also pro-
vided with most third-party Windows development tools, such as Borland C++)
takes in a DLL (actually, any segmented executable with exports) and produces a
corresponding .LIB file that you can then link into your program. (The .LIB file, of
course, doesn’t contain any code, just IMPDEF records for each function exported
from the DLL.) For example

implib kernel.lib \win31\system\krnl386.exe

The second way to access undocumented functions when you run into an
“unresolved external” or “undefined symbol” error is to use run-time dynamic link-
ing. The usual form of dynamic linking in Windows is actually not all that dynamic:
it occurs when Windows loads a program into memory. In contrast, to get a call-
able pointer to a function in a DLL with run-time dynamic linking, a program need
only know the ASCIIZ name of the DLL and of the item it wants to access; it passes
the module name to a function such as LoadLibrary() or GetModuleHandle(), and
the function name to GetProcAddress(). Thus, rather than rely on the presence of
IMPDEF records in a .LIB file, you can entirely bypass the .LIB file and link to the
function via GetProcAddress(). For example

DWORD (FAR PASCAL *GetHeapSpaces) (WORD hModule);
WORD kernel;
DWORD user_info;

kernel = GetModuleHandle("KERNEL");
GetHeapSpaces = GetProcAddress(kernel, "GETHEAPSPACES") ;
user_info = GetHeapSpaces(GetModuleHandLe("USER"));

Notice that we're using GetModuleHandle() for two different purposes here:
once to get a module handle to KERNEL that we can use with GetProcAddress(), to
get a function pointer to GetHeapSpaces(), and a second time to get a module
handle to USER that we pass to GetHeapSpaces() itself.

If you are familiar with traditional K&R C, you may wonder how we can call
GetHeapSpaces() without having to explicitly reference the function pointer and
call (*GetHeapSpaces)(). The answer is simply that in ANSI C, which all Windows-
capable C compilers support, and in C++, (*pfunc)() and pfunc() are equivalent;
this is handy when using GetProcAddress().

At the end of this chapter, we will see that GetProcAddress() is useful not only
for accessing an undocumented function that is missing from an import library,
but also for safe use of the undocumented function, to ensure that it really exists in
the version of Windows your program is running under.

18 UNDOCUMENTED WINDOWS

The implementation of GetHeapSpaces() in KERNEL itself relies on another
undocumented function, LocalCountFree(), which returns the number of free bytes in
a local heap. GetHeapSpaces() then uses the documented GlobalSize() function to get
the total size of the heap. See chapter 5 for details.

It is obviously a problem for something as visible to end users as the free system
resources percentage to rely on an undocumented function. Microsoft decided not to
document the GetHeapSpaces() function but instead to provide what seemed like
equivalent functionality. TOOLHELP.DLL, included with Windows 3.1, contains the
function, SystemHeaplInfo(), that provides the same information. ToolHelp does not
come with Windows 3.0 but will work on top of it (this is a nice demonstration, by
the way, of the power of dynamic linking). An addendum to the SDK license agree-
ment permits developers to redistribute ToolHelp and certain other DLLs along with
their applications, so it seems as if The Free System Resources Problem has been solved:
Call the documented SystemHeaplnfo() function rather than the undocumented
GetHeapSpaces() function, and ship TOOLHELP.DLL along with your application.

So why would someone continue using GetHeapSpaces() rather than go with
TOOLHELP? Aside from a desire not to change code that already “works,” the prob-
lem is that, quite reasonably, few companies want to ship a DLL along with their
product just to show one silly number in their About... boxes. In particular, once you
start shipping a system DLL such as TOOLHELP, your Install program needs to
worry about “registration” issues: what if the user already has TOOLHELP in a later
version than the one you ship? With DLLs, you can get into a number of nasty “ver-
sionitis” issues (this is a nice demonstration, by the way, of the downside to dynamic
linking).

Eventually, Microsoft settled on the following method: use the undocumented
(but hereby quasi-sanctioned) GetHeapSpaces() function in Windows 3.0; use a new,
documented function, GetFreeSystemResources(), in Windows 3.1 and higher. An
application uses the documented GetVersion() function to determine which version of
Windows it is running under. Given the differences from one version of Windows to
the next, GetVersion() is crucial whenever you are working with undocumented func-
tions. This is illustrated in the following short example program, FREERES.C:

/* FREERES.C */
#include "windows.h"

// handy function from Petzold, Programming Windows
void OkMsgBox(char *szCaption, char *szFormat, eel)
{

char szBuffer[2561 ;

char *pArguments ;

pArguments = (char *) &szFormat + sizeof szFormat ;
wvsprintf(szBuffer, szFormat, pArguments) ; // changed from vsprintf
MessageBox(NULL, szBuffer, szCaption, MB_O0K) ;

CHAPTER 1 B THIS WAS NOT SUPPOSED TO HAPPEN

#define GET_PROC(modname, funcname) \
GetProcAddress(GetModuleHandle(modname), funcname)

void heap_info(char *module, WORD *pfree, WORD *ptotal, WORD *ppercent)
{

static DWORD (FAR PASCAL *GetHeapSpaces)(WORD hModule) = 0,

DWORD info;

if (! GetHeapSpaces) // one-time initialization
if (! (GetHeapSpaces = GET_PROC("KERNEL", "GETHEAPSPACES")))
OkMsgBox("Error", "Can't find GetHeapSpaces\n");

/* In ANS<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>