
•

•

Microsoft® WindowsTM
Version 3.1

Multimedia
Programmer's Guide

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license or nondisclosnre agreement. No part of this manual may
be reproduced or transmitted in any form or by any means, electronic or mechanical, including photo­
copying and recording, for any purpose without the express written permission of Microsoft.

© 1991-1992 Microsoft Corporation. All rights reserved.

Printed and bound in the United States of America.

Lucida Typeface Software Copyright © 1985-1992 Bigelow & Holmes. U.S. Patents Des. 289,420;
Des. 289,421; Des. 289,422; Des. 289,773.

Arial, Courier New, Symbol, and Times New Roman fonts Copyright© 1991-1992 Monotype
Corporation PLC. All rights reserved.

Microsoft, MS, MS-DOS, QuickC, CodeView, Visual Basic, and XENIX are registered trademarks,
and Windows is a trademark of Microsoft Corporation.

U.S. Patent No. 4974159

Ad Lib is a registered trademark of Ad Lib, Inc.
COMPAQ is a registered trademark of Compaq Computer Corporation.
IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
Macintosh is a registered trademark of Apple Computer, Inc.
MacroMind Director and MacroMind are registered trademarks of MacroMind, Inc.
PC Paintbrush is a registered trademark of Zsoft Corporation.
Pioneer is a registered trademark of Pioneer Electronics USA, Inc.
Roland is a registered trademark of Roland Corporation.
Sound Blaster is a trademark of Creative Labs, Inc.
Tandy is a registered trademark of Tandy Corporation.
ToolBook is a registered trademark of Asymetrix Corporation.
Video 7 is a registered trademark of Video Seven Corporation.

Document Number: PC30253-0492

1098765432

Contents
What You Should Know. .. ix

Contents of this Manual .. x

Sample Applications .. xi

Document Conventions. .. xii

Related Manuals .. xiii

Chapter 1 Introduction to Multimedia Services
About Windows Multimedia Services 1-2

Architecture of Windows Multimedia Services. 1-3

Windows Multimedia Design Philosophy 1-4

Building a Multimedia Application 1-6

Debugging a Multimedia Application 1-6

Chapter 2 The Media Control Interface (MCI)
An Overview of MCI .. 2-2

The Architecture of MCI 2-2

The MCI Programming Interfaces. .. 2-3

The MCI Command Set 2-4

About MCI Devices 2-5

Opening MCI Devices 2-6

Using the Command-Message Interface. .. 2-7

About Command Messages 2-7

Summary of MCI Command Messages 2-10

Sending Command Messages .. 2-l3

Opening a Device 2-14

Closing a Device 2-20

Using the Wait and Notify Flags. .. 2-20

Obtaining MCI System Information. .. 2-22

About the Command-String Interface 2-24

Sending Command Strings Using mciSendString 2-24

Additional Information about Command Strings. 2-25

iv Contents

Chapter 3 Introduction to Audio
About Audio Services. .. 3-1

Types of Audio Services. .. 3-2

Levels of Audio Services. .. 3-3

Windows Audio Architecture .. 3-4

High-Level Audio Functions 3-5

Low-Level Audio Functions 3-5

The MIDI Mapper 3-5

Audio File Formats .. 3-6

Further Reading .. 3-7

Chapter 4 High-Level Audio Services
Function Prefixes ... 4-1

Playing Waveform Sounds .. 4-2

Restrictions in Playing Waveform Sounds 4-2

Using the sndPlaySound Function. .. 4-3

Playing System Alert Sounds .. 4-6

Playing and Recording Audio Using MCI .. 4-8

MCI Audio Data Types 4-8

MCI Audio Commands 4-9

Opening MCI Audio Devices. .. 4-10

Handling MCI Errors 4-15

Starting Playback .. 4-16

Changing the Current Position. .. 4-21

Setting the Time Format. .. 4-22

Closing MCI Audio Devices 4-25

Getting Information About Devices and Media 4-25

Recording with Waveform Audio Devices 4-30

Using the MCI MIDI Sequencer. .. 4-34

The MIDI Mapper 4-37

MIDI Notational Conventions 4-37

The MIDI Mapper and Windows 4-38

The MIDI Mapper Architecture 4-39

The Channel Map 4-40

Patch Maps .. . 4-41

Key Maps 4-42

Summary of Maps and MIDI Messages 4-43

Authoring MIDI Files 4-43

About Base-Level and Extended Synthesizers 4-44

Authoring Guidelines for MIDI Files 4-45

Standard MIDI Patch Assignments 4-46

Standard MIDI Key Assignments 4-48

Using the MARKMIDI Utility 4-49

Chapter 5 Low-Level Audio Services
Function Prefixes ... 5-2

Using Low-Level Audio Services. .. 5-2

Querying Audio Devices. .. 5-3

Opening and Closing Device Drivers. .. 5-5

Allocating and Preparing Audio Data Blocks 5-7

Managing Audio Data Blocks. .. 5-9

U sing the MMTlME Structure .. 5-11

Handling Errors with Audio Functions. 5-13

Playing Waveform Audio 5-14

Waveform Output Data Types 5-14

Querying Waveform Output Devices. 5-14

Opening Waveform Output Devices. .. 5-18

Specifying Waveform Data Formats 5-19

Writing Waveform Data 5-25

Getting the Current Playback Position 5-32

Stopping, Pausing, and Restarting Playback 5-33

Closing Waveform Output Devices 5-34

Changing Waveform Playback Volume 5-34

Changing Pitch and Playback Rate. .. 5-35

Contents v

vi Contents

Recording Waveform Audio. .. 5-37

Waveform Input Data Types 5-37

Querying Waveform Input Devices .. 5-38

Opening Waveform Input Devices. .. 5-38

Managing Waveform Recording 5-39

Playing MIDI Audio. .. 5-42

MIDI Output Data Types 5-42

Querying MIDI Output Devices 5-43

Opening MIDI Output Devices 5-44

Sending MIDI Messages 5-45

Sending Buffered Messages. .. 5-47

Sending MIDI Messages Using Running-Status. 5-49

Resetting MIDI Output 5-50

Changing Internal MIDI Synthesizer Volume 5-50

Preloading Patches with Internal MIDI Synthesizers 5-51

Using the MIDI Mapper with Low-Level MIDI Functions ... 5-52

Recording MIDI Audio 5-53

MIDI Input Data Types 5-53

Querying MIDI Input Devices. .. 5-53

Opening MIDI Input Devices 5-54

Managing MIDI Recording. .. 5-55

Receiving Time-Stamped MIDI Messages 5-58

Receiving Running-Status Messages. 5-58

Auxiliary Audio Devices 5-59

Querying Auxiliary Audio Devices 5-59

Changing Auxiliary Audio-Device Volume. 5-61

Audio Clipboard Formats .. 5-62

Chapter 6 Timer and Joystick Services
Function Prefixes ... 6-1

Timer Services. .. 6-2

Timer Data Types 6-2

Using Timer Services 6-3

Getting the System Time 6-4

Determining Maximum and Minimum Event Periods 6-4

Establishing Minimum Timer Resolution 6-5

Starting Timer Events 6-5

Canceling a Timer Event 6-7

Using Timer Callbacks. .. 6-7

Joystick Services .. 6-9

Chapter 7

Joystick Data Types 6-10

Using Joystick Services 6-10

Determining Joystick Capabilities 6-11

Methods for Checking Joystick Status 6-13

Capturing Joystick Messages to a Window Function. 6-13

Processing Joystick Messages 6-14

Releasing the Joystick. .. 6-17

Setting the Movement Threshold .. 6-17

Polling the Joystick. .. 6-18

Using Joystick Messages 6-19

Multimedia File 1/0 Services
About the Multimedia File 1/0 Services. .. 7-2

Comparison with MS-DOS, C Run-time, and Windows
File 1/0 7-2

Function Prefixes 7-3

Data Types. .. 7-3

Performing Basic File 1/0 .. 7-4

Opening a File .. 7-4

Creating and Deleting Files 7-8

Reading and Writing a File .. 7-8

Seeking to a New Position in a File 7-8

Contents vii

viii Contents

Glossary

Index

Perfonning Buffered File 110 .. 7-9

Deciding When to Use Buffered File I/O 7-10

Opening a File for Buffered File 110 7-10

110 Buffer Control Functions. .. 7-10

Working with RIFF Files 7-12

About RIFF Files 7-13

The MMCKINFO Structure. .. 7-16

Generating Four-Character Codes. .. 7-16

Creating RIFF Chunks .. 7-17

Navigating RIFF Files 7-18

Example of RIFF File 110 7-21

The MMIOINFO Structure 7-24

Directly Accessing a File I/O Buffer 7-25

Getting Information on the File I/O Buffer. 7-25

Reading and Writing the File 110 Buffer. 7-26

Advancing the File I/O Buffer. .. 7-26

Example of Accessing a File 110 Buffer 7-29

Ending Direct Access of a File I/O Buffer. 7-30

Performing File I/O on Memory Files. .. 7-30

Opening Memory Files 7-31

Using Custom I/O Procedures 7-31

Opening a File Using a Custom 110 Procedure. 7-32

Writing an I/O Procedure. .. 7-32

Installing an I/O Procedure 7-34

Sharing an I/O Procedure with Other Applications. 7-35

About This Guide

This manual contains infonnation you can use to write applications using the
multimedia services available in the Microsoft® Windows™ operating system. It
describes the architecture of the multimedia elements of Windows, as well as the
application programming interface (API) for creating applications that use
multimedia features.

This introduction contains background information you should review, including
the following:

• The basics you should already know about writing Windows applications

• The organization of this manual

• A description of the multimedia sample applications provided with the
Microsoft Windows Software Development Kit (SDK)

• Typographical and notational conventions used in this manual

• A description of other manuals provided with the SDK

What You Should Know
This manual assumes you are familiar with writing applications for Microsoft
Windows, version 3.1 or later, using the C programming language. For more
information on programming for Windows, see the Microsoft Windows Software
Development Kit Guide to Programming.

Some chapters in this manual assume additional knowledge on your part. The
introductions to these chapters list these assumptions.

x About This Guide

Contents of this Manual
This manual provides information that experienced Windows programmers can
use to include multimedia features in their applications. The manual includes the
following information:

• Chapter 1, "Introduction to Multimedia Services," introduces the features and
software architecture of the multimedia services provided by Windows and
outlines the development environment for writing applications using these
services.

• Chapter 2, "The Media Control Interface (MCI)," describes MCI, an extensible
software interface that provides high-level, device-independent capabilities for
controlling media devices such as audio hardware, animation players, and
audio/visual peripherals.

• Chapter 3, "Introduction to Audio," Chapter 4, "High-Level Audio Services,"
and Chapter 5, "Low-Level Audio Services," all describe the audio services,
including waveform audio, MIDI, and compact-disc audio.

• Chapter 6, "Timer and Joystick Services," describes high-resolution timer
services and joystick input services.

• Chapter 7, "Multimedia File I/O Services," describes the multimedia file 1/0
services.

• The Glossary defines terms used in this manual and in the Multimedia
Programmer's Reference.

You should read Chapters 1 and 2 for a general overview of Windows multimedia
services. After reading these chapters, refer to those chapters that discuss the
particular multimedia features you want to include in your applications.

Sample Applications xi

Sample Applications

"
"'-

Each chapter includes sample C code fragments illustrating important concepts
discussed in the chapter. The SDK also includes several complete program
examples that illustrate how to use the multimedia services. Use the SDK Setup
program to install these sample programs on your system. Compile and run these
examples to see how the functions work in actual programs, or use the examples
as the basis for writing your own multimedia applications.

The following table lists the multimedia sample applications provided with
the SDK.

Program Function Demonstrates

LOWPASS Low-pass filter for Multimedia file 110 functions
waveform-audio files

MCITEST Interactively sends command MCI command-string
strings to MCI devices interface

MIDIMON Displays a textual listing of MIDI recording functions,
MIDI input messages low-level callback functions

REVERSE ~lays a waveform-audio file Multimedia file 110
m reverse functions, waveform-audio

functions

xii About This Guide

Document Conventions
The following document conventions are used throughout this manual:

Type Style

bold

italic

ALL CAPITALS

Monospace

Vertical ellipsis

Horizontal ellipsis ...

Used For

A specific term intended to be used literally; for
example, language key words, function names,
and macro names. You must type these terms
exactly as shown.

Placeholders for information you must provide.
For example, the following syntax for the
sndPlaySound function indicates you must
substitute values for the lpszSound and wFlags
parameters, separated by a comma:

BOOL sndPlaySound(lpszSound, wFlags)

Italic is also used for terms defined in text and
the Glossary.

Directory names, filenames, and acronyms.

Code examples.

Indicates a portion of the program is omitted in a
program example.

For a given function, there are several functions
that have the same form but different prefixes;
for example, ... GetNumDevs substitutes for the
auxGetNumDevs, midiInGetNumDevs,
midiOutGetNumDevs, wavelnGetNumDevs,
and waveOutGetNumDevs functions, all of
which have similar syntax and functionality.

Also indicates a single statement is omitted in a
program example.

Related Manuals xiii

Related Manuals
This manual explains how to write applications using the multimedia services
provided by Windows. The SDK also includes the following manuals providing
additional information about Windows programming:

• The Microsoft Windows Software Development Kit Getting Started manual
provides an orientation to the SDK, explains how to install the SDK software,
and highlights the changes for version 3.1.

• The Microsoft Windows Software Development Kit Programmer's Reference
provides a comprehensive guide to all the details of the Microsoft Windows
API. The reference consists of four volumes:

• Volume 1 presents an overview of the API.

• Volume 2 lists, in alphabetical order the functions that make up the API.

• Volume 3 describes Windows API messages, data structures, and macros.

• Volume 4 describes resources.

• The Microsoft Windows Software Development Kit Programming Tools
manual explains how to use the software-development tools you'll need to
build Windows applications, such as debuggers and specialized SDK editors.

• The Microsoft Windows Software Development Kit Guide to Programming
explains how to write Windows applications and provides sample applications
that you can use as templates for writing your own applications.

• The Microsoft Windows Software Development Kit Multimedia Programmer's
Reference is a companion manual to this Multimedia Programmer's Guide,
providing a definitive summary of the Windows multimedia API. It describes
multimedia functions, messages, data structures, file formats, and Mel
command strings.

Chapter 1

Introduction to Multimedia Services

Microsoft Windows provides application developers with high-level and low-level
services for developing multimedia applications using the extended capabilities of
a multimedia personal computer.

This chapter covers the following topics:

• An introduction to the features of the multimedia services provided
by Windows

• The software architecture of the multimedia services

• The design philosophy and implementation of the multimedia services

• Basic information about developing applications using the multimedia
services

Before reading this chapter, you should install Windows and the Microsoft
Windows Software Development Kit on your computer. See the Getting Started
manual for installation instructions.

1-2 Introduction to Multimedia Services

About Windows Multimedia Services
Windows provides the following multimedia services:

• A Media Control Interface (MCI) for controlling media devices.

• Extensible string-based and message-based interfaces for communicating
with MCI device drivers.

• MCI device drivers for playing and recording waveform audio, playing
MIDI (Musical Instrument Digital Interface) files, and playing compact disc
audio from a CD-ROM disc drive.

• Low-level API support for multimedia-related services.

• Low-level support for playing and recording audio with waveform and
MIDI audio devices.

• Low-level support for precision timer services.

• Multimedia file I/O services providing buffered and unbuffered file I/O, and
support for standard IBM/Microsoft Resource Interchange File Format (RIFF)
files. The services are extensible with custom I/O procedures that can be shared
among applications.

• Control Panel options that let users change display drivers, set up a screen
saver, install multimedia device drivers, assign waveform sounds to system
alerts, and configure the MIDI Mapper.

• A MIDI Mapper supporting standard MIDI patch services. This allows MIDI
files to be authored independently of end-user MIDI synthesizer setups.

Architecture of Windows Multimedia Services 1-3

• Interrupt-callable functions for timer and MIDI devices, providing real-time
response for time-critical uses. A list of the interrupt-callable functions follows:

• midiOutLongMsg

• midiOutShortMsg

• timeGetSystemTime

• timeGetTime

• timeKillEvent

• timeSetEvent

Architecture of Windows Multimedia Services
Although the multimedia services are provided by a number of files, the overall
architecture can be viewed as consisting of just a few software modules:

• The MMSYSTEM library providing the Media Control Interface services and
low-level multimedia support functions.

• Multimedia device drivers providing communication between the low-level
MMSYSTEM functions and multimedia devices such as waveform, MIDI, and
timer hardware.

• Drivers for the Media Control Interface providing high-level control of media
devices.

1-4 Introduction to Multimedia Services

The following illustration shows the relationship between the Windows modules
that provide multimedia services.

KERNEL, GDI,
and USER

Modules

Windows
Device Drivers

cl
Joystick
Device

Multimedia Application

~ 0 • I •

Waveform MIDI Videodisc Compact Disc
Device Device Audio

The relationship between Windows and the Multimedia extensions.

This illustration is a simplified view of the relationship between the various
Windows modules. Connections between modules indicate control flow.

Windows Multimedia Design Philosophy
The architecture of the multimedia services is designed around the concepts
of extensibility and device-independence. Extensibility allows the software
architecture to easily accommodate advances in technology without changes to the
architecture itself. Device-independence allows multimedia applications to be

Windows Multimedia Design Philosophy 1-5

easily developed that will run on a wide range of hardware providing different
levels of multimedia support. Three design elements of the system software
provide extensibility and device-independence:

• A translation layer (MMSYSTEM) that isolates applications from device
drivers and centralizes device-independent code.

• Run-time linking that allows the translation layer to link to the drivers it needs.

• A well-defined and consistent driver interface that minimizes special-case code
and makes the installation and upgrade process easier.

In the following illustration, you can see how the translation layer translates a
multimedia function call into a call to an audio device driver:

Application
Level

Translation
Level

Device Driver
Level

Multimedia Application

Windows Multimedia
Function Call

--------------- ---------------

MMSYSTEM

Driver Call(s)

----------- ------------------

Waveform Waveform MIDI MIDI
Input Output Input Output
Driver Driver Driver Driver

Audio Device Driver

Relationship between an application and multimedia device drivers.

Some function calls might result in multiple driver calls, or they might be handled
by MMSYSTEM without causing any driver calls.

1-6 Introduction to Multimedia Services

Building a Multimedia Application

Including Header
Files

Linking with
Multimedia

Libraries

Before writing a multimedia application, you should be familiar with
programming in the Windows environment.

When using the multimedia services, you must include the MMSYSTEM.H
header file in all source modules that call a multimedia function. This header file
depends on declarations made in the WINDOWS.H header file, so you must first
include WINDOWS.H. The MMSYSTEM.H header file provides function
prototypes as well as definitions of multimedia data types and constants.

In addition to the normal Windows libraries, you must also link to the
MMSYSTEM.LIB import library when linking an application that uses
multimedia functions.

Debugging a Multimedia Application
The Microsoft Windows Software Development Kit (SDK) includes a debugging
version of the MMSYSTEM module to aid in debugging applications that use
multimedia services. This version of MMSYSTEM.LIB displays commands sent
to Mel and performs error checking unavailable in the retail version.

To control the Mel debugging output, add an Mel entry to the [mmsystem]
section of SYSTEM.INI. Assign the value 1 to this entry (Mel = 1) to enable
Mel debugging output. The debugging output returns to the Windows function
DebugOutput a string representation of each Mer command. To disable the Mer
debugging output, either remove the Mer entry from the [mmsystem] section of
SYSTEM.INr or assign the value 0 to the entry.

The services in the debug MMSYSTEM module supplement other Windows
debugging services and tools provided with the Windows Software Development
Kit. See the Microsoft Windows Programming Tools manual provided with the
SDK for information about using these debugging tools.

Chapter 2

The Media Control Interface (MCI)

The Media Control Interface (MCI) provides Windows applications with
device-independent capabilities for controlling media devices such as audio
hardware, videodisc players, and animation players. This chapter presents an
introduction to MCI and shows how to get started using it in Windows
applications.

The chapter covers the following topics:

• The architecture of MCI

• The MCI command set

• MCI programming interfaces

• Using the command-message interface

• An introduction to the command-string interface

This chapter focuses on the C-language interface to MCI (the command-message
interface). For more information on the English-language interface to MCI (the
command-string interface), see the Multimedia Programmer's Reference which
contains an alphabetical reference to MCI command strings and provides
additional overview information about using the command-string interface.

For specific details and programming examples on using MCI to control different
types of audio devices, see Chapter 4, "High-Level Audio Services."

2-2 The Media Control Interface (MCI)

An Overview of Mel
Mer provides a device-independent, extensible interface for controlling virtually
any type of media device. Because of the high level of device independence
provided by Mer, you are encouraged to use Mer rather than the low-level APr to
access the multimedia capabilities of Windows.

The Architecture of Mel
To provide extensibility, Mer is designed around an architecture using special
Mel device drivers to interpret and execute Mer commands. The following
illustration shows the relationship between Mer and Mer device drivers:

Multimedia Application

MMSYSTEM MMSYSTEM
Low-Level API Media Control Interface

~ i ~
Multimedia MCI Device Drivers

Device Drivers

~ ~
Multimedia Devices Multimedia Devices

(e.g., waveform audio) (e.g., CD audio)

The relationship between MCI and MCI device drivers.

Mer device drivers can control media hardware directly or through the low-level
multimedia APr provided by Windows. Most commonly used devices, such as
waveform audio and MIDr devices, are controlled through the low-level multimedia
API. Devices not supported by the low-level APr are controlled directly, usually
through a serial port.

An Overview of Mel 2-3

It's not necessary that you understand how MCl device drivers operate to use
MCl. If you want to write your own MCl device driver or just want additional
information about MCl drivers, see the Microsoft Windows Device Driver Kit.

Note CD-ROM and audio CD devices are controlled through commands sent to MSCD-EX, the CD
extensions for MS-DOS.

The MCI Pioneer Videodisk device driver is available from the Windows Driver Library (WDL).

The Mel Programming Interfaces
MCI provides two programming interfaces: the command-string interface and the
command-message interface.

The Command-String Interface
The command-string interface allows you to use English-language commands to
communicate with MCl devices. For example, the following command string
plays a WAVE file named "TIMPANl.W A V":

play timpani .wav

The command-string interface is 4esigned to be used with high-level programming
and authoring environments such as Microsoft Visual Basic and Asymetrix
ToolBook. Applications providing a text-based interface to let users control MCl
devices should use the command-string interface.

The Command-Message Interface
The command-message interface uses a message-passing paradigm to
communicate with MCl devices. For example, the following code fragment
performs the same operation as the previous command-string example:

mciSendCommand(wOeviceIO,
MCLPLAY,
0,
(OWDRO)(LPVDIO) &mciPlayParms);

f* devi ce IO */
/* command message */
/* flags */
/* parameter block */

The command-message interface is designed to be used by applications requiring a
C-language interface to control multimedia devices. Applications that directly
control multimedia devices should use the command-message interface.

2-4 The Media Control Interface (MCI)

The MCI Command Set
The MCl command set is designed to provide a generic core set of commands to
control different types of media devices. For example, MCl uses the same
command to begin playback of a waveform audio file, a videodisc track, and an
animation sequence. Some types of devices have unique capabilities, such as the
capability of an animation player to use a frame-based time format. For such
devices, MCl provides extended commands that are unique to a particular type of
device.

The commands in the command-string interface provide a good overview of the
MCl command set. Each of these commands is represented by a similar command
in the command-message interface. For example, the equivalent command
message for the close command is the MCCCLOSE message.

The following table is an overview of some of the commonly used commands:

Command

capability

close

info

open

pause

play

record

resume

seek

set

status

stop

Description

Requests information about the capabilities of a device.

Closes a device after it has been used.

Requests information about a device such as a description
of the hardware associated with the device.

Opens and initializes a device for use.

Pauses playing or recording on a device.

Begins playing on a device.

Begins recording on a device.

Resumes playing or recording on a paused device.

Changes the current position in the media.

Changes control settings on the device such as the time
format it is using.

Requests information about the status of a device such as
whether it is playing or paused.

Stops playing or recording on a device.

For a complete list of commands, see the Multimedia Programmer's Reference.
The MCl command messages are in the message overview and message reference
chapters-the MCl command strings are in a separate chapter.

An Overview of Mel 2-5

About Mel Devices
MCI device drivers can be classified as either simple devices or compound
devices. Simple devices do not require a data file for playback. Videodisc players
and CD audio players are examples of simple devices. Compound devices require
a data file for playback. MIDI sequencers and waveform audio players are
examples of compound devices. The data file associated with a compound device
is known as a device element. Examples of device elements are MIDI files and
WAVE files.

Standard Mel Device Types
A device type identifies a class of MCI devices that respond to a common set of
commands. The following table lists the currently defined device types:

Device Type

animation

cdaudio

dat

digitalvideo

other

overlay

scanner

sequencer

vcr

videodisc

waveaudio

Description

Animation device.

CD audio player.

Digital audio tape player.

Digital video in a window (not GDI based).

Undefined MCI device.

Overlay device (analog video in a window).

Image scanner.

MIDI sequencer.

Videotape recorder or player.

Videodisc player.

Audio device that plays digitized waveform files.

This chapter uses italic type for MCI device types.

2-6 The Media Control Interface (MCI)

Device Names
For any given device type, there might be several Mel drivers that share the
command set but operate on different data formats. For example, there are several
Mel drivers for animation devices that use the same command set but use
different file formats. To uniquely identify an Mel driver, Mel uses device names.

The [mcil Section Device names are identified in the [mci] section of the SYSTEM.INI file. This
of SYSTEM.JNI section identifies all Mel device drivers to Windows. The following is part of a

typical [mci] section:

[mci]
waveaudio=mciwave.drv
sequencer=mciseq.drv
MMMovie=mcimmp.drv
cdaudio=mcicda.drv

The keyname (left side of the equal sign) is the device name. The value
corresponding to the keyname (right side of the equal sign) identifies the filename
ofthe Mel driver. Frequently, the device name is the same as the device type for
the driver, as is the case for the waveaudio, sequencer, and cdaudio devices in the
preceding example. The "MMMovie" device is an animation device, but it uses a
unique device name.

If an Mel driver is installed using a device name that already exists in the [mci]
section, Windows appends an integer to the device name of the new driver,
creating a unique device name. In the preceding example, a driver installed using
the cdaudio device name would be assigned device name "cdaudiol". A
subsequent cdaudio device would be assigned device name "cdaudi02".

Opening Mel Devices
Before using an Mel device, you must initialize it by opening it. Opening a device
loads its driver into memory (if it isn't already loaded), and establishes a device ID
to identify the device in subsequent commands. (The device ID is not used in the
command-string interface.) There are several ways to specify which device you
want to open:

• With simple devices, you can open the device by specifying the device name.

• With compound devices, you can open the device by specifying the device
name, the device element, or both.

Using the Command-Message Interface 2-7

Opening a Simple For example, the following command string opens a CD audio device (a simple
Device device) by specifying the device name:

Opening a
Compound Device

open cdaudio

The next command string opens a waveform audio device (a compound device) by
specifying the device name and a device element:

open bells.wav type waveaudio

You can also open a compound device by specifying only the device element as
shown in the following example:

open bell s. way

If you specify only a device element when opening a compound device, MCI uses
the file extension of the device element filename to determine which device to
open. The WIN.lNI file contains an [mci extensions] section that associates file
extensions and corresponding MCI device types. The following is part of an
[mci extensions] section:

[mci extensions]
wav=waveaudio
mid=sequencer
rmi=sequencer

Using the Command-Message Interface
Applications needing a C-language interface to MCI should use the
command-message interface. This section provides background and detailed
information on using this interface to MCI.

About Command Messages
MCI command messages consist of the following three elements:

• A constant message value.

• A parameter block specifying additional parameters for the command.

• A set of flags specifying options for the command and validating fields in the
parameter block.

2-8 The Media Control Interface (MCI)

Commands are sent with the mciSendCommand function which has parameters
for the message, flags, and a pointer to the parameter block. See "Sending
Command Messages," later in this chapter, for more information about the
mciSendCommand function.

An Example of a Command Message
For an example of an MCI command message, consider the MCCPLA Y
command. The MMSYSTEM.H header file defines the MCLPLA Y command
message, the MCCPLA Y _PARMS parameter block, and related flags as follows:

#define MCI_PLAY 0x0806

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;

MCLPLAY_PARMS;

#define MCI_NOTIFY
#defi ne MCLWAIT
#define MCI_FROM
#defi ne MCL TO

0x00000001L
0x00000002L
0x00000004L
0x00000008L

The MCC WAIT and MCCNOTIFY flags are option flags. MCC WAIT tells the
driver to wait until the command is complete before returning control to the
application. MCCNOTIFY tells the driver to notify the application when the
command is complete. For more information on using these flags, see "Using the
Wait and Notify Flags," later in this chapter.

The MCCFROM and MCCTO flags validate the dwFrom and dwTo fields in the
MCCPLA Y _PARMS parameter block. These fields specify beginning and ending
positions for the play operation. Both of these flags are optional. If either flag is
specified, the driver takes the value from the corresponding field in the parameter
block as a beginning or ending position, otherwise the fields are ignored.

Note Data fields in a parameter block are ignored unless corresponding flags are specified to
validate the fields.

Using the Command-Message Interface 2-9

Items in Query Commands
Two commands that query devices for information, MCCGETDEVCAPS and
MCCST ATUS, extend the command-message paradigm by using item constants.
Item constants specify which item of information is being queried for.

These commands extend the command-message paradigm by adding a dwItem
field to the parameter block and defining item constants for the field. For example,
MMSYSTEM.H defines the MCCST ATUS_PARMS parameter block, flags, and
item constants as follows:

typedef struct {
DWORD dwCallback;
DWORD dwReturn;
DWORD dwItem;
DWORD dwTrack;

MCl_STATUS_PARMS;

1* item-constants for dwFlags parameter of MCl_STATUS command message *1
#define MCl_STATUS_lTEM 0x00000100L

1* flags for dwltem field of the MCl_STATUS_PARMS parameter block *1
#define MCl_STATUS_LENGTH 0x00000001L
#define MCl_STATUS_POSlTlON 0x00000002L
#define MCl_STATUS_NUMBER OF TRACKS 0x00000003L
#define MCl_STATUS_MODE 0x00000004L
#define MCl_STATUS_MEDlA_PRESENT 0x00000005L
#define MCl_STATUS_TlME_FORMAT 0x00000006L
#define MCl_STATUS_READY
#define MCl_STATUS_CURRENT_TRACK

0x00000007L
0x00000008L

The MCCSTATUS_ITEM flag must be specified to validate the dwItem field
which should contain one of the defined item constants to indicate exactly what
status information is being requested.

2-10 The Media Control Interface (MCI)

Summary of MCI Command Messages
MCI defines four classifications of commands. The commands and options
comprising the following two classifications are defined as the minimum
command set for any MCI driver:

• System commands are handled directly by MCI rather than by the driver.

• Required commands are handled by the driver. All drivers should support the
required commands and options.

Regardless ofthe specific driver you're using, you should be able to assume that
the commands and options in the two preceding groups are available.

The commands comprising the following two classifications are not supported by
all drivers:

• Basic commands, or optional commands, are used by some devices. If a device
supports a basic command, it must support a defined set of options for the
command.

• Extended commands are specific to a certain device types or drivers. Extended
commands include new commands (like the MCCPUT and MCC WHERE
commands for the animation device type) and extensions to existing commands
(like the MCCANIM_GETDEVCAPS_CAN_STRETCH option added to the
MCCSTATUS command for the animation device type).

If you need to use a basic or extended command or option, you should query the
device driver before trying to use the command or option (that is, unless you are
certain that the MCI driver you've used during development is the same one that
will be available on the delivery system). The following tables summarize the
specific commands in each category. For a complete description of each of these
commands, see the message directory in the Multimedia Programmer's Reference.

System Commands MCI directly processes the following system commands rather than passing them
to MCI device drivers:

Command

MCCBREAK

MCCSYSINFO

Description

Sets a break key for an MCI device.

Returns information about MCI devices.

Using the Command-Message Interface 2-11

Required Required commands must be supported by all MCI device drivers. The following
Commands table lists the required commands:

Command Description

MCCCLOSE Closes the device.

MCCGETDEVCAPS Obtains the capabilities of a device.

MCCINFO Obtains textual information from a device.

MCC OPEN Initializes the device.

MCCSTATUS Obtains status information from the device.

BaSic Commands The following table summarizes the basic commands. The use of these commands
by a device is optional.

Command

MCCLOAD

MCCPAUSE

MCCPLAY

MCCRECORD

MCCRESUME

MCCSAVE

MCCSEEK

MCCSET

MCCSTATUS

MCCSTOP

Description

Loads data from a file.

Stops playing.

Starts transmitting output data.

Starts recording data.

Resumes playing or recording on a paused device.

Saves data to a disk file.

Seeks forward or backward.

Sets the operating state of the device.

Obtains status information about the device. (Supplements
the required MCCSTATUS command with options for
devices using linear media with identifiable positions.)

Stops playing or recording.

Extended Some MCI devices have additional commands or add options to existing
Commands commands. While some extended commands only apply to a specific device

driver, most of them apply to all drivers of a particular device type. For example,
the sequencer command set extends the MCCSET command to add time formats
that are needed by MIDI sequencers.

2-12 The Media Control Interface (MCI)

Unless you are certain that the specific MCl driver you use during development will
be available on the delivery system, you should not assume that the device supports
the extended commands or options. You can use the MCC GETDEVCAPS command
to determine whether a specific feature is supported. Applications should be ready to
handle an MCIERR_UNSUPPORTED_FUNCTION return value.

The following extended commands are available with certain device types:

Command Device Types Description

MCCCUE waveaudio Prepares for playing or recording.

MCCDELETE waveaudio Deletes a data segment from the
media element.

MCCESCAPE videodisc Sends custom information to a device.

MCCFREEZE overlay Disables video acquisition to the
frame buffer.

MCCPUT animation Defines the source, destination, and
overlay frame windows.

MCCREALIZE animation Tells the device to select and realize
its palette into a display context of the
displayed window.

MCCSPlN videodisc Starts the disc spinning or stops the
disc from spinning.

MCCSTEP animation Steps the play one or more frames
videodisc forward or reverse.

MCCUNFREEZE overlay Enables the frame buffer to acquire
video data.

MCCUPDATE animation Repaints the current frame into the
display context.

MCCWHERE animation Obtains the rectangle specifying the
overlay source, destination, or frame area.

MCCWlNDOW animation Controls display window options such
overlay as caption text.

Using the Command-Message Interface 2-13

Sending Command Messages
Windows provides the following functions to send command messages to devices
and to query devices for error information:

mciSendCommand
Sends a command message to an Mel device.

mciGetErrorString
Returns the error string corresponding to an error number.

Use the mciSendCommandfunction to send command messages to Mel devices.
This function has the following syntax:

DWORDmciSendCommand(wDeviceID, wMessage, dwParaml, dwParam2)

The wDeviceID parameter is a UINT identifying the Mel device that is to receive
the message. Use the device ID returned when the device was opened for this
parameter.

The wMessage parameter is a UINT specifying the message. The MMSYSTEM.H
header fIle defmes Mel command messages.

The dwParaml parameter is a DWORD specifying flags for the command. These
flags indicate options for the command and validate fields in the parameter block.

The dwParam2 parameter is a DWORD specifying a pointer to the parameter
block for the command. If the parameter block is not used, this parameter can be
NULL.

The mciSendCommand function returns zero if successful. If the function fails,
the low-order word of the return value contains an error code. You can pass this
error code to mciGetErrorString to get a text description of it.

2-14 The Media Control Interface (MCI)

The MCI Device ID
MCI returns a device ID when you open a device using the MCCOPEN
command. Use this ID to identify the opened device when sending subsequent
commands.

MMSYSTEM.H defines a special constant, MCCALL_DEVICE_ID, to indicate
that a command be sent to all of the MCI devices that an application has opened.
You can use MCCALL_DEVICE_ID with any command that does not return
information. For example, the following code fragment closes all of the MCI
devices that are opened by an application:

UINT wDevicelD;
DWORD dwReturn;

1* Closes all MCI devices opened by this application.
* Waits until devices are closed before returning.
*1

if (dwReturn = mciSendCommand(MCI_ALL_DEVICE_ID, MCI_CLOSE, MCI_WAIT, NULL»
1* Error, unable to close all devices
*1

Note While using the MCLALL_DEVICUD identifier is a convenient way to broadcast a command
to all your devices, don't rely on it to synchronize devices; the timing between messages can vary.

Opening a Device
Before using a device, you must initialize it using the MCCOPEN command
message. The variations of this command make it one of the most complex of all
MCI commands.

The MCI_ OPEN_ PARMS Parameter Block
Like all MCI command messages, MCCOPEN has an associated parameter block.
The default parameter block for MCCOPEN is the MCCOPEN_P ARMS data
structure. Certain devices such as waveform, animation, and overlay devices have
extended parameter blocks to accommodate additional optional parameters. Unless
you need to use these additional parameters, you can use the MCC OPEN_P ARMS
parameter block with any MCI device.

Using the Command-Message Interface 2-15

The MCCOPEN_PARMS data structure has the following fields:

typedef struct {
OWORO dwCallback;
UINT wOeviceIO;
UINT wReserved0;
LPCSTR lpstrOeviceType;
LPCSTR lpstrElementName;
LPCSTR lpstrAlias;

MC L OPEN_ PARMS;

f*
1*
1*
1*
1*
1*

callback for MCI NOTIFY *1 -

device 10 returned to user *1
reserved *1
device type *1
device element *1
optional device alias *1

MCI uses the wDeviceID field of this structure to return the device ID to the
application. You should check the return value from mciSendCommand before
using the device ID to be sure that it is valid. A non-zero return value indicates
that an error occurred during the open process.

Note You can also determine the device 10 with mciGetDevicelD by specifying the device name.

Other fields used in opening a device correspond to the following flags for the
command:

Flag

MCCOPEN_ELEMENT

MCCOPEN_SHAREABLE

MCCOPEN_TYPE

Description

Specifies that the lpstr Alias field of the data
structure contains a pointer to a device alias.

Specifies that the IpstrElementName field of
the data structure contains a pointer to the
element name.

Specifies that the device or element was
opened as shareable.

Specifies that the IpstrDeviceType field of
the data structure contains a pointer to the
device-type identifier.

Specifies that the IpstrDeviceType field of
the data structure contains an integer
device-type identifier.

2-16 The Media Control Interface (MCI)

Opening Simple Devices
To open a simple device such as a CD audio or videodisc device, use the
IpstrDeviceType field in the MCC OPEN_PARMS parameter block to identify
which device to open. There are three ways to identify devices:

• Specify a pointer to a null-terminated string containing the device name

• Specify a device-type constant

• Specify the actual name of the device driver

Regardless of which method you use to identify the device, you must specify the
MCCOPEN_TYPE flag to validate the IpstrDeviceType field. For example, the
following code fragment opens a CD audio device by specifying the device name:

UINT wDevicelD;
DWORD dwReturn;
MC1_OPEN_PARMS mciOpenParms;

1* Open a compact disc device by specifying the device name
*1

mciOpenParms.lpstrDeviceType = "cdaudio";
if (dwReturn = mciSendCommand(NULL, MC1_OPEN, MC1_OPEN_TYPE,

(DWORD)(LPVOID) &mciOpenParms))
1* Error, unable to open device
*1

1* Device opened successfully, get the device 10
*1

wDevicelD = mciOpenParms.wDeviceID;

Using Device-Type You can also open devices by specifying a device-type constant. The following
CDnstants table gives the device-type constants for various devices. To be opened with a

device-type constant, device drivers must be installed in the [mci] section of
SYSTEM.INI using the device names given in this table.

Device Name

animation

cdaudio

dat

digitalvideo

Device-Type Constant

MCCDEVTYPE_ANIMATION

MCCDEVTYPE_CD_AUDIO

MCCDEVTYPE_DAT

MCCDEVTYPE_DIGITAL_ VIDEO

Device Name

other

overlay

scanner

sequencer

vcr

videodisc

waveaudio

Using the Command-Message Interface 2-17

Device-Type Constant

MCCDEVTYPE_OTHER

MCCDEVTYPE_OVERLAY

MCCDEVTYPE_SCANNER

MCCDEVTYPE_SEQUENCER

MCCDEVTYPE_ VIDEOTAPE

MCCDEVTYPE_ VIDEODISC

MCCDEVTYPE_ WAVEFORM_AUDIO

If you open a device by specifying a device-type constant, you must specify the
MCCOPEN_TYPE_ID flag in addition to the MCCOPEN_TYPE flag. For
example, the following code fragment opens a CD audio device by specifying a
device-type constant:

UINT wDeviceID;
DWORD dwReturn;
MCI_OPEN_PARMS mciOpenParms;

1* Open a compact disc device by specifying a device-type constant
*1

mciOpenParms.lpstrDeviceType = (LPCSTR) MCI_DEVTYPE_CD_AUDIO;
if (dwReturn = mciSendCommand(NULL, MCI_OPEN,

MCLOPEN_TYPE I MCLOPEN_TYPE_ID,
(DWORD)(LPVOID) &mciOpenParms))

1* Error, unable to open device
*1

1* Device opened successfully, get the device ID
*1

wDeviceID = mciOpenParms.wDeviceID;

When you open a device by specifying a device-type constant, MCI uses the
high-order word of the IpstrDeviceType field to distinguish between multiple
occurrences of the device type in the SYSTEM.INI file.

2-18 The Media Conlrollnlerface (MCI)

For example, if SYSTEM.INI lists entries for waveaudiol and waveaudio2, the
following statement sets the IpstrDeviceType field to specify the device identified
by waveaudio2:

lpstrDeviceType = MAKELONG(MCI.DEVTYPE.WAVEFORM.AUDIO, 2);

Likewise, to specify the device identified by waveaudiol, you would set the
high-order word oflpstrDeviceType to 0 or 1 (setting the high-order word to 0
tells MCI to use an unnumbered device or the lowest-numbered device).

Using Driver You can also open a device by specifying the filename of the device driver in the
Names IpstrDeviceType field of the MCCOPEN_PARMS parameter block. You don't

need to specify the complete path or the file extension-MCI assumes drivers are
located in the Windows system directory and have a file extension of "DRV". For
example, the following code fragment opens a device by specifying the filename
of the device driver:

Note Opening MCI devices by specifying the filename of the device driver may be useful during
development and testing. However, this technique is not recommended for applications since it makes
them device-dependent. Applications that open MCI devices by filename may not work in all systems.

Opening Compound Devices
There are three ways to open a compound device:

• Specify only the device (using the device name, a device-type constant, or the
filename of the device driver).

• Specify both the device and the device element.

• Specify only the device element.

The first method, specifying only the device, is useful for determining the
capabilities of a device with the MCCGETDEVCAPS command. To actually
control a media device, you must specify a device element when you open
the device.

Using the Command-Message Interface 2-19

To specify a device element, fill the IpstrElementName field of the
MCCOPEN_PARMS parameter block with a pointer to a null-terminated string
containing the filename of the device element. You must also validate the
IpstrElementName field by specifying the MCCOPEN_ELEMENT flag in the
dwFlags parameter ofmciSendCommand. To specify the device, you can use the
same methods used for simple devices: specify the device by device name by
device-type constant or by the filename of the driver. For example, the following
code fragment opens the waveform audio device with a W AVE file named
"TIMPANI.W A V":

UlNT wDevicelD;
DWORD dwReturn;
MCl_OPEN_PARMS mciOpenParms;

/* Open a waveform device by specifying the device name and device element
*/

mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = "timpani .wav";
if (dwReturn = mciSendCommand(NULL, MCl_OPEN,

MCLOPEN_ TYPE I MCLOPEN_ELEMENT,
(DWORD)(LPVOlD) &mciOpenParms))

/* Error, unable to open device
*/

/* Device opened successfully, get the device lD
*/

wDevicelD = mciOpenParms.wDevicelD;

You can also open a device by specifying just a device element-MCI uses the
filename extension ofthe given device element along with the [mci extensions]
section of WIN .IN I to select which device to open. See "Opening MCI Devices,"
earlier in this chapter, for more information about opening devices by specifying
only a device element.

2-20 The Media Control Interface (MCI)

Closing a Device
The MCCCLOSE command message releases access to a device or device
element. MCl frees a device when all tasks using a device have closed it. To help
MCl manage devices, applications should explicitly close each device or device
element when finished using them.

Note It is very important that applications close all opened MCI devices before exiting. You can close
all devices with a single command by specifying the MCI_ALL_DEVICUD constant as the device 10.

Using the Wait and Notify Flags
Normally, MCl returns control immediately to the application, even if it takes
several seconds to complete the action initiated by the command. For example,
after a CD audio device receives a seek command, control returns to the
application before the seek operation is complete. You can use the following two
flags to request that MCl wait until a command is complete before returning
control to the application or that MCl notify the application when the command is
complete:

Flag

MCCNOTIFY

MCCWAlT

Description

Directs the device to return control immediately and post
the MM_MClNOTIFY message when the requested action
is complete.

Directs the device to wait until the requested action is
complete before returning control to the application.

Using the Notify Flag
The MCCNOTIFY flag directs MCl to post the MM_MClNOTIFY message
when the device completes an action. The application specifies the handle to the
destination window for the message in the low-order word of the dwCallBack
field of the data structure sent with the command message. Every data structure
associated with a command message contains this field.

Note MCI can have only one pending notification message for each device.

Using the Command-Message Interface 2-21

When MCI posts the MM_MCINOTIFY message, it sets the low-order word of
IParam parameter of the window procedure to the ID of the device initiating the
callback. The w P aram parameter of the window procedure contains one of the
following constants specifying the notification status of the callback:

Flag Description

MCCNOTIFY _SUCCESSFUL Indicates the conditions required for
initiating the callback are satisfied and the
command completed without interruption.

MCCNOTIFY _SUPERSEDED Indicates MCI had a notification pending
and received another notify request. MCI
resets the callback conditions to correspond
to the notify request of the new command.

MCCNOTIFY _ABORTED Indicates the application sent a new
command that prevented the callback
conditions set by a previous command from
being satisfied. If an application interrupts a
command that requested notification, MCI
will not inform the window procedure of
the notify command being aborted.

MCCNOTIFY _FAILURE Indicates a device error occurred while a
device was executing the command. For
example, MCI posts this message when a
hardware error occurs during a play
command.

Using the Wait Flag and Break Command Message
Specifying the MCL WAIT flag with a command causes MCI to wait until the
command has completed before returning control to the application. Using the
wait flag with commands that take a long time to complete will essentially disable
a system from receiving any user input until the command is complete.

MCl supports a break key to interrupt the wait operation and return control to the
application. The break key does not interrupt the command, but by returning
control to the application, allows the application to monitor user input.

2-22 The Media Control Interface (MCI)

By default, MCI defines the break key as CTRL+BREAK. Applications can
redefine this key with the MCCBREAK command. MCCBREAK uses the
MCCBREAK_PARMS parameter block:

typedef struct {
DWDRD dwCallback;
int nVirtKey;
UINT wReserved0;
HWND hwndBreak;
UINT wReservedl;

} MCLBREAK_PARMS;

1* callback for MCI_NOTIFY *1
1* vi rtual key code *1
1* reserved *1
1* window handle *1
1* reserved *1

The following flags validate fields in the MCCBREAK_PARMS parameter block:

Flag

MCCBREAK_OFF

Description

Validates the n VirtKey field specifying the
virtual-key code to be used for the break key.

Validates the hwndBreak field specifying the
window that must have focus to enable break
detection.

Disables any existing break key.

Obtaining Mel System Information
The MCCSYSINFO message obtains system information about MCI devices.
MCI handles this message without relaying it to any MCI device. MCI returns
the system information in the MCCSYSINFO_PARMS data structure. The
MCCSYSINFO_PARMS data structure has the following fields:

typedef struct {
DWORD dwCallback; 1* callback for MCI_NOTIFY *1
LPSTR lpstrReturn; 1* pointer to buffer for return information *1
DWORD dwRetSize; 1* size of buffer *1
DWORD dwNumber; 1* index number *1
UINT wDeviceType; 1* device type *1
UINT wReserved0; 1* reserved *1

} MCLSYSINFO_ PARMS;

Using the Command-Message Interface 2-23

The MCCSYSINFO command message has the following flags.

Flag

MCCSYSINFO_QUANTITY

MCCSYSINFO_NAME

MCCSYSINFO_OPEN

Description

Specifies that MCI will return the number
of devices of a given type listed in the
[mci] section of SYSTEM.INI. When
used with the MCCSYSINFO_OPEN
flag, the number of open devices will be
returned.

Specifies that MCI will return the name of
a device that satisfies the query. When
used with the MCCSYSINFO_OPEN
flag, only the names of open devices will
be returned.

Specifies that MCI will return the number
or names of open devices.

MCCSYSINFO_INSTALLNAME Specifies that MCI will return the name
listed in the SYSTEM.INI file used to
install the device.

You use the MCCSYSINFO_QUANTITY flag to determine the number of
devices for a particular type listed in the [mci] section of the SYSTEM.INI file.
For this flag, set the wDeviceType field of the data structure to the device type.
When requesting the number of devices, set the wDeviceID parameter to NULL.
MCI returns the number of devices as a DWORD in the IpstrReturn field of the
data structure. If you combine the MCCSYSINFO_QUANTITY flag with the
MCCSYSINFO_OPEN flag, MCI returns the number of devices opened by the
task of that type.

Once you have the number of devices, you can enumerate the names of the
devices using the MCCSYSINFO_NAME flag. To get information using this
flag, you must create a buffer for the return name. In the data structure, specify a
pointer to the buffer, the size of the buffer, the index number corresponding to the
device (l is the first device), and the device type. This information is entered in the
IpstrReturn, dwRetSize, dwNumber, and wDeviceType fields. MCI returns the
device name in the buffer. When requesting a name of a particular device, set the
wDeviceID parameter to NULL. To restrict the names to open devices, use the
MCCSYSINFO_OPEN flag with MCCSYSINFO_NAME.

2-24 The Media Control Interface (MCI)

To obtain information on all devices in the system, you can assign
MCCALL_DEVICE_ID to the wDeviceID parameter. When you use this
identifier, MCI ignores the contents of the wDeviceType field and returns
information on all MCI devices listed in the SYSTEM.INI file. When you use
the MCCSYSINFO_OPEN flag with the MCCALL_DEVICE_ID identifier,
MCI returns information on the devices opened by the task.

You can obtain the installation name of an open device with the
MCCSYSINFO_INSTALLNAME flag. To get the installation name you must
create a buffer for the return name. In the data structure, specify a pointer to the
buffer and the size of the buffer in the IpstrReturn and dwRetSize fields. MCI
places the device that corresponds to the wDeviceID parameter name in the buffer.

About the Command-String Interface
This section presents an introduction to the MCI command-string interface. MCI
has the following functions to work with command strings:

mciSendString
Sends a command string to an MCI device driver. This function also has
parameters for callback functions and return strings.

mciGetErrorString
Returns the error string corresponding to an error number.

Sending Command Strings Using mciSendString
Use the mciSendString function to send command strings to a device. It has the
following syntax:

DWORD mciSendString(lpstrCommand, lpstrRtnString, wRtnLength, hCallback)

The far pointer lpstrCommand points to a null-terminated string containing the
MCI string command. The string command has the following form:

command device_name arguments

About the Command-String Interface 2-25

The second parameter, IpstrRtnString, points to an application-supplied buffer for
a return string. The third parameter, wRtnLength, specifies the size of this buffer.
If an MCI command returns a value or a string, MCI copies it into IpstrRtnString
as a null-terminated string (integers are converted to strings). Ifthe length ofthe
return string exceeds the size of the buffer, MCI returns an error. You can assign
NULL to IpstrRtnString if you don't want the return string, or for commands that
don't supply return information.

The last parameter, hCallback, is a handle to the window that receives the
MM_MCINOTIFY message. MCI ignores this parameter unless the command
contains the notify flag. This parameter must contain a valid window handle if the
notify flag is used.

The following statement passes the "play to 500" command string to a waveform
audio device driver:

dwErrorCode = mciSendString ("play waveaudio to 500", NULL, 0, 0Ll;

The mciSendString function returns zero if successful. If the function fails, it
returns an error code. If there is an error, you can get a description of it by passing
the error code to mciGetErrorString.

Additional Information about Command Strings

MGITEST Sample
Application

For more information on using the MCI command-string interface, see the MCI
command strings chapter in the Multimedia Programmer's Reference.

The MCITEST application contains examples of using mciSendString and
mciGetErrorString. You can use this application to experiment with MCI
devices and command strings.

Chapter 3

Introduction to Audio

Windows provides two levels of audio services. Before you can use either level,
you must understand what each level offers and how it fits into the audio
architecture.

This chapter covers the following topics:

• The different types and levels of audio services

• An overview of the audio architecture

• Audio file formats used by Windows

• Books and specifications providing additional information about audio

This chapter assumes you have a basic knowledge of digital audio and MIDI. For
more information on these subjects, see "Further Reading," at the end of this
chapter, for a list of related books and specifications.

About Audio Services
Windows provides several different types and levels of audio services. You should
become familiar with these types and levels so you can choose the services
appropriate for your application.

3-2 Introduction to Audio

Types of Audio Services
Different types of audio services require different fonnats for the audio
information and different technologies to reproduce audio. Windows offers the
following types of audio services:

• Waveform audio services provide playback and recording support for digital
audio hardware. Wavefonn audio is useful for reproducing non-musical audio
material such as sound effects and voice-over narration. Waveform audio has
moderate storage space and data transfer rate requirements-as low as 11K per
second of audio.

• MIDI audio services provide support for MIDI file and MIDI event playback
through internal or external synthesizers and MIDI event recording. MIDI
audio is useful with music-related applications such as music composition and
MIDI sequencer programs. Because it requires less storage space and a lower
data transfer rate than wavefonn audio, you might want to use MIDI audio
services to provide introductory and background music in your applications.

• Compact disc audio services provide support for playback of Red Book audio
information on compact discs with the CD-ROM drive on multimedia
computers. Compact disc audio offers the highest quality reproduction of
musical material, but has the highest storage space requirements-176K per
second of audio. You cannot read from the CD-ROM drive while playing
compact disc audio.

Note CD-ROM and audio CD devices are controlled through commands sent to MSCD-EX, the CD
extensions for MS-DOS.

About Audio Services 3-3

Levels of Audio Services

Choosing the
Appropriate

Services

The different levels of audio services let you choose services appropriate to
the requirements of your application and to your programming ability. Windows
offers two levels of audio services:

• High-level audio services allow you to play and record audio files with as little
as one function call. Compared to low-level audio services, high-level services
are easier to use and require less programming. High-level services also meet
the audio requirements of most applications.

• Low-level audio services allow you to communicate directly with audio device
drivers to manage playback and recording. Low-level audio services require
more programming than high-level services, but give you more control over
audio playback and recording.

The easiest way of playing and recording audio is to use high-level audio services.
If the high-level audio services don't meet the audio needs of your application,
you can use low-level audio services to write your own routines to manage audio
playback and recording.

3-4 Introduction to Audio

Windows Audio Architecture
Windows provides audio services through high-level audio functions, Media
Control Interface (MCI) device drivers, low-level audio functions, the MIDI
Mapper, and low-level audio device drivers. The following illustration shows the
relationship between an application and the elements of Windows that provide
audio support:

Application
Level

High-Level
Audio Services

Low-Level
Audio Services

Multimedia Application

-------- -------------- --------

High-Level Audio Functions
(mci, snd)

Mel Device Drivers

-------- - --- ---------- --------

Low-Level Audio Functions
(midi, wave)

The MIDI Mapper

Low-Level Audio Device Drivers

The relationship between an application and the Multimedia functions.

Windows Audio Architecture 3-5

High-Level Audio Functions
MCI functions, along with MCI device drivers, provide high-level audio support
for MIDI, waveform, and compact disc audio devices. MCI drivers can play
disk-resident (hard disk and CD-ROM) audio files in the background while an
application runs in the foreground. In addition to MCI, Windows provides
high-level audio support with two special-purpose functions that play waveform
sounds: MessageBeep and sndPlaySound. You can also use these functions to
play waveform sounds associated with system alerts and sounds identified by
entries in the WIN.INI file.

High-level audio functions should meet the audio requirements of most
applications. For information on using MCI and the MessageBeep and
sndPlaySound functions, see Chapter 4, "High-Level Audio Services."

Low-Level Audio Functions
Low-level audio functions provide a device-independent interface to audio
hardware in multimedia computers. These functions supply low-level audio
services by letting applications communicate directly with the audio device
drivers. MCI drivers and the MessageBeep and sndPlaySound functions use
these low-level functions to provide high-level audio services.

Low-level audio functions are provided for applications, such as audio tools
programs, that have special-purpose audio requirements. For example, a MIDI
sequencer application would use low-level audio functions to record and play
MIDI data. For information on using low-level audio services, see Chapter 5,
"Low-Level Audio Services."

The MIDI Mapper
The MIDI Mapper provides standard patch services for device-independent
playback of MIDI files. Standard patch services ensure different MIDI
snythesizers use the same instrument sounds to reproduce the music in a
MIDI file.

The MIDI Mapper translates and redirects messages sent to it by low-level MIDI
output functions. Because the high-level MIDI services use low-level MIDI output
functions, the MIDI Mapper can be used with high-level MIDI services, as well
as low-level MIDI services. For information on the architecture of the MIDI
Mapper and how to use the Mapper with high-level audio services, see Chapter 4,
"High-Level Audio Services." For information on using the Mapper with
low-level audio services, see Chapter 5, "Low-Level Audio Services."

3-6 Introduction to Audio

MIDI files must follow certain authoring guidelines to use the standard patch
services provided by the MIDI Mapper. For details on these authoring guidelines,
see Chapter 4, "High-Level Audio Services."

Audio File Formats
Windows supports a tagged file structure called the Resource Interchange File
Format (RIFF). There are two RIFF file formats currently defined for audio files:

RIFF File Format

RMID

WAVE

File Extension

.RMI

.WAV

Description

MIDI audio file

Waveform audio file

The WAVE file format supports a number of different digital audio data formats.
All multimedia computers support PCM (pulse code modulated) data formats of
8-bit mono at sample rates of 11.025 kHz and 22.05 kHz.

In addition to RMID files, the MCI MIDI sequencer plays standard MIDI files in
the format defined by the International MIDI Association in the "Standard MIDI
Files 1.0" specification. See "Further Reading," at the end of this chapter, for
information on how to obtain this specification. RMID files are standard MIDI
files with a RIFF header.

For more information on RIFF files and the RMID and WAVE file formats, see
the file formats chapter in the Multimedia Programmer's Reference.

Using RIFF Files
The multimedia file I/O services include functions for working with RIFF files.
For information on using these functions, see Chapter 7, "Multimedia File I/O
Services."

Further Reading 3-7

Further Reading
For more information on digital audio, digital-signal processing, and computer
music, see the following books:

Boom, Michael. Music Through MIDI. Redmond: Microsoft Press, 1987.

Chamberlin, Hal. Musical Applications of Microprocessors. Hasbrouk Heights:
Hayden Book Company, Inc., 1985.

Pohlmann, Ken. Principles of Digital Audio. Indianapolis: Howard W. Sams &
Co., 1985.

Roads, Curtis, and John Strawn. Foundations of Computer Music. Cambridge:
The MIT Press, 1985.

Strawn, John F. Digital Audio Engineering, An Anthology. Los Altos: William
Kaufmann, Inc., 1985.

Strawn, John F. Digital Audio Signal Processing, An Anthology. Los Altos:
William Kaufmann, Inc., 1985.

For information on MIDI and standard MIDI files, see the following MIDI
specifications:

MIDI 1.0 Detailed Specification

Standard MIDI Files 1.0

The specifications listed above are available from the International MIDI
Association at the following address:

International MIDI Association
5316 West 57th Street
Los Angeles, CA 90056

Chapter 4

High-Level Audio Services

This chapter explains how to use the high-level audio services of Windows to add
sound to applications. For an overview of the audio services, see Chapter 3,
"Introduction to Audio."

This chapter covers the following topics:

• Playing waveform sounds

• Using the Media Control Interface (MCl) to play and record audio

• Using the MIDI Mapper for device-independent MIDI file playback

• Authoring MIDI files

This chapter assumes you have a basic knowledge of digital audio and MIDI. If
you need additional information on these subjects, see "Further Reading," at the
end of Chapter 3, "Introduction to Audio."

Function Prefixes
High-level audio function names begin with the following prefixes:

Prefix

snd

mci

Description

System alert sound functions

Media Control Interface functions

4-2 High-level Audio Services

Playing Waveform Sounds
One basic use of sound is associating a sound with a user action or with a warning
or alert message. These sounds tend to be short in duration and are often played
repeatedly. Windows provides two functions to play waveform sounds:

MessageBeep
Plays the sound that corresponds to a given system-alert level.

sndPlaySound
Plays the sound that corresponds to the given filename or WIN.INI entry.

These functions provide the following methods of playing waveform sounds:

• Playing WAVE files stored on a hard disk or CD-ROM

• Playing in-memory WAVE resources

• Playing WAVE files specified by entries in the WIN .INI file

• Playing WAVE files associated with system-alert levels

Restrictions in Playing Waveform Sounds
There are some restrictions to using sndPlaySound and MessageBeep to play
waveform sounds:

• The entire sound must fit in available physical memory.

• The sound must be in a data format playable by one of the installed waveform
audio device drivers.

Use sndPlaySound and MessageBeep to play WAVE files that are relatively
small in size-up to about lOOK. For larger sound files, use the Media Control
Interface (MCl) services. For information on using MCI, see "Playing and
Recording Audio Using MCI," later in this chapter.

Playing Waveform Sounds 4-3

Using the sndPlaySound Function
The sndPlaySound function has the following syntax:

BOOL sndPlaySound(lpszSoundName, wFlags)

The parameter lpszSoundName is an LPCSTR and points to a null-terminated
string containing the name of the sound to be played. This name can be a keyname
in the [sounds] section of the WIN .INI file or it can be the filename of a W AVE
file. Optionally, lpszSoundName can be a far pointer to an in-memory image of a
W AVE file, which can be Clipboard data in CF _ W AVE format or a resource that
has been loaded into memory. See "Playing WAVE Resources," later in this
section, for details on using in-memory WAVE file images.

The wFlags parameter specifies optional flags that affect how the sound is
played. If the SND_SYNC flag is specified, the sound is played synchronously­
sndPlaySound doesn't return until playback is complete. If the SND _ASYNC
flag is specified, the sound is played asynchronously-sndPlaySound returns as
soon as the sound begins playing. If neither of these flags is specified, the sound
is played synchronously.

Playing WAVE Files
As an example, the following statement plays the C:\SOUNDS\BELLS.WAV file:

sndPlaySoundC"C:\\SOUNDS\\BELLS.WAV", SND_SYNC);

If the specified file does not exist, or will not fit into the available physical
memory, sndPlaySound plays the default system sound specified by the
SystemDefault entry in the [sounds] section ofthe WIN.INI file. If there is no
SystemDefault entry, sndPlaySound fails without producing any sound. If you
don't want the default system sound to play, specify the SND_NODEFAULT
flag, as shown in the following example:

sndPlaySoundC"C:\\SOUNDS\\BELLS.WAV", SND_SYNC I SND_NODEFAULT);

4-4 High-Level Audio Services

looping Sounds
If you specify the SND_LOOP and SND_ASYNC flags for the wFlags parameter,
the sound will continue to play repeatedly; for example:

sndPlaySound("C:\\SOUNDS\\BEllS.WAV", SND_lOOP I SND_ASYNC);

If you want to loop a sound, you must play it asynchronously. You cannot use
the SND_SYNC flag with the SND_LOOP flag. A looped sound will continue
to play until sndPlaySound is called to play another sound. To stop playing a
sound (looped or asynchronous) without playing another sound, use the
following statement:

sndPlaySound(NUll, 0);

Playing WAVE Resources
You can also build WAVE files into an application as resources and use
sndPlaySound to play these sounds by specifying the SND_MEMORY flag.
The SND_MEMORY flag indicates the IpszSoundName parameter is a pointer to
an in-memory image of the WAVE file. To include a WAVE file as a resource in
an application, add the following entry to the application's resource script
(.RC) file:

soundName WAVE c:\sounds\bells.wav

The name "soundName" is a placeholder for a name that you create to refer to this
WAVE resource. WAVE resources are loaded and accessed just like other user­
defined Windows resources. The function in the following example plays a
specified WAVE resource.

/* Plays a specified WAVE resource */
BOOl PlayResource(LPSTR lpName)
{

HANDLE hReslnfo, hRes;
lPSTR 1 pRes;
BOOl bRtn;

/* Find the WAVE resource */
hReslnfo = FindResource(hlnst, 1 pName, "WAVE");
if (!hReslnfo) return FALSE;

/* Load the WAVE resource */
hRes = LoadResource(hlnst, hReslnfo);
if (!hRes) return FALSE;

/* Lock the WAVE resource and play it */
lpRes = LockResource(hRes);
if (1 pRes) {

Playing Waveform Sounds 4-5

bRtn = sndPlaySound(lpRes, SND_MEMORY SND_SYNC I SND_NODEFAULT);
UnlockResource(hRes);

}

else
bRtn = 0;

/* Free the WAVE resource and return success or failure */
FreeResource(hRes);
return bRtn;

To play a WAVE resource using this function, pass the function a far pointer to a
string containing the name of the resource, as shown in the following example:

PlayResource("soundName");

Playing Sounds Specified in WIN.INI
The sndPlaySound function will also play waveform sounds referred to by a key­
name in the [sounds] section of WIN .IN I. This allows users to assign their own
sounds to system alerts and warnings, or to user actions, such as a mouse button
click. For example, the [sounds] section of WIN.INI might look like this:

[sounds]
SystemDefault=C:\SOUNDS\BUMMER.WAV, Says BUMMER
SystemAsterisk=C:\SOUNDS\WHALES.WAV, Whale sounds
SystemExclamation=C:\SOUNDS\LASER.WAV, Laser gun sounds
SystemHand=C:\SOUNDS\OHOH.WAV, Says OH-OH
SystemQuestion=C:\SOUNDS\JIBERISH.WAV, Person mumbling
SystemStart=C:\SOUNDS\CHORD.WAV, Plays a chord
MouseClick=C:\SOUNDS\CLICK.WAV, Recording of a clicking sound

To playa sound identified by a WIN.INI entry, call sndPlaySound with the
lpszSoundName parameter pointing to a string containing the name of the entry
that identifies the sound. For example, to play the sound associated with the
"MouseClick" entry in the [sounds] section of WIN.INI, and wait for the sound to
complete before returning, use the following statement:

sndPlaySound("MouseClick", SND_SYNC);

4-6 High-Level Audio Services

If the specified WIN.INI entry or the waveform file it identifies does not exist, or
if the sound will not fit into the available physical memory, sndPlaySound plays
the default system sound specified by the SystemDefault entry. If there is no
SystemDefault entry, sndPlaySound fails without producing any sound. If you
don't want the default system sound to play, specify the SND_NODEFAULT flag
when you call sndPlaySound, as in the following example:

sndPlaySound("MouseClick", SND_SYNC I SND_NODEFAULT);

Note The sndPlaySound function always searches the [sounds] section of WIN.INI for a keyname
matching IpszSoundName before attempting to load a file with this name.

The [sounds] section of WIN.INI includes an optional string following the waveform filename for de­
scriptive text about the sound in the file. This descriptive text is displayed in the Sound Option from the
Control Panel.

Playing System Alert Sounds
If you are familiar with programming for the Windows environment, you should
recognize the MessageBeep function. Windows 3.1 replaces the Windows 3.0
MessageBeep function with a function that uses the waveform audio hardware to
produce a variety of user-selectable sounds. The new MessageBeep function has
the following syntax:

void MessageBeep(wAlert)

The syntax of MessageBeep remains the same, except its previously unused
parameter is now used. The wAlert parameter is a UINT and specifies the
alert level. Valid flags for wAlert are the same as those passed to MessageBox:
MB_ICONASTERISK, MB_ICONEXCLAMA TION, MB_ICONHAND, and
MB_ICONQUESTION.

Playing Waveform Sounds 4-7

When you call the MessageBeep function, it searches the [sounds] section of the
WIN.lNI file for the WAVE file that corresponds to the specified alert level. The
following table identifies the WIN.lNI entries for system-alert sounds:

WIN.INI Entry Description

SystemDefault Identifies the sound produced when MessageBeep is
called with wAlert set to an invalid alert level or when
the requested alert sound can't be found. This is called
the default system sound.

SystemAsterisk Identifies the sound produced when MessageBeep is
called with wAlert set to MB_ICONASTERISK.

SystemExclamation Identifies the sound produced when MessageBeep is
called with wAlert set to MB_ICONEXCLAMATION.

SystemHand Identifies the sound produced when MessageBeep is
called with wAlert set to MB_ICONHAND.

SystemQuestion Identifies the sound produced when MessageBeep is
called with wAlert set to MB_ICONQUESTION.

If MessageBeep is called with wAlert set to zero, it plays the default system
sound. If wAlert is set to -1, it uses the computer speaker to produce a standard
beep sound. If MessageBeep can't play the requested sound, it plays the default
system sound. If it can't play the default system sound, then it produces a beep
sound using the computer speaker.

The Sound option of the Control Panel allows users to set these WIN.lNI entries to
customize their environment for system-alert sounds. It also allows users to
disable these alert sounds.

4-8 High-Level Audio Services

Playing and Recording Audio Using Mel
The Media Control Interface (MCI) provides a high-level interface for controlling
both internal and external media devices. MCI provides support for playing wave­
form, MIDI, and compact disc audio and for recording waveform audio. MCI is
the easiest way for multimedia applications to play and record audio.

MCI uses device drivers to interpret and execute high-level MCI commands.
MCI device drivers can stream digital audio and MIDI data directly from a storage
device to the appropriate device driver, allowing applications to play files too large
to fit in available physical memory. This data streaming takes place in the back­
ground while an application is running. The application is responsible only for
setting up MCI and telling it to start playing or recording.

Before reading this section, you should become acquainted with MCI by reading
Chapter 2, "The Media Control Interface (MCI)." MCI provides two types of
interfaces: a command-message interface and a command-string interface. This
section explains how to use the command-message interface for waveform, MIDI,
and compact disc audio devices. See the MCI chapter for information about the
command-string interface.

Mel Audio Data Types
The MMSYSTEM.H header file defines data types and function prototypes for
MCl. You must include this header file in any source module that uses MCI
functions.

The following list contains data types for parameter blocks used with extended
MCI commands related to audio. For a complete list of all MCI data types, see the
chapter on data types in the Multimedia Programmer's Reference.

MCLSEQ_SET_PARMS
A data structure for specifying a parameter block for the MCCSET command
for MIDI sequencer devices.

MCL WAVE_OPEN_PARMS
A data structure for specifying a parameter block for the MCCOPEN
command for waveform audio devices.

MCLWAVE_SET_PARMS
A data structure for specifying a parameter block for the MCCSET command
for waveform audio devices.

Playing and Recording Audio Using Mel 4-9

MCI Audio Commands
MCI provides a standard set of commands applying to all types of media devices.
Some of these commands can be extended to accommodate unique features of a
particular type of device. For a complete reference to MCI command messages,
see the message-directory chapter in the Multimedia Programmer's Reference.

The following table lists common audio playback and recording tasks along with
the corresponding MCI command message to perform each task:

Audio Task

Open and close audio devices

Open an audio device

Close an audio device

Control playback and recording

Play all or part of audio selection, resume
playback from pause

Stop playback

Pause playback

Change current location

Cue a device so playback or recording begins
with minimum delay

Begin recording on a waveform audio device

Save a recorded waveform audio file

Query and set audio devices

MCICommand

MCCOPEN

MCCCLOSE

MCCPLAY

MCCSTOP

MCCPAUSE

MCCSEEK

MCCCUE

MCCRECORD

MCCSAVE

Query device information such as the product MCCINFO
name and the name of the device element
currently associated with the device (returns
information in string format)

Query device capabilities such as the device MCCGETDEVCAPS
name, number of inputs and outputs (if the
device can record)

4-10 High-Level Audio Services

Audio Task MCICommand

Query and set audio devices (continued)

Query device status such as current playback MCCSTATUS
position, media length, media format, time
format, record level, CD audio track, MIDI
sequencer tempo

Set device parameters such as time format, MCCSET
waveform data format, MIDI sequencer tempo

Opening Mel Audio Devices
MCI requires audio devices be opened before they can be accessed. Use the
MCCOPEN command along with the MCCOPEN_PARMS parameter block to
open an audio device and obtain an MCI device ID. Subsequent commands use
this device ID to identify the device to receive the command. MMSYSTEM.H
defines the MCCOPEN_PARMS parameter block as follows:

typedef struct {
OWORO dwCallback;
U1NT
UINT

wOeviceIO;
wReserved0;

LPCSTR lpstrOeviceType;
LPCSTR lpstrElementName;
LPCSTR lpstrAlias;

} MC1_OPEN_PARMS;

1* callback for MCI_NOTIFY flag *1
1* device 10 returned to user *1
1* reserved *1
1* device name *1
1* device element *1
1* optional device alias (reserved) *1

The MCI device ID is returned in the wDeviceID field. You should always check
the return value of mciSendCommand after sending an MCCOPEN command
before using this device ID. A non-zero return value indicates that there was an
error in opening the device and the returned device ID will not be valid.

Extended
Parameter Block

for Waveform
Devices

Playing and Recording Audio Using Mel 4-11

For waveform audio devices, you can use an extended parameter block,
MCC W A VE_OPEN_PARMS. This structure has a dwBufferSeconds field to
specify the number of seconds of buffering used by the MCI waveform device
driver. If you use this field, you must specify the MCC WAVE_OPEN_BUFFER
flag for the dwParaml parameter of mciSendCommand to validate the field.
MMSYSTEM.H defines the MCC W A VE_ OPEN_P ARMS parameter block
as follows:

typedef struct
OWORO dwCallback;
UINT wOeviceIO;
UINT wReserved0;
LPCSTR lpstrOeviceType;
LPCSTR lpstrElementName;
LPCSTR lpstrAlias;
OWORO dwBufferSeconds;

MCI_WAVE_OPEN_PARMS;

1*
1*
1*
1*
1*
1*
1*

callback for MCI_NOTIFY flag *1
device IO returned to user *1
reserved *1
device name *1
device element *1
optional device alias (reserved) *1
buffer size in seconds *1

Unless you want to specify the number of seconds of buffering for the driver to
use, you can use the MCC W A VE_ OPEN_P ARMS parameter block when you
open waveform audio devices.

Specifying Device When you open a simple device, such as a compact disc audio device, you must
Names specify the device name in the IpstrDeviceType field. When you open a

compound device, such as a waveform or MIDI sequencer device, the device
name is optional.

Use the IpstrDeviceTypefield of the MCCOPEN_PARMS structure to specify
the device name. MCI lets you use a string or a constant for this field. The
following table shows the strings and constants for MCI audio devices:

Device String

Compact disc "cdaudio"

Waveform "waveaudio"

MIDI sequencer "sequencer"

Constant

MCCDEVTYPE_CD _AUDIO

MCCDEVTYPE_ WAVEFORM_AUDIO

MCCDEVTYPE_SEQUENCER

Using a string is the default convention for specifying device names. If you use a
constant to specify the device name, you must specify the MCC OPEN_ TYPE_ID
flag in addition to the MCCOPEN_TYPE flag.

4-12 High-level Audio Services

Example of
Opening a MIDI

Sequencer Audio
Oevice

Opening Waveform and MIDI Sequencer Devices
Waveform and MIDI sequencer devices are compound devices. Compound
devices require an associated device element-a WAVE or MIDI file. There are
three ways to open compound devices:

• Specify only the device name.

• Specify only the device element and let MCI select the device from the file
extension of the device element.

• Specify both the device name and the device element.

Use the first approach, specifying only the device name, when opening a device to
query its capabilities with the MCCGETDEVCAPS command and when you plan
to use the device to play more than one device element.

If you don't specify a device name when you open a compound device, MCI will
choose an appropriate device type by looking at the file extension of the device
element and at entries in the [mci extensions] section of WIN .IN I. The following
code fragment uses this technique to open a MIDI sequencer device to playa
MIDI file named CHOPIN.RMI:

U1NT wOevice10;
MC1_OPEN_PARMS mciOpenParms;

1* Open the device by specifying only the device element
*1

mciOpenParms.lpstrElementName = "CHOPIN.RM1";
if (mciSendCommand(0,

else

MCLOPEN,
MCLOPEN_ELEMENT,
(OWORD)(LPV010) &mciOpenParms))

1* Error, unable to open device
*1

1* Device opened successfully, get the device 10
*1

wDevice10 = mciOpenParms.wOeviceID;

II device 10
II command
II flags
II parameter block

Example of
Opening a

Waveform Audio
Device

Playing and Recording Audio Using Mel 4-13

Instead of letting MCI choose the device, you can specify the device name when
you open the device. The following code fragment uses this technique to open a
waveform audio device to play the C:\SOUNDS\BELLS.W A V file. This example
uses a string to specify the device name. For an example using a constant to
specify the device name, see "Opening Compact Disc Devices," later in this
chapter.

UINT wDevicelD;
MCl_OPEN_PARMS mciOpenParms;

1* Open the device by specifying both the device element and the device name
*1

mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = "C:\\SOUNDS\\BELLS.WAV";
if (mciSendCommand(0,

else

MCLOPEN,
MCl_OPEN_ELEMENT I MCl_OPEN_ TYPE,
(DWORD)(LPVOlD) &mciOpenParms))

1* Error, unable to open device
*1

1* Device opened successfully, get the device lD
*1

wDevicelD = mCiOpenParms.wDevicelD;

Using the MIDI Mapper with the Mel Sequencer

II device ID
II command
I! fl ags
II parameter block

The MIDI Mapper is the default output device for the MCI MIDI sequencer. It
provides standard patch services for device-independent playback of MIDI files.
Applications that use the MCI sequencer to play MIDI files should use the MIDI
Mapper. For details on the MIDI Mapper, see "The MIDI Mapper," later in this
chapter. For information on authoring device-independent MIDI files, see
"Authoring MIDI Files," also later in this chapter.

When you open the MCI MIDI sequencer, MCI attempts to select the MIDI
Mapper as the output device. If the Mapper is unavailable because it's already in
use, MCI selects another MIDI output device.

Note The MIDI Mapper currently supports only one client at a time. This might change in future
versions of Windows.

4-14 High-Level Audio Services

Example of
Verifying the

Output Device

Example Selecting
MIDI Mapper as

the Output Device

After opening the sequencer, you should check to see if the MIDI Mapper was
available and selected as the output device. The following code fragment uses the
MCCSTATUS command to verify that the MIDI Mapper is the output device for
the MCI sequencer:

UINT wDeviceID;
DWORD dwReturn;
MCI_STATUS_PARMS mciStatusParms;

1* Make sure the opened device is the MIDI Mapper
*1

mciStatusParms.dwltem = MCI_SEQ_STATUS_PORT;
if (dwReturn = mciSendCommand(wDeviceID, MCI_STATUS, MCI_STATUS_ITEM,

(DWORD)(LPVOID) &mciStatusParms»
{

1* Error sending MCI STATUS command *1

return;
}

if (LOWORD(mciStatusParms.dwReturn) == MIDI_MAPPER)
1* The MIDI Mapper is the output device *1

else
1* The MIDI Mapper is not the output device *1

MCI also provides a command to explicitly select the MIDI Mapper as the output
device for the sequencer. The following code fragment uses the MCCSET
command to select the MIDI Mapper as the output device for the MCI sequencer:

UINT wDeviceID;
DWORD dwReturn;
MCI_SEQ_SET_PARMS mciSeqSetParms;

1* Set the MIDI Mapper as the output port for the open device
*1

mciSeqSetParms.dwPort = MIDI_MAPPER;
if (dwReturn = mciSendCommand(wDeviceID, MCI_SET, MCI_SEQ_SET_PORT,

(DWORD)(LPVOID) &mciSeqSetParms»
{

1* Error, unable to set Mapper as output port *1

}

Playing and Recording Audio Using Mel 4-15

Before querying the sequencer or setting an output port, you must successfully
open the sequencer. Both ofthe previous examples assume that the wDeviceID
parameter contains a valid device 10 for the sequencer.

Opening Compact Disc Devices
Because a compact disc audio device is a simple device, you need only specify
the device name when opening it by using either a string or a constant 10. The
following code fragment opens a compact disc device using a constant 10 to
specify the device name:

U1NT wDevice1D;
MC1_OPEN_PARMS mciOpenParms;

1* Open the device by specifying a device 10 constant
*1

mciOpenParms.lpstrDeviceType = (LPCSTR) MC1_DEVTYPE_CD_AUD10;
if (mciSendCommand(0. II device 10

else

MCLOPEN.
MCLOPEN_ TYPE I MCLOPEN_ TYPE_1D.
(DWORD)(LPV01D) &mciOpenParms»

1* Error. unable to open device
*1

1* Device opened successfully. get the device 10
*1

wDevice1D = mciOpenParms.wDevice1D;

Handling Mel Errors

II command
II flags
II parameter block

You should always check the return value of the mciSendCommand function. If
it indicates an error, you can use mciGetErrorString to get a textual description
of the error. You can also interpret the error code yourself-MMSYSTEM.H
defines constants for Mel error return codes.

Note To interpret an mciSendCommand error return value yourself, mask the high-order word-the
low-order word contains the error code. However, if you pass the error return to mCiGetErrorString,
you must pass the entire DWORD value.

4-16 High-Level Audio Services

The following function takes the MCI error code specified by dwError, passes it to
mciGetErrorString, and displays the resulting textual error description using
MessageBox.

1* Uses mciGetErrorString to get a textual description of an MCl error.
* Displays the error description using Message8ox.
*1

void showError(DWORD dwError)
{

char szErrorBuf[MAXERRORLENGTH];

MessageBeep(MB_lCONEXCLAMATlON);
if(mciGetErrorString(dwError, (LPSTR) szErrorBuf, MAXERRORLENGTH»

MessageBox(hMainWnd, szErrorBuf, "MCI Error", MB_ICONEXCLAMATION);
else

MessageBox(hMainWnd, "Unknown Error", "MCI Error",
MB_ICONEXCLAMATlON);

Starting Playback
Once you successfully open an MCI audio device, you can use the MCCPLA Y
command along with the MCCPLA Y _P ARMS parameter block to begin
playback. MMSYSTEM.H defines the MCCPLA Y _PARMS parameter block
as follows:

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;

MCLPLALPARMS;

1* callback for MCI_NOTIFY flag *1
1* playback begin position *1
1* playback end position *1

Playback begins at the current position in the device element. When a device
element is opened, the current position is set to the beginning of the media. After a
device element is played, the current position is at the end of the media. You can
use the MCCSEEK command to change the current position, as explained in
"Changing the Current Position," later in this chapter.

You can also set beginning and ending positions for playback by specifying the
MCCFROM and MCC TO flags with the MCCPLA Y command. If you specify
one of these flags, you must fill in the corresponding dwFrom or dwTo field in
the MCCPLA Y _PARMS structure with the desired beginning or ending time. If
you are using a time format other than the default time format (milliseconds), you
must set the time format before specifying a beginning or ending time with
MCCPLAY.

Playing and Recording Audio Using Mel 4·17

Example of Playing a WAVE File
The following function opens a waveform device and plays the WAVE file
specified by the lpszWAVEFileName parameter:

1* Plays a given WAVE file using MCl_OPEN, MCl_PLAY. Returns when playback
* begins. Returns 0L on success, otherwise returns an MCl error code.
*1

DWORD playWAVEFile(HWND hWndNotify, LPSTR lpszWAVEFileName)
{

}

UlNT wDevicelD;
DWORD dwReturn;
MCl_OPEN_PARMS mciOpenParms;
MCI_PLAY_PARMS mciPlayParms;

1* Open the device by specifying the device name and device element.
* MCI will choose a device capable of playing the given file.
*1

mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = lpszWAVEFileName;
if (dwReturn = mciSendCommand(0, MCI_OPEN,

}

MCI_OPEN_TYPE I MCl_OPEN_ELEMENT,
(DWORD)(LPVOlD) &mciOpenParms))

1* Failed to open device; don't close it, just return error
*1

return (dwReturn);

1* Device opened successfully, get the device 10
*1

wDevicelD = mciOpenParms.wDeviceID;

1* Begin playback. The window procedure function for the parent window
* will be notified with an MM_MClNOTlFY message when playback is
* complete. At this time, the window procedure closes the device.
*1

mciPlayParms.dwCallback = (DWORD) hWndNotify;
if (dwReturn = mciSendCommand(wDevicelD, MCl_PLAY, MCI_NOTIFY,

(DWORD)(LPVOID) &mciPlayParms))
{

}

mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
return (dwReturn);

return (0L);

4-18 High-Level Audio Services

Example of Playing a MIDI File
The following function opens a MIDI sequencer device, verifies that the MIDI
Mapper was selected as the output port, plays the MIDI file specified by the
IpszMIDIFileName parameter, and closes the device after playback is complete:

1* Plays a given MIDI file using MCI_OPEN, MCI_PLAY. Returns as soon as
* playback begins. The window procedure function for the given window
* will be notified when playback is complete. Returns 0L on success;
* otherwise, it returns an MCl error code.
*1

DWORD playMlDlFile(HWND hWndNotify, LPSTR lpszMIDIFileName)
{

UINT wDeviceID;
DWORD dwReturn;
MCI_OPEN_PARMS mciOpenParms;
MCI_PLAY_PARMS mciPlayParms;
MCI_STATUS_PARMS mciStatusParms;
MCI_SEQ_SET_PARMS mciSeqSetParms;

1* Open the device by specifying the device name and device element.
* MCI will attempt to choose the MIDI Mapper as the output port.
*1

mciOpenParms.lpstrDeviceType = "sequencer";
mciOpenParms.lpstrElementName = lpszMIDIFileName;
if (dwReturn = mciSendCommand(NULL, MCI_OPEN,

{

}

MCI_OPEN_TYPE I MCI_OPEN_ELEMENT,
(DWORD)(LPVOID) &mciOpenParms))

1* Failed to open device; don't close it, just return error.
*1

return (dwReturn);

1* Device opened successfully, get the device ID.
*1

wDevicelD = mciOpenParms.wDeviceID;

1* See if the output port is the MIDI Mapper.
*1

mciStatusParms.dwltem = MCI_SEQ_STATUS_PORT;
if (dwReturn = mciSendCommand(wDeviceID, MCI_STATUS, MCI_STATUS_ITEM,

(DWORD)(LPVOID) &mciStatusParms))
{

}

mciSendCommand(wDevicelD, MCl_CLOSE, 0, NULL);
return (dwReturn);

Playing and Recording Audio Using Mel 4-19

1* The output port is not the MIDI Mapper,
* ask if user wants to continue.
*1

if (LOWORD(mciStatusParms.dwReturn) != MIDI_MAPPER)
{

}

if (MessageBox(hMainWnd,
"The MIDI Mapper is not available. Continue?",

.... , MB_YESNO) == IDNO)

1* User does not want to continue. Not an error,
* just close the device and return.
*1

mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
return (0L);

1* Begin playback. The window procedure function for the parent window
* will be notified with an MM_MCINOTIFY message when playback is
* complete. At this time, the window procedure closes the device.
*1

mciPlayParms.dwCallback = (DWORD) hWndNotify;
if (dwReturn = mciSendCommand(wDeviceID, MCI_PLAY, MCI_NOTIFY,

(DWORD)(LPVOID) &mciPlayParms»)

}

mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
return (dwReturn);

return (0L);

4-20 High-level Audio Services

Example of Playing a Compact Disc Track
The following function opens a compact disc device, plays the track specified by
the wTrack parameter, and closes the device after playback is complete:

1* Plays a given compact disc track using MC1_OPEN, MC1_PLAY. Returns as
* soon as playback begins. The window procedure function for the given
* window will be notified when playback is complete. Returns 0L on success;
* otherwise, it returns an MCl error code.
*1

DWORD playCDTrack(HWND hWndNotify, BYTE bTrack)
{

UINT wDevicelD;
DWORD dwReturn;
MC1_OPEN_PARMS mciOpenParms;
MC1_SET_PARMS mciSetParms;
MC1_PLAY_PARMS mciPlayParms;

1* Open the compact disc device by specifying the device name.
*1

mCiOpenParms.lpstrDeviceType = "cdaudio";
if (dwReturn = mciSendCommand(NULL, MC1_OPEN,

MCLOPEN_ TYPE,

}

(DWORD)(LPVOID) &mciOpenParms))

1* Failed to open device; don't close it, just return error.
*1

return (dwReturn);

1* Device opened successfully, get the device ID.
*1

wDevicelD = mciOpenParms.wDevicelD;

1* Set the time format to track/minute/second/frame.
*1

mciSetParms.dwTimeFormat = MC1_FORMAT_TMSF;
if (dwReturn = mciSendCommand(wDevicelD, MC1_SET, MC1_SET_TIME_FORMAT,

(DWORD)(LPVOID) &mciSetParms))

}

mciSendCommand(wDevicelD, MC1_CLOSE, 0, NULL);
return (dwReturn);

}

Playing and Recording Audio Using Mel 4-21

1* Begin playback from the given track and play until the beginning of
* the next track. The window procedure function for the parent window
* will be notified with an MM_MCINOTIFY message when playback is
* complete. Unless the play command fails, the window procedure
* closes the device.
*1

mciPlayParms.dwFrom 0L;
mciPlayParms.dwTo = 0L;
mciPlayParms.dwFrom = MCI_MAKE_TMSFCbTrack, 0, 0, 0);
mciPlayParms.dwTo = MCI_MAKE_TMSFCbTrack + 1, 0, 0, 0);
mciPlayParms.dwCallback = CDWORD) hWndNotify;
if CdwReturn = mciSendCommandCwDeviceID, MCI_PLAY,

MCI_FROM I MCI_TO I MCI_NOTIFY,
CDWORD)CLPVOID) &mciPlayParms))

mciSendCommandCwDeviceID, MCI_CLOSE, 0, NULL);
return CdwReturn);

return C0L);

To specify a track-relative position with a compact disc device, you must use the
tracklminute/second/frame time format. See "Setting the Time Format," later in
this chapter, for details on setting time formats.

Changing the Current Position
To change the current position in a device element, use the MCCSEEK command
along with the MCC TO flag and the MCCSEEK_P ARMS parameter block.
MMSYSTEM.H defines the MCCSEEK_PARMS parameter block as follows:

typedef struct {
DWORD dwCallback;
DWORD dwTo;

MCLSEEK_PARMS;

1* callback for MCI_NOTIFY flag *1
1* seek position *1

If you use the dwTo field to specify a seek position with MCCSEEK, you should
query the time format and set it if necessary.

In addition to specifying a position with the dwTo field, you can specify the
MCCSEEK_TO_STARTorMCCSEEK_TO_END flags for the dwParaml
parameter of mciSendCommand to seek to the starting and ending positions of
the device element. If you use one of these flags, don't specify the MCCTO flag.

4-22 High-Level Audio Services

Setting the Time Format
Use the MCCSET command along with the MCCSET_PARMS parameter block
to set the time format for an open device. Set the dwTimeFormat field in the
parameter block to one of the constants identified in the following table:

Time Format

Waveform Devices

Milliseconds

Samples

Bytes (in PCM format files)

Compact Disc Devices

Milliseconds

Minute/SecondlFrame

TrackiMinute/Second/Frame

MIDI Sequencer Devices

Milliseconds

MIDI Song Pointer

SMPTE, 24 Frame

SMPTE, 25 Frame

SMPTE, 30 Frame

SMPTE, 30 Frame Drop

Constant

MCCFORMAT_MILLISECONDS

MCCFORMAT_SAMPLES

MCCFORMAT _BYTES

MCCFORMAT _MILLISECONDS

MCCFORMAT_MSF

MCCFORMAT_TMSF

MCCFORMAT_MILLISECONDS

MCCSEQ_FORMAT_SONGPTR

MCCFORMAT_SMPTE_24

MCCFORMAT_SMPTE_25

MCCFORMAT_SMPTE_30

MCCFORMAT_SMPTE_30DROP

As an example, the following code fragment sets the time format to milliseconds
on the device specified by wDeviceID:

UlNT wDevicelD;
MCl_SET_PARMS mciSetParms;

/* Set time format to milliseconds
*/

mciSetParms.dwTimeFormat = MCl_FORMAT_MlLLlSECONDS;
if (mciSendCommand(wDevicelD, MCl_SET, MCl_SET_TlME_FORMAT,

(DWORD)(LPVOlD) &mciSetParms))

Playing and Recording Audio Using Mel 4-23

1* Error, unable to set time format
*1

else
1* Time format set successfully

*1

Using the Minute/Second/Frame Time Format
For the minute/second/frame time format specified with the MCCFORMA T _MSF
constant, the time is relative to the beginning of the media. The time is packed into
a DWORD, as shown in the following illustration:

HIWORD

HIBYTE
(Unused)

LOBYTE
Frames

LOWORD

DWORD packing for the minute/second/frame time format.

The MMSYSTEM.H header file defines the following macros to get and set
elements of a minute/second/frame packed DWORD:

MCLMSF_MINUTE
Gets minute value in a minute/second/frame DWORD.

MCLMSF_SECOND
Gets second value in a minute/second/frame DWORD.

MCLMSF _FRAME
Gets frame value in a minute/second/frame DWORD.

MCLMAKE_MSF
Sets minute, second, and frame values in a minute/second/frame DWORD.

Note The first few seconds of audio compact discs contain table of contents data. To play from the
beginning of a disc using the minute/second/frame time format, use the Mel_STATUS command to get
the position of the first track and play from that position.

4-24 High-Level Audio Services

Using the Track/Minute/Second/Frame Time Format
For the tracklminute/secondlframe time format specified with the
MCCFORMAT_TMSF constant, the time is relative to the beginning of
the specified track. The time is packed into a DWORD, as shown in the
following illustration:

HIWORD

HIBYTE
Frames

LOBYTE
Seconds

LOWORD

HIBYTE
Minutes

LOBYTE
Track

DWORD packing for the track/minute/second/frame time format.

The MMSYSTEM.H header file defines the following macros to get and set
elements of a tracklminute/secondlframe packed DWORD:

MCL TMSF_ TRACK
Gets track value in a tracklminute/secondlframe DWORD.

MCL TMSF_MINUTE
Gets minute value in a tracklminute/secondlframe DWORD.

MCL TMSF_SECOND
Gets second value in a tracklminute/secondlframe DWORD.

MCL TMSF_FRAME
Gets frame value in a tracklminute/second/frame DWORD.

MCLMAKE_ TMSF
Sets track, minute, second, and frame values in a tracklminute/secondlframe
DWORD.

Playing and Recording Audio Using Mel 4-25

Using the SMPTE Time Formats
SMPTE (Society of Motion Picture and Television Engineers) time formats are
based on standard time formats developed for the motion picture and television
industries. For SMPTE time formats, the time is packed into a DWORD, as shown
in the following illustration:

HIWORD LOWORD

HIBYTE LOBYTE HIBYTE LOBYTE

I
Frames Seconds Minutes Hours

DWORD packing for SMPTE time format.

Closing MCI Audio Devices
After you finish using an MCI device, you must use the MCCCLOSE command
to close the device. If you are playing a compound device, such as a waveform or
MIDI device, and want to playa different device element using the same device,
close the device and reopen it using the new device element.

Note If you're playing multiple device elements with the same device, you'll get better performance if
you open the device by explicitly specifying its name and then open, play, and close the individual
device elements separately. Don't close the device until you are through playing all of the device
elements. Otherwise, the driver will be reloaded each time you open the device.

Getting Information About Devices and Media
Use the MCCSTATUS command along with the MCCSTATUS_PARMS
parameter block to get information about the status of an open device and its
associated device element. MMSYSTEM.H defines the MCCSTATUS_PARMS
parameter block as follows:

typedef struct {
DWORD dwCallback;
DWORD dwReturn;
DWORD dwltem;
DWORD dwTrack;

} MCI_STATUS_PARMS;

1* callback for MCI_NOTIFY flag *1
1* status information is returned here *1
1* identifies status item *1
1* track number *1

4-26 High-Level Audio Services

Before using the MCCSTATUS command, you must identify the status item
to query for by putting a constant in the dwItem field of the parameter block.
The following list shows different status items you can query for and the
corresponding constant for each item for different types of audio devices:

Status Item

All Audio Devices

Length of the media

Current position

Current mode

Time format

Ready state

Waveform Devices

Block alignment

Format tag

Number of channels

Sample rate

Average bytes per second

Bits per sample (in PCM
format files)

Record level

Compact Disc Devices

Number of tracks

Media present

Current track

MIDI Sequencer Devices

Tempo

Port

SMPTE offset

Division type of file

Constant

MCCSTATUS_LENGTH

MCCSTATUS_POSITION

MCCSTATUS_MODE

MCCSTATUS_TIME_FORMAT

MCCSTATUS_READY

MCC WAVE_STATUS_BLOCKALIGN

MCC WAVE_STATUS_FORMATTAG

MCC WAVE_STATUS_CHANNELS

MCC WAVE_STATUS_SAMPLESPERSEC

MCC WAVE_STATUS_AVGBYTESPERSEC

MCC WAVE_STATUS_BITSPERSAMPLE

MCCSTATUS_NUMBER_OF _TRACKS

MCCSTATUS_MEDIA_PRESENT

MCCSTATUS_CURRENT_TRACK

MCCSEQ_STATUS_ TEMPO

MCCSEQ_STATUS_PORT

MCCSEQ_STATUS_OFFSET

MCCSEQ_STATUS_DIVTYPE

Playing and Recording Audio Using Mel 4-27

Getting Track-Relative Information for Compact Disc Devices
For compact disc devices, you can get the starting position and length of a
track by specifying the MCCTRACK flag and setting the dwTrack field of
MCCSTATUS_PARMS to the desired track number. To get the starting position
of a track, set the dwItem field to MCCSTATUS_POSITION. To get the length
of a track, set dwItem to MCCSTATUS_LENGTH. For example, the following
function gets the total number of tracks on the disc and the starting position of
each track. It then uses the MessageBox function to report the starting positions
of the tracks.

1* Uses the MC1_STATUS command to get and display the starting times
* for the tracks on a compact disc. Returns 0L on success; otherwise,
* it returns an MCl error code.
*1

DWORD getCDTrackStartTimes(void)
{

UINT wDevicelD;
int i, iNumTracks;
DWORD dwReturn;
DWORD dwPosition;
DWORD *pMem;
char szTempString[64];
char szTimeString[512] = "\0";
MC1_OPEN_PARMS mciOpenParms;
MC1_SET_PARMS mciSetParms;
MC1_STATUS_PARMS mciStatusParms;

II big enough for 20 tracks

1* Open the compact disc device by specifying the device name.
*1

mciOpenParms.lpstrDeviceType = "cdaudio";
if (dwReturn = mciSendCommand(NULL, MC1_OPEN,

MCLOPEN_ TYPE,

}

(DWORD)(LPVOID) &mciOpenParms»

1* Failed to open device; don't have to close it, just return error.
*1

return (dwReturn);

1* Device opened successfully, get the device 10.
*1

wDevicelD = mCiOpenParms.wDevicelD;

4-28 High-Level Audio Services

/* Set the time format to minute/second/frame format.
*/

mciSetParms.dwTimeFormat = MCl_FORMAT_MSF;
if (dwReturn = mciSendCommand(wDevicelD, MCl_SET, MCl_SET_TlME_FORMAT,

(DWORD)(LPVOlD) &mciSetParms»
{

}

mciSendCommand(wDevicelD, MCl_CLOSE, 0, NULL);
return (dwReturn);

/* Get the number of tracks; limit to number we can display (20).
*/

mciStatusParms.dwltem = MCl_STATUS_NUMBER_OF_TRACKS;
if (dwReturn = mciSendCommand(wDevicelD, MCl_STATUS, MCl_STATUS_lTEM,

(DWORD)(LPVOlD) &mciStatusParms»
{

}

mciSendCommand(wDevicelD, MCl_CLOSE, 0, NULL);
return (dwReturn);

i NumTracks
iNumTracks

mciStatusParms.dwReturn;
min(iNumTracks, 20);

/* Allocate memory to hold starting positions.
*/

pMem = (DWORD *)LocalAlloc(LPTR, iNumTracks * sizeof(DWORD»;
if (pMem == NULL)
{

}

mciSendCommand(wDevicelD, MCl_CLOSE, 0, NULL);
return (-1);

}

Playing and Recording Audio Using Mel 4-29

1* For each track, get and save the starting position and
* build a string containing starting positions.
*1

for(i=l; i<=iNumTracks; i++)
{

}

mciStatusParms.dwltem = MCI_STATUS_POSITION;
mciStatusParms.dwTrack = i;
if (dwReturn = mciSendCommand(wDeviceID, MCI_STATUS,

MCI_STATUS_ITEM I MCI_TRACK,
(DWORD)(LPVOID) &mciStatusParms))

{

}

mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
return (dwReturn);

pMem[i-l] = mciStatusParms.dwReturn;

wsprintf(szTempString, "Track %2d - %02d:%02d:%02d\n",
i ,
MCI_MSF_MINUTE(pMem[i-l]),
MCI_MSF_SECOND(pMem[i-l]),
MCLMSF_ FRAME(pMem[i -1]));

lstrcat(szTimeString, szTempString);

1* Use MessageBox to display starting times.
*1

MessageBox(hMainWnd, szTimeString, "Track Starting Position",
MB_ICONINFORMATION);

1* Free memory and close the device.
*1

LocalFree«HANDLE) pMem);
if (dwReturn = mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL))
{

return (dwReturn);
}

return (0L);

4-30 High-Level Audio Services

Recording with Waveform Audio Devices
MCI supports recording with waveform audio devices. You can insert or overwrite
recorded information into an existing file or record into a new file. To record to an
existing file, open a waveform device and device element as you would normally.
To record into a new file, specify a zero-length filename for the device element
when you open the device.

When MCI creates a new file for recording, the waveform data format is set to a
default format specified by the device driver. To use a format other than the
default format, you can use MCCSET to change the format.

To begin recording, use the MCCRECORD command along with the
MCCRECORD_PARMS parameter block. MMSYSTEM.H defines the
MCCRECORD_PARMS parameter block as follows:

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;

MC L RECORD_ PARMS;

1* callback for MCI_NOTIFY flag *1
1* record begin position *1
1* record end position *1

If you record to an existing file, you can use the MCC TO and MCCFROM flags
to specify beginning and ending points for recording. For example, if you record to
an existing file 20 seconds long, and you begin recording at 5 seconds and end
recording at 10 seconds, you will have a recording 25 seconds long, as shown in
the following illustration:

5 Seconds
Original

Recording waveform audio to an existing file.

15 Seconds
Original

If you don't specify an ending position, recording continues until you send an
MCCSTOP command, or until the driver runs out of free disk space. If you
record to a new file, you can omit the MCCFROM flag or set it to a to start
recording at the beginning of a new file. You can specify an end position to
terminate recording when recording to a new file.

Playing and Recording Audio Using Mel 4-31

If you record with overwrite mode to an existing file, you can use the MCCTO
and MCCFROM flags to specify beginning and ending points of the waveform
section that is overwritten. For example, if you record to an existing file 20
seconds long, and you begin recording at 5 seconds and end recording at 10
seconds, you still have a recording 20 seconds long, but the section beginning
at 5 seconds and ending at 10 seconds has been replaced.

Saving a Recorded File
When recording is complete, use the MCCSA VE command along with the
MCCSA VE_P ARMS parameter block to save the recording before closing the
device. MMSYSTEM.H defines the MCCSA VE_PARMS parameter block as
follows:

typedef struct {
DWORD dwCallback;
LPCSTR lpfilename;

} MCI_SAVE_PARMS;

1* callback for MCI_NOTIFY flag *1
1* filename for saved file *1

If you close the device without saving, the recorded data is lost.

Checking Input Levels (PCM only)
To get the level of the input signal before recording on a PCM waveform input
device, use the MCCSTATUS command. Specify the MCCSTATUS_ITEM flag
and
set dwltem in MCCST ATUS_PARMS to MCC W A VE_STATUS_LEVEL.
The average input signal level is returned in the dwReturn field of the
MCCSTATUS_PARMS parameter block. The left-channel value is in the
high-order word and the right- or mono-channel value is in the low-order word,
as shown in the following illustration:

HIWORD LOWORD

Left-Channel Level Right- or Mono-Channel Level

DWORD packing for waveform input levels.

The input level is represented as an unsigned value. For 8-bit samples, this value
ranges from 0 through 127 (Ox7F). For 16-bit samples, it ranges from 0 through
32,767 (Ox7FFF).

4-32 High-Level Audio Services

Example of Recording with a Waveform Audio Device
The following function opens a waveform audio device with a new file, records
for the specified time, plays the recording, and prompts the user to see if the
recording should be saved as a file:

1* Uses the MCl_OPEN, MCl_RECORD, MCl_SAVE commands to record and
* save a waveform audio file. Returns 0L on success; otherwise,
* it returns an MCI error code.
*1

DWORD recordWAVEFile(DWORD dwMilliSeconds)
{

UlNT wDevicelD;
DWORD dwReturn;
MCl_OPEN_PARMS mciOpenParms;
MCl_RECORD_PARMS mciRecordParms;
MCl_SAVE_PARMS mciSaveParms;
MCl_PLAY_PARMS mciPlayParms;

1* Open a waveform device with a new file for recording.
*1

mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = "";

if (dwReturn = mciSendCommand(0, MCl_OPEN,

}

MCl_OPEN_ELEMENT I MCl_OPEN_TYPE,
(DWORD)(LPVOlD) &mciOpenParms))

1* Failed to open device; don't close it, just return error.
*1

return (dwReturn);

1* Device opened successfully, get the device lD.
*1

wDevicelD = mciOpenParms.wDevicelD;

1* Begin recording and record for the specified number of milliseconds.
* Wait for recording to complete before continuing. Assume the
* default time format for the waveform device (milliseconds).
*1

mciRecordParms.dwTo = dwMilliSeconds;
if (dwReturn = mciSendCommand(wDevicelD, MCl_RECORD, MCl_TO I MCl_WAIT,

(DWORD)(LPVOlD) &mciRecordParms))

}

mciSendCommand(wDevicelD, MCl_CLOSE, 0, NULL);
return (dwReturn);

}

Playing and Recording Audio Using Mel 4·33

/* Play the recording and query user to save the file.
*/

mciPlayParms.dwFrom = 0L;
if (dwReturn = mciSendCommand(wDeviceID, MCI_PLAY,

MCI_FROM I MCl_WAIT,
(DWORD)(LPVOID) &mciPlayParms))

mCiSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
return (dwReturn);

if (MessageBox(hMainWnd, "Do you want to save this recording?",
"", MB_YESNO) == IDNO)

{

mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
return (0l);

/* Save the recording to a file named "tempfile.wav". Wait for
* the operation to complete before continuing.
*/

mciSaveParms.lpfilename = "tempfile.wav";
if (dwReturn = mciSendCommand(wDeviceID, MCI_SAVE,

MCLSAVE_FILE I MCLWAIT,
(DWORD)(LPVOID) &mciSaveParms))

{

}

mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
return (dwReturn);

return (0l);

4-34 High-Level Audio Services

Using the Mel MIDI Sequencer
The MCI MIDI sequencer plays standard MIDI files and RIFF MIDI files
(RMID files). Standard MIDI files conform to the "Standard MIDI Files 1.0"
specification. See Chapter 3, "Introduction to Audio," for information about this
specification. Because RMID files are standard MIDI files with a RIFF header,
information on standard MIDI files also applies to RMID files.

There are currently three variations of standard MIDI files. The MCI sequencer
plays only two of these: Format 0 and Format 1 MIDI files.

Note If the Mel MIDI sequencer encounters a MIDI file not marked as being authored for Windows,
it will display a dialog box informing the user. MIDI files authored for Windows should be marked with
the MARKMIDI utility program. For additional information about the MARKMIDI utility, see the last
section of this chapter, "Using the MARKMIDI Utility."

Querying for Sequence Division Types
The division type of a MIDI sequence refers to the technique used to represent
the time between MIDI events in the sequence. Use the MCCSTATUS command
and set the dwltem field of the MCCST ATUS_PARMS parameter block to
MCCSEQ_STATUS_DIVTYPE to determine the division type of a sequence.

If the MCCSTATUS command is successful, the dwReturn field of the
MCCSTATUS_PARMS parameter block contains one of the following values
to indicate the division type:

Value

MCCSEQ_DIV _PPQN

MCCSEQ_DIV _SMPTE_24

MCCSEQ_DIV _SMPTE_25

MCCSEQ_DIV _SMPTE_30

MCCSEQ_DIV _SMPTE_30DROP

Division Type

PPQN (parts-per-quarter note)

SMPTE, 24 fps (frames per second)

SMPTE, 25 fps

SMPTE, 30 fps

SMPTE, 30 fps drop frame

You must know the division type of a sequence to change or query its tempo. You
can't change the division type of a sequence using the MCI sequencer.

Tempo
Representation

and Division Type

Playing and Recording Audio Using Mel 4-35

Querying and Setting the Tempo
Use the MCLSTATUS command and set the dwItem field of the
MCLSTATUS_PARMS parameter block to MCLSEQ_STATUS_TEMPO
to get the tempo of a sequence. If the MCLST ATUS command is successful,
the dwReturn field of the MCLST ATUS_PARMS parameter block
contains the current tempo.

To change tempo, use the MCLSET command with the MCLSEQ_SET_PARMS
parameter block. Specify the MCLSEQ_SET_TEMPO flag and set the dwTempo
field of the parameter block to the desired tempo. MMSYSTEM.H defines the
MCLSEQ_SET_PARMS parameter block as follows:

typedef struct {
DWORD dwCallback; 1* callback for MCI_NOTIFY flag *1
DWORD dwTimeFormat; 1* time format *1
DWORD dwAudio; 1* audio channel (not used by sequencer) *1
DWORD dwTempo; 1* tempo *1
DWORD dwPort; 1* output port *1
DWORD dwSlave; 1* slave sync type *1
DWORD dwMaster; 1* master sync type *1
DWORD dwOffset; 1* SMPTE offset *1

MC L SEQ_ SET _ PARMS;

The way tempo is represented depends on the division type of the sequence. If the
division type is PPQN, the tempo is represented in beats per minute. If the division
type is one of the SMPTE division types, the tempo is represented in frames per
second. See the previous section, "Querying for Sequence Division Types," for
information on determining the division type of a sequence.

Changing Sequencer Synchronization
To change the synchronization mode of a sequencer device, use the
MCLSET command along with the MCLSEQ_SET_MASTER and
MCLSEQ_SET _SLA VE flags. Two fields in the MCLSEQ_SET _P ARMS
parameter block, dwMaster and dwSlave, are used to specify the master
and slave synchronization modes.

4-36 High-Level Audio Services

The master synchronization mode controls synchronization information sent by
the sequencer to an output port. The slave synchronization mode controls where
the sequencer gets its timing information to playa MIDI file. The following table
shows the different modes for master and slave synchronization and the corre­
sponding constant for the dwMaster and dwSlave fields:

Synchronization Mode Constant

Master

MIDI Sync-Send timing information to MCCSEQ_MIDI
output port using MIDI timing clock messages

SMPTE Sync-Send timing information to MCCSEQ_SMPTE
output port using MIDI quarter frame messages

No Sync-Send no timing information MCCSEQ_NONE

Slave

File Sync-Get timing information from MCCSEQ_FILE
MIDI file

MIDI Sync-Get timing information from MCCSEQ_MIDI
input port using MIDI timing clock messages

SMPTE Sync-Get timing information from MCCSEQ_SMPTE
input port using MIDI quarter frame messages

No Sync-Get timing information from MCI MCCSEQ_NONE
commands only and ignore timing information
such as tempo changes that are in the MIDI file

Note Currently, for master synchronization, the MCI MIDI sequencer supports only the "no
synchronization" mode (MCI_SEQ_NONE). For slave synchronization, it only supports the file
synchronization mode (MCLSEQJILE) and the "no synchronization" mode (MCI_SEQ_NONE).

The MIDI Mapper 4-37

The MIDI Mapper
The MIDI Mapper's standard patch services provide device-independent MIDI file
playback for applications. You don't need to understand exactly how the MIDI
Mapper works to use these services. The MIDI Mapper can be used with the MCI
MIDI sequencer or with low-level MIDI output services.

To learn more about the MIDI Mapper or about authoring standard MIDI files for
Windows, read this section to become familiar with how the MIDI Mapper works.
For specific information on how to use the MIDI Mapper, see "Using the MIDI
Mapper with the MCI Sequencer," earlier in this chapter, or see Chapter 5,
"Low-Level Audio Services."

MIDI Notational Conventions
Unless stated otherwise, all references to MIDI channel numbers use the logical
channel numbers 1 through 16. These logical channel numbers correspond to the
physical channel numbers 0 through 15 that are actually part of the MIDI message.
All references to MIDI program-change and key values use the physical values 0
through 127. All numbers are decimal unless preceded by a "Ox" prefix, in which
case they are hexadecimal.

In the discussion of the MIDI Mapper, the term source refers to the input side
of the Mapper. The term destination refers to the output side of the Mapper. For
example, a source channel is the MIDI channel of a message sent to the Mapper, a
destination channel is the MIDI channel of a message sent from the Mapper to an
output device.

4-38 High-Level Audio Services

The MIDI Mapper and Windows
The MIDI Mapper is part of the system software. The following illustration shows
how the MIDI Mapper relates to other elements of the audio services:

Application
Level

High-Level
Audio Services

Low-Level
Audio Services

Multimedia Application

--------- ------------t---------

Mel MIDI
Sequencer Driver

--------- ------------t---------

midiOutShortMsgO
midiOutLongMsgO

~
The MIDI Mapper

~
MIDI Output MIDI Output

Device Driver Device Driver

The relationship of the MIDI Mapper to the Multimedia extensions.

From the viewpoint of an application, the MIDI Mapper looks like another MIDI
output device. The MIDI Mapper receives messages sent to it by the low-level
MIDI output functions midiOutShortMsg and midiOutLongMsg. The Mapper
modifies these messages and redirects them to a MIDI output device according to
the current MIDI setup map. The current MIDI setup map is selected by the user
using the MIDI Control Panel option. Only the user can select the current setup
map; applications cannot change the current setup map.

The MIDI Mapper 4-39

The MIDI Mapper Architecture
The MIDI Mapper uses a MIDI setup map to determine how to translate and
redirect messages it receives. A MIDI setup map consists of the following
types of maps:

• Channel map

• Patch map

• Key map

The following illustration shows how channel, patch, and key maps comprise a
MIDI setup map:

o

Channel Map
16 entries

~~

~

r--

Patch Maps
Up to 16 total
with 128 entries each

The MIDI Mapper architecture.

n I
I

Key Maps
One possible for every
entry of every patch map

..
~ o
-:0

4-40 High-Level Audio Services

The Channel Map
The channel map affects all MIDI channel messages. MIDI channel messages
include note-on, note-off, polyphonic-key-aftertouch, control-change, program­
change, channel-aftertouch, and pitch-bend-change messages. The MIDI Mapper
uses a single channel map with an entry for each of the 16 MIDI channels. Each
channel map entry specifies the following:

• A destination channel for the MIDI message

• A destination output device for the MIDI message

• An optional patch map specifying other possible modifications for
the MIDI message

The destination channel is set to one ofthe 16 MIDI channels. MIDI messages are
modified to reflect each new channel assignment. For example, if the destination
channel entry for MIDI channel 4 is set to 6, all MIDI messages sent to channel 4
will be mapped to channel 6, as shown in the following illustration:

0x93, 0x60, 0x?F_

I
Value

before mapping

Channel mapping.

MIDI Mapper

Channel Map I--- 0x95, 0x60, 0x? F

I
Value

after mapping

In this example, the MIDI status byte Ox93 is mapped to Ox95. The low nibble of a
MIDI status byte specifies the channel number. Source channels are set to either
active or inactive. Messages sent to inactive source channels are ignored, allowing
the channel to be muted or turned off.

The destination output device is set to one of the available MIDI output devices. A
MIDI output device can be an internal synthesizer or a physical MIDI output port
attached to an external MIDI synthesizer.

Patch Maps

The MIDI Mapper 4-41

MIDI system messages are MIDI messages from OxFO to OxFF. There is no
channel associated with MIDI system messages, so they can't be mapped. MIDI
system messages are sent to all MIDI output devices listed in a channel map.

Each channel map entry can have an associated patch map. Patch maps affect
MIDI program-change and volume-controller messages. Program-change
messages tell a synthesizer to change the instrument sound for a specified
channel. Volume-controller messages set the volume for a channel.

A patch map has a translation table with an entry for each of the 128 program­
change values. Each patch map specifies the following:

• A destination program-change value

• A volume scalar

• An optional key map

When program-change messages are received by the MIDI Mapper, the
destination program-change value is substituted for the program-change value
in the message. For example, if the destination program-change value for
program-change 16 is 18, the Mapper modifies the MIDI program-change
message, as shown in the following illustration:

0xC0, 0x10_

'I
Value

before mapping

Patch mapping.

MIDI Mapper

Patch Map _ 0xC0, 0x12

'I
Value

after mapping

4-42 High-Level Audio Services

Key Maps

The Volume Scalar
The purpose of the volume scalar is to allow adjustments between the relative
output levels of different patches on a synthesizer. For example, if the bass patch
on a synthesizer is too loud compared to its piano patch, you can change the setup
map to scale the bass volume down or the piano volume up.

The volume scalar specifies a percentage value for changing all MIDI main­
volume controller messages that follow an associated program-change message.
For example, if the volume scalar value is 50%, then the Mapper modifies MIDI
main-volume controller messages, as shown in the following illustration:

0xB0, 0x07, 0x60_

I
Value

before mapping

Volume scaling.

MIDI Mapper

Patch Map r-- 0xB0, 0x07, 0X30

I
Value

after mapping

Each entry in the patch map translation table can have an associated key map. Key
maps affect note-on, note-off, and polyphonic-key-aftertouch messages. A key
map has a translation table with an entry for each of the 128 MIDI key values. For
example, if the entry for key value 60 is 72, then the Mapper modifies MIDI
note-on messages, as shown in the following illustration:

0x90, 0x3C, 0x7F_

I
Value

before mapping

Key mapping.

MIDI Mapper

Key Map _ 0x90, 0x48, 0X7F

I
Value

after mapping

Authoring MIDI Files 4-43

Key maps are useful with synthesizers having key-based percussion instruments
where a particular percussion sound is assigned to each key. Key maps are usually
assigned to the first patch in the patch maps on the percussion channels (10 and 16).

Summary of Maps and MIDI Messages
The following table contains a list of status bytes for MIDI messages and shows
which types of maps affect each message:

MIDI Status Description Map Types

Ox80-0x8F Note-off Channel maps, key maps

Ox90-0x9F Note-on Channel maps, key maps

OxAO-OxAF Polyphonic-key-aftertouch Channel maps, key maps

OxBO-OxBF Control-change Channel maps, patch maps 1

OxCO-OxCF Program-change Channel maps, patch maps

OxDO-OxDF Channel-aftertouch Channel maps

OxEO-OxEF Pitch-bend-change Channel maps

OxFO-OxFF System Notmapped2

I. Patch maps affect only controller 7 (main volume).

2. System messages are sent to all devices listed in a channel map.

Authoring MIDI Files
The "MIDI 1.0 Detailed Specification" does not define any standard patch
assignments for synthesizers. Therefore, when you create a MIDI file, it won't be
reproduced correctly unless it is played back on the same MIDI synthesizer setup
used to create it. For example, if you create a piano concerto for your Yamaha
DX7 and try to play it back on a Roland LAPC-1, it might be played with a flute
instead of a piano.

To enable MIDI files to be a viable format for representing music in multimedia
computing, Windows provides MIDI authoring guidelines. These guidelines
include a list of standard patch assignments and standard key assignments for
percussion instruments. Using the MIDI Mapper, MIDI files authored to these
guidelines can be played on any multimedia computer with internal or external
MIDI synthesizers.

4-44 High-Level Audio Services

About Base-Level and Extended Synthesizers
Although it is difficult to clearly quantify distinctions between synthesizers, it is
important to have some guidelines so you can create MIDI files that will play on
all multimedia computers. The terms used to distinguish synthesizers for the
purpose of authoring MIDI files are base-level synthesizer and extended
synthesizer.

The distinctions between base-level and extended synthesizers are made solely on
the number of instruments and notes the synthesizer can play, not on the quality or
the cost of the synthesizer. The following table shows the minimum capabilities of
base-level and extended synthesizers:

Synthesizer

Base-Level

Extended

Melodic Instruments

Number Polyphony

3 instruments 6 notes

9 instruments 16 notes

Percussive Instruments

Number Polyphony

3 instruments 3 notes

8 instruments 16 notes

Polyphony is the number of notes the synthesizer can play simultaneously. The
polyphony expressed above applies to each group of instruments-melodic and
percussive. For example, a base-level synthesizer is capable of playing six notes
distributed among three melodic instruments and three notes distributed among
three percussive instruments. The melodic instruments are each on different MIDI
channels, and the percussive instruments are key-based-all on a single MIDI
channel.

All multimedia computers provide at least a base-level synthesizer. Users can
enhance their computer by adding internal or external synthesizers, which can be
either base-level or extended synthesizers. When a user adds a synthesizer, the
user must configure the MIDI Mapper to use the new device, or the instrument
sounds will not be correct when playing MIDI files. The MIDI Control Panel
option allows a user to configure the MIDI Mapper as needed.

Authoring MIDI Files 4-45

Authoring Guidelines for MIDI Files
Follow these guidelines to author device-independent MIDI files for Windows:

• Author for both base-level and extended synthesizer setups.

• Use MIDI channels 13 through 16 for base-level synthesizer data (reserve
channel 16 for key-based percussion instruments).

• Use MIDI channels 1 through 10 for extended synthesizer data (reserve
channel 10 for key-based percussion instruments).

• Prioritize MIDI data by putting crucial data in the lower-numbered channels.

• Limit the polyphony of non-percussive channels to a total of 6 notes for
base-level data and 16 notes for extended data.

• Limit the polyphony of percussive channels to a total of 3 notes for base-level
data and 16 notes for extended data.

• Use the standard MIDI patch assignments and key assignments.

• Always send a program-change message to a channel to select a patch before
sending other messages to that channel. For the two percussion channels (10
and 16), select program number O.

• Always follow a MIDI program-change message with a MIDI main-volume­
controller message (controller number 7) to set the relative volume of the patch.

• Use a value of 80 (Ox50) for the main volume controller for normal listening
levels. For quieter or louder levels, you can use lower or higher values.

• Use only the following MIDI messages: note-on with velocity, note-off,
program change, pitch bend, main volume (controller 7), and damper pedal
(controller 64). Internal synthesizers are required to respond to these messages
and most MIDI musical instruments will respond to them as well.

• Use the MARKMIDI utility to mark MIDI files authored for Windows.

4-46 High-Level Audio Services

The following illustration summarizes the use of the 16 MIDI channels in a
standard MIDI file authored for Windows:

Channel Description

Extended Melodic Tracks

2

3

4

5 16 Notes

6

7

8

13 Base-Level Melodic Tracks

14
6 Notes

15

16 Base-Level Percussion Track 3 Notes

Prioritizing MIDI Data
Synthesizers don't always fall cleanly into the base-level and extended
designations defined earlier. It's up to the end-user to determine how to use
synthesizers capable of more than the base-level requirements, but not fully
meeting the extended requirements. For this reason, it's important to prioritize
the melodic data by putting the most critical data in lower-numbered channels.
For example, a user may have a synthesizer capable of playing six melodic
instruments with 12-note polyphony. The user can use this device as an extended
synthesizer by setting up the MIDI Mapper to play only the first six melodic
channels and ignore any information on channels seven, eight, and nine.

Standard MIDI Patch Assignments
The standard MIDI patch assignments for authoring MIDI files for use with
Windows are based on the MIDI Manufacturers Association (MMA) General
MIDI Mode specification. The following illustration shows the standard MIDI
patch assignments.

Authoring MIDI Files 4-47

Piano Chromatic Percussion Organ Guitar

0 Acoustic Grand Piano 8 Celesta 16 Hammond Organ 24 Acoustic Guitar (nylon)

Bright Acoustic Piano 9 Glockenspiel 17 Percussive Organ 25 Acoustic Guitar (steel)

2 Electric Grand Piano 10 Music box 18 Rock Organ 26 Electric Guitar (jazz)

3 Honky-tonk Piano II Vibraphone 19 Church Organ 27 Electric Guitar (clean)

4 Rhodes Piano 12 Marimba 20 Reed Organ 28 Electric Guitar (muted)

5 Chorused Piano 13 Xylophone 21 Accordion 29 Overdriven Guitar

6 Harpsichord 14 Tubular Bells 22 Harmonica 30 Distortion Guitar

7 Clavinet 15 Dulcimer 23 Tango Accordion 31 Guitar Harmonics

Bass Strings Ensemble Brass

32 Acoustic Bass 40 Violin 48 String Ensemble 1 56 Trumpet

33 Electric Bass (finger) 41 Viola 49 String Ensemble 2 57 Trombone

34 Electric Bass (pick) 42 Cello 50 SynthStrings 1 58 Tuba

35 Fretless Bass 43 Contrabass 51 SynthStrings 2 59 Muted Trumpet

36 Slap Bass 1 44 Tremolo Strings 52 Choir Aahs 60 French Hom

37 Slap Bass 2 45 Pizzicato Strings 53 Voice Oohs 61 Brass Section

38 Synth Bass 1 46 Orchestral Harp 54 Synth Voice 62 Synth Brass 1

39 Synth Bass 2 47 Timpani 55 Orchestra Hit 63 Synth Brass 2

Reed Pipe SynthLead SynthPad

64 Soprano Sax 72 Piccolo 80 Lead 1 (square) 88 Pad 1 (new age)

65 Alto Sax 73 Flute 81 Lead 2 (sawtooth) 89 Pad 2 (warm)

66 Tenor Sax 74 Recorder 82 Lead 3 (caliope lead) 90 Pad 3 (polysynth)

67 Baritone Sax 75 Pan Flute 83 Lead 4 (chifflead) 91 Pad 4 (choir)

68 Oboe 76 Bottle Blow 84 Lead 5 (charang) 92 Pad 5 (bowed)

69 English Hom 77 Shakuhachi 85 Lead 6 (voice) 93 Pad 6 (metallic)

70 Bassoon 78 Whistle 86 Lead 7 (fifths) 94 Pad 7 (halo)

71 Clarinet 79 Ocarina 87 Lead 8 (brass + lead) 95 Pad 8 (sweep)

Synth Effects Ethnic Percussive Sound Effects

96 FX 1 (rain) 104 Sitar 112 Tinkle Bell 120 Guitar Fret Noise

97 FX 2 (soundtrack) 105 Banjo 113 Agogo 121 Breath Noise

98 FX 3 (crystal) 106 Shamisen 114 Steel Drums 122 Seashore

99 FX 4 (atmosphere) 107 Koto 115 Woodblock 123 Bird Tweet

100 FX 5 (brightness) 108 Kalimba 116 TaikoDrum 124 Telephone Ring

101 FX 6 (goblins) 109 Bagpipe 117 Melodic Tom 125 Helicopter

102 FX 7 (echoes) 110 Fiddle 118 SynthDrum 126 Applause

103 FX 8 (sci-fi) 111 Shanai 119 Reverse Cymbal 127 Gunshot

4-48 High-Level Audio Services

Standard MIDI Key Assignments
The standard MIDI key assignments for percussion instruments are based on the
MIDI Manufacturers Association (MMA) General MIDI Mode specification. The
following illustration shows the standard key assignments for MIDI files authored
for Windows:

.... -
tJj 35 Acoustic Bass Drum

n - 36 Bass Drum 1

0 36 Acoustic Snare

tIl - 40 Electric Snare

"tj - 41 Low Floor Tom

Cl 43 High Floor Tom

:» 45 Low Tom

tJj 47 Low-Mid Tom

n - 48 High-Mid Tom

0 50 High Tom

tIl - 52 Chinese Cymbal

"tj -53 Ride Bell

Cl 55 Splash Cymbal

:» 57 Crash Cymbal 2

tJj - 59 Ride Cymbal 2

Middle C- n - 60 High Bongo

0 62 Mute High Conga

tIl - 64 Low Conga

"tj I - 65 High Timbale

Cl 67 High Agogo

:» 69 Cabasa

tJj - 71 Short Whistle

n - 72 Long Whistle

0 74 Long Guiro

tIl - 76 High Wood Block

"tj - 77 Low Wood Block

Cl 79 Open Cuica

:» 81 Open Triangle

~

37 Side Stick

39 Hand Clap

42 Closed High-Hat

44 Pedal High Hat

46 Open High Hat

49 Crash Cymbal 1

51 Ride Cymbal 1

54 Tambourine

56 Cowbell

58 Vibraslap

61 Low Bongo

63 Open High Conga

66 Low Timbale

68 Low Agogo

70 Maracas

73 Short Guiro

75 Claves

78 Mute Cuica

80 Mute Triangle

Standard MIDI key aSSignments for key-based percussion instruments.

Authoring MIDI Files 4-49

Using the MARKMIDI Utility
The MARKMIDI utility marks MIDI files as following the authoring guidelines
for Windows MIDI files. The utility does not verify that the file is authored
correctly, it only marks the file by adding a sequencer-specific meta-event to the
first track chunk. MARKMIDI is an MS-DOS application with the following
command syntax:

MARKMIDI src-filename dest-filename

If the Mel MIDI sequencer is used to playa MIDI file not marked with
MARKMIDI, it will display a dialog informing the user that the file is not
authored for Windows.

Note Do not use MARKMIDI to mark MIDI files unless the files were authored according to the
guidelines presented in this chapter. If your application uses MIDI files not authored to these
guidelines, the application must instruct users to install or create the proper maps using the MIDI
Mapper Control Panel applet. For example, if your application uses MIDI files following the General
MIDI channel recommendations, your users should create or install a General MIDI map for their
synthesizers.

Chapter 5

Low-Level Audio Services

This chapter explains how to use the low-level audio services of Windows to
manage playback and recording of waveform and MIDI audio. For an overview of
the audio services, see Chapter 3, "Introduction to Audio."

This chapter covers the following topics:

• Using low-level audio services

• Playing waveform audio

• Recording waveform audio

• Playing MIDI audio

• Recording MIDI audio

• Using auxiliary audio devices

• Using audio Clipboard formats

You should have a basic knowledge of digital audio and MIDI before reading this
chapter. If you need additional information on these subjects, see "Further
Reading" at the end of Chapter 3, "Introduction to Audio."

5-2 low-level Audio Services

Function Prefixes
Low-level audio function names begin with the following prefixes:

Prefix

aux

midi

wave

Description

Auxiliary audio functions

MIDI audio functions

Waveform audio functions

Using Low-Level Audio Services
Low-level audio services control different types of audio devices, including
waveform, MIDI, and auxiliary audio devices. Many ofthe concepts of using
low-level services apply to more than one type of device. This section presents
general information on using low-level audio services. It covers the following
topics:

• Querying audio devices

• Opening and closing device drivers

• Allocating and preparing audio data blocks

• Managing audio data blocks

• Using the MMTIME data structure

• Handling errors

Subsequent sections in this chapter discuss using specific types of audio devices.

Using low-level Audio Services 5-3

Querying Audio Devices
Before playing or recording audio, you must determine the capabilities of the
audio hardware present in the system. Audio capability can vary from one
multimedia computer to the next; applications should not make assumptions
about the audio hardware present in a given system.

Getting the Number of Devices
Windows provides the following functions to determine how many devices of a
certain type are available in a given system:

auxGetNumDevs
Retrieves the number of auxiliary audio devices present in the system.

midiInGetNumDevs
Retrieves the number of MIDI input devices present in the system.

midiOutGetNumDevs
Retrieves the number of MIDI output devices present in the system.

wavelnGetNumDevs
Retrieves the number of waveform input devices present in the system.

waveOutGetNumDevs
Retrieves the number of waveform output devices present in the system.

Audio devices are identified by a device identifier (device ID). The device ID is
determined implicitly from the number of devices present in a given system.
Device IDs range from 0 to 1 less than the number of devices present. For
example, if there are 2 MIDI output devices in a system, valid device IDs are
o and 1.

5-4 Low-Level Audio Services

Getting the Capabilities of a Device
Once you determine how many devices of a certain type are present in a system,
you can inquire about the capabilities of each device. Windows provides the
following functions to determine the capabilities of audio devices:

auxGetDevCaps
Retrieves the capabilities of a given auxiliary audio device.

midiInGetDevCaps
Retrieves the capabilities of a given MIDI input device.

midiOutGetDevCaps
Retrieves the capabilities of a given MIDI output device.

wavelnGetDevCaps
Retrieves the capabilities of a given waveform input device.

waveOutGetDevCaps
Retrieves the capabilities of a given waveform output device.

Device-Capability Each of these functions takes a far pointer to a data structure the function fills with
Data Structures information on the capabilities of a specified device. The following are the data

structures that correspond to each of the device-inquiry functions:

Function

auxGetDevCaps

midiInGetDevCaps

midiOutGetDevCaps

wavelnGetDevCaps

waveOutGetDevCaps

Data Structure

AUXCAPS

MIDIINCAPS

MIDIOUTCAPS

WAVEINCAPS

WAVEOUTCAPS

Using Low-Level Audio Services 5-5

All of the device capabilities data structures have the following fields:

Field

wMid

wPid

szPname

vDriverVersion

Description

Specifies a manufacturer ID for the author of the device
driver.

Specifies a product ID for the device.

Specifies an array of characters containing the name of the
device in a null-terminated string.

Specifies the version number of the device driver.

Microsoft will assign manufacturer IDs and product IDs specified by the wMid
and wPid fields. The MMSYSTEM.H file contains constants for currently
defined IDs.

The szPname field points to a null-terminated string containing the product name.
You should use the product name to identify devices to users.

The vDriverVersion field specifies a version number for the device driver. The
high-order of this field is the major version number; the low-order byte is the
minor version number.

Opening and Closing Device Drivers
After getting the capabilities of an audio device, you must open the device before
you can use it. Audio devices aren't guaranteed to be shareable, so a particular
device might not be available when you request it. If this happens, you should
notify the user and allow the user to try to open the device again. When you
open an audio device, you should close the device as soon as you finish using it.

5-6 low-level Audio Services

Windows provides the following functions to open and close different types of
audio devices:

midiInOpen
Opens a specified MIDI input device for recording.

midiInClose
Closes a specified MIDI input device.

midiOutOpen
Opens a MIDI output device for playback.

midi Out Close
Closes a specified MIDI output device.

wavelnOpen
Opens a waveform input device for recording.

wavelnClose
Closes a specified waveform input device.

waveOutOpen
Opens a waveform output device for playback.

waveOutClose
Closes a specified waveform output device.

These functions are discussed in detail later in this chapter.

About Device Handles
Each function that opens an audio device takes as parameters a device ID, a
pointer to a memory location, and some parameters unique to each type of device.
The memory location is filled with a device handle. Use this device handle to
identify the open audio device when calling other audio functions.

Using Low-Level Audio Services 5-7

The distinction between audio-device IDs and audio-device handles is subtle, but
very important. Don't confuse the two in your application. The differences
between device IDs and device handles are as follows:

• Device IDs are determined implicitly from the number of devices present in a
system, which is obtained by using the .. . GetNumDevs functions.

• Device handles are returned when device drivers are opened by using the
... Open functions.

• The only functions that take device IDs as parameters are the ... GetDevCaps,
... Open, and ... Volume functions. All other functions take device handles.

There are no functions for opening and closing auxiliary audio devices. Auxiliary
audio devices don't need to be opened and closed like MIDI and waveform
devices because there is no continuous data transfer associated with them. All
auxiliary audio functions take device IDs to identify devices.

Allocating and Preparing Audio Data Blocks
Some low-level audio functions require applications to allocate data blocks to
pass to the device drivers for playback or recording purposes. Each of these
functions uses a data structure (or header) to describe its data block. The following
table identifies these functions and their associated header structures (the
MMSYSTEM.H file defines the data structures for these headers):

Function Header Purpose

wave Out Write WAVEHDR Waveform playback

wavelnAddBuffer WAVEHDR Waveform recording

midiOutLongMsg MIDIHDR MIDI system-exclusive playback

midiInAddBuffer MIDIHDR MIDI system-exclusive recording

Before you use one of the functions listed above to pass a data block to a device
driver, you must allocate memory for the data block according to the guidelines
discussed in the following sections of this chapter.

5-8 Low-Level Audio Services

Allocating Memory for Audio Data Blocks
Before preparing a data block, you must allocate memory for the data block and
the header structure that describes the data block.

To allocate memory, use GlobalAlloc with the GMEM_MOVEABLE and
GMEM_SHARE flags to get a handle to the memory block. Then, pass this handle
to GlobalLock to get a pointer to the memory block.

To free a data block, use GlobalUnlock and GlobalFree.

Preparing Audio Data Blocks
Before you pass an audio data block to a device driver, you must prepare the data
block by passing it to a ... PrepareHeader function. When the device driver is
finished with the data block and returns it, you must clean up this preparation by
passing the data block to an ... UnprepareHeader function before any allocated
memory can be freed.

Windows provides the following functions for preparing and cleaning up audio
data blocks:

midiInPrepareHeader
Prepares a MIDI input data block.

midiln U nprepareHeader
Cleans up the preparation on a MIDI input data block.

midiOutPrepareHeader
Prepares a MIDI output data block.

midiOutUnprepareHeader
Cleans up the preparation on a MIDI output data block.

waveInPrepareHeader
Prepares a waveform input data block.

waveInUnprepareHeader
Cleans up the preparation on a waveform input data block.

Using Low-Level Audio Services 5-9

waveOutPrepareHeader
Prepares a waveform output data block.

waveOutUnprepareHeader
Cleans up the preparation on a waveform output data block.

Managing Audio Data Blocks
Unless the audio data is small enough to be contained in a single data block,
applications must continually supply the device driver with data blocks until
playback or recording is complete. This is true for waveform input and output,
and for MIDI system-exclusive input messages. Regular MIDI channel messages
don't require data blocks for input or output.

Even if a single data block is used, applications must be able to determine when
a device driver is finished with the data block so the application can free the
memory associated with the data block and header structure. There are three
ways to determine when a device driver is finished with a data block:

• By specifying a window to receive a message sent by the driver when it is
finished with a data block.

• By specifying a callback function to receive a message sent by the driver when
it is finished with a data block.

• By polling a bit in the dwFlags field of the W A VEHDR or MIDIHDR data
structure sent with each data block.

If an application doesn't get a data block to the device driver when needed, there
can be an audible gap in playback or a loss of incoming recorded information. This
requires at least a double-buffering scheme-staying at least one data block ahead
of the device driver.

Note To get time stamped MIDI input data, you must use a callback function.

Using a Window to Process Driver Messages
The easiest type of callback to use to process driver messages is a window
callback. To use a window callback, specify the CALLBACK_WINDOW flag
in the dwFlags parameter and a window handle in the low-order word of the
dwCallbackparameter ofthe ... Open function. Driver messages will be sent to
the window-procedure function for the window identified by the handle in
dwCallback.

5-10 Low-Level Audio Services

Messages sent to the window function are specific to the audio device type used.
For details on these messages, see the sections later in this chapter on using
window messages for each specific audio device type.

Using a Callback Function to Process Driver Messages
You can also write your own low-level callback function to process messages
sent by the device driver. To use a low-level callback function, specify the
CALLBACK_FUNCTION flag in the dwFlags parameter and the address of
the callback in the dwCallback parameter of the ••• Open function.

Messages sent to a callback function are similar to messages sent to a window,
except they have two DWORD parameters instead of a UINT and a DWORD
parameter. For details on these messages, see the sections on using low-level
callbacks for each specific audio device type.

Writing LDw-Level Callback functions for the low-level audio services are accessed at interrupt time,
Callback FunctiDns and therefore must be carefully written to adhere to the following set of rules:

• The callback function must reside in a dynamic-link library (DLL) and be
exported in the module-definition file for the DLL.

• The code and data segments for the callback functions must be specified as
FIXED in the module-definition file for the DLL.

• Any data the callback function accesses must be handled in one of the
following ways:

• Declared in the FIXED data segment of the callback DLL.

• Allocated with GlobalAlloc using the GMEM_MOVEABLE and
GMEM_SHARE flags, and locked using GlobalLock and
GlobalPageLock.

• Allocated with LocalAlloc from a FIXED local heap.

• The callback cannot make any Windows calls except PostMessage,
timeGetTime, timeGetSystemTime, timeSetEvent, timeKillEvent,
midiOutShortMsg, midiOutLongMsg, and OutputDebugStr.

Note Since low-level callback functions must reside in a DLL, you don't need to use
MakeProclnstance to get a procedure instance address for the callback.

Using low-level Audio Services 5-11

Passing Instance To pass instance data from an application to a low-level callback residing in a
Data to Callbacks DLL, use one of the following techniques:

• Pass the instance data using the dwlnstance parameter of the function that
opens the device driver.

• Pass the instance data using the dwUser field of the W A VEHDR and
MIDIHDR data structures that identify an audio data block being sent to a
device driver.

If you need more than 32 bits of instance data, pass a pointer to a data structure
containing the additional information. Be sure to follow the memory-allocation
guidelines listed in "Using a Callback Function to Process Driver Messages,"
earlier in this chapter.

Managing Data Blocks by Polling
In addition to using a callback, you can poll the dwFlags field of a WA VEHDR
or MIDIHDR structure to determine when an audio device is finished with a data
block. There are times when it's better to poll dwFlags rather than waiting for
a window to receive messages from the drivers. For example, after you call
waveOutReset to release pending data blocks, you can immediately poll to
be sure that the data blocks are indeed done before proceeding to call
waveOutUnprepareHeader and free the memory for the data block.

MMSYSTEM.H defines two flags for testing the dwFlags field: WHDR_DONE
for a W A VEHDR structure, and MHDR_DONE for a MIDIHDR structure. For
example, to test a MIDIHDR structure, use the following technique:

if(lpMidiHdr->dwFlags & MHDR_DONEJ
1* Driver is finished with the data block *1

else
1* Driver is not finished with the data block *1

Using the MMTIME Structure
Windows uses a structure called MMTIME to represent time. Low-level audio
functions that use MMTIME include wavelnGetPosition and waveOutGetPosition.
The timeGetSystemTime function also uses MMTIME to represent system time.

5-12 Low-Level Audio Services

The MMTIME structure is defined in the MMSYSTEM.H header file as follows:

typedef struct mmtime_tag
UINT wType;
union {

DWORD ms;
DWORD sample;
DWORD cb;

struct {

BYTE hour;
BYTE min;
BYTE sec;
BYTE frame;
BYTE fps;
BYTE dummy;

} smpte;

struct {

II Contents of the union

II Milliseconds (wType = TIME_MS)
II Samples (wType = TIME_SAMPLES)
II Byte count (wType = TIME_BYTES)

II SMPTE (wType TIME SMPTE)
II Hours
II Minutes
II Seconds
II Frames
II Frames per second
II Pad byte

DWORD songptrpos;
mi di ;

II MIDI (wType = TIME_MIDI)
II Song pointer position

u· ,
} MMTIME;

Setting the Time Format
MMTIME can represent time in one or more different formats including milli­
seconds, samples, SMPTE, and MIDI song-pointer formats. The wType field
specifies the format used to represent time. Before calling a function that uses the
MMTIME structure, you must set the wType field to indicate your requested time
format. Be sure to check wType after the call to see if the requested time format is
supported. If the requested time format is not supported, the time is specified in an
alternate time format selected by the device driver and the wType field is changed
to indicate the selected time format. MMSYSTEM.H defines the following flags
for the wType field of the MMTIME structure:

Flag

TIME_MS

TIME_SAMPLES

TIME_BYTES

TIME_SMPTE

TIME_MIDI

Description

Milliseconds

Number of waveform audio samples

Number of waveform audio bytes

SMPTEtime

MIDI song-position pointer

Using Low-Level Audio Services 5-13

For details on using MMTIME with the waveOutGetPosition function, see
"Getting the Current Playback Position," later in this chapter.

Getting the System Time
Use the timeGetSystemTime or timeGetTime functions to get the system
time. System time is defined as the time (in milliseconds) since Windows was
started. For more information on timeGetSystemTime and timeGetTime, see
Chapter 6, "Timer and Joystick Services."

Handling Errors with Audio Functions
Low-level audio functions return a non-zero error code. The multimedia exten­
sions provide a set of functions that convert these error codes into a textual
description of the error. The application must still look at the error value itself
to determine how to proceed, but textual descriptions of errors can be used in
dialog boxes describing errors to users.

The following functions can be used to get textual descriptions oflow-Ievel
audio errors:

midiInGetErrorText
Retrieves a textual description of a specified MIDI input error.

midiOutGetErrorText
Retrieves a textual description of a specified MIDI output error.

wavelnGetErrorText
Retrieves a textual description of a specified waveform input error.

waveOutGetErrorText
Retrieves a textual description of a specified waveform output error.

The only low-level audio functions that don't return error codes are the
... GetNumDevs functions. These functions return a value of 0 if no devices
are present in a system, or if any errors are encountered by the function.

5-14 low-level Audio Services

Playing Waveform Audio
If your application plays waveform audio, you should use the Media Control
Interface (MCI) to control waveform output devices. If the MCI waveform
playback services don't meet the needs of your application, you can manage
waveform playback by using the low-level waveform services.

Waveform Output Data Types
The MMSYSTEM.H header file defines data types and function prototypes for all
of the audio functions. You must include this header file in any source module that
uses these functions. MMSYSTEM.H defines the following data types for the
waveform output functions.

HWAVEOUT
A handle to an open waveform output device.

WA VEOUTCAPS
A data structure used to inquire about the capabilities of a particular waveform
output device.

WAVEFORMAT
A data structure that specifies the data formats supported by a particular
waveform output device. This data structure is also used for waveform input
devices.

WAVEHDR
A data structure that is a header for a block of waveform output data. This data
structure is also used for waveform input devices.

Querying Waveform Output Devices
Before playing a waveform, you should call the waveOutGetDevCaps function to
determine the waveform output capabilities of the playback device, as described
earlier in this chapter. This function takes a pointer to a WAVEOUTCAPS
structure, which it fills with information about the capabilities of a given device.
This information includes the manufacturer and product IDs, a product name for
the device, and the version number of the device driver.

Playing Waveform Audio 5-15

In addition, the W A VEOUTCAPS structure provides information on the
standard waveform formats and features supported by the device driver. The
MMSYSTEM.H header file defines W A VEOUTCAPS as follows:

typedef struct waveoutcaps_tag
UINT wMid;
UINT wPid;
VERSION vDriverVersion;
char szPname[MAXPNAMELEN];
DWORD dwFormats;
UINT wChannels;
DWORD dwSupport;

} WAVEOUTCAPS;

1* manufacturer 10 */
/* product 10 */
/* driver version */
/* product name */
/* supported standard formats */
/* number of channels */
/* supported features */

Determining Standard Format Support
The dwFormats field of the W A VEOUTCAPS structure specifies the standard
waveform formats supported by a device. The MMSYSTEM.H header file defines
the following standard waveform format identifiers for the dwFormats field:

Format Identifier

WAVE_FORMAT_IM08

WAVE_FORMAT_1S08

WAVE_FORMAT_IMI6

WAVE_FORMAT_1SI6

WAVE_FORMAT_2M08

WAVE_FORMAT_2S08

WAVE_FORMAT_2MI6

WAVE_FORMAT_2S16

WAVE_FORMAT_ 4M08

WAVE_FORMAT_ 4S08

WAVE_FORMAT_ 4M16

WAVE_FORMAT_ 4S16

Waveform Format

8-bit mono at 11.025 kHz

8-bit stereo at 11.025 kHz

16-bit mono at 11.025 kHz

16-bit stereo at 11.025 kHz

8-bit mono at 22.05 kHz

8-bit stereo at 22.05 kHz

16-bit mono at 22.05 kHz

16-bit stereo at 22.05 kHz

8-bit mono at 44.1 kHz

8-bit stereo at 44.1 kHz

16-bit mono at 44.1 kHz

16-bit stereo at 44.1 kHz

5-16 low-level Audio Services

The dwFormats field is a logical OR of the flags listed above. For example, to
determine if a device supports a waveform format of l6-bit stereo at 44.1 kHz, use
this technique:

if(waveOutCaps.dwFormats & WAVE_FORMAT_4S16)
1* Format is supported *1

else
1* Format is not supported *1

This information on standard-format support also applies to the WA VEINCAPS
structure used with waveform input devices. For information on the W A VEINCAPS
structure, see "Querying Waveform Input Devices," later in this chapter.

To determine if a specific format is supported by a device (as opposed to all
standard formats supported by a device), use the wave Out Open function with
the WAVE_FORMAT _QUERY flag as shown in the next section.

Determining Non-Standard Format Support
Waveform devices can support non-standard formats not listed in the preceding
table. To see if a particular format (standard or non-standard) is supported by a
device, you can call waveOutOpen with the WAVE_FORMAT_QUERY flag.
The WAVE_FORMAT _QUERY flag tells waveOutOpen to check if the
requested format is supported. The wave device is not actually opened. The
requested format is specified by the structure pointed to by the IpFormat
parameter passed to waveOutOpen. For information about setting up this
structure, see "Specifying Waveform Data Formats," later in this chapter. The
following code fragment uses this technique to determine if a given waveform
device supports a given format:

1* Determines if the given waveform output device supports a given wave­
* form format. Returns 0 if the format is supported, WAVEERR_BADFORMAT
* if the format is not supported, and one of the MMSYSERR_ error codes if
* there are other errors encountered in opening the given waveform device.
*1

UINT IsFormatSupported(LPPCMWAVEFORMAT lpPCMWaveFormat, UINT wDeviceID)
{

return (waveOutOpen(
NULL, /I ptr can be NULL for query
wDeviceID, /I the device ID
(LPWAVEFORMAT)lpPCMWaveFormat, /I defines requested format
NU LL, II no callback
NULL, II no instance data
WAVe FORMA LOUERY)) ; /I query only, don't open device

Playing Waveform Audio 5-17

This technique to determine non-standard format support also applies to waveform
input devices. The only difference is that the wave In Open function is used in
place of waveOutOpen to query for format support.

Note To determine if a particular waveform-data format is supported by any of the waveform devices
in a system, use the technique illustrated in the previous example, but specify the WAVE_MAPPER
constant for the wDevicelD parameter. See "Selecting a Waveform Output Device," later in this chapter,
for more information on using the WAVE_MAPPER constant.

Determining Capabilities of Waveform Output Devices
Waveform output devices vary in the capabilities they support. The dwSupport
field of the W A VEOUTCAPS structure indicates whether a given device supports
capabilities such as volume and pitch changes. MMSYSTEM.H defines the
following flags for the dwSupport field:

Flag

WAVECAPS_PITCH

WAVECAPS_PLAYBACKRATE

WAVECAPS_ VOLUME

WAVECAPS_LRVOLUME

Description

Pitch-change support

Playback-rate-change support

Volume-control support

Individual volume-control support for
both left and right channels

The dwSupport field is a logical OR of the flags listed in the preceding table. For
example, to determine if a device supports volume changes, use this technique:

if(waveOutCaps.dwSupport & WAVECAPS_VOLUME)
/* Volume changes are supported */

else
/* Volume changes are not supported */

For more information on playback volume levels, see "Changing Waveform
Playback Volume," later in this chapter. For more information on pitch and
playback rates, see "Changing Pitch and Playback Rate," also later in this chapter.

5-18 Low-Level Audio Services

Opening Waveform Output Devices
Use waveOutOpen to open a waveform output device for playback. This function
opens the device associated with the specified device ID and returns a handle to
the open device by writing the handle to a specified memory location. The syntax
of the waveOutOpen function is as follows:

UINT waveOutOpen(lph WaveOut, wDeviceID, IpF ormat, dwCallback,
dw/nstance, dwFlags)

The IphWaveOutparameter is an LPHWAVEOUT and specifies a far pointer to a
memory location the function fills with a handle to the open waveform output
device. Use this handle to identify the waveform device when calling other wave­
form-output functions.

The wDeviceID parameter is a UINT and identifies the waveform output device to
open. See "Querying Audio Devices," earlier in this chapter, for details about
device IDs. If you specify the WAVE_MAPPER constant, the function finds
a waveform output device capable of playing the given format and attempts to
open it.

The IpF ormat parameter is an LPW A VEFORMAT and specifies a far pointer
to a W A VEFORMAT data structure. This data structure contains information
on the format of the waveform data that will be sent to the waveform device.
The following section explains how to use this data structure. You can free
the WAVEFORMAT data structure immediately after passing it to the
waveOutOpen function.

The dwCallback parameter is a DWORD and specifies either a window handle or
the address of a low-level callback function. The callback can be used to monitor
the progress of the playback of waveform data so an application can determine
when to send additional data blocks or when to free data blocks that have been
sent. You must specify the appropriate flag in the dw Flags parameter to indicate
which type of callback you want. If no callback is desired, this parameter is NULL.

The dwlnstance parameter is a DWORD and specifies instance data sent to the
callback function each time it is called.

Playing Waveform Audio 5-19

The dwFlags parameter is a DWORD and specifies one or more flags for opening
a waveform device. Use the WAVE_FORMAT_QUERY flag to specify that you
don't want to actually open a device, but just query whether the device supports
the specified format. For information on using WAVE_FORMAT _QUERY, see
"Determining Non-Standard Format Support," earlier in this chapter. If you
specify a window or low-level callback in the dwCallback parameter, you must
specify either the CALLBACK_WINDOW or the CALLBACK_FUNCTION
flag to indicate the type of callback you are using.

Selecting a Waveform Output Device
Some multimedia computers have multiple waveform output devices. Unless you
know you want to open a specific waveform output device in a system, you should
use the W AVE_MAPPER constant for the device ID when you open a device. The
waveOutOpen function chooses the device in the system best capable of playing
the given data format.

Specifying Waveform Data Formats
When you call waveOutOpen to open a device driver for playback or to query if
the driver supports a particular data format, use the lpF ormat parameter to specify
a pointer to a structure containing the requested waveform data format.

The WAVEFORMAT The W A VEFORMA T structure specifies format information common to all types
Structure of waveform data formats. Currently, the only format supported is PCM, but in the

future, other types such as ADPCM might be supported. The MMSYSTEM.H file
defines the WAVEFORMAT structure as follows:

typedef struct waveformat_tag {
UINT wFormatTag;
UINT nChannels;
DWORD nSamplesPerSec;
DWORD nAvgBytesPerSec;
UINT nBlockAlign;

WAVEFORMAT;

/*
/*

/*
/*

/*

format type */
number of channels */
number of samples per second */
average data rate */

block alignment */

5-20 Low-Level Audio Services

The
PCMWAVEFORMAT

Structure

The wFormatTag field specifies the format type for the data. Currently, the only
flag defined for this field is WAVE_FORMAT _PCM for PCM waveform data.

The nChannels field specifies the number of discrete channels in the format. Use
a value of 1 for mono data and 2 for stereo data.

The nSamplesPerSec field specifies the sample rate.

The nA vgBytesPerSec field specifies the average data rate in bytes per second.
For example, l6-bit stereo at 44.1 kHz has an average data rate of 176400 bytes
per second (2 channels x 2 bytes per sample per channel x 44100 samples per
second).

The nBlockAlign field specifies the minimum atomic unit of data that can be
passed to a driver. For PCM data, the block alignment is the number of bytes used
by a single sample, including data for both channels if the data is stereo. For
example, the block alignment for l6-bit stereo PCM is 4 bytes (2 channels x 2
bytes per sample).

In addition to the general information in the W A VEFORMAT structure, specific
infoIP,.l~tion is needed to describe a PCM waveform data format completely. For PCM
waveform data, the PCMW A VEFORMAT structure includes a W A VEFORMAT
structure along with an additional field containing PCM-specific information as
follows.

typedef struct pcmwaveformat_tag {
WAVEFORMAT wf;
UINT wBitsPerSample;

} PCMWAVEFORMAT;

/* general format information */
/* number of bits per sample */

The wf field specifies general format information. The wBitsPerSample field
specifies the number of bits per sample for PCM data.

Playing Waveform Audio 5-21

Using the PCMWAVEFORMAT Structure
For PCM audio data, use the PCMW A VEFORMAT structure to specify the data
format. The following code fragment shows how to set up a PCMW A VEFORMAT
structure for 11.025 kHz 8-bit mono and for 44.1 kHz 16-bit stereo. After setting
up PCMW A VEFORMA T, the example calls the IsFormatSupported function to
verify that the PCM waveform output device supports the format. The source for
IsFormatSupported is given in an example in "Determining Non-Standard
Format Support," earlier in this chapter.

UINT wReturn;
PCMWAVEFORMAT pcmWaveFormat;

/* Set up PCMWAVEFORMAT for 11 kHz 8-bit mono
*/

pcmWaveFormat.wf.wFormatTag = WAVE_FORMAT_PCM;
pcmWaveFormat.wf.nChannels = 1;
pcmWaveFormat.wf.nSamplesPerSec = 11025L;
pcmWaveFormat.wf.nAvgBytesPerSec = 11025L;
pcmWaveFormat.wf.nBlockAlign 1;
pcmWaveFormat.wBitsPerSample = 8;

/* See if format is supported by any device in system
*/

wReturn = IsFormatSupported(&pcmWaveFormat, WAVE_MAPPER);

/* Report results
*/

if (wReturn == 0)
MessageBox(hMainWnd, "11 kHz 8-bit mono is supported.",

.... , MB_ICONINFORMATION);
else if (wReturn == WAVERR_BADFORMAT)

else

MessageBox(hMainWnd, "11 kHz 8-bit mono is NOT supported.",
'''', MB_ICONINFORMATION);

MessageBox(hMainWnd, "Error opening waveform device.",
"Error", MB_ ICONEXCLAMATION);

/* Set up PCMWAVEFORMAT for 44.1 kHz 16-bit stereo
*/

pcmWaveFormat.wf.wFormatTag = WAVE_FORMAT_PCM;
pcmWaveFormat.wf.nChannels = 2;
pcmWaveFormat.wf.nSamplesPerSec = 44100L;
pcmWaveFormat.wf.nAvgBytesPerSec = 176400L;
pcmWaveFormat.wf.nBlockAlign 4;
pcmWaveFormat.wBitsPerSample = 32;

5-22 Low-Level Audio Services

1* See if format is supported by any device in the system
*1

wReturn = IsFormatSupported(&pcmWaveFormat, WAVE_MAPPER);

1* Report results
*1

If (wReturn == 0)
MessageBox(hMainWnd, "44.1 kHz 16-bit stereo is supported.",

"", MB_ICONINFORMATION);
else if (wReturn == WAVERR_BADFORMAT)

else

MessageBox(hMainWnd, "44.1 kHz 16-bit stereo is NOT supported.",
"", MB_ ICONINFORMATION);

MessageBox(hMainWnd, "Error opening waveform device.",
"Error", MB_ICONEXCLAMATION);

Getting Format Information from a WAVE File
The easiest way to get waveform-format information from a WAVE file is by
using the multimedia file va services. To do this, use mmioDescend to locate the
"fmt " chunk containing the format information and then mmioRead to read the
format chunk directly into the proper format structure (chunks are the basic
building blocks of RIFF files). The following code fragment illustrates this
technique. For more information about multimedia file va, see Chapter 7,
"Multimedia File va Services."

void ReversePlay()
{

HMMIO hmmio;
MMCKINFO mmckinfoParent;
MMCKINFO mmckinfoSubchunk;
DWORD dwFmtSize;
char szFileName[MAX_FILENAME SIZE J;
HANDLE hFormat;
WAVEFORMAT *pFormat;

1* Open the given file for reading using buffered liD.
*1

1* Locate a "RIFF" chunk with a "WAVE" form type
* to make sure it's a WAVE file.
*1

Playing Waveform Audio 5-23

1* Now, find the format chunk (form type "fmt "). It should be
* a subchunk of the "RIFF" parent chunk.
*1

mmckinfoSubchunk.ckid = mmioFOURCC('f', 'm', 't', ' ');
if (mmioDescend(hmmio, &mmckinfoSubchunk, &mmckinfoParent,

MMIO_ FINDCHUNK))

MessageBox(hwndApp, "WAVE file is corrupted.",
NULL, MB OK I MB_ICONEXCLAMATION);

mmioClose(hmmio, 0);
return;

1* Get the size of the format chunk, allocate and lock memory for it.
*1

dwFmtSize = mmckinfoSubchunk.cksize;
hFormat = LocalAlloc(LMEM_MOVEABLE, LOWORD(dwFmtSize));
if (!hFormat)
{

MessageBox(hwndApp, "Out of memory.",
NULL, MB OK MB_ICONEXCLAMATION);

mmioClose(hmmio, 0);
return;

pFormat = (WAVEFORMAT *) LocalLock(hFormat);
if (!pFormat)
{

}

MessageBox(hwndApp, "Failed to lock memory for format chunk.",
NULL, MB_OK I MB_ICONEXCLAMATION);

LocalFree(hFormat);
mmioClose(hmmio, 0);
return;

5-24 Low-Level Audio Services

}

1* Read the format chunk.
*1

if (mmioRead(hmmio, pFormat, dwFmtSize) != dwFmtSize)
{

MessageBox(hwndApp, "Failed to read format chunk.",
NULL, MB_OK I MB_ ICONEXCLAMATION);

LocalUnlock(hFormat);
LocalFree(hFormat);
mmioClose(hmmio, 0);
return;

1* Make sure it's a PCM file.
*1

if (pFormat->wFormatTag != WAVE FORMAT_PCM)
{

}

LocalUnlock(hFormat);
LocalFree(hFormat);
mmioClose(hmmio, 0);
MessageBox(hwndApp, "The file is not a PCM file.",

NULL, MB_OK I MB_ICONEXCLAMATION);
return;

1* Make sure the system has a waveform output
* device capable of playing this format.
*1

if (waveOutOpen(&hWaveOut, WAVE_MAPPER, (LPWAVEFORMAT)pFormat, NULL,
0L, WAVE_FORMAT_QUERY»

{

}

LocalUnlock(hFormat);
LocalFree(hFormat);
mmioClose(hmmio, 0);
MessageBox(hwndApp, "The waveform device can't play this format.",

NULL, MB_OK I MB_ICONEXCLAMATION);
return;

Playing Waveform Audio 5-25

Writing Waveform Data
After successfully opening a waveform output device driver, you can begin
waveform playback. Windows provides the following function for sending data
blocks to waveform output devices:

waveOutWrite
Writes a data block to a waveform output device.

Use the WA VEHDR data structure to specify the waveform data block you are
sending using waveOutWrite. This structure contains a pointer to a locked data
block, the length of the data block, and some assorted flags. The MMSYSTEM.H
file defines the W A VEHDR data structure as follows:

typedef struct wavehdr_tag {

LPSTR 1 pData; 1* pointer to data block *1
DWORD dwBufferLength; 1* length of data block *1
DWORD dwBytesRecorded; 1* number of bytes recorded *1
DWORD dwUser; 1* user instance data *1
DWORD dwFlags; 1* assorted flags *1
DWORD dwLoops; 1* loop control counter *1
struct wavehdr_tag far *lpNext; 1* private to driver *1
DWORD reserved; 1* private to driver *1

} WAVEHDR;

After you send a data block to an output device using waveOutWrite, you must
wait until the device driver is finished with the data block before freeing it. If you
are sending multiple data blocks, you must monitor the completion of data blocks
to know when to send additional blocks. For details on different techniques for
monitoring data block completion, see "Managing Audio Data Blocks," earlier in
this chapter.

5-26 low-level Audio Services

Example of Writing Waveform Data
The following code fragment illustrates the steps required to allocate and set up a
W A VEHDR data structure, and write a block of data to a waveform output device.

1* Global variables--Must be visible to window-procedure function so it
* can unlock and free the data block after it has been played.
*1

HANDLE
HPSTR

hData
1 pData

NULL;
NULL;

II handle to waveform data memory
II pointer to waveform data memory

void ReversePlay()
{

HWAVEOUT hWaveOut;
HWAVEHDR hWaveHdr;
LPWAVEHDR lpWaveHdr;
HMMIO hmmio;
MMCKINFO mmckinfoParent;
MMCKINFO mmckinfoSubchunk;
UINT wResult;
HANDLE hFormat;
WAVEFORMAT *pFormat;
DWORD dwDataSize;

1* Open a waveform device for output using window callback.
*1

if (waveOutOpen«LPHWAVEOUT)&hWaveOut, WAVE_MAPPER,
(LPWAVEFORMAT)pFormat,
(LONG)hwndApp, 0L, CALLBACK_WINDOW»

{

}

MessageBox(hwndApp, "Failed to open waveform output device.",
NULL, MB_OK I MB_ICONEXCLAMATION);

LocalUnlock(hFormat);
LocalFree(hFormat);
mmioClose(hmmio, 0);
return;

Playing Waveform Audio 5-27

1* Allocate and lock memory for the waveform data. The memory for
* waveform data must be globally allocated with GMEM_MOVEABLE and
* GMEM_SHARE flags.
*1

hData = GlobalAlloc(GMEM MOVEABLE I GMEM_SHARE, dwDataSize);
if (!hData)

MessageBox(hwndApp, "Out of memory.",
NULL, MB OK MB_ICONEXCLAMATION);

mmioClose(hmmio, 0);
return;

lpData = GlobalLock(hData);
if (! 1 pData)
{

MessageBox(hwndApp, "Failed to lock memory for data chunk.",
NULL, MB_OK I MB_ICONEXCLAMATION);

GlobalFree(hData);
mmioClose(hmmio, 0);
return;

1* Read the waveform data subchunk.
*1

if(mmioRead(hmmio, (HPSTR) lpData, dwDataSize) != dwDataSize)
{

}

MessageBox(hwndApp, "Failed to read data chunk.",
NULL, MB_OK I MB_ICONEXCLAMATION);

GlobalUnlock(hData);
GlobalFree(hData);
mmioClose(hmmio, 0);
return;

1* Allocate and lock memory for the header. This memory must also be
* globally allocated with GMEM_MOVEABLE and GMEM_SHARE flags.
*1

hWaveHdr = GlobalAlloc(GMEM_MOVEABLE I GMEM_SHARE,
(DWORD) sizeof(WAVEHDR));

if (!hWaveHdr)
{

GlobalUnlock(hData);
GlobalFree(hData);
MessageBox(hwndApp, "Not enough memory for header.",

NULL, MB_OK I MB_ICONEXCLAMATION);
return;

5-28 low-level Audio Services

}

lpWaveHdr = (LPWAVEHDR) GlobalLock(hWaveHdr);
if (llpWaveHdr)
{

}

GlobalUnlock(hData);
GlobalFree(hData);
MessageBox(hwndApp, "Failed to lock memory for header.",

NULL, MB_OK I MB_ICONEXCLAMATION);
return;

/* After allocation, the header must be set up and prepared for use.
*/

lpWaveHdr->lpData = lpData;
lpWaveHdr->dwBufferLength dwDataSize;
lpWaveHdr->dwFlags = 0L;
lpWaveHdr->dwLoops = 0L;
waveOutPrepareHeader(hWaveOut, lpWaveHdr, sizeof(WAVEHDR));

/* Then the data block can be sent to the output device. The
* waveOutWrite function returns immediately and waveform data
* is sent to the output device in the background.
*/

wResult = waveOutWrite(hWaveOut, lpWaveHdr, sizeof(WAVEHDR));
if (wResult 1= 0)
{

}

waveOutUnprepareHeader(hWaveOut, lpWaveHdr, sizeof(WAVEHDR));
GlobalUnlock(hData);
GlobalFree(hData);
MessageBox(hwndApp, "Failed to write block to device",

NULL, MB_OK I MB_ICONEXCLAMATION);
return;

Playing Waveform Audio 5-29

PCM Waveform Data Format
The IpData field in the W A VEHDR structure points to the waveform data
samples. For 8-bit peM data, each sample is represented by a single unsigned data
byte. For 16-bit peM data, each sample is represented by a 16-bit signed value.
The following table summarizes the maximum, minimum, and midpoint values for
peM waveform data.

Data Format Maximum Value Minimum Value Midpoint Value

8-bit peM

16-bit peM

255 (OxFF) 0 128 (Ox80)

32767 (Ox7FFF) -32768 (Ox8000) 0

PCM Data Packing The order of the data bytes varies between 8-bit and 16-bit, and mono and stereo
formats. The following illustrations show data packing for the first four words of
different peM waveform data formats:

Sample 1 Sample 2 Sample 3 Sample 4

Channel 0 Channel 0 Channel 0 Channel 0

Data packing for 8-bit mono PCM.

Sample 1 Sample 2

Channel 0 Channel 1 Channel 0 Channel 1
(left) (right) (left) (right)

Data packing for 8-bit stereo PCM.

5-30 Low-Level Audio Services

Sample 1 Sample 2

Channel 0 Channel 0 Channel 0 Channel 0

Low-Order Byte High-Order Byte Low-Order Byte High-Order Byte

Data packing for 16-bit mono PCM.

Sample 1

Channel 0 Channel 0 Channel 1 Channel 1
(left) (left) (right) (right)

Low-Order Byte High-Order Byte Low-Order Byte High-Order Byte

Data packing for 16-bit stereo PCM.

Using Window Messages to Manage Waveform Playback
The following messages can be sent to a window-procedure function for managing
waveform playback:

Message Description

MM_ WOM_CLOSE Sent when the device is closed using waveOutClose.

MM_ WOM_DONE Sent when the device driver is finished with a data
block sent using waveOutWrite.

MM_ WOM_OPEN Sent when the device is opened using waveOutOpen.

A wParam and lParam parameter is associated with each of these messages. The
wParam parameter always specifies a handle to the open waveform device. For
the MM_ WOM_DONE message, lParam specifies a far pointer to a W A VEHDR
structure identifying the completed data block. The lParam parameter is unused
for the MM_ WOM_CLOSE and MM_ WOM_OPEN messages.

The most useful message is MM_ WOM_DONE. When this message signals that
playback of a data block is complete, you can clean up and free the data block.
Unless you need to allocate memory or initialize variables, you probably don't
need to process the MM_ WOM_OPEN and MM_ WOM_CLOSE messages.

Example of
Processing

MM_ WOM_DDNE

Playing Waveform Audio 5-31

The following code fragment shows how to process the MM_ WOM_DONE
message. This fragment assumes the application does not play multiple data
blocks, so it can close the output device after playing a single data block.

/* WndProc--Main window procedure function.
*/

LRESULT FAR PASCAL WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM
1 Param)
{

}

switch (msg)

}

case MM_WOM_DONE:
/* A waveform data block has been played and can now be freed.
*/

waveOutUnprepareHeader«HWAVEOUT) wParam,
(LPWAVEHDR) lParam, sizeof(WAVEHDR));

GlobalUnlock(hData);
GlobalFree(hData);
waveOutClose«HWAVEOUT) wParam);

break;

return DefWindowProc(hWnd,msg,wParam,lParam);

Using a Low-Level Callback to Manage Waveform Playback
The syntax of the low-level callback function for waveform output devices
is as follows:

void FAR PASCAL waveOutCallback(hWaveOut, wMsg, dw/nstance,
dwParaml, dwParam2)

5-32 Low-Level Audio Services

Message­
Dependent

Parameters

The following messages can be sent to the wMsg parameter of waveform output
callback functions:

Message

WOM_CLOSE

WOM_OPEN

WOM_DONE

Description

Sent when the device is closed using waveOutClose.

Sent when the device is opened using w3veOutOpen.

Sent when the device driver is finished with a data block
sent using waveOutWrite.

These messages are similar to the messages sent to window-procedure functions,
however, the parameters are different. A handle to the open waveform device is
passed as a parameter to the callback, along with the DWORD of instance data
that was passed using waveOutOpen.

The callback has two message-dependent parameters: dwParaml and
dwParam2. For the WOM_DONE message, dwParaml specifies a far pointer
to a W A VEHDR structure identifying the completed data block and dwParam2
is not used. For the WOM_OPEN and WOM_CLOSE messages, neither ofthe
parameters are used.

After the driver is finished with a data block, you can clean up and free the data
block, as described in "Allocating and Preparing Audio Data Blocks," earlier in
this chapter. Because ofthe restrictions oflow-level audio callbacks, you can't do
this within the callback-you must do this work outside of the callback.

Getting the Current Playback Position
While a waveform is playing, you can monitor the current playback position
within the waveform. Windows provides the following function for this purpose:

waveOutGetPosition
Retrieves the current playback position of a waveform output device.

This function takes three parameters: a handle to a waveform output device, a far
pointer to an MMTIME structure, and a DINT specifying the size of the
MMTIME structure.

Playing Waveform Audio 5-33

For waveform devices, the preferred time format to represent the current position
is in samples. Thus, the current position of a waveform device is specified as the
number of samples for one channel from the beginning of the waveform.

To query the current position of a waveform device, set the wType field of the
MMTIME structure to the constant TIME_SAMPLES and pass this structure to
waveOutGetPosition.

Stopping, Pausing, and Restarting Playback
While a waveform is playing, you can stop or pause playback. Once playback has
been paused, you can restart it. Windows provides the following functions for
controlling waveform playback:

waveOutPause
Pauses playback on a waveform output device.

waveOutReset
Stops playback on a waveform output device and marks all pending data
blocks as done.

waveOutRestart
Resumes playback on a paused waveform output device.

Use waveOutPause to pause a waveform device that is currently playing. To
resume playback on a paused device, use waveOutRestart. These functions take a
single parameter: the waveform output device handle returned by waveOutOpen.
Pausing a waveform device might not be instantaneous-the driver can finish
playing the current block before pausing playback.

Generally, as soon as the first waveform data block is sent using waveOutWrite,
the waveform device begins playing. If you don't want the waveform to start
playing immediately, call waveOutPause before calling waveOutWrite. Then,
when you want to begin playing the waveform, call waveOutRestart.

5-34 Low-Level Audio Services

To stop a waveform from playing, use waveOutReset. This function differs
from waveOutPause in that it also marks all pending data blocks as being done.
You can't restart a device that has been stopped with waveOutReset by using
waveOutRestart-you must use waveOutWrite to send the first data block to
resume playback on the device.

Closing Waveform Output Devices
After waveform playback is complete, call waveOutClose to close the wave­
form device. If waveOutClose is called while a waveform is playing, the close
operation will fail and the function returns an error code indicating that the device
was not closed. If you don't want to wait for playback to end before closing the
device, call waveOutReset before closing. This terminates playback and allows
the device to be closed. Be sure to clean up the preparation on all data blocks
before closing the waveform output device.

Changing Waveform Playback Volume
Windows provides the following functions to query and set the volume level of
waveform output devices:

waveOutGetVolume
Gets the volume level of the specified waveform device.

waveOutSetVolume
Sets the volume level of the specified waveform device.

Not all waveform devices support volume changes. Some devices support
individual volume control on both the left and right channels. See "Determining
Capabilities of Waveform Output Devices," earlier in this chapter, for information
on how to determine the volume-control capabilities of waveform devices.

Playing Waveform Audio 5-35

Note Unless your application is designed to be a master volume-control application providing the
user with volume control for all audio devices in a system, you should open an audio device before
changing its volume. You should also query the volume level before changing it and restore the volume
level to its previous level as soon as possible.

Volume is specified in a DWORD; the upper 16 bits specify the relative volume
of the right channel, and the lower 16 bits specify the relative volume of the left
channel, as shown in the following illustration:

HIWORD LOWORD

Right-Channel Volume Left- or Mono-Channel Volume

DWORD packing for waveform volume levels.

For devices that don't support left- and right-channel volume control, the lower
16 bits specify the volume level, and the upper 16 bits are ignored. Volume-level
values range from OxO (silence) to OxFFFF (maximum volume) and are interpreted
logarithmically. The perceived volume increase is the same when increasing the
volume level from Ox5000 to Ox6000 as it is from Ox4000 to Ox5000.

When querying with waveOutGetVolume, the volume is returned in a DWORD
location specified by a far pointer parameter.

Changing Pitch and Playback Rate
Some waveform output devices can vary the pitch and the playback rate of
waveform data. Not all waveform devices support pitch and playback-rate
changes. See "Determining Capabilities of Waveform Output Devices," earlier
in this chapter, for information on how to determine if a particular waveform
device supports pitch and playback rate changes.

5-36 Low-Level Audio Services

The differences between changing pitch and playback rate are:

• Changing the playback rate is performed by the device-driver and does not
require specialized hardware. The sample rate is not changed, but the driver
interpolates by skipping or synthesizing samples. For example, if the playback
rate is changed by a factor of two, the driver skips every other sample.

• Changing the pitch requires specialized hardware. The playback rate and
sample rate are not changed.

Windows provides the following functions to query and set waveform pitch and
playback rates:

waveOutGetPitch
Gets the pitch for the specified waveform output device.

waveOutGetPlaybackRate
Gets the playback rate for the specified waveform output device.

waveOutSetPitch
Sets the pitch for the specified waveform output device.

waveOutSetPlaybackRate
Sets the playback rate for the specified waveform output device.

Specifying Pitch The pitch and playback rates are changed by a factor specified with a fixed-point
and Playback Rate number packed into a DWORD. The upper 16 bits specify the integer part; the

lower 16 bits specify the fractional part of the number. For example, the value 1.5
is represented as Ox00018000L. The value 0.75 is represented as OxOOOOCOOOL.
A value of 1.0 (OxOOO 1 0000) means the pitch or playback rate is unchanged.

Recording Waveform Audio 5-37

Recording Waveform Audio
If the Mel waveform-recording services don't meet the needs of your application,
you can handle waveform recording using the low-level waveform services.

Waveform Input Data Types
The MMSYSTEM.H file defines data types and function prototypes for all of
the audio functions. You must include this header file in any source module that
uses these functions. MMSYSTEM.H defines the following data types for
waveform-input functions:

HWAVEIN
A handle to an open waveform input device.

WAVEINCAPS
A data structure used to inquire about the capabilities of a particular waveform
input device.

WAVEFORMAT
A data structure that specifies the data formats supported by a particular
waveform input device. This data structure is also used for waveform output
devices.

WAVEHDR
A data structure that is a header for a block of waveform input data. This data
structure is also used for waveform output devices.

5-38 Low-Level Audio Services

Querying Waveform Input Devices
Before recording a waveform, you should call the waveInGetDevCaps function
to determine the waveform input capabilities of the system. This function takes a
pointer to a W A VEIN CAPS structure, which it fills with information on the
capabilities of a given device. This information includes the manufacturer and
product IDs, a product name for the device, and the version number of the device
driver. In addition, the W A VEINCAPS structure provides information on the
standard waveform formats that the device supports. MMSYSTEM.H defines
W A VEINCAPS as follows.

typedef struct waveincaps_tag {
UINT wMid;
UINT wPid;
VERSION vOriverVersion;
char szPname[MAXPNAMELEN];
OWORO dwFormats;
UINT wChannels;
WAVEINCAPS;

Opening Waveform Input Devices

/*
/*

1*
1*
1*
/*

manufacturer 10 */
product 10 */
driver version */
product name */
supported standard formats */
number of channels */

Use waveInOpen to open a waveform input device for recording. This function
opens the device associated with the specified device ID and returns a handle to
the open device by writing the handle to a specified memory location. The syntax
of the waveInOpen function is as follows:

UINT waveInOpen(lphWaveIn, wDeviceID, lpFormat, dwCallback, dwlnstance,
dwFlags)

The lph Waveln parameter is an LPHW A VEIN and specifies a far pointer to a
memory location the function fills with a handle to the open waveform input
device. Use this handle to identify the device when calling other waveform input
functions.

The wDeviceID parameter is a UINT and identifies the waveform input device to
be opened. See "Querying Audio Devices," earlier in this chapter, for details about
device IDs. If you specify the WAVE_MAPPER constant, the function will find a
waveform input device capable of recording in the given format and attempt to
open it.

Recording Waveform Audio 5-39

The IpFormat parameter is an LPW A VEFORMAT and specifies a far pointer to a
W A VEFORMAT data structure. This data structure contains infonnation on the
format of the recorded waveform data that will be sent back to the application. For
details on using this data structure, see "Specifying Wavefonn Data Fonnats,"
earlier in this chapter. You can free the W A VEFORMAT data structure
immediately after passing it to waveInOpen.

The dwCallback parameter is a DWORD and specifies either a window handle or
the address of a low-level callback function. The callback can be used to monitor
the progress of wavefonn recording so an application can determine when data
blocks have been filled with wavefonn data and when to send additional data
blocks for recording. You must specify the appropriate flag in the dwFlags
parameter to indicate which type of callback you want. If no callback is needed,
this parameter is NULL.

The dwlnstance parameter is a DWORD and specifies 32 bits of instance data sent
to the callback function each time it is called.

The dwFlags parameter is a DWORD and specifies one or more flags for opening
a wavefonn device. Use the W A VE_FORMAT_QUERY flag to specify that you
don't want to actually open a device, but just query whether the device supports
a given fonnat. For information on using W AVE_FORMAT_QUERY, see
"Detennining Non-Standard Fonnat Support," earlier in this chapter. If you are
specifying a window or low-level callback in the dwCallback parameter, you must
specify either the CALLBACK_WINDOW or the CALLBACK_FUNCTION flag
to indicate the type of callback used.

Selecting a Waveform Input Device
Some multimedia computers will have multiple wavefonn input devices. Unless
you know you want to open a specific wavefonn input device in a system, you
should use the WAVE_MAPPER constant for the device ID when you open a
device. The waveOutOpen function will choose the device in the system best able
to record in the given data format.

Managing Waveform Recording
Once you open a waveform input device, you can begin recording waveform data.
Waveform data is recorded into application-supplied buffers specified by a
W A VEHDR data structure. This is the same data structure used for wavefonn
playback described in "Writing Wavefonn Data," earlier in this chapter. Memory
for the W A VEHDR structure and its accompanying data buffer must be allocated
and prepared, as shown in "Allocating and Preparing Audio Data Blocks," earlier
in this chapter.

5-40 low-level Audio Services

Windows provides the following functions to manage waveform recording:

waveInAddBuffer
Sends a buffer to the device driver so it can be filled with recorded
waveform data.

waveInReset
Stops waveform recording and marks all pending buffers as done.

waveInStart
Starts waveform recording.

waveInStop
Stops waveform recording.

Use the wavelnAddBufferfunction to send data buffers to the device driver. As
the buffers are filled with recorded waveform data, the application is notified with
either a window message or with a callback message, depending on the flag
specified when the device was opened.

Use the wavelnStart function to begin recording. Before beginning recording,
you should send at least one buffer to the driver, or incoming data might be lost.
To stop waveform recording, use wavelnStop.

Before closing the device using waveOutClose, call waveOutReset to mark any
pending data blocks as being done.

Using Window Messages to Manage Waveform Recording
The following messages can be sent to a window procedure function for managing
waveform recording:

Message

MM_ WIM_CLOSE

MM_ WIM_DATA

Description

Sent when the device is closed using wavelnClose.

Sent when the device driver is finished with a data
buffer sent using wavelnAddBuffer.

Sent when the device is opened using wavelnOpen.

Recording Waveform Audio 5-41

There is a wParam and IParam parameter associated with each ofthese messages.
The wParam parameter always specifies a handle to the open waveform device.
The IParam parameter is unused for the MM_ WIM_CLOSE and
MM_ WIM_OPEN messages.

For the MM_ WIM_DAT A message, IParam specifies a far pointer to a
WAVEHDR structure that identifies the data buffer. This data buffer might not
be completely filled with waveform data-recording can stop before the buffer
is filled. Use the dwBytesRecorded field of the W AVEHDR structure to
determine the amount of valid data present in the buffer.

The most useful message is MM_ WIM_DATA. Unless you need to allocate memory
or initialize variables, you probably don't need to use the MM_ WIM_OPEN and
MM_ WIM_CLOSE messages. When the device driver is finished with a data block,
you can clean up and free the data block as described in "Allocating and Preparing
Audio Data Blocks," earlier in this chapter.

Using a Low-Level Callback to Manage Waveform Recording
This syntax of the low-level callback function for waveform input devices
is as follows:

void FAR PASCAL wavelnCallback(hWave!n, wMsg, dw/nstance, dwParami,
dwParam2)

The following messages can be sent to the wMsg parameter of waveform input
callback functions:

Message

WIM_CLOSE

WIM_OPEN

WIM_DONE

Description

Sent when the device is closed using wavelnClose.

Sent when the device is opened using wavelnOpen.

Sent when the device driver is finished with a data
block sent using wavelnAddBuffer.

These messages resemble messages sent to window-procedure functions, but their
parameters are different. A handle to an open waveform device is passed as a
parameter to the callback function, along with the DWORD of instance data that
was passed using waveInOpen.

5-42 Low-Level Audio Services

Message­
Dependent

Parameters

The callback has two message-dependent parameters: dwParaml and dwParam2.
For the WIM_CLOSE and WIM_OPEN messages, these parameters are not used.
For the WIM_DONE message, dwParaml specifies a far pointer to a W A VEHDR
structure identifying the completed data block and dwParam2 is not used.

After the driver is finished with a data block, you can clean up and free the data
block. Because of the restrictions of low-level audio callback functions, you can't
do this within the callback. You must set some semaphores and do this outside of
the callback. See "Using a Callback Function to Process Driver Messages," earlier
in this chapter, for details on the restrictions on using callback functions.

Playing MIDI Audio
To play MIDI files, you should use the MCI sequencer. If the MCI sequencer
services don't meet the needs of your application, you can manage MIDI playback
using the low-level MIDI services.

MIDI Output Data Types
The MMSYSTEM.H header file defines data types and function prototypes for all
low-level audio functions. You must include this header file in any source module
that uses these functions. MMSYSTEM.H defines the following data types for
low-level MIDI output functions:

HMIDIOUT
A handle to a MIDI output device.

MIDIHDR
A data structure that is a header for a block of MIDI system-exclusive data.
This data structure is used for input as well as output.

MIDIOUTCAPS
A data structure used to inquire about the capabilities of a particular MIDI
output device.

Playing MIDI Audio 5-43

Querying MIDI Output Devices
Before playing MIDI audio, you should call the midiOutGetDevCaps function
to determine the capabilities of the MIDI output hardware present in the system.
This function takes a pointer to a MIDIOUTCAPS structure that it fills with
information on the capabilities of a given device. This information includes the
manufacturer and product IDs, a product name for the device, and the version
number of the device driver. In addition, the MIDIOUTCAPS structure provides
information on the device technology, the number of voices and notes supported,
the MIDI channels that the device responds to, and features supported by the
driver.

The MMSYSTEM.H file defines the MIDIOUTCAPS structure as follows:

typedef struct midioutcaps_tag
UINT wMid;
UINT wPid;
VERSION vOriverVersion;
char szPname[MAXPNAMELEN];
UINT wTechnology;
UINT wVoices;
UINT wNotes;
UINT wChannelMask;
OWORO dwSupport;

} MIOIOUTCAPS;

/*

/*

/*

/*

1*
1*
1*
1*
1*

manufacturer IO */

product IO */

driver version */

product name */

device technology *1
total simultaneous instruments
total simultaneous notes */

channels device responds to */

features supported *1

Determining the Technology of the Device

*/

MIDI output devices can be either internal synthesizers or external MIDI
output ports. The wTechnology field specifies the technology of the device.
MMSYSTEM.H defines the following flags to identify device technology:

Flag

MOD_MIDIPORT

MOD_SQSYNTH

MOD _FMSYNTH

MOD_SYNTH

MOD_MAPPER

Description

The device is an external MIDI output port.

The device is an internal square-wave synthesizer.

The device is an internal FM synthesizer.

The device is an internal synthesizer (generic).

The device is the MIDI Mapper.

5-44 Low-Level Audio Services

Determining Capabilities of Internal Synthesizers
If the device is an internal synthesizer, additional device information is available
in the wVoices, wNotes, and wChannelMask fields. If the device is an external
output port, these fields are unused.

The wVoices field specifies the number of voices the device supports. Each voice
can have a different sound or timbre. Voices are differentiated by MIDI channel.
For example, a four-voice synthesizer uses four MIDI channels. The wNotes field
specifies the polyphony of the device-the maximum number of notes that can be
played simultaneously. The wChannelMask field is a bit representation of the
MIDI channels that the device responds to. For example, if the device responds to
the first eight MIDI channels, wChannelMask is OxOOFF.

The dwSupport field of the MIDIOUTCAPS structure indicates if the device
driver supports volume changes and patch caching. MMSYSTEM.H defines the
following flags for the dwSupport field:

Flag

MIDICAPS_ VOLUME

MIDICAPS_LRVOLUME

MIDICAPS_CACHE

Description

Indicates the driver supports volume control.

Indicates the driver supports individual
volume control for the left
and right channels.

Indicates the driver supports patch caching.

Volume changes are only supported by internal synthesizer devices. External
MIDI output ports don't support volume changes. For information on changing
volume, see "Changing Internal MIDI Synthesizer Volume," later in this chapter.

Opening MIDI Output Devices
Use the midiOutOpen function to open a MIDI output device for playback. This
function opens the device associated with the specified device TD and returns a
handle to the open device by writing the handle to a specified memory location.
The syntax of midiOutOpen is as follows:

UINT midiOutOpen(lphMidiOut, wDeviceID, dwCallback, dw/nstance, dwFlags)

The lphMidiOut parameter is an LPHMIDIOUT and specifies a far pointer to a
memory location the function fills with a handle to the open MIDI output device.

Playing MIDI Audio 5-45

Use this handle to identify the MIDI device when calling other MIDI output
functions.

The wDeviceID parameter is a UINT that identifies the MIDI output device to be
opened. See "Querying Audio Devices," earlier in this chapter, for details on
device IDs.

The dwCaliback parameter is a DWORD that specifies either a window handle or
the address of a low-level callback function. The callback can be used to monitor
the progress of the playback of MIDI system-exclusive data so the application can
determine when to send additional data blocks, or when to free data blocks that
have been sent. You must specify the appropriate flag in the dwFlags parameter to
indicate which type of callback you want. If no callback is needed, this parameter
is NULL.

The dwlnstance parameter is a DWORD that specifies 32 bits of instance data sent
to the callback function each time it is called.

The dwFlags parameter is a DWORD and specifies one or more flags for opening
the MIDI device. If you are specifying a window or low-level callback in the
dwCaliback parameter, you must specify either the CALLBACK_WINDOW or
the CALLBACK_FUNCTION flag to indicate the type of callback used.

Sending MIDI Messages
Once you open a MIDI output device, you can begin sending it MIDI messages
using the following functions:

midiOutLongMsg
Sends a buffer of MIDI data to the specified MIDI output device. Use this
function to send multiple MIDI events, including system exclusive messages,
to a MIDI device.

midiOutShortMsg
Sends a MIDI message to a specified MIDI output device.

midiOutReset
Turns off all notes on all channels for a specified MIDI output device. Any
pending system-exclusive buffers are marked as done and returned to the
application.

5-46 Low-Level Audio Services

Use midiOutShortMsg to send any MIDI message (except for system-exclusive
messages). This function takes an HMIDIOUT parameter specifying the MIDI
output device to send the message to, and a DWORD for the MIDI message. The
message is packed into the DWORD, as shown in the following illustration:

HIWORD LOWORD

HIBYTE LOBYTE HIBYTE LOBYTE
(not used) MIDI Data 2 MIDI Data 1 MIDI Status

(optional) (optional)

DWORD packing for the midiOutShortMsg function.

The two MIDI data bytes are optional, depending on the MIDI status byte. The
following code fragment uses midiOutShortMsg to send a given MIDI event to a
given MIDI output device:

1* Sends a given MIDI event to the given output device
*1

UINT sendMIDIEvent(hMidiOut, bStatus, bDatal, bData2)
HMIDIOUT hMidiOut; II handle to the output device
BYTE bStatus; II MIDI status byte
BYTE bDatal; II first MIDI data byte
BYTE bData2; II second MIDI data byte
{

union {
DWORD dwData;
BYTE bData[4];

} u;

1* Construct the MIDI
u.bData[0] bStatus;
u.bData[1] bDatal;
u.bData[2] bData2;
u.bData[3] 0;

1* Send the message *1

message *1

return midiOutShortMsg(hMidiOut, u.dwData);

Note MIDI output drivers are not required to verify data before sending it to an output port. It is up
to applications to ensure only valid data is sent using midiOutShortMsg.

Playing MIDI Audio 5-47

Sending Buffered Messages
MIDI system-exclusive messages are the only MIDI messages that will not fit into
a single DWORD. System exclusive messages can be any length. Windows
provides the midiOutLongMsg function for sending one or more messages,
including system exclusive messages, to MIDI output devices.

Use the MIDIHDR data structure to specify MIDI system-exclusive data blocks.
This structure contains a pointer to a locked data block, the data-block length, and
some assorted flags. The MMSYSTEM.H file defines the MIDIHDR data
structure as follows:

typedef struct midi hdr_ tag {

LPSTR 1 pData; /* pointer to data block */
DWaRD dwBufferLength; /* length of data block */
DWaRD dwBytesRecorded; /* number of bytes recorded */
DWaRD dwUser; /* user instance data */
DWORD dwFlags; /* assorted flags */
struct wavehdr_tag far *lpNext; /* private to the driver */
DWaRD reserved; /* private to the driver */

} MIDIHDR;

Memory for the MIDIHDR data structure and the data block pointed to by IpData
must be allocated and prepared, as shown in "Allocating and Preparing Audio
Data Blocks," earlier in this chapter.

After you send a system-exclusive data block using midiOutLongMsg, you must
wait until the device driver is finished with the data block before freeing it. If you
are sending multiple data blocks, you must monitor the completion of each data
block so you know when to send additional blocks. For information on different
techniques for monitoring data-block completion, see "Managing Audio Data
Blocks," earlier in this chapter.

Note Any MIDI status byte other than a system-real-time message will terminate a system exclusive
message. If you are using multiple data blocks to send a single system-exclusive message, do not
send any MIDI messages other than system-real-time messages between data blocks.

5-48 low-level Audio Services

Using Window Messages to Manage Buffered Playback
The following messages can be sent to a window-procedure function for managing
MIDI system-exclusive playback:

Message

MM_MOM_CLOSE

MM_MOM_DONE

Description

Sent when the device is closed using midiOutClose.

Sent when the device driver is finished with a data
block sent using midiOutLongMsg.

Sent when the device is opened using
midiOutOpen.

A wParam and IParam parameter is associated with each of these messages. The
wParam parameter always specifies a handle to the open MIDI device. For the
MM_MOM_DONE message, IParam specifies a far pointer to a MIDIHDR
structure identifying the completed data block. The IParam parameter is unused
for the MM_MOM_CLOSE and MM_MOM_OPEN messages.

The most useful message is the MM_MOM_DONE message. Unless you need
to allocate memory or initialize variables, you probably don't need to process
the MM_MOM_OPEN and MM_MOM_CLOSE messages. When playback
of a data block is completed, you can clean up and free the data block as de­
scribed in "Allocating and Preparing Audio Data Blocks," earlier in this chapter.

Using a Callback to Manage Buffered Playback
This syntax of the low-level callback function for MIDI output devices
is as follows:

void FAR PASCAL midiOutCallback(hMidiOut, wMsg, dw/nstance,
dwParaml, dwParam2)

Message­
Dependent

Parameters

Playing MIDI Audio 5-49

The following messages can be sent to the wMsg parameter of MIDI output
callback functions:

Message

MOM_CLOSE

MOM_OPEN

MOM_DONE

Description

Sent when the device is closed using midiOutClose.

Sent when the device is opened using midiOutOpen.

Sent when the device driver is finished with a data block
sent using midiOutLongMsg.

These messages are similar to those sent to window-procedure functions, but
the parameters are different. A handle to the open MIDI device is passed as a
parameter to the callback, along with the DWORD of instance data passed using
midi Out Open.

The callback has two message-dependent parameters: dwParaml and dwParam2.
For the MOM_OPEN and MOM_CLOSE messages, these parameters are not
used. For the MOM_DONE message, dwParaml specifies a far pointer to a
MIDIHDR structure identifying the completed data block and dwParam2 is not
used.

After the driver is finished with a data block, you can clean up and free the data
block. Because of the restrictions oflow-Ievel audio callbacks, you can't do this
within the callback. See "Using a Callback Function to Process Driver Messages,"
earlier in this chapter, for details on the restrictions when using callback functions.

Sending MIDI Messages Using Running-Status
The MIDI 1.0 Specification allows the use of running-status when a message has
the same status byte as the previous message. When running status is used, the
status byte of subsequent messages can be omitted. You can send MIDI messages
using running status with the midiOutShortMsg function by packing the message
into a DWORD, as shown in the following illustration:

HIWORD LOWORD

HIBYTE LOBYTE HIBYTE LOBYTE
(not used) (not used) MIDI Data 2 MIDI Data 1

(optional)

DWORD packing for midiOutShortMsg when using running status.

5-50 Low-Level Audio Services

Resetting MIDI Output
The midiOutReset function will turn off all notes and mark any pending
system-exclusive buffers as done and return them to the application. It may be
useful in an application using MIDI output to provide the user with the ability to
reset MIDI output.

Note Terminating a system-exclusive message without sending an EOX (end-af-exclusive) byte may
cause problems for the receiving device. The midiOutReset function does not send an EOX byte when
it terminates a system-exclusive message-applications are responsible for doing this.

Changing Internal MIDI Synthesizer Volume
Windows provides the following functions to query and set the volume level of
internal MIDI synthesizer devices:

midiOutGetVolume
Gets the volume level of the specified internal MIDI synthesizer device.

midi OutSet Volume
Sets the volume level of the specified internal MIDI synthesizer device.

Not all MIDI output devices support volume changes. Some devices can sup­
port individual volume changes on both the left and the right channels. See
"Determining Capabilities of Internal Synthesizers," earlier in this chapter, for
information on how to determine if a particular device supports volume changes.

Note Unless your application is designed to be a master volume-control application providing the
user with volume control for all audio devices in a system, you should open an audio device before
changing its volume. You should also query the volume level before changing it and restore the volume
level to its previous level as soon as possible.

Playing MIDI Audio 5-51

Volume is specified in a DWORD; the upper 16 bits specify the relative volume
of the right channel, and the lower 16 bits specify the relative volume of the left
channel, as shown in the following illustration.

HIWORD LOWORD

Right-Channel Volume Left- or Mono-Channel Volume

DWORD packing for internal MIDI synthesizer volume levels.

For devices that don't support individual volume changes on both the left and right
channels, the lower 16 bits specify the volume level, and the upper 16 bits are
ignored. Values for the volume level range from OxO (silence) to OxFFFF
(maximum volume) and are interpreted logarithmically. The perceived volume
increase is the same when increasing the volume level from Ox5000 to Ox6000 as
it is from Ox4000 to Ox5000.

When querying using midiOutGetVolume, the volume is returned in a DWORD
location specified by a far pointer parameter.

Pre loading Patches with Internal MIDI SyntheSizers
Some internal MIDI synthesizer devices can't keep all of their patches loaded
simultaneously. These devices must preload their patch data.

Windows provides the following functions to request that a synthesizer preload
and cache specified patches:

midiOutCachePatches
Requests that an internal MIDI synthesizer device preload and cache specified
melodic patches.

midiOutCacheDrumPatches
Requests that an internal MIDI synthesizer device preload and cache specified
key-based percussion patches.

5-52 Low-Level Audio Services

The PATCHARRAY The midiOutCachePatches function takes a pointer to a PATCHARRA Y to
Data Type indicate the patches to be cached. The MMSYSTEM.H file defines the

PATCHARRAY data type as follows:

typedef WORD PATCHARRAY[MIDIPATCHSIZE];

Each element in the array corresponds to a patch with each of the 16 bits
representing one of the 16 MIDI channels. Bits are set for each of the channels
that use that particular patch. For example, if patch number 0 is used by physical
MIDI channels 0 and 8, set element 0 of the array to Ox0101:

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 1 1:1:1:1:1:1:1:1°1
The KEYARRAY The midiOutCacheDrumPatches function takes a pointer to a KEY ARRA Y to

Data Type indicate the key-based percussion patches to be cached. The MMSYSTEM.H file
defines the KEY ARRAY data type as follows:

typedef WORD KEYARRAY[MIDIPATCHSIZE];

Each element in the array corresponds to a key-based percussion patch with each
of the 16 bits representing one of the 16 MIDI channels. Bits are set for each of the
channels that use that particular patch. For example, if the percussion patch for key
number 60 is used by physical MIDI channels 9 and 15, set element 60 of the
array to Ox8200:

15 14 13 12 11 10 9 8

1 0 0 0 0 0 1 0 I : I : I : I : II : I : I : I : .

Using the MIDI Mapper with low-level MIDI Functions
The MIDI Mapper provides standard patch services for device-independent
playback of MIDI files. Applications that use MIDI files for audio should use the
MIDI Mapper. For information on the MIDI Mapper, see "The MIDI Mapper"
in Chapter 4, "High-Level Audio Services." For information on authoring
device-independent MIDI files, see "Authoring MIDI Files," also in Chapter 4.

To use the MIDI mapper, open it using the midiOutOpen function with the
wDeviceID parameter set to the constant MIDIMAPPER. Then you can send it
MIDI messages using midiOutShortMsg or midiOutLongMsg.

Recording MIDI Audio 5-53

Recording MIDI Audio
To record MIDI audio data, you must use low-level MIDI input functions. MCI
does not currently provide a device handler for recording MIDI audio.

MIDI Input Data Types
The MMSYSTEM.H file defines data types and function prototypes for all of the
low-level audio functions. MMSYSTEM.H defines the following data types for
low-level MIDI input functions:

HMIDIIN
A handle to a MIDI input device.

MIDIHDR
A data structure that is a header for a block of MIDI system-exclusive data.
This data structure is used for input as well as output.

MIDIINCAPS
A data structure used to inquire about the capabilities of a MIDI input device.

Querying MIDI Input Devices
Before recording MIDI audio, you should call the midiInGetDevCaps function
to determine the capabilities of the MIDI input hardware present in the system.
This function takes a pointer to a MIDIINCAPS structure, which it fills with
information about the capabilities of a given device. This information includes the
manufacturer and product IDs, a product name for the device, and the version
number of the device driver. MMSYSTEM.H defines the MIDIINCAPS structure
as follows:

typedef struct midiincaps_tag {
UINT wMid;
UINT wPid;
VERSION vDriverVersion;
char szPname[MAXPNAMELENJ;

} MIDIINCAPS;

1* manufacturer ID *1
1* product ID *1
1* driver version *1
1* product name *1

5-54 low-level Audio Services

Opening MIDI Input Devices
Use the midiInOpen function to open a MIDI input device for recording. This
function opens the device associated with the specified device ID and returns a
handle to the open device by writing the handle to a specified memory location.
The syntax ofmidiInOpen is as follows:

UINT midiInOpen(lphMidiln, wDeviceID, dwCallback, dwlnstance, dwFlags)

The lphMidiln parameter is an LPHMIDIIN and specifies a far pointer to a
memory location the function fills with a handle to the open MIDI input device.
Use this handle to identify the MIDI device when calling other MIDI input
functions.

The wDeviceID parameter is a UINT that identifies the MIDI input device to be
opened. See "Querying Audio Devices," earlier in this chapter, for details on
device IDs.

The dwCallback parameter is a DWORD and specifies either a window handle or
the address of a low-level callback function. You must specify the appropriate flag
in the dwFlags parameter to indicate which type of callback you want.

The dwlnstance parameter is a DWORD that specifies 32 bits of instance data sent
to the callback function each time it is called.

The dwFlags parameter is a DWORD and specifies one or more flags for opening
the MIDI device. You must specify either the CALLBACK_WINDOW or the
CALLBACK_FUNCTION flag to indicate the type of callback you are using.

Recording MIDI Audio 5-55

Managing MIDI Recording
Once you open a waveform input device, you can begin recording MIDI data.
Windows provides the following functions for managing MIDI recording:

midiInAddBuffer
Sends a buffer to the device driver so it can be filled with recorded MIDI data.

midiInReset
Stops MIDI recording and marks all pending buffers as done.

midiInStart
Starts MIDI recording and resets the time stamp to zero.

midiInStop
Stops MIDI recording.

Use the midiInAddBuffer function to send data buffers to the device driver for
recording system-exclusive messages. As the buffers are filled with recorded data,
the application is notified by one of the techniques discussed in "Managing Audio
Data Blocks," earlier in this chapter.

Use the midiInStart function to begin recording. To record system-exclusive
messages, send at least one buffer to the driver before starting recording. To stop
recording, use midiInStop. Before closing the device using midiInClose, call
midiInReset to mark any pending data blocks as being done.

You must use either a window-procedure function or a low-level callback function
to receive MIDI data. If you want time-stamped data, you must use a low-level
callback function.

To record system-exclusive messages, you must supply the device driver with data
buffers. These buffers are specified by a MIDIHDR data structure. This is the
same data structure used for MIDI buffered playback described in "Sending
Buffered Messages," earlier in this chapter. Memory for the MIDIHDR structure
and its accompanying data buffer must be allocated and prepared as shown in
"Allocating and Preparing Audio Data Blocks," earlier in this chapter.

5-56 Low-Level Audio Services

Using Window Messages to Manage MIDI Recording
The following messages can be sent to a window-procedure function for managing
MIDI recording:

Message

MM_MIM_LONGERROR

Description

Sent when the device is closed using
midiInClose.

Sent when a complete MIDI message is
received (this message is used for all MIDI
messages except system-exclusive messages).

Sent when an invalid MIDI message is
received (this message is used for all MIDI
messages except system-exclusive messages).

Sent when either a complete MIDI system­
exclusive message is received, or when a data
buffer sent using midiInAddBuffer is filled
with system-exclusive data.

Sent when an invalid MIDI system-exclusive
message is received.

Sent when the device is opened using
midiInOpen.

A wParam and lParam parameter is associated with each of these messages. The
wParam parameter always specifies a handle to the open MIDI device. The
lParam parameter is unused for the MM_MIM_CLOSE and MM_MIM_OPEN
messages.

Receiving Regular For the MM_MIM_DATA message, lParam specifies the received MIDI data.
MIDI Data This data is packed into a DWORD, as shown in the following illustration:

HIWORD LOWORD

HIBYTE LOBYTE HIBYTE LOBYTE
(Unused) MIDI Data 2 MIDI Data 1 MIDI Status

(optional) (optional)

DWORD packing for recorded MIDI data.

Receiving
System-Exclusive

MIDI Data

Recording MIDI Audio 5-57

For the MM_MIM_LONGDATA message, lParam specifies a far pointer to a
MIDIHDR structure that identifies the data buffer for system-exclusive messages.
The data buffer might not be completely filled-you usually don't know the size
of the system-exclusive messages before recording them and must allocate a
buffer large enough for the largest expected message. Use the dwBytesRecorded
field of the MIDIHDR structure to determine the amount of valid data present in
the buffer.

Using a Low-Level Callback to Manage MIDI Recording
This syntax of the low-level callback function for MIDI input devices is as follows:

void FAR PASCAL midiInCallback(hMidiln, wMsg, dwlnstance, dwParaml,
dwParam2)

The following messages can be sent to the wMsg parameter of MIDI input
callback functions:

Message

MIM_CLOSE

MIM_DATA

MIM_LONGERROR

Description

Sent when the device is closed using midiInClose.

Sent when a complete MIDI message is received
(this message is used for all MIDI messages except
system-exclusive messages).

Sent when an invalid MIDI message is received
(this message is used for all MIDI messages except
system-exclusive messages).

Sent when an invalid MIDI system-exclusive
message is received.

Sent when either a complete MIDI system­
exclusive message is received, or when a data
buffer is filled with system-exclusive data.

Sent when the device is opened using rnidiInOpen.

These messages are similar to those sent to window-procedure functions, but
the parameters are different. A handle to the open MIDI device is passed as a
parameter to the callback, along with the DWORD of instance data that was
passed using midiInOpen.

5-58 low-level Audio Services

The callback has two message-dependent parameters: dwParaml and dwParam2.
For the MIM_OPEN and MIM_CLOSE messages, these parameters are unused.

For the MIM_DATA message, dwParaml specifies the received MIDI data and
dwParam2 specifies a time stamp for the data. The data is packed into a DWORD,
as shown in the previous section on using window messages.

For the MIM_LONGDATA message, dwParaml specifies a far pointer to a
MIDIHDR structure that identifies the data buffer for system-exclusive messages.
As with the MIM_DATA message, dwParam2 specifies a time stamp for the data.
The data buffer might not be completely filled. Use the dwBytesRecorded field of
the MIDIHDR structure to determine the amount of valid data present in the buffer.

After the device driver is finished with a data block, you can clean up and free the
data block. Because of the restrictions oflow-level audio callbacks, you can't do
this within the callback. You must set some semaphores and do this outside of the
callback.

Receiving Time-Stamped MIDI Messages
Because of the delay between when the device driver receives a MIDI message
and the time the application receives the message, MIDI input device drivers time
stamp the MIDI message with the time the message was received. MIDI time
stamps are defined as the time the first byte of the message was received and are
specified in milliseconds. The midiInStart function resets the time stamps for a
device to zero.

As stated earlier, to receive time stamps with MIDI input, you must use a low­
level callback function. The dwParam2 parameter of the callback function
specifies the time stamp for data associated with the MIM_DATA and
MIM_LONGDATA messages.

Receiving Running-Status Messages
The MIDI 1.0 Specification allows the use of running-status when a message has
the same status byte as the previous message. When running status is used, the
status byte of subsequent messages can be omitted. All MIDI input device drivers
are required to expand messages using running status to complete messages-you
always receive complete MIDI messages from a MIDI input device driver.

Auxiliary Audio Devices 5·59

Auxiliary Audio Devices
Auxiliary audio devices are audio devices whose output is mixed with the MIDI
and waveform output devices in a multimedia computer. An example of an
auxiliary audio device is the compact disc audio output from a CD-ROM drive.

Control for auxiliary audio devices is provided by a software-controlled audio
mixer. The mixer can reside on the motherboard of a multimedia computer, or it
can be on an add-in sound card. The following illustration shows the conceptual
audio-signal routing in a multimedia computer:

Waveform
Audio

~
\:.t;I

Internal MIDI
Synthesizer

Compact Disc
Audio

,....[]ITJ::J I D 1fiTI!-'
Auxiliary

Audio Input

L

R

L

R

L

R

L

R

• Volume Control
with

• waveOutSetVolume

Volume Control •

Fll with
• midiOutSetVolume

~ Volume Control • with
• auxOutSetVolume

• Volume Control
with

• auxOutSetVolume

Audio Signal routing for a multimedia computer.

~

Mixer

,---.

~

~

)))))
)))))

In this multimedia computer, there are two auxiliary audio devices: the CD-ROM
and the external audio input. The external audio input is an input jack that allows
the user to connect other audio devices.

Querying Auxiliary Audio Devices
Not all multimedia systems have auxiliary audio support. You can use the
auxGetNumDevs function to determine the number of controllable auxiliary
devices present in a system.

5-60 Low-Level Audio Services

To get information on a particular auxiliary audio device, use the auxGetDevCaps
function. This function takes a pointer to an AUXCAPS structure, which it fills
with information on the capabilities of a given device. This information includes
the manufacturer and product IDs, a product name for the device, and the device­
driver version number. For information on these fields, see "Getting the Capa­
bilities of a Device," earlier in this chapter. The AUXCAPS structure also contains
information on the device type and the functionality the device supports. The
MMSYSTEM.H file defines the AUXCAPS structure as follows:

typedef struct auxcaps_tag {
UINT wMid; 1* manufacturer ID *1
UINT wPid; 1* product ID *1
VERSION vDriverVersion; 1* driver version *1
char szPname[MAXPNAMELEN]; 1* product name *1
UINT wTechnology; 1* device type *1
DWORD dwSupport; 1* functionality supported *1

AUXCAPS;

Determining Auxiliary Audio Device Types
The MMSYSTEM.H file defines the following flags for the wTechnology field of
the AUXCAPS structure to determine the device type of an auxiliary audio device:

Flag

AUXCAPS_CDAUDIO

AUXCAPS_AUXIN

Description

The device is an internal CD-ROM drive.

The device is an auxiliary audio input jack.

Determining Capabilities of Auxiliary Audio Devices
The dwSupport field of the AUXCAPS structure indicates whether the device
driver supports volume changes. The MMSYSTEM.H file defines the following
flags for the dwSupport field:

Flag

AUXCAPS_ VOLUME

AUXCAPS_LRVOLUME

Description

Volume-control support.

Individual volume-control support for both the
left and right channels.

Auxiliary Audio Devices 5-61

Changing Auxiliary Audio-Device Volume
Windows provides the following functions to query and set the volume for
auxiliary audio devices:

auxGetVolume
Gets the volume level of the specified auxiliary audio device.

auxSetVolume
Sets the volume level of the specified auxiliary audio device.

Not all auxiliary audio devices support volume changes. Some devices can
support individual volume changes on both the left and the right channels. See
"Determining Capabilities of Auxiliary Audio Devices," earlier in this chapter, for
information on how to determine if a particular device supports volume changes.

Note Unless your application is designed to be a master volume-control application providing the
user with volume control for all audio devices in a system, you should open an audio device before
changing its volume. You should also query the volume level before changing it and restore the volume
level to its previous level as soon as possible.

The volume level is specified as in the waveform and MIDI volume-control
functions: in a DWORD with the upper 16 bits specifying the relative volume of
the right channel and the lower 16 bits specifying the relative volume ofthe left
channel. For devices that don't support individual volume control on both the left
and right channels, the lower 16 bits specify the volume level, and the upper 16
bits are ignored.

Values for the volume level range from OxO (silence) to OxFFFF (maximum
volume) and are interpreted logarithmically. This means the perceived volume
increase is the same when increasing the volume level from Ox5000 to Ox6000 as
it is from Ox4000 to Ox5000.

When querying with auxGetVolume, the volume is returned in a DWORD
location specified by a far pointer parameter.

5-62 low-level Audio Services

Audio Clipboard Formats
In addition to the standard and nonstandard waveform formats previously
presented in this chapter, there are two Clipboard formats that can be used to
represent audio data: CF _ WAVE and CF _RIFF. Use the CF _ WAVE fonnat to
represent data in one of the standard fonnats, such as 11 kHz or 22 kHz PCM.
Use the CF _RIFF fonnat to represent more complex data fonnats that cannot
be represented as standard wave files.

Chapter 6

Timer and Joystick Services

This chapter shows you how to add joystick input capabilities to your application
and how to control event timing. Timer interrupt services provide improved timer
resolution with up to one-millisecond accuracy. The joystick services can receive
control signals from up to two joysticks.

This chapter includes the following main topics:

• Timer interrupt services

• Joystick services

Functions and data structures associated with the joystick and timer-interrupt
services are defined in MMSYSTEM.H and MMSYSTEM.LIB.

Function Prefixes
The names of functions discussed in this chapter begin with the following prefixes:

Prefix

time

joy

Description

Timer-interrupt functions

Joystick functions

6-2 Timer and Joystick Services

Timer Services
The multimedia timer services provided with Windows 3.1 let applications
schedule timed periodic or one-time interrupt events at a higher resolution than
was available through the Windows 3.0 timer services.

Unlike the timer services provided by SetTimer, the multimedia timer services are
interrupt-based; rather than post WM_TIMER messages to a message queue, they call
a callback function at interrupt time. Because the callback code is accessed at interrupt
time, it must adhere to strict programming guidelines. Also, high-resolution, periodic
interrupt events require significant processor time. This can drastically affect the
perfonnance of your application and any other application running at the same time.

The multimedia timer services are useful for applications that demand high-resolution
timing; for example, a MIDI sequencer requires a high-resolution timer because it
must maintain the pace of MIDI events within a one-millisecond accuracy rate. For
less-demanding synchronization tasks, use the Windows SetTimer function.

Timer Data Types
The MMSYSTEM.H file defines new data types and function prototypes for timer
functions. You must include this header file in any source module that uses timer
services. MMSYSTEM.H defines the following new data types:

MMTIME
A data structure for representing time in one of several formats.

TIME CAPS
A data structure for querying timer capabilities.

Timer Services 6-3

Using Timer Services
Timer services let an application request and receive timer messages at
application-specified intervals. Real-time multimedia applications can use the
following functions to control the pace of data and synchronized presentations:

timeBeginPeriod
Establishes the minimum timer resolution an application will use.

timeEndPeriod
Clears a minimum timer resolution previously set using timeBeginPeriod.

timeGetDevCaps
Returns information about the capabilities of the timer services.

timeGetTime
Returns the system time in milliseconds.

timeGetSystemTime
Fills an MMTIME structure with the system time in milliseconds.

timeSetEvent
Creates a timer event that executes a specific action at a specific
time or at periodic intervals.

time KillE vent
Cancels a timer event previously created using timeSetEvent.

6-4 Timer and Joystick Services

Getting the System Time
An application can get the current system time using the timeGetTime or
timeGetSystemTime functions. The system time is the count of milliseconds
since Windows was started. The timeGetTime function returns the system
time, and the timeGetSystemTime function fills an MMTIME structure with
the system time.

The timeGetTime function has the following syntax:

DWORD timeGetTimeO

The timeGetSystemTime function has the following syntax:

UINT timeGetSystemTime(lpMMTime, wSize)

The lpMMTime parameter is a far pointer to an MMTIME structure. The wSize
parameter specifies the size of the MMTIME structure.

The timeGetSystemTime function returns TIMERR_NOERROR if successful.

Determining Maximum and Minimum Event Periods
You can use the timeGetDevCaps function to determine the minimum and
maximum timer-event periods provided by the timer services. These values vary
across computers and can vary depending on the current Windows mode. The
timeGetDevCaps function has the following syntax:

UINT timeGetDevCaps(lpCaps, wSize)

The lpCaps parameter is a far pointer to a TIMECAPS structure. The second
parameter, wSize, specifies the size of the TIMECAPS structure. The TIMECAPS
structure has the following format:

typedef struct timecaps_tag {
UINT wPeriodMin;
UINT wPeriodMax;

} TIMECAPS;

The two fields in this structure specify, in milliseconds, the minimum and
maximum period (and resolution) supported.

Timer Services 6-5

Establishing Minimum Timer Resolution
Before starting timer events, your application must establish the minimum timer
resolution that it intends to use. It must clear this value after finishing with the
timer-event services.

Use the timeBeginPeriod and timeEndPeriod functions to set and clear the
minimum timer-event resolution for your application. You must match a call to
timeBeginPeriod with a corresponding call to timeEndPeriod, specifying the
same minimum resolution in both calls. An application can make multiple
timeBeginPeriod calls, as long as each call is matched with a call to
timeEndPeriod.

The timeBeginPeriod function has the following syntax:

void timeBeginPeriod(wMinRes)

The timeEndPeriod function has the following syntax:

void timeEndPeriod(w M inRes)

In both functions, the wMinRes parameter indicates the minimum timer resolution
in milliseconds. You can specify any resolution value within the range of
resolution values supported by the timer. The wPeriodMin and wPeriodMax
fields of the TIMECAPS structure (filled by the timeGetDevCaps function)
specify the minimum and maximum resolution supported by the timer services.

Starting Timer Events
To initialize and start timer events, use the timeSetEvent function. This function
returns a timer ID that can be used to stop or identify timer events. The
timeSetEvent function has the following syntax:

UINT timeSetEvent(wDelay, wResolution, IpFunction, dwUser, wFlags)

The wDelay parameter specifies the period, in milliseconds, for timer events. If
this value is less than the minimum timer period or greater than the maximum
period, timeSetEvent fails.

6-6 Timer and Joystick Services

The wResolution value establishes the accuracy ofthe timer event. The accuracy
of the timer event can increase with smaller wResolution values. For example, on a
one-time event with a wResolution value of 5 and a wDelay value of 100, the timer
services notify your callback function after an interval ranging from 95 to 105
milliseconds. The application must have called timeBeginPeriod to specify a
minimum resolution of 5 milliseconds.

Larger wResolution values provide flexibility to reduce the number of timer
interrupts, which can seriously affect system performance. To reduce system
overhead, use the maximum wResolution value appropriate for your application.
To ensure that periodic events occur at specified intervals, use a resolution of zero.

Pass the name of the callback function in the lpFunction parameter, and pass any
instance data in the dwUser parameter. The callback function must reside in a
DLL, so you don't need to call MakeProcInstance to get the procedure-instance
address of the callback function.

The wFlags parameter takes one of the following flags:

Flag

TIME_ ONES HOT

TIME_PERIODIC

Description

Event should occur once, after wPeriod elapses

Event should occur repeatedly, waiting wPeriod
between each event

The timeSetEvent function returns a timer ID if successful or NULL if
unsuccessful. Interrupt timers are a scarce resource, and periodic timers with
resolution less than 100 milliseconds consume a significant portion of CPU
time. For periodic timers, you must pair calls to timeSetEvent with calls to
timeKillEvent. For more information, see the following section, "Canceling
a Timer Event."

The lpFunction parameter contains the procedure-instance address of the function
to be called when the timer event takes place.

Since the callback function is accessed at interrupt time, it must adhere to strict
programming guidelines. Timer-callback functions follow the same programming
guidelines as callback functions for the low-level audio services. See "Using a
Callback Function to Process Driver Messages" in Chapter 5, "Low-Level Audio
Services," for information on writing an interrupt callback function.

Timer Services 6-7

The timer-event callback function must have the following syntax:

void FAR PASCAL TimerCallback(
U1NT idTimer, /I Timer 10
U1NT msg, /I Not used
OWORO dwUser, /I User-instance data
OWORO dwl, II Not used
OWORO dw2) II Not used

The idTimer parameter receives the timer ID, and the dwUser parameter receives
the user-instance data passed to the timeSetEvent function. The msg, dwl, and
dw2 parameters are not used.

Canceling a Timer Event
You can cancel an active timer event at any time. Be sure to cancel any outstanding
timers before freeing the DLL containing the callback function. To cancel a timer
event, use the timeKillEvent function, which has the following syntax:

UINT timeKillEvent(w Time riD)

Pass the timer ID returned by timeSetEvent to the wTimerID parameter.

Using Timer Callbacks
This section describes how an application might use the timer services. First, the
application calls the timeGetDevCaps function to determine the minimum and
maximum resolution supported by the timer services. Before setting up any timer
events, the application uses timeBeginPeriod to establish the minimum timer
resolution it will use, as shown in the following code fragment:

#define TARGET_RESOLUTION 1 II Try for l-millisecond accuracy

TIMECAPS tc;
UINT wTimerRes;

if(timeGetOevCaps(&tc, sizeof(TIMECAPS)) != TIMERR_NOERROR)
{

II Error; application can't continue
}

wTimerRes = min(max(tc.wPeriodMin, TARGET_RESOLUTION), tc.wPeriodMax);
timeBeginPeriod(wTimerRes);

6-8 Timer and Joystick Services

To start the timer event, the application specifies the amount of time before the
callback occurs, the required resolution, the address of the callback function, and
user data to supply with the callback. The application might use a function like the
following to start a one-time timer event:

UINT

}

SetTimerCallback(NPSEQ npSeq,
UINT msInterval)

npSeq->wTimerID = timeSetEvent(
msInterval,
wTimerRes,
OneShotCallback,
(DWORD)npSeq,
TIME_ONESHOT);

if(! npSeq->wTimerID)
return ERR_TIMER;

else
return ERR_NOERROR;

II Sequencer data
II Event interval

II Delay
II Resolution (global variable)
II Callback function
II User data
II Event type (one-time)

The following callback function resides in a fixed code segment in a DLL. It is
limited to calling those functions that are interrupt-callable. The TimerIntRoutine
procedure it calls also resides in a fixed code segment.

void FAR PASCAL
OneShotTimer(UINT wTimerID, UINT msg, DWORD dwUser, DWORD dwl, DWORD dw2)
{

}

NPSEQ npSeq;

npSeq = (NPSEQ)dwUser;
npSeq->wTimerID = 0;

TimerIntRoutine(npSeq);

II Pointer to sequencer data

II Invalidate timer id, since no longer in use

II Handle interrupt-time tasks

Joystick Services 6-9

Before freeing the DLL that contains the callback function, the application cancels
any outstanding timers. To cancel one timer event, it might call the following
function:

void DestroyTimer(NPSEQ npSeq)
{

if(npSeq->wTimerID)
{

timeKillEvent(npSeq->wTimerID);
npSeq->wTimerID = 0;

II If timer event is pending

II Cancel the event

Finally, to cancel the minimum timer resolution it established, the application calls
timeEndPeriod as follows:

timeEndPeriod(wTimerRes);

Joystick Services
The joystick is an input device that provides position information. It is an add­
itional supported input device, not a replacement for the mouse. All absolute­
position devices, including touch screens, digitizing tablets, and light pens, can use
the joystick services to provide position and button information to applications.

The joystick services are loaded when Windows is started. The joystick services
can monitor two joysticks, each with two- or three-axis movement, and up to four
buttons. Applications access the joystick services through the set of functions
described in this section.

Note The driver for the IBM Game Adapter supports two 2-axis joysticks or one 3-axis joystick.

6·10 Timer and Joystick Services

Joystick Data Types
The MMSYSTEM.H file defines new data types and function prototypes for
joystick functions. MMSYSTEM.H defines the following new data types:

JOYCAPS
A data structure that contains joystick capability information.

JOYINFO
A data structure that contains joystick position and button information.

Using Joystick Services
Joystick services include functions to query each joystick for its capabilities, to
poll each joystick for position and button information, and to receive messages in
response to joystick events. Your application can use the following joystick
functions to accept input from one or two joysticks:

joyGetNumDevs
Returns the number of joysticks supported by the joystick services.

joyGetDevCaps
Returns joystick capabilities.

joyGetPos
Returns joystick position and button information.

joySetCapture
Causes joystick input to be sent to a specified window at regular intervals or
when the joystick state changes.

joyReleaseCapture
Releases the joystick captured using joySetCapture.

joyGetThreshold
Returns the movement threshold of a joystick.

joySetThreshold
Sets the movement threshold of a joystick.

Joystick Services 6-11

Determining Joystick Capabilities
The various joysticks in use today can support two or three axes and a variety of
button configurations. Also, joysticks support different ranges of motion and
polling frequencies. Joystick drivers can support either one or two joysticks. Two
functions allow you to determine the capabilities of the joystick services and
joystick devices installed on a system.

Getting the Driver Capabilities
You can use the joyGetNumDevs function to determine the number of joystick
devices supported by the joystick services. This function has the following syntax:

UINT joyGetNumDevsO

This function returns the number of supported joysticks, or zero if there is no
joystick support. The value returned is not necessarily the number of joysticks
attached to the system. To determine whether a joystick is attached, call the
joyGetPos function for the device. The joyGetPos function, discussed in "Polling
the Joystick," later in this chapter, returns JOYERR_UNPLUGGED if the
specified device is disconnected.

The following code fragment determines whether the joystick services are
available and then determines if a joystick is attached to one of the ports:

JOYINFO joyinfo;
UINT wNumDevs, wDeviceID;
BOOl bDevlAttached, bDev2Attached;

if«wNumDevs = joyGetNumDevs(» 0)
return ERR_NODRIVER;

bDevlAttached = joyGetPos(JOYSTICKID1,&joyinfo) != JOYERR_UNPlUGGED;
bDev2Attached = wNumDevs == 2 &&

j oyGetpos (JOYSTI CKI D2, &j oyi nfo) ! = JOYERR_ UNP lUGGED;

if(bDevlAttached I I bDev2Attached) II Decide which joystick to use
wDeviceID = bDevlAttached ? JOYSTICKIDl : JOYSTICKID2;

else
return ERR_NODEVICE;

6-12 Timer and Joystick Services

Getting the Joystick Capabilities
You can use the joyGetDevCaps function to obtain the specific capabilities of
each joystick attached to a given system. The joyGetDevCaps function has the
following syntax:

DINT joyGetDevCaps(wJoyID, IpJoyCaps, wSize)

The wJoyID parameter identifies the joystick as either JOYSTICKlDl or
JOYSTICKID2. The IpJoyCaps parameter points to a JOYCAPS structure
to be filled by the function. The wSize parameter specifies the size of the
JOYCAPS structure.

JOYCAPS Structure The JOYCAPS structure specifies the range of each axis on the joystick, the
number of buttons, and the maximum and minimum polling frequency. This
structure has the following fields:

Field Description

wMid Manufacturer identification

wPid Product identification

szPname[MAXPNAMELEN] Product name in a null-terminated string

wXmin, wXmax Minimum and maximum x-position values

wYmin, wYmax Minimum and maximum y-position values

wZmin, wZmax Minimum and maximum z-position values

wNumButtons Number of buttons

wPeriodMin Minimum period between messages

wPeriodMax Maximum period between messages

Joystick Services 6-13

Methods for Checking Joystick Status
An application can receive information from the joystick in one of two ways:

• By processing joystick messages from a captured joystick

• By polling the joystick directly

The message-processing method can be simpler to use; your application is sent
messages that indicate the position of the stick and the state of the buttons (pressed
or released).

Capturing Joystick Messages to a Window Function
You can capture joystick input to a window function; your application then
receives joystick messages at specified intervals or when the user manipulates
the joystick. The messages are described in "Processing Joystick Messages,"
following this section.

Only one application can capture joystick messages from a given joystick.
Capturing joystick messages does not, however, prevent your application (or other
applications) from polling the joystick using joyGetPos. If joyGetPos is called
while joystick input is captured, joystick events occurring close to the time of the
joyGetPos call might not be accurately reported to the capture window.

Capturing JDystick The joySetCapture function captures joystick input to a window function you
Input specify. To release the joystick, call the joyReleaseCapture function. The

joySetCapture function has the following syntax:

UINT joySetCapture(h Wnd, wJoyID, wPeriod, bChanged)

Specify the handle of the window to receive the messages in the h Wnd parameter.
For wJoyID, specify which joystick to capture; use the constants JOYSTICKIDI
or JOYSTICKID2. The wPeriod parameter specifies the frequency, in
milliseconds, of the joystick messages, and the bChanged parameter specifies
whether messages are to be sent only when the stick position or button states
change. The joystick messages are described in the next section.

6-14 Timer and Joystick Services

Specifying the
Resolution and

Threshold

To capture messages from two joysticks attached to the system, you must call
joySetCapture twice, once for each joystick. Your window then receives separate
messages for each device.

You cannot capture an unplugged joystick. The joySetCapture function returns
zero if successful; it returns JOYERR_UNPLUGGED if the specified device
is unplugged.

Note The joystick services set up a Windows timer event with each call to joySetCapture.

Assign the wPeriod parameter a value that falls within the minimum and
maximum resolution range for the joystick. To determine the minimum and
maximum resolution of the joystick, call the joyGetDevCaps function, which
fills the wPeriodMin and wPeriodMax fields in the JOYCAPS structure.

If the wPeriod value is outside the range of valid resolution values for the joystick,
the joystick services use the minimum or maximum resolution value, whichever is
closer to the wPeriod value.

The bChanged parameter controls when the window receives joystick movement
messages. If bChanged is set to FALSE, these messages occur approximately
every wPeriod milliseconds, regardless of whether the position has changed since
the last time the joystick was polled. If bChanged is set to TRUE, messages are
sent when the position of a joystick axis changes by a value greater than the
movement threshold of the device. To change the movement threshold, use the
joySetThreshold function, discussed in "Setting the Movement Threshold," later
in this chapter.

Processing Joystick Messages
The following joystick messages can be sent to a window function. Numerals
1 and 2 in these messages correspond to the joystick initiating the message.
MM_JOYI messages are sent to the window function if your application requests
input from the first joystick, and MM_JOY2 messages are sent if your application
requests input from the second joystick. All messages report nonexistent buttons
as released.

Messages

MM_JOYIMOVE
MM_JOY2MOVE

MM_JOY1 ZMOVE
MM_JOY2ZMOVE

MM_JOYl BUTTONUP
MM_JOY2BUTTONUP
MM_JOY1 BUTTONDOWN
MM_JOY2BUTTONDOWN

Joystick Services 6-15

Description

Report a change in the x-axis and/or y-axis
position of the joystick.

The wParam parameter contains a com­
bination of JOY_BUTTON bit flags
specifying which buttons were pressed.

The low-order word of lParam contains the
x-position of the joystick, and the high-order
word contains the y-position.

Report a change in the z-axis position of a
3-axis joystick.

The wParam parameter contains a com­
bination of JOY_BUTTON bit flags
specifying which buttons were pressed.

The low-order word of lParam contains the
x-position of the joystick, and the high-order
word contains the y-position.

Report that a joystick button has been pressed
or released.

The wParam parameter contains one
JOY _BUTTONCHG bit flag specifying
which button changed state and a combination
of JOY_BUTTON bit flags specifying the
current button states.

The low-order word of lParam contains the
x-position of the joystick, and the high-order
word contains the y-position.

6-16 Timer and Joystick Services

Using the Button The joystick services use the following bit flags, passed in the wParam parameter
Flags of the window function, to report the state of the joystick buttons:

Flag

JOY_BUTTONl

JOY_BUTTONlCHG

JOY_BUTTON2

JOY _BUTTON2CHG

JOY_BUTTON3

JOY _BUTTON3CHG

JOY _BUTTON4

JOY _BUTTON4CHG

Description

Set when button 1 is pressed.

Set when button 1 has changed state.

Set when button 2 is pressed.

Set when button 2 has changed state.

Set when button 3 is pressed.

Set when button 3 has changed state.

Set when button 4 is pressed.

Set when button 4 has changed state.

The MM_JOYMOVE messages use the JOY_BUTTON flags to report the state
(pressed or released) of all buttons on the specified joystick.

The MM_JOYBUTTONUP and MM_JOYBUTTONDOWN messages use the
JOY_BUTTON flags to report the state (pressed or released) of all buttons on the
specified joystick. Also, they use JOY _BUTTONCHG flags to indicate which
button changed state, thereby generating the message.

For example, if the user presses and holds buttons land 2 and then moves the
stick, a window function might receive the following messages:

Message

MM_JOYlBUTTONDOWN

MM_JOYlBUTTONDOWN

wParam Flags

JOY_BUTTONll JOY_BUTTONlCHG

JOY _BUTTONl I JOY _BUTTON2 I
JOY _BUTTON2CHG

JOY _BUTTONl I JOY _BUTTON2

Joystick Services 6-17

A window function might receive the following messages when the user presses
and releases button 3 without moving the stick:

Message wParam Flags

MM_JOYIBUTTONDOWN JOY_BUTTON31 JOY_BUTTON3CHG

MM_JOYIBUTTONUP JOY _BUTTON3CHG

Releasing the Joystick
When your application no longer needs to receive periodic joystick messages,
it should release the joystick using the joyReleaseCapture function. If your
application does not release the joystick before ending, the joystick is released
shortly after the capture window is destroyed.

The joy ReleaseCapture function has the following syntax:

UINT joyReleaseCapture(wJoyID)

The wJoyID parameter is the joystick ID of the captured joystick. You can use the
constants JOYSTICKIDI or JOYSTICKID2.

Setting the Movement Threshold
You can change the movement threshold of the joystick by calling the
joySetThreshold function. The movement threshold is the number of device
units that the stick must be moved before an MM_JOYMOVE message is sent
to the window that has captured the device. The joySetThreshold function has
the following syntax:

UINT joySetThreshold(wJoyID, wThreshold)

The two parameters, wJoyID and wThreshold, identify the joystick device and
specify the movement threshold. You can get the minimum resolution of the
joystick by calling the joyGetDevCaps function.

6-18 Timer and Joystick Services

Polling the Joystick
You can poll the joystick for position and button information. For example, an
application might poll the joystick to get baseline position values; the Joystick
Control Panel applet uses this technique when calibrating the joystick. The
joyGetPos function allows you to poll the joystick for position and button
information. It has the following syntax:

UINT joyGetPos(wJoyID, IpJoylnJo)

The wJoyID parameter identifies the joystick. The IpJoylnJo parameter is a far
pointer to a JOYINFO structure that is filled by the function.

Note Calling joyGetPos while joystick input is captured can prevent the joystick services from
accurately reporting joystick events to the capture window.

The JOYINFO Structure
The JOYINFO structure has the following form:

typedef struct joyinfo_tag {
UINT wXpos;
UINT wYpos;
UINT wZpos;
UINT wButtons;

} JOYINFO;

The wXpos, wYpos, and wZpos fields specify the current x-, yo, and z-position of
the joystick.

The wButtons field specifies the button states. This can be any combination of the
JOY_BUTTON bit flags. For example, the following expression evaluates to
TRUE if button 1 is pressed:

joyinfo.wButtons & JOY_BUTTONI

See "Processing Joystick Messages," earlier in this chapter, for an explanation of
the JOY_BUTTON flags.

Joystick Services 6-19

Using Joystick Messages
The remainder of this chapter presents code fragments from a simple joystick
game that performs the useful function of shooting holes in the desktop: it gets
position and button-state information from the joystick services and, when a user
presses the joystick buttons, plays waveform resources and paints bullet holes on
the screen.

Most of the joystick-control code is in the main window function. In the following
WM_CREATE case ofthe message handler, the application captures input from
joystick 1:

case WM_CREATE:
if(joySetCapture(hWnd, JOYSTICKID1, NULL, FALSE»
{

MessageBeep(MB_ICONEXCLAMATION);
MessageBox(hWnd, "Couldn't capture the joystick.", NULL,

MB_OK I MB_ICONEXCLAMATION);
PostMessage(hWnd,WM_CLOSE,0,0L);

}

break;

In response to the MM_JOY1MOVE messages, the application changes the
position of the cursor and, if either button is pressed, draws a hole in the desktop:

case MM_JOYIMOVE :
if«UINT) wParam & (JOY_BUTTONl JOY_BUTTON2»

DrawFi re(hWnd) ;
DrawSight(lParam); II Calculate new cursor position
break;

6-20 Timer and Joystick Services

In response to the MM_JOYIBUTTONDOWN messages, the application uses
sndPlaySound to playa waveform audio file:

case MM_JOYIBUTTONDOWN :
if«UINT) wParam & JOY_BUTTONl)
{

}

sndPlaySound(lpButtonl, SND_LOOP SND_ASYNC I SND_MEMORY);
DrawFi re(hWnd);

else if(wParam & JOY_BUTTON2)
{

}

sndPlaySound(lpButton2, SND_ASYNC SND_MEMORY
DrawFi re(hWnd) ;

break;

By specifying the SND_LOOP and SND_ASYNC flags with sndPlaySound, the
JOYTOY application repeats the waveform playback until the button is released.

When a button is released, the window function receives a MM_JOYlBUTTONUP
message, which it handles as follows:

case MM_JOYIBUTTONUP :
sndPlaySound(NULL, 0);
break;

This sequence stops the waveform-audio playback.

Chapter 7

Multimedia File I/O Services

Most multimedia applications require file IIO-the ability to create, read, and
write disk files. Multimedia file 110 services provide buffered and unbuffered file
110, and support for standard IBMlMicrosoft Resource Interchange File Format
(RIFF) files. The services are extensible with custom 110 procedures that can be
shared among applications.

This chapter covers the following topics:

• U sing basic file 110 services

• Performing buffered file 110

• Working with RIFF files

• Directly accessing a file 110 buffer

• U sing memory files

• Writing a custom 110 procedure

7-2 Multimedia File 1/0 Services

About the Multimedia File I/O Services
The multimedia file 110 services provide support for the following file 110
operations:

• Basic unbuffered and buffered file 110

• RIFF file 110

• Direct access to the file 110 buffer

• Memory files

• Custom storage system 110 using application-supplied 110 procedures

Most applications only need the basic file 110 services and the RIFF file 110
services. Applications sensitive to file 110 performance, such as applications that
stream data from a CD-ROM in real time, can optimize performance by using
services to directly access the file 110 buffer. Applications that access custom
storage systems can provide their own 110 procedure that reads and writes
elements of the storage system. A storage system is a method of physically
storing data in a file, such as a file archival system or a database storage
system.

Comparison with MS-DOS, C Run-time, and Windows File I/O
You might ask why you need another set of file 110 services, when you already
have the services of MS-DOS, the C run-time libraries, and Windows. The
multimedia file 110 services offer the following advantages over other file 110
services:

• They provide more functionality and are easier to use than the MS-DOS
services

• They are a part of the system software, so they don't increase the size of your
application, like linking to the C run-time libraries

• They provide more functionality than the Windows services, such as support
for buffered 110, RIFF files, memory files, and custom storage systems

In addition, the multimedia file 110 services are optimized for performance­
intensive applications. The CPU overhead of using these services versus going
directly to MS-DOS is very low.

About the Multimedia File I/O Services 7-3

Function Prefixes

Data Types

All multimedia file I/O function names begin with the mmio prefix. Similarly, all
multimedia file I/O message names begin with the MMIO~ prefix.

The MMSYSTEM.H header file defines data types and function prototypes for all
multimedia file I/O functions. You must include this header file in any source
module that uses these functions. MMSYSTEM.H depends on declarations made
in WINDOWS.H, so you must first include the WINDOWS.H header file.
MMSYSTEM.H defines the following data types for the multimedia file I/O
functions:

FOURCC
A four-character code identifying an element of a RIFF file.

HMMIO
A handle to an open file.

MMCKINFO
A data structure containing information about a chunk in a RIFF file.

MMIOINFO
A data structure used to maintain the current state of a file accessed using the
multimedia file I/O services.

MMIOPROC
A custom multimedia file I/O procedure.

7-4 Multimedia File I/O Services

Performing Basic File I/O
Using the basic I/O services is similar to using the C run-time file I/O services.
Files must be opened before they can be read or written. After reading or writing,
the file must be closed. You can change the current read/write location by seeking
to a specified position in an open file. The following table lists the basic file I/O
functions:

mmioClose
Closes an open file.

mmioOpen
Opens a file for reading and/or writing, and returns a handle to the open file.

mmioRead
Reads a specified number of bytes from an open file.

mmioSeek
Changes the current position for reading and/or writing in an open file.

mmioWrite
Writes a specified number of bytes to an open file.

These file I/O functions provide the core of the multimedia file I/O services­
you can use them for buffered and unbuffered I/O, as well as for I/O to RIFF files,
memory files, and custom storage systems.

Opening a File
Before doing any I/O operations to a file, you must first open the file using the
mmioOpen function. The mmioOpen function returns a file handle which you
use to identify the open file when calling other file I/O functions. The mmioOpen
function has the following syntax:

HMMIO mmioOpen(szFileName, lpmmioinfo, dwFlags)

The szFileName parameter points to a null-terminated string containing the path of
the file to open.

Performing Basic File I/O 7-5

The lpmmioinfo parameter is a far pointer to an MMIOINFO structure containing
additional parameters. For basic file I/O services, this parameter should be NULL.

The dwFlags parameter specifies options for opening the file. The most commonly
used flags for basic file 1/0 are MMIO_READ, MMIO_ WRITE, and
MMIO_CREATE.

The return value is a file handle of type HMMIO. Use this file handle to identify
the open file when calling other file 1/0 functions. If the file cannot be opened, the
return value is NULL.

Warning An HMMIO file handle is not a MS-DOS file handle. Do not use HMMIO file handles with
MS-DOS, Windows, or C run-time file 1/0 functions.

There are options you can use with the mmioOpen function for operations beyond
basic file 1/0. By specifying an MMIOINFO structure with the lpmmioinfo
parameter, you can open memory files, specify a custom I/O procedure, or supply
a buffer for buffered 1/0. These topics are discussed later in this chapter. First, this
chapter discusses the most basic use of mmioOpen-opening files for basic
unbuffered file I/O.

Opening a File To open a file for basic 1/0 operations, set the lpmmioinfo parameter of
mmioOpen to NULL. For example, the following code fragment opens a file
named "C:\SAMPLES\SAMPLE1.TXT" for reading, and checks the return
value for errors:

HMMIO hFil e;

if ((hFile = mmioOpen("C:\\SAMPLES\\SAMPLEl.TXT", NULL, MMIO_READ» != NULL)
1* File opened successfully *1

else
1* File cannot be opened *1

7-6 Multimedia File I/O Services

Options for Opening a File
When you open a file, you must specify whether you are opening the file for
reading, writing, or both reading and writing. In addition, you can specify other
options, such as to create or delete a new file. Use the dwFlags parameter of
mmioOpen to specify options for opening a file.

Basic Options The following table lists the basic options for opening a file using mmioOpen:

Flag

MMIO_READ

MMIO_WRITE

MMIO_READWRITE

MMIO_CREATE

MMIO_DELETE

MMIO_ALLOCBUF

Description

Opens a file for reading only.

Opens a file for writing only.

Opens a file for reading and writing.

Creates a new file (if the file already exists, it
truncates it to zero length).

Deletes a file.

Opens a file for buffered I/O.

The MMIO_READ, MMIO_ WRITE, and MMIO_READWRITE flags are
read/write privilege flags. These flags are mutually exclusive-specify only one
when opening a file. If you don't specify one of these flags, mmioOpen opens
the file for reading only.

The MMIO_CREATE and MMIO_DELETE flags are also mutually exclusive.
You can specify one of the read/write privilege flags with the MMIO _CREATE
flag. You can't specify any additional flags with the MMIO_DELETE flag.

Performing Basic File I/O 7-7

For information on using the MMIO_ALLOCBUF flag, see "Performing Buffered
File I/O," later in this chapter.

For a complete list of the mmioOpen flags, see the mmioOpen function entry in
the Multimedia Programmer's Reference.

Sharing Options In addition to the basic options for opening a file, there are sharing options you
can use for opening MS-DOS files so they can be opened and accessed by more
than one process. The following table lists the sharing options for opening a file
using mmioOpen.

Flag

MMIO_COMPAT

MMIO_EXCLUSIVE

MMIO_DENYWRITE

MMIO_DENYREAD

MMIO_DENYNONE

Description

Opens a file in compatibility mode.

Opens a file in exclusive mode.

Opens a file and denies other processes write access
to the file.

Opens a file and denies other processes read access
to the file.

Opens a file without denying other processes read
or write access to the file.

The sharing options are rarely used by applications, and are provided only because
they are available through MS-DOS. They are not available for memory files or
for files opened using custom I/O procedures. For more information on sharing
options, see the Microsoft MS-DOS Programmer's Reference or the Microsoft
MS-DOS Encyclopedia.

Note Sharing options are ignored unless the user has run the MS-DOS share command.

7-8 Multimedia File I/O Services

Creating and Deleting Files
To create a new file, specify the MMIO_CREATE option with the rnrnioOpen
function. For example, the following code fragment creates a new file and opens it
for both reading and writing:

HMMIO hFile;

hFile = mmioOpen("NEWFILE.TXT", NULL, MMIO_CREATE I MMIO_READWRITE);
if (hFile != NULL)

/* File created successfully */

else
/* File could not be created */

Note If the file you are creating already exists, it will be truncated to zero length.

To delete a file, specify the MMIO_DELETE flag with the rnrnioOpen function.
Once you delete a file, it can't be recovered (except possibly by using certain
MS-DOS based file recovery utilities). If the file deletion is the result of a request
from a user, you should always query the user to be sure the user wants to delete
the specified file before actually deleting it.

Reading and Writing a File
To read and write to open files, use the rnrnioRead and rnrnioWrite functions.
Each of these functions takes an HMMIO file handle, a pointer to a buffer, and a
parameter specifying the number of bytes to read or write. The read and write
operations are not limited to 64K-the buffer pointers are huge pointers.

See "Example of RIFF File I/O," later in this chapter, for an example using
rnrnioRead to read from a file.

Seeking to a New Position in a File
The current position or file pointer in a file is the location where the next read or
write operation will occur. To change the current position in an open file, use the
rnrnioSeek function. The rnrnioSeek function has the following syntax:

LONG rnrnioSeek(hmmio, LOffset, iOrigin)

The hmmio parameter specifies the file handle for the file.

Performing Buffered File I/O 7-9

The LOffset parameter specifies an offset for changing the current position
in the file.

The iOrigin parameter specifies how the offset given by LOffset is interpreted.
If iOrigin is SEEK_SET, the offset is from the beginning of the file. If it is
SEEK_CUR, the offset is from the current position. If it is SEEK_END, the
offset is from the end of the file.

The return value is the new position, specified in bytes from the beginning of the
file. If an error occurs, the return value is -1. If you seek to an invalid location in a
file, such as past the end of the file, mmioSeek might not return an error, but
subsequent I/O operations can fail.

Examples Using mmioSeek
To seek to the beginning of an open file, use the following:

mmioSeek(hFile, 0L, SEEK_SET);

To seek to the end of an open file, use the following:

mm i oS e e k (h F i 1 e, 0 L, SEE K_ END) ;

To seek to a position ten bytes from the end of an open file, use the following:

mmioSeek(hFile, -10L, SEEK_END);

Performing Buffered File I/O
Most of the overhead in file I/O involves accessing the media (the physical
device). If you are reading or writing many small blocks of information, the media
device can spend a lot of time seeking to find the physical location on the media
for each read or write operation. In this case, better performance is achieved by
using buffered file 110. With buffered 110, the file I/O manager maintains an
intermediate buffer larger than the blocks of information you are reading or
writing. It only accesses the media when the buffer must be filled from or written
to the disk.

7-10 Multimedia File 1/0 Services

Deciding When to Use Buffered File I/O
It's difficult to provide exact metrics telling you when you need to use buffered
I/O. It depends on how many read and write operations you perform on a file, and
on the size of these read and write operations. A general guideline is if you are
doing a lot of I/O operations less than 2K each, then use buffered VO. But this rule
isn't absolute-it's best to understand exactly how your program uses file VO and
experiment to optimize file VO for your program's requirements.

Opening a File for Buffered File I/O
The multimedia file VO manager provides several ways to set up and use buffered
file VO. The main distinction between these different approaches is whether the
file I/O manager or the application allocates the buffer-either the file VO man­
ager or the application can allocate the VO buffer. Unless you want to directly
access the I/O buffer or open a memory file, you should let the file I/O manager
allocate the buffer. For more information on directly accessing an I/O buffer and
using memory files, see "Directly Accessing a File VO Buffer" and "Performing
File VO on Memory Files," both later in this chapter.

A buffer allocated by the file I/O manager is called an internal buffer. To open a
file for buffered VO using an internal buffer, specify the MMIO_ALLOCBUF flag
with the mmioOpen function when you open the file. Once a file is opened for
buffered VO, the buffer is essentially transparent to the application. You can read,
write, and seek the same way as with unbuffered I/O.

I/O Buffer Control Functions
The multimedia file I/O services also include some functions giving you more
control over the file VO buffer. Using the following functions, you can force the
contents of an VO buffer to be written to disk, enable buffered I/O on a file opened
for unbuffered VO, change the size of an I/O buffer, and supply your own I/O
buffer:

mmioFlush
Writes the contents of the VO buffer to disk.

mmioSetBuffer
Changes the size of the VO buffer, and allows applications to supply their
own buffer.

Performing Buffered File 1/0 7-11

Flushing an 1/0 Buffer
Flushing an I/O buffer means writing the contents of the buffer to disk. You don't
have to call mmioFlush to flush an I/O buffer-the buffer is automatically flushed
when you close a file using mmioClose. If you don't close a file immediately after
writing to it, you should flush the buffer to ensure the information is written to
disk.

Note If you run out of disk space, mmioFlush might fail, even if the preceding mmioWrite calls were
successful. Similarly, mmioClose might fail when it is flushing its I/O buffer.

Changing the Size of the Internal 110 Buffer
The default size of the internal I/O buffer is 8K. If this size is not adequate, you
can use mmioSetBuffer to change the size of the buffer. You can also use
mmioSetBuffer to enable buffering on a file opened for unbuffered I/O. The
mmioSetBuffer function has the following syntax:

UINT mmioSetBuffer(hmmio, pchBuffer, cchBuffer, wFlags)

The hmmio parameter specifies the file handle for the file associated with
the buffer.

The pchBufferparameter specifies a pointer to a user-supplied buffer. For an
internal buffer, set this parameter to NULL.

The cchBuffer parameter specifies the size of the buffer.

The wFlags parameter is unused and should be zero.

The return value is zero if the function is successful; otherwise, the return value
specifies an error code.

7-12 Multimedia File 1/0 Services

Changing the I/O For example, the following code fragment opens a file named "SAMPLE. TXT"
Buffer Size for unbuffered I/O, and then enables buffered I/O with an internal 16K buffer:

HMMIO hFile;

if «hFile = mmioOpen("SAMPLE.TXT", NULL, MMIO_REAO» != NULL)
1* File opened successfully; request an IIO buffer *1
if (mmioSetBuffer(hFile, NULL, 163B4L, 0»

1* Buffer cannot be allocated *1
else

1* Buffer allocated successfully *1
}

else
1* File cannot be opened *1

Supplying Your Own I/O Buffer
You can also use mmioSetBuffer to supply your own buffer for use as a memory
file. For details on using memory files, see "Performing File I/O on Memory
Files," later in this chapter.

Working with RIFF Files
The preferred format for multimedia files is the Resource Interchange File Format
(RIFF). The RIFF format is a tagged-file structure, and is described in detail in the
file formats chapter in the Multimedia Programmer's Reference.

Working with RIFF Files 7-13

The multimedia file I/O services provide the following functions to support file
I/O to RIFF files:

mmioAscend
Ascends out of a RIFF file chunk to the next chunk in the file.

mmio Create Chunk
Creates a new chunk in a RIFF file.

mmioDescend
Descends into a RIFF file chunk beginning at the current file position, or
searches for a specified chunk.

mmioFOURCC
Converts four individual characters into a four-character code.

mmioStringToFOURCC
Converts a null-terminated string into a four-character code.

These functions work with the basic buffered and unbuffered file I/O services­
you can open, read, and write RIFF files the same as other file types.

About RIFF Files
The basic building block of a RIFF file is called a chunk. Each chunk consists of
the following fields:

• A four-character code specifying the chunk ID

• A DWORD specifying the size of the data field in the chunk

• A data field

The only chunks allowed to contain other chunks (subchunks) are those with a
chunk ID of "RIFF" or "LIST". The first chunk in a RIFF file must be a "RIFF"
chunk. All other chunks in the file are subchunks of the "RIFF" chunk.

7-14 Multimedia File 110 Services

"RIFF" Chunks
"RIFF" chunks include an additional field in the first four bytes of the data
field. This additional field provides the form type of the field. The form type is
a four-character code identifying the format of the data stored in the file. For
example, Microsoft waveform audio files (WAVE files) have a form type of
"WAVE". The following illustration shows a "RIFF" chunk containing two
subchunks:

"RIFF" Chunk

y
. 'RIFF" Chunk Data

A "RIFF" chunk containing two subchunks.

Working with RIFF Files 7-15

"LIST" Chunks
"LIST" chunks also include an additional field in the first four bytes of the data
field. This additional field contains the list type of the field. The list type is a
four-character code identifying the contents of the list. For example, a "LIST"
chunk with a list type of "INFO" can contain "ICOP" and "ICRD" chunks
providing copyright and creation date information. The following illustration
shows a "RIFF" chunk containing a "LIST" chunk and one other subchunk (the
"LIST" chunk contains two subchunks):

l~'-_-_-_-_-----,-,-........... _ ... _ -_ -_ -_ -~J
. 'LIST" Chunk Data

"RIFF" Chunk Data

A "RIFF" chunk containing a "LIST" subchunk.

7-16 Multimedia File I/O Services

The MMCKINFO Structure
Several multimedia file 1/0 functions use the MMCKINFO structure to specify
and retrieve information about RIFF chunks. The MMSYSTEM.H header file
defines the MMCKINFO structure as follows:

typedef struct ~MMCKINFO
{

FOURCC ckid;
DWORD cksize;
FOURCC fccType;
DWORD dwDataOffset;
DWORD dwFlags;

MMCKINFO;

Generating Four-Character Codes

II chunk IO
1/ chunk size
1/ form type or list type
1/ offset of data portion of chunk
II flags

Afour-character code is a 32-bit quantity representing a sequence of one to four
ASCII alphanumeric characters, padded on the right with blank characters. The
data type for a four-character code is FOURCC. Use the mmioFOURCC function
to convert four characters to a four-character code, as shown in the following code
fragment, which generates a four-character code for "WAVE":

FOURCC fourccID;

fourccID = mmioFOURCC('W', 'A', 'V', 'E');

To convert a null-terminated string into a four-character code, use
mmioStringToFOURCC, as shown in the following code fragment,
which also generates a four-character code for "WAVE":

FOURCC fourccID;

fourccID = mmioStringToFOURCC("WAVE", 0);

The second parameter in mmioStringToFOURCC specifies options
for converting the string to a four-character code. If you specify the
MMIO_TOUPPER flag, mmioStringToFOURCC converts all alphabetic
characters in the string to uppercase. This is useful when you need to specify
a four-character code to identify a custom I/O procedure (four-character
codes identifying file-extension names must be all uppercase).

Working with RIFF Files 7-17

Creating RIFF Chunks
To create a new chunk, use mmioCreateChunk to write a chunk header at the
current position in an open file. The mmioCreateChunk function has the
following syntax:

UINT mmioCreateChunk(hmmio, lpmmckinfo, wFlags)

The hmmio parameter specifies the file handle for an open RIFF file.

The lpmmckinfo parameter specifies a far pointer to an MMCKINFO structure
containing information about the new chunk.

The wFlags parameter specifies option flags for creating the new chunk. To create
a "RIFF" chunk, specify the MMIO_CREATERIFF flag. To create a "LIST"
chunk, specify the MMIO_CREATELIST flag.

The return value is zero if the chunk is successfully created; otherwise, if there is
an error creating the chunk, the return value specifies an error code.

Creating a "RIFF" The following example creates a new chunk with a chunk ID of "RIFF" and a
Chunk form type of "RDIB":

HMM10
MMCK1NFO

hmmio;
mmckinfo;

mmckinfo.fccType = mmioFOURCC('R', 'D', 'I', 'B');
mmioCreateChunk(hmmio, &mmckinfo, MM10_CREATER1FF);

If you're creating a "RIFF" or "LIST" chunk, you must specify the form type in
the fccType field of the MMCKINFO structure. In the previous example, the form
type is "RDIB".

If you know the size of the data field in a new chunk, you can set the cksize field
in the MMCKINFO structure when you create the chunk. This value will be
written to the data size field in the new chunk. If this value is not correct when
you call mmioAscend to mark the end of the chunk, it will be automatically
rewritten to reflect the correct size of the data field.

After you create a new chunk using mmioCreateChunk, the file position is set to
the data field of the chunk (8 bytes from the beginning of the chunk). If the chunk
is a "RIFF" or "LIST" chunk, the file position is set to the location following the
form type or list type (12 bytes from the beginning of the chunk).

7 -18 Multimedia File I/O Services

Navigating RIFF Files
RIFF files consist of nested chunks of data. Multimedia file I/O services
include two functions you can use to navigate between chunks in a RIFF file:
mmioAscend and mmioDescend. You might think of these functions as high­
level seek functions. When you descend into a chunk, the file position is set to the
data field of the chunk (8 bytes from the beginning of the chunk). For "RIFF" and
"LIST" chunks, the file position is set to the location following the form type or
list type (12 bytes from the beginning of the chunk). When you ascend out of a
chunk, the file position is set to the location following the end of the chunk.

Descending Into a Chunk
The mmioDescend function descends into a chunk or searches for a chunk,
beginning at the current file position. The mmioDescend function has the
following syntax:

UINT mmioDescend(hmmio, Ipck, IpckParent, wFlags)

The hmmio parameter specifies the file handle for an open RIFF file.

The lpck parameter specifies a far pointer to an MMCKINFO structure that
mmioDescend fills with information on the current chunk. The structure can
also contain additional parameters, depending on the wFlags parameter.

The IpckParent parameter specifies a far pointer to an MMCKINFO structure
describing the parent or enclosing chunk. If there is no parent chunk, this
parameter should be NULL.

The wFlags parameter specifies options for searching for a chunk. Valid flags are
MMIO_FINDCHUNK, MMIO_FINDRIFF, and MMIO_FINDLIST. If no flags
are specified, mmioDescend descends into the chunk at the current file position.

The return value is zero if the operation is successful; otherwise, the return value
specifies an error code.

The mmioDescend function fills an MMCKINFO structure with information on
the chunk. This information includes the chunk ID, the size of the data field, and
the form type, or list type if the chunk is a "RIFF" or "LIST" chunk.

Working with RIFF Files 7-19

Searching for a Chunk
To search for a chunk in an open RIFF file, specify the MMIO_FINDCHUNK
flag in the w Flags parameter of mmioDescend. Set the ckid field of the
MMCKINFO structure referenced by lpck to the four-character code of the
chunk you want to search for.

If you are searching for a "RIFF" or "LIST" chunk, you don't need to set the ckid
field of the MMCKINFO structure-mmioDescend sets this field for you. Set the
fccType field to the four-character code of the form type or list type of the chunk.

Searching fDr a The following code fragment searches for a "RIFF" chunk with a form type of
"RIFF" Chunk "WAVE" to verify that the file that has just been opened is a W AVE waveform

audio file.

HMMIO
MMCKINFO
MMCKINFO

hmmio;
mmckinfoParent;
mmckinfoSubchunk;

1* Locate a "RIFF" chunk with a "WAVE" form type
* to make sure the file is a WAVE file
*1

mmckinfoParent.fccType = mmioFOURCC('W', 'A', 'V', 'E');
if (mmioDescend(hmmio, (LPMMCKINFO) &mmckinfoParent, NULL, MMIO_FINDRIFF))

1* The file is not a WAVE file. *1
else

1* The file is a WAVE file *1

If the chunk you are searching for is a subchunk enclosed by a parent chunk (as
are all chunks other than "RIFF" chunks), you should identify the parent chunk
with the IpckParent parameter. In this case, mmioDescend will only search within
the specified parent chunk.

Searching fDr a The following code fragment searches for the "fmt " chunk in the "RIFF" chunk
Subchunk descended into by the previous example:

1* Fi nd the format chunk (form type "fmt "); it shoul d be
* a subchunk of the "RIFF" parent chunk
*1

mmckinfoSubchunk.ckid = mmioFOURCC('f', 'm', 't', ' ');
if (mmioDescend(hmmio, &mmckinfoSubchunk, &mmckinfoParent, MMIO_FINDCHUNK))

1* Error, cannot find the "fmt " chunk *1
else

1* "fmt " chunk found *1

7-20 Multimedia File I/O Services

If you do not specify a parent chunk, the current file position should be at the
beginning of a chunk before you call mmioDescend to search for a chunk. If
you do specify a parent chunk, the current file position can be anywhere in the
parent chunk.

If the search for a subchunk fails, the current file position is undefined. You can
use mmioSeek and the dwDataOffset field of the MMCKINFO structure for the
enclosing parent chunk to seek back to the beginning of the parent chunk, as in the
following example:

mmioSeek(hmmio, mmckinfoParent.dwDataOffset + 4, SEEK_SET);

Since the dwDataOffset field specifies the offset to the beginning of the data
portion of the chunk, you must seek four bytes past dwDataOffset to set the file
position to be after the form type.

Ascending Out of a Chunk
After you descend into a chunk and read the data in the chunk, you can move the
file position to the beginning of the next chunk by ascending out of the chunk by
using the mmioAscend function. The mmioAscend function has the following
syntax:

UINT mmioAscend(hmmio, lpck, wFlags)

The hmmio parameter specifies the file handle for an open RIFF file.

The lpck parameter specifies a far pointer to an MMCKINFO structure identifying
a chunk. The function ascends to the location following the end of this chunk.

The wFlags parameter is not used and should be set to zero.

The return value is zero if the operation is successful; otherwise, the return value
specifies an error code.

Ascending Oul of a For example, the following statement ascends out of the "fmt " subchunk
Subchunk descended into by the previous example, illustrating searching for a subchunk:

1* Ascend out of the "fmt " subchunk
*1

mmioAscend(hmmio, &mmckinfoSubchunk, 0);

Working with RIFF Files 7-21

Example of RIFF File I/O
The following code fragment shows how to open a RIFF file for buffered I/O, as
well as how to descend, ascend, and read RIFF chunks.

1* ReversePlay--Plays a WAVE waveform audio file backwards
*1

void ReversePlay()
{

char szFi 1 eName[128];
HMMIO hmmio;

II filename of file to open
II fi 1 e handle for open file

MMCKINFO mmckinfoParent; II parent chunk information structure
MMCKINFO mmckinfoSubchunk; II subchunk information structure
DWORD dwFmtSize; II size of
DWORD dwDataSize; II size of
WAVEFORMAT *pFormat; II pointer
HPSTR lpData; II pointer

1* Get the filename from the edit control
*/

"fmt " chunk
"data" chunk
to memory for
to memory for

1* Open the given file for reading with buffered I/O
* using the default internal buffer
*1

"fmt " chunk
"data" chun k

ifC!Chmmio = mmioOpenCszFileName, NULL, MMIO_READ I MMIO_ALLOCBUF))){
ErrorC"Failed to open file.");
return;

1* Locate a "RIFF" chunk with a "WAVE" form type
* to make sure the file is a WAVE file
*1

mmckinfoParent.fccType = mmioFOURCCC'W', 'A', 'V', 'E');
if CmmioDescendChmmio, CLPMMCKINFO) &mmckinfoParent, NULL,

MMIO_FINDRIFF)){
ErrorC"This is not a WAVE file.");
mmioCloseChmmio, 0);
return;

7-22 Multimedia File I/O Services

1* Find the "fmt " chunk (form type "fmt H); it must be
* a subchunk of the "RIFF" parent chunk
*1

mmckinfoSubchunk.ckid = mmioFOURCC('f', 'm', 't', ' ');
if (mmioDescend(hmmio, &mmckinfoSubchunk, &mmckinfoParent,

}

MMIO_FINDCHUNK»{
Error("WAVE file has no "fmt " chunk.");
mmioClose(hmmio, 0);
return;

1* Get the size of the "fmt " chunk--allocate and lock memory for it
*1

dwFmtSize = mmckinfoSubchunk.cksize;

1* Read the "fmt " chunk
*1
if (mmioRead(hmmio, (HPSTR) pFormat, dwFmtSize) != dwFmtSize){

Error("Failed to read format chunk.");

}

mmioClose(hmmio, 0);
return;

1* Ascend out of the "fmt " subchunk
*1

mmioAscend(hmmio, &mmckinfoSubchunk 0);

1* Find the data subchunk. The current file position should be at the
* beginning of the data chunk, however, you should not make this
* assumption--use mmioDescend to locate the data chunk.
*1

mmckinfoSubchunk.ckid = mmioFOURCC('d', 'a', 't', 'a');
if (mmioDescend(hmmio, &mmckinfoSubchunk, &mmckinfoParent,

MMIO_FINDCHUNK»{

}

Error("WAVE file has no data chunk.");

mmioClose(hmmio, 0);
return;

}

1* Get the size of the data subchunk
*1

dwDataSize = mmckinfoSubchunk.cksize;
if (dwDataSize == 0L){

}

Error("The data chunk contains no data.");

mmioClose(hmmio, 0);
return;

1* Open a waveform output device
*1

Working with RIFF Files 7-23

1* Allocate and lock memory for the waveform data
*1

1* Read the waveform data subchunk
*1

if(mmioRead(hmmio, (HPSTR) lpData, dwDataSize) != dwDataSize){
Error("Failed to read data chunk. ");

mmioClose(hmmio, 0);
return;

1* Close the file
*1

mmioClose(hmmio, 0);

1* Reverse the sound and play it
*1

7-24 Multimedia File I/O Services

The MMIOINFO Structure
The multimedia file I/O manager uses the MMIOINFO data structure to maintain
state information on an open file. The MMIOINFO data structure is defined in the
MMSYSTEM.H header file as follows:

typedef struct MMIOINFO
{

1* general fields *1
DWORD dwFlags; II general status flags

II ptr. to 1/0 procedure
II ptr. to 1/0 procedure

FOURCC fcclOProc;
LPMMIOPROC plOProc;
UINT
HTASK

1* fields
LONG
HPSTR
HPSTR
HPSTR
HPSTR
LONG

wErrorRet;
htask;

II location for error to be returned
II alternate local task

maintained by MMIO functions during buffered 1/0 *1
cchBuffer; II size of 1/0 buffer (or 0L)
pchBuffer; II start of 1/0 buffer (or NULL)
pchNext; II ptr. to next byte to read/write
pchEndRead; II ptr. to last valid byte to read
pchEndWrite; II ptr. to last available byte to write
lBufOffset; II disk offset of start of buffer

1* fields maintained by 1/0 procedure *1
LONG lDiskOffset; II disk offset of next read/write
DWORD adwlnfo[3]; II data specific to MMIOPROC type

1* other fields maintained by MMIO *1
DWORD dwReservedl; II reserved for internal use
DWORD dwReserved2; II reserved for internal use
HMMIO hmmio; II handle to open file

MMIOINFO;

For more information and examples using the MMIOINFO structure, see "Directly
Accessing a File I/O Buffer," "Performing File I/O on Memory Files," and "Using
Custom 110 Procedures," all later in this chapter.

Directly Accessing a File I/O Buffer 7-25

Directly Accessing a File I/O Buffer
Applications that are performance sensitive, such as applications that must stream
data in real time from a CD-ROM, can optimize file I/O performance by directly
accessing the file 1/0 buffer. Care should be exercised if you choose to do
this-by accessing the file I/O buffer directly, you bypass some of the safe­
guards and error checking provided by the file I/O manager.

The multimedia file I/O services provide the following functions to support direct
1/0 buffer access:

mmioAdvance
Fills and/or flushes the I/O buffer of a file set up for direct I/O buffer access.

mmioGetlnfo
Retrieves information on the file I/O buffer of a file opened for buffered I/O.

mmioSetInfo
Changes information on the file I/O buffer of a file opened for buffered I/O.

To directly access a file I/O buffer, open the file for buffered I/O, as described in
"Performing Buffered File I/O," earlier in this chapter. You can use the internal
file I/O buffer or supply your own buffer with mmioSetBuffer.

Getting Information on the File I/O Buffer
Use the mmioGetInfo function to get information on a file 1/0 buffer, such as the
buffer size and address. The mmioGetInfo function has the following syntax:

UINT mmioGetInfo(hmmio, lpmmioinjo, wFlags)

The hmmio parameter specifies the file handle for an open file.

The lpmmioinfo parameter specifies a far pointer to a MMIOINFO structure that
mmioGetInfo fills with information on the file I/O buffer.

The wFlags parameter specifies options for the operation. Currently, there are no
options for mmioGetlnfo.

The return value is zero if the operation is successful; otherwise, the return value
specifies an error code.

7-26 Multimedia File I/O Services

Reading and Writing the File I/O Buffer
There are three fields in the MMIOINFO structure used for reading and writing
the file I/O buffer: pchNext, pchEndRead, and pchEndWrite. The pchNext field
points to the next location in the buffer to read or write. You must increment
pchNext as you read and write the buffer. The pchEndRead field identifies the
last valid character you can read from the buffer. Likewise, pchEndWrite
identifies the last location in the buffer you can write. To be precise, both
pchEndRead and pchEndWrite point to the memory locationjollowing the
last valid data in the buffer.

Advancing the File I/O Buffer
When you reach the end of the file I/O buffer, you must advance the buffer to fill
it from the disk (if you are reading), and flush it to the disk (if you are writing).
Use the mmioAdvance function to advance a file I/O buffer. The mmioAdvance
function has the following syntax:

UINT mmioAdvance(hmmio, lpmmioinjo, wFlags)

The hmmio parameter specifies the file handle for a file opened for buffered I/O.

The lpmmioinjo parameter specifies a far pointer to an MMIOINFO structure
containing information on the I/O buffer for the file.

The wFlags parameter specifies options for the operation. To fill an I/O buffer, use
the MMIO_READ flag. To flush an I/O buffer, use the MMIO_ WRITE flag. To
flush the current buffer and fill it with more data from the file, use both flags.

The return value is zero if the operation is successful; otherwise, the return value
specifies an error code.

The following illustrations show how the file I/O buffer is advanced as a file is
read or written.

Directly Accessing a File 1/0 Buffer 7-27

The application opens the file for buffered I/O. The buffer is
initially empty, so mmioOpen sets pchNext and pchEndRead to
point to the beginning of the file I/O buffer.

EOF

t pchEndRead
pchNext

The application calls mmioAdvance to fill the I/O buffer.
mmioAdvance fills the buffer and sets pchEndRead to point to
the end of the buffer.

EOF

t pchEndRead

The application reads from the I/O buffer and increments pchNext.

EOF

t t pchEndRead
pchNext

The application continues to read the buffer and call mmioAdvance
to refill the buffer when it's empty. When mmioAdvance reaches the
end of the file, there is not enough information to fill the buffer.
mmioAdvance sets pchEndRead to point to the end of valid data
in the buffer.

EOF

t pchEndRead

Advancing a file 1/0 buffer for reading.

7-28 Multimedia File I/O Services

The application opens the file for buffered I/G. mmioOpen sets
pchNext to point to the beginning of the file I/O buffer and
pchEndWrite to paint to the end of the buffer.

t pchNext t pchEndWrite

EOF

The application writes to the I/O buffer and increments pchNext.

t t pchEndWrite
pchNext

Once the application fills the buffer, it calls mmioAdvance to
flush the buffer to disk. mmioAdvance resets pchNext to point
to the beginning of the buffer.

t pchEndWrite

EOF

EOF

The application continues to write to the buffer and call mmioAdvance to
flush the buffer when it's full. At the end of the file, there is not enough
information to fill the buffer. When the application calls mmioAdvance to
flush the buffer, pchNext paints to the end of valid data in the buffer.

A~vancing a file I/O buffer for writing.

EOF

t t pchEndWrite
pchNext

Directly Accessing a File I/O Buffer 7-29

Using the mmioAdvance Function
To fill a file I/O buffer from disk, call mmioAdvancewith the MMIO_READ
flag. If there is not enough data remaining in the file to fill the buffer, the
pchEndRead field in the MMIOINFO structure points to the location following
the last valid byte in the buffer.

To flush a buffer to disk, first set the MMIO_DIRTY flag in the dwFlags field of
the MMIOINFO structure. Then call mmioAdvance with the MMIO_ WRITE flag.

Example of Accessing a File 110 Buffer
The following code fragment is based on the ReversePlay example function
discussed in "Example of RIFF File I/O," earlier in this chapter. In this example,
direct-buffer access is used to read waveform data from a file.

HMMIO
MMIOINFO
DWORD
DWORD
HPSTR

hmmio;
mmioinfo;
dwDataSize;
dwCount;
hptr;

1* Get information on the file 1/0 buffer.
*1

if (mmioGetlnfo(hmmio, &mmioinfo, 0»
{

}

Error("Failed to get 1/0 buffer info.");

mmioClose(hmmio, 0);
return;

7-30 Multimedia File 1/0 Services

1* Read the entire file by directly reading the file liD buffer.
* When the end of the liD buffer is reached, advance the buffer.
*1

for (dwCount = dwOataSize, hptr = lpOata; dWCount 0; dWCount--)
{

}

1* Check to see if the liD buffer must be advanced.
*1

if (mmioinfo.pchNext == mmioinfo.pchEndRead){
if(mmioAdvance(hmmio, &mmioinfo, MMIO_REAO»{

Error("Failed to advance buffer.");

}

}

mmioClose(hmmio, 0);
return;

1* Get a character from the buffer.
*1

*hptr++ = *mmioinfo.pchNext++;

1* End direct buffer access and close the file.
*1

mmioSetlnfo(hmmio, &mmioinfo, 0);
mmioClose(hmmio, 0);

Ending Direct Access of a File 1/0 Buffer
When you finish accessing a file I/O buffer, pass the MMIOINFO structure filled
by mmioGetInfo to mmioSetInfo to terminate direct-buffer access. If you wrote
to the buffer, set the MMIO_DIRTY flag in the dwFlags field of the MMIOINFO
structure before calling mmioSetInfo. Otherwise, the buffer will not be flushed
to disk.

Performing File 110 on Memory Files
The multimedia file I/O services let you to treat a block of memory as a file.
This can be useful if you already have a file image in memory. Memory files
let you reduce the number of special-case conditions in your code because, for
I/O purposes, you can treat file memory images as if they were disk-based files.
You can also use memory files with the Clipboard.

Using Custom I/O Procedures 7-31

Opening Memory Files
Like I/O buffers, memory files can use memory allocated by the application or
by the file I/O manager. In addition, memory files can be either expandable or
non-expandable. When the file I/O manager reaches the end of an expandable
memory file, it expands the memory file by a predefined increment.

To open a memory file, use mmioOpen with the szFileName parameter set to
NULL and the MMIO_READWRITE flag set in the dwOpenFlags parameter. Set
the lpmmioinfo parameter to point to an MMIOINFO structure as follows:

• Set the pIOProc field to NULL.

• Set the fccIOProc field to FOURCC_MEM.

• Set the pchBuffer field to point to the memory block. To request that the file
110 manager allocate the memory block, set pchBuffer to NULL.

• Set the cchBuffer field to the initial size of the memory block.

• Set the adwlnfo[O] field to the minimum expansion size of the memory block.
For a non-expandable memory file, set adwlnfo[O] to NULL.

• Set all other fields to zero.

Allocating Memory for Memory Files
There are no restrictions on allocating memory for use as a non-expandable
memory file. You can use static memory or stack memory, or you can use locally
allocated or globally allocated memory. For expandable memory files, you must
use memory allocated using GlobalAlloc and locked using GlobalLock.

Using Custom I/O Procedures
Multimedia file I/O services use I/O procedures to handle the physical input and
output associated with reading and writing to different types of storage systems,
such as file-archival systems and database-storage systems. There are predefined
I/O procedures for standard MS-DOS files and for memory files. In the future,
there will be a predefined 110 procedure for accessing elements of compoundfiles.
Compound files consist of a number of individual files, called file elements, bound
together in one physical file.

You can supply a custom 110 procedure for accessing a unique storage system
such as a database or file archive. This I/O procedure can be private to your
application or it can be shared with other applications.

7-32 Multimedia File 1/0 Services

The multimedia file I/O services provide the following functions to support
custom I/O procedures:

mmioInstallIOProc
Installs, removes, or locates an I/O procedure.

mmioSendMessage
Sends a custom message to the 1/0 procedure associated with a file.

Opening a File Using a Custom I/O Procedure
Before learning about how to write an I/O procedure, it's helpful to understand
how to use one. To open a file using a custom 1/0 procedure, use mmioOpen as
you would to open any other file. Use a plus sign (+) in the filename to separate
the name of the physical file from the name of the element of the file you want to
open. For example, the following statement opens a file element named "element"
from a file named "filename.arc":

mmioOpen("filename.arc+element", NULL, MMIO~READ);

When the file I/O manager encounters an plus sign in a filename, it looks at the
preceding filename extension to determine which 1/0 procedure to associate with
the file. In the previous example, the file I/O manager will attempt to use the 1/0
procedure associated with the .ARC filename extension. If no I/O procedure is
installed, the mmioOpen function returns an error.

Writing an I/O Procedure
An I/O procedure is a message-processing function supplied by an application. An
1/0 procedure function has the following syntax:

LRESULT FAR PASCAL IOProc(lpmmioinjo, wMsg, IParaml, IParam2)

The lpmmioinjo parameter specifies a far pointer to an MMIOINFO structure
associated with the file being accessed.

Using Custom I/O Procedures 7-33

The wMsg parameter is a UINT and specifies the message being sent by the file
I/O manager to the I/O procedure.

The lParami parameter is an LPARAM and specifies 32 bits of message-dependent
information.

The lParam2 parameter is an LP ARAM and specifies 32 bits of message-dependent
information.

The return value is message-dependent. If the I/O procedure does not recognize a
message, it should return zero.

I/O Procedure Messages
I/O procedures must respond to the MMIOM_CLOSE, MMIOM_OPEN,
MMIOM_READ, MMIOM_ WRITE, MMIOM_SEEK, MMIOM_RENAME, and
MMIOM_ WRITEFLUSH messages. Each of these messages has two parameters.
For details about these messages and their parameters, see the Multimedia
Programmer's Reference.

You can also create custom messages and send them to your I/O procedure using
the mmioSendMessage function. If you define your own messages, be sure they
are defined at or above the MMIOM_USER message. For example, the following
code fragment defines a message named MMIOM_MYMESSAGE:

#define MMIOM_MYMESSAGE

Using the MMIOINFO Structure
In addition to processing messages, an I/O procedure must maintain the
IDiskOffset field in the MMIOINFO structure referenced by the lpmmioinfo
parameter. The IDiskOffset field must always contain the file offset to the location
that the next MMIOM_READ or MMIOM_ WRITE message will access. The
offset is specified in bytes and is relative to the beginning of the file. The I/O
procedure can use the adwlnfo[] field to maintain any required state information.
The I/O procedure should not modify any other fields in the MMIOINFO structure.

7-34 Multimedia File I/O Services

Installing an I/O Procedure
Use mmioInstallIOProc to install, remove, or locate an I/O procedure. The
mmioInstallIOProc function has the following syntax:

LPMMIOPROC mmioInstallIOProc(fccIOProc, pIOProc, dwFlags)

ThejccIOProc parameter specifies the filename extension associated with the I/O
procedure. Use a four-character code to specify the extension. All characters in the
four-character code must be uppercase characters.

The pIOProc parameter specifies a far pointer to the I/O procedure being installed.
If the I/O procedure resides in the application (rather than being in a DLL), use
MakeProcInstance to get a procedure-instance address and specify this address
for pIOProc. If you are removing or locating an I/O procedure, pIOProc should
be NULL.

The dwFlags parameter specifies whether to install, remove, or locate the
specified I/O procedure. Specify one of the following flags for dwFlags:
MMIO_INSTALLPROC, MMIO_REMOVEPROC, or MMIO_FINDPROC.

The return value is the address of the I/O procedure installed, removed, or located.
If there is an error, the return value is NULL.

For example, to install an I/O procedure associated with the filename extension
"ARC", use the following statement:

mmiolnstallIOProc (mmioFOURCC('A', 'R', 'C', ' '),
(LPMMIOPROC)lpmmioproc, MMIO_INSTALLPROC);

Note Be sure to remove any I/O procedures you've installed before exiting your application.

Using Custom 1/0 Procedures 7-35

Installing an I/O Procedure Using mmioOpen
When you install an I/O procedure using mmiolnstallIOProc, the procedure
remains installed until you remove it. The I/O procedure will be used for any file
you open if the file has the appropriate filename extension. You can also tempo­
rarily install an I/O procedure using mmioOpen. In this case, the I/O procedure
is only used with a file opened by mmioOpen and is removed when the file is
closed using mmioClose.

To specify an I/O procedure when you open a file using mmioOpen, use the
lpmmioinfo parameter to reference an MMIOINFO structure as follows:

• Set the fccIOProc field to NULL.

• Set the pIOProc field to the procedure-instance address of the I/O procedure.

• Set all other fields to zero (unless you are opening a memory file, or directly
reading or writing to the file I/O buffer).

Sharing an I/O Procedure with Other Applications
To share an I/O procedure with other applications, follow these guidelines:

• Put the code for the I/O procedure in a dynamic-link library (DLL).

• Create a function in the DLL that calls mmiolnstallIOProc to install the
I/O procedure.

• Export this function in the module-definitions file of the DLL.

To use the shared I/O procedure, an application must first call the function in the
DLL to install the I/O procedure.

Glossary
A
ADPCM (Adaptive Differential Pulse Code
Modulation) An audio-compression technique.

animation The display of a series of graphic
images, simulating motion. Animation can be
frame-based or cast-based.

auxiliary audio device Audio devices whose out­
put is mixed with the MIDI and waveform output
devices in a multimedia computer. An example of
an auxiliary audio device is the compact disc audio
output from a CD-ROM drive.

B
break key In MCI, a keystroke that interrupts a
wait operation. By default, MCI defines this key as
CTRL+BREAK. An application can redefine this key
by using the MCLBREAK command message.

C
CD-DA (Compact Disc-Digital Audio) An optical
data-storage format that provides for the storage of
up to 73 minutes of high-quality digital-audio data
on a compact disc. Also known as Red Book audio.

CD-ROM (Compact Disc-Read Only Memory)
An optical data-storage technology that allows
large quantities of data to be stored on a compact
disc.

CD-XA (CD-ROM Extended Architecture) An ex­
tension of the CD-ROM standard that provides for
storage of compressed audio data along with other
data on a CD-ROM disc. This standard also defines
the way data is read from a disc. Audio signals are
combined with text and graphic data on a single
track so they can be read at virtuany the same time.

channel MIDI provides a way to send messages
to an individual device within a MIDI setup. There
are 16 MIDI channel numbers. Devices in a MIDI
setup can be directed to respond only to messages
marked with a channel number specific to the de­
vice.

channel map The MIDI Mapper provides a
channel map that can redirect MIDI messages
from one channel to another.

chunk The basic building block of a RIFF file,
consisting of an identifier (caned a chunk ID), a
chunk-size variable, and a chunk data area of
variable size.

command message In MCI, a command message
is a symbolic constant that represents a unique com­
mand for an MCI device. Command messages have
associated data structures that provide information
a device requires to carry out a request.

command string In MCI, a command string is a
nun-terminated character string that represents a
command for an MCI device. The text string con­
tains all the information that an MCI device needs
to carry out a request. MCI parses the text string
and translates it into an equivalent command
message and data structure that it then sends to
a MCI device driver.

compound device An MCI device that requires a
device element, usually a data file. An example of a
compound device is the MCI waveform-audio
driver.

compound file A number of individual files
bound together in one physical file. Each individual
file in a compound file can be accessed as if it were
a single physical file.

control change See MIDI control-change
message.

G-2 Multimedia Programmer's Guide

o
device element Data required for operation of
MCI compound devices. The device element is
generally an input or output data file.

F
file element An complete file contained in a
RIFF compound file.

FM (Frequency Modulation) synthesizer
A synthesizer that creates sounds by combining
the output of digital oscillators using a frequency
modulation technique.

form type A four-character code (FOURCC) iden­
tifying the type of data contained in a RIFF chunk.
For example, a RIFF chunk with a form type of
WAVE contains waveform audio data.

FOURCC (Four-Character Code) A code used to
identify RIFF chunks. A FOURCC is a 32-bit quan­
tity represented as a sequence of one to four ASCII
alphanumeric characters, padded on the right with
blank characters.

G
General MIDI A synthesizer specification created
by the MIDI Manufacturers Association (MMA)
defining a common configuration and set of capa­
bilities for consumer MIDI synthesizers.

H
HMS time format A time format used by MCI to
express time in hours, minutes, and seconds. The
HMS time format is used primarily by videodisc
devices.

IMA (International MIDI ASSOCiation)
The non-profit organization that circulates infor­
mation about the MIDI specification.

IMA (Interactive Multimedia Association)
A professional trade association of companies,
institutions, and individuals involved in producing
and using interactive multimedia technology.

L
LIST chunk A RIFF chunk with a chunk ID of
LIST. LIST chunks contain a series of subchunks.

list type A four-character code (FOURCC) identi­
fying the type of data contained in a RIFF chunk
with a chunk ID of LIST. For example, a LIST
chunk with a list type of INFO contains a list of
information about a file, such as the creation date
and author.

M ______________________ __
Media Control Interface (MCI) High-level control
software that provides a device-independent inter­
face to multimedia devices and media files. MCI
includes a command-message interface and a
command-string interface.

MIDI (Musical Instrument Digital Interface)
A standard protocol for communication between
musical instruments and computers.

MIDI control-change message A MIDI message
sent to a synthesizer to change different synthesizer
control settings. An example of a control-change
message is the volume controller message, which
changes the volume of a specific MIDI channel.

MIDI file A file format for storing MIDI songs. In
Windows with Multimedia, MIDI files have a .MID
filename extension. RIFF MIDI files have a .RMI
filename extension.

MIDI Mapper Windows systems software that
modifies MIDI output messages and redirects them
to a MIDI output device using values stored in a
MIDI setup map. The MIDI Mapper can change the
destination channel and output device for a mes­
sage, as well as modify program-change messages,
volume values, and key values.

The Control Panel includes a MIDI Mapper applet
that allows a user to create and edit MIDI setup
maps.

MIDI mapping The process of translating and re­
directing MIDI messages according to data defined
in a MIDI map setup.

MIDI program-change message A MIDI message
sent to a synthesizer to change the patch on a
specific MIDI channel.

MIDI sequence Time-stamped MIDI data that
can be played by a MIDI sequencer.

MIDI sequencer A program that creates or plays
songs stored as MIDI files. When a sequencer plays
MIDI files, it sends MIDI data from the file to a
MIDI synthesizer, which produces the sounds.
Windows provides a MIDI sequencer, accessible
through MCI, that plays MIDI files.

MIDI setup map A complete set of data for the
MIDI Mapper to use when redirecting MIDI mes­
sages. Only one setup map can be in effect at a
given time, but the user can have several setup
maps available and can choose between them using
the MIDI Mapper Control Panel option.

Glossary G-3

MIDI time code (MTC) MIDI messages used for
synchronizing MIDI sequences with external de­
vices. The MCI MIDI sequencer does not support
any type of synchronization.

MMA (MIDI Manufacturers Association) A collec­
tive organization composed of MIDI instrument
manufacturers and MIDI software companies. The
MMA works with the MIDI Standard Committee
to maintain the MIDI specification.

MSF time format A time format used by MCI to
express time in minutes, seconds, and frames. The
number of frames in a second depends on the de­
vice type being used. Compact disc audio devices
use 75 frames per second. The MSF time format is
used primarily by compact disc audio devices.

MSCDEX (Microsoft Compact Disc Extensions)
A terminate-and-stay-resident (TSR) program that
makes CD-ROM drives appear to MS-DOS as net­
work drives. MSCDEX uses hardware-dependent
drivers to communicate with a CD-ROM drive.

p
patch A particular setup of a MIDI synthesizer
that results in a particular sound, usually a sound
simulating a specific musical instrument. Patches
are also called programs. A MIDI program-change
message changes the patch setting in a synthesizer.
Patch also refers to the connection or connections
between MIDI devices.

patch caching Some internal MIDI synthesizer
device drivers can preload, or cache, their patch
data. Patch caching reduces the delay between the
moment that the synthesizer receives a MIDI pro­
gram-change message and when it plays a note
using the new patch. Patch caching also ensures
that required patches are available (the synthesizer
might load only a subset of its patches).

G-4 Multimedia Programmer's Guide

pitch scale factor An application can request
that a waveform audio driver scale the pitch by a
specified factor. A scale factor of two results in a
one-octave increase in pitch. Pitch scaling requires
specialized hardware. The playback rate and
sample rate are not changed.

playback rate scale factor In waveform audio,
an application can request that the waveform audio
driver scale the playback rate by a specified factor.
Playback scaling is accomplished through software;
the sample rate is not changed, but the driver inter­
polates by skipping or synthesizing samples. For
example, if the playback rate is changed by a factor
of two, the driver skips every other sample.

PPQN (Parts Per Quarter Note) A time format
used for MIDI sequences. PPQN is the most com­
mon time format used with standard MIDI files.

preimaging The process of building a movie
frame in a memory buffer before it is displayed.

R
Red Book audio See CD-DA.

Resolution For joysticks, resolution refers to the
minimum and maximum intervals between joystick
messages sent for a captured joystick.

For timers, resolution refers to the accuracy of the
timer event. A resolution value of zero means that
the event must occur at the exact time requested,
while a resolution value of ten means that the event
must occur within ten milliseconds of the requested
time.

RIFF (Resource Interchange File Format)
A tagged-file specification used to define standard
formats for multimedia files. Tagged-file structure
helps prevent compatibility problems that often
occur when file-format definitions change over

time. Because each piece of data in the file is iden­
tified by a standard header, an application that does
not recognize a given data element can skip over
the unknown information.

RIFF chunk A chunk with chunk ID RIFF that
includes an identifying code and zero or more sub­
chunks, the contents of which depend on the form
type.

RIFF file A file whose format complies with one
of the published RIFF forms.

Examples of RIFF files include WAVE files for
waveform audio data, RMID files for MIDI
sequences, and RDIB files for bitmaps.

RIFF form A file-format specification based on
the RIFF standard.

s
sample A discrete piece of waveform data repre­
sented by a single numerical value. Sampling is the
process of converting analog data to digital data by
taking samples of the analog waveform at regular
intervals.

sampling rate The rate at which a waveform
audio driver performs audio-to-digital or digital­
to-audio conversion. For CD-DA, the sampling
rate is 44.l kHz.

seek With file 1/0, seek means to change the cur­
rent position in the file. The current position is the
location where the next read or write operation will
take place. With a media device (such as a hard
disk), seek means to position the media so a certain
sector can be accessed. The seek involves a physi­
cal movement of the device, so the time it takes can
often be perceived by the user.

sequence See MIDI sequence.

sequencer See MIDI sequencer.

simple device An MCI device that does not
require a device element (data file) for playback.
The MCI compact-disc audio driver is an example
of a simple device.

SMPTE (Society of Motion Picture and Television
Engineers) An association of engineers involved
in movie, television, and video production. SMPTE
also refers to SMPTE time, the timing standard that
this group adopted.

SMPTE division type One of four SMPTE timing
formats. SMPTE time is expressed in hours,
minutes, seconds, and frames. The SMPTE division
type specifies the frames-per-second value corre­
sponding to a given SMPTE time. For example, a
SMPTE time of one hour, 30 minutes, 24 seconds,
and 15 frames is useful only if the frames-per­
second value, or SMPTE division type, is known.

SMPTE offset A MIDI event that designates the
SMPTE time at which playback of a MIDI file is to
start. SMPTE offsets are used only with MIDI files
using SMPTE division type.

SMPTE time A standard representation of time
developed for the video and film industries.
SMPTE time is used with MIDI audio because
many people use MIDI to score films and video.
SMPTE time is an absolute time format expressed
in hours, minutes, seconds, and frames. Standard
SMPTE division types are 24, 25, and 30 frames
per second.

square-wave synthesizer A synthesizer that pro­
duces sound by adding square waves of various
frequencies. A square wave is a rectangular
waveform.

streaming The process of transferring infor­
mation from a storage device, such as a hard disk or
CD-ROM, to a device driver. Rather than transfer­
ring all the information in a single data copy, the

Glossary G-5

information is transferred in smaller parts over a
period of time, typically while the application is
performing other tasks.

system-exclusive data In MIDI, messages
understood only by MIDI devices from a specific
manufacturer. System-exclusive data provides a
way for MIDI-device manufacturers to define cus­
tom messages that can be exchanged between their
MIDI devices. The standard MIDI specification de­
fines only a framework for system-exclusive
messages.

T
tagged file format A file format in which data is
tagged using standard headers that identify infor­
mation type and length.

tempo With the MIDI sequencer, tempo is the
speed that a MIDI file is played. It is measured in
beats per minute (BPM). A typical MIDI tempo is
120 BPM.

threshold For the joystick interface, the move­
ment threshold is the distance in device units that
the coordinates must change before the application
is notified of the movement. Setting a high thresh­
old reduces the number of joystick messages sent to
your application, however, it also reduces the sensi­
tivity of the joystick.

time stamp With recorded MIDI data (such as
MIDI files), MIDI messages are tagged with a time
stamp so that a MIDI sequencer can replay the data
at the proper moment.

TMSF time format A time format used by MCI
to express time in tracks, minutes, seconds, and
frames. The number of frames in a second depends
on the device type being used. Compact disc audio
devices use 75 frames per second. The TMSF time
format is used primarily by compact disc audio de­
vices.

G-6 Multimedia Programmer's Guide

track A sequence of sound on a CD-DAdisc. A
CD-DA track usually corresponds to a song.

With a MIDI file, information can be separated
into tracks, which are defined by the creator of the
MIDI file. MIDI file tracks can correspond to MIDI
channels, or they can correspond to parts of a song
(such as melody or chorus).

v
volume scalar A component of a MIDI Mapper
patch map that adjusts the volume of a patch on a
synthesizer. For example, if the bass patch on a syn­
thesizer is too loud compared to its piano patch, the
volume scalar can reduce the volume for the bass or
increase the volume for the piano.

Applications playing waveform audio can also
adjust the output volume.

w ______________________ _
WAVE file A Microsoft standard file format for
storing waveform audio data. WAVE files have a
.WAV filename extension.

waveform audio A technique of recreating an
audio waveform from digital samples of the
waveform.

Index
A
ADPCM data format, 5-19
Alert sounds

alert level, 4-6
assigning in WIN.INI, 4-5
default, 4-7
in joystick example, 6-19
in resource script, 4-4
playing, 4-6
setting in Control Panel, 4-7

Alias. See Device alias
Animation

definition, G-l
Animation sequence. See movie
Application

and audio services (illustration), 3-4
and device drivers (illustration), 1-5
and multimedia services (illustration), 1-4
and MIDI Mapper (illustration), 4-38
sample,O-xi

Asynchronous waveform sound, 4-3
Audio devices

with functions
capabilities, querying, 5-4 to 5-5
closing, 5-5 to 5-6
device-inquiry functions, 5-3
handle, 5-6 to 5-7
opening, 5-5 to 5-6
sharing, 5-5

withMCI
closing, 4-25
command messages, 4-9 to 4-lO
current status information, 4-25
opening, 4-lO
positioning, 4-16

Audio mixer, 5-59
Audio services

high-level,3-3
high-level functions, 3-5
levels compared, 3-3
low-level, 3-3, 5-1 to 5-2
low-level functions, 3-5
MCI,4-8

AUXCAPS data structure
defined, 5-60
fields, 5-5

auxGetDevCaps, 5-60
auxGetVolume,5-6l

Auxiliary audio devices
capabilities, 5-60
definition, G-1
device type, 5-60
device-inquiry functions, 5-3 to 5-4
mixing output, 5-59
number of installed, 5-3, 5-59
volume support, 5-60
volume, setting, 5-61

auxSetVo1ume,5-61

B
Background music, 3-5
Base-level synthesizer, 4-44
Beep, sounding, 4-3, 4-7
Break key

defining, 2-22
definition, G-l
setting with command string, 2-10

Buffer. See Internal buffer
Bytes time format, 4-22

c
Callback functions

audio message-processing, 5-10 to 5-11
custom file 110 procedures, 7-32
low-level audio, 5-10 to 5-11
MIDI recording messages, 5-57
MIDI system-exclusive playback, 5-48
timer-event, 6-7
waveform playback messages, 5-31
waveform recording, 5-41
See also Window-procedure functions

CD-ROM. See Compact disc
Channel mapping

channels
active, 4-40
definition, G-l
destination, 4-37, 4-40
inactive, 4-40
logical numbers, 4-37
MIDI status byte, 4-40
source, 4-37, 4-40

map entries, 4-40
map, definition, G-l
messages affected by, 4-43
and MIDI file, 4-45
setup map, 4-39

2 Index

Channel-aftertouch message, mapping, 4-40
Command messages. See MCI command messages
Command strings. See MCI command strings
Compact disc

See also Auxiliary audio devices
CD-DA, definition, G-l
CD-XA, definition, G-l
closing, 4-25
current status information, 4-25
data streaming, 7-2
definition, G-l
device handle, 5-6
device name, 4-11
MCI data types, 4-8
MSCDEX, definition, G-3
opening, 4-10, 4-15
playback, 4-16, 4-20
playback position, 4-16
positioning device element, 4-21
table-of-contents data, 4-23
time format, 4-22
track-relative information, 4-27

Compact Disc-Read Only Memory. See CD-ROM
Compatibility mode, opening file in, 7-7
Compound devices

capabilities, 2-18
definition, G-l
opening, 2-18

Compound file, definition, G-l
Control Panel

Joystick applet, 6-18
Sounds option, 4-7

Control-change message, definition, G-2
CPU usage

and file I/O services, 7-2

o
Data blocks

allocating memory for, 5-7 to 5-8
MIDI

input callback functions, 5-57
multiple for single system-exclusive message, 5-47
sending to device, 5-47

preparing, 5-8
processing, 5-9
waveform

aligning, 5-20
alignment, querying, 4-25
allocating memory for, 5-26
mark pending as done, 5-40
playback callback function, 5-31
playback window-procedure function, 5-30

Data blocks (continued)
waveform

recording callback function, 5-41
recording window-procedure function, 5-40
sending to output device, 5-25
writing, 5-25

Data streaming
audio data, 4-8
definition, G-5
optimizing, 7-2, 7-25

Data structures. See individual references by structure
name

Data types
joystick, 6-10
MCI audio, 4-8
MIDI input, 5-53
MIDI output, 5-42
Multimedia file I10, 7-3
timer services, 6-2
waveform input, 5-37

Debugger, multimedia debugging version, 1-6
Device alias

device name, 2-15
to open device, 2-15

Device element
associating with MCl device, 2-19
closing, 2-20
definition, G-2
device name, 2-15
multiple for device, 4-25
opening audio, 4-12
positioning, 4-16
positioning audio, 4-21

DevicelD
assigned by MCl, 2-15, 5-3
and device handle, 5-7
getting with MCI, 2-15
for MCl commands, 2-15
valid, checking for, 2-15

Device independent design, 1-5
Device name

assigned by MCl, 2-6
Device name(s)

in WlN.INI, 4-12
Device names

definition, 2-15
enumerating, 2-23
getting with MCl, 2-23

Device type lD
constant (integer), 2-16
specifying by constant, 2-15
specifying by name, 2-15

Device type(s)
auxiliary audio, 5-60
device name, 2-15
multiple occurrences of single, 2-17
number of installed, 2-23

Device types
drivers, 2-6
in SYSTEM.INI, 2-6
MCI,2-5

Device-Independent Bitmap. See DIE. See DIEs
Devices

closing with MCI, 2-20
default M CI, 2-7
opening with MCI, 2-14, 2-18
sharing, 2-15
system information, 2-22

Division type. See Sequence division type
DWORD packing

E

internal synthesizer volume, 5-51
MIDI messages, 5-46
MIDI messages using running status, 5-49
minute/second/frame time format, 4-23
recorded MIDI data, 5-56
SMPTE time format, 4-25
tracklminute/second/frame time format, 4-24
waveform input levels, 4-31

Errors
debugging version, 1-6
device messages, 2-21
invalid device ID, 2-15
invalid MIDI message, 5-56 to 5-57
low-level audio functions, 5-13
mciSendCommand return value, 4-15
sending command messages, 2-13

Exclusive mode, opening file in, 7-7
Expandable memory files, 7-30 to 7-31
Extended synthesizer, 4-44
Extensibility, definition, 1-5

F
File element, definition, G-2
File IIO

buffered
advancing buffer, 7-26
allocating buffer, 7-10
buffer information, querying, 7 -25
buffer size, 7-11
direct buffer access, 7-25, 7-29
file I/O manager, 7-10

File I/O (continued)
buffered

flushing buffer, 7-11
read-write operations, 7-26
terminating buffer access, 7 -30
versus unbuffered, 7-10

custom procedures
associating with file, 7-32
installing, 7-34 to 7-35
messages, 7-33
opening a file, 7-32
sharing with applications, 7-35

deleting a file, 7-8
creating a file, 7-8
file privileges, 7-6
HMMIO file handle, 7-5
memory files, 7 -30 to 7 -31
opening a file, 7-4
positioning file pointer, 7-8
read-write operations, 7-8

File IIO functions
for basic operations, 7-4
buffered file I/O, 7-10
for custom procedures, 7-32
data types, 7-3
direct buffer access, 7-25
prefix, 7-3
RIFF file support, 7 -13

Index 3

FM (Frequency Modulation) synthesizer, definition, G-2
Form type

definition, G-2
in RIFF chunk, 7-14
specifying, 7 -17
specifying in MMCKINFO, 7-17

Format 0 and Format 1 MIDI files, 4-34
Four-character code

chunk ID, 7-13
converting data to, 7-16
definition, G-2
form type, 7 -14
in example, 7 -17
list type, 7 -15

FOURCC. See Four-character code
Frame. See Movie frame
Frame index. See Movie frame
Functions. See function name or category (for example,

Waveform functions)

G
General MIDI, definition, G-2
Graphics device interface, See GDI

4 Index

H
Header files, list, 1-6
HMS time format, definition, 0-2

IMA (Interactive Multimedia Association)
definition, 0-2

IMA (International MIDI Association)
address, 3-7
definition, 0-2

Input signal, waveform, 4-31
Internal buffer

advancing, 7-26
allocating, 7-10
changing size, 7-12
default size, 7-11
direct buffer access, 7-25
flushing, 7-11
querying, 7-25
read-write operations, 7-26

Internal synthesizer
capabilities, 5-44
output volume, 5-50
patches, preloading and caching, 5-51
technology, 5-43

International MIDI Association. See IMA
Interrupt timers, 6-2, 6-6
I/O procedures, 7-31

J
JOYCAPS data structure, defined, 6-12
joyGetDevCaps, syntax, 6-12
joyGetNumDevs

in example, 6-11
syntax, 6-11

joyGetPos
disconnected device, 6-11
in example, 6-11
and joystick polling, 6-13
syntax, 6-18

JOYINFO data structure, defined, 6-18
joyReleaseCapture, syntax, 6-17
joySetCapture

in example, 6-19
syntax, 6-13

joySetThreshold, syntax, 6-17
Joystick

data types, 6-10
device capabilities, 6-12
disconnected, 6-11
functions, 6-10

Joystick (continued)
and mouse, 6-9
movementthreshold,6-17
number of supported, 6-11
unplugged, 6-14

Joystick status

K

message-processing
button status flags, 6-16
capturing messages, 6-13
example of, 6-19
joystick messages, 6-14
joystick resolution, 6-14
message frequency, 6-13 to 6-14
movement threshold, 6-17
releasing joystick, 6-17
two joysticks, 6-14

polling for
joyGetPos, 6-18
button status, 6-18
frequency, 6-12
x-y-z positions, 6-18

Key mapping
messages affected by, 4-43
physical key values, 4-37
setup map, 4-39
standard assignments, 4-48
translation table, 4-42

KEY ARRAY data type, defined, 5-52

L
Libraries, import, 1-6
Linking application to import libraries, 1-6
List type, RIFF, 7-15

M ______________________ __
MacroMind Director movie. See Movie file
Markmidi utility, 4-34, 4-45

command syntax, 4-49
MCI command messages

audio, 4-9 to 4-10
definition, 0-1
extended audio, 4-8
functions, 2-13
passing control after executing, 2-20
sending to device(s), 2-13

MCI command messages
basic, 2-11
required, 2-11
system, 2-10

MCI command strings
definition, G-l
functions, 2-24
sending to device, 2-24

MCI device drivers, 2-6
MCI device types, 2-5
MCI functions

to query for error information, 2-13
to send command messages, 2-13
to send command strings, 2-24

MCCBREAK system command message, 2-10, 2-22
MCCBREAK]ARMS data structure, 2-22
MCCCLOSE command string

audio device, 4-25
MCI device, 2-20
required command, 2-11

MCCGETDEVCAPS command message
required command, 2- I 1

MCCINFO command message
required command, 2- J 1

MCCLOAD command message
basic command, 2-11

MCCNOTIFY flag, 2-21
using, 2-20 to 2-21

MCCOPEN command message
audio device, 4-10
in compact disc example, 4-15, 4-20, 4-27
device ID, 2-15
MCI device, 2-14, 2-18
in MIDI sequencer example, 4-12, 4-18
required command, 2-11
in W AVE file example, 4-17
in waveform example, 4-13, 4-32

MCCOPEN_PARMS data structure
defined for audio, 4-10
device ID, 2-15
fields, 2-15

MCCPAUSE command message
basic command, 2-11

MCCPLA Y command message
audio device, 4-16
basic command, 2-11
in compact disc example, 4-20
in MIDI file example, 4-18
in WAVE file example, 4-17

MCI]LA Y] ARMS data structure, defined, 4-16
MCCRECORD command message

basic command, 2-11
in example, 4-32
waveform recording, 4-30

MCCRECORD_PARMS data structure, defined, 4-30
MCCRESUME command message

basic command, 2-11

MCCSA VE command message, 4-31
basic command, 2-11

Index 5

MCCSA VE] ARMS data structure, defined, 4-31
MCCSEEK command message

audio playback position, 4-21
basic command, 2-11

MCCSEEK]ARMS data structure
defined, 4-21

MCCSEQ_SET_PARMS data structure
defined, 4-35
setting MIDI tempo, 4-35

MCCSET command message
audio time format, 4-22
basic command, 2-11
in compact disc example, 4-27
MIDI tempo, 4-35
selecting output device, 4-14
sequencer synchronization, 4-35 to 4-36
in time format example, 4-22
waveform data format, 4-30

MCLSTATUS command message
audio devices, querying, 4-25
in compact disc example, 4-27
in MIDI Mapper example, 4-14, 4-18
MIDI tempo, 4-35
required command, 2-11
sequence division type, 4-34
sequencer output device, 4-14
waveform input level, 4-31

MCLST ATUS_PARMS data structure
defined, 4-25
sequence division type, 4-34
verifying output device, 4-14

MCLSTOP command message
basic command, 2-11
waveform recording, 4-30

MCLSYSINFO system command message, 2-10, 2-22
MCLSYSINFO_PARMS data structure, 2-22
MCLWAITflag,2-21
MCL WAVE_OPEN]ARMS data structure, 4-11
mciGetDeviceID, 2-15
mciGetErrorString, 2-13, 2-25, 4-15
mciSendCommand

errors, 4-15
syntax, 2-13
valid device ID, 2-15

mciSendString, syntax, 2-24 to 2-25
Media Control Interface. See MCI
Memory files, 7-30 to 7-31
MessageBeep

in joystick example, 6-19
restrictions, 4-2
syntax, 4-6

6 Index

MIDI
definition, G-2
General MIDI, definition, G-2
IMA, definition, G-2
Standard MIDI specifications, 3-6

MIDI devices
with functions

device handle, 5-6
device-inquiry functions, 5-3, 5-5
input device capabilities, 5-53
input device, opening, 5-54
output device capabilities, 5-43
output device technology, 5-43

with functions
output device volume support, 5-51
output device, opening, 5-44

withMCI
opening, 4-10
output device, closing, 4-25
output device, MIDI Mapper as, 4-13
output device, valid, 4-40
output device, verifying, 4-14

MIDI file
authoring device-independent, 4-45
definition, G-3
Format 0 and Format 1,4-34
MCI MIDI sequencer formats, 3-6
and recording synthesizer, 4-43
sequence division type, getting with MCI, 4-34
Standard MIDI and sequencer, 4-34
Standard MIDI specifications, 3-7
tempo, MCI commands, 4-35

MIDI functions
requiring data blocks, 5-7
data block preparation, 5-8 to 5-9
device driver, 5-6
device-inquiry, 5-3 to 5-4
error-handling, 5-13
input data types, 5-53
internal synthesizer volume, 5-50
MCI data types, 4-8
message-sending, 5-45
output data types, 5-42
patch-caching, 5-51
prefixes, 5-2
recording, 5-55
resetting MIDI output, 5-50
system-exclusive playback, 5-47

MIDI Mapper, 4-37
channel maps, 4-40
closing, 4-25
configuring, 4-44
definition, G-3

MIDI Mapper (continued)
described, 3-5
key maps, 4-42
MIDI mapping, definition, G-3
opening, 4-13
output device, default, 4-13
output device, destination, 4-40
patch maps, 4-41
volume scaling, 4-42
with low-level services, 5-52

MIDI messages
channel mapping, 4-40
invalid, 5-56 to 5-57
key mapping, 4-42
mapping, affect of, 4-43
patch mapping, 4-41
routing through Mapper, 4-38
and running-status, 5-49, 5-58
sending with functions, 5-45
system, 4-41
system-real-time,5-47
time code, definition, G-3
time stamped, getting, 5-9
time stamping, 5-55, 5-58

MIDI playback
with functions

running-status, 5-49
sending messages, 5-45
system-exclusive, 5-47
time format, 5-12

with MCI
example of, 4-18
MIDI sequencer, 4-34
positioning device element, 4-21
sequence division type, 4-34
starting, 4-16
synchronization mode, 4-35 to 4-36
tempo, 4-35
time format, 4-22 to 4-23

MIDI recording
functions, 5-55
low-level callback function, 5-57 to 5-58
running-status, 5-58
starting, 5-55
stopping, 5-55
window-procedure function, 5-56 to 5-57

MIDI sequencer
closing, 4-25
current status information, 4-25
definition, G-3
device element, 4-12
device name, 4-11
file formats, 4-34

MIDI sequencer (continued)
MCI file formats, 3-6
MIDI Mapper output device, 4-13
opening, example of, 4-12
output device, verifying, 4-14
synchronization mode, 4-35
time format, 4-22

MIDI status byte
mapping, example, 4-40
for message mapping, 4-43
running-status, 5-58
running-status, 5-49
system-real-time messages, 5-47

MIDI synthesizer. See Internal synthesizer
MIDI time code (MTC), definition, G-3
MIDIHDR data structure

allocating memory for, 5-55
defined,5-47
polling device messages, 5-11
system-exclusive data buffer, 5-57 to 5-58

midiInAddBuffer
allocating data blocks, 5-7
sending data buffers, 5-55
in window-procedure function, 5-56

midiInCallback, syntax, 5-57
MID lIN CAPS data structure

defined,5-53
fields, 5-5

midiInClose
in callback function, 5-57
in window-procedure function, 5-56

midiInGetDevCaps, 5-53
midiInOpen

in callback function, 5-57
syntax, 5-54
in window-procedure function, 5-56

midiInReset, 5-55
midiInStart

resetting time stamp, 5-58
start recording, 5-55

midiInStop, 5-55
midiOutCacheDrumPatches, 5-52
midiOutCachePatches, 5-52
MIDIOUTCAPS data structure

defined, 5-43
fields, 5-5

midiOutClose
in callback function, 5-49
in window-procedure function, 5-48

midiOutGetDevCaps, 5-43
midiOutGetVolume, 5-51

midiOutLongMsg
allocating data blocks, 5-7
in callback function, 5-49
MIDI Mapper, 5-52
system-exclusive messages, 5-47
in window-procedure function, 5-48

midiOutOpen
in callback function, 5-49
MIDI Mapper, 5-52
syntax, 5-44
in window-procedure function, 5-48

midiOutReset, 5-50
midiOutShortMsg

MIDI Mapper, 5-52
running-status, 5-49
sending messages, 5-45

Milliseconds time format
setting with functions, 5-12
setting with MCI, 4-22

MIM_DATAmessage, 5-58
MIM_ERROR message, 5-57
MIM_LONGDATA message, 5-57 to 5-58
MIM_LONGERROR message, 5-57
MIM_OPEN message, 5-57
Minute/second/frame time format

definition, G-3
setting with functions, 5-12
setting with MCI, 4-23

MM_JOYBUTTONDOWN message
button status, 6-16
in example, 6-20

MM_JOYBUTTONUP message
button status, 6-16
in example, 6-20

MM_JOYMOVE message
button status, 6-16
in example, 6-19
and movement threshold, 6-17

MM_MCINOTIFY message
callback status, 2-20

MM_MIM_CLOSE message, 5-56
MM_MIM_DATA message, 5-56
MM_MIM~RROR message, 5-56
MM_MIM_LONGDATA message, 5-56 to 5-57
MM_MIM_LONGERROR,5-56
MM_MIM_OPEN message, 5-56
MM_MOM_CLOSE message, 5-48
MM_MOM_DONE message, 5-48
MM_MOM_OPEN message, 5-48
MM_ WIM_CLOSE message, 5-41
MM_ WIM_DATA message, 5-41
MM_ WIM_OPEN message, 5-41
MM_ WOM_CLOSE message, 5-30

Index 7

8 Index

MM_ WOM_DONE message, 5-30 to 5-31
MM_ WOM_OPEN message, 5-30
MMA (MIDI Manufacturers Association), definition, G-3
MMCKINFO data structure

chunk information, 7-17
defined, 7-16
in example, 7-17, 7-19, 7-21
seeking parent chunk, 7-20

mmioAdvance
filling file I/O buffer, 7-29
syntax, 7-26

mmioAscend
in example, 7-21
syntax, 7-20

mmioCreateChunk, syntax, 7-17
mmioDescend

in buffered file 110 example, 7-21
locating chunk, 7-19
locating RIFF chunk, example of, 5-22
searching for subchunk, 7-19
syntax, 7-18

mmioFOURCC
generating, 7 -16
in WAVE file example, 5-22

mmioGetlnfo, syntax, 7-25
MMIOINFO data structure

defined, 7-24
in custom file I/O procedure, 7-33
in example, 7-29
memory file, 7-31
terminating buffer access, 7-30

mmiolnstallIOProc, syntax, 7-34
mmioOpen

buffered file I/O, 7-10
creating a file, 7-8
custom file 110 procedure, 7-32
deleting a file, 7-8
expandable memory file, 7-31
file options, 7-6
file-sharing options, 7-7
in example, 7-5, 7-12, 7-21
installing custom I/O procedure, 7-35
memory file, 7-31
syntax, 7-4

mmioRead
file, 7-8
in RIFF file example, 7-21
in waveform data block example, 5-26
in WAVE file example, 5-22

mmioSeek, syntax, 7-8, 7-20
mmioSendMessage,7-33
mmioSetBuffer, syntax, 7-11
mmioStringToFOURCC,7-16

mmioWrite,7-8
MMSYSTEMmodule,1-3
MMSYSTEM.H header file

and MCI functions, 4-8
to call joystick functions, 6-1 to 6-2
MIDI output data types, 5-42
Multimedia file I/O functions, 7-3
and system functions, 1-6

MMSYSTEM.LIB library, 1-6
MMTIME data structure

audio time format, 5-12
defined, 5-11
system time, 5-13, 6-4
waveform playback position, 5-32

Movie palette. See Palette
MS-DOS file handle, 7-5
MSCDEX, definition, G-3
multimedia services

and Windows, 1-4
capabilities, 1-2
design philosophy, 1-4 to 1-5

Musical Instrument Digital Interface. See MIDI

N
Note-on/off message

channel mapping, 4-40
key mapping, 4-42

Notify flag, 2-20 to 2-21

o
Off-screen buffer

preimaging in, definition, G-4
Optimization. See System resources, optimizing

p
Parts Per Quarter Note. See PPQN
Patch

caching and preloading, 5-51
caching, definition, G-3
caching, synthesizer capabilities, 5-44
definition, G-3
mapping

MIDI file, 4-45
setup map, 4-39
standard assignments, 4-46
translation table, 4-41

volume, 4-42
PATCHARRAY data type, defined, 5-52
PCM data format

ADPCM,5-19
data packing, 5-29
data values, 5-29

PCM data format (continued)
definition, G-1
PCMW A VEFORMAT data structure, 5-20
supported, 3-6
W A VEFORMAT data structure, 5-19

PCMWA VEFORMAT data structure, 5-20, 5-22
Percussion instrument

key mapping, 4-43
patch-caching, 5-52
percussive channels in MIDI files, 4-45
standard key assignments, 4-48

Pitch, waveform
device capabilities, 5-17
scale factor, definition, G-4
setting, 5-35

Pitch-bend change message, mapping, 4-40
Playback rate, waveform

device capabilities, 5-17
scale factor, definition, G-4
setting, 5-35

Playback window. See Stage window
Polyphonic-key-aftertouch messages

channel mapping, 4-40
key mapping, 4-42

Polyphony, 5-44
definition, 4-44
in MIDI file, 4-45

PPQN division type
and tempo, 4-35
time format, definition, G-4

Preimaging, definition, G-4
Program-change message

channel mapping, 4-40
definition, G-3
in MIDI file, 4-45
MIDI Mapper values, 4-37
patch mapping, 4-41

Pulse code modulated format. See PCM data format

R
Read-access file privileges, 7-7
Red Book audio

definition, G-1, G-4
support, 3-2

Resolution, definition, G-4
Resource Interchange File Format. See RIFF file
Resource script, WAVE file, 4-4
Return string buffer, 2-25
RIFF chunk

ascending from, 7-20
creating, 7-17

RIFF chunk (continued)
data field size, 7-17
definition, G-1
descending into, 7-18
in example, 7-21
fields, 7-13
first in file, 7-13
form type, 7 -17
ID,7-13
LIST, 7-15, G-2
LIST list type, 7-18
list type, definition, G-2
MMCKINFO data structure, 7-16
RIFF, 7-14, G-4
searching for, 7-18 to 7-19
sub-chunk, 7-13

RIFF file
data format, getting with function, 5-22
definition, G-4
file I/O functions, 7-13
file I/O services, 7-1
file position, 7-18
format definition, G-4
opening, in example, 7-21
RIFF form, definition, G-4
supported formats, 3-6

RMIDt1le
and Standard MIDI specifications, 4-34
supported format, 3-6

Running-status, 5-49, 5-58

s
Samples time format

and playback position, 5-33
and playback rate, 5-36
querying device for, 4-25, 5-12
samples, definition, G-4
sampling rate, definition, G-4
sampling rate, setting, 5-20
setting with functions, 5-12
setting with MCI, 4-22

Screen mode. See Display driver
Seek, definition, G-4
Sequence division types

getting with MCI, 4-34
querying device for, 4-25
sequence, definition, G-3
and tempo, 4-34

Sequence tempo. See Tempo
Sequencer. See MIDI sequencer

Index 9

10 Index

Setup map
definition, G-3
maps in, 4-39
selecting, 4-38

Simple devices
definition, G-5

SMPTE time format
definition, G-5
division type and tempo, 4-35
division type, definition, G-5
DWORD packing, 4-25
offset, definition, G-5
offset, getting, 4-25
setting with functions, 5-12
setting with MCl, 4-22
SMPTE, definition, G-5
synchronization, 4-36

sndPlaySound
in joystick example, 6-20
looping sound, 4-4
playing WAVE file, 4-3
playing WAVE resource, 4-4
restrictions, 4-2
syntax, 4-3
WIN.INl [sounds] entries, 4-5

Society of Motion Picture and Television Engineers. See
SMPTE
Song pointer time format

setting with functions, 5-12
setting with MCl, 4-22

Sound option, 4-7
Square-wave synthesizer, definition, G-5
Stack memory, as memory file, 7-31
Static memory, as memory file, 7-31
Storage systems, 7-31
Synchronization mode, 4-35
Synchronized presentations, 6-3
Synthesizer

capabilities, querying, 5-44
capability comparisons, 4-44
configuring MIDI Mapper for, 4-44
data channels, 4-45
FM (Frequency Modulation), definition, G-2
patch volume, 4-42
square-wave, definition, G-5
technology, 5-43

System alerts. See Alert sounds
System functions

required header file, 1-6
required library file, 1-6

System palette. See Palette

System resources, optimizing
buffered/unbuffered file I/O, 7-10
direct buffer access, 7-25
file I/O operations, 7-9
file I/O performance, 7-2
high-resolution timer events, 6-2
interrupt timers, 6-6

System sound
in WIN.INl, 4-7
playing default, 4-3

System time, getting, 5-13, 6-4
System-exclusive data, definition, G-5
System-real-time messages, 5-47
SYSTEM.INl

[mci] section, 2-6
device information, 2-22

T
Tagged file format, definition, G-5
Tempo

definition, G-5
getting with MCl, 4-35
querying sequencer for, 4-25
and sequence division type, 4-35
setting with MCl, 4-35

Threshold, definition, G-5
Time format, audio

and MCLPLAY, 4-16
preferred waveform, 5-33
querying device for with MCI, 4-25
setting with function, 5-12
setting with MCl, 4-22

Time stamp
getting with callback function, 5-55
definition, G-5
resetting, 5-58
specifying for input data, 5-58

Time, system, 5-13, 6-4
timeBeginPeriod

in timer callback example, 6-7
syntax, 6-5
timer-event resolution, 6-5

TIMECAPS data structure
defined, 6-4
in example, 6-7

timeEndPeriod
canceling minimum timer resolution, 6-9
in example, 6-9
syntax, 6-5
timer-event resolution, 6-5

TimeGetDevCaps
in example, 6-7
syntax, 6-4

timeGetSystemTime
MMTIME data structure, 5-13
syntax, 6-4

timeGetTime, syntax, 6-4
timeKillEvent

in example, 6-9
periodic timer events, 6-6
syntax, 6-7

Timer event
canceling, 6-7
initializing, 6-5
periodic

period in milliseconds, 6-5
resolution, 6-6
specifying periodic, 6-6
supported, 6-4

resolution
and Windows 3.0 mode, 6-4
minimum, canceling, 6-9
setting, 6-6
supported, 6-4
timer callback function, 6-7

starting, 6-5, 6-8
timer lD, 6-5

Timer functions
data types, 6-2
list of, 6-3
prefix, 6-1

Timer lD, getting, 6-5
timeSetEvent

in example, 6-8
syntax, 6-5

Track, definition, 0-6
Tracklminute/second/frame time format

definition, 0-5
setting, 4-24

v
VOA display drivers. See Display drivers
Voice, internal synthesizer, 5-44
Volume

auxiliary audio device capabilities, 5-60
auxiliary audio device, setting, 5-61
internal synthesizer capabilities, 5-44
internal synthesizer output functions, 5-50
master volume control application, 5-61
MIDI channel device support, 5-51

Volume (continued)
MIDI volume scalar, 4-42
waveform device capabilities, 5-17
waveform output functions, 5-34

Volume-controller messages
main volume controller value, 4-45
mapping, 4-40
patch mapping, 4-41
relative patch volume, 4-45
scaling, 4-42

Index 11

w ______________________ _
WAVE file

application resource, 4-4
definition, 0-6
digital audio data formats, 3-6
in-memory image, 4-4
MCI playback, example, 4-17
recording with MCI, 4-30

Waveform data formats
device support, 5-15, 5-39
non-standard support, 5-16
PCM, 5-19, 5-29 to 5-30
setting, 5-19
WAVE file, 5-22

Waveform devices
device element, 4-12
device name, 4-11
handle, 5-6
preferred time format, 5-33
with functions

current playback position, 5-32
device-inquiry functions, 5-3, 5-5
input device capabilities, 5-38
input device data format support, 5-17
input device, opening, 5-38
input device, selecting, 5-39
output device capabilities, 5-15, 5-17
output device data format support, 5-15
output device handle, 5-\8
output device volume, 5-34
output device, closing, 5-34
output device, opening, 5-\8
output device, selecting, 5-19

withMCI
buffering length, 4-11
closing, 4-25
current status information, 4-25
input level, setting, 4-31
opening, 4-10, 4-13

12 Index

Waveform functions
alert-sound playback, 4-2
requiring data blocks, 5-7
data block preparation, 5-8 to 5-9
data blocks, sending, 5-25
device driver, 5-6
device-inquiry, 5-3
error-handling, 5-13
input data types, 5-37
MCI data types, 4-8
output data types, 5-14
pitch and playback rate, 5-36
playback, 5-33
playback position, 5-32
playback volume, 5-34
prefixes, 5-2
recording, 5-39
writing data, 5-26

Waveform playback
with high-level functions

asynchronous, 4-3
data format, 5 -19
looping, 4-4
memory-resident WAVE file, 4-3
system sound, 4-3
waveform sounds, 4-2

with low-level functions
callback functions, 5-31
data blocks, sending, 5-25
data types, 5-14
pausing and resuming, 5-33
pitch,5-35
playback position, current, 5-32
playback rate, 5-35
stopping, 5-33
time format, 5-12
volume, 5-34
window-procedure messages, 5-30

withMCI
example of, 4-17
positioning device element, 4-21
starting, 4-16
time format, 4-22 to 4-23

Waveform recording
with MCI, 4-30
with functions, 5-39, 5-42

W A VEFORMAT data structure
defined, 5-19
freeing, 5-18
non-standard format support, 5-16
recording waveform data, 5-39
setting data format, 5 -19

W A VEHDR data structure
defined,5-25
polling device messages, 5-11
recording callback function, 5-42
waveform recording, 5-39
in window-procedure function, 5-41

wavelnAddBuffer
allocating data blocks, 5-7
in callback function, 5-41
sending data buffers, 5-40
in window-procedure function, 5-40

W A VEIN CAPS data structure
defined, 5-38
fields, 5-5
return values, 5-16

waveInClose
in callback function, 5-41
in window-procedure function, 5-40

wavelnGetDevCaps, 5-38
waveInOpen

in callback function, 5-41
device format support, 5-16 to 5-17
syntax, 5-38
in window-procedure function, 5-40

waveInReset, 5-40
waveInStart, 5-40
waveInStop, 5-40
WA VEOUTCAPS data structure

defined,5-15
device capabilities, 5-17
fields, 5-5

waveOutClose
in callback function, 5-32
closing device, 5-34
in window-procedure function, 5-30

waveOutGetDevCaps, 5-14
waveOutGetPitch,5-36
waveOutGetPosition, syntax, 5-32
waveOutGetVolume, 5-35
waveOutOpen

in callback function, 5-32
device format support, 5-16
in window-procedure function, 5-30
setting data format, 5- I 9 to 5-20
syntax, 5-18 to 5-19

waveOutPause, 5-33
waveOutPrepareHeader, in example, 5-26
waveOutReset

stopping playback, 5-34
and waveOutClose, 5-40
when closing device, 5-34

waveOutRestart, 5-33

WaveOutWrite
allocating data blocks, 5-7
in callback function, 5-32
resuming paused playback, 5-34
sending data block, 5-25
in window-procedure function, 5-30

WIM_CLOSE message, 5-42
WIM_DONE message, 5-42
WIM_OPEN message, 5-42
WIN.INI,4-3

[mci extensions] section, 2-7, 4-12
[sounds] section, 4-5, 4-7
assigning [sounds] in Control Panel, 4-7

Window-procedure functions
audio data block processing, 5-9
in file I/O procedure, 7-32
joystick status, 6-13
MIDI playback messages, 5-48
MIDI recording messages, 5-56
notification messages, 2-20 to 2-21
waveform playback, 5-30 to 5-31
waveform recording, 5-40 to 5-41

Windows
audio architecture, 3-4

WINDOWS.H header file
and file I/O functions, 7-3
and multimedia functions, 1-6

WM_CREATE message
with joystick, 6-19

WOM_CLOSE message, 5-32
WOM_DONE message, 5-32
WOM_OPEN message, 5-32
Write-access file privileges, 7-7

Index 13

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-639~

0392 Part No. 30253

