
Multimedia Programmers
Reference

SOFTWARE DEVEWPMENT KIT

Information in this document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure agree­
ment and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ­
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

ITC Zapf Chancery and ITC Zapf Dingbats fonts. Copyright © 1991 International Typeface Corpora­
tion. All rights reserved.

Copyright © 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino,
Times, and Times Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright © 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, and CodeView are registered trademarks, and Windows is a trademark of
Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.
The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of

AGFA Compugraphic Division of Agfa Corporation.
TrueType is a registered trademark of Apple Computer, Inc.
Epson is a registered trademark of Epson America, Inc.
Hewlett-Packard, HP, and LaserJet are registered trademarks of Hewlett-Packard Company.
ITC Zapf Chancery and ITC Zapf Dingbats are registered trademarks of the International Typeface

Corporation.
Helvetica, Palatino, Times, and Times Roman are registered trademarks of Linotype AG and/or its

subsidiaries.
Arial and Times New Roman are registered trademarks of the Monotype Corporation PLC.

Document No. PC30211-0492

iv Microsoft Windows Programmer's Reference

Chapter 4 Font File Format ... 47
4.1 Organization of a Font File.... 49
4.2 Font-File Structure.. 49
4.3 Version-Specific Glyph Tables 56

Chapter 5 Group File Format .. 59
5.1 Organization of a Group File .. 61
5.2 Group-File Structures ... 61

5.2.1 Group-File Header .. 61
5.2.2 Item Data... 63
5.2.3 Tag Data .. 64

Chapter 6 Executable-File Header Format .. 67
6.1 MS-DOS Header .. 69
6.2 Windows Header 70

6.2.1 Information Block .. , 71
6.2.2 Segment Table .. 74
6.2.3 Resource Table.. 75
6.2.4 Resident-Name Table ... 78
6.2.5 Module-Reference Table .. 78
6.2.6 Imported-Name Table ... 78
6.2.7 Entry Table .. 78
6.2.8 Nonresident-Name Table.. 80

6.3 Code Segments and Relocation Data 80

Chapter 7 Resource Formats Within Executable Files... 83
7.1 Icon Resource 85
7.2 Icon-Directory Resource .. 85
7.3 Cursor Resource ... 86
7.4 Cursor-Directory Resource ... 86
7.5 Menu Resource. 87

7.5.1 Menu Header... 87
7.5.2 Pop-up Menu Item .. 88
7.5.3 Normal Menu Item .. 88
7.5.4 Combined Menu Items ... 89

7.6 Dialog Box Resource .. 90
7.6.1 Dialog Box Header ... 90
7.6.2 Control Data .. 92

vi Microsoft Windows Programmer's Reference

Chapter 12 Symbol File Format .. 141
12.1 Map Definitions .. 143
12.2 Segment Definitions ... 145
12.3 Symbol Definitions ... 147
12.4 Constant Definitions.. 148
12.5 Line Definitions...... 148

12.5.1 LINEDEFStructure .. 148
12.5.2 LINEINF Structure ... 150

Part 2 Tools Reference

Chapter 13 Resource-Definition Statements ... 153
13.1 Alphabetic Reference ... 155

Chapter 14 Assembly-Language Macros ... 223
14.1 Creating Assembly-Language Windows Applications 225

14.1.1 Specifying a Memory Model.. 226
14.1.2 Selecting a Calling Convention 227
14.1.3 Enabling the Windows Prolog/Epilog Option 227
14.1.4 Including the CMACROS.INC File ... 228
14.1.5 Creating the Application Entry Point 228
14.1.6 Declaring Callback Functions ... 229
14.1.7 Linking with Libraries .. 229
14.1.8 Enabling Stack Checking .. 229

14.2 Cmacro Groups ... 230
14.2.1 Segment Macros........................ 230
14.2.2 Storage-Allocation Macros ... 231
14.2.3 Function Macros ... 231
14.2.4 Call Macros ... 231
14.2.5 Special-Definition Macros. ... 232
14.2.6 Error Macros ... 232

14.3 Using the Cmacros ... 233
14.3.1 Overriding Types .. 233
14.3.2 Symbol Redefinition ... 233
14.3.3 Sample Cmacros Function .. 234

14.4 Alphabetic Reference 235

x Microsoft Windows Programmer's Reference

Document Conventions
The following conventions are used throughout this manual to define syntax:

Convention

Bold text

Italic text

[]

BEGIN

END

Meaning

Denotes a tenn or character to be typed literally, such as a
resource-definition statement or function name (MENU or
CreateWindow), an MS-DOS command, or a command-line
option (fnod). You must type these terms exactly as shown.

Denotes a placeholder or variable: You must provide the ac­
tual value. For example, the statement SetCursorPos(X, Y) re­
quires you to substitute values for the X and Y parameters.

Enclose optional parameters.

Separates an either/or choice.

Specifies that the preceding item may be repeated.

Represents an omitted portion of a sample application.

In addition, certain text conventions are used to help you understand this material:

Convention

SMALL CAPITALS

FULL CAPITALS

monos pace

Meaning

Indicate the names of keys, key sequences, and key com­
binations-for example, ALT +SPACEBAR.

Indicate filenames and paths, most type and structure
names (which are also bold), and constants.

Sets off code examples and shows syntax spacing.

6 Microsoft Windows Programmer's Reference

color format and the width, in pixels, of the bitmap. If necessary, a scan line must
be zero-padded to end on a 32-bit boundary. However, segment boundaries can ap­
pear anywhere in the bitmap. The scan lines in the bitmap are stored from bottom
up. This means that the first byte in the array represents the pixels in the lower-left
corner of the bitmap and the last byte represents the pixels in the upper-right
corner.

The biBitCount member of the BITMAPINFOHEADER structure determines
the number of bits that define each pixel and the maximum number of colors in the
bitmap. These members can have any of the following values:

Value Meaning

Bitmap is monochrome and the color table contains two entries.
Each bit in thc bitmap array represents a pixel. If the bit is clear, the
pixel is displayed with the color of the first entry in the color table. If
the bit is set, the pixel has the color of the second entry in the table.

4 Bitmap has a maximum of 16 colors. Each pixel in the bitmap is rep­
resented by a 4-bit index into the color table. For example, if the first
byte in the bitmap is OxIF, the byte represents two pixels. The first
pixel contains the color in the second table entry, and the second
pixel contains the color in the sixteenth table entry.

8 Bitmap has a maximum of 256 colors. Each pixel in the bitmap is
represented by a I-byte index into the color table. For example, if the
first byte in the bitmap is OxIF, the first pixel has the color of the
thirty-second table entry.

24 Bitmap has a maximum of 224 colors. The bmiColors (or bmci­
Colors) member is NULL, and each 3-byte sequence in the bitmap
array represents the relative intensities of red, green, and blue, respec­
tively, for a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the
number of color indexes in the color table actually used by the bitmap. If the bi­
ClrUsed member is set to zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member.

An alternative form of bitmap file uses the BITMAPCOREINFO, BITMAP­
COREHEADER, and RGBTRIPLE structures.

For a full description of the bitmap structures, see the Microsoft Windows Pro­
grammer's Reference, Volume 3.

1.1.2 Bitmap Compression
Windows versions 3.0 and later support run-length encoded (RLE) formats for
compressing bitmaps that use 4 bits per pixel and 8 bits per pixel. Compression re­
duces the disk and memory storage required for a bitmap.

8 Microsoft Windows Programmer's Reference

1.1.2.2 Compression of 4-Bits-per-Pixel Bitmaps
When the biCompression member of the BITMAPINFOHEADER structure is
set to BCRLE4, the DIE is compressed using a run-length encoded format for a
16-color bitmap. This format uses two modes: encoded mode and absolute mode.

Encoded Mode A unit of information in encoded mode consists of two bytes.
The first byte of the pair contains the number of pixels to be drawn using the color
indexes in the second byte.

The second byte contains two color indexes, one in its high-order nibble (that is,
its low-order 4 bits) and one in its low-order nibble. The first pixel is drawn using
the color specified by the high-order nibble, the second is drawn using the color in
the low-order nibble, the third is drawn with the color in the high-order nibble, and
so on, until all the pixels specified by the first byte have been drawn.

The first byte of the pair can be set to zero to indicate an escape that denotes the
end of a line, the end of the bitmap, or a delta. The interpretation of the escape de­
pends on the value of the second byte of the pair. In encoded mode, the second
byte has a value in the range OxOO through Ox02. The meaning of these values is
the same as for a DIE with 8 bits per pixel.

Absolute Mode In absolute mode, the first byte contains zero, the second byte
contains the number of color indexes that follow, and subsequent bytes contain
color indexes in their high- and low-order nibbles, one color index for each pixel.
Each run must be aligned on a word boundary.

Following is an example of a 4-bit RLE bitmap (the one-digit hexadecimal values
in the second column represent a color index for a single pixel):

Compressed data Expanded data

0304 040
0506 06060

00 06 45 56 67 00 455667

0478 7878

00020501 Move 5 right and 1 down

0478 7878

0000 End of line

091E 1E1E1E1E1

0001 End of RLE bitmap

10 Microsoft Windows Programmer's Reference

1.2 Icon-Resource File Format
An icon-resource file contains image data for icons used by Windows applica­
tions. The file consists of an icon directory identifying the number and types of
icon images in the file, plus one or more icon images. The default filename exten­
sion for an icon-resource file is .leo.

1.2.1 Icon Directory
Each icon-resource file starts with an icon directory. The icon directory, defined as
an ICONDIR structure, specifies the number of icons in the resource and the di­
mensions and color format of each icon image. The ICONDIR structure has the
following form:

typedef struct ICONDIR {
WORD
WORD
WORD
ICONDIRENTRY

idReserved;
idType;
idCount;
idEntries[l];

} ICONHEADER;

Following are the members in the ICONDIR structure:

idReserved
Reserved; must be zero.

idType
Specifies the resource type. This member is set to 1.

idCount
Specifies the number of entries in the directory.

idEntries
Specifies an array of ICONDlRENTRY structures containing information
about individual icons. The idCount member specifies the number of structures
in the array.

The ICONDIRENTRY structure specifies the dimensions and color format for an
icon. The structure has the following form:

struct IconDirectoryEntry {
BYTE bWidth;

} ;

BYTE bHeight;
BYTE bColorCount;
BYTE bReserved;
WORD wPlanes;
WORD wBitCount;
DWORD dwByteslnRes;
DWORD dwlmageOffset;

12 Microsoft Windows Programmer's Reference

The XOR mask, immediately following the color table, is an array of BYTE
values representing consecutive rows of a bitmap. The bitmap defines the basic
shape and color of the icon image. As with the bitmap bits in a bitmap file, the
bitmap data in an icon-resource file is organized in scan lines, with each byte repre­
senting one or more pixels, as defined by the color format. For more information
about these bitmap bits, see Section 1.1, "Bitmap-File Formats."

The AND mask, immediately following the XOR mask, is an array of BYTE
values, representing a monochrome bitmap with the same width and height as the
XOR mask. The array is organized in scan lines, with each byte representing 8
pixels.

When Windows draws an icon, it uses the AND and XOR masks to combine the
icon image with the pixels already on the display surface. Windows first applies
the AND mask by using a bitwise AND operation; this preserves or removes ex­
isting pixel color. Windows then applies the XOR mask by using a bitwise XOR
operation. This sets the final color for each pixel.

The following illustration shows the XOR and AND masks that create a mono­
chrome icon (measuring 8 pixels by 8 pixels) in the form of an uppercase K:

AND mask XOR mask Resulting icon

(3 (3 1 1 1 (3 (3 1 1 1 (3 (3 (3 1 1 (3 K K K K
(3 (3 1 1 (3 (3 1 1 1 1 (3 (3 1 1 (3 (3 K K K K
(3 (3 1 (3 (3 1 1 1 1 1 (3 1 1 (3 (3 (3 K K K K
(3 (3 (3 (3 1 1 1 1 1 1 1 1 (3 (3 (3 (3 K K K K

(3 (3 (3 (3 1 1 1 1 1 1 1 1 (3 (3 (3 (3 K K K K
(3 (3 1 (3 (3 1 1 1 1 1 (3 1 1 (3 (3 (3 K K K K
(3 (3 1 1 (3 (3 1 1 1 1 (3 (3 1 1 (3 (3 K K K K
(3 (3 1 1 1 (3 (3 1 1 1 (3 (3 (3 1 1 (3 K K K K

1.2.3 Windows Icon Selection
Windows detects the resolution of the current display and matches it against the
width and height specified for each version of the icon image. If Windows deter­
mines that there is an exact match between an icon image and the current device, it
uses the matching image. Otherwise, it selects the closest match and stretches the
image to the proper size.

If an icon-resource file contains more than one image for a particular resolution,
Windows uses the icon image that most closely matches the color capabilities of
the current display. If no image matches the device capabilities exactly, Windows
selects the image that has the greatest number of colors without exceeding the
number of display colors. If all images exceed the color capabilities of the current
display, Windows uses the icon image with the least number of colors.

14 Microsoft Windows Programmer's Reference

Following are the members in the CURSORDIRENTRY structure:

bWidth
Specifies the width of the cursor, in pixels.

bHeight
Specifies the height of the cursor, in pixels.

bColorCount
Reserved; must be zero.

bReserved
Reserved; must be zero.

wXHotspot
Specifies the x-coordinate, in pixels, of the hot spot.

wYHotspot
Specifies the y-coordinate, in pixels, of the hot spot.

IBytesInRes
Specifies the size of the resource, in bytes.

dw ImageOffset
Specifies the offset, in bytes, from the start of the file to the cursor image.

1.3.2 Cursor Image
Each cursor-resource file contains one cursor image for each image identified in
the cursor directory. A cursor image consists of a cursor-image header, a color
table, an XOR mask, and an AND mask. The cursor image has the following
form:

BITMAPINFOHEADER
RGBQUAD
BYTE
BYTE

crHeader;
crColors[];
crXOR[];
crAND[];

The cursor hot spot is a single pixel in the cursor bitmap that Windows uses to
track the cursor. The crXHotspot and crYHotspot members specify the x- and
y-coordinates of the cursor hot spot. These coordinates are 16-bit integers.

The cursor-image header, defined as a BITMAPINFOHEADER structure, speci­
fies the dimensions and color format of the cursor bitmap. Only the biSize through
biBitCount members and the biSizeImage member are used. The biHeight mem­
ber specifies the combined height of the XOR and AND masks for the cursor. This
value is twice the height of the XOR mask. The biPlanes and biBitCount mem­
bers must be 1. All other members (such as biCompression and biClrImportant)
must be set to zero.

16 Microsoft Windows Programmer's Reference

1.3.3 Windows Cursor Selection
If a cursor-resource file contains more than one cursor image, Windows deter­
mines the best match for a particular display by examining the width and height of
the cursor images.

24 Microsoft Windows Programmer's Reference

Following are the members in the metafile header:

mtType
Specifies whether the metafile is stored in memory or recorded in a file. This
member has one of the following values:

Value

o
Meaning

Metafile is in memory.

Metafile is in a file.

mtHeaderSize
Specifies the size, in words, of the metafile header.

mtVersion
Specifies the Windows version number. The version number for Windows ver­
sion 3.0 and later is Ox300.

mtSize
Specifies the size, in words, of the file.

mtNoObjects
Specifies the maximum number of objects that can exist in the metafile at the
same time.

mtMaxRecord
Specifies the size, in words, of the largest record in the metafile.

mtNoParameters
Not used.

3.2 Typical Metafile Record
The graphics device interface stores most of the GDI functions that an application
can use to create metafiles in typical records.

A typical metafile record has the following form:

struct {
DWORD
WORD
WORD

}

rdSize;
rdFunction;
rdParm[] ;

Following are the members in a typical metafile record:

rdSize
Specifies the size, in words, of the record.

26 Microsoft Windows Programmer's Reference

GDI function Value

SetTextAlign Ox012E

SetTextCharExtra Ox0108
SetTextColor Ox0209

SetTextjustification Ox020A

Set ViewportExt Ox020E

SetViewportOrg Ox020D
SetWindowExt Ox020C

SetWindowOrg Ox020B

For more information on GDI functions, see the Microsoft Windows Program­
mer's Reference, Volume 2. For more information on the function-specific meta­
file records, see Section 3.6, "Function-Specific Metafile Records."

3.3 Placeable Windows Metafiles
A placeable Windows metafile is a standard Windows metafile that has an addi­
tional 22-byte header. The header contains information about the aspect ratio and
original size of the metafile, permitting applications to display the metafile in its
intended form.

The header for a placeable Windows metafile has the following form:

typedef struct {
DWORD key;
HANDLE hmf;
RECT bbox;
WORD inch;
DWORD reserved;
WORD checksum;

METAFILEHEADER;

Following are the members of a placeable metafile header:

key
Specifies the binary key that uniquely identifies this file type. This member
must be set to Ox9AC6CDD7L.

hmf
Unused; must be zero.

bbox
Specifies the coordinates of the smallest rectangle that encloses the picture. The
coordinates are in metafile units as defined by the inch member.

28 Microsoft Windows Programmer's Reference

3.5 Sample of Metafile Program Output
This section describes a sample program and the metafile that it creates. The
sample program creates a small metafile that draws a purple rectangle with a green
border and writes the words "Hello People" in the rectangle.

MakeAMetaFile(hOC)
HOC hOC;
{

}

HPEN
HBRUSH
HOC
HANDLE

hMetaGreenPen;
hMetaVioletBrush;
hDCMeta;
hMeta;

1* Create the metafile with output going to the disk. *1

hDCMeta = CreateMetaFile((LPSTR) "sample.met");

hMetaGreenPen = CreatePen(0, 0, (DWORD) 0x0000FF00);
SelectObject(hDCMeta, hMetaGreenPen);

hMetaVioletBrush = CreateSolidBrush«DWORD) 0x00FF00FF);
SelectObject(hOCMeta, hMetaVioletBrush);

Rectangle(hDCMeta, 0, 0, 150, 70);

TextOut(hDCMeta, 10, 10, (LPSTR) "Hello People", 12);

1* We are done with the metafile. *1

hMeta CloseMetaFile(hDCMeta);

1* Play the metafile that we just created. *1

PlayMetaFile(hDC, hMeta);

The resulting metafile, SAMPLE.MET, consists of a metafile header and six re­
cords. It has the following binary form:

0001
0009
0300
0000 0036
0002
0000 000C
0000

mtType ... disk metafile
mtSi ze .. .
mtVersion
mtSize
mtNoObjects
mtMaxRecord
mtNoParameters

30 Microsoft Windows Programmer's Reference

AnimatePalette

Members

BitBlt

Members

struct {
DWORD
WORD
WORD

}

rdSize

rdSize;
rdFunction;
rdParm[];

Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0436.

rdParm
Contains the following elements:

Element

start
numentries

entries

Description

First entry to be animated

Number of entries to be animated

PALETTEENTRY blocks (for a description of the
PALETTEENTRY structure, see the Microsoft Windows
Programmer's Reference, Volume 3).

struct {
DWORD
WORD
WORD

rdSize;
rdFunction;
rdParm[];

}

The BitBIt record stored by Windows versions earlier than 3.0 contains a device­
dependent bitmap that may not be suitable for playback on all devices.

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0922.

rdParm
Contains the following elements:

32 Microsoft Windows Programmer's Reference

Element

DXE

DY
DX

BitmapInfo

bits

Description

Destination x-extent

Y-coordinate of the destination origin

X -coordinate of the destination origin

BITMAPINFO structure (for a description of the BIT­
MAPINFO structure, see the Microsoft Windows Program­
mer's Reference, Volume 3).

Actual device-independent bitmap bits

CreateBrushlndirect

Members

struct {
DWORD
WORD
LOGBRUSH

}

rdSize

rdSize;
rdFunction;
rdParm;

Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox02PC.

rdParm
Specifies the logical brush.

CreateFontlndirect
struct {

DWORD
WORD
LOG FONT

}

rdSize;
rd Funct ion;
rdParm;

34 Microsoft Windows Programmer's Reference

rdParm
Contains the following elements:

Element

bmWidth

bmHeight

bm WidthBytes

bmPlanes
bmBitsPixel

bmBits

bits

Description

Bitmap width

Bitmap height

Bytes per raster line

Number of color planes

Number of adjacent color bits that define a pixel

Pointer to bit values

Actual bits of pattern

Create Pattern Brush

Members

struct {
DWORD
WORD
WORD

rdSize;
rdFunction;
rdParm[] ;

The CreatePatternBrush record contains a device-independent bitmap suitable
for playback on all devices.

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0142.

rdParm
Contains the following elements:

Element

type

Description

Bitmap type. This element may be either of these two values:

BS_PATTERN-Brush is defined by a device-dependent
bitmap through a call to the CreatePatternBrush function.

BS_DIBPATTERN-Brush is defined by a device­
independent bitmap through a call to the CreateDIB­
PatternBrush function.

36 Microsoft Windows Programmer's Reference

Members

DeleteObject

Members

Escape

Members

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox06FF.

rdParm
Specifies the region to be created.

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number OxOIFO.

rdParm
Specifies the index to the handle table for the object to be deleted.

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0626.

rdParm
Contains the following elements:

38 Microsoft Windows Programmer's Reference

Polygon

Members

PolyPolygon

Members

Element

dxarray

struct {
DWORD
WORD
WORD

}

rdSize

Description

Optional word alTay of intercharacter distances.

rdSize;
rdFunction;
rdParm[] ;

Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0324.

rdParm
Contains the following elements:

Element Description

count Number of points

list of points List of individual points

struct {
DWORD
WORD
WORD

rdSize

rdSize;
rdFunction;
rdParm[] ;

Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0538.

rdParm
Contains the following elements:

40 Microsoft Windows Programmer's Reference

Members

SelectObject

Members

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox012C.

rdParm
Specifies the index to the handle table for the region being selected.

s t ruct{

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm;

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox012D.

rdParm
Specifies the index to the handle table for the object being selected.

SelectPalette

Members

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0234.

rdParm
Specifies the index to the handle table for the logical palette being selected.

42 Microsoft Windows Programmer's Reference

SetPaletteEntries

Members

StretchBlt

Members

struct {
DWDRD
WORD
WORD

}

rdSize

rdSize;
rd Funct ion;
rdParm[] ;

Specifies the record size, in words.

rdFunction
Specifies the GDI function number Ox0037.

rdParm
Contains the following elements:

Element

start

numentries

entries

Description

First entry to be set in the palette

Number of entries to be set in the palette

PALETTEENTRY blocks (For a description of the
PALETTEENTRY structure, see the Microsoft Windows
Programmer's Reference, Volume 3.)

struct {
DWORD
WORD
WORD

rdSize;
rdFunction;
rdParm[] ;

The StretchBIt record contains a device-dependent bitmap that may not be
suitable for playback on all devices.

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number OxOB23.

rdParm
Contains the following elements:

44 Microsoft Windows Programmer's Reference

Stretch D I Bits

Members

Element

raster op

raster op
SYE

SXE

SY

SX
DYE

DXE

DY

Description

Low-order word of the raster operation

High-order word of the raster operation

Source y-extent

Source x-extent

Y-coordinate of the source origin

X -coordinate of the source origin

Destination y-extent

Destination x-extent

DX
Bitmaplnfo

Y-coordinate of the destination origin

X -coordinate of the destination origin

BITMAPINFO structure (For a description of the BIT­
MAPINFO structure, see the Microsoft Windows Program­
mer's Reference, Volume 3.)

bits

struct {
DWORD
WORD
WORD

}

rdSize

Actual device-independent bitmap bits

rdSize;
rdFunction;
rdParm[] ;

Specifies the record size, in words.

rdFunction
Specifies the GDI function number OxOF43.

rdParm
Contains the following elements:

Element

dwRop

Usag

srcYExt

srcXExt

srcY

Description

Raster operation to be performed

Flag indicating whether the bitmap color table contains
RGB values or indexes to the currently realized logical
palette

Height of the source in the bitmap

Width of the source in the bitmap

Y-coordinate of the origin of the source in the bitmap

50 Microsoft Windows Programmer's Reference

struct FONTINFO {

} ;

WORD dfVersion;
DWORD dfSize;
char dfCopyright[60];
WORD dfType;
WORD dfPoints;
WORD dfVertRes;
WORD dfHorizRes;
WORD dfAscent;
WORD dfInternalLeading;
WORD dfExternalLeading;
BYTE dfItal i c;
BYTE dfUnderline;
BYTE dfStrikeOut;
WORD dfWeight;
BYTE dfCharSet;
WORD dfPixWidth;
WORD dfPixHeight;
BYTE dfPitchAndFamily;
WORD dfAvgWidth;
WORD dfMaxWidth;
BYTE dfFirstChar;
BYTE dfLastChar;
BYTE dfDefaultChar;
BYTE dfBreakChar;
WORD dfWidthBytes;
DWORD dfDevice;
DWORD dfFace;
DWORD dfBitsPointer;
DWORD dfBitsOffset;
BYTE dfReserved;
DWORD dfFlags;
WORD dfAspace;
WORD dfBspace;
WORD dfCspace;
WORD dfColorPointer;
DWORD dfReservedl;
WORD dfCharTable[];

Following are the members of the FONTINFO structure:

dfVersion
Specifies the version (Ox0200 or Ox0300) of the file.

dfSize
Specifies the total size of the file, in bytes.

dfCopyright
Specifies copyright information.

52 Microsoft Windows Programmer's Reference

dfUnderline
Specifies whether the character-definition data represents an underlined font. If
the flag is set, the low-order bit is 1. All other bits are zero.

dfStrikeOut
Specifies whether the character-definition data represents a strikeout font. If the
flag is set, the low-order bit is 1. All other bits are zero.

dfWeight
Specifies the weight of the characters in the character-definition data, on a scale
of 1 through 1000. A dfWeight value of 400 specifies a regular weight.

dfCharSet
Specifies the character set defined by this font.

dfPixWidth
Specifies the width of the grid on which a vector font was digitized. For raster
fonts, if the dfPixWidth member is nonzero, it represents the width for all the
characters in the bitmap. If the member is zero, the font has variable-width
characters whose widths are specified in the array for the dfCharTable
member.

dfPixHeight
Specifies the height of the character bitmap for raster fonts or the height of the
grid on which a vector font was digitized.

dfPitchAndFamily
Specifies the pitch and font family. If the font is variable pitch, the low bit is
set. The four high bits give the family name of the font. Font families describe
the general look of a font. They identify fonts when the exact name is not avail­
able. The font families are described as follows:

Family

FF _DONTCARE

FF_ROMAN

FF_SWISS

FF_MODERN

FF_SCRIPT

dfAvgWidth

Description

Unknown.

Proportionally spaced fonts with serifs.

Proportionally spaced fonts without serifs.

Fixed-pitch fonts.

Cursive or script fonts. (Both are designed to look
similar to handwriting. Script fonts have joined let­
ters; cursive fonts do not.)

Novelty fonts.

Specifies the width of characters in the font. For fixed-pitch fonts, this value is
the same as the value for the dfPixWidth member. For variable-pitch fonts, it
is the width of the character "X".

dfMaxWidth
Specifies the maximum pixel width of any character in the font. For fixed-pitch
fonts, this value is the same as the value of the dfPixWidth member.

54 Microsoft Windows Programmer's Reference

the strokes for each character of the font. The value of the dfBitsOffset mem­
ber must be even.

dfReserved
Not used.

dfFlags
Specifies the bit flags that define the format of the glyph bitmap, as follows:

Pitch value Address

DFF_FIXED OxOOOl

DFF _PROPORTIONAL OxOOO2

DFF _ABCFIXED OxOOO4

DFF _ABCPROPORTIONAL OxOOO8

DFF_lCOLOR OxOOlO

DFF _l6COLOR OxOO20

DFF _256COLOR OxOO40
DFF _RGBCOLOR OxOO80

dfAspace
Specifies the global A space, if any. The value of the dfAspace member is the
distance from the current position to the left edge of the bitmap.

dfBspace
Specifies the global B space, if any. The value of the dfBspace member is the
width of the character.

dfCspace
Specifies the global C space, if any. The value of the dfCspace member is the
distance from the right edge of the bitmap to the new current position. The in­
crement of a character is the sum of the A, B, and C spaces. These spaces apply
to all glyphs, induding DFF _ABCFIXED.

dfColorPointer
Specifies the offset to the color table for color fonts, if any. The format of the
bits is like a device-independent bitmap (DIB), but without the header. (That is,
the characters are not split into disjoint bytes; instead, they are left intact.) If no
color table is needed, this entry is NULL.

dfReservedl
Not used.

dfCharTable
Specifies an array of entries for raster, fixed-pitch vector, and proportionally
spaced vector fonts, as follows:

56 Microsoft Windows Programmer's Reference

This continues until the first "column" is completely defined. The subsequent
byte contains the next 8 bits of the first scan line, padded with zeros on the right
if necessary (and so on, down through the second "column"). If the glyph is
quite narrow, each scan line is covered by one byte, with bits set to zero as nec­
essary for padding. If the glyph is very wide, a third or even fourth set of bytes
can be present.

Character bitmaps must be stored contiguously and arranged in ascending
order. The bytes for a 12-pixel by 14-pixel "A" character, for example, are
given in two sets, because the character is less than 17 pixels wide:

00 06 09 10 20 20 20 3F 20 20 20 00 00 00
00 00 00 80 40 40 40 C0 40 40 40 00 00 00

Note that in the second set of bytes, the second digit of the byte is always zero.
The zeros correspond to the thirteenth through sixteenth pixels on the right side
of the character, which are not used by this character bitmap.

4.3 Version-Specific Glyph Tables
The dfCharTable member for Windows 2.x has a GlyphEntry structure with the
following format:

GlyphEntry
geWidth
geOffset
GlyphEntry

struc

ends

dw
dw

?
?

width of char bitmap, pixels
pointer to the bits

The dfCharTable member in Windows 3.0 and later is dependent on the format
of the glyph bitmap. The only formats supported are DFF _FIXED and
DFF _PROPORTIONAL.

DFF_FIXED
DFF _ PROPORTI ONAl

GlyphEntry
geWidth
geOffset
GlyphEntry

struc

ends

DFF_ABCFIXED
DFF_ABCPROPORTIONAl

dw
dd

?
?

width of char bitmap, pixels
pointer to the bits

62 Microsoft Windows Programmer's Reference

struct tagGROUPHEADER {
char cldentifier[4];
WORD wCheckSum;

} ;

WORD cbGroup;
WORD nCmdShow;
RECT rcNormal;
POINT ptMin;
WORD pName;
WORD wLogPixelsX;
WORD wLogPixelsY;
WORD wBitsPerPixel;
WORD wPlanes;
WORD c Items;
WORD rgiltems[cltems];

Following are the members in the GROUPHEADER structure:

cIdentifier
Identifies an array of 4 characters. If the file is a valid group file, this array
must contain the string "PMCC".

wCheckSum
Specifies the negative sum of all words in the file (including the value specified
by the wCheckSum member).

cbGroup
Specifies the size of the group file, in bytes.

nCmdShow
Specifies whether Program Manager should display the group in minimized,
normal, or maximized form. This member can be one of the following values:

Value Flag

OxOO SW_HIDE

OxOl SW _SHOWNORMAL

Ox02 SW _SHOWMINIMIZED

Ox03 SW _SHOWMAXIMIZED

Ox04 SW _SHOWNOACTIVATE

Ox05 SW_SHOW

Ox06 SW _MINIMIZE

Ox07 SW _SHOWMINNOACTIVATE

Ox08 SW_SHOWNA

Ox09 SW_RESTORE

rcNormal
Specifies the coordinates of the group window (the window in which the group
icons appear). It is a rectangular structure.

64 MicrosoH Windows Programmer's Reference

5.2.3 Tag Data

iIcon
Specifies the index value for an icon. This value indicates the position of the
icon in an executable file.

cbResource
Specifies the count of bytes in the icon resource, which appears in the exe­
cutable file for the application.

cbANDPlane
Specifies the count of bytes in the AND mask for the icon.

cbXORPlane
Specifies the count of bytes in the XOR mask for the icon.

pHeader
Specifies an offset from the beginning of the group file to the resource header
for the icon.

pANDPlane
Specifies an offset from the beginning of the group file to the AND mask for
the icon.

pXORPlane
Specifies an offset from the beginning of the group file to the XOR mask for
the icon.

pName
Specifies an offset from the beginning of the group file to a string that specifies
the item name.

pCommand
Specifies an offset from the beginning of the group file to a string that specifies
the name of the executable file containing the application and the icon re­
source(s).

plconPath
Specifies an offset from the beginning of the group file to a string that specifies
the path where the executable file is located. This path can be used to extract
icon data from an executable file.

The tag data contains general information used to display the Program Item Proper­
ties dialog box. The TAGDATA structure has the following form:

struct tagTAGDATA{

} ;

WORD wID;
WORD wItem;
WORD cb;
BYTE rgb [1] ;

70 Microsoft Windows Programmer's Reference

6.2 Windows Header
The Windows (new-style) executable-file header contains information that the
loader requires for segmented executable files. This information includes the
linker version number, data specified by the linker, data specified by the resource
compiler, tables of segment data, tables of resource data, and so on. The following
illustration shows the Windows executable-file header:

MS-DOS stub program

Information block

Segment table

Resource table

Module-reference table

Imported-name table

Entry table

Nonresident-name table

End of file

End of MS-DOS header
Beginning of Windows header

Code and data segments

The following sections describe the entries in the Windows executable-file header.

72 Microsoft Windows Programmer's Reference

Location

OEh

lOh

12h

14h
18h

lCh

lEh

20h
22h

24h

26h

28h

2Ah

Description

Bit Meaning

15 If this bit is set, the executable file is a library module.

Ifbit 15 is set, the CS:IP registers point to an initializa­
tion procedure called with the value in the AX register
equal to the module handle. The initialization procedure
must execute a far return to the caller. If the procedure is
successful, the value in AX is nonzero. Otherwise, the
value in AX is zero.

The value in the DS register is set to the library's data
segment if SINGLEDATA is set. Otherwise, DS is set
to the data segment of the application that loads the
library.

Specifies the automatic data segment number. (OEh is zero if the
SINGLEDATA and MULTIPLEDATA bits are cleared.)

Specifies the initial size, in bytes, of the local heap. This value is
zero if there is no local allocation.

Specifies the initial size, in bytes, of the stack. This value is zero
if the SS register value does not equal the DS register value.

Specifies the segment offset value of CS :IP.

Specifies the segment:offset value of SS:SP.

The value specified in SS is an index to the module's segment
table. The first entry in the segment table corresponds to segment
number 1.

If SS addresses the automatic data segment and SP is zero, SP is
set to the address obtained by adding the size of the automatic
data segment to the size of the stack.

Specifies the number of entries in the segment table.

Specifies the number of entries in the module-reference table.

Specifies the number of bytes in the nonresident-name table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the segment table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the resource table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the resident-name table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the module-reference table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the imported-name table.

74 Microsoft Windows Programmer's Reference

6.2.2 Segment Table
The segment table contains information that describes each segment in an exe­
cutable file. This information includes the segment length, segment type, and
segment-relocation data. The following list summarizes the values found in the
segment table (the locations are relative to the beginning of each entry):

Location

OOh

02h

04h

Description

Specifies the offset, in sectors, to the segment data (relative to
the beginning of the file). A value ofzero means no data exists.

Specifies the length, in bytes, of the segment, in the file. A value
of zero indicates that the segment length is 64K, unless the selec­
tor offset is also zero.

Specifies flags that describe the contents of the executable file.
This value can be one or more of the following:

Bit Meaning

o If this bit is set, the segment is a data segment. Other­
wise, the segment is a code segment.

If this bit is set, the loader has allocated memory for the
segment.

2 If this bit is set, the segment is loaded.

3 Reserved.

4 If this bit is set, the segment type is MOVEABLE.
Otherwise, the segment type is FIXED.

5 If this bit is set, the segment type is PURE or
SHAREABLE. Otherwise, the segment type is
IMPURE or NONSHAREABLE.

6 If this bit is set, the segment type is PRELOAD. Other­
wise, the segment type is LOADONCALL.

7 If this bit is set and the segment is a code segment, the
segment type is EXECUTEONLY. If this bit is set and
the segment is a data segment, the segment type is
READONLY.

8 If this bit is set, the segment contains relocation data.

9 Reserved.

10 Reserved.

11 Reserved.

12 If this bit is set, the segment is discardable.

13 Reserved.

76 Microsoft Windows Programmer's Reference

6.2.3.1 Type Information
The TYPEINFO structure has the following form:

typedef struct _TYPEINFO {
WORD rtTypeID;
WORD rtResourceCount;
DWORD rtReserved;
NAMEINFO rtNamelnfo[];

} TYPEINFO;

Following are the members in the TYPEINFO structure:

rtTypeID
Specifies the type identifier of the resource. This integer value is either a
resource-type value or an offset to a resource-type name. If the high bit in this
member is set (Ox8000), the value is one of the following resource-type values:

Value Resource type

RT _ACCELERATOR Accelerator table

RT_BITMAP Bitmap

RT_CURSOR Cursor

RT_DlALOG Dialog box

RT_FONT Font component

RT_FONTDIR Font directory

RT_GROUP _CURSOR Cursor directory

RT_GROUP _ICON Icon directory

RT_ICON Icon

RT_MENU Menu

RT_RCDATA Resource data

RT_STRING String table

If the high bit of the value in this member is not set, the value represents an off­
set, in bytes relative to the beginning of the resource table, to a name in the
rscResourceNames member.

rtResourceCount
Specifies the number of resources of this type in the executable file.

rtReserved
Reserved.

rtNameInfo
Specifies an array of NAMEINFO structures containing information about in­
dividual resources. The rtResourceCount member specifies the number of
structures in the array.

78 Microsoft Windows Programmer's Reference

6.2.4 Resident-Name Table
The resident-name table contains strings that identify exported functions in the
executable file. As the name implies, these strings are resident in system memory
and are never discarded. The resident-name strings are case-sensitive and are not
null-terminated. The following list summarizes the values found in the resident­
name table (the locations are relative to the beginning of each entry):

Location

OOh

Olh-xxh

xxh + Olh

Description

Specifies the length of a string. If there are no more strings in the
table, this value is zero.

Specifies the resident-name text. This string is case-sensitive and
is not null-terminated.

Specifies an ordinal number that identifies the string. This num­
ber is an index into the entry table.

The first string in the resident-name table is the module name.

6.2.5 Module-Reference Table
The module-reference table contains offsets for module names stored in the
imported-name table. Each entry in this table is 2 bytes long.

6.2.6 Imported-Name Table
The imported-name table contains the names of modules that the executable file
imports. Each entry contains two parts: a single byte that specifies the length of
the string and the string itself. The strings in this table are not null-terminated.

6.2.7 Entry Table
The entry table contains bundles of entry points from the executable file (the
linker generates each bundle). The numbering system for these ordinal values is
I-based-that is, the ordinal value corresponding to the first entry point is 1.

The linker generates the densest possible bundles under the restriction that it can­
not reorder the entry points. This restriction is necessary because other executable
files may refer to entry points within a given bundle by their ordinal values.

The entry-table data is organized by bundle, each of which begins with a 2-byte
header. The first byte of the header specifies the number of entries in the bundle (a
value of OOh designates the end of the table). The second byte specifies whether
the corresponding segment is movable or fixed. If the value in this byte is OFFh,
the segment is movable. If the value in this byte is OFEh, the entry does not refer

80 Microsoft Windows Programmer's Reference

6.2.8 Nonresident-Name Table
The nonresident-name table contains strings that identify exported functions in the
executable file. As the name implies, these strings are not always resident in sys­
tem memory and are discardable. The nonresident-name strings are case-sensitive;
they are not null-terminated. The following list summarizes the values found in the
nonresident-name table (the specified locations are relative to the beginning of
each entry):

Location

OOh

Olh-xxh

xx+ Olh

Description

Specifies the length, in bytes, of a string. If this byte is OOh, there
are no more strings in the table.

Specifies the nonresident-name text. This string is case-sensitive
and is not null-terminated.

Specifies an ordinal number that is an index to the entry table.

The first name that appears in the nonresident-name table is the module descrip­
tion string (which was specified in the module-definition file).

6.3 Code Segments and Relocation Data
Code and data segments follow the Windows header. Some of the code segments
may contain calls to functions in other segments and may, therefore, require reloca­
tion data to resolve those references. This relocation data is stored in a relocation
table that appears immediately after the code or data in the segment. The frrst 2
bytes in this table specify the number of relocation items the table contains. A relo­
cation item is a collection of bytes specifying the following information:

• Address type (segment only, offset only, segment and offset)

• Relocation type (internal reference, imported ordinal, imported name)

• Segment number or ordinal identifier (for internal references)

• Reference-table index or function ordinal number (for imported ordinals)

• Reference-table index or name-table offset (for imported names)

Each relocation item contains 8 bytes of data, the first byte of which specifies one
of the following relocation-address types:

Value

o
2

3

5

Meaning

Low byte at the specified offset

16-bit selector

32-bit pointer

16-bit offset

84 Microsoft Windows Programmer's Reference

7.12.3 String Information Block... 102
7.12.4 Language-Specific Blocks.................... 102

86 Microsoft Windows Programmer's Reference

Each icon-directory resource must have a corresponding entry in the resource table
of the executable file. This means the resource table must contain a TYPEINFO
structure in which the rscTypeID member is set to the RT_GROUP _ICON value.

7.3 Cursor Resource
A cursor resource is nearly identical in format to a cursor image in a cursor­
resource file. The resource contains the cursor hot spot as well as the cursor-image
header, color table, and XOR and AND masks. The x- and y-coordinates for the
cursor hot spot (both 16-bit values) appear first in the resource, immediately fol­
lowed by the cursor-image header. For more information about the cursor-image
format, see Chapter 1, "Graphics File Formats."

Each cursor resource must have a corresponding entry in the resource table of the
executable file. This means the resource table must contain a TYPEINFO struc­
ture in which the rscTypeID member is set to the RT_CURSOR value.

7.4 Cursor-Directory Resource
A cursor-directory resource is nearly identical in format to a cursor directory
in a cursor-resource file. The resource specifies the number of cursor images as­
sociated with this resource, as well as the dimensions of the images, but it does not
include the hot-spot data. Furthermore, the last member of the ICONDIRENTRY
structure (dwImageOffset) is replaced with a 16-bit value that specifies the
resource-table index of the corresponding cursor-image resource.

In an executable file, the CURSORDIRENTRY structure has the following form:

typedef struct _CURSORDIRENTRY {
WORD wWidth;
WORD wHeight;
WORD wPlanes;
WORD wBitCount;
DWORD lByteslnRes;
WORD wlmagelndex;

} CURSORDIRENTRY;

Following are the members in the CURSORDIRENTRY structure:

wWidth
Specifies the width of the cursor, in pixels.

wHeight
Specifies the height of the cursor, in pixels.

88 Microsoft Windows Programmer's Reference

7.5.2 Pop-up Menu Item
A menu resource contains data for each pop-up item in a menu. The first 16 bits
indicate whether the item is grayed, inactive, checked, and so on. This data also
includes a string that appears in the rectangle corresponding to that item. A
PopupMenuItem structure has the following form:

struct PopupMenultem {
WORD fItemFl ags;
char szItemText[];

} ;

Following are the members in the PopupMenuItem structure:

fItemFiags
Specifies menu-item information. This member can have one or more of the fol­
lowing values:

Value Meaning

MF_GRAYED

MF _DISABLED

MF_CHECKED

MF]OPUP

MF _MENUBARBREAK

MF _MENUBREAK

MF_END

szItemText

Item is grayed.

Item is inactive.

Item can be checked.

Item is a popup (must be specified for pop-up
items).

Item is a menu-bar break.

Item is a menu break.

Item ends the menu.

Specifies a null-terminated string that appears in the menu and identifies the
menu item. There is no fixed limit on the size of this string.

7.5.3 Normal Menu Item
A normal menu item is very similar to a pop-up menu item, except that it has an
additional menu identifier. A NormalMenuItem structure has the following form:

struct NormalMenultem {
WORD fItemFl ags;
WORD wMenuID;
char szItemText[];

} ;

90 Microsoft Windows Programmer's Reference

POPUP ITEM
NORMAL ITEM
NORMAL ITEM

NORMAL ITEM
POPUP ITEM

NORMAL ITEM
NORMAL ITEM
NORMAL ITEM
POPUP ITEM (fItemFlags contains the MF_END constant)

NORMAL ITEM
NORMAL ITEM (fItemFlags contains the MF_END constant)

NORMAL ITEM (fItemFlags contains the MF_END constant)

Note that, although the pop-up menu item has its own terminating item, the termi­
nating item for the entire menu is again a normal menu item.

7.6 Dialog Box Resource
A dialog box resource contains a dialog box header and data for each control
within the dialog box.

Each entry in the executable file's resource table contains a member that identifies
the resource type. The RT_DIALOG constant identifies a dialog box resource.

7.6.1 Dialog Box Header
The dialog box header contains general dialog box data, such as the dialog box
window style, the number of controls in the dialog box, the coordinates of the
upper-left corner of the box, the width and height of the box, the name of the menu
to be displayed, and so on. The DialogBoxHeader structure has the following
form:

struct DialogBoxHeader {
DWORD 1 Styl e;

} ;

BYTE bNumberOfItems;
WORD x;
WORD y;
WORD cx;
WORD cy;
char szMenuName[];
char szClassName[];
char szCaption[];
WORD wPointSize;
char szFaceName[];

1* only if DS_SETFONT *1
1* only if DS_SETFONT *1

92 Microsoft Windows Programmer's Reference

wPointSize
Specifies the point size of a font that is unique to the dialog box. (This member
is present only if the DS_SETFONT flag is set by the IStyle member.)

szFaeeName
Specifies the typeface name of a dialog box font. This array must contain a null­
terminated string. (This member is present only ifthe DS_SETFONT flag is set
by the IStyle member.)

7.6.2 Control Data
A dialog box resource contains data for each control in a given dialog box. This
data contains the coordinates of the upper-left corner ofthe control, the dimen­
sions of the control, a control identifier, and so on. A ControlData structure has
the following form:

struct Control Data {
WORD x;

} ;

WORD y;
WORD cx;
WORD cy;
WORD wID;
DWORD lStyle;
union
{

BYTE class; /* if (class & 0x80) */
char szClass[]; /* otherwise */

ClassID;
szText;

Following are the members in the ControlData structure:

x

y

ex

ey

Specifies the x-coordinate of the upper-left corner of the control.

Specifies the y-coordinate of the upper-left corner of the control.

Specifies the width of the control, in horizontal dialog box units. For a defini­
tion of these units, see the DialogBoxHeader structure in the preceding section.

Specifies the height of the control, in vertical dialog box units. For a definition
of these units, see the DialogBoxHeader structure in the preceding section.

wID
Identifies the control.

94 Microsoft Windows Programmer's Reference

7.8 Font Resource
A font resource consists of two parts: a directory and its components. The font­
directory data describes all the fonts in a resource. This data includes a value speci­
fying the number of fonts in the resource and a table of metrics for each of these
fonts. The font-component data describes a single font in the resource. There is
one component for each of the fonts in the resource. The component data is identi­
cal to the data found in a Windows font file (.FNT).

Each entry in the executable file's resource table contains a member that identifies
the resource type. The RT_FONTDIR and RT_FONT constants identify a font
directory and a font component, respectively.

7.8.1 Font-Directory Data
Font-directory data consists of a font count and one or more font directory entries.

7.8.1.1 Font Count
The font count is an integer that specifies the number of fonts in the resource. This
value also corresponds to the number of font directories and font components.

7.8.1.2 Font Directory
The font directory is a collection of font metrics for a particular font. These
metrics specify the point size for the font, aspect ratio, stroke width, and so on.
The FontDirEntry structure has the following form:

struct FontDirEntry {
WORD fontOrdinal;
WORD dfVersion;
DWORD dfSize;
char dfCopyright[60];
WORD dfType;
WORD dfPoints;
WORD dfVertRes;
WORD dfHorizRes;
WORD dfAscent;
WORD dflnternalLeading;
WORD dfExternalLeading;
BYTE dfItalic;
BYTE dfUnderline;
BYTE dfStrikeOut;
WORD dfWeight;
BYTE dfCharSet;
WORD dfPixWidth;
WORD dfPixHeight;

96 Microsoft Windows Programmer's Reference

Data structure

Kerning-pair data

Track-kerning data

Contents

An identifier for each character in the pair of kerned
characters, and a kerning value

Additional kerning data

For a complete description of Windows font files, see the Microsoft Windows
Device Development Kit documentation.

7.9 String-Table Resources
A string table consists of one or more separate resources, each containing exactly
16 strings. The maximum length of each string is 255 bytes. One or more strings
in a block can be null or empty. The first byte in the string specifies the number of
characters in the string. (For null or empty strings, the first byte contains the value
zero.)

Windows uses a 16-bit identifier to locate a string in a string-table resource. Bits 4
through 15 specify the block in which the string appears; bits 0 through 3 specify
the location of that string relative to the beginning of the block.

Each entry in an executable file's resource table contains a member that identifies
the resource type. The RT_STRING constant identifies a string table.

7.10 Accelerator Resource
An accelerator resource contains one or more accelerator entries.

Each entry in an executable file's resource table contains a member that identifies
the resource type. The RT _ACCELERATOR constant identifies an accelerator re­
source.

The accelerator entry is a 5-byte entry with the following form:

struct AccelTableEntry {
BYTE fFl ags;
WORD wEvent;
WORD wId;

} ;

Following are the members in the AccelTableEntry structure:

fFlags
Specifies accelerator characteristics. It can be one or more of the following
values:

Microsoft® WindowsTM
Version 3.1

Multimedia
Programmer's Reference

For the Microsoft Windows Operating System

Microsoft Corporation

Contents

Chapter 1 Introduction
Windows Multimedia Features .. 1-1

Multimedia API Naming Conventions. .. 1-2

Function Names 1-2

Message Names 1-3

Parameter Names 1-3

Contents of This Reference .. 1-4

Conventions. .. 1-5

Related Documentation .. 1-6

Chapter 2 Function Overview
High-Level Audio Services. .. 2-2

Low-Level Waveform Audio Services 2-2

Querying Waveform Devices 2-3

Opening and Closing Waveform Devices 2-3

Getting the Device ID of Waveform Devices 2-4

Playing Waveform Data 2-4

Recording Waveform Data .. 2-4

Getting the Current Position of Waveform Devices. 2-5

Controlling Waveform Playback 2-5

Controlling Waveform Recording 2-6

Changing Pitch and Playback Rate. .. 2-6

Changing Playback Volume 2-7

Sending Custom Messages to Waveform Drivers 2-7

Handling Waveform Errors .. 2-7

Chapter 4 Message Overview
About the Multimedia Messages 4-1

Audio Messages .. 4-2

Waveform Output Messages. .. 4-2

Waveform Input Messages 4-3

MIDI Output Messages. .. 4-4

MIDIInput Messages 4-4

Media Control Interface Messages .. 4-6

Opening and Closing Devices 4-6

Playing and Recording Multimedia Data 4-7

Getting Device Information 4-7

Controlling and Positioning Devices 4-8

Editing and Transferring Multimedia Data 4-8

Controlling Video Images .. 4-9

Window Notification Messages 4-10

Joystick Messages .. 4-10

File 110 Messages .. 4-11

ChapterS Message Directory
Extensions to MCI Command Messages 5-1

Message Prefixes. .. 5-2

Message Descriptions. .. 5-2

Chapter 6 Data Types and Structures
Data Types .. 6-2

Data Structure Overview. .. 6-3

Auxiliary Audio Data Structure 6-3

Joystick Data Structures 6-3

Media Control Interface (MCI) Data Structures 6-4

MIDI Audio Data Structures. 6-7

Multimedia File 110 Data Structures 6-7

Timer Data Structures .. 6-7

Waveform Audio Data Structures .. 6-8

Data Structures Reference. .. 6-9

Contents v

Audio CD (Red Book) Commands 7-45

MIDI Sequencer Commands 7-52

Videodisc Player Commands 7-63

Video Overlay Commands 7-72

Waveform Audio Commands 7-82

ChapterS Multimedia File Formats
About the RIFF Tagged File Format. .. 8-2

Chunks ... 8-2

RIFF Forms .. 8-4

Defining and Registering RIFF Forms 8-5

Notation for Representing RIFF Files 8-6

Element Notation Conventions. .. 8-6

Basic Notation for Representing RIFF Files 8-6

Escape Sequences for Four-Character Codes and String
Chunks 8-9

Extended Notation for Representing RIFF Form Definitions ... 8-9

Atomic Labels .. 8-13

A Sample RIFF Form Definition and RIFF Form 8-14

Storing Strings in RIFF Chunks 8-15

LIST Chunk .. 8-17

The INFO List Chunk .. 8-17

RIFF DIB File Format (RDIB) .. 8-19

Musical Instrument Digital Interface (MIDI) File Format. 8-20

RIFF MIDI (RMID) File Format 8-20

Palette File Format (PAL) .. 8-20

Waveform Audio File Format (WAVE) 8-22

WAVE Form Definition 8-22

WAVE Chunk Descriptions 8-23

WAVE Format Categories. .. 8-24

Data Format of the Samples 8-26

Examples of WAVE Files 8-27

Contents vii

Chapter 1

Introduction

This manual provides reference information for the multimedia portions of the application
programming interface (API) of Microsoft® Windows ™ Operating System 3.1. The
multimedia APls provide support for audio, media control, multimedia file I/O, enhanced
timer services, and joystick input.

The multimedia APls include functions, messages, data structures, data types, and file
formats to add multimedia support to your Windows applications. For information on
other Windows APls, see the Microsoft Windows Programmer's Reference, Volume 2:
API Reference.

Windows Multimedia Features
Windows offers services you can use to add features like sound recording and playback,
MIDI music, and external device control to your applications. Windows provides the
following multimedia services:

• Audio-The audio services provide a device-independent interface to computer-audio
hardware, providing sound for multimedia applications.

• The Media Control Interface (MCI)-MCI provides a high-level generalized interface
to control media devices such as audio hardware, movie players, and videodisc and
videotape players.

• Multimedia File I/O-The multimedia file 110 services provide buffered and
unbuffered file I/O, as well as support for standard Resource Interchange File
Format (RIFF) files. These services are extensible with custom 110 procedures
that can be shared among applications.

• Joystick and timer-These services provide support for joysticks and high-resolution
event timing.

Multimedia API Naming Conventions 1-3

Message Names
Message names, like function names, begin with a prefix. Related messages are grouped
together with a common prefix. An underscore character C) follows the prefix in each
message name. One or more words describing the purpose of the message appear after
the underscore. Message names use only uppercase letters.

The following is an example of a message name:

WO~CLOSE

The prefix (WOM) indicates that the message is a waveform output message. The
descriptive portion of the message (CLOSE) indicates the purpose of the message.
This message is sent whenever a waveform output device is closed.

Parameter Names
Most parameter and local-variable names consist of a lowercase prefix followed by one or
more capitalized words. The prefix indicates the general type of the parameter, while the
words that follow describe the contents of the parameter. The standard prefixes used in
parameter and variable names are defined as follows:

PrefIx

b

ch

dw

h

lp

np

pt

rgb

w

Description

Boolean (a non-zero value specifies TRUE, zero specifies FALSE)

Character (a one-byte value)

Long (32-bit) unsigned integer

Handle

Long (32-bit) integer

Far pointer

Near pointer

x and y coordinates packed into an unsigned 32-bit integer

An RGB color value packed into a 32-bit integer

Short (16-bit) unsigned integer

Note If no lowercase prefix is given, the parameter is a short integer with a descriptive name.

Conventions 1-5

• Chapter 7, "MCI Command Strings," describes command strings for the Media Control
Interface (MCI). It describes how to use MCI command strings and describes each
command string recognized by MCI. Commands are grouped by device type.

• Chapter 8, "Multimedia File Formats," describes the multimedia file formats.

• Appendix A, "MCI Command String Syntax Summary," presents a summary of the
syntax of the MCI command strings.

• Appendix B, "Manufacturer ID and Product ID Lists," lists the constants that identify
multimedia product manufacturers and products used with Windows.

Conventions
The following section explains the document conventions used throughout this manual:

Type Style

bold

italic

monospace

brackets []

Horizontal ellipsis ...

Angle brackets < >

Arrow~

Used For

Bold letters indicate a specific term intended to be used
literally: functions (such as waveOutGetNumDevs),
messages (such as WIM_OPEN), and structure fields (such
as dwReturn). You must enter these terms exactly as shown.

Words in italics indicate a placeholder; you are expected to
provide the actual value. For example, the following syntax
for the timeGetSystemTime function indicates that you
must substitute values for the IpTime and wSize parameters:

timeGetSystemTime(IpTime, wSize)

Code examples are displayed in a monospaced typeface.

Optional items.

An ellipsis shows that one or more copies of the preceding
item may occur. Brackets followed by an ellipsis means that
the item enclosed within the brackets may occur zero or
more times.

Indicates the name and position of a field within a file
format definition.

In a file format definition, the item to the left of the arrow is
equivalent to the item to the right.

Chapter 2

Function Overview

This chapter provides a topical overview of the multimedia functions in Windows. The
functions are organized into the following categories, some of which contain smaller
groups of related functions:

• High-level audio services

• Low-level waveform audio services

• Low-level MIDI audio services

• Auxiliary audio device services

• File 110 services

• Media Control Interface (MCI) services

• Joystick services

• Timer services

• Debugging services

For full descriptions of the multimedia functions, see the alphabetical listing in
Chapter 3, "Function Directory."

low-level Waveform Audio Services 2-3

Querying Waveform Devices
Before playing or recording a waveform, you must determine the capabilities of the
waveform hardware present in the system. Use the following functions to retrieve the
number of waveform devices and the capabilities of each device:

wavelnGetNumDevs
Retrieves the number of waveform input devices present in the system.

wavelnGetDevCaps
Retrieves the capabilities of a given waveform input device.

waveOutGetNumDevs
Retrieves the number of waveform output devices present in the system.

waveOutGetDevCaps
Retrieves the capabilities of a given waveform output device.

Opening and Closing Waveform Devices
You must open a device before you can begin waveform playback or recording. Once you
finish using a device, you must close it so that it will be available to other applications.
Use the following functions to open and close waveform devices:

wavelnOpen
Opens a waveform input device for recording.

wavelnClose
Closes a specified waveform input device.

waveOutOpen
Opens a waveform output device for playback.

waveOutClose
Closes a specified waveform output device.

Low-Level Waveform Audio Services 2-5

wavelnPrepareHeader
Informs the waveform input device driver that the given data buffer should be
prepared for recording.

wavelnUnprepareHeader
Informs the waveform input device driver that the preparation performed on the
given data buffer can be cleaned up.

Getting the Current Position of Waveform Devices
While playing or recording waveform audio, you can query the device for the current
playback or recording position. Use the following functions to determine the current
position of a waveform device:

wavelnGetPosition
Retrieves the current recording position of a waveform input device.

waveOutGetPosition
Retrieves the current playback position of a waveform output device.

Controlling Waveform Playback
Waveform playback begins as soon as you begin sending data to the waveform output
device. Use the following functions to pause, restart, or stop playback and to break loops
on a waveform device:

waveOutBreakLoop
Breaks a loop on a waveform output device.

waveOutPause
Pauses playback on a waveform output device.

waveOutRestart
Resumes playback on a paused waveform output device.

waveOutReset
Stops playback on a waveform output device. Marks all pending data blocks as done.

Low-Level Waveform Audio Services 2-7

Changing Playback Volume
Some waveform output devices support changes to the playback volume level. Use these
functions to query and set the volume level of waveform output devices:

waveOutGetVolume
Queries the current volume level of a waveform output device.

waveOutSetVolume
Sets the volume level of a waveform output device.

Sending Custom Messages to Waveform Drivers
The following functions let you send messages directly to waveform drivers:

wavelnMessage
Sends a message directly to a waveform input device driver.

waveOutMessage
Sends a message directly to a waveform input device driver.

Handling Waveform Errors
Most of the low-level waveform audio functions return error codes. Use these functions to
convert the error codes returned from waveform functions into a textual description of the
error:

wavelnGetErrorText
Retrieves a textual description of a specified waveform input error.

waveOutGetErrorText
Retrieves a textual description of a specified waveform output error.

Low-Level MIDI Audio Services 2-9

Opening and Closing MIDI Devices
After getting the MIDI capabilities, you must open a MIDI device to play or record MIDI
messages. After using the device, you should close it to make it available to other
applications. Use the following functions to open and close MIDI devices:

midiInOpen
Opens a MIDI input device for recording.

midiInClose
Closes a specified MIDI input device.

midiOutOpen
Opens a MIDI output device for playback.

midiOutClose
Closes a specified MIDI output device.

Getting the Device 10 of MIDI Devices
Using a MIDI device handle, you can retrieve the device ID for an open MIDI device. Use
the following functions to get the device ID:

midiInGetID
Gets the device ID for a MIDI input device.

midiOutGetID
Gets the device ID for a MIDI output device.

Low-Level MIDI Audio Services 2-11

Receiving MIDI Messages
Once you open a MIDI input device, you can begin recciving MIDI input. MIDI messages
other than system exclusive messages are sent directly to a callback. To receive system
exclusive messages, you must pass data buffers to the input device. These data buffers
must be prepared before being sent to the device. Use the following messages to prepare
system exclusive data buffers and pass these buffers to a MIDI input device:

midiInAddBuffer
Sends an input buffer for system exclusive messages to a specified MIDI input device.
The buffer is sent back to the application when it is filled with system exclusive data.

midiInPrepareHeader
Informs a MIDI input device that the given data buffer should be prepared for
recording.

midiInUnprepareHeader
Informs a MIDI input device that the preparation performed on the given data
buffer can be cleaned up.

Controlling MIDI Input
When receiving MIDI input, you can control when the input starts and stops. Use the
following functions to start and stop input on a MIDI input device:

midiInStart
Starts input on a MIDI input device.

midiInStop
Stops input on a MIDI input device.

midiInReset
Stops input on a MIDI input device. Marks all pending data buffers as being done.

Auxiliary Audio Services 2-13

Sending Custom Messages to MIDI Drivers
The following functions let you send messages directly to MIDI device drivers:

midiInMessage
Sends a message directly to a MIDI input device driver.

midiOutMessage
Sends a message directly to a MIDI output device driver.

Auxiliary Audio Services
Auxiliary audio devices are audio devices whose output is mixed with the output of
waveform and MIDI synthesizer devices. Use the following functions to query the
capabilities of auxiliary audio devices and to query and set their volume level:

auxGetDevCaps
Retrieves the capabilities of a given auxiliary audio device.

auxGetNumDevs
Retrieves the number of auxiliary audio devices present in a system.

auxGetVolume
Queries the volume level of an auxiliary audio device.

auxOutMessage
Sends a message to an auxiliary output device.

auxSetVolume
Sets the volume level of an auxiliary audio device.

File I/O Services 2-15

Performing Buffered File I/O
Using the basic buffered file I/O services is very similar to using the unbuffered services.
Specify the MMIO_ALLOCBUF option with the mmioOpen function to open a file for
buffered 110. The file I/O manager will maintain an internal buffer which is transparent to
the application.

You can also change the size of the internal buffer, allocate your own buffer, and directly
access a buffer for optimal I/O performance. Use the following functions for I/O buffer
control and direct 110 buffer access:

mmioAdvance
Fills and/or flushes the I/O buffer of a file set up for direct 1/0 buffer access.

mmioFlush
Writes the contents of the I/O buffer to disk.

mmioGetInfo
Gets information about the file I/O buffer of a file opened for buffered I/O.

mmioSetBuffer
Changes the size of the 110 buffer, and allows applications to supply their own buffer.

mmioSetInfo
Changes information about the file I/O buffer of a file opened for buffered I/O.

Media Control Interface Services 2-17

Media Control Interface Services
The Media Control Interface (MCI) provides a high-level generalized interface for
controlling both internal and external media devices. MCI uses device handlers to interpret
and execute high-level MCI commands. Applications can communicate with MCI device
handlers by sending messages or command strings.

MCI also provides macros for working with the time and position information encoded in
a packed DWORD.

Communicating with MCI Devices
You can communicate with MCI devices using messages or command strings. Messages
are used directly by MCI; MCI converts command strings into messages that it then sends
to the device handler. Use these functions to send messages or command strings to MCI,
to get the ID assigned to a device, and to get a textual description of an MCI error:

mciSendCommand
Sends a command message to MCI.

mciSendString
Sends a command string to MCI.

mciGetDeviceID
Returns the device ID assigned when the device was opened.

mciGetErrorString
Returns the error string corresponding to an MCI error return value.

mciSet YieldProc
Specifies a callback procedure to be called while an MCI device is completing a
command specified with the wait flag.

mciGetYieldProc
Returns the current yield procedure for an MCI device.

Most of the MCI functionality is expressed in its command set. See Chapter 4, "Message
Overview," and Chapter 5, "Message Directory," for an overview and reference to all MCI
command messages. MCI command messages are prefixed with MCl

In addition to its message-based interface, MCI has a string-based interface. Chapter 7,
"MCI Command Strings," describes the MCI command strings.

Joystick Services 2-19

MMSYSTEM.H also defines the following macros that combine separate time and
position values into the packed DWORD format:

MCLMAKE_HMS
Creates a DWORD time value in hours/minutes/seconds format from the given hours,
minutes, and seconds values.

MCLMAKE_MSF
Creates a DWORD time value in minutes/seconds/frames format from the given
minutes, seconds, and frames values.

MCLMAKE_ TMSF
Creates a DWORD time value in tracks/minutes/seconds/frames format from the
given tracks, minutes, seconds, and frames values.

Joystick Services
The joystick services provide support for up to two joystick devices. Use the following
functions to get information about joystick devices, to control joystick sensitivity, and to
receive messages related to joystick movement and button activity:

joyGetDevCaps
Returns the capabilities of a joystick device.

joyGetNumDevs
Returns the number of devices supported by the joystick driver.

joyGetPos
Returns the position and button state of a joystick.

joyGetThreshold
Returns the movement threshold of a joystick.

joyReleaseCapture
Releases the joystick captured with joySetCapture.

joySetCapture
Causes periodic joystick messages to be sent to a window.

joySetThreshold
Sets the movement threshold of a joystick.

Chapter 3

Function Directory

This chapter contains an alphabetical list of the Windows multimedia functions. For
information about standard Windows functions, see the Microsoft Windows Programmer's
Reference, Volume 2: API Reference.

For each function, this chapter lists the following items:

• The syntax for the function

• The purpose of the function

• A description of input parameters

• A description of return values

• Optional comments on using the function

• Optional cross references to other functions, messages, and data structures

This chapter also lists the multimedia macros for Windows. Macros are documented
similarly to functions. Each description begins by identifying the routine as
a function or a macro (for example, "Thisfunction ... " or "This macro ... ").

auxGetDevCaps 3-3

Function Descriptions
This section lists the multimedia functions and macros. The functions and macros are
presented in alphabetical order.

auxGetDevCaps
Syntax

Parameters

Return Value

Comments

See Also

UINT auxGetDevCaps(wDeviceID, /pCaps, wSize)

This function queries a specified auxiliary output device to determine its capabilities.

UINT wDeviceID
Identifies the auxiliary output device to be queried. Specify a valid device ID (see the
following "Comments" section), or use the following constant:

AUX_MAPPER
Auxiliary audio mapper. The function will return an error if no auxiliary audio
mapper is installed.

LPAUXCAPS /pCaps
Specifies a far pointer to an AUXCAPS structure. This structure is filled with
information about the capabilities of the device.

UINT wSize
Specifies the size of the AUXCAPS structure.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_NODRIVER
The driver failed to install.

The device ID specified by wDeviceID varies from zero to one less than the number of
devices present. Use auxGetNumDevs to determine the number of auxiliary output
devices present in the system.

auxGetNumDevs

Comments

See Also

auxOutMessage 3-5

Not all devices support volume control. To determine whether the device supports volume
control, use the AUXCAPS_ VOLUME flag to test the dwSupport field of the AUXCAPS
structure (filled by auxGetDevCaps).

To determine whether the device supports volume control on both the left and right
channels, use the AUXCAPS_LRVOLUME flag to test the dwSupport field of the
AUXCAPS structure (filled by auxGetDevCaps).

auxSetVolume

auxOutMessage
Syntax

Parameters

Return Value

DWORD auxOutMessage(wDeviceID, msg, dwl, dw2)

This function sends a message to an auxiliary output device. It also performs error
checking on the device ID passed.

DINT wDeviceID
Specifies the auxiliary output device to receive the message.

DINT msg
Specifies the message to send.

DWORD dwl
Specifies the first message parameter.

DWORD dw2
Specifies the second message parameter.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADDEVICEID
The device ID specifies an invalid or nonexistent device.

MMSYSERR_NODRIVER
The driver for the auxiliary device failed to install.

joyGetNumDevs 3-7

joyGetDevCaps
Syntax

Parameters

Return Value

Comments

See Also

DINT joyGetDevCaps(wJoyID, IpCaps, wSize)

This function queries a joystick device to determine its capabilities.

DINT wJoyJD

Identifies the device to be queried. This value is either JOYSTlCKIDl or
JOYSTICKID2.

LPJOYCAPS IpCaps

Specifies a far pointer to a JOYCAPS data structure. This structure is filled with
information about the capabilities of the joystick device.

DINT wSize

Specifies the size of the JOYCAPS structure.

Returns JOYERR_NOERROR if successful. Otherwise, returns one of the following
error codes:

MMSYSERR_NODRIVER
The joystick driver is not present.

JOYERR] ARMS
The specified joystick device ID wJoyID is invalid.

Use joyGetNumDevs to determine the number of joystick devices supported by the driver.

joyGetNumDevs

joyGetNumDevs
Syntax

Parameters

Return Value

Comments

See Also

DINT joyGetNumDevs()

This function returns the number of joystick devices supported by the system.

None.

Returns the number of joystick devices supported by the joystick driver. If no driver is
present, the function returns zero.

Use joyGetPos to determine whether a given joystick is actually attached to the system.
The joyGetPos function returns a JOYERR_ UNPLUGGED error code if the specified
joystick is not connected.

joyGetDevCaps, joyGetPos

Return Value

Comments

See Also

joyReleaseCapture 3-9

Returns JOYERR_NOERROR if successful. Otherwise, returns one of the following
error codes:

MMSYSERR_NODRIVER
The joystick driver is not present.

JOYERR_PARMS
The specified joystick device ID wloyID is invalid.

The movement threshold is the distance the joystick must be moved before a
WM_JOYMOVE message is sent to a window that has captured the device. The
threshold is initially zero.

joySetThreshold

joyReleaseCaplure
Syntax

Parameters

Return Value

See Also

UINT joyReleaseCapture(wloyJD)

This function releases the capture set by joySetCapture on the specified joystick device.

UINT wloyJD
Identifies the joystick device to be released. This value is either JOYSTICKIDI
or JOYSTICKID2.

Returns JOYERR_NOERROR if successful. Otherwise, returns one of the following
error codes:

MMSYSERR_NODRIVER
The joystick driver is not present.

JOYERR_PARMS
The specified joystick device ID wloyJD is invalid.

joySetCapture

joySetThreshold
Syntax

Parameters

Return Value

Comments

See Also

UINT joySetThreshold(wJoy/D, wThreshold)

This function sets the movement threshold of a joystick device.

UINT wJoy/D
Identifies the joystick device. This value is either JOYSTICKID I or JOYSTICKID2.

UINT wThreshold

Specifies the new movement threshold.

Returns JOYERR_NOERROR if successful. Otherwise, returns one of the following
error codes:

MMSYSERR_NODRIVER

The joystick driver is not present.

JOYERR]ARMS

The specified joystick device ID wJoy/D is invalid.

The movement threshold is the distance the joystick must be moved before an
MM_JOYMOVE message is sent to a window that has captured the device.

joyGetThreshold, joySetCapture

Mel HMS HOUR
Syntax

Parameters

Return Value

Comments

See Also

BYTE MCLHMS_HOUR(dwHMS)

This macro returns the hours field from a DWORD argument containing packed HMS
(hours, minutes, seconds) information.

DWORD dwHMS
Specifies the time in HMS format.

The return value is the hours field of the given argument.

Time in HMS format is expressed as a DWORD with the least significant byte containing
hours, the next least significant byte containing minutes, and the next least significant byte
containing seconds. The most significant byte is unused.

MCLHMS_MINUTE, MCLHMS_SECOND, MCLMAKE_HMS

Syntax

Parameters

Return Value

Comments

See Also

Syntax

Parameters

Return Value

Comments

See Also

MCLMAKE_MSF 3-13

DWORD MCLMAKE_HMS(hours, minutes, seconds)

This macro returns a time value in HMS (hours, minutes, seconds) format from the given
hours, minutes, and seconds values.

BYTE hours
Specifies the number of hours.

BYTE minutes
Specifies the number of minutes.

BYTE seconds
Specifies the number of seconds.

The return value is a DWORD value containing the time in packed HMS format.

Time in HMS format is expressed as a DWORD with the least significant byte containing
hours, the next least significant byte containing minutes, and the next least significant byte
containing seconds. The most significant byte is unused.

DWORD MCLMAKK-MSF(minutes, seconds,frames)

This macro returns a time value in MSF (minutes, seconds, frames) format from
the given minutes, seconds, and frames values.

BYTE minutes
Specifies the number of minutes.

BYTE seconds
Specifies the number of seconds.

BYTE frames
Specifies the number of frames.

The return value is a DWORD value containing the time in packed MSF format.

Time in MSF format is expressed as a DWORD with the least significant byte containing
minutes, the next least significant byte containing seconds, and the next least significant
byte containing frames. The most significant byte is unused.

Mel MSF _MINUTE

Syntax

Parameters

Return Value

Comments

See Also

Syntax

Parameters

Return Value

Comments

See Also

BYTE MCLMSF_MINUTE(dwMSF)

This macro returns the minutes field from a DWORD argument containing packed MSF
(minutes, seconds, frames) information.

DWORD dwMSF
Specifies the time in MSF format.

The return value is the minutes field of the given argument.

Time in MSF format is expressed as a DWORD with the least significant byte containing
minutes, the next least significant byte containing seconds, and the next least significant
byte containing frames. The most significant byte is unused.

BYTE MCLMSF_SECOND(dwMSF)

This macro returns the seconds field from a DWORD argument containing packed MSF
(minutes, seconds, frames) information.

DWORD dwMSF
Specifies the time in MSF format.

The return value is the seconds field of the given argument.

Time in MSF format is expressed as a DWORD with the least significant byte containing
minutes, the next least significant byte containing seconds, and the next least significant
byte containing frames. The most significant byte is unused.

MCLTMSF _ TRACK 3-17

MCI_ TMSF _ SECOND
Syntax

Parameters

Return Value

Comments

See Also

BYTE MCL TMSF_SECOND(dwTMSF)

This macro returns the seconds field from a DWORD argument containing packed TMSF
(tracks, minutes, seconds, frames) information.

DWORD dwTMSF
Specifies the time in TMSF format.

The return value is the seconds field of the given argument.

Time in TMSF format is expressed as a DWORD with the least significant byte containing
tracks, the next least significant byte containing minutes, the next least significant byte
containing seconds, and the most significant byte containing frames.

MCL TMSF_ TRACK, MCL TMSF_MINUTE, MCL TMSF_FRAME,
MCLMAKE_ TMSF

MCI_ TMSF _ TRACK
Syntax

Parameters

Return Value

Comments

See Also

BYTE MCL TMSF_ TRACK(dwTMSF)

This macro returns the tracks field from a DWORD argument containing packed TMSF
(tracks, minutes, seconds, frames) information.

DWORD dwTMSF
Specifies the time in TMSF format.

The return value is the tracks field of the given argument.

Time in TMSF format is expressed as a DWORD with the least significant byte containing
tracks, the next least significant byte containing minutes, the next least significant byte
containing seconds, and the most significant byte containing frames.

MCL TMSF_MINUTE, MCL TMSF_SECOND, MCL TMSF_FRAME,
MCLMAKE_ TMSF

mciSendCommand 3-19

mciGetYieldProc
Syntax

Parameters

Return Value

YIELDPROC WINAPI,_mciGetYieldProc(wDeviceID, lpdwYieldData)

This function returns the address of the callback procedure associated with the mci WAIT
flag; the callback procedure is called periodically while an MCI device waits for a
command specified with the WAIT flag to complete.

UINT wDeviceID
Specifies the ID of the MCI device being monitored while it performs an MCI
command.

LPDWORD lpdwYieldData
Optionally specifies a buffer to hold the yield data passed to the function. If the
parameter is NULL, it is ignored.

Returns the current yield proc if it exists. Otherwise, returns NULL for an invalid
devicelD.

mciSendCommand
Syntax

Parameters

Return Value

DWORD mciSendCommand(wDeviceID, wMessage, dwParaml, dwParam2)

This function sends a command message to the specified Mel device.

UINT wDeviceID
Specifies the device ID of the MCI device to receive the command. This
parameter is not used with the MCLOPEN command.

UINT wMessage
Specifies the command message.

DWORD dwParaml
Specifies flags for .the command.

DWORD dwParam2
Specifies a pointer to a parameter block for the command.

Returns zero if the function was successful. Otherwise, it returns error information.
The low-order word of the returned DWORD is the error return value. If the error is
device-specific, the high-order word contains the driver ID; otherwise the high-order
word is zero.

To get a text description of mciSendCommand return values, pass the return value
to mciGetErrorString.

mciSendCommand 3-21

MCIERR_DEVICE_TYPE_REQUIRED
The specified device cannot be found on the system. Check that the device is installed
and the device name is spelled correctly.

MCIERR_DRIVER

The device driver exhibits a problem. Check with the device manufacturer about
obtaining a new driver.

MCIERR_DRIVER_INTERNAL
The device driver exhibits a problem. Check with the device manufacturer about
obtaining a new driver.

MCIERR_DUPLICA TE_ALIAS
The specified alias is already used in this application. Use a unique alias.

MCIERR_EXTENSION_NOT_FOUND
The specified extension has no device type associated with it. Specify a device type.

MCIERR_EXTRA_CHARACTERS
You must enclose a string with quotation marks; characters following the closing
quotation mark are not valid.

MCIERR_FILE_NOT_FOUND
The requested file was not found. Check that the path and filename are correct.

MCIERR_FILE_NOT_SA VED
The file was not saved. Make sure your system has sufficient disk space or has an
intact network connection.

MCIERR_FIL~_READ

A read from the file failed. Make sure the file is present on your system or that your
system has an intact network connection.

MCIERR_FILE_ WRITE

A write to the file failed. Make sure your system has sufficient disk space or has an
intact network connection.

MCIERR_FLAGS_NOLCOMPATIBLE
The specified parameters cannot be used together.

mciSendCommand 3-23

MCIERR_MUST _USE_SHAREABLE
The device driver is already in use. You must specify the "shareable" parameter with
each open command to share the device.

MCIERR_NO_ELEMENT_ALLOWED

The specified device does not use a filename.

MCIERR_NO_INTEGER

The parameter for this MCI command must be an integer value.

MCIERR_NO_ WINDOW

There is no display window.

MCIERR_NONAPPLICABLE_FUNCTION
The specified MCI command sequence cannot be performed in the given order.
Correct the command sequence; then, try again.

MCIERR_NULL] ARAMETER_BLOCK

A null parameter block was passed to MCI.

MCIERR_OUT_OF _MEMORY

Your system does not have enough memory for this task. Quit one or more
applications to increase the available memory, then, try to perform the task again.

MCIERR_OUTOFRANGE
The specified parameter value is out of range for the specified MCI command.

MCIERR_SET_CD

The specified file or MCI device is inaccessible because the application cannot
change directories.

MCIERR_SET_DRIVE
The specified file or MCI device is inaccessible because the application cannot
change drives.

MCIERR_UNNAMED_RESOURCE
You cannot store an unnamed file. Specify a filename.

MCIERR_UNRECOGNIZED_COMMAND

The driver cannot recognize the specified command.

MCIERR_UNSUPPORTED_FUNCTION
The MCI device driver the system is using does not support the specified command.

Comments

See Also

mciSendCommand 3-25

Waveform Audio Errors
The following additional return values are defined for MCI waveform audio devices:

MCIERR_ W A VE_INPUTSINUSE

All waveform devices that can record files in the current format are in use. Wait until
one of these devices is free; then, try again.

MCIERR_ W A VE_INPUTSUNSUITABLE
No installed waveform device can record files in the current format. Use the Drivers
option from the Control Panel to install a suitable waveform recording device.

MCIERR_ W A VE_INPUTUNSPECIFIED
You can specify any compatible waveform recording device.

MCIERR_ WA VE_OUTPUTSINUSE
All waveform devices that can play files in the current format are in use. Wait until
one of these devices is free; then, try again.

MCIERR_ W A VE_OUTPUTSUNSUIT ABLE

No installed waveform device can play files in the current format. Use the Drivers
option from the Control Panel to install a suitable waveform device.

MCIERR_ WA VE_OUTPUTUNSPECIFIED

You can specify any compatible waveform playback device.

MCIERR_ WA VE_SETINPUTINUSE

The current waveform device is in use. Wait until the device is free; then, try again to
set the device for recording.

MCIERR_ W A VE_SETINPUTUNSUIT ABLE

The device you are using to record a waveform cannot recognize the data format.

MCIERR_ W A VE_SETOUTPUTINUSE
The current waveform device is in use. Wait until the device is free; then, try again to
set the device for playback.

MCIERR_ W A VE_SETOUTPUTUNSUITABLE
The device you are using to playback a waveform cannot recognize the data format.

Use the MCLOPEN command to obtain the device ID specified by wDeviceID.

mciGetErrorString, mciSendString

See Also

mciSetYieldProc 3-27

MCIERR_NEW _REQUIRES_ALIAS
You must specify an alias when using the "new" parameter.

MCIERR_NO_CLOSING_QUOTE
The string parameter is missing a closing double quotation mark, which you must
supply.

MCIERR_NOTIFY _ON_AUTO_OPEN
You cannot use the "notify" flag with automatically opened devices.

MCIERR_PARAM_OVERFLOW
The output string was too large to fit in the return buffer. Increase the size of the
buffer.

MCIERR_PARSER_INTERNAL

The device driver returned an invalid return type. Check with the device manufacturer
about obtaining a new driver.

MCIERR_UNRECOGNIZED_KEYWORD
The driver cannot recognize the specified command parameter.

mciGetErrorString, mciSendCommand

mciSelYieldProc
Syntax

Parameters

Return Value

Callback

BOOL mciSetYieldProc(wDeviceID,fp YieldProc, dw YieldData)

This function sets the address of a callback procedure to be called periodically when an
MCI device is completing a command specified with the WAIT flag.

UINT wDeviceID
Specifies the device ID of the MCI device to which the yield procedure is to be
assigned.

YIELDPROC fpYieldProc
Specifies the callback procedure to be called when the given device is yielding.
Specify a NULL value to disable any existing yield procedure.

DWORD dwYieldData
Specifies the data sent to the yield procedure when it is called for the given device.

Returns TRUE if successful. Returns FALSE for an invalid device ID.

int CALLBACK YieldProc(wDeviceID, dwData)

YieldProc is a placeholder for the application-supplied function name. Export the actual
name by including it in the EXPORTS statement in your module-definition file.

Comments

See Also

midiinClose
Syntax

Parameters

Return Value

Comments

See Also

midiinClose 3-29

The data buffer must be prepared with midiInPrepareHeader before it is passed to
midiInAddBuffer. The MIDIHDR data structure and the data buffer pointed to by its
IpData field must be allocated with GlobalAlloc using the GMEM_MOVEABLE and
GMEM_SHARE flags, and locked with GlobalLock.

midiInPrepareHeader

UINT midiInClose(hMidiln)

This function closes the specified MIDI input device.

HMIDIIN hMidiln
Specifies a handle to the MIDI input device. If the function is successful, the handle is
no longer valid after this call.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

MIDIERR_STILLPLA YING
There are still buffers in the queue.

If there are input buffers that have been sent with midiInAddBuffer and haven't been
returned to the application, the close operation will fail. Call midiInReset to mark all
pending buffers as being done.

midiInOpen, midiInReset

midiinGeUD 3-31

midiinGetErrorText
Syntax

Parameters

Return Value

Comments

midiinGetlD
Syntax

Parameters

Return Value

UINT midiInGetErrorText(wError, lpText, wSize)

This function retrieves a text description of the error identified by the specified
error number.

UINT wError
Specifies the error number.

LPSTR lpText
Specifies a far pointer to the buffer to be filled with the text error description.

UINT wSize
Specifies the length of buffer pointed to by lpText.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADERRNUM
Specified error number is out of range.

If the text error description is longer than the specified buffer, the description is truncated.
The returned error string is always null-terminated. If wSize is zero, nothing is copied, and
the function returns zero. All error descriptions are less than MAXERRORLENGTH
characters long.

UINT midiInGetID(hMidiIn, lpwDeviceJD)

This function gets the device ID for a MIDI input device.

HMIDIIN hMidiln
Specifies the handle to the MIDI input device.

UINT FAR* lpwDeviceID
Specifies a pointer to the WORD-sized memory location to be filled with the
device ID'

Returns zero if successful. Otherwise, returns an error number. Possible error returns are:

MMSYSERR_INV ALHANDLE
The hMidiln parameter specifies an invalid handle.

Parameters

Return Value

Callback

midiinOpen 3-33

LPHMIDIIN IphMidiln
Specifies a far pointer to an HMIDIIN handle. This location is filled with a handle
identifying the opened MIDI input device. Use the handle to identify the device
when calling other MIDI input functions.

UINT wDeviceID
Identifies the MIDI input device to open. Specify a valid MIDI input device ID (see
the following "Comments" section) or the following constant:

MIDCMAPPER
MIDI mapper. The function will return an error if no MIDI mapper is installed.

DWORD dwCallback
Specifies the address of a fixed callback function or a handle to a window called
with information about incoming MIDI messages.

DWORD dwCallbackInstance
Specifies user instance data passed to the callback function. This parameter is not
used with window callbacks.

DWORD dwFlags
Specifies a callback flag for opening the device.

CALLBACK_WINDOW
If this flag is specified, dwCallback is assumed to be a window handle.

CALLBACK...FUNCTION
If this flag is specified, dwCallback is assumed to be a callback procedure
address.

Returns zero if the function was successful. Otherwise, it returns an error number.
Possible error returns are:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_ALLOCATED
Specified resource is already allocated.

MMSYSERR_NOMEM
Unable to allocate or lock memory.

void CALLBACK MidiInFunc(hMidiln, wMsg, dwlnstance, dwParamI, dwParam2)

MidiInFunc is a placeholder for the application-supplied function name. The actual
name must be exported by including it in an EXPORTS statement in the DLL's module
definition file.

See Also

midiinPrepareHeader 3-35

The callback function must reside in a DLL. You do not have to use MakeProclnstance
to get a procedure-instance address for the callback function.

Because the callback is accessed at interrupt time, it must reside in a DLL, and its code
segment must be specified as FIXED in the module-definition file for the DLL. Any data
that the callback accesses must be in a FIXED data segment as well. The callback should
not make any system calls except for PostMessage, timeGetSystemTime, timeGetTime,
timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg, and
OutputDebugStr.

midiInClose

mid i InPrepareHeader
Syntax

Parameters

Return Value

Comments

See Also

UINT midiInPrepareHeader(hMidiln, IpMidilnHdr, wSize)

This function prepares a buffer for MIDI input.

HMIDIIN hMidiln
Specifies a handle to the MIDI input device.

LPMIDIHDR IpMidiInHdr
Specifies a pointer to a MIDIHDR structure that identifies the buffer to be prepared.

UINT wSize
Specifies the size of the MIDIHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

MMSYSERR_NOMEM
Unable to allocate or lock memory.

The MIDIHDR data structure and the data block pointed to by its IpData field must be
allocated with GlobalAlloc using the GMEM_MOVEABLE and GMEM_SHARE flags,
and locked with GlobalLock. Preparing a header that has already been prepared has no
effect, and the function returns zero.

midiInUnprepareHeader

Comments

See Also

midiinSlop
Syntax

Parameters

Return Value

Comments

See Also

midiinStop 3-37

This function resets the timestamps to zero; timestamp values for subsequently received
messages are relative to the time this function was called.

All messages other than system-exclusive messages are sent directly to the client when
received. System-exclusive messages are placed in the buffers supplied by midiInAddBuffer;
if there are no buffers in the queue, the data is thrown away without notification to the client,
and input continues.

Buffers are returned to the client when full, when a complete system-exclusive message
has been received, or when midiInReset is called. The dwBytesRecorded field in the
header will contain the actual length of data received.

Calling this function when input is already started has no effect, and the function
returns zero.

midiInStop, midilnReset

UINT midiInStop(hMidiln)

This function terminates MIDI input on the specified MIDI input device.

HMIDIIN hMidiln
Specifies a handle to the MIDI input device.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

Current status (running status, parsing state, etc.) is maintained across calls to midiInStop
and midilnStart. If there are any system exclusive message buffers in the queue, the
current buffer is marked as done (the dwBytesRecorded field in the header will contain
the actual length of data), but any empty buffers in the queue remain there. Calling this
function when input is not started has no effect, and the function returns zero.

midiInStart, midiInReset

midiOutCacheDrumPatches 3-39

midiOutCacheDrumPatches
Syntax

Parameters

UINT midiOutCacheDrumPatches(hMidiOut, wPatch, IpKeyArray, wFlags)

This function requests that an internal MIDI synthesizer device preload a specified set of
key-based percussion patches. Some synthesizers are not capable of keeping all percussion
patches loaded simultaneously. Caching patches ensures specified patches are available.

HMlDIOUT hMidiOut
Specifies a handle to the opened MIDI output device. This device should be an
internal MIDI synthesizer.

UINT wPatch
Specifies which drum patch number should be used. To specify caching of the default
drum patches, set this parameter to zero.

LPKEY ARRAY IpKeyArray
Specifies a pointer to a KEY ARRAY array indicating the key numbers of the
specified percussion patches to be cached or uncached.

UINT wFlags

Specifies options for the cache operation. Only one of the following flags can be
specified:

MIDLCACHE_ALL
Cache all of the specified patches. If they can't all be cached, cache none, clear
the KEYARRAY array, and return MMSYSERR_NOMEM.

MIDLCACHE_BESTFIT
Cache all of the specified patches. If all patches can't be cached, cache as many
patches as possible, change the KEY ARRAY array to reflect which patches
were cached, and return MMSYSERR_NOMEM.

MIDLCACHE_QUERY
Change the KEY ARRAY array to indicate which patches are currently cached.

MIDLUNCACHE
Uncache the specified patches and clear the KEY ARRAY array.

Parameters

Return Value

midiOutCachePatches 3-41

HMIDIOUT hMidiOut
Specifies a handle to the opened MIDI output device. This device must be an internal
MIDI synthesizer.

UINT wBank
Specifies which bank of patches should be used. To specify caching of the default
patch bank, set this parameter to zero.

LPPATCHARRA Y IpPatchArray

Specifies a pointer to a PATCHARRA Y array indicating the patches to be cached
or uncached.

UINT wFlags
Specifies options for the cache operation. Only one of the following flags can
be specified:

MIDI_CACHE_ALL

Cache all of the specified patches. If they can't all be cached, cache none, clear
the PATCHARRAY array, and return MMSYSERR_NOMEM.

MIDCCACHE_BESTFIT

Cache all of the specified patches. If all patches can't be cached, cache as many
patches as possible, change the P ATCHARRA Y array to reflect which patches
were cached, and return MMSYSERR_NOMEM.

MIDI_CACHE_QUERY

Change the PA TCHARRA Y array to indicate which patches are currently
cached.

MIDCUNCACHE

Uncache the specified patches and clear the PATCHARRAY array.

Returns zero if the function was successful. Otherwise, it returns one of the following
error codes:

MMSYSERR_INV ALHANDLE

The specified device handle is invalid.

MMSYSERR_NOTSUPPORTED

The specified device does not support patch caching.

MMSYSERR_NOMEM

The device does not have enough memory to cache all of the requested patches.

midiOutGetDevCaps 3-43

midiOutGetDevCaps
Syntax

Parameters

Return Value

Comments

See Also

UINT midiOutGetDevCaps(wDeviceID, /pCaps, wSize)

This function queries a specified MIDI output device to determine its capabilities.

UINT wDeviceID
Identifies the MIDI output device to query. Specify a valid MIDI output device ID
(see the following "Comments" section) or the following constant:

MIDCMAPPER
MIDI mapper. The function will return an error if no MIDI mapper is installed.

LPMIDIOUTCAPS /pCaps
Specifies a far pointer to a MIDIOUTCAPS structure. This structure is filled
with information about the capabilities of the device.

UINT wSize
Specifies the size of the MIDIOUTCAPS structure.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_NODRIVER
The driver was not installed.

The device ID specified by wDeviceID varies from zero to one less than the number of
devices present. Use midiOutGetNumDevs to determine the number of MIDI output
devices present in the system.

Only wSize bytes (or less) of information is copied to the location pointed to by /pCaps. If
wSize is zero, nothing is copied, and the function returns zero.

midiOutGetNumDevs

midiOutGetVolume 3-45

midiOutGetNumDevs
Syntax

Parameters

Return Value

See Also

UINT midiOutGetNumDevsO

This function retrieves the number of MIDI output devices present in the system.

None.

Returns the number of MIDI output devices present in the system.

midiOutGetDevCaps

midiOutGetVolume
Syntax

Parameters

Return Value

UINT midiOutGetVolume(wDeviceID,lpdwVolume)

This function returns the current volume setting of a MIDI output device.

UINT wDeviceID
Idenjfies the MIDI output device.

LPDWORD lpdwVolume
Specifies a far pointer to a location to be filled with the current volume setting. The
low-order word of this location contains the left channel volume setting, and the
high-order word contains the right channel setting. A value of OxFFFF represents
full volume, and a value of OxOOOO is silence.

If a device does not support both left and right volume control, the low-order word
of the specified location contains the mono volume level.

The full 16-bit setting(s) set with midiOutSetVolume is returned, regardless of
whether the device supports the full 16 bits of volume-level control.

Returns zero if the function was successful. Otherwise, it returns an error number.
Possible error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

MMSYSERR_NOTSUPPORTED
Function isn't supported.

MMSYSERR_NODRIVER
The driver was not installed.

Comments

See Also

midiOutMessage 3-47

The data buffer must be prepared with midiOutPrepareHeader before it is passed to
midiOutLongMsg. The MIDIHDR data structure and the data buffer pointed to by its
IpData field must be allocated with GlobalAlloc using the GMEM_MOVEABLE and
GMEM_SHARE flags, and locked with GlobalLock. The MIDI output device driver
determines whether the data is sent synchronously or asynchronously.

MIDI status is maintained across consecutive calls to midiOutLongMsg and
midiOutShortMsg.

midiOutShortMsg, midiOutPrepareHeader

midiOutMessage
Syntax

Parameters

Return Value

Comments

See Also

DWORD midiOutMessage(hMidiOut, msg, dwParaml, dwParam2)

This function sends a message to a MIDI output device driver. Use it to send
driver-specific messages that aren't supported by the MIDI APIs.

HMIDIOUT hMidiOut
Specifies the handle to the audio device driver.

UINT msg
Specifies the message to send.

DWORD dwParaml
Specifies the first message parameter.

DWORD dwParam2
Specifies the second message parameter.

Returns the value returned by the audio device driver.

Do not use this function to send standard messages to an audio device driver.

midiInMessage

Return Value

Callback

midiOutOpen 3-49

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are as follows:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_ALLOCATED
Specified resource is already allocated.

MMSYSERR_NOMEM
Unable to allocate or lock memory.

MIDIERR_NOMAP
There is no current MIDI map. This occurs only when opening the mapper.

MIDIERR_NODEVICE
A port in the current MIDI map doesn't exist. This occurs only when opening
the mapper.

void CALLBACK MidiOutFunc(hMidiOut, wMsg, dwlnstance, dwParaml, dwParam2)

MidiOutFunc is a placeholder for the application-supplied function name. The actual
name must be exported by including it in an EXPORTS statement in the DLL's
module-definition file.

Callback Parameters

HMIDIOUT hMidiOut
Specifies a handle to the MIDI device associated with the callback.

UINT wMsg
Specifies a MIDI output message.

DWORD dwlnstance
Specifies the instance data supplied with midiOutOpen.

DWORD dwParaml
Specifies a parameter for the message.

DWORD dwParam2
Specifies a parameter for the message.

Comments

See Also

midiOutSetVolume 3-51

The MIDIHDR data structure and the data block pointed to by its IpData field must be
allocated with GlobalAlloc using the GMEM_MOVEABLE and GMEM_SHARE flags
and locked with GlobalLock. Preparing a header that has already been prepared has no
effect, and the function returns zero.

midiOutUnprepareHeader

midiOulResel
Syntax

Parameters

Return Value

Comments

See Also

UINT midiOutReset(hMidiOut)

This function turns off all notes on all MIDI channels for the specified MIDI output
device. If any long output buffers (from midiOutLongMsg) are pending, they are marked
as done and returned to the application.

HMIDIOUT hMidiOut
Specifies a handle to the MIDI output device.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE

Specified device handle is invalid.

To turn off all notes, a note-off message for each note for each channel is sent. In addition,
the sustain controller is turned off for each channel.

midiOutLongMsg, midiOutClose

midiOulSelVolume
Syntax

Parameters

UINT midiOutSetVolume(wDeviceID, dwVolume)

This function sets the volume of a MIDI output device.

UINT wDeviceID
Identifies the MIDI output device.

DWORD dwVolume
Specifies the new volume setting. The low-order word contains the left channel
volume setting, and the high-order word contains the right channel setting. A value
of OxFFFF represents full volume, and a value of OxOOOO is silence.

If a device does not support both left and right volume control, the low-order word
of dwVolume specifies the volume level, and the high-order word is ignored.

Return Value

Comments

See Also

midiOutUnprepareHeader 3-53

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

MIDIERR_NOTREADY
The hardware is busy with other data.

A system exclusive message can be started or completed using midiOutShortMsg by
sending a start system exclusive message (OxOOOOOOFO) or an end of system exclusive
message (OxOOOOOOF7); but, the system exclusive data bytes must be sent using
midiOutLongMsg.

MIDI status is maintained across consecutive calls to midiOutShortMsg and
midiOutLongMsg; but, a midiOutShortMsg message must contain all data bytes
for a MIDI event.

midiOutShortMsg supports, as recommended usage, the status byte associated with each
MIDI message; including the status byte with a MIDI message clarifies that message.

This function might not return until the message has been sent to the output device.

midiOutLongMsg

midiOutUnprepareHeader
Syntax

Parameters

UINT midiOutUnprepareHeader(hMidiOut, lpMidiOutHdr, wSize)

This function cleans up the preparation performed by midiOutPrepareHeader. The
midiOutUnprepareHeader function must be called after the device driver fills a data
buffer and returns it to the application. You must call this function before freeing the
data buffer.

HMIDIOUT hMidiOut
Specifies a handle to the MIDI output device.

LPMIDIHDR lpMidiOutHdr
Specifies a pointer to a MIDIHDR structure identifying the buffer to be cleaned up.

UINT wSize
Specifies the size of the MIDIHDR structure.

Return Value

Comments

See Also

mmioAdvance 3-55

The return value is zero if the operation is successful. Otherwise, the return value specifies
an error code. The error code can be one of the following codes:

MMIOERR_CANNOTWRITE
The contents of the buffer could not be written to disk.

MMIOERR_CANNOTREAD
An error occurred while re-filling the buffer.

MMIOERR_UNBUFFERED
The specified file is not opened for buffered I/O.

MMIOERR_CANNOTEXPAND

The specified memory file cannot be expanded, probably because the adwlnfo[O]
field was set to zero in the initial call to mmioOpen.

MMIOERR_OUTOFMEMORY
There was not enough memory to expand a memory file for further writing.

If the specified file is opened for writing or for both reading and writing, the I/O
buffer will be flushed to disk before the next buffer is read. If the I/O buffer
cannot be written to disk because the disk is full, then mmioAdvance will return
MMIOERR_CANNOTWRITE.

If the specified file is only open for writing, the MMIO_ WRITE flag must be specified.

If you have written to the I/O buffer, you must set the MMIO_DIRTY flag in the dwFlags
field of the MMIOINFO structure before calling mmioAdvance. Otherwise, the buffer
will not be written to disk.

If the end of file is reached, mmioAdvance will still return success, even though no
more data can be read. Thus, to check for the end of the file, it is necessary to see if the
pchNext and pchEndRead fields of the MMIOINFO structure are equal after calling
mmioAdvance.

mmioGetInfo, MMIOINFO

mmioClose
Syntax

Parameters

Return Value

See Also

mmioCreateChunk 3-57

UINT mmioClose(hmmio, wFlags)

This function closes a file opened with mmioOpen.

HMMIO hmmio
Specifies the file handle of the file to close.

UINT wFlags

Specifies options for the close operation.

MMIO_FHOPEN
If the file was opened by passing the MS-DOS file handle of an already-opened
file to mmioOpen, then using this flag tells mmioClose to close the MMIO file
handle, but not the MS-DOS file handle.

The return value is zero if the function is successful. Otherwise, the return value is an error
code, either from mmioFlush or from the I/O procedure. The error code can be one of the
following codes:

MMIOERR_CANNOTWRITE
The contents of the buffer could not be written to disk.

mmioOpen, mmioFlush

mmioCreateChunk
Syntax UINT mmioCreateChunk(hmmio, lpck, wFlags)

This function creates a chunk in a RIFF file opened with mmioOpen. The new chunk is
created at the current file position. After the new chunk is created, the current file position
is the beginning of the data portion of the new chunk.

mmioDescend 3-59

mmioDescend
Syntax

Parameters

UINT mmioDescend(hmmio, lpck, IpckParent, wFlags)

This function descends into a chunk of a RIFF file opened with mmioOpen. It can also
search for a given chunk.

HMMIO hmmio
Specifies the file handle of an open RIFF file.

LPMMCKINFO lpck
Specifies a far pointer to a caller-supplied MMCKINFO structure that mmioDescend
fills with the following information:

• The ckid field is the chunk ID of the chunk.

• The cksize field is the size of the data portion of the chunk. The data size includes
the form type or list type (if any), but does not include the 8-byte chunk header or
the pad byte at the end of the data (if any).

• The fcc Type field is the form type if ckid is "RIFF", or the list type if ckid is
"LIST". Otherwise, it is NULL.

• The dwDataOffset field is the file offset of the beginning of the data portion of the
chunk. If the chunk is a "RIFF" chunk or a "LIST" chunk, then dwDataOffset is
the offset of the form type or list type.

• The dwFlags contains other information about the chunk. Currently, this
information is not used and is set to zero.

If the MMIO]INDCHUNK, MMIO_FINDRIFF, or MMIO_FlNDLIST flag is
specified for wFlags, then the MMCKINFO structure is also used to pass parameters
to mmioDescend:

• The ckid field specifies the four-character code of the chunk ID, form type, or list
type to search for.

LPMMCKINFO IpckParent
Specifies a far pointer to an optional caller-supplied MMCKINFO structure
identifying the parent of the chunk being searched for. A parent of a chunk is the
enclosing chunk-only "RIFF" and "LIST" chunks can be parents. If IpckParent
is not NULL, then mmioDescend assumes the MMCKINFO structure it refers to
was filled when mmioDescend was called to descend into the parent chunk, and
mmioDescend will only search for a chunk within the parent chunk. Set IpckParent
to NULL if no parent chunk is being specified.

mmioFlush
Syntax

Parameters

Return Value

Comments

mmioFOURCC 3-61

UINT mmioFlush(hmmio, wFlags)

This function writes the I/O buffer of a file to disk, if the I/O buffer has been written to.

HMMIO hmmio
Specifies the file handle of a file opened with mmioOpen.

UINT wFlags
Is not used and should be set to zero.

The return value is zero if the function is successful. Otherwise, the return value specifies
an error code. The error code can be one of the following codes:

MMIOERR_CANNOTWRITE
The contents of the buffer could not be written to disk.

Closing a file with mmioClose will automatically flush its buffer.

If there is insufficient disk space to write the buffer, mmioFlush will fail, even if the
preceding mmio Write calls were successful.

mmioFOURCC
Syntax

Parameters

Return Value

Comments

See Also

FOURCC mmioFOURCC(chO, chI, ch2, ch3)

This macro converts four characters to a four-character code.

CHAR chO
The first character of the four-character code.

CHAR chI
The second character of the four-character code.

CHAR ch2
The third character of the four-character code.

CHAR ch3
The fourth character of the four-character code.

The return value is the four-character code created from the given characters.

This macro does not check to see if the four character code follows any conventions
regarding which characters to include in a four-character code.

mmioStringToFOURCC

mmiolnstalllOProc 3-63

m m i 0 I nsta 1110 Proc
Syntax

Parameters

Return Value

Callback

LPMMIOPROC mmiolnstallIOProc(fcc/OProc, pIOProc, dwFlags)

This function installs or removes a custom I/O procedure. It will also locate an installed
I/O procedure, given its corresponding four-character code.

FOURCC jcc/OProc
Specifies a four-character code identifying the I/O procedure to install, remove, or
locate. All characters in this four-character code should be uppercase characters.

LPMMIOPROC pIOProc
Specifies the address of the I/O procedure to install. To remove or locate an I/O
procedure, set this parameter to NULL.

DWORD dwFlags
Specifies one of the following flags indicating whether the I/O procedure is being
installed, removed, or located:

MMIO_INSTALLPROC
Installs the specified I/O procedure. To allow other procedures to use the
specified I/O procedure, also specify the MMIO_GLOBALPROC flag.

MMIO_REMOVEPROC
Removes the specified I/O procedure. When removing a global I/O procedure,
only the task that registers a global I/O procedure can unregister that procedure.

MMIO_FINDPROC
Searches local, then global procedures for the specified I/O procedure.

MMIO_GLOBALPROC
Identifies the I/O procedure being installed as a global procedure.

The return value is the address of the I/O procedure installed, removed, or located. If there
is an error, the return value is NULL.

LONG FAR PASCAL IOProc(lpmmioinjo, wMsg, IParamI, IParam2)

IOProc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in a EXPORTS statement in the application's
module-definitions file.

See Also

mmiolnstalliOProc 3-65

To share an I/O procedure among applications, each application can install and use local
copies of the I/O procedure or one application can install a global copy of the I/O
procedure for one or more applications to use. To use multiple, local copies of an I/O
procedure among several applications, the I/O procedure must reside in a DLL called by
each application using it. Each application using the shared I/O procedure must call
mmiolnstallIOProc to install the procedure (or call the DLL to install the procedure on
behalf of the application). Each application must call mmiolnstallIOProc to remove the
I/O procedure before terminating.

If an application calls mmiolnstallIOProc more than once to register the same local I/O
procedure, then it must call mmiolnstallIOProc to remove the procedure once for each
time it installed the procedure.

mmiolnstallIOProc will not prevent an application from installing two different I/O
procedures with the same identifier, or installing an I/O procedure with one of the
predefined four-character codes ("DOS ", "MEM", or "BND "). The most recently
installed procedure takes precedence and the most recently installed procedure is the first
one to get removed.

To use a single copy of an I/O procedure among several applications, one application must
install the I/O procedure as a global procedure. Then, other applications locate the global
procedure before they use it. An application that installs a global I/O procedure can,
without regard to other applications using the procedure, unregister that procedure at any
time.

An application installs a global copy of an I/O procedure by calling mmiolnstallIOProc
with the flags MMIO_INSTALLPROC and MMIO_GLOBALPROC. Once an application
globally installs a procedure, that application can use the global procedure. To unregister a
procedure, the application that installed the procedure must call mmiolnstallIOProc.

Other applications must locate an installed, global I/O procedure before using it.
To locate a global procedure, an application calls mmiolnstallIOProc with the flag
MMIO_FINDPROC. Once an application locates the global procedure, it can call the
procedure as needed. Applications that use, but do not install, a global I/O procedure, are
exempt from actions to unregister that procedure.

mmioOpen

mmioOpen 3-67

MMIO_WRITE
Opens the file for writing. You should not read from a file opened in this mode.

MMIO_READWRITE
Opens the file for both reading and writing.

MMIO_CREATE
Creates a new file. If the file already exists, it is truncated to zero length. For
memory files, MMIO_CREATE indicates the end of the file is initially at the
start of the buffer.

MMIO_DELETE
Deletes a file. If this flag is specified, szFilename should not be NULL.
The return value will be TRUE (cast to HMMIO) if the file was deleted
successfully, FALSE otherwise. Do not call mmioClose for a file that has
been deleted. If this flag is specified, all other flags are ignored.

MMIO_PARSE
Creates a fully qualified filename from the path specified in szFileName. The
fully qualified filename is placed back into szFileName. The return value will
be TRUE (cast to HMMIO) if the qualification was successful, FALSE
otherwise. The file is not opened, and the function does not return a valid
MMIO file handle, so do not attempt to close the file. If this flag is specified, all
other file opening flags are ignored.

MMIO_EXIST
Determines whether the specified file exists and creates a fully qualified
filename from the path specified in szFileName. The fully qualified filename is
placed back into szFileName. The return value will be TRUE (cast to HMMIO)
if the qualification was successful and the file exists, FALSE otherwise. The
file is not opened, and the function does not return a valid MMIO file handle,
so do not attempt to close the file.

MMIO_ALLOCBUF
Opens a file for buffered I/O. To allocate a buffer larger or smaller than the
default buffer size (8K), set the cchBuffer field of the MMIOINFO structure
to the desired buffer size. If cchBuffer is zero, then the default buffer size is
used. If you are providing your own I/O buffer, then the MMIO_ALLOCBUF
flag should not be used.

MMIO_COMPAT
Opens the file with compatibility mode, allowing any process on a given
machine to open the file any number of times. mmioOpen fails if the file
has been opened with any of the other sharing modes.

See Also

mmioOpen 3-69

• To request that mmioOpen determine which 1/0 procedure to use to open the file
based on the filename contained in szFilename, set both fcclOProc and pIOProc to
NULL. This is the default behavior if no MMIOINFO structure is specified.

• To open a memory file using an internally allocated and managed buffer, set the
pchBuffer field to NULL, fcclOProc to FOURCC_MEM, cchBuffer to the initial
size of the buffer, and adwlnfo[O] to the incremental expansion size of the buffer. This
memory file will automatically be expanded in increments of aowlnfo[O] bytes when
necessary. Specify the MMIO_CREATE flag for the dwOpenFlags parameter to
initially set the end of the file to be the beginning of the buffer.

• To open a memory file using a caller-supplied buffer, set the pchBuffer field to point
to the memory buffer, fcclOProc to FOURCC_MEM, cchBuffer to the size of the
buffer, and adwlnfo[O] to the incremental expansion size of the buffer. The expansion
size in adwlnfo[O] should only be non-zero if pchBuffer is a pointer obtained by
calling GlobalAlloc and GlobalLock, since GlobalReAlloc will be called to expand
the buffer. In particular, if pchBuffer points to a local or global array, a block of
memory in the local heap, or a block of memory allocated by GlobalDosAlloc,
adwlnfo[O] must be zero.

Specify the MMIO_CREATE flag for the dwOpenFlags parameter to initially set the
end of the file to be the beginning of the buffer; otherwise, the entire block of memory
will be considered readable.

• To use a currently open MS-DOS file handle with MMIO, set the fcclOProc field to
FOURCC_DOS, pchBuffer to NULL, and adwlnfo[O] to the MS-DOS file handle.
Note that offsets within the file will be relative to the beginning of the file, and will not
depend on the MS-DOS file position at the time mmioOpen is called; the initial
MMIO offset will be the same as the MS-DOS offset when mmioOpen is called.
Later, to close the MMIO file handle without closing the MS-DOS file handle, pass the
MMIO_FHOPEN flag to mmioClose.

You must call mmioClose to close a file opened with mmioOpen. Open files are not
automatically closed when an application exits.

mmioClose

mmioSeek
Syntax

Parameters

Return Value

Comments

mmioSeek 3-71

LONG mmioSeek(hmmio, !Offset, iOrigin)

This function changes the current file position in a file opened with mmioOpen. The
current file position is the location in the file where data is read or written.

HMMIO hmmio

Specifies the file handle of the file to seek in.

LONG !Offset

Specifies an offset to change the file position.

int iOrigin

Specifies how the offset specified by !Offset is interpreted. Contains one of
the following flags:

SEEK_SET
Seeks to !Offset bytes from the beginning of the file.

SEEK_CUR
Seeks to lOffset bytes from the current file position.

SEEK_END
Seeks to !Offset bytes from the end of the file.

The return value is the new file position in bytes, relative to the beginning of the file. If
there is an error, the return value is -1.

Seeking to an invalid location in the file, such as past the end of the file, may not cause
mmioSeek to return an error, but may cause subsequent I/O operations on the file to fail.

To locate the end of a file, call mmioSeek with !Offset set to zero and iOrigin set to
SEEK_END.

Return Value

Comments

mmioSetlnfo
Syntax

Parameters

mmioSetinfo 3-73

LONG cchBuffer
Specifies the size of the caller-supplied buffer, or the size of the buffer for
mmioSetBuffer to allocate.

UINT wFlags
Is not used and should be set to zero.

The return value is zero if the function is successful. Otherwise, the return value specifies
an error code. If an error occurs, the file handle remains valid. The error code can be one
of the following codes:

MMIOERR_CANNOTWRITE
The contents of the old buffer could not be written to disk, so the operation was
aborted.

MMIOERR_OUTOFMEMORY
The new buffer could not be allocated, probably due to a lack of available memory.

To enable buffering using an internal buffer, set pchBuffer to NULL and cchBuffer to the
desired buffer size.

To supply your own buffer, set pchBuffer to point to the buffer, and set cchBuffer to the
size of the buffer.

To disable buffered 110, set pchBuffer to NULL and cchBuffer to zero.

If buffered 1/0 is already enabled using an internal buffer, you can reallocate the buffer to
a different size by setting pchBuffer to NULL and cchBuffer to the new buffer size. The
contents of the buffer may be changed after resizing.

UINT mmioSetInfo(hmmio, lpmmioinfo, wFlags)

This function updates the information retrieved by mmioGetInfo about a file opened with
mmioOpen. Use this function to terminate direct buffer access of a file opened for
buffered 110.

HMMIO hmmio
Specifies the file handle of the file.

LPMMIOINFO lpmmioinfo
Specifies a far pointer to an MMIOINFO structure filled with information with
mmioGetInfo.

UINT wFlags
Is not used and should be set to zero.

OutputDebugStr 3-75

Comments The current file position is incremented by the number of bytes written.

See Also mmioRead

mmsystemGetVersion
Syntax

Parameters

Return Value

WORD mmsystemGetVersionO

This function returns the current version number of the multimedia system software.

OxOlOO is the value returned with the Multimedia Extensions 1.0.
OxOlOl is the value returned with version 3.1 of Windows.

None.

The return value specifies the major and minor version numbers of the multimedia system
software. The high-order byte specifies the major version number. The low-order
byte specifies the minor version number.

OutputDebugStr
Syntax

Parameters

Comments

void OutputDebugStr(lpOutputString)

This function sends a debugging message directly to the COMI port or to a secondary
monochrome display adapter. Because it bypasses MS-DOS, it can be called by low-level
callback functions and other code at interrupt time.

LPCSTR IpOutputString
Specifies a far pointer to a null-terminated string.

This function is available only in the debugging version of Windows. The DebugOutput
keyname in the [mmsystem] section of SYSTEM.INI controls where the debugging
information is sent. If DebugOutput is 0, all debug output is disabled. If DebugOutput is 1,
debug output is sent to the COM 1 port. If DebugOutput is 2, debug output is sent to a
secondary monochrome display adapter.

To print the contents of a register, use the pound sign (#) followed by one of the following
register designations: "ax", "bx", "cx", "dx", "si", "di", "bp", "sp", "al", "bl", "cl", "dl".
For for systems that support the 80386 architecture, OutputDebugStr also supports the
following registers: "fs", "gs", "edi", "esi", "eax", "ebx", "ecx", "edx".

For example, to print the stack pointer and accumulator registers, pass the following string
to OutputDebugStr:

"SP=#sp\r\nAX=#ax\r\n"

Return Value

Comments

timeBeginPeriod 3-77

Returns TRUE if the sound is played, otherwise returns FALSE.

The sound must fit in available physical memory and be playable by an installed
waveform audio device driver. The directories searched for sound files are, in order: the
current directory; the Windows directory; the Windows system directory; the directories
listed in the PATH environment variable; the list of directories mapped in a network. See
the Windows OpenFile function for more information about the directory search order.

If you specify the SND_MEMORY flag, IpszSoundName must point to an in-memory
image of a waveform sound. If the sound is stored as a resource, use LoadResource and
LockResource to load and lock the resource and get a pointer to it. If the sound is not a
resource, you must use GlobalAlloc with the GMEM_MOVEABLE and GMEM_SHARE
flags set and then GlobalLock to allocate and lock memory for the sound.

timeBeginPeriod
Syntax

Parameters

Return Value

Comments

See Also

DINT timeBeginPeriod(wPeriod)

This function sets the minimum (lowest number of milliseconds) timer resolution that an
applicatiGn or driver is going to use. Call this function immediately before starting to use
timer-event services, and call timeEndPeriod immediately after finishing with the
timer-event services.

DINT wPeriod
Specifies the minimum timer-event resolution that the application or driver will use.

Returns zero if successful. Returns TIMERR_NOCANDO if the specified wPeriod
resolution value is out of range.

For each call to timeBeginPeriod, you must call timeEndPeriod with a matching
wPeriod value. An application or driver can make multiple calls to timeBeginPeriod,
as long as each timeBeginPeriod call is matched with a timeEndPeriod call.

timeEndPeriod, timeSetEvent

Parameters

Return Value

Comments

See Also

timeGetTime
Syntax

Parameters

Return Value

Comments

See Also

timeKiliEvent
Syntax

Parameters

Return Value

Comments

See Also

timeKiliEvent 3-79

LPMMTIME IpTime
Specifies a far pointer to an MMTIME data structure.

UINT wSize
Specifies the size of the MMTIME structure.

Returns zero. The system time is returned in the ms field of the MMTIME structure.

The time is always returned in milliseconds.

timeGetTime

DWORD timeGetTimeO

This function retrieves the system time in milliseconds. The system time is the time
elapsed since Windows was started.

None.

The return value is the system time in milliseconds.

The only difference between this function and the timeGetSystemTime function is
timeGetSystemTime uses the standard multimedia time structure MMTIME to return the
system time. The timeGetTime function has less overhead than timeGetSystemTime.

timeGetSystemTime

UINT timeKillEvent(wTimerID)

This functions destroys a specified timer callback event.

UINT wTimerID
Identifies the event to be destroyed.

Returns zero if successful. Returns TIMERR_NOCANDO if the specified timer event
does not exist.

The timer event ID specified by wTimerID must be an ID returned by timeSetEvent.

timeSetEvent

Callback

Comments

See Also

timeSetEvent 3-81

void CALLBACK TimeFunc(wTimerID, wMsg, dwUser, dwl, dw2)

TimeFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in the EXPORTS statement of the module-definition file
for the DLL.

Callback Parameters

UINT wTimerID
The ID of the timer event. This is the ID returned by timeSetEvent.

UINT wMsg
Not used.

DWORD dwUser
User instance data supplied to the dwU ser parameter of timeSetEvent.

DWORD dwl
Not used.

DWORD dw2
Not used.

Using this function to generate a high-frequency periodic-delay event (with a period less
than 10 milliseconds) can consume a significant portion of the system CPU bandwidth.
Any call to timeSetEvent for a periodic-delay timer must be paired with a call to
timeKillEvent.

The callback function must reside in a DLL. You don't have to use MakeProcInstance to
get a procedure-instance address for the callback function.

Because the callback is accessed at interrupt time, it must reside in a DLL, and its code
segment must be specified as FIXED in the module-definition file for the DLL. Any data
that the callback accesses must be in a FIXED data segment as well. The callback may
not make any system calls except for PostMessage, timeGetSystemTime, timeGetTime,
timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg, and
OutputDebugStr.

time KillE vent, timeBeginPeriod, timeEndPeriod

Comments

See Also

wavelnGetDevCaps 3-83

W A VERR_STILLPLA YING
There are still buffers in the queue.

If there are input buffers that have been sent with waveInAddBuffer, and haven't been
returned to the application, the close operation will fail. Call waveInReset to mark all
pending buffers as done.

waveInOpen, waveInReset

wavelnGelDevCaps
Syntax

Parameters

Return Value

Comments

See Also

UINT waveInGetDevCaps(wDeviceID, IpCaps, wSize)

This function queries a specified waveform input device to determine its capabilities.

DINT wDeviceID

Identifies the waveform input device to query. Use a valid waveform input device ID
(see the following "Comments" section) or the following constant:

WAVE_MAPPER
Wave mapper. If no wave mapper is installed, the function returns an error
number.

LPW A VEINCAPS IpCaps

Specifies a far pointer to a W A VEIN CAPS structure. This structure is filled with
information about the capabilities of the device.

DINT wSize
Specifies the size of the W A VEIN CAPS structure.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_NODRIVER
The driver was not installed.

The device ID specified by wDeviceID varies from zero to one less than the number of
devices present. Use waveInGetNumDevs to determine the number of waveform input
devices present in the system.

Only wSize bytes (or less) of information is copied to the location pointed to by IpCaps. If
wSize is zero, nothing is copied, and the function returns zero.

waveInGetNumDevs

wavelnGetPosition 3-85

wavelnGetNumDevs
Syntax

Parameters

Return Value

See Also

UINT wavelnGetNumDevsO

This function returns the number of waveform input devices.

None.

Returns the number of waveform input devices present in the system.

wavelnGetDevCaps

wavelnGetPosition
Syntax

Parameters

Return Value

Comments

UINT wavelnGetPosition(hWaveIn, [pInfo, wSize)

This function retrieves the current input position of the specified waveform input device.

HWAVEIN hWaveIn
Specifies a handle to the waveform input device.

LPMMTIME [pInfo
Specifies a far pointer to an MMTlME structure.

UINT wSize
Specifies the size of the MMTIME structure.

Returns zero if the function was successful. Possible error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

Before calling wavelnGetPosition, set the wType field of the MMTIME structure to
indicate the time format that you desire. After calling wavelnGetPosition, be sure to
check the wType field to determine if the desired time format is supported. If the desired
format is not supported, wType will specify an alternative format.

The position is set to zero when the device is opened or reset.

wavelnOpen 3-87

DINT wDeviceID
Identifies the waveform input device to open. Use a valid waveform input device ID
(see the following "Comments" section) or the following constant:

WAVE_MAPPER
Wave mapper. If no wave mapper is installed, the system selects a waveform
input device capable of recording in the given format.

LPWA VEFORMAT lpFormat
Specifies a pointer to a W A VEFORMAT data structure that identifies the desired
format for recording waveform data.

DWORD dwCaliback
Specifies the address of a callback function or a handle to a window called during
waveform recording to process messages related to the progress of recording.

DWORD dwCalibacklnstance
Specifies user instance data passed to the callback. This parameter is not used with
window callbacks.

DWORD dwFlags
Specifies flags for opening the device.

WAVE_FORMAT_QUERY
If this flag is specified, the device will be queried to determine if it supports the
given format but will not actually be opened.

W A VE_ALLOWSYNC
Allows a synchronous (blocking) waveform driver to be opened. If this flag is
not set while opening a synchronous driver, the open will fail.

CALLBACK_WINDOW
If this flag is specified, dwCaliback is assumed to be a window handle.

CALLBACK_FUNCTION
If this flag is specified, dwCaliback is assumed to be a callback procedure
address.

See Also

wavelnPrepareHeader 3-89

If a window is chosen to receive callback information, the following messages are
sent to the window procedure function to indicate the progress of waveform input:
M~ WIM_OPEN, M~ WI~CLOSE, M~ WI~DATA.

If a function is chosen to receive callback information, the following messages are sent to
the function to indicate the progress of waveform input: WI~ OPEN, W~ CLOSE,
WIM_DATA. The callback function must reside in a DLL. You do not have to use
MakeProcInstance to get a procedure-instance address for the callback function.

Because the callback is accessed at interrupt time, it must reside in a DLL and its code
segment must be specified as FIXED in the module-definition file for the DLL. Any data
that the callback accesses must be in a FIXED data segment as well. The callback may not
make any system calls except for PostMessage, timeGetSystemTime, timeGetTime,
timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg, and
OutputDebugStr.

wavelnClose

wavelnPrepareHeader
Syntax

Parameters

Return Value

Comments

See Also

UINT wavelnPrepareHeader(hWaveln, IpWavelnHdr, wSize)

This function prepares a buffer for waveform input.

HWAVEIN hWaveln
Specifies a handle to the waveform input device.

LPWAVEHDR IpWaveInHdr
Specifies a pointer to a WA VEHDR structure that identifies the buffer to be prepared.

UINT wSize
Specifies the size of the W A VEHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

MMSYSERR_NOMEM
Unable to allocate or lock memory.

The W A VEHDR data structure and the data block pointed to by its IpData field must be
allocated with GlobalAlloc using the GMEM_MOVEABLE and GMEM_SHARE flags,
and locked with GlobalLock. Preparing a header that has already been prepared will have
no effect, and the function will return zero.

wavelnUnprepareHeader

wavelnSlop
Syntax

Parameters

Return Value

Comments

See Also

wavelnUnprepareHeader 3-91

DINT wavelnStop(hWaveln)

This function stops wavefonn input.

HW A VEIN h Waveln
Specifies a handle to the waveform input device.

Returns zero if the function was successful. Otherwise, it returns an error number.
Possible error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

If there are any buffers in the queue, the current buffer will be marked as done (the
dwBytesRecorded field in the header will contain the actual length of data), but any
empty buffers in the queue will remain there. Calling this function when input is not
started has no effect, and the function returns zero.

wavelnStart, wavelnReset

wavelnUnprepareHeader
Syntax

Parameters

UINT wavelnUnprepareHeader(h Waveln, IpWavelnHdr, wSize)

This function cleans up the preparation perfonned by wavelnPrepareHeader. The
function must be called after the device driver fills a data buffer and returns it to the
application. You must call this function before freeing the data buffer.

HWAVEIN hWaveIn
Specifies a handle to the wavefonn input device.

LPWA VEHDR IpWavelnHdr
Specifies a pointer to a W A VEHDR structure identifying the data buffer to be
cleaned up.

UINT wSize
Specifies the size of the W A VEHDR structure.

waveOutGetDevCaps 3-93

waveOutClose
Syntax

Parameters

Return Value

Comments

See Also

UINT waveOutClose(hWaveOut)

This function closes the specified waveform output device.

HWAVEOUT hWaveOut
Specifies a handle to the waveform output device. If the function is successful, the
handle is no longer valid after this call.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

W A VERR_STILLPLA YING
There are still buffers in the queue.

If the device is still playing a waveform, the close operation will fail. Use waveOutReset
to terminate waveform playback before calling waveOutClose.

waveOutOpen, waveOutReset

waveOutGetDevCaps
Syntax

Parameters

UINT waveOutGetDevCaps(wDeviceID, IpCaps, wSize)

This function queries a specified waveform device to determine its capabilities.

UINT wDeviceID
Identifies the waveform output device to query. Use a valid waveform output device
ID (see the following "Comments" section) or the following constant:

WAVE_MAPPER
Wave mapper. If no wave mapper is installed, the function returns an error
number.

LPW A VEOUTCAPS IpCaps
Specifies a far pointer to a W A VEOUTCAPS structure. This structure is filled with
information about the capabilities of the device.

UINT wSize
Specifies the size of the W A VEOUTCAPS structure.

Comments

waveOutGetNumDevs 3-95

If the text error description is longer than the specified buffer, the description is truncated.
The returned error string is always null-terminated. If wSize is zero,
nothing is copied, and the function returns zero. All error descriptions are less than
MAXERRORLENGTH characters long.

waveOutGetiD
Syntax

Parameters

Return Value

UINT waveOutGetID(hWaveOut,lpwDeviceID)

This function gets the device ID for a waveform output device.

HWAVEOUT hWaveOut
Specifies the handle to the waveform output device.

UINT FAR* IpwDevicelD
Specifies a pointer to the WORD-sized memory location to be filled with the
device ID.

Returns zero if successful. Otherwise, it returns an error number. Possible error returns are:

MMSYSERR_INV ALHANDLE
The hWaveOut parameter specifies an invalid handle.

waveOutGetNumDevs
Syntax

Parameters

Return Value

See Also

UINT waveOutGetNumDevsO

This function retrieves the number of waveform output devices present in the system.

None.

Returns the number of waveform output devices present in the system.

waveOutGetDevCaps

waveOutGetPlaybackRate 3-97

waveO ulG elPI aybackRale
Syntax

Parameters

Return Value

Comments

See Also

DINT waveOutGetPlaybackRate(hWaveOut, /pdwRate)

This function queries the current playback rate setting of a waveform output device.

HWAVEOUT hWaveOut
Specifies a handle to the waveform output device.

LPDWORD /pdwRate

Specifies a far pointer to a location to be filled with the current playback rate.
The playback rate setting is a multiplier indicating the current change in playback
rate from the original authored setting. The playback rate multiplier must be a
positive value.

The rate is specified as a fixed-point value. The high-order word of the DWORD
location contains the signed integer part of the number, and the low-order word
contains the fractional part. The fraction is expressed as a WORD in which a value
of Ox8000 represents one half, and Ox4000 represents one quarter. For example, the
value OxOOOlOOOO specifies a multiplier of 1.0 (no playback rate change), and a value
of OxOOOF8000 specifies a multiplier of 15.5.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

MMSYSERR_NOTSUPPORTED
Function isn't supported.

Changing the playback rate does not change the sample rate but does change the
playback time.

Not all devices support playback rate changes. To determine whether a device supports
playback rate changes, use the WA VECAPS_PLAYBACKRATE flag to test the
dwSupport field of the W A VEOUTCAPS structure (filled by waveOutGetDevCaps).

waveOutSetPlaybackRate, waveOutSetPitch. waveOutGetPitch

Return Value

Comments

See Also

waveOutMessage 3-99

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

MMSYSERR_NOTSUPPORTED
Function isn't supported.

MMSYSERR_NODRIVER
The driver was not installed.

Not all devices support volume changes. To determine whether the device supports
volume control, use the W A VECAPS_ VOLUME flag to test the dwSupport field of
the WA VEOUTCAPS structure (filled by waveOutGetDevCaps).

To determine whether the device supports volume control on both the left and right
channels, use the W A VECAPS_ VOLUME flag to test the dwSupport field of the
WA VEOUTCAPS structure (filled by waveOutGetDevCaps).

waveOutSetVolume

waveOulMessage
Syntax

Parameters

Return Value

Comments

See Also

DWORD waveOutMessage(hWaveOut, msg, dwl, dw2)

This function sends a message to a waveform output device driver. Use it to send
driver-specific messages that aren't supported by the waveform APIs.

HWAVEOUT hWaveOut
Specifies the handle to the audio device driver.

UINT msg
Specifies the message to send.

DWORD dwl
Specifies the first message parameter.

DWORD dw2
Specifies the second message parameter.

Returns the value returned by the audio device driver.

Do not use this function to send standard messages to an audio device driver.

waveInMessage

Return Value

waveOutOpen 3-101

DWORD dwFlags
Specifies flags for opening the device.

WAVE_FORMAT_QUERY
If this flag is specified, the device is be queried to detennine if it supports the
given format but is not actually opened.

W A VE_ALLOWSYNC
Allows a synchronous (blocking) waveform driver to be opened. If this flag is
not set while opening a synchronous driver, the open will fail.

CALLBACK_WINDOW
If this flag is specified, dwCallback is assumed to be a window handle.

CALLBACK_FUNCTION

If this flag is specified, dwCallback is assumed to be a callback procedure
address.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_ALLOCATED

Specified resource is already allocated.

MMSYSERR_NOMEM
Unable to allocate or lock memory.

WA VERR_BADFORMAT
Attempted to open with an unsupported wave format.

WA VERR_SYNC
Attempted to open a synchronous driver without specifying the
W A VE_ALLOWSYNC flag.

See Also

waveOutPause 3-103

If a function is chosen to receive callback information, the following messages are
sent to the function to indicate the progress of waveform output: WO~ OPEN,
WOM_ CLOSE, WOM_DONE. The callback function must reside in a DLL. You don't
have to use MakeProcInstance to get a procedure-instance address for the callback
function.

Because the callback is accessed at interrupt time, it must reside in a DLL and its code
segment must be specified as FIXED in the module-definition file for the DLL. Any data
that the callback accesses must be in a FIXED data segment as well. The callback may
not make any system calls except for PostMessage, timeGetSystemTime, timeGetTime,
timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg, and
OutputDebugStr.

waveOutClose

waveOulPause
Syntax

Parameters

Return Value

Comments

See Also

UINT waveOutPause(h WaveOut)

This function pauses playback on a specified waveform output device. The current
playback position is saved. Use waveOutRestart to resume playback from the current
playback position.

HWAVEOUT hWaveOut

Specifies a handle to the waveform output device.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

Calling this function when the output is already paused has no effect, and the function
returns zero.

waveOutRestart, waveOutBreakLoop

waveOutRestart 3-105

waveOutReset
Syntax

Parameters

Return Value

See Also

UINT waveOutReset(hWaveOut)

This function stops playback on a given waveform output device and resets the
current position to O. All pending playback buffers are marked as done and returned
to the application.

HWAVEOUT hWaveOut
Specifies a handle to the waveform output device.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

waveOutWrite, waveOutClose

wave 0 utResta rt
Syntax

Parameters

Return Value

Comments

See Also

UINT waveOutRestart(h Wave Out)

This function restarts a paused waveform output device.

HWAVEOUT hWaveOut
Specifies a handle to the waveform output device.

Returns zero if the function was successful. Otherwise, it returns an error number.
Possible error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

Calling this function when the output is not paused has no effect, and the function
returns zero.

waveOutPause, waveOutBreakLoop

waveOutSetPlaybackRate 3-107

waveOutSetPlaybackRate
Syntax

Parameters

Return Value

Comments

See Also

UINT waveOutSetPlaybackRate(hWaveOut, dwRate)

This function sets the playback rate of a waveform output device.

HWAVEOUT hWaveOut
Specifies a handle to the waveform output device.

DWORD dwRate

Specifies the new playback rate setting. The playback rate setting is a multiplier
indicating the current change in playback rate from the original authored setting.
The playback rate multiplier must be a positive value.

The rate is specified as a fixed-point value. The high-order word contains the signed
integer part of the number, and the low-order word contains the fractional part. The
fraction is expressed as a WORD in which a value of Ox8000 represents one half, and
Ox4000 represents one quarter. For example, the value OxOOOlOOOO specifies a
multiplier of 1.0 (no playback rate change), and a value of OxOOOF8000 specifies a
multiplier of 15.5.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

MMSYSERR_NOTSUPPORTED

Function isn't supported.

Changing the playback rate does not change the sample rate but does change the
playback time.

Not all devices support playback rate changes. To determine whether a device supports
playback rate changes, use the W A VECAPSYLA YBACKRATE flag to test the
dwSupport field of the W A VEOUTCAPS structure (filled by waveOutGetDevCaps).

waveOutGetPlaybackRate, waveOutSetPitch, waveOutGetPitch

waveOutUnprepareHeader 3-109

waveOutUnprepareHeader
Syntax

Parameters

Return Value

Comments

See Also

UINT waveOutUnprepareHeader(hWaveOut, IpWaveOutHdr, wSize)

This function cleans up the preparation performed by waveOutPrepareHeader. The
function must be called after the device driver is finished with a data block. You must
call this function before freeing the data buffer.

HWAVEOUT hWaveOut

Specifies a handle to the waveform output device.

LPWAVEHDR IpWaveOutHdr

Specifies a pointer to a W A VEHDR structure identifying the data block to be
cleaned up.

DINT wSize

Specifies the size of the W A VEHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number.
Possible error returns are:

MMSYSERR_INV ALHANDLE
Specified device handle is invalid.

W A VERR_STILLPLA YING

IpWaveOutHdris still in the queue.

This function is the complementary function to waveOutPrepareHeader. You must
call this function before freeing the data buffer with GlobalFree. After passing a buffer
to the device driver with waveOutWrite, you must wait until the driver is finished with
the buffer before calling waveOutUnprepareHeader.

Unpreparing a buffer that has not been prepared has no effect, and the function
returns zero.

waveOutPrepareHeader

Chapter 4

Message Overview

This chapter gives an overview of the multimedia messages in Windows. The messages
are organized into the following categories, some of which contain smaller groups of
related messages:

• Audio Messages

• Media Control Interface Messages

• Joystick Messages

• File 1/0 Messages

For detailed information on any of the messages listed in this chapter, see Chapter 5,
"Message Directory." Chapter 5 is an alphabetical listing of the messages in the
Multimedia extensions to Windows.

About the Multimedia Messages
The multimedia messages fall into two broad categories:

• Messages sent to windows. These are processed by window functions and are similar
to the messages defined in the WINDOWS.H header file. Multimedia messages sent to
windows all have an MM_ prefix.

• Messages specific to a callback function or message-based API. These include Media
Control Interface command messages, which an application sends to communicate
with MCI, as well as messages sent to callback functions.

This chapter describes each message in detail.

Audio Messages 4-3

Waveform Input Messages
Waveform input messages are sent by audio device drivers to an application to inform the
application about the status of waveform input operations. By specifying flags with the
wavelnOpen function, applications can route messages either to a window or to a
low-level callback function. Use the following messages to manage waveform audio
recording:

MM_ WI~CLOSE
Sent to a window when a waveform input device is closed.

M~WI~DATA

Sent to a window when an input data buffer is full and is being returned
to the application.

~WI~OPEN

Sent to a window when a waveform input device is opened.

WI~CLOSE

Sent to a low-level callback function when a waveform input device
is closed.

WI~DATA

Sent to a low-level callback function when an input data buffer is full and
is being returned to the application.

WI~OPEN

Sent to a low-level callback function when a waveform input device is opened.

Audio Messages 4-5

MM_MI~ERROR

Sent to a window when an invalid MIDI message is received by the device.

M~MI~LONGERROR

Sent to a window when an invalid MIDI system-exclusive message is received
by the device.

M~MIM_LONGDATA

Sent to a window when a MIDI system-exclusive data buffer is filled and is being
returned to the application.

M~MI~OPEN

Sent to a low-level callback function when a MIDI input device is opened.

MIM_OPEN
Sent to a window when a MIDI input device is opened.

MI~CLOSE

Sent to a low-level callback function when a MIDI input device is closed.

MI~DATA

Sent to a low-level callback function when a MIDI message is received by the device.
The parameters to this message include a time stamp specifying the time that the
MIDI message was received.

MI~ERROR

Sent to a low-level callback function when an invalid MIDI message is received
by the device.

MI~LONGERROR

Sent to a low-level callback function when an invalid MIDI system-exclusive
message is received by the device.

MI~LONGDATA

Sent to a low-level callback function when a MIDI system-exclusive message
is received by the device. The parameters to this message include a time stamp
specifying the time that the MIDI message was received.

Media Control Interface Messages 4-7

Playing and Recording Multimedia Data
The following command messages control the playback and recording of multimedia data:

MCLPAUSE
Sent by an application to pause a device.

MCLPLAY
Sent by an application to start a device playing.

MCLRECORD
Sent by an application to start recording with a device.

MCLRESUME
Sent by an application to resume playback or recording after a pause.

MCLSTEP
Sent by an application to step a device one or more frames.

MCLSTOP
Sent by an application to stop a device from playing or recording.

Getting Device Information
The following command messages return information about devices:

MCLGETDEVCAPS
Sent by an application to obtain information about device capabilities.

MCLINFO
Sent by an application to obtain information about a device.

MCLSTATUS
Sent by an application to obtain status information about a device.

MCLSYSINFO
Sent by an application to obtain system-related information about a device.

Media Control Interface Messages 4-9

MCLLOAD
Sent by an application to load a file.

MCLPASTE
Sent by an application to paste data from the Clipboard to the Mel element.

MCLSAVE
Sent by an application to save the current file.

Controlling Video Images
The following command messages control the presentation of video images:

MCLFREEZE
Sent by an application to stop capture.

MCLPUT
Sent by an application to define a source or destination clipping rectangle.

MCLREALIZE
Sent by an application to tell a graphic device to realize its palette.

MCL UNFREEZE
Sent by an application to restore capture.

MCLUPDATE
Sent by an application to tell a graphic device to update or paint the current frame.

MCLWHERE
Sent by an application to determine the extent of a clipping rectangle.

MCLWINDOW
Sent by an application to specify a window and the characteristics of the window for a
graphic device to use for its display.

File 1/0 Messages 4-11

MM_JOY2BUTTONUP
Sent to a window that has captured joystick 2 when a button has been released.

MM_JOY2MOVE
Sent to a window that has captured joystick 2 when the joystick position has changed.

MM_JOY2ZMOVE
Sent to a window that has captured joystick 2 when the joystick z-axis position
has changed.

File I/O Messages
File I/O messages are sent to custom I/O procedures to request 110 operations on a file. I/O
procedures must respond to all of the following messages:

MMIOM_ CLOSE
Sent to an I/O procedure to request that a file be closed.

MMIOM_OPEN
Sent to an I/O procedure to request that a file be opened.

MMIOM_READ
Sent to an I/O procedure to request that data be read from a file.

MMIO~RENAME

Sent to an I/O procedure to request that a file be renamed.

MMIO~SEEK

Sent to an I/O procedure to request that the current position for reading and
writing be changed.

MMIOM_ WRITE
Sent to an 110 procedure to request that data be written to a file.

MMIO~ WRITEFLUSH
Sent to an I/O procedure to request that an I/O buffer be flushed to disk.

Chapter 5

Message Directory

This chapter contains an alphabetical list of the Windows multimedia messages. For
information about standard Windows messages, see the Microsoft Windows Programmer's
Reference, Volume 3: Messages, Structures, Macros.

For each message, this chapter lists the following items:

• The purpose of the message

• A description of the message parameters

• A description of return values

• Optional comments on using the message

• Optional cross references to other messages, functions, and data structures

Extensions to MCI Command Messages
MCI command messages can have extensions for specific MCI device types. The
extensions include additional flags for parameters and are identified by one of the
following headings in the "Parameters" section of the entry for the message:

Heading

Animation Extensions

Audio CD Extensions

Sequencer Extensions

Videodisc Extensions

Video Overlay Extensions

Wave Audio Extensions

Description

Extensions for the animation device type

Extensions for the cdaudio device type

Extensions for the sequencer device type

Extensions for the videodisc player devices

Extensions for the overlay device type

Extensions for the waveaudio device type

Mel BREAK

Parameters

Return Value

Comments

MCI_ BREAK 5-3

This MCI command message sets a break key for an MCI device. MCI supports this
message directly rather than passing it to the device.

DWORD dwParaml
The following flags apply to all devices:

MCLNOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by IpBreak.

MCLWAIT
Specifies that the break operation should finish before MCI returns control
to the application.

MCLBREAK_KEY
Indicates the n VirtKey field of the data structure identified by IpBreak
specifies the virtual key code used for the break key. By default, MCI assigns
CTRL+BREAK as the break key. This flag is required if MCLBREAK_OFF is
not specified.

MCLBREAK_HWND
Indicates the hwndBreak field of the data structure identified by IpBreak
contains a window handle which must be the current window in order to
enable break detection for that MCI device. This is usually the application's
main window. If omitted, MCI does not check the window handle of the
current window.

MCLBREAK_OFF
U sed to disable any existing break key for the indicated device.

DWORD dwParam2
Specifies a far pointer to the MCLBREAK_PARMS data structure.

Returns zero if successful. Otherwise, it returns an MCI error code.

You might have to press the break key multiple times to interrupt a wait operation.
Pressing the break key after a device wait is canceled can send the break to an application.
If an application has an action defined for the virtual key code, then it can inadvertently
respond to the break. For example, an application using VK_ CANCEL for an accelerator
key can respond to the default CTRL+BREAK key if it is pressed after a wait is canceled.

Parameters

Return Value

See Also

MCLCUE

Parameters

MCI_CUE 5-5

DWORD dwFlags

The following flags apply to all devices supporting MCL COPY:

MCCNOTIFY
Specifies that MCI should post the M~MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by IpCopy.

MCCWAIT
Specifies that the copy should finish before MCI returns control to the
application.

LPMCCGENERIC]ARMS IpCopy
Specifies a far pointer to an MCL GENERIC_PARMS data structure. (Devices with
extended command sets might replace this data structure with a device-specific data
structure.)

Returns zero if successful. Otherwise, it returns an MCI error code.

MCLCUT, MCLDELETE, MCLPASTE

This MCI command message cues a device so that playback or recording begins with
minimum delay. Support of this message by a device is optional. The parameters and flags
for this message vary according to the selected device.

DWORD dwFlags

The following flags apply to all devices supporting MCL CUE:

MCCNOTIFY
Specifies that MCI should post the M~MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by IpDefault.

MCCWAIT
Specifies that the cue operation should finish before MCI returns control to
the application.

LPMCCGENERIC_PARMS IpDefault

Specifies a far pointer to the MCLGENERIC_PARMS data structure. (Devices
with extended command sets might replace this data structure with a device-specific
data structure.)

Mel DELETE

Parameters

Mel_DELETE 5-7

This MCI command message removes data from the MCI element. Support of this
message by a device is optional. The parameters and flags for this message vary according
to the selected device.

DWORD dwFlags
The following flags apply to all devices supporting MCLDELETE:

MCCNOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in
the dwCallback field of the data structure identified by lpDelete.

MCCWAIT
Specifies that the delete operation should finish before MCI returns control
to the application.

LPMCCGENERIC_PARMS lpCut
Specifies a far pointer to an MCLGENERIC_PARMS data structure. (Devices
with extended command sets might replace this data structure with a device-specific
data structure.)

Wave Audio Extensions
The following additional command options are used with the "waveaudio" device type:

DWORD dwFlags
The following extensions apply to the "waveaudio" device type:

MCCFROM
Specifies that a beginning position is included in the dwFrom field of the
data structure identified by lpDelete. The units assigned to the position values
is specified with the MCCSET_TIME]ORMAT flag of the MCLSET
command.

MCCTO
Specifies that an ending position is included in the dwTo field of the data
structure identified by lpDelete. The units assigned to the position values are
specified with the MCCSET_TIME_FORMAT flag of the MCLSET
command.

LPMCC W A VE_DELETE_PARMS lpDelete
Specifies a far pointer to an MCL WA VE_DELETE_PARMS data structure.
(Devices with extended command sets might replace this data structure with a
device-specific data structure.)

MCLFREEZE (VIDEO OVERLAY) 5-9

Mel_FREEZE (VIDEO OVERLAY)

Parameters

Return Value

See Also

This MCI command message freezes motion on the display. This command is part of the
video overlay command set. The parameters and flags for this message vary according to
the selected device.

DWORD dwFlags
The following flags apply to all devices supporting MCLFREEZE:

MCeNOTIFY
Specifies that MCI should post the M~MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by IpFreeze.

MCeWAIT
Specifies that the freeze operation should finish before MCI returns control to
the application.

MCeOVLY_RECT
Specifies that the rc field of the data structure identified by IpFreeze contains a
valid rectangle. If this flag is not specified, the device driver will freeze the
entire frame.

LPMCeOVLY_RECT_PARMS IpFreeze

Specifies a far pointer to a MCL OVLY _RECT_PARMS data structure. (Devices
with additional parameters might replace this data structure with a device-specific
data structure.)

Returns zero if successful. Otherwise, it returns an MCI error code.

MCL UNFREEZE

MCLGETDEVCAPS 5-11

MCLGETDEVCAPS_COMPOUND_DEVICE
The dwReturn field is set to TRUE if the device uses device elements;
otherwise, it is set to FALSE.

MCLGETDEVCAPS_DEVICE_TYPE
The dwReturn field is set to one of the following values indicating the
device type:

• MCLDEVTYPE_ANIMATION

• MCLDEVTYPE_CD_AUDIO

• MCLDEVTYPE_DAT

• MCLDEVTYPE_DIGITAL_ VIDEO

• MCLDEVTYPE_OTHER

• MCLDEVTYPE_OVERLA Y

• MCLDEVTYPE_SCANNER

• MCLDEVTYPE_SEQUENCER

• MClj)EVTYPE_ VIDEODISC

• MCLDEVTYPE_ VIDEOTAPE

• MCLDEVTYPE_ WAVEFORM_AUDIO

MCLGETDEVCAPS_HAS_AUDIO
The dwReturn field is set to TRUE if the device has audio output;
otherwise, it is set to FALSE.

MCLGETDEVCAPS_HAS_ VIDEO
The dwReturn field is set to TRUE if the device has video output;
otherwise, it is set to FALSE.

For example, the field is set to TRUE for devices that support the animation
or videodisc command set.

MCLGETDEVCAPS_USES_FILES
The dwReturn field is set to TRUE if the device requires a filename as its
element name; otherwise, it is set to FALSE.

Only compound devices use files.

LPMCLGETDEVCAPS_PARMS IpCapsParms

Specifies a far pointer to the MCL GETDEVCAPS_PARMS data structure.
(Devices with extended command sets might replace this data structure with a
device-specific data structure.)

MCLGETDEVCAPS 5-13

Videodisc Extensions
The following additional command options are used with the "videodisc" device type:

DWORD dwFlags
The following extensions apply to the videodisc "device" type:

MCCGETDEVCAPS_ITEM
Specifies that the dwltem field of the data structure identified by lpCapsParms
contains a constant specifying which device capability to obtain. The following
additional device-capability constants are defined for videodisc devices and
specify which value to return in the dwReturn field of the data structure:

MCC VD_GETDEVCAPS_CAN_REVERSE
The dwReturn field is set to TRUE if the videodisc player can play in
reverse; otherwise, it is set to FALSE.

Some players can play CLV discs in reverse as well as CA V discs.

MCC VD_GETDEVCAPS_FAST_RATE
The dwReturn field is set to the standard fast play rate in frames per
second.

MCC VD_GETDEVCAPS_NORMAL_RATE
The dwReturn field is set to the normal play rate in frames per second.

MCC VD_GETDEVCAPS_SLOW _RATE
The dwReturn field is set to the standard slow play rate in frames per
second.

MCC VD_GETDEVCAPS_CLV
Indicates the information requested applies to CL V format discs. By default,
the capabilities apply to the current disc.

MCC VD_GETDEVCAPS_CAV
Indicates the information requested applies to CA V format discs. By default,
the capabilities apply to the current disc.

LPMCCGETDEVCAPS_PARMS lpCapsParms
Specifies a far pointer to the MCL GETDEVCAPS_PARMS data structure.

Return Value

Mel INFO

Parameters

MCUNFO 5-15

MCL WAVE_GETDEVCAPS_OUTPUT
The dwReturn field is set to the total number of waveform output
(playback) devices.

LPMCLGETDEVCAPS]ARMS lpCapsParms
Specifies a far pointer to the MCLGETDEVCAPS_PARMS data structure.

Returns zero if successful. Otherwise, it returns an MCI error code.

This MCI command message obtains string information from a device. All devices
respond to this message. The parameters and flags available for this message depend on
the selected device. Information is returned in the ipstrReturn field of the data structure
identified by lpInfo. The dwRetSize field specifies the buffer length for the return data.

DWORD dwFlags
The following standard and command-specific flags apply to all devices:

MCLNOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lpIn/o.

MCLWAIT
Specifies that the query operation should finish before MCI returns control to
the application.

MCLINFO_PRODUCT
Obtains a description of the hardware associated with a device. Devices should
supply a description that identifies both the driver and the hardware used.

LPMCLINFO]ARMS lpInfo
Specifies a far pointer to the MCLINFO_PARMS data structure. (Devices with
extended command sets might replace this data structure with a device-specific
data structure.)

Return Value

Mel LOAD

Parameters

MCC W AVE_INPUT
Obtains the product name of the current input.

MCC WAVE_OUTPUT
Obtains the product name of the current output.

LPMCCINFO]ARMS lplnfo

Specifies a far pointer to the MCLINFO_PARMS data structure.

Returns zero if successful. Otherwise, it returns an MCI error code.

This MCI command message loads a file. Support of this message by a device is optional.
The parameters and flags for this message vary according to the selected device.

DWORD dwFlags
The following flags apply to all devices supporting MCLLOAD:

MCCNOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in
the dwCallback field of the data structure identified by IpLoad.

MCCWAIT
Specifies that the load operation should finish before MCI returns control to
the application.

MCCLOAD_FILE
Indicates the Ipfilename field of the data structure identified by IpLoad
contains a pointer to a buffer containing the filename.

LPMCCLOAD]ARMS IpLoad
Specifies a far pointer to the MCLLOAD_PARMS data structure. (Devices with
additional parameters might replace this data structure with a device-specific data
structure.)

MCI_ OPEN 5-19

MCLOPEN_SHAREABLE
Specifies that the device or device element should be opened as shareable.

MCLOPEN_TYPE
Specifies that a device type name or constant is included in the
IpstrDeviceType field of the data structure identified by IpOpen.

MCLOPEN_TYPE_ID
Specifies that the low-order word of the IpstrDeviceType field of the
associated data structure contains a standard MCI device type ID and the
high-order word optionally contains the ordinal index for the device. Use this
flag with the MCLOPEN_TYPE flag.

LPMCLOPEN_PARMS IpOpen

Specifies a far pointer to the MCL OPEN_P ARMS data structure. (Devices with
extended command sets might replace this data structure with a device-specific
data structure.)

Flags for Compound Devices
The following additional command options are used with compound devices:

DWORD dwFlags
The following additional flags apply to compound devices:

MCLOPEN_ELEMENT
Specifies that an element name is included in the IpstrElementName field of
the data structure identified by IpOpen.

MCLOPEN_ELEMENT_ID
Specifies that the IpstrElementName field of the data structure identified by
IpOpen is interpreted as a DWORD and has meaning internal to the device. Use
this flag with the MCLOPEN_ELEMENT flag.

LPMCLOPEN]ARMS IpOpen

Specifies a far pointer to the MCLOPEN_PARMS data structure. (Devices with
additional parameters might replace this data structure with a device-specific data
structure.)

MCI_ OPEN 5-21

Video Overlay Extensions
The following additional command options are used with the "overlay" device type:

DWORD dwFlags
The following flags apply to video overlay devices:

MCI_OVLY_OPEN]ARENT
Indicates the parent window handle is specified in the hWndParent field
of the data structure identified by IpOpen.

MCCOVLY_OPEN_WS
Indicates a window style is specified in the dwStyle field of the data structure
identified by IpOpen. The dwStyle value specifies the style of the window
that the driver will create and display if the application does not provide one.
The style parameter takes an integer that defines the window style. These
constants are the same as those in WINDOWS.H (for example, WS_CHILD,
WS_OVERLAPPEDWINDOW, or WS]OPUP).

LPMCCOVLY_OPEN_PARMS IpOpen
Specifies a far pointer to the MCL OVLY _ OPEN_PARMS data structure.

Waveform Audio Extensions
The following additional command options are used with the "waveaudio" device type:

DWORD dwFlags
The following flags apply to waveform audio devices:

MCC WA VE_OPEN_BUFFER
Indicates a buffer length is specified in the dwBufferSeconds field of the data
structure identified by IpOpen.

LPMCC W A VE_OPEN_PARMS lpOpen
Specifies a far pointer to the MeL WAVE_OPEN_PARMS data structure. (Devices
with extended command sets might replace this data structure with a device-specific
data structure.)

MCI_PASTE

Parameters

Return Value

See Also

MCI PAUSE

Parameters

Return Value

MeL PAUSE 5-23

This MCI command message pastes data from the Clipboard into a device element.

DWORD dwFlags

The following flags apply to all devices supporting MCLPASTE:

MCCNOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by IpPaste.

MCCWAIT
Specifies that the device should complete the operation before MCI returns
control to the application.

LPMCCGENERlC]ARMS IpPaste
Specifies a far pointer to the MCLGENERIC_PARMS data structure. (Devices
with extended command sets might replace this data structure with a device-specific
data structure.)

Returns zero if successful. Otherwise, it returns an MCI error code.

MCLCUT, MCLCOPY, MCLDELETE

This MCI command message pauses the current action.

DWORD dwFlags

The following flags apply to all devices supporting MCLPAUSE:

MCCNOTIFY
Specifies that MCI should post the M~MCINOTIFY message when this
command completes. The window to receive this message is specified in
the dwCaIlback field of the data structure identified by IpDefault.

MCCWAIT
Specifies that the device should be paused before MCI returns control to
the application.

LPMCCGENERlC]ARMS IpDefault

Specifies a far pointer to the MCL GENERIC_PARMS data structure. (Devices
with extended command sets might replace this data structure with a device-specific
data structure.)

Returns zero if successful. Otherwise, it returns an MCI error code.

LPMCI]LAY_PARMS lpPlay
Specifies a far pointer to an MCLPLA Y _PARMS data structure. (Devices with
extended command sets might replace this data structure with a device-specific
data structure.)

Animation Extensions
The following additional command options are used with the "animation" device type:

DWORD dwFlags

The following additional flags apply to animation devices:

MCCANIM_PLAY _FAST
Specifies to play fast.

MCCANIM_PLAY _REVERSE
Specifies to play in reverse.

MCCANIM]LA Y _SCAN
Specifies to scan quickly.

MCCANIM_PLAY _SLOW
Specifies to play slowly.

MCCANIM_PLA Y _SPEED
Specifies that the play speed is included in the dwSpeed field in the data
structure identified by lpPlay.

LPMCCANIM_PLA Y _P ARMS lpPlay
Specifies a far pointer to an MCLANI~ PLAY _PARMS data structure.

Parameters

MCLPUT 5-27

DWORD dwFlags
The following flags apply to all devices supporting MCLPUT:

MCLNOTIFY
Specifies that MCI should post the M~MCINOTIFY message when this
command completes. The window to receive this message is specified in
the dwCaliback field of the data structure identified by lpDest.

MCLWAIT
Specifies that the operation should finish before MCI returns control to the
application.

LPMCLGENERIC]ARMS lpDest
Specifies a far pointer to an MCLGENERIC_PARMS data structure. (Devices
with extended command sets might replace this data structure with a device-specific
data structure.)

Animation Extensions
The following additional command options are used with the "animation" device type:

DWORD dwFlags
The following additional flags apply to animation devices supporting MCLPUT:

MCLANIM_RECT
Specifies that the rc field of the data structure identified by lpDest contains a
valid rectangle. If this flag is not specified, the default rectangle matches the
coordinates of the image or window being clipped.

MCLANIM_PUT_DESTINA TION
Indicates the rectangle defined for MCLANIM_RECT specifies the area of the
client window used to display an image. The rectangle contains the offset and
visible extent of the image relative to the window origin. If the frame is being
stretched, the source is stretched to the destination rectangle.

MCLANIM_PUT_SOURCE
Indicates the rectangle defined for MCLANIM_RECT specifies a clipping
rectangle for the animation image. The rectangle contains the offset and extent
of the image relative to the image origin.

LPMCLANIM_RECT _PARMS lpDest
Specifies a far pointer to a MCLAN~RECT_PARMS data structure. (Devices
with extended command sets might replace this data structure with a device-specific
data structure.)

MCI_REALIZE (ANIMATION) 5-29

MeL REALIZE (ANIMATION)

Parameters

Return value

Comments

This MCI command message tells a graphic device to realize its palette into a device
context. This is part of the animation command set. The parameters and flags for this
message vary according to the selected device.

DWORD dwFlags

The following flags apply to all devices supporting MCLREALIZE:

MCCNOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by IpRealize.

MCCWAIT
Specifies that the palette should be realized before MCI returns control to the
application.

MCI_ANIM_REALIZE_BKGD
If this flag is set, the palette is realized as a background palette.

MCI_ANIM_REALIZE_NORM
If this flag is set, the palette is realized normally. This is the default action.

LPMCCGENERIC] ARMS IpRealize
Specifies a far pointer to a MCLGENERIC_PARMS data structure. (Devices with
extended command sets might replace this data structure with a device-specific data
structure.)

Returns zero if successful. Otherwise, it returns an MCI error code.

This command is supported by devices that return true to the
MCCGETDEVCAPS_PALETTESquery.

Return Value

Comments

See Also

MCI_ RESUME 5-31

Returns zero if successful. Otherwise, it returns an MCI error code.

MCISEQ returns MCIERR_UNSUPPORTED]UNCTION for this command.

This command is supported by devices that return TRUE to the
MCCGETDEVCAPS_CAN_RECORD query.

MCLCUE, MCLPAUSE, MCLPLAY, MCLRESUME, MCLSEEK

Mel_RESUME

Parameters

Return Value

Comments

See Also

This MCI command message resumes a paused device. Support of this message by a
device is optional.

DWORD dwFlags
The following flags apply to all devices supporting MCLRESUME:

MCCNOTIFY
Specifies that MCI should post the M~MCINOTIFY message when this
command completes. The window to receive this message is specified in
the dwCaliback field of the data structure identified by lpDefault.

MCCWAIT
Specifies that the device should resume before MCI returns control to the
application.

LPMCCGENERIC_PARMS lpDefault

Specifies a far pointer to the MCLGENERIC_PARMS data structure. (Devices
with extended command sets might replace this data structure with a device-specific
data structure.)

Returns zero if successful. Otherwise, it returns an MCI error code.

This command resumes playing and recording without changing the stop position set
with MCLPLAY or MCLRECORD.

MCLSTOP, MCLPLAY, MCLRECORD

Return Value

Comments

See Also

Mel SEEK

Parameters

MCI_ SEEK 5-33

Returns zero if successful. Otherwise, it returns an MCI error code. MCISEQ
returns MCIERR_ UNSUPPORTED_FUNCTION.

This command is supported by devices that return true to the
MCCGETDEVCAPS_CAN_SAVEquery.

MCLLOAD

This MCI command message changes the current position of media as quickly as possible.
Video and audio output are disabled during the seek. After the seek is complete, the device
will be stopped. Support of this message by a device is optional. The parameters and flags
for this message vary according to the selected device.

DWORD dwFlags
The following flags apply to all devices supporting MCLSEEK:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by IpSeek.

MCCWAIT
Specifies that the seek operation should finish before MCI returns control
to the application.

MCCSEEK_TO_END
Specifies to seek to the end of the media.

MCCSEEK_TO_START
Specifies to seek to the start of the media.

MCCTO
Specifies a position is included in the dwTo field of the MCLSEEILPARMS
data structure. The units assigned to the position values is specified with the
MCCSET_TIME_FORMAT flag ofthe MCLSET command. Do not use this
flag with MCCSEEK_END or MCCSEEK_START.

LPMCCSEEK_PARMS IpSeek

Specifies a far pointer to the MCLSEEILPARMS data structure. (Devices with
extended command sets might replace this data structure with a device-specific
data structure.)

MC'_ SET 5-35

MCCSET_AUDIO
Specifies an audio channel number is included in the dwAudio field of the data
structure identified by IpSet. This flag must be used with MCCSET_ON or
MCCSET_OFF. Use one of the following constants to indicate the channel
number:

MCCSET_AUDIO_ALL
Specifies all audio channels.

MCCSET_AUDIO_LEFf
Specifies the left channel.

MCCSET_AUDIO_RIGHT
Specifies the right channel.

MCCSET_DOOR_CLOSED
Instructs the device to close the media cover (if any).

MCCSET_DOOR_OPEN
Instructs the device to open the media cover (if any).

MCCSET_TIME_FORMAT
Specifies a time format parameter is included in the dwTimeFormat
field of the data structure identified by IpSet. Specifying
MCCFORMAT _MILLISECONDS indicates that subsequent commands
that specify time will use milliseconds for both input and output. Other
units are device dependent.

MCCSET_ VIDEO
Sets the video signal on or off. This flag must be used with either
MCCSET_ON or MCCSET_OFF. Devices that do not have video return
MCIERR_UNSUPPORTED_FUNCTION.

MCCSET_ON
Enables the specified video or audio channel.

MCCSET_OFF
Disables the specified video or audio channel.

LPMCCSET]ARMS IpSet

Specifies a far pointer to the MCLSET_PARMS data structure. (Devices with
extended command sets might replace this data structure with a device-specific
data structure.)

MCI_ SET 5-37

MIDI Sequencer Extensions
The following additional command options are used with the "sequencer" device type:

DWORD dwFlags

The following additional flags apply to MIDI sequencer devices:

MCLSEQ_SET _MASTER
Sets the sequencer as a source of synchronization data and indicates
that the type of synchronization is specified in the dwMaster field
of the data structure identified by IpSet.

MCISEQ returns MCIERR_UNSUPPORTED_FUNCTION.

The following constants are defined for the synchronization type:

MCLSEQ_MIDI
The sequencer will send MIDI format synchronization data.

MCI_SEQ_SMPTE
The sequencer will send SMPTE format synchronization data.

MCLSEQ_NONE
The sequencer will not send synchronization data.

MCLSEQ_SELOFFSET
Changes the SMPTE offset of a sequence to that specified by the dwOffset
field of the data structure identified by IpSet. This only affects sequences with
a SMPTE division type.

MCLSEQ_SET]ORT
Sets the output MIDI port of a sequence to that specified by the MIDI device
ID in the dwPort field of the data structure identified by IpSet. The device will
close the previous port (if any), and attempt to open and use the new port. If it
fails, it will return an error and re-open the previously used port (if any). The
following constants are defined for the ports:

MCLSEQ_NONE
Closes the previously used port (if any). The sequencer will behave exactly
the same as if a port were open, except no MIDI message will be sent.

MIDI_MAPPER
Sets the port opened to the MIDI Mapper.

MCI_ SET 5-39

MCCFORMAT_SMPTE_30DROP
Sets the time format to 30 drop-frame SMPTE.

MCCSEQ_FORMAT_SONGPTR
Sets the time format to song-pointer units.

LPMCCSEQ_SET _PARMS IpSet
Specifies a far pointer to the MCLSEQ_SET_PARMS data structure.

Videodisc Extensions
The following additional command options are used with the "videodisc" device type:

DWORD dwFlags

The following additional flags apply to videodisc devices:

MCCSET_TIME_FORMAT
Specifies a time format parameter is included in the dwTimeFormat field of
the data structure identified by lpSet. The following constants are defined for
the time format:

MCCFORMAT_CHAPTERS
Changes the time format to chapters.

MCCFORMAT_FRAMES
Changes the time format to frames.

MCCFORMAT_HMS
Changes the time format to hours, minutes, and seconds.

MCCFORMAT_MlLLISECONDS
Changes the time format to milliseconds for both input and output.

MCC VD_FORMAT_TRACK
Changes the time format to tracks. MCl uses continuous track numbers.

LPMCCSET_PARMS lpSet
Specifies a far pointer to the MCL VD_SET_PARMS structure. (Devices with
additional parameters might replace this data structure with a device-specific
data structure.)

Return Value

MCC WA VE_SET_FORMATTAG

Sets the format type used for playing, recording, and saving to the
wFormatTag field of the data structure identified by IpSet. Specifying
WAVE_FORMAT _PCM changes the format to PCM.

MCC WA VE_SET_SAMPLESPERSEC
Sets the samples per second used for playing, recording, and saving to the
nSamplesPerSec field of the data structure identified by IpSet.

MCCSET_TIME_FORMAT

Specifies a time format parameter is included in the dwTimeFormat field of
the data structure identified by IpSet. The following constants are defined for
the time format:

MCCFORMAT_BYTES
Within a PCM data format, changes the time field description to bytes for
input or output.

MCCFORMAT_MILLISECONDS
Changes the time format to milliseconds for input or output.

MCCFORMAT_SAMPLES
Changes the time format to samples for input or output.

LPMCC WA VE_SET]ARMS IpSet

Specifies a far pointer to the MeL WA VE_SET_PARMS data structure. This
parameter replaces the standard default parameter data structure identified by
IpDefault.

Returns zero if successful. Otherwise, it returns an MCI error code.

Parameters

Mel_STATUS 5-43

DWORD dwFlags

The following standard and command-specific flags apply to all devices:

MCCNOTIFY
Specifies that MCI should post the M~MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by IpStatus.

MCCWAIT
Specifies that the status operation should finish before MCI returns control to
the application.

MCCSTATUS_ITEM
Specifies that the dwltem field of the data structure identified by IpStatus
contains a constant specifying which status item to obtain. The following
constants define which status item to return in the dwReturn field of the data
structure:

MCCSTATUS_CURRENT_TRACK
The dwReturn field is set to the current track number. MCI uses
continuous track numbers.

MCCSTATUS_LENGTH
The dwReturn field is set to the total media length.

MCCSTATUS_MODE
The dwReturn field is set to the current mode of the device. The modes
include the following:

• MCCMODE_NOT_READY

• MCCMODE_PAUSE

• MCCMODE_PLAY

• MCCMODE_STOP

• MCCMODE_OPEN

• MCCMODE_RECORD

• MCCMODE_SEEK

MCCSTATUS_NUMBER_OF _TRACKS
The dwReturn field is set to the total number of playable tracks.

MCCSTATUS_POSITION
The dwReturn field is set to the current position.

MCLSTATUS 5-45

Animation Extensions
The following additional command options are used with the "animation" device type:

DWORD dwFlags
The following extensions apply to the "animation" device type:

MCCST ATUS_ITEM
Specifies that the dwltem field of the data structure identified by lpStatus
contains a constant specifying which status item to obtain. The following
additional status constants are defined for animation devices and indicate which
item to return in the dwReturn field of the data structure:

MCCANIM_STATUS_FORW ARD
The dwReturn field is set to TRUE if playing forward; otherwise, it is set
to FALSE.

MCCANIM_ST ATUS_HP AL
The dwReturn field is set to the handle of the movie palette.

MCCANIM_STATUS_HWND
The dwReturn field is set to the handle of the playback window.

MCCANIM_STATUS_SPEED
The dwReturn field is set to the animation speed.

MCCANIM_ST ATUS_STRETCH
The dwReturn field is set to TRUE if stretching is enabled; otherwise, it is
set to FALSE.

MCCSTATUS_MEDIA]RESENT
The dwReturn field is set to TRUE if the media is inserted in the device;
otherwise, it is set to FALSE.

LPMCCST ATUS_P ARMS lpStatus
Specifies a far pointer to the MCLSTATUS_PARMS data structure.

Mel_STATUS 5-47

MCLSEQ_ST ATUS_MASTER
The dwReturn field is set to the synchronization type used for master
operation.

MCLSEQ_ST ATUS_ OFFSET
The dwReturn field is set to the current SMPTE offset of a sequence.

MCLSEQ_STATUS]ORT
The dwReturn field is set to the MIDI device ID for the current port used
by the sequence.

MCLSEQ_STATUS_SLA VE
The dwReturn field is set to the synchronization type used for slave
operation.

MCLSEQ_ST ATUS_ TEMPO
The dwReturn field is set to the current tempo of a MIDI sequence in
beats-per-minute for PPQN files, or frames-per-second for SMPTE files.

MCLSTATUS_MEDIA]RESENT
The dwReturn field is set to TRUE if the media for the device is present;
otherwise, it is set to FALSE.

LPMCLST ATUS] ARMS IpStatus
Specifies a far pointer to the MCLSTATUS_PARMS data structure. This parameter
replaces the standard default parameter data structure.

MCLSTATUS 5-49

MCC VD_STATUS_SIDE
The dwReturn field is set to 1 or 2 to indicate which side of the
disc is loaded. Not all videodisc devices support this flag.

MCC VD_STATUS_SPEED
The dwReturn field is set to the play speed in frames per second.

MCIPIONR returns MCIERR_UNSUPPORTED _FUNCTION.

LPMCCSTATUS_P ARMS IpStatus

Specifies a far pointer to the MCLSTATUS_PARMS data structure. This parameter
replaces the standard default parameter data structure.

Waveform Audio Extensions
The following additional command options are used with the "waveaudio" device type:

DWORD dwFlags

The following additional flags apply to waveform audio devices:

MCCSTATUS_ITEM
Specifies that the dwItem field of the data structure identified by IpStatus
contains a constant specifying which status item to obtain. The following
additional status constants are defined for waveform audio devices and indicate
which item to return in the dwReturn field of the data structure:

MCCSTATUS_MEDIA_PRESENT
The dwReturn field is set to TRUE if the media is inserted in the device;
otherwise, it is set to FALSE.

MCC WAVE_INPUT
The dwReturn field is set to the wave input device used for recording. If
no device is in use and no device has been explicitly set, then the error
return is MCC W A VE_INPUTUNSPECIFIED.

MCC WAVE_OUTPUT
The dwReturn field is set to the wave output device used for playing. If no
device is in use and no device has been explicitly set, then the error return
is MCI_ WA VE_OUTPUTUNSPECIFIED.

MCC WA VE_STATUS_AVGBYTESPERSEC
The dwReturn field is set to the current bytes per second used for playing,
recording, and saving.

MCC WAVE_STATUS_BITSPERSAMPLE
The dwReturn field is set to the current bits per sample used for playing,
recording, and saving PCM formatted data.

Return Value

Mel STEP

Parameters

MCI_ STEP 5-51

Video Overlay Extensions
The following additional command options are used with the "overlay" device type:

DWORD dwFlags
The following additional flags apply to video overlay devices:

MCeOVLY_STATUS_HWND
The dwReturn field is set to the handle of the window associated with the
video overlay device.

MCeOVL Y _STATUS_STRETCH
The dwReturn field is set to TRUE if stretching is enabled; otherwise, it is
set to FALSE.

MCeSTATUS_ITEM
Specifies that the dwltem field of the data structure identified by IpStatus
contains a constant specifying which status item to obtain. The following
additional status constants are defined for video overlay devices and indicate
which item to return in the dwReturn field of the data structure:

MCeST ATUS_MEDIA_PRESENT
The dwReturn field is set to TRUE if the media is inserted in the device;
otherwise, it is set to FALSE.

LPMCeSTATUS]ARMS IpStatus
Specifies a far pointer to the MCLSTATUS_PARMS data structure.

Returns zero if successful. Otherwise, it returns an MCI error code.

This MCI command message steps the player one or more frames.

DWORD dwFlags
The following flags apply to all devices supporting MCLSTEP:

MCeNOTIFY
Specifies that MCI should post the M~MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lpStep.

MCeWAIT
Specifies that the step operation should finish before MCI returns control
to the application.

Mel STOP

Parameters

Return Value

Comments

See Also

MCI_ STOP 5-53

This MCI command message stops all play and record sequences, unloads all play buffers,
and ceases display of video images. Support of this message by a device is optional. The
parameters and flags for this message vary according to the selected device.

DWORD dwFlags

The following flags apply to all devices supporting MCLSTOP:

MCLNOTIFY
Specifies that MCI should post the M~MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by IpStop.

MCLWAIT
Specifies that the device should stop before MCI returns control to the
application.

LPMCLGENERIC]ARMS IpStop

Specifies a far pointer to the MCLGENERIC_PARMS data structure. (Devices
with extended command sets might replace this data structure with a device-specific
data structure.)

Returns zero if successful. Otherwise, it returns an MCI error code.

The difference between MCLSTOP and MCLPAUSE depends upon the device. If
possible, MCLPAUSE suspends device operation but leaves the device ready to
resume play immediately.

MCLPAUSE, MCLPLAY, MCLRECORD, MCLRESUME

MCL UNFREEZE (VIDEO OVERLAY) 5-55

MCI_ UNFREEZE (VIDEO OVERLAY)

Parameters

Return Value

Comments

See Also

This MCI command message restores motion to an area of the video buffer frozen with
MCLFREEZE. This command is part of the video overlay command set. The parameters
and flags for this message vary according to the selected device.

DWORD dwFlags

The following flags apply to all devices supporting MCL UNFREEZE:

MCeNOTIFY
Specifies that MCI should post the M~MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by IpFreeze.

MCeWAIT
Specifies that the unfreeze operation should finish before MCI returns control
to the application.

MCeOVLY_RECT
Specifies that the rc field of the data structure identified by IpFreeze contains a
valid display rectangle. This is a required parameter.

LPMCe OVL Y _RECT] ARMS IpFreeze

Specifies a far pointer to a MCLOVLY_RECT_PARMS data structure. (Devices
with additional parameters might replace this data structure with a device-specific
data structure.)

Returns zero if successful. Otherwise, it returns an MCI error code.

This command applies to video overlay devices.

MCLFREEZE

MCI_ WHERE (ANIMATIONNIDEO OVERLAY) 5-57

MeL WHERE (ANIMATIONNIDEO OVERLAY)

Parameters

This MCI command message obtains the clipping rectangle for the video device. The top
and left fields of the returned rectangle contain the origin of the clipping rectangle, and the
right and bottom fields contain the width and height of the clipping rectangle. The
parameters and flags for this message vary according to the selected device.

DWORD dwFlags
The following flags apply to all devices supporting MCL WHERE:

MCCNOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by IpQuery.

MCCWAIT
Specifies that the operation should complete before MCI returns control to the
application.

DWORD IpQuery

Specifies a far pointer to a device-specific data structure. For a description of this
parameter, see the IpQuery description included with the device extensions.

Animation Extensions
The following additional command options are used with the "animation" device type:

DWORD dwFlags
The following additional flags apply to animation devices supporting MCL WHERE:

MCCANIM_ WHERE_DESTINATION
Obtains the destination display rectangle. The rectangle coordinates are placed
in the rc field of the data structure identified by IpQuery.

MCCANIM_ WHERE_SOURCE
Obtains the animation source rectangle. The rectangle coordinates are placed in
the rc field of the data structure identified by IpQuery.

LPMCCANIM_RECT] ARMS IpQuery

Specifies a far pointer to a MCLANIM_RECT_PARMS data structure.

Parameters

MCI_ WINDOW 5-59

DWORD dwFlags

The following flags apply to all devices supporting MCL WINDOW:

MCCNOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lp Window.

MCCWAIT
Specifies that the operation should finish before MCI returns control to the
application.

DWORD lp Window

Specifies a far pointer to a device specific data structure. For a description of this
parameter, see the IpWindow description included with the device extensions.

Animation Extensions
The following additional command options are used with the "animation" device type:

DWORD dwFlags

The following additional flags apply to animation devices supporting MCL WINDOW:

MCCANIM_ WINDOW _DISABLE_STRETCH
Disables stretching of the image.

MCCANIM_ WINDOW _ENABLE_STRETCH
Enables stretching of the image.

MCCANIM_ WINDOW _HWND

Indicates the handle of the window to use for the destination is included
in the hWnd field of the data structure identified by lpWindow. Set this to
MCCANIM_ WINDOW _DEFAULT to return to the default window.

MCCANIM_ WINDOW_STATE
Indicates the nCmdShow field of the MCLANI~ WINDOW _PARMS
data structure contains parameters for setting the window state. This flag is
equivalent to calling ShowWindow with the state parameter. The constants are
the same those in WINDOWS.H (such as SW _HIDE, SW _MINIMIZE, or
SW _SHOWNORMAL).

MCCANIM_ WINDOW_TEXT
Indicates the IpstrText field of the MCLANI~ WINDOW _PARMS data
structure contains a pointer to a buffer containing the caption used for the
window.

MIM CLOSE

Parameters

Return Value

See Also

MIM DATA

Parameters

Return Value

Comments

See Also

This message is sent to a MIDI input callback function when a MIDI input device is
closed. The device handle is no longer valid once this message has been sent.

DWORD dwParaml

Not used.

DWORD dwParam2
Not used.

None.

M~MIM_CLOSE

This message is sent to a MIDI input callback function when a MIDI message is received
by a MIDI input device.

DWORD dwParaml
Specifies the MIDI message that was received. The message is packed into a
DWORD with the first byte of the message in the low-order byte.

DWORD dwParam2
Specifies the time that the message was received by the input device driver. The time
stamp is specified in milliseconds, beginning at 0 when midiInStart was called.

None.

MIDI messages received from a MIDI input port have running status disabled; each
message is expanded to include the MIDI status byte.

This message is not sent when a MIDI system-exclusive message is received.

M~MIM_DATA, M~LONGDATA

MIM_ OPEN 5-63

MIM_ LONG ERROR

Parameters

Return Value

Comments

See Also

MIM_OPEN

Parameters

Return Value

See Also

This message is sent to a MIDI input callback function when an invalid MIDI
system-exclusive message is received.

DWORD dwParaml
Specifies a pointer to a MIDIHDR structure identifying the buffer containing the
invalid message.

DWORD dwParam2
Specifies the time that the data was received by the input device driver. The time
stamp is specified in milliseconds, beginning at 0 when midiInStart was called.

None.

The returned buffer might not be full. The dwBytesRecorded field of the MIDIHDR
structure specified by dwParaml will specify the number of bytes recorded into the buffer.

M~MIM_LONGERROR

This message is sent to a MIDI input callback function when a MIDI input device
is opened.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

None.

M~M~OPEN

Return Value

See Also

Parameters

Return Value

See Also

MM_JOY1 MOVE 5-65

JOY _BUTTON3CHG

Set if third joystick button has changed.

JOY _BUTTON4CHG
Set if fourth joystick button has changed.

LPARAM IParam
The low-order word contains the current x-position of the joystick. The high-order
word contains the current y-position.

None.

MM.JOYlBUTTONDOWN

This message is sent to the window that has captured joystick I when the joystick position
changes.

WPARAM wParam
Indicates which joystick buttons are pressed. It can be any combination of the
following values:

JOY _BUTTONl

Set if first joystick button is pressed.

JOY _BUTTON2
Set if second joystick button is pressed.

JOY _BUTTON3

Set if third joystick button is pressed.

JOY_BUTTON4
Set if fourth joystick button is pressed.

LP ARAM lParam
The low-order word contains the current x-position of the joystick. The high-order
word contains the current y-position.

None.

MM.JOYIZMOVE

Return Value

See Also

MM_JOY2BUTTONUP 5-67

JOy J3UTTON3CHG
Set if third joystick button has changed.

JOy _BUTTON4CHG
Set if fourth joystick button has changed.

LPARAM IParam
The low-order word contains the current x-position of the joystick. The high-order
word contains the current y-position.

None.

M~JOY2BUTTONUP

MM_JOY2BUTTONUP

Parameters

Return Value

See Also

This message is sent to the window that has captured joystick 2 when a button is released.

WPARAM wParam
Indicates which button has changed state. It can be anyone of the
following combined with any of the flags defined in MM_JOYIMOVE.

JOy _BUTTONICHG
Set if first joystick button has changed.

JOy _BUTTON2CHG
Set if second joystick button has changed.

JOy _BUTTON3CHG
Set if third joystick button has changed.

JOy _BUTTON4CHG
Set if fourth joystick button has changed.

LP ARAM IParam
The low-order word contains the current x-position of the joystick. The
high-order word contains the current y-position.

None.

M~JOY2BUTTONDOWN

Return Value

See Also

MM_MCINOTIFY 5-69

JOy _BUTTON3

Set if third joystick button is pressed.

JOy _BUTTON4

Set if fourth joystick button is pressed.

LPARAM lParam
The low-order word contains the current z-position of the joystick.

None.

M~JOY2MOVE

MM_ MCINOTIFY

Parameters

Return Value

This message is sent to a window to notify an application that an MCI device has
completed an operation. MCI devices send this message only when the MCCNOTIFY flag
is used with an MCI command message or when the notify flag is used with an MCI
command string.

WPARAM wParam
Contains one of the following flags:

MCCNOTIFY _ABORTED
Specifies that the device received a command that prevented the current
conditions for initiating the callback from being met. If a new command
interrupts the current command and it also requests notification, the device
sends only this message and not MCCNOTIFY _SUPERCEDED.

MCCNOTIFY _SUCCESSFUL
Specifies that the conditions initiating the callback have been met.

MCCNOTIFY _SUPERSEDED
Specifies that the device received another command with the MCCNOTIFY
flag set and the current conditions for initiating the callback have been
superseded.

MCCNOTIFY _FAILURE
Specifies that a device error occurred while the device was executing the
command.

LPARAM lParam
The low-order word specifies the ID of the device initiating the callback.

Returns zero if successful. Otherwise, it returns an MCI error code.

Parameters

Return Value

Comments

See Also

This message is sent to a window when a MIDI message is received by a MIDI
input device.

WPARAM wParam

Specifies a handle to the MIDI input device that received the MIDI message.

LPARAM IParam
Specifies the MIDI message that was received. The message is packed into a
DWORD with the first byte of the message in the low-order byte.

None.

MIDI messages received from a MIDI input port have running status disabled; each
message is expanded to include the MIDI status byte.

This message is not sent when a MIDI system-exclusive message is received. No time
stamp is available with this message. For time-stamped input data, you must use
the messages that are sent to low-level callback functions.

MIM_DATA, MM_MIM_LONGDATA

MM MIM_ ERROR

Parameters

Return Value

See Also

This message is sent to a window when an invalid MIDI message is received.

WPARAM wParam
Specifies a handle to the MIDI input device that received the invalid message.

LPARAM IParam

Specifies the invalid MIDI message. The message is packed into a DWORD with
the first byte of the message in the low-order byte.

None.

Parameters

Return Value

See Also

Parameters

Return Value

See Also

This message is sent to a window when a MIDI input device is opened.

WPARAM wParam

Specifies the handle to the MIDI input device that was opened.

LPARAM IParam
Not used.

None.

MI~OPEN

This message is sent to a window when a MIDI output device is closed. The device handle
is no longer valid once this message has been sent.

WPARAM wParam

Specifies the handle to the MIDI output device.

LPARAM IParam
Not used.

None.

MOM_CLOSE

MM MOM_DONE

Parameters

Return Value

See Also

This message is sent to a window when the specified system-exclusive buffer has been
played and is being returned to the application.

WPARAM wParam

Specifies a handle to the MIDI output device that played the buffer.

LP ARAM IParam
Specifies a far pointer to a MIDIHDR structure identifying the buffer.

None.

MO~DONE

Parameters

Return Value

See Also

This message is sent to a window when a waveform input device is opened.

WPARAM wParam
Specifies a handle to the waveform input device that was opened.

LPARAM IParam
Not used.

None.

WI~OPEN

MM_WOM CLOSE

Parameters

Return Value

See Also

This message is sent to a window when a waveform output device is closed. The device
handle is no longer valid once this message has been sent.

WPARAM wParam
Specifies a handle to the waveform output device that was closed.

LP ARAM IParam
Not used.

None.

WO~CLOSE

MM_WOM DONE

Parameters

Return Value

See Also

This message is sent to a window when the specified output buffer is being returned to the
application. Buffers are returned to the application when they have been played, or as the
result of a call to waveOutReset.

WPARAM wParam
Specifies a handle to the waveform output device that played the buffer.

LP ARAM IParam
Specifies a far pointer to a WA VEHDR structure identifying the buffer.

None.

WO~DONE

Return Value

Comments

See Also

MMIOM_READ 5-77

The return value is zero if the operation is successful. Otherwise, the return value specifies
an error value. Possible error returns are:

MMIOM_CANNOTOPEN
Specified file could not be opened.

MMIOM_OUTOFMEMORY
Not enough memory to perform operation.

The dwFlags field of the MMIOINFO structure contains option flags passed to the
mmioOpen function. The IDiskOffset field of the MMIOINFO structure is initialized to
zero. If this value is incorrect, then the I/O procedure must correct it.

If the caller passed a MMIOINFO structure to mmioOpen, the return value will be
returned in the wErrorRet field.

mmioOpen, MMIOM_ CLOSE

MMIOM_READ

Parameters

Return Value

Comments

See Also

This message is sent to an I/O procedure by mmioRead to request that a specified number
of bytes be read from an open file.

LPARAM IParami
Specifies a huge pointer to the buffer to be filled with data read from the file.

LPARAM IParam2

Specifies the number of bytes to read from the file.

The return value is the number of bytes actually read from the file. If no more bytes
can be read, the return value is zero. If there is an error, the return value is -1.

The I/O procedure is responsible for updating the IDiskOffset field of the MMIOINFO
structure to reflect the new file position after the read operation.

mmioRead, MMIO~ WRITE, MMIO~ WRITEFLUSH

MMIOM_ WRITEFLUSH 5-79

MMIOM_ WRITE

Parameters

Return Value

Comments

See Also

This message is sent to an I/O procedure by mmioWrite to request that data be written to
an open file.

LPARAM lParami
Specifies a huge pointer to a buffer containing the data to write to the file.

LPARAM lParam2
Specifies the number of bytes to write to the file.

The return value is the number of bytes actually written to the file. If there is an error, the
return value is -l.

The I/O procedure is responsible for updating the IDiskOffset field of the MMIOINFO
structure to reflect the new file position after the write operation.

mmioWrite, MMIO~READ, MMIO~ WRITEFLUSH

MMIOM_ WRITEFLUSH

Parameters

Return Value

Comments

See Also

This message is sent to an I/O procedure by mmioWrite to request that data be written to
an open file and then that any internal buffers used by the I/O procedure be flushed to disk.

LPARAM lParami
Specifies a huge pointer to a buffer containing the data to write to the file.

LP ARAM lParam2
Specifies the number of bytes to write to the file.

The return value is the number of bytes actually written to the file. If there is an error, the
return value is -1.

The I/O procedure is responsible for updating the IDiskOffset field of the MMIOINFO
structure to reflect the new file position after the write operation.

Note that this message is equivalent to the MMIO~ WRITE message except that it
additionally requests that the I/O procedure flush its internal buffers, if any. Unless an I/O
procedure performs internal buffering, this message can be handled exactly like the
MMIO~ WRITE message.

mmioWrite, mmioFlush, MMIO~READ, MMIO~ WRITE

WIM CLOSE

Parameters

Return Value

See Also

WIM DATA

Parameters

Return Value

Comments

See Also

This message is sent to a waveform input callback function when a waveform input device
is closed. The device handle is no longer valid once this message has been sent.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

None.

M~ WIM_CLOSE

This message is sent to a waveform input callback function when waveform data is present
in the input buffer and the buffer is being returned to the application. The message can be
sent either when the buffer is full, or after the waveInReset function is called.

DWORD dwParaml
Specifies a far pointer to a W A VEHDR structure identifying the buffer containing the
waveform data.

DWORD dwParam2
Not used.

None.

The returned buffer might not be full. Use the dwBytesRecorded field of the
WA VEHDR structure specified by dwParaml to determine the number of bytes
recorded into the returned buffer.

WOM_OPEN

Parameters

Return Value

See Also

WOM_ OPEN 5-83

This message is sent to a waveform output callback function when a waveform output
device is opened.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

None.

Chapter 6

Data Types and Structures

This chapter describes the multimedia data types and data structures for Windows. For
information about standard Windows data types, see the Microsoft Windows
Programmer's Reference, Volume 3: Messages, Structures, Macros. This chapter contains
three parts:

• An alphabetical list of all multimedia data types.

• An overview of all data structures, organized by category. This overview includes brief
descriptions of all data structures.

• Detailed descriptions of all data structures, organized alphabetically. These
descriptions list the structure definition and the type and contents of each field in the
structure.

You can also refer to the MMSYSTEM.H header file to see the actual data structure
definitions.

Data Structure Overview 6-3

Data Structure Overview
The multimedia data structures are grouped as follows:

• Auxiliary audio data structure

• Joystick data structures

• Media Control Interface (MCI) data structures

• MIDI audio data structures

• Multimedia file 1/0 data structures

• Timer data structures

• Waveform audio data structures

Each data structure has an associated long pointer data type with prefix LP.

Auxiliary Audio Data Structure
The following data structure is used with auxiliary audio devices:

AUXCAPS
A data structure that describes the capabilities of an auxiliary audio device.

Joystick Data Structures
The following data structures are used with joystick functions:

JOYCAPS
A data structure that defines joystick capabilities.

JOYINFO
A data structure for joystick information.

MCLOPEN_PARMS
MCLANI~OPEN_PARMS (animation device)
MCLOVLY_OPEN_PARMS (video overlay device)
MCL WAVE_OPEN_PARMS (waveform audio device)

Data Structure Overview 6-5

Data structures that specify parameters for the MCLOPEN command.

MCLSTATUS_PARMS
A data structure that specifies parameters for the MCLSTATUS command.

Data Structures for MCI Basic Commands
The following data structures are used to specify parameter blocks for basic command
messages (messages that, if recognized by an MCI device, have a standard set of
basic options):

MCLGENERIC_PARMS
A data structure that specifies parameters for the MCLPAUSE, MCLRESUME,
and MCLSTOP commands.

MCLLOAD_PARMS
MCLOVLY_LOAD_PARMS (video overlay device)

A data structure that specifies parameters for the MCLLOAD command.

MCLPLAY_PARMS
MCLANI~PLAY_PARMS (animation device)
MCL VD_PLAY_PARMS (videodisc device)

Data structures that specify parameters for the MCLPLAY command.

MCLRECORD_PARMS
A data structure that specifies parameters for the MCLRECORD command.

MCLSAVE_PARMS
MCL OVLY _SA VE_PARMS (video overlay device)

A data structure that specifies parameters for the MCLSAVE command.

MCLSEEILPARMS
A data structure that specifies parameters for the MCLSEEK command.

MCLSET_PARMS
MCLSEQ_SET_PARMS (sequencer device)
MCL WAVE_SET_PARMS (waveform audio device)

Data structures that specify parameters for the MCLSET command.

Data Structure Overview 6-7

MIDI Audio Data Structures
The following data structures are used with MIDI functions:

MIDIHDR
A data structure representing a header for MIDI input and output data blocks.

MIDIINCAPS
A data structure that describes the capabilities of a MIDI input device.

MIDIOUTCAPS
A data structure that describes the capabilities of a MIDI output device.

Multimedia File I/O Data Structures
The following data structures are used with the multimedia file 110 functions:

MMIOINFO
A data structure for information about an open file.

MMCKINFO
A data structure for information about a RIFF chunk in an open file.

Timer Data Structures
The following data structures are used with timer functions:

MMTIME
A data structure that represents time in one of several different formats.

TIMECAPS
A data structure that defines timer capabilities.

AUXCAPS 6-9

Data Structures Reference

AUXCAPS

Fields

This section lists the multimedia data structures alphabetically. Each structure description
shows the definition of the structure type and a description of each structure field.

The AUXCAPS structure describes the capabilities of an auxiliary output device.

typedef struct auxcaps_tag
UINT wMid;
UINT wPid;
VERSION vDriverVersion;
char szPname[MAXPNAMELEN];
UINT wTechnology;
DWORD dwSupport;

} AUXCAPS;

The AUXCAPS structure has the following fields:

wMid
Specifies a manufacturer ID for the device driver for the auxiliary audio device.
Manufacturer IDs are listed in Appendix B, "Manufacturer ID and Product ID Lists."

wPid
Specifies a product ID for the auxiliary audio device. Product IDs are listed in
Appendix B, "Manufacturer ID and Product ID Lists."

vDriverVersion
Specifies the version number of the device driver for the auxiliary audio device. The
high-order byte is the major version number, and the low-order byte is the minor
version number.

szPname[MAXPNAMELEN]
Specifies the product name in a NULL-terminated string.

wTechnology
Describes the type of the auxiliary audio output according to one of the following
flags:

AUXCAPS_CDAUDIO
Audio output from an internal CD-ROM drive.

AUXCAPS_AUXIN
Audio output from auxiliary input jacks.

See Also

JOYINFO

Fields

JOYINFO 6-11

wXmin
Specifies the minimum x-position value of the joystick.

wXmax
Specifies the maximum x-position value of the joystick.

wYmin
Specifies the minimum y-position value of the joystick.

wYmax
Specifies the maximum y-position value of the joystick.

wZmin
Specifies the minimum z-position value of the joystick.

wZmax
Specifies the maximum z-position value of the joystick.

wNumButtons
Specifies the number of buttons on the joystick.

wPeriodMin
Specifies the smallest polling interval supported when captured by joySetCapture.

wPeriodMax
Specifies the largest polling interval supported when captured by joySetCapture.

joyGetDevCaps

Structure for storing joystick position and button state information.

typedef struct joyinfo_tag
UINT wXpos;
UINT wYpos;
UINT wZpos;
UINT wButtons;

} JOYINFO;

The JOYINFO structure has the following fields:

wXpos
Specifies the current x-position of joystick.

wYpos
Specifies the current y-position of joystick.

Fields

See Also

The MCLANIM_OPEN_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

wDeviceID
Specifies the device ID returned to user.

wReservedO
Reserved field.

IpstrDeviceType
Specifies the name or constant ID of the device type.

IpstrElementName
Specifies the device element name (usually a path).

IpstrAlias
Specifies an optional device alias.

dwStyle
Specifies the window style.

hWndParent
Specifies the handle to use as the window parent.

wReservedl
Reserved.

MCLOPEN

The MCLANIM_PLAY_PARMS structure contains parameters for the MCLPLAY
message for animation devices. When assigning data to the fields in this data structure,
set the corresponding MCI flags in the dwFlags parameter of mciSendCommand to
validate the fields. You can use the MCLPLAY_PARMS data structure in place of
MCLANIM_PLAY _PARMS if you are not using the extended data fields.

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;
DWORD dwSpeed;

} MCI_ANIM_PLAY_PARMS;

Fields

See Also

typedef struct {
DWDRD dwCallback;
DWORD dwFrames;

MC LAN I M_ STEP _ PARMS;

The MCLANI~STEP _PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

dwFrames
Specifies the number of frames to step.

MCLSTEP

Mel ANIM UPDATE_PARMS

Fields

See Also

The MCLANI~UPDATE_PARMS structure contains parameters for the
MCL UPDATE message for animation devices. When assigning data to the fields
in this data structure, set the corresponding MCI flags in the dwFlags parameter of
mciSendCommand to validate the fields.

typedef struct {
DWORD dwCallback;
RECT rc;
HDC hOC;

} MCI_ANIM_UPDATE_PARMS;

The MCLANIM_ UPDATE_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

rc
Specifies a window rectangle.

hDC
Specifies a handle to the device context.

MCLUPDATE

MCI_ BREAK_ PARMS

Fields

See Also

The MCLBREAILPARMS structure contains parameters for the MCLBREAK
message. When assigning data to the fields in this data structure, set the corresponding
MCI flags in the dwFlags parameter of mciSendCommand to validate the fields.

typedef struct {
DWORD dwCallback;
int nVirtKey;
UINT wReserved0;
HWND hwndBreak;
UINT wReservedl;

} MCLBREAK_PARMS;

The MCLBREAILPARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

nVirtKey
Specifies the virtual key code used for the break key.

wReservedO
Reserved.

hwndBreak
Specifies a window handle of the window that must be the current window for
break detection.

wReservedl
Reserved.

MCLBREAK

MCI_INFO_ PARMS

Fields

See Also

The MCLINFO_PARMS structure contains parameters for the MCLINFO message.
When assigning data to the fields in this data structure, set the corresponding MCI flags in
the dwFlags parameter of mciSendCommand to validate the fields.

typedef struct {
DWORD dwCallback;
LPSTR lpstrReturn;
DWORD dwRetSize;

} MCLINFO_PARMS;

The MCLINFO_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

IpstrReturn
Specifies a long pointer to a user-supplied buffer for the return string.

dwRetSize
Specifies the size in bytes of the buffer for the return string.

MCLINFO

MCI LOAD_ PARMS

Fields

See Also

The MCLLOAD_PARMS structure contains the information for MCLLOAD message.
When assigning data to the fields in this data structure, set the corresponding MCI flags in
the dwFlags parameter of mciSendCommand to validate the fields.

typedef struct {
DWORD dwCallback;
LPCSTR lpfilename;

} MC L LOAD_ PARMS;

The MCLLOAD_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

IpiIlename
Specifies a far pointer to a null-terminated string containing the filename of the device
element to load.

MCLLOAD

MeL OVL Y _ OPEN_ PARMS 6-21

MCI_ OVL Y _ LOAD_ PARMS

Fields

See Also

The MCLOVLY_LOAD_PARMS structure contains parameters for the MCCLOAD
message for video overlay devices. When assigning data to the fields in this data structure,
set the corresponding MCI flags in the dwFlags parameter of mciSendCommand to
validate the fields.

typedef struct {
DWDRD dwCallback;
LPCSTR lpfilename;
RECT rc;

} MCI_OVLY_LOAD_PARMS;

The MCLOVLY_LOAD_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

Ipfilename
Specifies a far pointer to the buffer containing a null-terminated string.

rc
Specifies a rectangle.

MCLLOAD

MCI_ OVL Y _ OPEN_ PARMS
The MCL OVLY _ OPEN_PARMS structure contains infonnation for MCL OPEN
message for video overlay devices. When assigning data to the fields in this data structure,
set the corresponding MCI flags in the dwFlags parameter of mciSendCommand to
validate the fields. You can use the MCLOPEN_PARMS data structure in place of
MCL OVLY _ OPEN_PARMS if you are not using the extended data fields.

typedef struct {
DWORD dwCallback;
UINT wDeviceID;
UINT wReserved0;
LPCSTR lpstrDeviceType;
LPCSTR lpstrElementName;
LPCSTR lpstrAlias;
DWORD dwStyle;
DWORD hWndParent;
UINT wReservedl;

} MCI_OVLY_OPEN_PARMS;

MCI_ OVL Y _ SAVE_ PARMS 6-23

Fields The MCLOVLY_RECT_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

rc
Specifies a rectangle.

See Also MCLPUT, MCL WHERE

MCI_ OVL Y _ SAVE_ PARMS

Fields

See Also

The MCLOVLY_SAVE_PARMS structure contains parameters for the MCLSAVE
message for video overlay devices. When assigning data to the fields in this data structure,
set the corresponding MCI flags in the dwFlags parameter of mciSendCommand to
validate the fields.

typedef struct {
DWORD dwCallback;
LPCSTR lpfilename;
RECT rc;

} MCI_OVLY_SAVE_PARMS;

The MCLOVLY_SAVE_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

IpfIlename
Specifies a far pointer to the buffer containing a null-terminated string.

rc
Specifies a rectangle.

MCLSAVE

Fields

See Also

The M CL PLAY _ P ARMS structure contains parameters for the M CL PLAY message.
When assigning data to the fields in this data structure, set the corresponding MCr flags in
the dwFlags parameter of mciSendCommand to validate the fields.

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;

MCLPLAY_PARMS;

The MCLPLAY_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

dwFrom
Specifies the position to play from.

dwTo
Specifies the position to play to.

MCLPLAY

MCI RECORD PARMS
The MCLRECORD_PARMS structure contains parameters for the MCLRECORD
message. When assigning data to the fields in this data structure, set the corresponding
MCr flags in the dwFlags parameter of mciSendCommand to validate the fields.

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;

MCI_ RECORD_ PARMS;

MCI SEEK_ PARMS

Fields

See Also

The M CL SEE~ P ARMS structure contains parameters for the MCL SEEK message.
When assigning data to the fields in this data structure, set the corresponding MCI flags in
the dwFlags parameter of mciSendCommand to validate the fields.

typedef struct {
DWORD dwCallback;
DWORD dwTo;

MCLSEEK_PARMS;

The MCLSEE~PARMS structure has the following fields:

dwCallback

The low-order word specifies a window handle used for the MCLNOTIFY flag.

dwTo

Specifies the position to seek to.

MCLSEEK

MCI_ SEQ_ SET _ PARMS
The MCLSEQ_SET_PARMS structure contains parameters for the MCLSET message
for MIDI sequencer devices. When assigning data to the fields in this data structure, set the
corresponding MCI flags in the dwFlags parameter ofmciSendCommand to validate the fields.

typedef struct {
DWORD dwCallback;
DWORD dwTimeFormat;
DWORD dwAudio;
DWORD dwTempo;
DWORD dwPort;
DWORD dwSlave;
DWORD dwMaster;
DWORD dwOffset;

} MCLSEQ_SET_PARMS;

Fields The MCLSET_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

dwTimeFormat
Specifies the time format used by the device.

dwAudio
Specifies the audio output channel.

See Also MCLSET

MeL STATUS_ PARMS

Fields

See Also

The MCLSTATUS_PARMS structure contains parameters for the MCLSTATUS
message. When assigning data to the fields in this data structure, set the corresponding
MCI flags in the dwFlags parameter of mciSendCommand to validate the fields.

typedef struct {
DWORD dwCallback;
DWORD dwReturn;
DWORD dwItem;
DWORD dwTrack;

} MCI_STATUS_PARMS;

The MCLSTATUS_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

dwReturn
Contains the return information on exit.

dwItem
Identifies the capability being queried.

dwTrack
Specifies the length or number of tracks.

MCLSTATUS

MCI_ VD _ ESCAPE_ PARMS

Fields

See Also

The MCL VD_ESCAPE_PARMS structure contains parameters for the MCLESCAPE
message for videodisc devices. When assigning data to the fields in this data structure, set
the corresponding MCI flags in the dwFlags parameter of mciSendCommand to validate
the fields.

typedef struct {
DWDRD dwCallback;
LPCSTR lpstrCommand;

} MCI_VD_ESCAPE_PARMS;

The MCL VD_ESCAPE_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCCNOTIFY flag.

IpstrCommand
Specifies a far pointer to a null-terminated buffer containing the command to send to
the device.

MCLESCAPE

The MCL VD_ PLAY _PARMS structure contains parameters for the MCLPLA Y
message for videodiscs. When assigning data to the fields in this data structure, set the
corresponding MCI flags in the dwFlags parameter of mciSendCommand to validate
the fields. You can use the MCL PLAY _PARMS data structure in place of
MCL VD_PLAY _PARMS if you are not using the extended data fields.

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;
DWORD dwSpeed;

} MCI_VD_PLAY_PARMS;

Fields

See Also

MCI_ WAVE_ OPEN_ PARMS 6-33

The MCL WA VE_DELETE_PARMS structure contains parameters for the
MCLDELETE message for waveform audio devices. When assigning data to the
fields in this data structure, set the corresponding MCI flags in the dwFlags parameter
of mciSendCommand to validate the fields.

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;

MCI_WAVE_DELETE_PARMS;

The MCL WAVE_DELETE_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCLNOTIFY flag.

dwFrom
Specifies the starting position for the delete.

dwTo
Specifies the end position for the delete.

MCLDELETE

The MCL W A VE_ OPEN_PARMS structure contains information for MCL OPEN
message for waveform audio devices. When assigning data to the fields in this data
structure, set the corresponding MCI flags in the dwFlags parameter of
mciSendCommand to validate the fields. You can use the MCLOPEN_PARMS data
structure in place of MCL W A VE_ OPEN_ PARMS if you are not using the extended
data fields.

typedef struct {
DWORD dwCallback;
UINT wDeviceID;
UINT wReserved0;
LPCSTR lpstrDeviceType;
LPCSTR lpstrElementName;
LPCSTR lpstrAlias;
DWORD dwBufferSeconds;

MCI_WAVE_OPEN_PARMS;

Fields

UINT wReserved4;
UINT wBitsPerSample;
UINT wReserved5;

Me L WAVE_ SET_ PARMS;

The MCL WA VE_SET_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCLNOTIFY flag.

dwTimeFormat
Specifies the time format used by the device.

dwAudio
Specifies the channel used for audio output.

wlnput
Specifies the channel used for audio input.

wReservedO
Reserved.

wOutput
Specifies the channel used for output.

wReservedl
Reserved.

wFormatTag
Specifies the interpretation of the waveform data.

wReserved2
Reserved.

nChannels
Specifies mono (1) or stereo (2).

wReserved3
Reserved.

nSamplesPerSec
Specifies the samples per second used for the waveform.

nA vgBytesPerSec
Specifies the sample rate in bytes per second.

MIDIINCAPS

Fields

MIDIINGAPS 6-37

dwFlags
Specifies flags giving information about the data buffer.

MHDR_DONE
Set by the device driver to indicate that it is finished with the data buffer and is
returning it to the application.

MHDR]REPARED

IpNext

Set by Windows to indicate that the data buffer has been prepared with
midiInPrepareHeader or midiOutPrepareHeader.

Reserved and should not be used.

reserved
Reserved and should not be used.

The MID lIN CAPS structure describes the capabilities of a MIDI input device.

typedef struct midiincaps_tag {
UINT wMid;
UINT wPid;
VERSION vDriverVersion;
char szPname[MAXPNAMELEN];

} MIDIINCAPS;

The MIDIINCAPS structure has the following fields:

wMid
Specifies a manufacturer ID for the device driver for the MIDI input device.
Manufacturer IDs are defined in Appendix B, "Manufacturer ID and Product ID
Lists."

wPid
Specifies a product ID for the MIDI input device. Product IDs are defined in
Appendix B, "Manufacturer ID and Product ID Lists."

MIDIOUTCAPS 6-39

wTechnology
Describes the type of the MIDI output device according to one of the following flags:

MOD_MIDIPORT
Indicates the device is a MIDI hardware port.

MOD_SQSYNTH
Indicates the device is a square wave synthesizer.

MOD_FMSYNTH
Indicates the device is an FM synthesizer.

MOD_MAPPER
Indicates the device is the Microsoft MIDI Mapper.

wVoices
Specifies the number of voices supported by an internal synthesizer device. If the
device is a port, the field is not meaningful and will be set to O.

wNotes
Specifies the maximum number of simultaneous notes that may be played by an
internal synthesizer device. If the device is a port, the field is not meaningful and will
be set to o.

wChannelMask
Specifies the channels that an internal synthesizer device responds to, where the least
significant bit refers to channel 0 and the most significant bit to channel 15. Port
devices transmit on all channels and so will set this field to OxFFFF.

dwSupport
Specifies optional functionality supported by the device.

MIDICAPS_ VOLUME
Supports volume control.

MIDICAPS_LRVOLUME
Supports separate left and right volume control.

MIDICAPS_CACHE
Supports patch caching.

MMIOINFO

Fields

MMIOINFO 6-41

This structure contains the current state of a file opened with mmioOpen.

typedef struct _MMIOINFO
DWORD dwFlags;
FOURCC fccIOProc;
LPMMIOPROC pIOProc;
UINT wErrorRet;
HTASK htask; LONG cchBuffer;
HPSTR pchBuffer;
HPSTR pchNext;
HPSTR pchEndRead;
HPSTR pchEndWrite;
LONG 1 BufOffset;
LONG lDiskOffset;
DWORD adwlnfo[4];
DWORD dwReservedl;
DWORD dwReserved2;
HMMIO hmmio;

} MMIOINFO;

The MMIOINFO structure has the following fields:

dwFlags
Specifies options indicating how a file was opened:

MMIO_READ
The file was opened only for reading.

MMIO_WRITE

The file was opened only for writing.

MMIO_READWRITE
The file was opened for both reading and writing.

MMIO_COMPAT
The file was opened with compatibility mode, allowing any process on a given
computer to open the file any number of times.

MMIO_EXCLUSIVE
The file was opened with exclusive mode, denying other processes both read
and write access to the file.

MMIO_DENYWRITE
Other processes are denied write access to the file.

See Also

MMIOINFO 6-43

pchNext
Specifies a huge pointer to the next location in the I/O buffer to be read or written. If
no more bytes can be read without calling mmioAdvance or mmioRead, then this
field points to pchEndRead. If no more bytes can be written without calling
mmioAdvance or mmioWrite, then this field points to pchEndWrite.

pchEndRead
Specifies a pointer to the location that is one byte past the last location in the buffer
that can be read.

pchEndWrite
Specifies a pointer to the location that is one byte past the last location in the buffer
that can be written.

lBufOtTset
Reserved for internal use by MMIO functions.

IDiskOtTset
Specifies the current file position. The current file position is an offset in bytes from
the beginning of the file. I/O procedures are responsible for maintaining this field.

adwlnfo[4]
Contained state information maintained by the I/O procedure. 110 procedures can also
use these fields to transfer information from the caller to the I/O procedure when the
caller opens a file.

dwReservedl
Reserved for internal use by MMIO functions.

dwReserved2
Reserved for internal use by MMIO functions.

hmmio
Specifies the MMIO handle to the open file. 110 procedures can use this handle when
calling other MMIO functions.

mmioGetInfo

u

MMTIME 6-45

The contents of the union. The following fields are contained in union u:

ms
Milliseconds. Used when wType is TIME_MS.

sample
Samples. Used when wType is TIME_SAMPLES.

cb
Byte count. Used when wType is TIME_BYTES.

smpte

midi

SMPTE time. Used when wType is TIME_SMPTE. The following fields are
contained in structure smpte:

hour
Hours.

min
Minutes.

sec
Seconds.

frame
Frames.

fps
Frames per second (24, 25, 29 [30 drop] or 30).

dummy
Dummy byte for alignment.

MIDI time. Used when wType is TIME_MIDI. The following fields are
contained in structure midi:

songptrpos
Song pointer position.

WAVEFORMAT 6-47

WAVEFORMAT

Fields

Comments

See Also

The W A VEFORMA T structure describes the format of waveform data. Only format
information common to all waveform data formats is included in this structure. For
formats that require additional information, this structure is included as a field in
another data structure along with the additional information.

typedef struct waveformat_tag
WORD wFormatTag;
WORD nChannels;
DWORD nSamplesPerSec;
DWORD nAvgBytesPerSec;
WORD nBlockAlign;

} WAVEFORMAT;

The W A VEFORMA T structure has the following fields:

wFormatTag
Specifies the format type. Currently defined format types are as follows:

W A VE_FORMAT_PCM
Waveform data is PCM.

nChannels
Specifies the number of channels in the waveform data. Mono data uses I channel and
stereo data uses 2 channels.

nSamplesPerSec
Specifies the sample rate in samples per second.

nA vgBytesPerSec
Specifies the required average data transfer rate in bytes per second.

nBlockAlign
Specifies the block alignment in bytes. The block alignment is the minimum atomic
unit of data.

For PCM data, the block alignment is the number of bytes used by a single sample,
including data for both channels if the data is stereo. For example, the block alignment for
16-bit stereo PCM is 4 bytes (2 channels, 2 bytes per sample).

PCMWAVEFORMAT

Comments

WAVEINCAPS 6-49

dwLoops
Specifies the number of times to play the loop. This parameter is used only with
output data buffers.

IpNext
Reserved and should not be used.

reserved
Reserved and should not be used.

Use the WHDR_BEGINLOOP and WHDR_ENDLOOP flags in the dwFlags field to
specify the beginning and ending data blocks for looping. To loop on a single block,
specify both flags for the same block. Use the dwLoops field in the WAVEHDR structure
for the first block in the loop to specify the number of times to play the loop.

WAVEINCAPS

Fields

The W A VEIN CAPS structure describes the capabilities of a waveform input device.

typedef struct waveincaps_tag {
UINT wMid;
UINT wPid;
VERSION vDriverVersion;
char szPname[MAXPNAMELEN];
DWORD dwFormats;
UINT wChannels;

} WAVEINCAPS;

The W A VEIN CAPS structure has the following fields:

wMid
Specifies a manufacturer ID for the device driver for the waveform input
device. Manufacturer IDs are defined in Appendix B, "Manufacturer ID and
Product ID Lists."

wPid
Specifies a product ID for the waveform input device. Product IDs are defined in
Appendix B, "Manufacturer ID and Product ID Lists."

vDriverVersion
Specifies the version number of the device driver for the waveform input device. The
high-order byte is the major version number, and the low-order byte is the minor
version number.

szPname[MAXPNAMELEN]
Specifies the product name in a NULL-terminated string.

WAVEOUTCAPS 6-51

wChannels
Specifies whether the device supports mono (1) or stereo (2) input.

See Also waveInGetDevCaps

WAVEOUTCAPS

Fields

The W A VEOUTCAPS structure describes the capabilities of a waveform output device.

typedef struct waveoutcaps_tag
UINT wMid;
UINT wPid;
VERSION vDriverVersion;
char szPname[MAXPNAMELEN];
DWORD dwFormats;
UINT wChannels;
DWORD dwSupport;

} WAVEOUTCAPS;

The WA VEOUTCAPS structure has the following fields:

wMid
Specifies a manufacturer ID for the device driver for the waveform output device.
Manufacturer IDs are defined in Appendix B, "Manufacturer ID and Product ID
Lists."

wPid
Specifies a product ID for the waveform output device. Product IDs are defined in
Appendix B, "Manufacturer ID and Product ID Lists."

vDriverVersion
Specifies the version number of the device driver for the waveform output device. The
high-order byte is the major version number, and the low-order byte is the minor
version number.

szPname[MAXPNAMELEN]
Specifies the product name in a NULL-terminated string.

Comments

See Also

WAVEOUTCAPS 6-53

wChannels
Specifies whether the device supports mono (1) or stereo (2) output.

dwSupport
Specifies optional functionality supported by the device.

W A VECAPS_PITCH
Supports pitch control.

W A VECAPS_PLAYBACKRATE
Supports playback rate control.

WA VECAPS_SYNC
Specifies that the driver is synchronous and will block while playing a buffer.

WA VECAPS_ VOLUME

Supports volume control.

W A VECAPS_LRVOLUME
Supports separate left and right volume control.

If a device supports volume changes, the W A VECAPS_ VOLUME flag will be set for the
dwSupport field. If a device supports separate volume changes on the left and right
channels, both the W A VECAPS_ VOLUME and the W A VECAPS_LRVOLUME flags
will be set for this field.

waveOutGetDevCaps

Chapter 7

MCI Command Strings

The Media Control Interface (MCI) is a high-level command interface to multimedia
devices and resource files. MCI provides applications with device-independent capabilities
for controlling audio and visual peripherals. Your application can use MCI to control any
supported multimedia device, including audio playback and recording. For a full overview
of MCI, see the Multimedia Programmer's Guide.

MCI provides standard commands for playing multimedia devices and recording
multimedia resource files. Using MCI, an application can control multimedia devices
using simple commands like open, play, and close. MCI commands are a generic interface
to multimedia devices.

MCI includes the following interfaces:

• The command-message inteiface consists of C constants and structures. The
Multimedia Programmer's Guide describes the command-message interface and
presents numerous examples on using the command messages to control audio devices.
In this reference, the individual command messages and structures are described in
Chapter 4, "Message Overview," Chapter 5, "Message Directory," and Chapter 6,
"Data Types and Structures."

• The command-string inteiface provides a textual version of the command messages.
The strings use an easy-to-read format that makes it easy to control MCI devices from
C programs and multimedia authoring tools. Command strings duplicate the
functionality of the command messages; Windows converts the command strings to
command messages before sending them to the MCI driver for processing.

This chapter describes the command-string interface. The following topics are covered:

• MCI device types and drivers

• Driver support for MCI commands

• Syntax of MCI command strings

• Opening, playing, and closing MCI devices

• The command sets for the various MCI device types

Device Type

animation

cdaudio

dat

digitalvideo

other

overlay

scanner

sequencer

vcr

videodisc

waveaudio

Mel Device Types and Drivers 7-3

Description

Animation device

audio CD player

Digital audio tape player

Digital video in a window (not ODI based)

Undefined MCI device

Overlay device (analog video in a window)

Image scanner

MIDI sequencer

Videotape recorder or player

Videodisc player

Audio device that plays digitized waveform files

In this chapter, device type names are italic.

Device Names
For any given device type, there might be several MCI drivers that share the command set
but operate on different data formats. For example, the animation device type might
include several MCI drivers that use the same command set but play different types of
animation files. To uniquely identify a MCI driver, MCI uses device names.

Device names are identified in the [mci] section of the SYSTEM.INI file. The [mci]
section of SYSTEM.INI identifies all MCI drivers to Windows. The following example
shows a typical [mci] section:

[mci]
waveaudio=mciwave.drv
sequencer=mciseq.drv
MMMovie=mcimmp.drv
cdaudio=mcicda.drv

The name on the left side of the equal sign is the driver device name. The value on the
right side of the equal sign identifies the filename of the MCI driver. Frequently, the
device name is the same as the device type for the driver, as is the case for the waveaudio,
sequencer, and cdaudio devices in the preceding example. The "MMMovie" device is an
animation device, but it uses a unique device name.

Driver Support for MCI Commands 7-5

Driver Support for MCI Commands
MCI drivers provide the functionality for MCI commands. The Windows system software
performs some housekeeping tasks, but all the multimedia playback, presentation, and
recording is handled by the individual MCI drivers.

Drivers vary in their support for MCI commands and command options. Because
multimedia devices can have widely different capabilities, MCI is designed to let
individual drivers extend or reduce the command sets to match the capabilities of the
device. For example, the record command is part of the command set for MIDI
sequencers, but the MCISEQ driver included with Windows does not support the record
command. Also, the MCI Movie Player driver (MCIMMP.DRV) included with the
Microsoft Software Development Kit extends the open command to include an
expanddibs option that is not part of the basic command set for the animation device type.

Classifications of MCI Commands
MCI defines four classifications of commands. The commands and options comprising the
following two classifications are defined as the minimum command set for any MCI driver:

• System commands. These commands are handled directly by MCI rather than by the
driver.

• Required commands. These commands are handled by the driver. All drivers should
support the required commands and options.

Regardless of the specific driver you're using, your application should be able to assume
that the commands and options in the two preceding groups are available.

The commands comprising the following two classifications are not supported by all
drivers:

• Basic commands, or optional commands, are used by some devices. If a device
supports a basic command, it must support a defined set of options for the command.

• Extended commands are specific to a certain device types or drivers. Extended
commands include new commands (like the put and where commands for the
animation device type) and extensions to existing commands (like the can stretch
option added to the animation status command).

If your application needs to use a basic or extended command or option, it should query
the driver before trying to use the command or option (that is, unless you are certain that
the MCI driver you've used during development is the same one that will be available on
the delivery system). The following sections summarize the specific commands in each
category.

Driver Support for MCI Commands 7-7

Basic Commands
The following list summarizes the basic commands. The use of these messages by a device
is optional.

Message

load

pause

play

record

resume

save

seek

set

status

stop

Description

Loads data from a file.

Stops playing.

Starts transmitting output data.

Starts recording input data.

Resumes playing or recording on a paused device.

Saves data to a disk file.

Seeks forward or backward.

Sets the operating state of the device.

Obtains status information about the device. The status command is
also listed in the group of required commands; in the basic group,
options are added for devices that use linear media with identifiable
positions.

Stops playing.

If a driver supports a basic command, it must also support a standard set of options for the
command. For a complete description of the basic commands and options, see "Basic
Commands for Specific Device Types," later in this chapter.

Extended Commands
Some MCI devices have additional commands or add options to existing commands.
While some extended commands only apply to a specific device driver, most of them
apply to all drivers of a particular device type. For example, the sequencer command set
extends the set command to add time formats that are needed by MIDI sequencers.

Unless you are certain that the specific MCI driver you use during development will be
available on the delivery system, you should not assume that the device supports the
extended commands or options. You can use the capability command to determine
whether a specific feature is supported, and your application should be ready to deal with
"unsupported command" or "unsupported function" return values.

Using MCI Command Strings 7-9

For example, consider the following commands sent to the waveaudio driver
(MCIWAVE.DRV):

open sound.wav alias sound
play sound notify
record sound from 0 notify

The record command returns a "Parameter out of range" value and stops the playback
started by the previous play command. One might expect the driver to validate the record
command before stopping playback, but the driver stops the playback first.

Using MCI Command Strings
The mciSendString function sends MCI command strings to MCI devices. Chapter 3,
"Function Directory," describes this function in detail. Also, the Multimedia
Programmer's Guide describes how to use mciSendString.

Many multimedia authoring tools let you send command strings to MCT devices. The
MCITEST application, one of the sample applications included with the SDK, lets you
develop test scripts that control MCI devices using command strings.

Syntax of Command Strings
MCI command strings use a consistent verb-object-modifier syntax. Each command string
includes a command, a device identifier, and command arguments. Arguments are optional
on some commands and required on other commands.

A command string has the following form:

command device_id arguments

These components contain the following information:

• The command specifies an MCI command (for example, open, close, or play).

• The device_id identifies an instance of an MCI driver. The device_id is created when
the device is opened. See "Opening a Device," later in this chapter, for information on
how the device ID is assigned.

• The arguments specify the flags and parameters used by the command. Flags are key
words recognized with the MCI command. Parameters are numbers or strings that
apply to the MCI command or flag.

Syntax of Command Strings 7-11

The user can cancel a wait operation by pressing a break key. By default, this key is
CTRL+BREAK. When a wait operation is cancelled, MCI attempts to return control to the
application without interrupting the command associated with the wait flag.

For example, in the play command shown in the preceding example, breaking the
command cancels the wait operation without interrupting the play operation.

To redefine the break key, use the break command.

Using the Notify Flag
The notify flag directs the device to post an MM_MCINOTIFY message when the device
completes an action. Your application must have a window procedure to process the
MM_MCINOTIFY message for notification to have any effect. The Multimedia
Programmer's Guide includes examples of window procedures that process the
MM_MCINOTIFY message.

A notification message can indicate one of the following results:

• The notification is successful

• The notification is superseded

• The notification is aborted

• The notification fails

A successful notification occurs when the conditions required for initiating the callback
are satisfied and the command completed without interruption.

A notification is superseded when the device has a notification pending and you send it
another notify request. When a notification is superseded, MCI resets the callback
conditions to correspond to the notify request of the new command.

A notification is aborted when you send a new command that prevents the callback
conditions set by a previous command from being satisfied. For example, sending the stop
command cancels a notification pending for the "play to 500 notify" command. If your
command interrupts a command that has a notification pending, and your command also
requests notification, MCI will abort the first notification immediately and respond to the
second notification.

A notification fails if a device error occurs while a device is executing the MCI command.
For example, a notification fails when a hardware error occurs during a play command.

Opening a Device 7-13

How the Device ID is Assigned
The device ID established by the open command identifies the open MCI device in all
subsequent commands. If you specify a device alias using the alias key word, the device
ID will be the alias. Otherwise, the device ID will be the device name.

Opening Simple Devices
MCI classifies device drivers as compound and simple. Simple device drivers don't require
a device element for playback. Simple devices include cdaudio devices and videodisc
devices.

For example, you can open a videodisc device using the following command:

open videodisc

Simple devices require only the device_name for operation. You don't need to provide any
additional information (such as a name of a data file) to open these devices. For these
devices, substitute the name of a device name from the [mci] section of SYSTEM.lNI for
the device_name.

Opening Compound Devices
Compound device drivers use a device element-a media element associated with a
device-during operation. For most compound device drivers, the device element is the
source or destination data file. For these file elements, the element name references a file
and its path. Compound devices include waveaudio devices and sequencer devices.

Depending on your needs, there are three ways you can open a compound device:

• By specifying just the device name (this lets you open a compound device without
associating an element filename). When opened this way, most compound devices will
only process the capability and close commands.

• By specifying just the element name (the device name is determined from the [mci
extensions] section of the WIN.lNI file).

• By specifying both the element name and the device name (MCI ignores the entries in
the [mci extensions] section of the WIN.INI file and opens the specified device name).

To associate a device element with a particular device, you can specify the element name
and device name. For example, the following command opens the wave audio device with
element filename "MYVOICE.SND":

open myvoice.snd type waveaudio

Opening a Device 7-15

Opening Shareable Devices
The shareable flag lets multiple applications access the same device (or element) and
device instance concurrently. If your application opens a device or device element as
shareable, other applications can also access it by opening it as shareable. The shared
device or device element gives each application the ability to change the parameters
governing the operating state of the device or device element. Each time a device or device
element is opened as shareable, MCI returns a unique device ID even though the IDs refer
to the same instance.

If your application opens a device or device element without the shareable flag, no other
application can access it simultaneously. Also, if a device can service only one open
instance, the open command will fail if you specify the shareable flag.

If you make a device or device element shareable, your application should not make any
assumptions about the state of a device. When working with shared devices, your
application might need to compensate for changes made by other applications using the
same services.

While most compound device elements are not shareable, you can open multiple elements
(where each element is unique), or you can open a single element multiple times. If you
open a single file element multiple times, MCI creates an independent instance for each,
with each instance having a unique operating status.

If you open multiple instances of a file element, you must assign a unique device ID to
each. The alias flag described in the following section lets you assign a unique name for
each element.

Assigning a Device 10 Using the Alias Flag
The alias flag specifies a device ill for the device. The alias flag lets you assign a short
device ID for compound devices with lengthy filenames, and it lets you open multiple
instances of the same file or device.

For example, the following command assigns device ill "birdcall" to a lengthy waveform
filename:

open c:\nabirds\sounds\mockmtng.wav type waveaudio alias birdcall

If the alias flag were omitted, the device ID would be "c:\nabirds\sounds\mockmtng.wav."

Shortcuts and Variations for MCI Commands 7-17

Stopping and Pausing a Device
The stop command suspends the playing or recording of a device. Many devices also
support the pause command. The difference between stop and pause depends on the
device. Usually pause suspends operation but leaves the device ready to resume playing or
recording immediately.

U sing play or record to restart a device will reset the to and from positions specified
before the device was paused or stopped. Without the from flag, these commands reset the
start position to the current position. Without the to flag, they reset the end position to the
end of the media.

To continue playing or recording while stopping at a previously specified position, use the
to flag with the play or record commands to specify an ending position.

Some devices include the resume command to restart a paused device. This command
does not change the to and from positions specified with the play or record command
which preceded the pause command.

Closing a Device
The close command releases access to a device or device element. To help Mel manage
the devices, your application must explicitly close each device or device element when it is
finished with it.

Shortcuts and Variations for MCI Commands
The Mel command-string interface lets you use several shortcuts when working with
Mel devices.

Using All as a Device ID
You can specify all as a device ID for any command that does not return information.
When you specify all, Mel sequentially sends the command to all devices opened by the
current application.

For example, "close all" closes all open devices and "play all" starts playing all devices
opened by the application. Because Mel sequentially sends the commands to the Mel
devices, there is a delay between when the first device receives the command and when
the last device receives the command.

Shortcuts and Variations for MCI Commands 7-19

Using the MCITEST Application
The MCITEST sample application on your SDK disks provides a simple way to
experiment with MCI command strings. It lets you type MCI command strings and send
them to Windows for processing.

When you run MCITEST, it displays the following dialog box:

Mel Output: I
~====================~~N:o~tif~ic=at~io=n~~

o Successful

o Superseded

o Aborted
o Failure

Runcount~

To try an MCI command, enter the command string in the large edit box. MCITEST sends
the string directly to the MCI command-string interface when you press ENTER. Any MCI
response to the command is displayed in the MCI Output box. Any errors returned by MCI
appear in the Error box.

The Routines options select the function used to send the command strings to MCI.

The GO button sequentially sends all commands in the edit box to the MCI
command-string interface. You can have MCITEST execute the entire command list
multiple times by specifying a number in the Runcount box.

The STEP button sends the selected MCI command, then moves the selection to the next
command. The EXIT button ends MCITEST.

MCI sets the option buttons in the Notification are in response to the notify flag.

The File menu displays commands you can use to save and recall the contents of the edit
box. The Edit menu displays commands you can use to edit the contents of the edit box.
The Device menu displays a of open device instances.

MCI System Commands 7-21

To hear the song at a different speed, use the following command before playing the song:

set song tempo 200

When you are finished using MCITEST, close all the MCI devices you opened before
exiting. For example, the following command closes all the devices you opened during the
session:

close all

Closing an application with open MCI devices can prevent other applications from using
those devices until Windows is restarted.

MCI System Commands

break
Syntax

Parameters

Example

The following commands are interpreted directly by MCI. The remaining command tables
list the commands interpreted by the devices.

break device_id parameter [notify] [wait]

The break command specifies a key to abort a wait command.

Specify one of the following items for parameter.

on virtuaCkey

off

Specifies the virtuaCkey code that aborts the wait. When the key is pressed, the
device returns control to the application. If possible, the command continues
execution. Substitute a Windows virtual key code for virtuaCkey.

Disables the current break key.

The following command sets F2 as the break key for the "my sound" device:

break mysound on 113

Required Commands for All Devices 7-23

Required Commands for All Devices

capability
Syntax

Parameters

The following required commands are recognized by all devices. Extended commands can
add other options to these commands.

capability device_id parameter [notify] [wait]

The capability command requests information about a particular capability of a device.

Specify one of the following items for parameter (specific device types and drivers may
define other items):

can eject
Returns true if the device can eject the media.

can play
Returns true if the device can play.

can record
Returns true if the device supports recording.

can save
Returns true if the device can save data.

compound device
Returns true if the device supports an element name.

device type
Returns one of the following device type names:

animation
cdaudio
dat
digitalvideo
other
overlay
scanner
sequencer
vcr
videodisc
waveaudio

has audio
Returns true if the device supports audio playback.

Example

open
Syntax

Parameters

Example

Required Commands for All Devices 7-25

The following command gets a description of the hardware associated with the "my sound"
device:

info mysound product

open device_id [parameters] [notify] [wait]

The open command initializes the device.

You can specify one or more of the following optional items for parameters (specific
device types and drivers may define other items):

alias device_alias
Specifies an alternate name for the given device. If specified, it must be used as the
device_id in subsequent commands.

shareable
Initializes the device or element as shareable. Subsequent attempts to open it fail
unless you specify shareable in both the original and later open commands.
MCI returns an invalid device error if the device is already open and not shareable.

type device_type
Specifies the device type of a device element. As an alternative to type, MCI
can use the [mci extension] entries in the SYS1EM.lNI file to select the device
based on the extension used by the device element. You can also use the
device_name!elemencname abbreviation described in "Combining the Device
Name and Element Name," earlier in this chapter.

The following command opens the cdaudio device and assigns an alias:

open cdaudio alias cd

Parameters

Example

pause
Syntax

Example

play
Syntax

Parameters

Comments

Example

Basic Commands for Specific Device Types 7-27

You can specify the following optional parameter:

filename
Specifies the source path and file.

The following command loads a file into the "vidboard" device:

load vidboard c:\vid\fish.vid notify

The notify flag tells Mel to send a notification message when the loading completes.

pause device_id [notify] [wait]

The pause command pauses playing or recording. Most drivers retain the current position,
allowing playback or recording to continue at the current position.

The following command pauses the "my sound" device:

pause mysound

play device_id [parameters] [notify] [wait]

The play command starts playing the device.

You can specify one or more of the following optional items for parameters:

from position
Specifies a starting position for the playback. If the from parameter is not specified,
playback begins at the current position.

to position
Specifies an ending position for the playback. If the to parameter is not specified,
playback ends at the end of the media.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command plays the mysound device from position 1000 through position
2000, sending a notification message when the playback completes:

play mysound from 1000 to 2000 notify

save
Syntax

Parameters

Comments

Example

seek
Syntax

Parameters

Comments

Example

Basic Commands for Specific Device Types 7-29

save device_id [filename] [notify] [wait]

The save command saves the MCI element.

You can specify the following optional item:

filename
Specifies the destination path and file.

The filename parameter is required if the device was opened using the new device ID.

The following command saves the data in the "new sound" device to
C:\SOUNDS\NEWSND.WAV:

save newsound c:\sounds\newsnd.wav

seek device_id parameter [notify] [wait]

The seek command moves to the specified position and stops.

Specify one of the following items for parameter.

to position
Specifies the position to stop the seek.

to start
Seeks to the start of the media.

to end
Seeks to the end of the media.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command seeks to the start of the media file associated with the "mysound"
device:

seek mysound to start

status
Syntax

Parameters

Comments

Example

Basic Commands for Specific Device Types 7-31

status device_id parameter [notify] [wait]

The status command gets status information for the device. This command is also listed as
a required command. As a basic command, status adds flags for devices with linear media.

Specify one of the following items for parameter.

current track
Returns the current track.

length
Returns the total length of the media.

length track track_number
Returns the length of the track specified by track_number.

number of tracks
Returns the number of tracks on the media.

position
Returns the current position.

position track track_number
Returns the position of the start of the track specified by track_number.

ready
Returns true if the device is ready to play.

start position
Returns the starting position of the media.

time format
Returns the current time format.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command returns the time format used by the "my sound" device:

status mysound time format

Example

close
Syntax

Example

device type
Animation devices return animation.

fast play rate
Returns fast play rate in frames per second.

has audio
Returns true if the device supports audio playback.

has video
Returns true.

normal play rate
Returns normal play rate in frames per second.

slow play rate
Returns the slow play rate in frames per second.

uses files

Animation Commands 7-33

Returns true if the element of a compound device is a file path.

uses palettes
Returns true if the device uses palettes.

windows
Returns the number of windows the device can support.

The following command returns the fast play rate of the "movie" device:

capability movie fast play rate

close device_id [notify] [wait]

The close command closes a device element and any associated resources.

The following command closes the "movie" device:

close movie

Example

pause
Syntax

Example

Animation Commands 7-35

style style_type
Indicates a window style.

style child
Opens a window with a child window style.

style overlapped
Opens a window with an overlapped window style.

style popup
Opens a window with a popup window style.

type device_type
Specifies the device type of the device element. As an alternative to type, MCI
can use the [mci extension] entries in the SYSTEM.INI file to select the controlling
device based on the extension used by the device element. You can also use the
device_name!element_name abbreviation described in "Combining the Device Name
and Element Name," earlier in this chapter.

The following command opens animation file \MMM\SNQLMFLL.MMM:

open \mmm\snq1mf11 .mmm type mmmovi e a1 i as movi e sty1 e 13369344

The command specifies device type "mmrnovie," assigns an alias of "movie," and
specifies an overlapped window with a system menu, caption, thick border, and maximize
box (combination of the window styles WS_OVERLAPPED, WS_SYSMENU,
WS_BORDER, WS_THlCKFRAME, and WS_MAXIMIZEBOX).

pause device _id [notify] [wait]

The pause command pauses playback of the animation. If the animation is stopped, pause
displays the animation window if it is not already visible and in the foreground.

The following command pauses the "movie" device:

pause movie

put
Syntax

Parameters

Example

Animation Commands 7-37

put device _id parameter [notify] [wait]

The put command defines the area of the source image and destination window used for
display.

Specify one of the following items for parameter:

destination
Sets the whole window as the destination window.

destination at rectangle
Specifies a rectangle for the area of the window used to display the image. The
rectangle coordinates are relative to the window origin and are specified as Xl YI X2
Y2. The coordinates Xl YI specify the top-left comer, and the coordinates X2 Y2
specify the width and height of the rectangle.

When an area of the display window is specified, and the device supports stretching,
the source image is stretched to the destination offset and extent.

source
Selects the whole image for display in the destination window.

source at rectangle

Specifies a rectangle for the image area used for display. The rectangle coordinates
are relative to the image origin and are specified as Xl YI X2 Y2. The coordinates Xl
Yl specify the top-left comer, and the coordinates X2 Y2 specify the width and height
of the rectangle.

When an area of the source image is specified, and the device supports stretching, the
source image is stretched to the destination offset and extent.

The following command sets the display area for the movie device. It specifies an offset of
10 pixels from the top-left comer of the playback window. The playback area is clipped to
250 pixels wide and 340 pixels high.

put movie destination at 10 10 250 340

Example

set
Syntax

Parameters

Animation Commands 7-39

The following command seeks to the beginning of the animation file associated with the
"movie" device:

seek movie to start

set device_id parameters [notify] [wait]

The set command establishes control settings for the driver.

Specify one of the following items for parameters:

audio all off
Disables audio output.

audio all on
Enables audio output.

audio left off
Disables output to the left audio channel.

audio left on
Enables output to the left audio channel.

audio right off
Disables output to the right audio channel.

audio right on
Enables output to the right audio channel.

time format frames
Sets the time format to frames. All commands that use position values will assume
frames. When the device is opened, frames is the default mode.

time format milliseconds
Sets the time format to milliseconds. All commands that use position values will
assume milliseconds. You can abbreviate milliseconds as ms.

Comments

Example

Animation Commands 7-41

number of tracks
Returns the number of tracks on the media.

palette handle
Returns the handle of the palette used for the animation.

position
Returns the current position.

position track number
Returns the position of the start of the track specified by number.

ready
Returns true if the device is ready.

speed
Returns the current speed of the device in frames per second.

start position
Returns the starting position of the media.

stretch
Returns true if stretching is enabled.

time format
Returns the current time format.

window handle
Returns the handle of the window used for the animation.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command a handle to the current palette used by the "movie" device:

status movie palette handle

Example

where
Syntax

Parameters

Example

window
Syntax

Animation Commands 7-43

The following command updates the entire display window used by the "movie" device.
The number following hdc is a handle to a device context obtained from the BeginPaint
function:

update movie hdc 203

where device _id parameter [notify] [wait]

The where command gets the rectangle specifying the source or destination area.

Specify one of the following items for parameter.

destination
Requests the destination offset and extent.

source
Requests the source offset and extent.

The following command returns the display rectangle of the "movie" device:

where movie destination

window device _id parameters [notify] [wait]

The window command controls the animation display window. You can change the
display characteristics of the window or provide a display window for the driver to use in
place of the default display window.

Generally, animation devices create a window when opened but don't display the window
until they receive a play command. If your application provides a window to the driver,
your application is responsible for managing the messages sent to the window.

The window command provides several flags that let you manipulate the window. Since
you can use the status command to get the handle to the driver display window, you can
also use the standard window manager functions (like ShowWindow) to manipulate the
window.

Example

Audio CD (Red Book) Commands 7-45

The following command displays and sets the caption for the "movie" playback window:

window movie text "Welcome to the Movies" state show

Audio CD (Red Book) Commands

capability

Syntax

Parameters

The cdaudio command set provides a common method for playing audio CD. This device
type includes the MCICDA.DRV device driver, which operates with any CD-ROM device
supporting the audio services of MSCDEX. Audio CD devices support the following set
of commands:

capability device_id parameter [notify] [wait]

The capability command requests information about audio CD capabilities of the device.

Specify one of the following items for parameter:

can eject
Returns true if the audio CD device can eject the media.

can play
Returns true if the audio CD device can play the media.

can record
Returns false. audio CD devices cannot record.

can save
Returns false. audio CD devices cannot save data.

compound device
Returns false. audio CD devices are simple devices.

device type
Returns cdaudio.

has audio
Returns true.

has video
Returns false. audio CD devices don't support video.

uses files
Returns false. Simple devices don't use files.

Example

pause
Syntax

Example

play
Syntax

Parameters

Comments

Example

Audio CD (Red Book) Commands 7·47

The following command opens the cdaudio device:

open cdaudio

pause device _id [notify] [wait]

The pause command pauses playing. With the MCICDA driver, the pause command
works the same as the stop command.

The following command pauses the cdaudio device:

pause cdaudio

play device _id [parameters] [notify] [wait]

The play command starts playing the audio disc.

You can specify one or more of the following optional items for parameters:

from position
Specifies the position to start playback. If the from parameter is not specified,
playback begins at the current position. If the from position is greater than the end
position of the disc, or if the from position is greater than the to position, the driver
returns an error.

to position
Specifies the position to stop playback. By default, playback continues to the end of
the disc. If the to position is greater than the length of the disc, MCI returns an error.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command plays tracks two through five of the audio disc (assuming the
time format is set to TMSF):

play cdaudio from 2 to 6

Parameters

Audio CD (Red Book) Commands 7-49

Specify one of the following items for parameters:

audio all off
Disables audio output.

audio all on
Enables audio output.

audio left off
Disables output to the left audio channel.

audio left on
Enables output to the left audio channel.

audio right off
Disables output to the right audio channel.

audio right on
Enables output to the right audio channel.

door closed
Retracts the tray and closes the door if possible.

door open
Opens the door and ejects the tray if possible.

time format milliseconds
Sets the time format to milliseconds. All commands that use position values will
assume milliseconds. You can abbreviate milliseconds as ms.

time format msf
Sets the time format to minutes, seconds, and frames. All commands that use position
values will assume MSF (the default format for audio CD).

Specify an MSF value as mm:ss:ff, where mm is minutes, ss is seconds, andffis
frames. You can omit a field if it and all following fields are zero. For example, 3, 3:0,
and 3:0:0 are valid ways to express 3 minutes.

The MSF fields have the following maximum values:

Minutes 99
Seconds 59
Frames 74

Comments

Example

stop
Syntax

Example

Audio CD (Red Book) Commands 7-51

mode
Returns one of the following values indicating the current mode of the device:

not ready
open
paused
playing
seeking
stopped

number of tracks
Returns the number of tracks on the disc.

position
Returns the current position.

position track track_number
Returns the starting position of the track specified by track_number.

ready
Returns true if the device is ready.

start position
Returns the starting position of the disc or device element.

time format
Returns the current time format.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command returns the number of tracks on the current disc:

status cdaudio number of tracks

stop device_id [notify] [wait]

The stop command stops playback.

The following command stops the cdaudio device:

stop cdaudio

Example

close
Syntax

Example

info
Syntax

Parameters

Example

MIDI Sequencer Commands 7-53

has audio
Returns true. Sequencers support playback.

has video
Returns false. Sequencers don't support video.

uses files
Returns true. Sequencers use files for operation.

The following command returns true if the "music" device can record:

capability music can record

close device_id [notify] [wait]

The close command closes the sequencer device, as well as the associated port and file.

The following command closes the "music" device:

close music

info device_id parameter [notify] [wait]

The info command gets textual information from the device.

Specify one of the following items for parameter.

file
Returns the filename of the current MIDI file.

product
Returns the product name of the sequencer. The MCISEQ sequencer returns MIDI
Sequencer.

The following command returns the filename of the MIDI file associated with the
"music" device:

info music file

play
Syntax

Parameters

Comments

Example

record
Syntax

MIDI Sequencer Commands 7-55

play device_id [parameters] [notify] [wait]

The play command starts playing the sequencer.

MIDI files played using the MCISEQ sequencer should be authored to conform to the
Microsoft MIDI file authoring guidelines, which are discussed in the Multimedia
Programmer's Guide. If the file does not conform, the MCISEQ sequencer displays a
waming dialog box when you issue the play command for the file.

You can specify one or more of the following optional items for parameters:

from position
Specifies a starting position for the playback. If the from parameter is not specified,
playback begins at the current position.

to position
Specifies an ending position for the playback. If the to parameter is not specified,
playback ends at the end of the media.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command starts playing the "clavier" device from the start of the MIDI file:

play clavier from 0

record device_id [parameters] [notify] [wait]

The record command starts recording MIDI data. All data recorded after a file is opened
is discarded if the file is closed without saving it. The MCISEQ sequencer does not
support recording.

save
Syntax

Parameters

Comments

Example

seek
Syntax

Parameters

Comments

Example

MIDI Sequencer Commands 7-57

save deviccid [filename] [notify] [wait]

The save command saves the MCI element. The MCISEQ sequencer does not support this
command.

You can specify the following optional item:

filename
The filename specifies the destination path and file.

The filename parameter is required if the device was opened using the new device ID.

The following command saves the MIDI data recorded into the "clavier" device as
filename C:\MIDI\MYMIDI.MID:

save clavier c:\midi\mymidi .mid

seek device_id parameter [notify] [wait]

The seek command moves to the specified position in the file.

Specify one of the following items for parameter.

to position
Specifies to seek to position.

to start
Seeks to the start of the sequence.

to end
Seeks to the end of the sequence.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command moves to the beginning of the MIDI file associated with the
"clavier" device:

seek clavier to start

MIDI Sequencer Commands 7-59

port porCnumber
Sets the MIDI port receiving the MIDI messages. This command will fail if the port
you are trying to open is being used by another application.

port mapper
Sets the MIDI mapper as the port receiving the MIDI messages. This command will
fail if the MIDI mapper or a port it needs is being used by another application.

port none
Disables the sending of MIDI messages. This command also closes a MIDI port.

slave file
Sets the MIDI sequencer to use file data as the synchronization source. This is
the default.

slave MIDI
Sets the MIDI sequencer to use incoming data MIDI for the synchronization source.
The sequencer recognizes synchronization data with the MIDI format. The MCISEQ
sequencer does not support this option.

slave none
Sets the MIDI sequencer to ignore synchronization data.

slaveSMPTE
Sets the MIDI sequencer to use incoming MIDI data for the synchronization source.
The sequencer recognizes synchronization data with the SMPTE format. The
MCISEQ sequencer does not support this option.

tempo tempo_value
Sets the tempo of the sequence according to the current time format. For a ppqn-based
file, the tempo_value is interpreted as beats per minute. For a SMPTE-based file, the
tempo_value is interpreted as frames per second.

time format milliseconds
Sets the time format to milliseconds. All commands that use position values will
assume milliseconds. You can abbreviate milliseconds as ms.

The sequence file sets the default format to ppqn or SMPTE.

time format song pointer
Sets the time format to song pointer (sixteenth notes). All commands that use position
values will assume song pointer units. This option is valid only for a sequence of
division type ppqn.

MIDI Sequencer Commands 7-61

length
Returns the length of a sequence in the current time format. For ppqn files, this will be
song pointer units. For SMPTE files, this will be expressed as hh:mm:ss:ff, where hh is
hours, mm is minutes, ss is seconds, andffis frames.

length track track_number
Returns the length of the sequence in the current time format. For ppqn files, this will
be song pointer units. For SMPTE files, this will be expressed as hh:mm:ss:ff, where
hh is hours, mm is minutes, ss is seconds, andffis frames.

master
Returns midi, none, or smpte depending on the type of synchronization set.

media present
The sequencer returns true.

mode
Returns not ready, paused, playing, seeking, or stopped.

number of tracks
Returns the number of tracks. MCISEQ returns 1.

offset
Returns the offset of a SMPTE-based file. The offset is the start time of a SMPTE
based sequence. The time is returned as hh:mm:ss:ff, where hh is hours, mm is
minutes, ss is seconds, andffis frames.

port
Returns the MIDI port number assigned to the sequence.

position
Returns the current position of a sequence in the current time format. For ppqn files,
this will be song pointer units. For SMPTE files, this will be in form hh:mm:ss:ff,
where hh is hours, mm is minutes, ss is seconds, andffis frames.

position track track_number
Returns the current position of the track specified by track_number in the current time
format. For ppqn files, this will be song pointer units. For SMPTE files, this will be in
form hh:mm:ss:ff, where hh is hours, mm is minutes, ss is seconds, andffis frames.
The MCISEQ sequencer returns O.

ready
Returns true if the device is ready.

slave
Returns file, midi, none, or smpte depending on the type of synchronization set.

Videodisc Player Commands 7-63

Videodisc Player Commands

capability
Syntax

Parameters

The videodisc command set provides a common method for playing videodiscs. This
device type includes the MCIPIONR.DRV driver, which operates with the Pioneer
LD-V 4200 videodisc player. Videodisc players support the following set of commands:

capability device_id parameter [notify] [wait]

The capability command requests information about a particular capability of a device.
The return information is for the type of disc inserted unless the CA V or CL V options are
used to override the format. If no disc is present, information is returned for CA V discs.

Specify one of the following items for parameter.

can eject
Returns true if the device can eject the disc. The MCIPIONR device returns true.

can play
Returns true if the device supports playing. The MCIPIONR device returns true.

can record
Returns true if the video device can record. The MCIPIONR device returns false.

can reverse
Returns true if the device can play in reverse, false otherwise. CL V discs return false.

can save
Returns false. MCI videodisc players cannot save data.

CAY
When combined with other items, CA V specifies that the return information applies
to CA V format discs. This is the default if no disc is inserted.

CLV
When combined with other items, CL V specifies that the return information applies to
CL V format distls.

compound device
Returns false. MCI videodisc players are simple devices.

device type
Returns videodisc.

Example

info
Syntax

Parameters

Example

open
Syntax

Parameters

Example

Videodisc Player Commands 7-65

The following command sends the escape string "SA" to the videodisc device:

escape videodisc SA

info device_id parameter [notify] [wait]

The info command obtains textual information from a device.

Specify the following item for parameter.

product
Returns the product name of the device that the driver is controlling. The MCIPIONR
device returns Pioneer LD-V 4200.

The following command returns the product name of the device controlled by the
videodisc device:

info videodisc product

open device_id [parameters] [notify] [wait]

The open command initializes the device. MCI reserves videodisc for the videodisc device
type.

You can specify one or more of the following items for parameters:

alias device_alias
Specifies an alternate name for the given device. If specified, it must be used as the
device_id in subsequent commands.

shareable
Initializes the device as shareable. Subsequent attempts to open it fail unless you
specify shareable in both the original and subsequent open commands. MCI returns
an invalid device error if the device is already open and cannot be shared.

The following command opens the videodisc device:

open videodisc

Comments

Example

resume
Syntax

Example

seek
Syntax

Parameters

Videodisc Player Commands 7-67

scan
Indicates the device should playas fast as possible, possibly with audio disabled. This
flag applies only to CA V discs.

speed integer
Specifies the rate of play in frames per second (for example, speed 15 means 15
frames per second). This applies only to CA V discs.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command starts fast playback:

play videodisc scan

resume device_id [notify] [wait]

The resume command continues playing or recording on a paused device. The
MCIPIONR driver does not support this command.

The following command continues playback on the videodisc device:

resume videodisc

seek device_id [parameter] [notify] [wait]

The seek command searches using fast forward or fast reverse with video and audio off.

You can specify one of the following optional items for parameter.

reverse
Indicates the seek direction on CA V discs is backwards. This modifier is invalid if to
is specified.

to position
Specifies the position to stop the seek. If to is not specified, the seek continues to the
end of the disc.

to start
Seeks to the start of the disc.

to end
Seeks to the end of the disc.

Example

spin
Syntax

Parameters

Example

Videodisc Player Commands 7-69

time format hms
Sets the time format to hours, minutes, and seconds. All commands that use position
values will assume HMS. HMS is the default format for CL V discs.

Specify an HMS value as hh:mm:ss, where hh is hours, mm is minutes, and ss is
seconds. You can omit a field if it and all following fields are zero. For example, 3,
3:0, and 3:0:0 are all valid ways to express 3 hours.

time format milliseconds
Sets the time format to milliseconds. All commands that use position values will
assume milliseconds. You can abbreviate milliseconds as ms.

time format track
Sets the position format to tracks. All commands that use position values will assume
tracks.

video off
Disables video output.

video on
Enables video output.

The following command closes the door of the device and sets the time format to
milliseconds:

set videodisc time format ms door closed

spin device _id parameter [notify] [wait]

The spin command starts the disc spinning or stops the disc from spinning.

Specify one of the following items for parameter:

down
Stops the disc from spinning.

up
Starts the disc spinning.

The following command spins up the videodisc device:

spin videodisc up

Comments

Example

step
Syntax

Example

Videodisc Player Commands 7-71

side
Returns 1 or 2 to indicate which side of the disc is loaded.

speed
Returns the current speed in frames per second. The MCIPIONR videodisc player
does not support this option.

start position
Returns the starting position of the disc.

time format
Returns the current time format.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command returns true if a videodisc is inserted in the device controlled by
the videodisc driver:

status videodisc media present

step device_id [parameter] [notify] [wait]

The step command steps the play one or more frames forward or reverse. The default
action is to step forward one frame. The step command applies only to CA V discs.

You can specify one or both of the following optional items for parameter:

by Jrames

Specifies the number ofJrames to step. If you specify a negativeJrames value, you
cannot specify the reverse flag.

reverse
Step backward.

The following command steps the videodisc one frame forward:

step videodisc

Example

close
Syntax

Example

freeze
Syntax

Parameters

Video Overlay Commands 7-73

device type
Returns overlay.

has audio
Returns true if the device supports audio playback.

has video
Returns true. Video overlay devices are video devices.

uses flies
Returns true if elements of the device are filenames.

windows
Returns the number of simultaneous display windows the device can support.

The following command returns true if the overlay device supports stretching:

capability vboard can stretch

close device_id [notify] [wait]

The close command closes a video overlay element and any associated resources.

The following command closes the "vboard" device:

close vboard

freeze device_id [parameter] [notify] [wait]

The freeze command disables video acquisition to the frame buffer. This is supported only
if capability can freeze returns true.

You can specify the following optional item for parameter.

at rectangle

Specifies the rectangular region that will have video acquisition disabled. To specify
irregular acquisition regions, use a series of freeze and unfreeze commands. Some
video overlay devices limit the complexity of the acquisition region.

The rectangle region is relative to the video buffer origin and is specified as Xl YI X2
Y2. The coordinates Xl YI specify the top-left comer ofthe rectangle, and the
coordinates X2 Y2 specify the width and height.

Example

open
Syntax

Parameters

Video Overlay Commands 7-75

The following command loads the video capture file C:WCAPWCAPFILE.TGA into the
video buffer:

load vboard c:\vcap\vcapfile.tga notify

The "vboard" device sends a notification message when the loading is completed.

open device_id [parameters] [notify] [wait]

The open command initializes the video overlay device.

You can specify one or more of the following optional items for parameters:

alias device_alias
Specifies an alternate name for the device element. If specified, it must be used as the
device_id in subsequent commands.

parenthwnd
Specifies the window handle of the parent window.

shareable
Initializes the device element as shareable. Subsequent attempts to open it fail unless
you specify shareable in both the original and subsequent open commands. MCI
returns an error if the device is already open and cannot be shared.

style style_type
Indicates a window style.

style child
Opens a window with a child window style.

style overlapped
Opens a window with an overlapped window style.

style popup
Opens a window with a popup window style.

type device_type
Specifies the device type of the device element. MCI reserves overlay for the video
overlay device type. As an alternative to type, MCI can use the [mci extension]
entries in the SYSTEM.lNI file to select the controlling device based on the extension
used by the device element. You can also use the device_namelelemenCname
abbreviation described in "Combining the Device Name and Element Name," earlier
in this chapter.

Example

Video Overlay Commands 7-77

frame at rectangle
Selects a portion of the frame buffer to receive the incoming video images. The
rectangle coordinates are relative to the video buffer origin and are specified as Xl YI
X2 Y2. The coordinates Xl YI specify the top-left corner of the rectangle, and the
coordinates X2 Y2 specify the width and height.

source
Selects the entire video huffer to display in the destination window.

source at rectangle
Selects a portion of the video buffer to display in the destination window. The
rectangle coordinates are relative to the video buffer origin and are specified as Xl YI
X2 Y2. The coordinates Xl YI specify the top-left corner of the rectangle, and the
coordinates X2 Y2 specify the width and height.

destination
Selects the entire client area of the destination window to display the video data from
the frame buffer.

destination at rectangle
Selects a portion of the client area of the destination window to display the video data
from the frame buffer. The rectangle coordinates are relative to the window origin and
are specified as Xl YI X2 Y2. The coordinates Xl YI specify the top-left corner of the
rectangle, and the coordinates X2 Y2 specify the width and height.

The following command defines three regions for the video, frame, and source:

put vboard video 120 120 200 200 frame 0 0 200 200 source 0 0 200 200

The regions are defined as follows:

• A 200- by 200-pixel region of the incoming video data, starting at an origin 120 pixels
from the top-left corner, will be captured to the frame buffer.

• The video data will be placed in a 200- by 200-pixel region at the top-left corner of the
frame buffer.

• Transfers are made from the 200- by 200-pixel region at the top-left corner of the
frame buffer to the destination window.

Example

status
Syntax

Parameters

Example

Video Overlay Commands 7-79

time format milliseconds
Video overlay devices don't support this option.

video off
Disables video output.

video on
Enables video output.

The following command enables video output on the "vboard" device:

set vboard video on

status device_id parameter [notify] [wait]

The status command gets status infonnation for the device.

Specify one of the following items for parameter.

media present
Returns true.

mode
Returns not ready, recording, or stopped for the current mode.

ready
Returns true if the video overlay device is ready.

stretch
Returns true if stretching is enabled.

window handle
Returns the handle of the window used for the video overlay display in the low word
of the return value.

The following command returns true if stretching is enabled on the "vboard" device:

status vboard stretch

window
Syntax

Parameters

Video Overlay Commands 7-81

window device_id parameters [notify] [wait]

The window command controls the destination window. The destination window is the
window in which the image is displayed. You can change the display characteristics of the
window or provide a destination window for the driver to use in place of the default
destination window.

Generally, video overlay devices should create and display a window when opened. If
your application provides a window to the driver, your application is responsible for
managing the messages sent to the window.

The window command provides several flags that let you manipulate the window. Since
you can use the status command to get the handle to the destination window, you can also
use the standard window manager functions (like ShowWindow) to manipulate the
window.

Specify one or more of the following items for parameters:

fixed
Disables stretching of the image.

handle window_handle
Specifies the handle of a window to use instead of the default destination window.

handle default
Specifies that the video overlay device should create and manage its own destination
window. This flag can be used to set the display back to the driver's default window.

state hide
Hides the destination window.

state iconic
Displays the destination window as an icon.

state maximized
Maximizes the destination window.

state minimize
Minimizes the destination window and activates the top-level window in the
window-manager's list.

state minimized
Minimizes the destination window.

Parameters

Example

Waveform Audio Commands 7-83

Specify one of the following items for parameter.

can eject
Returns false. Waveform audio devices have no media to eject.

can play
Returns true if the device can play. The device returns true if an output device
is available.

can record
Returns true if the device can record.

can save
Returns true if the device can save data.

compound device
Returns true; waveform audio devices are compound devices.

device type
Returns waveaudio.

has audio
Returns true.

has video
Returns false. Waveform audio devices don't support video.

inputs
Returns the total number of input devices.

outputs
Returns the total number of output devices.

usesfU.es
Returns true. Waveform audio devices use files for operation.

The following command returns the number of waveform output devices:

capability mysound outputs

Comments

Example

info
Syntax

Parameters

Example

Waveform Audio Commands 7-85

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command deletes the waveform data from one millisecond through 900
milliseconds (assuming the time format is set to milliseconds):

delete mysound from 1 to 900

info device_id parameter [notify] [wait]

The info command gets textual information from the device.

Specify one of the following items for parameter.

input

fIle

Returns the description of the current waveform audio input device. Returns none if
an input device is not set. The MCIW AVE driver returns Wave Audio Input and
Output Device.

Retuins the current filename.

output
Returns the description of the current waveform audio output device. Returns none if
an output device is not set. The MCIW AVE driver returns Wave Audio Input and
Output Device.

product
Returns the description of the current waveform audio output device. The MCIW AVE
driver returns Wave Audio Input and Output Device.

The following command returns the filename of the waveform file associated with the
"mysound" device:

info mysound file

pause
Syntax

Example

play
Syntax

Parameters

Comments

Example

Waveform Audio Commands 7-87

pause device _id

The pause command pauses playing or recording.

The following command pauses playback or recording in the "my sound" device:

pause mysound

play device_id [parameters] [notify] [wait]

The play command starts playing audio.

You can specify one or more of the following optional items for parameters:

from position
Specifies the starting position for the playback. If the from parameter is not specified,
playback begins at the current position.

to position
Specifies the ending position for the playback. If the to parameter is not specified,
play stops at the end of the media.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command plays the "mysound" device from the beginning:

play mysound from 1

save
Syntax

Parameters

Comments

Example

seek
Syntax

Comments

Example

Waveform Audio Commands 7-89

save device_id [filename] [notify] [wait]

The save command saves the Mel element in its current fonnat.

You can specify the following optional item:

filename
Specifies the file and path used to save data.

The filename parameter is required if the device was opened using the new device ID.

The following command saves the wavefonn data recorded into the "my sound" device:

save mysound c:\sounds\mysound.wav

seek device_id parameter [notify] [wait]

The seek command moves to the specified position and stops. Specify one of the following
items for parameter:

to position
Specifies the stop position.

to start
Seeks to the start of the first sample.

to end
Seeks to the end of the last sample.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command seeks to the end of the wavefonn data in "mysound":

seek mysound to end

Example

Waveform Audio Commands 7-91

bytespersec byte_rate
Sets the average number of bytes per second played or recorded. The file is saved in
this format.

channels channeCcount
Sets the channels for playing and recording. The file is saved in this format.

format tag tag
Sets the format type for playing and recording. The file is saved in this format.

format tag pcm
Sets the format type to PCM for playing and recording. The file is saved in this format.

input integer
Sets the audio channel used as the input.

output integer
Sets the audio channel used as the output.

samplespersec integer
Sets the sample rate for playing and recording. The file is saved in this format.

time format bytes
In a PCM file format, sets the time format to bytes. All position information is
specified as bytes following this command.

time format milliseconds
Sets the time format to milliseconds. All commands that use position values will
assume milliseconds. You can abbreviate milliseconds as ms.

time format samples
Sets the time format to samples. All position information is specified as samples
following this command.

The following command sets the time format to milliseconds and sets the waveform audio
format to 8 bit, mono, 11 kHz:

set mysound time format ms bitspersample 8 channels 1 samplespersec 11025

Comments

Example

stop
Syntax

Example

Waveform Audio Commands 7-93

number of tracks
Returns the number of tracks. The MCIW A VE device returns 1.

output
Returns the currently set output. If no output is set, the error returned indicates that
any device can be used.

position
Returns the current position.

position track track_number
Returns the position of the track specified by track_number. The MCIW A VE device
returns O.

ready
Returns true if the device is ready.

samplespersec
Returns the number of samples per second played or recorded.

start position
Returns the starting position of the media.

time format
Returns the current time format.

Before issuing any commands that use position values, you should set the desired time
format using the set command.

The following command returns the length of the waveform data in milliseconds
(assuming the time format is set to milliseconds):

status mysound length

stop device_id [notify] [wait]

The stop command stops playing or recording.

The following command stops playback or recording in the "my sound" device:

stop mysound

Chapter 8

Multimedia File Formats

This chapter describes the multimedia file formats. The chapter describes the structure of
each file type and includes detailed lists of the data structures and fields contained in the
files. The chapter also presents examples of multimedia files.

Several multimedia file formats used with Windows are based on the Resource
Interchange File Format (RIFF). This chapter defines RIFF, the preferred format for new
multimedia file types. If your application requires a new file format, you should define it
using the RIFF tagged file structure described in this chapter.

This chapter describes the following file formats:

• RIFF DIB File Format (RDIB)

• Musical Instrument Digital Interface (MIDI) File Format

• RIFF MIDI File Format (RMID)

• Palette File Format (PAL)

• Waveform Audio File Format (W AVE)

About the RIFF Tagged File Format 8-3

For example, the four-character code "SMP" is stored as a sequence of four bytes
('S' 'M' 'P' , ') in ascending addresses. For quick comparisons, a four-character code can
also be treated as a 32-bit number.

The chunk fields are as follows:

Part

ckID

ckSize

ckData

Description

Chunk ID. This four-character code identifies the representation of
the chunk data. A program reading a RIFF file can skip over any
chunk whose chunk ID it doesn't recognize; it skips the number of
bytes specified by the ckSize field plus the pad byte, if present.

Chunk size. This is a 32-bit unsigned value identifying the size of
ckData. This size value includes does not include the size of the
ckID or ckSize fields or the pad byte at the end of the ckData field.

Chunk data. This is binary data of fixed or variable size. The start of
ckData is word-aligned with the start of the RIFF file. If the size of
the chunk is an odd number of bytes, a pad byte with value zero is
written after ckData. Word aligning is done to improve access speed
(for chunks resident in memory) and for compatibility with EA IFF.
The ckSize value does not include the pad byte.

Two types of chunks, the "LIST" and "RIFF" chunks, may contain nested chunks, or
subchunks. These special chunk types are discussed later in this document. All other chunk
types store a single element of binary data in ckData.

Chunks are represented using the following notation (in this example, the ckSize field and
pad byte are implicit):

<ckID> (<ckData>)

For example, a chunk with chunk ID "SMP" might be represented as follows:

SMP (<sample-Data»

It's common to refer to chunks by their chunk ID; the chunk shown above would be called
an "SMP" chunk.

About the RIFF Tagged File Format 8-5

Defining and Registering RIFF Forms
The form-type code for a RIFF form must be unique. To guarantee this uniqueness, you
must register any new form types before release. To register form types, and to get a
current list of registered RIFF forms, request a Multimedia Developer Registration Kit
from the following group:

Microsoft Corporation
Multimedia Systems Group
Product Marketing
One Microsoft Way
Redmond, W A 98052-6399

Like RIFF forms, RIFX forms must also be registered. Registering a RIFF form does not
automatically register the RIFX counterpart. No RIFX form types are currently defined.

When you document the RIFF form, you should use the notation described in "Notation
for Representing RIFF Files," later in this chapter.

Registered Form and Chunk Types
By convention, the form-type code for registered form types contains only digits and
uppercase letters. Form-type codes that are all uppercase denote a registered, unique form
type. Use lowercase letters for temporary or prototype chunk types.

Certain chunk types are also globally unique and must also be registered before use. These
registered chunk types are not specific to a certain form type; they can be used in any
form. If a registered chunk type can be used to store your data, you should use the
registered chunk type rather than define your own chunk type containing the same type of
information.

For example, a chunk with chunk ID "INAM" always contains the name or title of a file.
Also, within all RIFF files, filenames or titles are contained within chunks with ID
"INAM" and have a standard data format.

Unregistered (Form-Specific) Chunk Types
Chunk types that are used only in a certain form type use a lowercase chunk ID. A
lowercase chunk ID has specific meaning only within the context of a specific form type.
After a form designer is allocated a registered form type, the designer can choose
lowercase chunk types to use within that form. See the Multimedia Developers
Registration Kit for details.

For example, a chunk with ID "sc1n" inside one form type might contain the "number of
scan lines." Inside some other form type, a chunk with ID "sc1n" might mean "secondary
lambda number."

Notation for Representing RIFF Files 8-7

Notation Description

<number>[<modifier>]

'<chars>'

A number consisting of an optional sign (+ or -) followed by one
or more digits and modified by the optional <modifier>. Valid
<modifier> values are as follows:

<modifier>

none

H

C

CH

L

LH

Meaning

l6-bit number in decimal format

l6-bit number in hexadecimal format

8-bit number in decimal format

8-bit number in hexadecimal format

32-bit number in decimal format

32-bit number in hexadecimal format

Several examples follow:

o
65535
-1
0L
4a3c89HL
-IC
21HC

Note that -1 and 65535 represent the same value. The application
reading this file must know whether to interpret the number as signed
or unsigned.

A four-character code (32-bit quantity) consisting of a sequence of
zero to four ASCII characters «chars» in the given order. If
<chars> is less than four characters long, it is implicitly padded on
the right with blanks. Two single quotes is equivalent to four blanks.
Examples follow.
, RIFF'
'xyz'

<chars> can include escape sequences, which are combinations of
characters introduced by a backslash (\) used to represent other
characters. Escape sequences are listed in the following section.

Notation for Representing RIFF Files 8-9

Escape Sequences for Four-Character Codes and String Chunks
The following escape sequences can be used in four-character codes and string chunks:

Escape Sequence ASCII Value (Decimal) Description

\n 10 Newline character

\t 9 Horizontal tab character

\b 8 Backspace character

\r 13 Carriage return character

\f 12 Form feed character

\\ 92 Backslash

\' 39 Single quotation mark

\" 34 Double quotation mark

\ddd Octal ddd Arbitrary character

Extended Notation for Representing RIFF Form Definitions
When documenting RIFF forms that you create, use the notation listed in the preceding
section along with the extended notation listed in the following table to unambiguously
define the structure of the new form.

Notation

<name>

Description

A label that refers to some element of the file, where name is the
name of the label, as in the following example:

<NAME-ck>
<GOBL-form>
<bitmap-bits>
<smp>

Conventionally, a label that refers to a chunk is named <ckID-ck>,
where ckID is the chunk ill. Similarly, a label that refers to a RIFF
form is named <!ormType-form>, whereformType is the name of the
form's type.

Notation

ellleI21 •.• leIN

element ...

[element] •••

{elements}

Notation for Representing RIFF Files 8-11

Description

Exactly one of the listed elements must be present, as in the
following example:

<hdr-ck> ---7 hdr«hdr-x> I <hdr-y> I <hdr-z»

This example defines the "hdr" chunk's data as containing one of
<hdr-x>, <hdr-y>, or <hdr-z>.

One or more occurrences of element may be present. Note that an
ellipsis has this meaning only if it follows an element; in other cases
(such as, A I B I ... I Z), the ellipsis has its ordinary English meaning.
If there is any possibility of confusion, an ellipsis should only be used
to indicate one or more occurrences

<data-ck> ---7 data«count:INT> <item:INT> ...)

This example defines the data of the "data" chunk to contain an
integer <count>, followed by one or more occurrences of the integer
<item>.

Zero or more occurrences of element may be present, as in the
following example:

<data-ck> ---7 data«count:INT> [<item:INT>] ...)

This example defines the data of the "data" chunk to contain an
integer <count> followed by zero or more occurrences of an integer
<item>.

The group of elements within the braces should be considered a
single element, as in the following example:

<blorg> ---7 <this> I <that> I <other> ...

This example defines <blorg> to be either <this> or <that> or one
or more occurrences of <other>. The next example defines <blorg>
to be either <this> or one or more occurrences of <that> or <other>,
intermixed in any way.

<blorg> ---7 <this> I {<that> I <other>} ...

Notation for Representing RIFF Files 8-13

Atomic Labels
The following are atomic labels, or labels that refer to primitive data types. Where
available, the equivalent Microsoft C data type is also listed.

Label Meaning MSCType

<CHAR> 8-bit signed integer signed char

<BYTE> 8-bit unsigned quantity unsigned char

<INT> 16-bit signed integer in Intel format signed int

<WORD> 16-bit unsigned quantity in Intel format unsigned int

<LONG> 32-bit signed integer in Intel format signed long

<DWORD> 32-bit unsigned quantity in Intel format unsigned long

<FLOAT> 32-bit IEEE floating point number float

<DOUBLE> 64-bit IEEE floating point number double

<STR> String (a sequence of characters)

<ZSTR> NULL-terminated string

<BSTR> String with byte (8-bit) size prefix

<WSTR> String with word (16-bit) size prefix

<BZSTR> NULL-terminated string with byte size prefix

<WZSTR> NULL-terminated string with word size prefix

NULL-terminated means that the string is followed by a character with ASCII value O.

A size prefix is an unsigned integer, stored as a byte or a word in Intel format, that
specifies the length of the string. In the case of strings with BZ or WZ modifiers, the size
prefix specifies the size of the string without the terminating NULL.

Note The WINDOWS.H header file defines the C types BYTE, WORD, LONG, and DWORD. These
types correspond to labels <BYTE>, <WORD>, <LONG>, and <DWORD>, respectively.

Storing Strings in RIFF Chunks 8-15

Since the definition of the GOBL fonn does not refer to the INFO chunk, software that
expects only "org" and "obj" chunks in a GOBL form would ignore the unknown "INFO"
chunk.

RIFF('GOBL'
LIST('INFO' II INFO list containing filename and copyright

INAM("A House"Z)
ICOP("(C) Copyright Joe Inc. 1991"Z)

org (2, 0, 0)

LIST('obj ,
poly(0,0,0
poly(0,0,5

II origin of object list

II object list containing two polygons
2,0,0 2,2,0, 1,3,0, 0,2,0)
2,0,5 2,2,5, 1,3,5, 0,2,5)

II end of form

Storing Strings in RIFF Chunks
This section lists methods for storing text strings in RIFF chunks. While these guidelines
may not make sense for all applications, you should follow these conventions if you must
make an arbitrary decision regarding string storage.

NULL-Terminated String (ZSTR) Format
A NULL-tenninated string (ZSTR) consists of a series of characters followed by a
tenninating NULL character. The ZSTR is better than a simple character sequence (STR)
because many programs are easier to write if strings are NULL-terminated. ZSTR is
preferred to a string with a size prefix (BSTR or WSTR) because the size of the string is
already available as the <ckSize> value, minus one for the terminating NULL character.

String Table Format
In a string table, all strings used in a structure are stored at the end of the structure in
packed fonnat. The structure includes fields that specify the offsets from the beginning of
the string table to the individual strings, as in the following example:

typedef struct
{

INT
WORD
WORD
INT
CHAR

} WIDGET;

iWidgetNumber;
offszWidgetName;
offszWidgetDesc;
iQuantity;
rgchStrTab[1] ;

II the widget number
II an offset to a string in <rgchStrTab>
II an offset to a string in <rgchStrTab>
II how many widgets
II string table (allocate as large as needed)

The INFO List Chunk 8-17

LIST Chunk
A LIST chunk is defined as follows:

LIST(<list-type> [<chunk>] ...

A LIST chunk contains a list, or ordered sequence, of subchunks. The <list-type> is a
four-character code that identifies the contents of the list.

If an application recognizes the list type, it should know how to interpret the sequence of
subchunks. However, since a LIST chunk may contain only subchunks (after the list type),
an application that does not know about a specific list type can still walk through the
sequence of subchunks.

Like chunk IDs, list types must be registered, and an all-lowercase list type has meaning
relative to the form that contains it.

The INFO List Chunk
The "INFO" list is a registered global form type that can store information that helps
identify the contents of the chunk. This information is useful but does not affect the way a
program interprets the file; examples are copyright information and comments. An
"INFO" list is a "LIST" chunk with list type "INFO." The following example shows a
sample "INFO" list chunk:

LIST('INFO' INAM("Two Trees"Z)
ICMT("A picture for the opening screen"Z))

An "INFO" list should contain only the following chunks. New chunks may be defined,
but an application should ignore any chunk it doesn't understand. The chunks listed below
may only appear in an "INFO" list. Each chunk contains a ZSTR, or null-terminated text
string.

ChunkID

IARL

IART

ICMS

ICMT

Description

Archival Location. Indicates where the subject of the file is archived.

Artist. Lists the artist of the original subject of the file; for example,
"Michaelangelo."

Commissioned. Lists the name of the person or organization that
commissioned the subject of the file; for example, "Pope Julian II."

Comments. Provides general comments about the file or the subject
of the file. If the comment is several sentences long, end each
sentence with a period. Do not include newline characters.

ChunkID

ISBJ

ISFT

ISHP

ISRC

ISRF

ITCH

RIFF DIB File Format (RDIB) 8-19

Description

Subject. Describes the contents of the file, such as "Aerial view of
Seattle."

Software. Identifies the name of the software package used to create
the file, such as "Microsoft WaveEdit."

Sharpness. Identifies the changes in sharpness for the digitizer
required to produce the file (the format depends on the hardware
used).

Source. Identifies the name of the person or organization who
supplied the original subject of the file; for example, "Trey
Research."

Source Form. Identifies the original form of the material that was
digitized, such as "slide," "paper," "map," and so on. This is not
necessarily the same as IMED.

Technician. Identifies the technician who digitized the subject file;
for example, "Smith, John."

RIFF DIB File Format (RDIB)
The RDIB format consists of a Windows 3.0 or Presentation Manager 1.2 DIB enclosed in
a "RIFF" chunk. Enclosing the DIB in a "RIFF" chunk allows the file to be consistently
identified; for example, an "INFO" list can be included in the file.

The "RDIB" form is defined as follows, using the standard RIFF form definition notation:

<RDIS-form> ~ RIFF C 'RDIS' II RIFF header
dataC <DIS-data>)) II bitmap data in DIS format

For information on the Windows DIB format, see the Microsoft Windows Programmer's
Reference, Volume 4: Resources.

Palette File Format (PAL) 8-21

Fields for the LOGPALETTE structure are described in the following table:

Field

palVersion

palNumEntries

palPalEntry[]

Description

Specifies the Windows version number for the structure.

Specifies the number of palette color entries.

Specifies an array of PALETTEENTRY data structures that
define the color and usage of each entry in the logical palette.

The colors in the palette entry table should appear in order of importance. This is because
entries earlier in the logical palette are most likely to be placed in the system palette.

PALETTEENTRY Structure
The PALETTEENTRY data structure specifies the color and usage of an entry in a
logical color palette. The structure is defined as follows:

typedef struct tagPALETTEENTRY {
BYTE peRed;
BYTE peGreen;
BYTE peBl ue;
BYTE peFlags;

} PALETTE ENTRY ;

Fields for the PALETTEENTRY structure are defined in the following table:

Field

peRed

peGreen

peBlue

peFlags

Description

Specifies the intensity of red for the palette entry color.

Specifies the intensity of green for the palette entry color.

Specifies the intensity of blue for the palette entry color.

Specifies how the palette entry is to be used.

Waveform Audio File Format (WAVE) 8-23

WAVE Chunk Descriptions
The chunks contained in the WAVE form definition are described in more detail in the
following table:

Chunk ID Description

fmt This chunk contains <wave-format>, which specifies the format of the
data contained in <data-ck>. The <wave-format> chunk contains a
structure consisting of the following fields:

Field

wFormatTag

nChannels

nSamplesPerSec

nAvgBytesPerSec

nBlockAlign

Description

A number which indicates the WAVE format
category of the file. The content of the
<FormatSpecific> field of the "fmC chunk, and
the interpretation of data in the "data" chunk,
depend on this value. The valid values for
<wFormatTag>, and a description of each WAVE
format category, is given in the next section.

The number of channels represented in <data-ck>,
such as 1 for mono or 2 for stereo.

The sampling rate (in samples per second) that
each channel should be played back at.

The average number of bytes per second that data
in <data-ck> should be transferred at. If
<wFormatTag> is WAVE_FORMALPCM, then
<nAvgBytesPerSec> should be equal to the
following formula:

nChannels x nBitsPerSecond x nBitsPerSample
8

Playback software can estimate the buffer size
using the <nAvgBytesPerSec> value.

The block alignment (in bytes) of the data in
<data-ck>. If <wFormatTag> is set to
WAVE_FORMAT]CM, then <nBlockAlign>
should be equal to the following formula:

nChannels X nBitsPerSample
8

Waveform Audio File Format (WAVE) 8-25

The following illustrations show the data packing for a 8-bit mono and stereo WAVE files:

Sample 1 Sample 2 Sample 3 Sample 4

Channel 0 Channel 0 Channel 0 Channel 0

Data packing for 8-bit mono PCM.

Sample 1 Sample 2

Channel 0 Channel 1 Channel 0 Channel 1
(left) (right) (left) (right)

Data packing for 8-bit stereo PCM.

The following illustrations show the data packing for 16-bit mono and stereo WAVE files:

Sample 1 Sample 2

Channel 0 Channel 0 Channel 0 Channel 0

low-order byte high-order byte low-order byte high-order byte

Data packing for 16-bit mono PCM.

Sample 1

Channel 0 Channel 0 Channel 1 Channel 1
(left) (left) (right) (right)

low-order byte high-order byte low-order byte high-order byte

Data packing for 16-bit stereo PCM.

Waveform Audio File Format (WAVE) 8-27

Examples of WAVE Files
The following PCM WAVE file has a 11.025 kHz sampling rate, mono, 8 bits per sample:

RIFF('WAVE' fmt(l, 1, 11025, 11025, 1,8)
data(<wave-data>))

The following PCM WAVE file has a 22.05 kHz sampling rate, stereo, 8 bits per sample:

RIFF('WAVE' fmt(l, 2, 22050, 44100, 2, 8)
data(<wave-data>))

The following PCM WAVE file has a 44.1 kHz sampling rate, mono, 20 bits per sample:

RIFF('WAVE' INFO(INAM("O Canada"Z))
fmt(l, 1, 44100, 132300, 3, 20)
data(<wave-data>))

Appendix A

MCI Command String Syntax Summary

This appendix provides a summary of the syntax of the MCI command strings.
The following command tables are included in this chapter:

• System command set

• Required command set

• Basic command set

• Animation command set

• CD audio command set

• MIDI sequencer command set

• Videodisc command set

• Video overlay command set

• Waveform audio command set

For information on using MCI command strings and descriptions of the
commands, see Chapter 7, "MCI Command Strings."

About the Command Tables A-3

The following conventions are used in the previous example and for the other Mel
command tables:

Type Style

Bold

Italics

{}

[]

Used For

A specific term intended to be used literally. When
used in the command column, it represents the Mel
string command. When used in the arguments column,
it represents a flag. For example, the capability
command and the can play flag must be typed as
shown.

Placeholders for information you must provide. The
Mel command or flag associated with the information
must precede it. For example, to use the alias words
for the device_name with the capability command,
type "capability words can play."

Divider for mutually exclusive arguments. When
multiple arguments are separated by this symbol, only
one of them can be used for each command. For
example, the items in the list can eject, can play, can
record, can save, compound device, device type, has
audio, has video, uses files are mutually exclusive
and you must select only one to use with the
capability command. (Do not type the I with the
argument.)

Required argument. You must include an argument
enclosed by braces. For example, you must use one of
the arguments can eject, can play, can record, can
save, compound device, device type, has audio, has
video, uses files with the capability command. (Do
not type the braces with the argument.)

Optional argument. For example, the alias, type and
shareable flags are optional for the open command.
You can use any combination of these flags. You can
also use optional arguments with a required argument.
(Do not type the brackets with the argument.)

Command

open device_name

status device_name

Basic Command Set

Arguments

[alias device_alias]

[shareable]

[type device_type]

[mode I ready]

Basic Command Set A-5

In addition to the commands described previously, each device supports a set of
commands specific to its device type. Although these commands are optional for a
device, if a command is used it must support the options listed in this table as a
minimum set of capabilities. Basic commands also support notify and wait as
optional flags. You can add either or both of these flags to any basic command.

Command

load device_name

pause device_name

play device_name

record device_name

resume device_name

save device_name

seek device_name

Arguments

[from position]

[to position]

[from position]

[to position]

[insert I overwrite]

[file _name]

{to position I to start I to end}

Animation Command Set A-7

Animation Command Set
Animation devices support the following set of commands. These devices also
support notify and wait as optional flags. You can add either or both of these flags
to any animation command.

Command

capability device_name

close device_name

info device_name

open device_name

pause device_name

Arguments

{can eject
can play
can record
can reverse
can save
can stretch
compound device
device type
fast play rate
has audio
has video
normal play rate
slow play rate
uses files
uses palettes
windows}

[file I product I window text]

[alias device_alias]

[nostatic]

[parent hwnd]

[shareable]

[style child
I style overlapped
I style popup]

[type device_type]

Command

status device_name

step device_name

stop device_name

update device_name

where device_name

window device_name

Arguments

{current track
forward
length

Animation Command Set A-9

length track track_number
media present
mode
number of tracks
palette handle
position
position track track_number
ready
speed
start position
stretch
time format
window handle}

[by frames]

[reverse]

[at updateJect]

[hdc hdc]

{destination I source}

[handle window_handle I handle default]

[stretch I fixed]

[state hide
I state iconic
I state maximized
I state minimize
I state minimized
I state no action
I state no activate
I state normal
I state show]

[text caption_text]

Command

set device_name

status device_name

stop device_name

Arguments

[audio all off
, audio all on
, audio left off
, audio left on
, audio right off
, audio right on
'video off
'video on]

Audio CD Command Set A-11

[door closed' door open]

[time format milliseconds
, time format ms
, time format msf
, time format tmsf]

{current track
'length
'length track track_number
, media present
'mode
, number of tracks
, position
, position track track_number
, ready
, start position
'time format}

Command

set device_name

Arguments

[audio all off
I audio all on
I audio left off
I audio left on
I audio right off
I audio right on
I video off
I video on]

[master MIDI
I master none

MIDI Sequencer Command Set A-13

I master SMPTE]

[offset hmsLvalue]

[port porcnumber
I port mapper
I port none]

[slave file
I slave MIDI
I slave none
I slave SMPTE]

[tempo tempo_value]

[time format milliseconds
I time format ms
I time format smpte 24
I time format smpte 25
I time format smpte 30
I time format smpte 30 drop
I time format song pointer]

Videodisc Command Set A-15

Videodisc Command Set
Videodisc players support the following set of commands. Videodisc devices also
support notify and wait as optional flags. You can add either or both of these flags
to any videodisc command.

Command

capability device_name

close device_name

escape device_name

info device_name

open device_name

pause device_name

play device_name

resume device_name

seek device_name

Arguments

{can eject
can play
can record
can reverse
can save
compound device
device type
fast play rate
has audio
has video
normal play rate
slow play rate
uses fIles}

[CAY I CLV]

{command_string}

[product]

[alias device_alias]

[shareable]

[fast I slow I speedJPs]

[from position]

[scan]

[to position I reverse]

[reverse I to position I to start I to end]

Video Overlay Command Set A-17

Video Overlay Command Set
Video overlay devices supports the following set of commands. Video overlay
devices also support notify and wait as optional flags. You can add either or both
of these flags to any video overlay command.

Command

capability device_name

close device_name

freeze device_name

info device_name

load device_name

open device_name

Arguments

{can eject
I can freeze
I can play
I can record
I can save
I can stretch
I compound device
I device type
I has audio
I has video
I uses files
I windows}

[at rectangle]

[product I file I window text]

[file_name]

at buffer Jectangle

[alias device_alias]

[parent hwnd]

[shareable]

[style style_type
I style child
I style overlapped
I style popup]

[type device_type]

Command

window device_name

Waveform Audio Command Set A-19

Arguments

[handle window _handle I handle default]

[stretch I fixed]

[state hide
I state iconic
I state maximized
I state minimize
I state minimized
I state no action
I state no activate
I state normal
I state show]

[text caption_text]

Waveform Audio Command Set
Wave audio devices support the following set of commands. Wave audio devices
also support notify and wait as optional flags. You can add either or both of these
flags to any wave audio command.

Command

capability device_name

close device_name

cue device_name

Arguments

{can eject
I can play
I can record
I can save
I compound device
I device type
I has audio
I has video
I inputs
I outputs
I uses mes}

[input I output]

Command

set device_name

Waveform Audio Command Set A-21

Arguments

[alignment block_alignment]

[any input]

[any output]

[audio all off
I audio all on
I audio left off
I audio left on
I audio right off
I audio right on
I video otT
I video on]

[bitspersample bitJount]

[bytespersec byteJate]

[channels channeLcount]

[format tag tag I format tag pcm]

[input device_number]

[output device_number]

[samplespersec sampleJate]

[time format milliseconds
I time format ms
I time format bytes
I time format samples]

Appendix B

Manufacturer ID and Product ID lists

This appendix provides lists of the manufacturer and product IDs currently used
with the multimedia extensions of Windows. This list will grow as more
manufacturers create multimedia products for Windows.

To get a current list of manufacturer and product IDs for the multimedia
Extensions, and to register new ones, request a Multimedia Developer Registration
Kit from the following group:

Microsoft Corporation
Multimedia Systems Group
Product Marketing
One Microsoft Way
Redmond, W A 98052-6399

Index
A
Alert sounds, 2-2
Alias flag, 7-15
Animation

command strings, 7-32, 7-44
Application Programming Interface (API)

for multimedia, 1-1
Atomic labels, 8-13
Automatic open/close, 7-18
AUXCAPS data structure, 6-9 to 6-10
auxGetDevCaps,3-3
auxGetNumDevs, 3-4
auxGetVolume, 3-4 to 3-5
Auxiliary audio

command messages, 4-10
data structures, 6-3
functions, 2-13

auxOutMessage,3-5
auxSetVolume,3-6

B
Beep, sounding, 2-2
break system command string, 7-6, 7-21
Break key

break command string, 7-21
setting with command message, 4-8
setting with command string, 7-6
and wait flag, 7-11

BSTR format, RIFF, 8-15
BZSTR format, RIFF, 8-16

c
Callback functions

waveform recording messages, 4-3
MIDI playback messages, 4-4
MIDI recording messages, 4-4 to 4-5
sending messages to with MCCNOTIFY, 7-11
waveform playback messages, 4-2

capability command string
animation, 7-32
compact disc audio, 7-45
MIDI sequencer, 7-52
required command, 7-6
using, 7-16
video overlay, 7-72
videodisc player, 7-63
waveform audio, 7-83

Clipping rectangle, 4-9
close command string

animation, 7-33
compact disc audio, 7-46
MIDI sequencer, 7-53
required command, 7-6
system command, 7-24
using, 7-17
video overlay, 7-73
videodisc player, 7-64
waveform audio, 7-84

Compact disc audio
command string playback example, 7-20
command strings, 7-45, 7-51
functions, 2-13
MCI time-format macros, 2-18 to 2-19

Compound device
alias, 7-15
definition, 7-13

cue command stringwaveform, 7-84
Custom file I/O procedures, 2-16

D
Data blocks

MIDI playback messages, 4-4
waveform functions, 2-4
waveform playback messagcs, 4-2

Data buffer
MIDI recording messages, 4-4 to 4-5
waveform functions, 2-4
waveform recording messages, 4-3

Data structures
auxiliary audio, 6-3
for basic command messages, 6-5
file I/O, 6-7
for extended MCI command messages, 6-6
for MCI system command messages, 6-4
for required command messages, 6-4 to 6-5
joystick,6-3
MIDI, 6-7
timer, 6-7
waveform, 6-8

Data types
atomic labels, 8-13
multimedia APls, 6-2

Debugging functions, 2-20
delete command stringwaveform audio, 7-84

J
JOYCAPS data structure, 6-10 to 6-11
joyGetDevCaps, 3-7
joyGetNumDevs, 3-7
joyGetPos,3-8
joyGetThreshold, 3-8 to 3-9
JOYINFO data structure, 6-11 to 6-12
joyReleaseCapture, 3-9
joySetCapture, 3-10
joySetThreshold, 3-11
Joystick devices

L

function data structures, 6-3
functions, 2-19
messages, 4- 1 0 to 4-11

LIST chunk, 8-17, 8-19
load command string

basic command, 7-7
device-specific, 7-27

Logical palette structure, 8-20
LOGP ALETTE data structure

fields, 8-21
palette files, 8-20

M
Manufacturer IDs, B-2
MCI

command messages, 4-6 to 4-9
command messages

sending to device, 2-17
window notification, 4-10

command strings
animation, 7-32, 7-44
basic, 7-7
compact disc audio, 7-45, 7-51
device-opening, 7-12
device-specific basic commands, 7-26
MIDI sequencer, 7-52, 7-62
required, 7-6, 7-23
sending to all devices, 7-17
sending to device, 2-17
syntax, 7-2, 7-9
system, 7-6, 7-21
video overlay, 7-72, 7-82
videodisc player, 7-63, 7-72
waveform, 7-82, 7-93

MCI (continued)
data structures

for basic command messages, 6-5
for extended command messages, 6-6
for required command messages, 6-4 to 6-5
for system command messages, 6-4

device drivers, 7-4
device types, 7-2 to 7-3

Index 3

MCCANIM_OPEN_PARMS data structure, 6-12 to 6-13
MCCANIM_PLAY]ARMS data structure, 6-13 to 6-14
MCCANIM_RECT]ARMS data structure, 6-14
MCCANIM_STEP] ARMS data structure, 6-14 to 6-15
MCCANIM_UPDATE]ARMS data structure, 6-15
MCCANIM_ WINDOW]ARMS data structure, 6-16
MCCBREAK command message, 5-3
MCCBREAK_PARMS data structure, 6-17
MCCCLOSE command message, 5-4
MCCCOPY command message, 5-4 to 5-5
MCCCUE command message, 5-5 to 5-6
MCCCUT command message, 5-6
MCLDELETE command message, 5-7 to 5-8
MCCESCAPE command message, 5-8
MCCFREEZE command message, 5-9
MCCGENERIC]ARMS data structure, 6-18
MCCGETDEVCAPS command message, 5-10 to 5-15
MCCGETDEVCAPS_PARMS data structure, 6-18
MCLHMS_HOUR,3-11
MCLHMS_MINUTE,3-12
MCLHMS_SECOND,3-12
MCCINFO command message, 5-15 to 5-17
MCCINFO _P ARMS data structure, 6-19
MCLLOAD command message, 5-17 to 5-18
MCCLOAD] ARMS data structure, 6-19
MCLMAKE_HMS, 3-13
MCLMAKE_MSF,3-13
MCLMAKE_TMSF,3-14
MCLMSF_FRAME,3-14
MCLMSF_MINUTE,3-15
MCLMSF_SECOND,3-15
MCCOPEN command message, 5-18 to 5-22
MCCOPEN]ARMS data structure, 6-20
MCCOVLY_LOAD]ARMS data structure, 6-21
MCCOVLY_OPEN]ARMS data structure, 6-21 to 6-22
MCCOVLY_RECT]ARMS data structure, 6-22 to 6-23
MCCOVLY_SAVE_PARMS data structure, 6-23
MCC OVL Y _WINDOW] ARMS data structure, 6-24
MCCPASTE command message, 5-23
MCCPAUSE command message, 5-23 to 5-24
MCCPLA Y command message, 5-24 to 5-26
MCCPLA Y] ARMS data structure, 6-25
MCCPUT command message, 5-26 to 5-28

MM_JOY2BUTTONUP message, 5-67
MM_JOY2MOVE message, 5-68
MM_JOY2ZMOVE message, 5-68 to 5-69
MM_MCINOTIFY message, 5-69 to 5-70, 7-11
MM_MIM_CLOSE message, 5-70
MM_MIM_DATA message, 5-71
MM_MIM_ERROR message, 5-71
MM_MIM_LONGDATA message, 5-72
MM_MIM_LONGERROR message, 5-72
MM_MIM_ OPEN message, 5-73
MM_MOM_CLOSE message, 5-73
MM_MOM_DONE message, 5-73
MM_MOM_OPEN message, 5-74
MM_ WIM_ CLOSE message, 5-74
MM_ WIM_DATA message, 5-74
MM_ WIM_OPEN message, 5-75
MM_ WOM_ CLOSE message, 5-75
MM_ WOM_DONE message, 5-75
MM_ WOM_OPEN message, 5-76
MMCKINFO data structure, 6-40
mmioAdvance, 3-54 to 3-55
mmioAscend, 3-56
mmioClose, 3-57
mmioCreateChunk, 3-57 to 3-58
mmioDescend, 3-59 to 3-60
mmioF1ush, 3-61
mmioFOURCC,3-61
mmioGetlnfo, 3-62
MMIOINFO data structure, 6-41 to 6-43
mmioInstallIOProc, 3-63 to 3-65
MMIOM_CLOSE message, 5-76
MMIOM_OPEN message, 5-76 to 5-77
MMIOM_READ message, 5-77
MMIOM_RENAME message, 5-78
MMIOM_SEEK message, 5-78
MMIOM_ WRITE message, 5-79
MMIOM_ WRITEFLUSH message, 5-79
mmioOpen, 3-66, 3-68 to 3-69
mmioRead, 3-70
mmioRename, 3-70
mmioSeek, 3-71
mmioSendMessage, 3-72
mmioSetBuffer, 3-72 to 3-73
mmioSetInfo, 3-73 to 3-74
mmioStringToFOURCC, 3-74
mmioWrite, 3-74 to 3-75
MMSYSTEM.H header file, 6-1
mmsystemGetVersion, 3-75
MMTIME data structure, 6-44 to 6-45
MOM_CLOSE message, 5-80
MOM_DONE message, 5-80
MOM_OPEN message, 5-80

Index 5

Movie Player
extended command message data structures, 6-6

Multiline string format, RIFF, 8-16

N
Naming conventions

function, 1-2
function prefix, 3-2
message, 1-3
message prefix, 5-2
parameter, 1-3

Notes, MIDI, 2-10
Notification messages, 4-10
Notify flag, 7-11

automatic close, 7-18

o
open command string

alias flag, 7-15
animation, 7-34
compact disc audio, 7-46
compound device, 7-13
required command, 7-6
shareable flag, 7-15
simple device, 7-13
using, 7-12
video overlay, 7-75
videodisc player, 7-65
waveform audio, 7-86

OutputDebugStr,3-75
Overlay video, 7-72

p
PAL files, 8-20 to 8-21
PALETTEENTRY data structure, 8-21
Palettes

file format, 8-20 to 8-21
realizing with MCI, 4-9

Parameters, naming conventions, 1-3
Patch-caching functions, 2-12
pause command string

animation, 7-35
basic command, 7 -7
compact disc audio, 7-47
MIDI sequencer, 7-54
suspend playback or recording, 7-17
videodisc player, 7-66
waveform audio, 7-87

PCM data format, 8-24, 8-26
PCMW A VEFORMAT data structure, 6-46

sndPlaySound, 3-76 to 3-77
status command string, 7 -16

animation, 7 -40
compact disc audio, 7-50
device-specific, 7-31
MIDI sequencer, 7-60
required command, 7-6
system command, 7-26
video overlay, 7-79
videodisc player, 7-70
waveform audio, 7-92

step command string
animation, 7-42
videodisc player, 7-71

stop command string
animation, 7-42
basic command, 7-7
compact disc audio, 7-51
device-specific, 7-32
MIDI sequencer, 7-62
stop playback or recording, 7-17
videodisc player, 7-72
waveform audio, 7-93

Storage systems, 2-16
String chunk, 8-9
String table format, RIFF, 8-15
sysinfo system command string, 7-6, 7-22
SYSTEM.INI

T

[mci extensions] section, 7-14
[mci] section, 7-4
querying device information, 7-22

Tempo, in command string example, 7-21
Time format, encoded, 2-18 to 2-19
Time format, setting audio with command string, 7-30
timeBeginPeriod, 3-77
TIMECAPS data structure, 6-46
timeEndPeriod, 3-78
timeGetDevCaps, 3-78
timeGetSystemTime, 3-78 to 3-79
timeGetTime, 3-79
timeKillEvent, 3-79
Timer services

function data structures, 6-7
functions, 2-20

timeSetEvent, 3-80 to 3-81
Timestamp, 4-5

u
unfreeze command stringvideo overlay, 7-80
update command string, 7-42

v
Video overlay

command message data structures, 6-6
command strings, 7-72, 7-82

Videodisc players
command message data structures, 6-6
command strings, 7-63, 7-72
functions, 2-13
MCItime-format macros, 2-18 to 2-19

Volume, setting MIDI, 2-12

Index 7

w ______________________ _
Wait flag

break key command, 7-21
using, 7-11

WAVE files
chunks, 8-23
defined in RIFF form notation, 8-22
format categories, 8-24
PCM format, 8-24, 8-26
sample, 8-27

Waveform audio
command strings, 7-82, 7-93
data block preparation functions, 2-4
data buffer preparation functions, 2-4
device ID functions, 2-4
device-closing functions, 2-3
device-inquiry functions, 2-3
device-opening functions, 2-3
device-positioning functions, 2-5
driver message functions, 2-7
error-handling functions, 2-7
function data structures, 6-8
memory-resident playback functions, 2-2
module description, 1-1
pitch- and playback-scaling functions, 2-6
playback functions, 2-5
playback messages, 4-2
playback volume functions, 2-7
recording functions, 2-6
recording messages, 4-3
WAVE file format, 8-22

W A VEFORMAT data structure, 6-47
W A VEHDR data structure, 6-48 to 6-49
wavelnAddBuffer, 3-82
WAVEINCAPS data structure, 6-49, 6-51
wavelnClose, 3-82 to 3-83
wavelnGetDevCaps, 3-83
wavelnGetErrorText, 3-84
wavelnGetlD, 3-84
wavelnGetNumDevs, 3-85

