Multimedia Programmers
Reference

WINDOWS

SOFTWARE DEVELOPMENT KIT

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure agree-
ment and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ-
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

ITC Zapf Chancery and ITC Zapf Dingbats fonts. Copyright © 1991 International Typeface Corpora-
tion. All rights reserved.

Copyright © 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino,
Times, and Times Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright © 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, and CodeView are registered trademarks, and Windows is a trademark of
Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.

The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of
AGFA Compugraphic Division of Agfa Corporation.

TrueType is a registered trademark of Apple Computer, Inc.

Epson is a registered trademark of Epson America, Inc.

Hewlett-Packard, HP, and LaserJet are registered trademarks of Hewlett-Packard Company.

ITC Zapf Chancery and ITC Zapf Dingbats are registered trademarks of the International Typeface
Corporation.

Helvetica, Palatino, Times, and Times Roman are registered trademarks of Linotype AG and/or its
subsidiaries.

Arial and Times New Roman are registered trademarks of the Monotype Corporation PLC.

Document No. PC30211-0492

Microsoft Windows Programmer’s Reference

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Font File Format

4.1 Organization of a FOnt File...........ccocevteviiniiiininiiniieieeseseteeseeee e
4.2 FONt-File StrUCIUTE.cceeereieieieieiesreereestesteeteeteeeesaessesseeeesseeseeseesaesaennas
4.3 Version-Specific Glyph Tablescccocereveierrninieneneecneseenereeeeenen

Group File Format

5.1 Organization of @ Group File.........cccccceveriirinininenierienerccneseesereeeenene
5.2 Group-File StrUCULEScoeoeeuerieenreieiiieente ettt seenenene
5.2.1 Group-File Headercocceeeerviininieeeieieseeceeete et
522 Ttem Data.......cocoioiiiiiicitc e
523 TaAZ DALA.....couiiiiiirieieieeece ettt aes

Executable-File Header Format

6.1 MS-DOS HEAETc.evevreriereceeeteeteecteeete ettt eve e b s s
6.2 WindoWS HEAAETcoveeueierieeiceieeteeeere ettt et eae e e nes
6.2.1 Information BIOCKc.oouvievieiviieeieeeiceeceeee et
6.2.2 Segment Tableccc.ooeviiviniiiineeeeee e
6.2.3 ReSoUICe TabIe........oocvieeriecieeeceeeeeeeee et eere e re e
6.2.4 Resident-Name Tableccoveeeviieiiieeeeeceeeeeeeee e
6.2.5 Module-Reference Tablec.ooveeeeeeeeeeeeereereeeeeeeeeeeeeeeeeareene e
6.2.6 Imported-Name Table..........occoeriereininininenesercecreeeee e
6.2.7 Entry Table.....cccooiiriiriiriiiieceeetet ettt
6.2.8 Nonresident-Name Table.........c..coveeeeeieeerieeeeeireeeeeeeeeeie v
6.3 Code Segments and Relocation Datacceeeeveeeevenieneeineneeseneeneene

Resource Formats Within Executable Files

Tl ICON RESOUICEeveeeeveeeieceieeteereeteete et eete et eaeeeveesbeeetreesseeseebeesseesaesaens
7.2 Icon-Directory RESOUICEccccevueeruerieniinieieieieereseestetee st
7.3 CUISOT RESOUICEevveeniieeiiieeeecteeetee ettt eee e nr e etaeeeate e seeeaseenneees
7.4 Cursor-Directory RESOUICE........cceoueieeirieneeienieeieee et
T.5 MENURESOUICEc.evveereicteeceeceteectee ettt ettt este e beeeanaenneees
7.5.1 Menu Headeroooveeieeieceeee ettt et e e
7.5.2 Pop-up Menu Itemcccoouiriiiiiiieeeceececee e
7.5.3 Normal Menu Item.........c.eoeveeiiieeeriiceeeeeeeeee e re e
754 Combined Menu Ite€mSccovveeeeieieivieeeiieeeeee e eesreeeee e
7.6 Dialog BOX RESOUICE......cc.cueiruiieiriiiiinienteieieeree ettt
7.6.1 Dialog BOX HEAdETc.evveeeeieiieiieiieieeteeee et
7.6.2 CONLLOL DALA....ccveivieieceieeeeeeere ettt ere e e ear e sseseennes

47

49
49
56

59

61
61
61
63
64

67

69
70
71
74
75
78
78
78
78
80
80

vi Microsoft Windows Programmer’s Reference

Chapter12 Symbol File Format

12.1 Map Defifitionsccccceeueriiirierieeeienieiesienteteresentestesesrestesteneesesee e aseeseens
122 Segment Definitions.................... eeeee ettt et sae st saesae s e e e e st st nes
12.3 Symbol Defilitions.......c.cccvueueverieinieirinieieieerte ettt sienes
12.4 Constant Definitionsc.ccoeeverveeeeriinreniereeenieeteeeeseseeesteseeesveseeneeseens
12,5 Line Defifitionsccoeveeirierenienieieerieenieniesteesesiesteesseseenteneeresseesaeseeesens

12.5.1
12.5.2

Part2 Tools Reference

Chapter 13

Chapter 14

Resource-Definition Statements

13.1 Alphabetic REfEIENCEccveerveieiieeerierieietnierieeeee et

Assembly-Language Macros

14.1 Creating Assembly-Language Windows Applications.........c.ccceecerveuvenee.
14.1.1 Specifying a Memory Modelc.cccevevenineneennneneeeneneereeneenes
14.1.2 Selecting a Calling Conventionc....ceeeeereercreneeeenenseenieeennes
14.1.3 Enabling the Windows Prolog/Epilog Option.........ccc.ccceeureunuencnn
14.1.4 Including the CMACROS.INCFileccccoeveevirieieiececeseeeevene
14.1.5 Creating the Application Entry Pointcccccecervevineeevneniinennns
14.1.6 Declaring Callback FUNCLONS.........cceverveererirerieieirneeninneensesennas
14.1.7 Linking with Librariesccccocevevrermeenrienneeneceeeneseseeneens
14.1.8 Enabling Stack ChecKing........cccoeeeeieininiivreniineniiiiinicincnneineas

14.2 CmACIO GIOUPS....cuirtirertriirierteitrientessestetesrerassessessesessessensesessessessesessensensas
14.2.1 Segment MACTOSccccocerverieriererienieneeeenee ettt eenee
1422 Storage-Allocation MaCIOS.......ccccevvereeeenteninieeientenre e sesee e
14.2.3 FUnCtion MAcCIOSc..coveeeruierieeenierieeiereereeteseesre e eeeteseeseesseeeenee
14.2.4 Call MACIOScoueeueiiieienieneentenieenresiestestesesiesieteeesessessestsbeseesseneeneen
14.2.5 Special-Definition Macros........c.ceeeeriereereririereneerenieseesienseseeseenns
14.2.6 EITOT MACTOS «....ecueeeiiiecetrieirecenteecteiccsee et se e esaeneseeenae

14.3 USING the CMACTOSccveuieviriieteiriririerteteeterestesteneaesestestenseseeesessassesaenes
14.3.1 OVerriding TYPES «cveeeververeenerrieeriententeeeesresieseeseesesteseeensesesessessens
14.3.2 Symbol Redefinitioncccccevieeerueruineniererenieneeinenreneeesienieeneeenens
14.3.3 Sample Cmacros FUnCtion.......cc.eceeeviereeenienenereenenieneeeneneeeeenes

14.4 Alphabetic REfEIENCEcoevviverriereriirieieiieteetetete et svens

141

143
145
147
148
148
148
150

X Microsoft Windows Programmer’s Reference

Document Conventions

The following conventions are used throughout this manual to define syntax:

Convention

Meaning

Bold text

Italic text

[]
!

BEGIN

END

Denotes a term or character to be typed literally, such as a
resource-definition statement or function name (MENU or
CreateWindow), an MS-DOS command, or a command-line
option (/mod). You must type these terms exactly as shown.

Denotes a placeholder or variable: You must provide the ac-
tual value. For example, the statement SetCursorPos(X,Y) re-
quires you to substitute values for the X and Y parameters.

Enclose optional parameters.

Separates an either/or choice.

Specifies that the preceding item may be repeated.
Represents an omitted portion of a sample application.

In addition, certain text conventions are used to help you understand this material:

Convention

Meaning

SMALL CAPITALS

FULL CAPITALS

monospace

Indicate the names of keys, key sequences, and key com-
binations—for example, ALT+SPACEBAR.

Indicate filenames and paths, most type and structure
names (which are also bold), and constants.

Sets off code examples and shows syntax spacing.

6

Microsoft Windows Programmer’s Reference

color format and the width, in pixels, of the bitmap. If necessary, a scan line must
be zero-padded to end on a 32-bit boundary. However, segment boundaries can ap-
pear anywhere in the bitmap. The scan lines in the bitmap are stored from bottom
up. This means that the first byte in the array represents the pixels in the lower-left
corner of the bitmap and the last byte represents the pixels in the upper-right
corner.

The biBitCount member of the BITMAPINFOHEADER structure determines
the number of bits that define each pixel and the maximum number of colors in the
bitmap. These members can have any of the following values:

Value Meaning

1 Bitmap is monochrome and the color table contains two entries.
Each bit in the bitmap array represents a pixel. If the bit is clear, the
pixel is displayed with the color of the first entry in the color table. If
the bit is set, the pixel has the color of the second entry in the table.

4 Bitmap has a maximum of 16 colors. Each pixel in the bitmap is rep-
resented by a 4-bit index into the color table. For example, if the first
byte in the bitmap is Ox1F, the byte represents two pixels. The first
pixel contains the color in the second table entry, and the second
pixel contains the color in the sixteenth table entry.

8 Bitmap has a maximum of 256 colors. Each pixel in the bitmap is
represented by a 1-byte index into the color table. For example, if the
first byte in the bitmap is Ox1F, the first pixel has the color of the
thirty-second table entry.

24 Bitmap has a maximum of 2?* colors. The bmiColors (or bmci-
Colors) member is NULL, and each 3-byte sequence in the bitmap
array represents the relative intensities of red, green, and blue, respec-
tively, for a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the
number of color indexes in the color table actually used by the bitmap. If the bi-
ClIrUsed member is set to zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member.

An alternative form of bitmap file uses the BITMAPCOREINFO, BITMAP-
COREHEADER, and RGBTRIPLE structures.

For a full description of the bitmap structures, see the Microsoft Windows Pro-
grammer’s Reference, Volume 3.

1.1.2 Bitmap Compression

Windows versions 3.0 and later support run-length encoded (RLE) formats for
compressing bitmaps that use 4 bits per pixel and 8 bits per pixel. Compression re-
duces the disk and memory storage required for a bitmap.

8 Microsoft Windows Programmer’s Reference

1.1.2.2 Compression of 4-Bits-per-Pixel Bitmaps

When the biCompression member of the BITMAPINFOHEADER structure is
set to BI_RLE4, the DIB is compressed using a run-length encoded format for a
16-color bitmap. This format uses two modes: encoded mode and absolute mode.

Encoded Mode A unit of information in encoded mode consists of two bytes.
The first byte of the pair contains the number of pixels to be drawn using the color
indexes in the second byte.

The second byte contains two color indexes, one in its high-order nibble (that is,
its low-order 4 bits) and one in its low-order nibble. The first pixel is drawn using
the color specified by the high-order nibble, the second is drawn using the color in
the low-order nibble, the third is drawn with the color in the high-order nibble, and
so on, until all the pixels specified by the first byte have been drawn.

The first byte of the pair can be set to zero to indicate an escape that denotes the
end of a line, the end of the bitmap, or a delta. The interpretation of the escape de-
pends on the value of the second byte of the pair. In encoded mode, the second
byte has a value in the range 0x00 through 0x02. The meaning of these values is
the same as for a DIB with 8 bits per pixel.

Absolute Mode In absolute mode, the first byte contains zero, the second byte
contains the number of color indexes that follow, and subsequent bytes contain
color indexes in their high- and low-order nibbles, one color index for each pixel.
Each run must be aligned on a word boundary.

Following is an example of a 4-bit RLE bitmap (the one-digit hexadecimal values
in the second column represent a color index for a single pixel):

Compressed data Expanded data

03 04 040

05 06 06060

00 06 45 56 67 00 455667

0478 7878

0002 05 01 Move 5 right and 1 down
04 78 7878

00 00 End of line

09 1IE 1IE1EIEIE1

0001 End of RLE bitmap

10

Microsoft Windows Programmer’s Reference

1.2 Icon-Resource File Format

An icon-resource file contains image data for icons used by Windows applica-
tions. The file consists of an icon directory identifying the number and types of
icon images in the file, plus one or more icon images. The default filename exten-
sion for an icon-resource file is .ICO.

1.2.1 Icon Directory

Each icon-resource file starts with an icon directory. The icon directory, defined as
an ICONDIR structure, specifies the number of icons in the resource and the di-
mensions and color format of each icon image. The ICONDIR structure has the
following form:

typedef struct ICONDIR {

WORD idReserved;
WORD idType;
WORD idCount;

ICONDIRENTRY idEntries[1];
} ICONHEADER;

Following are the members in the ICONDIR structure:

idReserved
Reserved; must be zero.

idType

Specifies the resource type. This member is set to 1.
idCount

Specifies the number of entries in the directory.

idEntries
Specifies an array of ICONDIRENTRY structures containing information
about individual icons. The idCount member specifies the number of structures
in the array.

The ICONDIRENTRY structure specifies the dimensions and color format for an
icon. The structure has the following form:

struct IconDirectoryEntry {
BYTE bWidth;
BYTE bHeight;
BYTE bColorCount;
BYTE bReserved;
WORD wPlanes;
WORD wBitCount;
DWORD dwBytesInRes;
DWORD dwImageOffset;

12

Microsoft Windows Programmer’s Reference

The XOR mask, immediately following the color table, is an array of BYTE
values representing consecutive rows of a bitmap. The bitmap defines the basic
shape and color of the icon image. As with the bitmap bits in a bitmap file, the
bitmap data in an icon-resource file is organized in scan lines, with each byte repre-
senting one or more pixels, as defined by the color format. For more information
about these bitmap bits, see Section 1.1, “Bitmap-File Formats.”

The AND mask, immediately following the XOR mask, is an array of BYTE
values, representing a monochrome bitmap with the same width and height as the
XOR mask. The array is organized in scan lines, with each byte representing 8
pixels.

When Windows draws an icon, it uses the AND and XOR masks to combine the
icon image with the pixels already on the display surface. Windows first applies
the AND mask by using a bitwise AND operation; this preserves or removes ex-
isting pixel color. Windows then applies the XOR mask by using a bitwise XOR
operation. This sets the final color for each pixel.

The following illustration shows the XOR and AND masks that create a mono-
chrome icon (measuring 8 pixels by 8 pixels) in the form of an uppercase K:

AND mask XOR mask Resulting icon
olofl|l|1]|0|0]1 l1|1|e|o|of1|1]|@ KK KK
olo|1]|1]e]eo|1]1 1{1|efe|1]1|o]e K|k K|K
olof1]e]e]1f1]1 1{1]e]|1]|1]|e|0]e K|k K|K
olojojoj1]1|1]1 1{1]1]1]e]o]|o]e KIK|K|K
olojofof1]1|1]1 1|11({1|1|0|0|0|0 KIK]K|K
ole|1lefe|1]1]1 1{1]e[1]|1]o|0o]e KK K|K
olo|1|1]ofo|1]1 1|1|efe|1]1|o]e KK K|K
oloj1f1]|1]efo]1 1|1]e]efe]1]|1]e K|k K|k

1.2.3 Windows Icon Selection

Windows detects the resolution of the current display and matches it against the
width and height specified for each version of the icon image. If Windows deter-
mines that there is an exact match between an icon image and the current device, it
uses the matching image. Otherwise, it selects the closest match and stretches the
image to the proper size.

If an icon-resource file contains more than one image for a particular resolution,
Windows uses the icon image that most closely matches the color capabilities of
the current display. If no image matches the device capabilities exactly, Windows
selects the image that has the greatest number of colors without exceeding the
number of display colors. If all images exceed the color capabilities of the current
display, Windows uses the icon image with the least number of colors.

14 Microsoft Windows Programmer’s Reference

Following are the members in the CURSORDIRENTRY structure:

bWidth

Specifies the width of the cursor, in pixels.
bHeight

Specifies the height of the cursor, in pixels.

bColorCount
Reserved; must be zero.

bReserved
Reserved; must be zero.

wXHotspot

Specifies the x-coordinate, in pixels, of the hot spot.
wYHotspot

Specifies the y-coordinate, in pixels, of the hot spot.
IBytesInRes

Specifies the size of the resource, in bytes.

dwImageOffset
Specifies the offset, in bytes, from the start of the file to the cursor image.

1.3.2 Cursor Image

Each cursor-resource file contains one cursor image for each image identified in
the cursor directory. A cursor image consists of a cursor-image header, a color
table, an XOR mask, and an AND mask. The cursor image has the following
form:

BITMAPINFOHEADER crHeader;

RGBQUAD crColors[];
BYTE crXORL1;
BYTE crAND[];

The cursor hot spot is a single pixel in the cursor bitmap that Windows uses to
track the cursor. The crXHotspot and crYHotspot members specify the x- and
y-coordinates of the cursor hot spot. These coordinates are 16-bit integers.

The cursor-image header, defined as a BITMAPINFOHEADER structure, speci-
fies the dimensions and color format of the cursor bitmap. Only the biSize through
biBitCount members and the biSizeImage member are used. The biHeight mem-
ber specifies the combined height of the XOR and AND masks for the cursor. This
value is twice the height of the XOR mask. The biPlanes and biBitCount mem-
bers must be 1. All other members (such as biCompression and biClrImportant)
must be set to zero.

16 Microsoft Windows Programmer’s Reference

1.3.3 Windows Cursor Selection

If a cursor-resource file contains more than one cursor image, Windows deter-
mines the best match for a particular display by examining the width and height of
the cursor images.

24 Microsoft Windows Programmer’s Reference

Following are the members in the metafile header:

mtType
Specifies whether the metafile is stored in memory or recorded in a file. This
member has one of the following values:

Value Meaning

0 Metafile is in memory.

1 Metafile is in a file.
mtHeaderSize

Specifies the size, in words, of the metafile header.

mtVersion
Specifies the Windows version number. The version number for Windows ver-
sion 3.0 and later is 0x300.

mtSize
Specifies the size, in words, of the file.

mtNoObjects
Specifies the maximum number of objects that can exist in the metafile at the
same time.

mtMaxRecord
Specifies the size, in words, of the largest record in the metafile.

mtNoParameters
Not used.

3.2 Typical Metafile Record

The graphics device interface stores most of the GDI functions that an application
can use to create metafiles in typical records.

A typical metafile record has the following form:

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}

Following are the members in a typical metafile record:

rdSize
Specifies the size, in words, of the record.

26 Microsoft Windows Programmer’s Reference

GDI function Value

SetTextAlign 0x012E
SetTextCharExtra 0x0108
SetTextColor 0x0209
SetTextJustification 0x020A
SetViewportExt 0x020E
SetViewportOrg 0x020D
SetWindowExt 0x020C
SetWindowOrg 0x020B

For more information on GDI functions, see the Microsoft Windows Program-
mer’s Reference, Volume 2. For more information on the function-specific meta-
file records, see Section 3.6, “Function-Specific Metafile Records.”

3.3 Placeable Windows Metafiles

A placeable Windows metafile is a standard Windows metafile that has an addi-
tional 22-byte header. The header contains information about the aspect ratio and
original size of the metafile, permitting applications to display the metafile in its
intended form.

The header for a placeable Windows metafile has the following form:

typedef struct {

DWORD key;
HANDLE hmf;
RECT bbox;
WORD inch;

DWORD reserved;
WORD checksum;
} METAFILEHEADER;

Following are the members of a placeable metafile header:

key
Specifies the binary key that uniquely identifies this file type. This member
must be set to 0xX9AC6CDD7L.

hmf
Unused; must be zero.

bbox
Specifies the coordinates of the smallest rectangle that encloses the picture. The
coordinates are in metafile units as defined by the inch member.

28 Microsoft Windows Programmer’s Reference

3.5 Sample of Metafile Program Output

This section describes a sample program and the metafile that it creates. The
sample program creates a small metafile that draws a purple rectangle with a green
border and writes the words “Hello People” in the rectangle.

MakeAMetaFile(hDC)

HDC hDC;

{
HPEN hMetaGreenPen;
HBRUSH hMetaVioletBrush;
HDC hDCMeta;

HANDLE hMeta;
/* Create the metafile with output going to the disk. */
hDCMeta = CreateMetaFile((LPSTR) "sample.met");

hMetaGreenPen = CreatePen(@, @, (DWORD) 0x0000FF0@Q);
SelectObject(hDCMeta, hMetaGreenPen);

hMetaVioletBrush = CreateSolidBrush((DWORD) @xQQFFQQFF);
SelectObject(hDCMeta, hMetaVioletBrush);

Rectangle(hDCMeta, @, 0, 150, 70);

TextOut(hDCMeta, 10, 10, (LPSTR) "Hello People", 12);
/* We are done with the metafile. */

hMeta = CloseMetaFile(hDCMeta);

/* Play the metafile that we just created. */

PlayMetaFile(hDC, hMeta);
}

The resulting metafile, SAMPLE.MET, consists of a metafile header and six re-
cords. It has the following binary form:

0001 mtType... disk metafile
0009 mtSize...

0300 mtVersion

0000 0036 mtSize

0002 mtNoObjects

0000 000C mtMaxRecord
0000 mtNoParameters

30 Microsoft Windows Programmer’s Reference

AnimatePalette

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Members rdSize
Specifies the record size, in words.
rdFunction
Specifies the GDI function number 0x0436.
rdParm
Contains the following elements:
Element Description
start First entry to be animated
numentries Number of entries to be animated
entries PALETTEENTRY blocks (for a description of the

PALETTEENTRY structure, see the Microsoft Windows
Programmer’s Reference, Volume 3).

BitBit

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}

The BitBIt record stored by Windows versions earlier than 3.0 contains a device-
dependent bitmap that may not be suitable for playback on all devices.

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x0922.

rdParm
Contains the following elements:

32 Microsoft Windows Programmer’s Reference

Element Description

DXE Destination x-extent

DY Y-coordinate of the destination origin
DX X-coordinate of the destination origin

BitmapInfo BITMAPINFO structure (for a description of the BIT-
MAPINFO structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3).

bits Actual device-independent bitmap bits
CreateBrushindirect
struct {
DWORD rdSize;
WORD rdFunction;
LOGBRUSH rdParm;
}
Members rdSize
Specifies the record size, in words.
rdFunction
Specifies the GDI function number 0x02FC.
rdParm
Specifies the logical brush.
CreateFontindirect
struct {

DWORD rdSize;
WORD rdFunction;
LOGFONT rdParm;

34 Microsoft Windows Programmer’s Reference

rdParm
Contains the following elements:
Element Description
bmWidth Bitmap width
bmHeight Bitmap height
bmWidthBytes Bytes per raster line
bmPlanes Number of color planes
bmBitsPixel Number of adjacent color bits that define a pixel
bmBits Pointer to bit values
bits Actual bits of pattern

CreatePatternBrush

Members

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}

The CreatePatternBrush record contains a device-independent bitmap suitable
for playback on all devices.

rdSize
Specifies the record size, in words.
rdFunction
Specifies the GDI function number 0x0142.
rdParm
Contains the following elements:
Element Description
type Bitmap type. This element may be either of these two values:

BS_PATTERN—Brush is defined by a device-dependent
bitmap through a call to the CreatePatternBrush function.

BS_DIBPATTERN—B-rush is defined by a device-
independent bitmap through a call to the CreateDIB-
PatternBrush function.

36 Microsoft Windows Programmer’s Reference

Members

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number OxO6FF.

rdParm
Specifies the region to be created.

DeleteObject

Members

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

}

rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x01FO0.

rdParm
Specifies the index to the handle table for the object to be deleted.

Escape

Members

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}

rdSize
Specifies the record size, in words.

rdFunction ‘
Specifies the GDI function number 0x0626.

rdParm
Contains the following elements:

38 Microsoft Windows Programmer’s Reference

Element Description
dxarray Optional word array of intercharacter distances.
struct {

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Members rdSize

Specifies the record size, in words.
rdFunction

Specifies the GDI function number 0x0324.
rdParm

Contains the following elements:

Element Description

count Number of points

list of points List of individual points

PolyPolygon

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x0538.

rdParm
Contains the following elements:

40 Microsoft Windows Programmer’s Reference

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x012C.

rdParm
Specifies the index to the handle table for the region being selected.

SelectObject

struct{
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

}

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x012D.

rdParm
Specifies the index to the handle table for the object being selected.

SelectPalette

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm;

}

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x0234.

rdParm
Specifies the index to the handle table for the logical palette being selected.

42 Microsoft Windows Programmer’s Reference

SetPaletteEntries

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
Members rdSize
Specifies the record size, in words.
rdFunction
Specifies the GDI function number 0x0037.
rdParm
Contains the following elements:
Element Description
start First entry to be set in the palette
numentries Number of entries to be set in the palette
entries PALETTEENTRY blocks (For a description of the
PALETTEENTRY structure, see the Microsoft Windows
Programmer’s Reference, Volume 3.)
StretchBIt
struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];
}

The StretchBIt record contains a device-dependent bitmap that may not be
suitable for playback on all devices.

Members rdSize
Specifies the record size, in words.

rdFunction
Specifies the GDI function number 0x0B23.

rdParm
Contains the following elements:

44 Microsoft Windows Programmer’s Reference

Element Description

raster op Low-order word of the raster operation

raster op High-order word of the raster operation

SYE Source y-extent

SXE Source x-extent

SY Y-coordinate of the source origin

SX X-coordinate of the source origin

DYE Destination y-extent

DXE Destination x-extent

DY Y-coordinate of the destination origin

DX X-coordinate of the destination origin

BitmapInfo BITMAPINFO structure (For a description of the BIT-
MAPINFO structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.)

bits Actual device-independent bitmap bits

StretchDIBits
struct {

Members

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}
rdSize
Specifies the record size, in words.
rdFunction
Specifies the GDI function number 0x0F43.
rdParm
Contains the following elements:
Element Description
dwRop Raster operation to be performed
Usag Flag indicating whether the bitmap color table contains
RGB values or indexes to the currently realized logical
palette
srcYExt Height of the source in the bitmap
srcXExt Width of the source in the bitmap
srcY Y-coordinate of the origin of the source in the bitmap

50 Microsoft Windows Programmer’s Reference

struct FONTINFO {
WORD dfVersion;
DWORD dfSize;
char dfCopyright[60];
WORD dfType;
WORD dfPoints;
WORD dfVertRes;
WORD dfHorizRes;
WORD dfAscent;
WORD dflInternalleading;
WORD dfExternalleading;
BYTE dflItalic;
BYTE dfUnderline;
BYTE dfStrikeQut;
WORD dfWeight;
BYTE dfCharSet;
WORD dfPixWidth;
WORD dfPixHeight;
BYTE dfPitchAndFamily;
WORD dfAvgWidth;
WORD dfMaxWidth;
BYTE dfFirstChar;
BYTE dfLastChar;
BYTE dfDefaultChar;
BYTE dfBreakChar;
WORD dfWidthBytes;
DWORD dfDevice;
DWORD dfFace;
DWORD dfBitsPointer;
DWORD dfBitsOffset;
BYTE dfReserved;
DWORD dfFlags;
WORD dfAspace;
WORD dfBspace;
WORD dfCspace;
WORD dfColorPointer;
DWORD dfReservedl;
WORD dfCharTablel];
1

Following are the members of the FONTINFO structure:
dfVersion
Specifies the version (0x0200 or 0x0300) of the file.

dfSize
Specifies the total size of the file, in bytes.

dfCopyright
Specifies copyright information.

52

Microsoft Windows Programmer’s Reference

dfUnderline
Specifies whether the character-definition data represents an underlined font. If
the flag is set, the low-order bit is 1. All other bits are zero.

dfStrikeOut
Specifies whether the character-definition data represents a strikeout font. If the
flag is set, the low-order bit is 1. All other bits are zero.

dfWeight
Specifies the weight of the characters in the character-definition data, on a scale
of 1 through 1000. A dfWeight value of 400 specifies a regular weight.

dfCharSet
Specifies the character set defined by this font.

dfPixWidth
Specifies the width of the grid on which a vector font was digitized. For raster
fonts, if the dfPixWidth member is nonzero, it represents the width for all the
characters in the bitmap. If the member is zero, the font has variable-width
characters whose widths are specified in the array for the dfCharTable
member.

dfPixHeight
Specifies the height of the character bitmap for raster fonts or the height of the
grid on which a vector font was digitized.

dfPitchAndFamily
Specifies the pitch and font family. If the font is variable pitch, the low bit is
set. The four high bits give the family name of the font. Font families describe
the general look of a font. They identify fonts when the exact name is not avail-
able. The font families are described as follows:

Family Description

FF_DONTCARE Unknown.

FF_ROMAN Proportionally spaced fonts with serifs.
FF_SWISS Proportionally spaced fonts without serifs.
FF_MODERN Fixed-pitch fonts.

FF_SCRIPT Cursive or script fonts. (Both are designed to look

similar to handwriting. Script fonts have joined let-
ters; cursive fonts do not.)

FF_DECORATIVE Novelty fonts.

dfAvgWidth
Specifies the width of characters in the font. For fixed-pitch fonts, this value is
the same as the value for the dfPixWidth member. For variable-pitch fonts, it
is the width of the character “X”".

dfMaxWidth
Specifies the maximum pixel width of any character in the font. For fixed-pitch
fonts, this value is the same as the value of the dfPixWidth member.

54

Microsoft Windows Programmer’s Reference

the strokes for each character of the font. The value of the dfBitsOffset mem-
ber must be even.

dfReserved
Not used.

dfFlags
Specifies the bit flags that define the format of the glyph bitmap, as follows:
Pitch value Address
DFF_FIXED 0x0001
DFF_PROPORTIONAL 0x0002
DFF_ABCFIXED 0x0004
DFF_ABCPROPORTIONAL 0x0008
DFF_1COLOR 0x0010
DFF_16COLOR 0x0020
DFF_256COLOR 0x0040
DFF_RGBCOLOR 0x0080

dfAspace

Specifies the global A space, if any. The value of the dfAspace member is the
distance from the current position to the left edge of the bitmap.

dfBspace
Specifies the global B space, if any. The value of the dfBspace member is the
width of the character.

dfCspace
Specifies the global C space, if any. The value of the dfCspace member is the
distance from the right edge of the bitmap to the new current position. The in-
crement of a character is the sum of the A, B, and C spaces. These spaces apply
to all glyphs, including DFF_ABCFIXED.

dfColorPointer
Specifies the offset to the color table for color fonts, if any. The format of the
bits is like a device-independent bitmap (DIB), but without the header. (That is,
the characters are not split into disjoint bytes; instead, they are left intact.) If no
color table is needed, this entry is NULL.

dfReserved1
Not used.

dfCharTable
Specifies an array of entries for raster, fixed-pitch vector, and proportionally
spaced vector fonts, as follows:

56 Microsoft Windows Programmer’s Reference

This continues until the first “column” is completely defined. The subsequent
byte contains the next 8 bits of the first scan line, padded with zeros on the right
if necessary (and so on, down through the second “column”). If the glyph is
quite narrow, each scan line is covered by one byte, with bits set to zero as nec-
essary for padding. If the glyph is very wide, a third or even fourth set of bytes
can be present.

Character bitmaps must be stored contiguously and arranged in ascending
order. The bytes for a 12-pixel by 14-pixel “A” character, for example, are
given in two sets, because the character is less than 17 pixels wide:

00 06 09 10 20 20 20 3F 20 20 20 00 00 00
00 00 00 80 40 40 40 CO 40 40 40 00 00 00

Note that in the second set of bytes, the second digit of the byte is always zero.

The zeros correspond to the thirteenth through sixteenth pixels on the right side
of the character, which are not used by this character bitmap.

4.3 Version-Specific Glyph Tables

The dfCharTable member for Windows 2.x has a GlyphEntry structure with the

following format:

GlyphEntry struc

geWidth dw ? ; width of char bitmap, pixels
geOffset dw ? ; pointer to the bits
GlyphEntry ends

The dfCharTable member in Windows 3.0 and later is dependent on the format
of the glyph bitmap. The only formats supported are DFF_FIXED and
DFF_PROPORTIONAL.

DFF_FIXED
DFF_PROPORTIONAL

GlyphEntry struc

geWidth dw ? ; width of char bitmap, pixels
geOffset dd ? ; pointer to the bits
GlyphEntry ends

DFF_ABCFIXED
DFF_ABCPROPORTIONAL

Microsoft Windows Programmer’s Reference

struct tagGROUPHEADER {
char cldentifier[4];
WORD wCheckSum;
WORD cbGroup;
WORD nCmdShow;
RECT rcNormal;
POINT ptMin;
WORD pName;
WORD wLogPixelsX;
WORD wLogPixelsY;
WORD wBitsPerPixel;
WORD wPlanes;
WORD clItems;
WORD rgiltems[cltems];
1

Following are the members in the GROUPHEADER structure:

cldentifier

Identifies an array of 4 characters. If the file is a valid group file, this array

must contain the string “PMCC”.
wCheckSum

Specifies the negative sum of all words in the file (including the value specified

by the wCheckSum member).

cbGroup
Specifies the size of the group file, in bytes.

nCmdShow

Specifies whether Program Manager should display the group in minimized,
normal, or maximized form. This member can be one of the following values:

Value Flag

0x00 SW_HIDE

0x01 SW_SHOWNORMAL

0x02 SW_SHOWMINIMIZED

0x03 SW_SHOWMAXIMIZED

0x04 SW_SHOWNOACTIVATE

0x05 SW_SHOW

0x06 SW_MINIMIZE

0x07 SW_SHOWMINNOACTIVATE

0x08 SW_SHOWNA

0x09 SW_RESTORE
rcNormal

Specifies the coordinates of the group window (the window in which the group

icons appear). It is a rectangular structure.

64 Microsoft Windows Programmer’s Reference

5.2.3 TagData

ilcon
Specifies the index value for an icon. This value indicates the position of the
icon in an executable file.

cbResource
Specifies the count of bytes in the icon resource, which appears in the exe-
cutable file for the application.

cbANDPlane
Specifies the count of bytes in the AND mask for the icon.

cbXORPIlane
Specifies the count of bytes in the XOR mask for the icon.

pHeader
Specifies an offset from the beginning of the group file to the resource header
for the icon.

PANDPIane
Specifies an offset from the beginning of the group file to the AND mask for
the icon.

pXORPlane
Specifies an offset from the beginning of the group file to the XOR mask for
the icon.

pName
Specifies an offset from the beginning of the group file to a string that specifies
the item name.

pCommand
Specifies an offset from the beginning of the group file to a string that specifies
the name of the executable file containing the application and the icon re-
source(s).

plconPath
Specifies an offset from the beginning of the group file to a string that specifies
the path where the executable file is located. This path can be used to extract
icon data from an executable file.

The tag data contains general information used to display the Program Item Proper-
ties dialog box. The TAGDATA structure has the following form:

struct tagTAGDATA{
WORD wiID;
WORD wltem;
WORD cb;
BYTE rgb[1];

70 Microsoft Windows Programmer’s Reference

6.2 Windows Header

The Windows (new-style) executable-file header contains information that the
loader requires for segmented executable files. This information includes the
linker version number, data specified by the linker, data specified by the resource
compiler, tables of segment data, tables of resource data, and so on. The following
illustration shows the Windows executable-file header:

MS-DOS stub program

Information block

Segment table

Resource table

Module-reference table

Imported-name table

Entry table

Nonresident-name table

End of file

End of MS-DOS header
Beginning of Windows header

Code and data segments

The following sections describe the entries in the Windows executable-file header.

72

Microsoft Windows Programmer’s Reference

Location

Description

OEh

10h

12h

14h
18h

1Ch
1Eh
20h
22h

24h

26h

28h

2Ah

Bit Meaning

15 If this bit is set, the executable file is a library module.

If bit 15 is set, the CS:IP registers point to an initializa-
tion procedure called with the value in the AX register
equal to the module handle. The initialization procedure
must execute a far return to the caller. If the procedure is
successful, the value in AX is nonzero. Otherwise, the
value in AX is zero.

The value in the DS register is set to the library’s data
segment if SINGLEDATA is set. Otherwise, DS is set
to the data segment of the application that loads the
library.

Specifies the automatic data segment number. (OEh is zero if the
SINGLEDATA and MULTIPLEDATA bits are cleared.)

Specifies the initial size, in bytes, of the local heap. This value is
zero if there is no local allocation.

Specifies the initial size, in bytes, of the stack. This value is zero
if the SS register value does not equal the DS register value.

Specifies the segment:offset value of CS:IP.
Specifies the segment:offset value of SS:SP.

The value specified in SS is an index to the module’s segment
table. The first entry in the segment table corresponds to segment
number 1.

If SS addresses the automatic data segment and SP is zero, SP is
set to the address obtained by adding the size of the automatic
data segment to the size of the stack.

Specifies the number of entries in the segment table.
Specifies the number of entries in the module-reference table.
Specifies the number of bytes in the nonresident-name table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the segment table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the resource table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the resident-name table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the module-reference table.

Specifies a relative offset from the beginning of the Windows
header to the beginning of the imported-name table.

74 Microsoft Windows Programmer’s Reference

6.2.2 Segment Tahle

The segment table contains information that describes each segment in an exe-
cutable file. This information includes the segment length, segment type, and
segment-relocation data. The following list summarizes the values found in the
segment table (the locations are relative to the beginning of each entry):

Location Description

00h Specifies the offset, in sectors, to the segment data (relative to
the beginning of the file). A value of zero means no data exists.

02h Specifies the length, in bytes, of the segment, in the file. A value

of zero indicates that the segment length is 64K, unless the selec-
tor offset is also zero.

04h Specifies flags that describe the contents of the executable file.
This value can be one or more of the following:

Bit Meaning

0 If this bit is set, the segment is a data segment. Other-
wise, the segment is a code segment.

1 If this bit is set, the loader has allocated memory for the
segment.

If this bit is set, the segment is loaded.
Reserved.

If this bit is set, the segment type is MOVEABLE.
Otherwise, the segment type is FIXED.

LSV \S]

5 If this bit is set, the segment type is PURE or
SHAREABLE. Otherwise, the segment type is
IMPURE or NONSHAREABLE.

6 If this bit is set, the segment type is PRELOAD. Other-
wise, the segment type is LOADONCALL.

7 If this bit is set and the segment is a code segment, the

segment type is EXECUTEONLY. If this bit is set and
the segment is a data segment, the segment type is
READONLY.

8 If this bit is set, the segment contains relocation data.
Reserved.

10 Reserved.

11 Reserved.

12 If this bit is set, the segment is discardable.

13 Reserved.

76 Microsoft Windows Programmer’s Reference

6.2.3.1 Type Information
The TYPEINFO structure has the following form:

typedef struct _TYPEINFO {

WORD rtTypelD;
WORD rtResourceCount;
DWORD rtReserved;
NAMEINFO rtNameInfol[];

} TYPEINFO;

Following are the members in the TYPEINFO structure:

rtTypelD
Specifies the type identifier of the resource. This integer value is either a
resource-type value or an offset to a resource-type name. If the high bit in this
member is set (0x8000), the value is one of the following resource-type values:

Value Resource type
RT_ACCELERATOR Accelerator table
RT_BITMAP Bitmap
RT_CURSOR Cursor
RT_DIALOG Dialog box
RT_FONT Font component
RT_FONTDIR Font directory
RT_GROUP_CURSOR Cursor directory
RT_GROUP_ICON Icon directory
RT_ICON Icon
RT_MENU Menu
RT_RCDATA Resource data
RT_STRING String table

If the high bit of the value in this member is not set, the value represents an off-
set, in bytes relative to the beginning of the resource table, to a name in the
rscResourceNames member.

rtResourceCount
Specifies the number of resources of this type in the executable file.

rtReserved
Reserved.

rtNamelnfo
Specifies an array of NAMEINFO structures containing information about in-
dividual resources. The rtResourceCount member specifies the number of
structures in the array.

78 Microsoft Windows Programmer’s Reference

6.2.4 Resident-Name Table

The resident-name table contains strings that identify exported functions in the
executable file. As the name implies, these strings are resident in system memory
and are never discarded. The resident-name strings are case-sensitive and are not
null-terminated. The following list summarizes the values found in the resident-
name table (the locations are relative to the beginning of each entry):

Location Description

00h Specifies the length of a string. If there are no more strings in the
table, this value is zero.

01h — xxh Specifies the resident-name text. This string is case-sensitive and
is not null-terminated.

xxh +01h Specifies an ordinal number that identifies the string. This num-

ber is an index into the entry table.

The first string in the resident-name table is the module name.

6.2.5 Module-Reference Table

The module-reference table contains offsets for module names stored in the
imported-name table. Each entry in this table is 2 bytes long.

6.2.6 Imported-Name Table

The imported-name table contains the names of modules that the executable file
imports. Each entry contains two parts: a single byte that specifies the length of
the string and the string itself. The strings in this table are not null-terminated.

6.2.7 Entry Table

The entry table contains bundles of entry points from the executable file (the
linker generates each bundle). The numbering system for these ordinal values is
1-based—that is, the ordinal value corresponding to the first entry point is 1.

The linker generates the densest possible bundles under the restriction that it can-
not reorder the entry points. This restriction is necessary because other executable
files may refer to entry points within a given bundle by their ordinal values.

The entry-table data is organized by bundle, each of which begins with a 2-byte
header. The first byte of the header specifies the number of entries in the bundle (a
value of 00h designates the end of the table). The second byte specifies whether
the corresponding segment is movable or fixed. If the value in this byte is OFFh,
the segment is movable. If the value in this byte is OFEh, the entry does not refer

80 Microsoft Windows Programmer’s Reference

6.2.8 Nonresident-Name Table

The nonresident-name table contains strings that identify exported functions in the
executable file. As the name implies, these strings are not always resident in sys-
tem memory and are discardable. The nonresident-name strings are case-sensitive;
they are not null-terminated. The following list summarizes the values found in the
nonresident-name table (the specified locations are relative to the beginning of

each entry):

Location Description

00h Specifies the length, in bytes, of a string. If this byte is 00h, there
are no more strings in the table.

01h — xxh Specifies the nonresident-name text. This string is case-sensitive
and is not null-terminated.

xx+01h Specifies an ordinal number that is an index to the entry table.

The first name that appears in the nonresident-name table is the module descrip-
tion string (which was specified in the module-definition file).

6.3 Code Segments and Relocation Data

Code and data segments follow the Windows header. Some of the code segments
may contain calls to functions in other segments and may, therefore, require reloca-
tion data to resolve those references. This relocation data is stored in a relocation
table that appears immediately after the code or data in the segment. The first 2
bytes in this table specify the number of relocation items the table contains. A relo-
cation item is a collection of bytes specifying the following information:

= Address type (segment only, offset only, segment and offset)

m Relocation type (internal reference, imported ordinal, imported name)

®= Segment number or ordinal identifier (for internal references)

m Reference-table index or function ordinal number (for imported ordinals)
m Reference-table index or name-table offset (for imported names)

Each relocation item contains 8 bytes of data, the first byte of which specifies one
of the following relocation-address types:

Value Meaning

0 Low byte at the specified offset
2 16-bit selector

3 32-bit pointer

5 16-bit offset

84

Microsoft Windows Programmer’s Reference

7.12.3 String Information Block..

7.12.4 Language-Specific Blocks

86 Microsoft Windows Programmer’s Reference

Each icon-directory resource must have a corresponding entry in the resource table
of the executable file. This means the resource table must contain a TYPEINFO
structure in which the rscTypeID member is set to the RT_GROUP_ICON value.

7.3 Cursor Resource

A cursor resource is nearly identical in format to a cursor image in a cursor-
resource file. The resource contains the cursor hot spot as well as the cursor-image
header, color table, and XOR and AND masks. The x- and y-coordinates for the
cursor hot spot (both 16-bit values) appear first in the resource, immediately fol-
lowed by the cursor-image header. For more information about the cursor-image
format, see Chapter 1, “Graphics File Formats.”

Each cursor resource must have a corresponding entry in the resource table of the
executable file. This means the resource table must contain a TYPEINFO struc-
ture in which the rscTypeID member is set to the RT_CURSOR value.

7.4 Cursor-Directory Resource

A cursor-directory resource is nearly identical in format to a cursor directory

in a cursor-resource file. The resource specifies the number of cursor images as-
sociated with this resource, as well as the dimensions of the images, but it does not
include the hot-spot data. Furthermore, the last member of the ICONDIRENTRY
structure (dwImageOffset) is replaced with a 16-bit value that specifies the
resource-table index of the corresponding cursor-image resource.

In an executable file, the CURSORDIRENTRY structure has the following form:

typedef struct _CURSORDIRENTRY {
WORD wWidth;
WORD wHeight;
WORD wPlanes;
WORD wBitCount;
DWORD 1BytesInRes;
WORD wImagelndex;
} CURSORDIRENTRY;

Following are the members in the CURSORDIRENTRY structure:

wWidth
Specifies the width of the cursor, in pixels.

wHeight
Specifies the height of the cursor, in pixels.

88 Microsoft Windows Programmer’s Reference

7.5.2 Pop-up Menu ltem

A menu resource contains data for each pop-up item in a menu. The first 16 bits
indicate whether the item is grayed, inactive, checked, and so on. This data also
includes a string that appears in the rectangle corresponding to that item. A
PopupMenultem structure has the following form:

struct PopupMenultem {
WORD fItemFlags;
char szlitemText[];
};

Following are the members in the PopupMenultem structure:

fitemFlags
Specifies menu-item information. This member can have one or more of the fol-
lowing values:

Value Meaning
MF_GRAYED Item is grayed.
MF_DISABLED Item is inactive.
MF_CHECKED Item can be checked.
MF_POPUP Item is a popup (must be specified for pop-up
items).
MF_MENUBARBREAK Item is a menu-bar break.
MF_MENUBREAK Item is a menu break.
MF_END Item ends the menu.
szItemText

Specifies a null-terminated string that appears in the menu and identifies the
menu item. There is no fixed limit on the size of this string.

7.5.3 Normal Menu Item

A normal menu item is very similar to a pop-up menu item, except that it has an
additional menu identifier. A NormalMenultem structure has the following form:

struct NormalMenultem {
WORD fItemFlags;
WORD wMenulD;
char szItemText[];
};

90 Microsoft Windows Programmer’s Reference

POPUP ITEM
NORMAL ITEM
NORMAL ITEM

NORMAL ITEM
POPUP ITEM

NORMAL ITEM

NORMAL ITEM

NORMAL ITEM

POPUP ITEM (fItemFlags contains the MF_END constant)
NORMAL ITEM
NORMAL ITEM (fItemFlags contains the MF_END constant)

NORMAL ITEM (fItemFlags contains the MF_END constant)

Note that, although the pop-up menu item has its own terminating item, the termi-
nating item for the entire menu is again a normal menu item.

7.6 Dialog Box Resource

A dialog box resource contains a dialog box header and data for each control
within the dialog box.

Each entry in the executable file’s resource table contains a member that identifies
the resource type. The RT_DIALOG constant identifies a dialog box resource.

7.6.1 Dialog Box Header

The dialog box header contains general dialog box data, such as the dialog box
window style, the number of controls in the dialog box, the coordinates of the
upper-left corner of the box, the width and height of the box, the name of the menu
to be displayed, and so on. The DialogBoxHeader structure has the following

form:

struct D

ialogBoxHeader {

DWORD 1StyTe;

BYTE
WORD
WORD
WORD
WORD
char
char
char
WORD
char

bNumberOfItems;

X3

VH

CX;

cy;

szMenuName[];

szClassName[];

szCaption[];

wPointSize; /* only if DS_SETFONT */
szFaceName[]; /* only if DS_SETFONT #*/

92

Microsoft Windows Programmer’s Reference

wPointSize
Specifies the point size of a font that is unique to the dialog box. (This member
is present only if the DS_SETFONT flag is set by the IStyle member.)

szFaceName
Specifies the typeface name of a dialog box font. This array must contain a null-
terminated string. (This member is present only if the DS_SETFONT flag is set
by the IStyle member.)

7.6.2 Control Data

A dialog box resource contains data for each control in a given dialog box. This
data contains the coordinates of the upper-left corner of the control, the dimen-
sions of the control, a control identifier, and so on. A ControlData structure has
the following form:

struct ControlData {
WORD x;
WORD y;
WORD c¢x;
WORD cy;
WORD wID;
DWORD 1Style;
union
{
BYTE class; /* if (class & 0x80) =/
char szClass[]; /* otherwise */
} ClassID;
szText;
};

Following are the members in the ControlData structure:

X
Specifies the x-coordinate of the upper-left corner of the control.

y
Specifies the y-coordinate of the upper-left corner of the control.
cx
Specifies the width of the control, in horizontal dialog box units. For a defini-
tion of these units, see the DialogBoxHeader structure in the preceding section.
cy
Specifies the height of the control, in vertical dialog box units. For a definition
of these units, see the DialogBoxHeader structure in the preceding section.

wiD
Identifies the control.

94 Microsoft Windows Programmer’s Reference

7.8 Font Resource

A font resource consists of two parts: a directory and its components. The font-
directory data describes all the fonts in a resource. This data includes a value speci-
fying the number of fonts in the resource and a table of metrics for each of these
fonts. The font-component data describes a single font in the resource. There is
one component for each of the fonts in the resource. The component data is identi-
cal to the data found in a Windows font file ((FNT).

Each entry in the executable file’s resource table contains a member that identifies
the resource type. The RT_FONTDIR and RT_FONT constants identify a font
directory and a font component, respectively.

7.8.1 Font-Directory Data

Font-directory data consists of a font count and one or more font directory entries.

7.8.1.1 Font Count

The font count is an integer that specifies the number of fonts in the resource. This
value also corresponds to the number of font directories and font components.

7.8.1.2 Font Directory

The font directory is a collection of font metrics for a particular font. These
metrics specify the point size for the font, aspect ratio, stroke width, and so on.
The FontDirEntry structure has the following form:

struct FontDirEntry {
WORD fontOrdinal;
WORD dfVersion;
DWORD dfSize;
char dfCopyright[60];
WORD dfType;
WORD dfPoints;
WORD dfVertRes;
WORD dfHorizRes;
WORD dfAscent;
WORD dflInternalleading;
WORD dfExternalleading;
BYTE dfItalic;
BYTE dfUnderline;
BYTE dfStrikelOut;
WORD dfWeight;
BYTE dfCharSet;
WORD dfPixWidth;
WORD dfPixHeight;

Microsoft Windows Programmer’s Reference

Data structure Contents

Kerning-pair data An identifier for each character in the pair of kerned
characters, and a kerning value

Track-kerning data Additional kerning data

For a complete description of Windows font files, see the Microsoft Windows
Device Development Kit documentation.

7.9 String-Table Resources

A string table consists of one or more separate resources, each containing exactly
16 strings. The maximum length of each string is 255 bytes. One or more strings
in a block can be null or empty. The first byte in the string specifies the number of
characters in the string. (For null or empty strings, the first byte contains the value
Zero.)

Windows uses a 16-bit identifier to locate a string in a string-table resource. Bits 4
through 15 specify the block in which the string appears; bits 0 through 3 specify
the location of that string relative to the beginning of the block.

Each entry in an executable file’s resource table contains a member that identifies
the resource type. The RT_STRING constant identifies a string table.

7.10 Accelerator Resource

An accelerator resource contains one or more accelerator entries.

Each entry in an executable file’s resource table contains a member that identifies
the resource type. The RT_ACCELERATOR constant identifies an accelerator re-
source.

The accelerator entry is a 5-byte entry with the following form:

struct AccelTableEntry {
BYTE fFlags;
WORD wEvent;
WORD wld;

}s

Following are the members in the AccelTableEntry structure:

fFlags
Specifies accelerator characteristics. It can be one or more of the following
values:

Microsoft. Windows™

Version 3.1

Multimedia
Programmer’s Reference

For the Microsoft Windows Operating System

Microsoft Corporation

Contents

Chapter 1 Introduction

Windows Multimedia Features 1-1
Multimedia API Naming Conventionsc.ooueunn... 1-2
Function Names 1-2
Message Names 1-3
Parameter Namesouiiiiiininnnnnnnnnn. 1-3
Contents of ThisReference i, 1-4
L0311 1V) 1 T3 1-5
Related Documentationitititnnennnnn... 1-6

Chapter 2 Function Overview

High-Level Audio Servicesoviinin e iiiinennnn. 2-2
Low-Level Waveform Audio Services 2-2
Querying Waveform Devices 2-3
Opening and Closing Waveform Devices 2-3
Getting the Device ID of Waveform Devices 2-4
Playing WaveformData 2-4
Recording WaveformData 2-4
Getting the Current Position of Waveform Devices 2-5
Controlling Waveform Playback 2-5
Controlling Waveform Recording 2-6
Changing Pitch and PlaybackRate 2-6
Changing Playback Volume 2-7
Sending Custom Messages to Waveform Drivers 2-7

Handling Waveform Errors 2-7

Contents v
|

Chapter 4 Message Overview

About the Multimedia Messagesooiiiinn.. 4-1
Audio MESSages oviiti e 4-2
Waveform Output Messagesoouieinneennnenn.. 4-2
Waveform Input Messages 4-3
MIDI Output MesSageso covvneeeiiee e 4-4
MIDI Input Messages, 4-4
Media Control Interface Messagesc.ooveuniiinneenn.. 4-6
Opening and Closing Devices 4-6
Playing and Recording MultimediaData 4-7
Getting Device Information 4-7
Controlling and Positioning Devices 4-8
Editing and Transferring MultimediaData 4-8
Controlling Video Images 4-9
Window Notification Messages 4-10
JOYStiCK MESSAZES .+ - o v o v ve vt et e e 4-10
File /O MeSSagesottt 4-11

Chapter 5 Message Directory

Extensions to MCI Command Messagesc.o.ooun.. 5-1
Message Prefixes e 5-2
Message Descriptionseuiiniin i, 5-2

Chapter 6 Data Types and Structures

Data Types . ..o e 6-2
Data Structure OVEIVIEW vi ittt it i e et et e i e iieeenn 6-3
Auxiliary Audio Data Structure 6-3
Joystick Data Structurescoiiiiiiiin.. 6-3
Media Control Interface (MCI) Data Structures 6-4
MIDI Audio Data Structuresovuvennenenenenen.. 6-7
Multimedia File I/O Data Structures 6-7
Timer Data Structuresovueuntnin i, 6-7
Waveform Audio Data Structurescoo... 6-8

Data Structures Reference i 6-9

Contents vii
.|

Audio CD (Red Book) Commands 7-45
MIDI Sequencer Commandscoiviniiniinen.... 7-52
Videodisc Player Commands, 7-63
Video Overlay Commands iiiiiiian.... 1-72
Waveform Audio Commandscoiiiiiiiinn.... 7-82

Chapter 8 Multimedia File Formats

About the RIFF Tagged File Format 8-2
Chunks e 8-2
RIFFFOrms i 8-4
Defining and Registering RIFF Forms 8-5

Notation for Representing RIFF Files 8-6
Element Notation Conventionsoouu. .. 8-6
Basic Notation for Representing RIFF Files 8-6
Escape Sequences for Four-Character Codes and String

Chunksot 89
Extended Notation for Representing RIFF Form Definitions ... 8-9
AtomicLabels 8-13
A Sample RIFF Form Definition and RIFFForm 8-14

Storing Strings in RIFF Chunks 8-15

LISTChunk e i 8-17

The INFOListChunk 8-17

RIFF DIB File Format (RDIB) 8-19

Musical Instrument Digital Interface (MIDI) File Format 8-20

RIFF MIDI (RMID) File Format 8-20

Palette File Format (PAL) i i, 8-20

Waveform Audio File Format (WAVE) 8-22
WAVE Form Definition 8-22
WAVE Chunk Descriptionsccooooiiien... 8-23
WAVE Format Categoriesooiuienao... 8-24
Data Format of the Samples 8-26

Examples of WAVEFiles o it 8-27

Chapter 1
Introduction

This manual provides reference information for the multimedia portions of the application
programming interface (API) of Microsoft® Windows™ Operating System 3.1. The
multimedia APIs provide support for audio, media control, multimedia file I/O, enhanced
timer services, and joystick input.

The multimedia APIs include functions, messages, data structures, data types, and file
formats to add multimedia support to your Windows applications. For information on
other Windows APIs, see the Microsoft Windows Programmer’s Reference, Volume 2:
API Reference.

Windows Multimedia Features

Windows offers services you can use to add features like sound recording and playback,
MIDI music, and external device control to your applications. Windows provides the
following multimedia services:

®m Audio—The audio services provide a device-independent interface to computer-audio
hardware, providing sound for multimedia applications.

® The Media Control Interface (MCI)—MCI provides a high-level generalized interface
to control media devices such as audio hardware, movie players, and videodisc and
videotape players.

® Multimedia File [/O—The multimedia file I/O services provide buffered and
unbuffered file I/O, as well as support for standard Resource Interchange File
Format (RIFF) files. These services are extensible with custom I/O procedures
that can be shared among applications.

m Joystick and timer—These services provide support for joysticks and high-resolution
event timing.

Multimedia APl Naming Conventions 1-3

Message Names

Message names, like function names, begin with a prefix. Related messages are grouped
together with a common prefix. An underscore character (_) follows the prefix in each
message name. One or more words describing the purpose of the message appear after
the underscore. Message names use only uppercase letters.

The following is an example of a message name:

WOM_CLOSE

The prefix (WOM) indicates that the message is a waveform output message. The
descriptive portion of the message (CLOSE) indicates the purpose of the message.
This message is sent whenever a waveform output device is closed.

Parameter Names

Most parameter and local-variable names consist of a lowercase prefix followed by one or
more capitalized words. The prefix indicates the general type of the parameter, while the
words that follow describe the contents of the parameter. The standard prefixes used in
parameter and variable names are defined as follows:

Prefix Description

b Boolean (a non-zero value specifies TRUE, zero specifies FALSE)
ch Character (a one-byte value)

dw Long (32-bit) unsigned integer

h Handle

1 Long (32-bit) integer

Ip Far pointer

np Near pointer

pt x and y coordinates packed into an unsigned 32-bit integer
rgb An RGB color value packed into a 32-bit integer

w Short (16-bit) unsigned integer

Note If no lowercase prefix is given, the parameter is a short integer with a descriptive name.

Conventions 1-5

m Chapter 7, “MCI Command Strings,” describes command strings for the Media Control
Interface (MCI). It describes how to use MCI command strings and describes each
command string recognized by MCI. Commands are grouped by device type.

m Chapter 8, “Multimedia File Formats,” describes the multimedia file formats.

® Appendix A, “MCI Command String Syntax Summary,” presents a summary of the
syntax of the MCI command strings.

m Appendix B, “Manufacturer ID and Product ID Lists,” lists the constants that identify
multimedia product manufacturers and products used with Windows.

Conventions

The following section explains the document conventions used throughout this manual:

Type Style Used For

bold Bold letters indicate a specific term intended to be used
literally: functions (such as waveOQutGetNumDevs),
messages (such as WIM_OPEN), and structure fields (such
as dwReturn). You must enter these terms exactly as shown.

italic Words in italics indicate a placeholder; you are expected to
provide the actual value. For example, the following syntax
for the timeGetSystemTime function indicates that you
must substitute values for the [pTime and wSize parameters:

timeGetSystemTime(/pTime, wSize)

monospace Code examples are displayed in a monospaced typeface.
brackets [] Optional items.
Horizontal ellipsis ... An ellipsis shows that one or more copies of the preceding

item may occur. Brackets followed by an ellipsis means that
the item enclosed within the brackets may occur zero or

more times.

Angle brackets < > Indicates the name and position of a field within a file
format definition.

Arrow — In a file format definition, the item to the left of the arrow is

equivalent to the item to the right.

Chapter 2
Function Overview

This chapter provides a topical overview of the multimedia functions in Windows. The
functions are organized into the following categories, some of which contain smaller
groups of related functions:

®m High-level audio services

m Low-level waveform audio services

® Low-level MIDI audio services

m Auxiliary audio device services

m File I/O services

® Media Control Interface (MCI) services
m Joystick services

®m Timer services

®m Debugging services

For full descriptions of the multimedia functions, see the alphabetical listing in
Chapter 3, “Function Directory.”

Low-Level Waveform Audio Services 2-3

Querying Waveform Devices

Before playing or recording a waveform, you must determine the capabilities of the
waveform hardware present in the system. Use the following functions to retrieve the
number of waveform devices and the capabilities of each device:

wavelnGetNumDevs
Retrieves the number of waveform input devices present in the system.

wavelnGetDevCaps
Retrieves the capabilities of a given waveform input device.

waveOutGetNumDevs
Retrieves the number of waveform output devices present in the system.

waveQutGetDevCaps
Retrieves the capabilities of a given waveform output device.

Opening and Closing Waveform Devices

You must open a device before you can begin waveform playback or recording. Once you
finish using a device, you must close it so that it will be available to other applications.
Use the following functions to open and close waveform devices:

wavelnOpen
Opens a waveform input device for recording.

wavelnClose
Closes a specified waveform input device.

waveOutOpen
Opens a waveform output device for playback.

waveQOutClose
Closes a specified waveform output device.

Low-Level Waveform Audio Services 2-5

wavelnPrepareHeader

Informs the waveform input device driver that the given data buffer should be
prepared for recording.

wavelnUnprepareHeader

Informs the waveform input device driver that the preparation performed on the
given data buffer can be cleaned up.

Getting the Current Position of Waveform Devices

While playing or recording waveform audio, you can query the device for the current
playback or recording position. Use the following functions to determine the current
position of a waveform device:

wavelnGetPosition
Retrieves the current recording position of a waveform input device.

waveOutGetPosition
Retrieves the current playback position of a waveform output device.

Controlling Waveform Playback

Waveform playback begins as soon as you begin sending data to the waveform output
device. Use the following functions to pause, restart, or stop playback and to break loops
on a waveform device:

waveOutBreakLoop
Breaks a loop on a waveform output device.

waveOutPause
Pauses playback on a waveform output device.

waveOutRestart
Resumes playback on a paused waveform output device.

waveOutReset
Stops playback on a waveform output device. Marks all pending data blocks as done.

Low-Level Waveform Audio Services 2-7

Changing Playback Volume

Some waveform output devices support changes to the playback volume level. Use these
functions to query and set the volume level of waveform output devices:

waveOutGetVolume
Queries the current volume level of a waveform output device.

waveOutSetVolume
Sets the volume level of a waveform output device.

Sending Custom Messages to Waveform Drivers

The following functions let you send messages directly to waveform drivers:

wavelnMessage
Sends a message directly to a waveform input device driver.

waveOutMessage
Sends a message directly to a waveform input device driver.

Handling Waveform Errors

Most of the low-level waveform audio functions return error codes. Use these functions to
convert the error codes returned from waveform functions into a textual description of the
error:

wavelnGetErrorText
Retrieves a textual description of a specified waveform input error.

waveOutGetErrorText
Retrieves a textual description of a specified waveform output error.

Low-Level MIDI Audio Services 2-9

Opening and Closing MIDI Devices

After getting the MIDI capabilities, you must open a MIDI device to play or record MIDI
messages. After using the device, you should close it to make it available to other
applications. Use the following functions to open and close MIDI devices:

midilnOpen
Opens a MIDI input device for recording.

midiInClose
Closes a specified MIDI input device.

midiOQutOpen
Opens a MIDI output device for playback.

midiOutClose
Closes a specified MIDI output device.

Getting the Device ID of MIDI Devices

Using a MIDI device handle, you can retrieve the device ID for an open MIDI device. Use
the following functions to get the device ID:

midiInGetID
Gets the device ID for a MIDI input device.

midiOutGetID
Gets the device ID for a MIDI output device.

Low-Level MIDI Audio Services 2-11

Receiving MIDI Messages

Once you open a MIDI input device, you can begin receiving MIDI input. MIDI messages
other than system exclusive messages are sent directly to a callback. To receive system
exclusive messages, you must pass data buffers to the input device. These data buffers
must be prepared before being sent to the device. Use the following messages to prepare
system exclusive data buffers and pass these buffers to a MIDI input device:

midilnAddBuffer

Sends an input buffer for system exclusive messages to a specified MIDI input device.
The buffer is sent back to the application when it is filled with system exclusive data.

midilnPrepareHeader

Informs a MIDI input device that the given data buffer should be prepared for
recording.

midilnUnprepareHeader
Informs a MIDI input device that the preparation performed on the given data
buffer can be cleaned up.

Controlling MIDI Input

When receiving MIDI input, you can control when the input starts and stops. Use the
following functions to start and stop input on a MIDI input device: -

midiInStart
Starts input on a MIDI input device.

midilnStop
Stops input on a MIDI input device.

midilnReset
Stops input on a MIDI input device. Marks all pending data buffers as being done.

Auxiliary Audio Services 2-13

Sending Custom Messages to MIDI Drivers

The following functions let you send messages directly to MIDI device drivers:

midilnMessage
Sends a message directly to a MIDI input device driver.

midiOutMessage
Sends a message directly to a MIDI output device driver.

Auxiliary Audio Services

Auxiliary audio devices are audio devices whose output is mixed with the output of
waveform and MIDI synthesizer devices. Use the following functions to query the
capabilities of auxiliary audio devices and to query and set their volume level:

auxGetDevCaps
Retrieves the capabilities of a given auxiliary audio device.

auxGetNumDevs
Retrieves the number of auxiliary audio devices present in a system.

auxGetVolume
Queries the volume level of an auxiliary audio device.

auxQutMessage
Sends a message to an auxiliary output device.

auxSetVolume
Sets the volume level of an auxiliary audio device.

File I/0 Services 2-15

Performing Buffered File 1/0

Using the basic buffered file I/O services is very similar to using the unbuffered services.
Specify the MMIO_ALLOCBUEF option with the mmioOpen function to open a file for
buffered I/O. The file I/O manager will maintain an internal buffer which is transparent to
the application.

You can also change the size of the internal buffer, allocate your own buffer, and directly
access a buffer for optimal I/O performance. Use the following functions for I/O buffer
control and direct I/O buffer access:

mmioAdvance
Fills and/or flushes the 1/0 buffer of a file set up for direct I/O buffer access.

mmioFlush
Writes the contents of the I/0 buffer to disk.

mmioGetInfo
Gets information about the file I/O buffer of a file opened for buffered I/O.

mmioSetBuffer
Changes the size of the I/O buffer, and allows applications to supply their own buffer.

mmioSetInfo
Changes information about the file I/O buffer of a file opened for buffered 1/0O.

Media Control Interface Services 2-17

Media Control Interface Services

The Media Control Interface (MCI) provides a high-level generalized interface for
controlling both internal and external media devices. MCI uses device handlers to interpret
and execute high-level MCI commands. Applications can communicate with MCI device
handlers by sending messages or command strings.

MCT also provides macros for working with the time and position information encoded in
a packed DWORD.

Communicating with MCI Devices

You can communicate with MCI devices using messages or command strings. Messages
are used directly by MCI; MCI converts command strings into messages that it then sends
to the device handler. Use these functions to send messages or command strings to MCI,
to get the ID assigned to a device, and to get a textual description of an MCI error:

mciSendCommand
Sends a command message to MCI.

mciSendString
Sends a command string to MCI.

mciGetDeviceID
Returns the device ID assigned when the device was opened.

mciGetErrorString
Returns the error string corresponding to an MCI error return value.

mciSetYieldProc

Specifies a callback procedure to be called while an MCI device is completing a
command specified with the wait flag.

mciGetYieldProc
Returns the current yield procedure for an MCI device.

Most of the MCI functionality is expressed in its command set. See Chapter 4, “Message
Overview,” and Chapter 5, “Message Directory,” for an overview and reference to all MCI
command messages. MCI command messages are prefixed with MCL

In addition to its message-based interface, MCI has a string-based interface. Chapter 7,
“MCI Command Strings,” describes the MCI command strings.

Joystick Services 2-19

MMSYSTEM.H also defines the following macros that combine separate time and
position values into the packed DWORD format:

MCI_MAKE_HMS

Creates a DWORD time value in hours/minutes/seconds format from the given hours,
minutes, and seconds values.

MCI_MAKE_MSF
Creates a DWORD time value in minutes/seconds/frames format from the given
minutes, seconds, and frames values.

MCI_MAKE_TMSF
Creates a DWORD time value in tracks/minutes/seconds/frames format from the
given tracks, minutes, seconds, and frames values.

Joystick Services

The joystick services provide support for up to two joystick devices. Use the following
functions to get information about joystick devices, to control joystick sensitivity, and to
receive messages related to joystick movement and button activity:

joyGetDevCaps
Returns the capabilities of a joystick device.

joyGetNumDevs
Returns the number of devices supported by the joystick driver.

joyGetPos
Returns the position and button state of a joystick.

joyGetThreshold
Returns the movement threshold of a joystick.

joyReleaseCapture
Releases the joystick captured with joySetCapture.

joySetCapture
Causes periodic joystick messages to be sent to a window.

joySetThreshold
Sets the movement threshold of a joystick.

Chapter 3
Function Directory

This chapter contains an alphabetical list of the Windows multimedia functions. For
information about standard Windows functions, see the Microsoft Windows Programmer’s
Reference, Volume 2: API Reference.

For each function, this chapter lists the following items:

®m The syntax for the function

m The purpose of the function

m A description of input parameters

® A description of return values

® Optional comments on using the function

m Optional cross references to other functions, messages, and data structures

This chapter also lists the multimedia macros for Windows. Macros are documented
similarly to functions. Each description begins by identifying the routine as
a function or a macro (for example, “This function...” or “This macro...”).

auxGetDevCaps 3-3

Function Descriptions

This section lists the multimedia functions and macros. The functions and macros are
presented in alphabetical order.

auxGetDevCaps

Syntax UINT auxGetDevCaps(wDevicelD, IpCaps, wSize)

This function queries a specified auxiliary output device to determine its capabilities.

Parameters UINT wDevicelD
Identifies the auxiliary output device to be queried. Specify a valid device ID (see the
following “Comments” section), or use the following constant:

AUX_MAPPER

Auxiliary audio mapper. The function will return an error if no auxiliary audio
mapper is installed.

LPAUXCAPS IpCaps

Specifies a far pointer to an AUXCAPS structure. This structure is filled with
information about the capabilities of the device.

UINT wSize
Specifies the size of the AUXCAPS structure.

Return Value Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_NODRIVER
The driver failed to install.

Comments The device ID specified by wDevicelD varies from zero to one less than the number of
devices present. Use auxGetNumDevs to determine the number of auxiliary output
devices present in the system.

See Also auxGetNumDevs

auxOutMessage 3-5

Comments Not all devices support volume control. To determine whether the device supports volume
control, use the AUXCAPS_VOLUME flag to test the dwSupport field of the AUXCAPS
structure (filled by auxGetDevCaps).

To determine whether the device supports volume control on both the left and right
channels, use the AUXCAPS_LRVOLUME flag to test the dwSupport field of the
AUXCAPS structure (filled by auxGetDevCaps).

See Also auxSetVolume

auxOutMessage

Syntax DWORD auxOutMessage(wDevicelD, msg, dwl, dw2)

This function sends a message to an auxiliary output device. It also performs error
checking on the device ID passed.

Parameters UINT wDevicelD

Return Value

Specifies the auxiliary output device to receive the message.

UINT msg
Specifies the message to send.

DWORD dwl
Specifies the first message parameter.

DWORD dw2
Specifies the second message parameter.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADDEVICEID
The device ID specifies an invalid or nonexistent device.

MMSYSERR_NODRIVER
The driver for the auxiliary device failed to install.

joyGetNumDevs 3-7

joyGetDevCaps

Syntax UINT joyGetDevCaps(wJoyID, IpCaps, wSize)
This function queries a joystick device to determine its capabilities.
Parameters UINT wJoyIlD

Identifies the device to be queried. This value is either JOYSTICKIDI or
JOYSTICKID2.

LPJOYCAPS IpCaps

Specifies a far pointer to a JOYCAPS data structure. This structure is filled with
information about the capabilities of the joystick device.

UINT wSize
Specifies the size of the JOYCAPS structure.

Return Value Returns JOYERR_NOERROR if successful. Otherwise, returns one of the following
error codes:

MMSYSERR_NODRIVER
The joystick driver is not present.

JOYERR_PARMS
The specified joystick device ID wJoyID is invalid.

Comments Use joyGetNumDevs to determine the number of joystick devices supported by the driver.
See Also joyGetNumDevs

joyGetNumDevs

Syntax UINT joyGetNumDevs()

This function returns the number of joystick devices supported by the system.
Parameters None.

Return Value Returns the number of joystick devices supported by the joystick driver. If no driver is
present, the function returns zero.

Comments Use joyGetPos to determine whether a given joystick is actually attached to the system.
The joyGetPos function returns a JOYERR_UNPLUGGED error code if the specified
joystick is not connected.

See Also joyGetDevCaps, joyGetPos

joyReleaseCapture 3-9

Return Value

Returns JOYERR_NOERROR if successful. Otherwise, returns one of the following
error codes:

MMSYSERR_NODRIVER
The joystick driver is not present.

JOYERR_PARMS
The specified joystick device ID wJ/oyID is invalid.

Comments The movement threshold is the distance the joystick must be moved before a
WM_JOYMOVE message is sent to a window that has captured the device. The
threshold is initially zero.

See Also joySetThreshold

joyReleaseCapture

Syntax UINT joyReleaseCapture(wJoyID)

This function releases the capture set by joySetCapture on the specified joystick device.

Parameters UINT wJoylD

Return Value

See Also

Identifies the joystick device to be released. This value is either JOYSTICKID1
or JOYSTICKID?2.

Returns JOYERR_NOERROR if successful. Otherwise, returns one of the following
error codes:

MMSYSERR_NODRIVER
The joystick driver is not present.

JOYERR_PARMS
The specified joystick device ID wJoyID is invalid.

joySetCapture

MCI_HMS_HOUR 3-11

joySetThreshold

Syntax

Parameters

Return Value

Comments

See Also

UINT joySetThreshold(wJoyID, wThreshold)

This function sets the movement threshold of a joystick device.

UINT wJoyID
Identifies the joystick device. This value is either JOYSTICKIDI or JOYSTICKID2.

UINT wThreshold
Specifies the new movement threshold.

Returns JOYERR_NOERROR if successful. Otherwise, returns one of the following
error codes:

MMSYSERR_NODRIVER
The joystick driver is not present.

JOYERR_PARMS
The specified joystick device ID wJoyID is invalid.

The movement threshold is the distance the joystick must be moved before an
MM_JOYMOVE message is sent to a window that has captured the device.

joyGetThreshold, joySetCapture

MCI_HMS_HOUR

Syntax

Parameters

Return Value

Comments

See Also

BYTE MCL_HMS_HOUR(dwHMS)

This macro returns the hours field from a DWORD argument containing packed HMS
(hours, minutes, seconds) information.

DWORD dwHMS
Specifies the time in HMS format.

The return value is the hours field of the given argument.

Time in HMS format is expressed as a DWORD with the least significant byte containing
hours, the next least significant byte containing minutes, and the next least significant byte
containing seconds. The most significant byte is unused.

MCI_HMS_MINUTE, MCI_HMS_SECOND, MCI_MAKE_HMS

MCI_MAKE_MSF 3-13

MCI_MAKE_HMS

Syntax

Parameters

Return Value

Comments

See Also

DWORD MCI_MAKE_HMS(hours, minutes, seconds)

This macro returns a time value in HMS (hours, minutes, seconds) format from the given
hours, minutes, and seconds values.

BYTE hours
Specifies the number of hours.

BYTE minutes
Specifies the number of minutes.

BYTE seconds
Specifies the number of seconds.

The return value is a DWORD value containing the time in packed HMS format.

Time in HMS format is expressed as a DWORD with the least significant byte containing
hours, the next least significant byte containing minutes, and the next least significant byte
containing seconds. The most significant byte is unused.

MCIL_HMS_HOUR, MCIL_HMS_MINUTE, MCIL_HMS_SECOND

MCI_MAKE_MSF

Syntax

Parameters

Return Value

Comments

See Also

DWORD MCI_MAKE_MSF(minutes, seconds, frames)

This macro returns a time value in MSF (minutes, seconds, frames) format from
the given minutes, seconds, and frames values.

BYTE minutes
Specifies the number of minutes.

BYTE seconds
Specifies the number of seconds.

BYTE frames
Specifies the number of frames.

The return value is a DWORD value containing the time in packed MSF format.

Time in MSF format is expressed as a DWORD with the least significant byte containing
minutes, the next least significant byte containing seconds, and the next least significant
byte containing frames. The most significant byte is unused.

MCIL_MSF_MINUTE, MCIL_MSF_SECOND, MCI_MSF_FRAME

MCI_MSF_SECOND 3-15

MCI_MSF_MINUTE

Syntax

Parameters

Return Value

Comments

See Also

BYTE MCIL_MSF_MINUTE(dwMSF)

This macro returns the minutes field from a DWORD argument containing packed MSF
(minutes, seconds, frames) information.

DWORD dwMSF
Specifies the time in MSF format.

The return value is the minutes field of the given argument.

Time in MSF format is expressed as a DWORD with the least significant byte containing
minutes, the next least significant byte containing seconds, and the next least significant
byte containing frames. The most significant byte is unused.

MCI_MSF_SECOND, MCI_MSF_FRAME, MCI_MAKE_MSF

MCI_MSF_SECOND

Syntax

Parameters

Return Value

Comments

See Also

BYTE MCIL _MSF_SECOND(dwMSF)

This macro returns the seconds field from a DWORD argument containing packed MSF
(minutes, seconds, frames) information.

DWORD dwMSF
Specifies the time in MSF format.

The return value is the seconds field of the given argument.

Time in MSF format is expressed as a DWORD with the least significant byte containing
minutes, the next least significant byte containing seconds, and the next least significant
byte containing frames. The most significant byte is unused.

MCI_MSF_MINUTE, MCI_MSF_FRAME, MCI_MAKE_MSF

MCI_TMSF_TRACK 3-17

MCI_TMSF_SECOND

Syntax

Parameters

Return Value

Comments

See Also

BYTE MCL TMSF_SECOND(dwTMSF)

This macro returns the seconds field from a DWORD argument containing packed TMSF
(tracks, minutes, seconds, frames) information.

DWORD dwTMSF
Specifies the time in TMSF format.

The return value is the seconds field of the given argument.

Time in TMSF format is expressed as a DWORD with the least significant byte containing
tracks, the next least significant byte containing minutes, the next least significant byte
containing seconds, and the most significant byte containing frames.

MCI_TMSF_TRACK, MCL_TMSF_MINUTE, MCL_TMSF_FRAME,
MCI_MAKE_TMSF

MCI_TMSF_TRACK

Syntax

Parameters

Return Value

Comments

See Also

BYTE MCL TMSF_TRACK(dwTMSF)

This macro returns the tracks field from a DWORD argument containing packed TMSF
(tracks, minutes, seconds, frames) information.

DWORD dwTMSF
Specifies the time in TMSF format.

The return value is the tracks field of the given argument.

Time in TMSF format is expressed as a DWORD with the least significant byte containing
tracks, the next least significant byte containing minutes, the next least significant byte
containing seconds, and the most significant byte containing frames.

MCL_TMSF_MINUTE, MCI_TMSF_SECOND, MCL_TMSF_FRAME,
MCI_MAKE_TMSF

mciSendCommand 3-19

mciGetYieldProc

Syntax

Parameters

Return Value

YIELDPROC WINAPI,_mciGetYieldProc(wDevicelD, lpdwYieldData)

This function returns the address of the callback procedure associated with the mci WAIT
flag; the callback procedure is called periodically while an MCI device waits for a
command specified with the WAIT flag to complete.

UINT wbDevicelD

Specifies the ID of the MCI device being monitored while it performs an MCI
command.

LPDWORD IpdwYieldData
Optionally specifies a buffer to hold the yield data passed to the function. If the
parameter is NULL, it is ignored.

Returns the current yield proc if it exists. Otherwise, returns NULL for an invalid
device ID.

mciSendCommand

Syntax

Parameters

Return Value

DWORD mciSendCommand(wDevicelD, wMessage, dwParaml, dwParam?2)

This function sends a command message to the specified MCI device.

UINT wbDevicelD

Specifies the device ID of the MCI device to receive the command. This
parameter is not used with the MCI_ OPEN command.

UINT wMessage
Specifies the command message.

DWORD dwParaml
Specifies flags for the command.

DWORD dwParam2
Specifies a pointer to a parameter block for the command.

Returns zero if the function was successful. Otherwise, it returns error information.
The low-order word of the returned DWORD is the error return value. If the error is
device-specific, the high-order word contains the driver ID; otherwise the high-order
word is zero.

To get a text description of mciSendCommand return values, pass the return value
to mciGetErrorString.

meciSendCommand 3-21

MCIERR_DEVICE_TYPE REQUIRED

The specified device cannot be found on the system. Check that the device is installed
and the device name is spelled correctly.

MCIERR_DRIVER

The device driver exhibits a problem. Check with the device manufacturer about
obtaining a new driver.

MCIERR_DRIVER_INTERNAL

The device driver exhibits a problem. Check with the device manufacturer about
obtaining a new driver.

MCIERR_DUPLICATE_ALIAS
The specified alias is already used in this application. Use a unique alias.

MCIERR_EXTENSION_NOT_FOUND
The specified extension has no device type associated with it. Specify a device type.

MCIERR_EXTRA_CHARACTERS

You must enclose a string with quotation marks; characters following the closing
quotation mark are not valid.

MCIERR_FILE_NOT_FOUND
The requested file was not found. Check that the path and filename are correct.

MCIERR_FILE_NOT_SAVED

The file was not saved. Make sure your system has sufficient disk space or has an
intact network connection.

MCIERR_FILE_READ

A read from the file failed. Make sure the file is present on your system or that your
system has an intact network connection.

MCIERR_FILE_WRITE

A write to the file failed. Make sure your system has sufficient disk space or has an
intact network connection.

MCIERR_FLAGS_NOT_COMPATIBLE
The specified parameters cannot be used together.

mciSendCommand 3-23

MCIERR_MUST _USE_SHAREABLE

The device driver is already in use. You must specify the “shareable” parameter with
each open command to share the device.

MCIERR_NO_ELEMENT_ALLOWED
The specified device does not use a filename.

MCIERR_NO_INTEGER
The parameter for this MCI command must be an integer value.

MCIERR_NO_WINDOW
There is no display window.

MCIERR_NONAPPLICABLE_FUNCTION

The specified MCI command sequence cannot be performed in the given order.
Correct the command sequence; then, try again.

MCIERR_NULL_PARAMETER_BLOCK
A null parameter block was passed to MCI.

MCIERR_OUT_OF _MEMORY

Your system does not have enough memory for this task. Quit one or more
applications to increase the available memory, then, try to perform the task again.

MCIERR_OUTOFRANGE
The specified parameter value is out of range for the specified MCI command.

MCIERR_SET_CD

The specified file or MCI device is inaccessible because the application cannot
change directories.

MCIERR_SET_DRIVE
The specified file or MCI device is inaccessible because the application cannot
change drives.

MCIERR_UNNAMED_RESOURCE
You cannot store an unnamed file. Specify a filename.

MCIERR_UNRECOGNIZED_COMMAND
The driver cannot recognize the specified command.

MCIERR_UNSUPPORTED_FUNCTION
The MCI device driver the system is using does not support the specified command.

mciSendCommand 3-25

Comments

See Also

Waveform Audio Errors

The following additional return values are defined for MCI waveform audio devices:

MCIERR_WAVE_INPUTSINUSE

All waveform devices that can record files in the current format are in use. Wait until
one of these devices is free; then, try again.

MCIERR_WAVE_INPUTSUNSUITABLE

No installed waveform device can record files in the current format. Use the Drivers
option from the Control Panel to install a suitable waveform recording device.

MCIERR_WAVE_INPUTUNSPECIFIED
You can specify any compatible waveform recording device.

MCIERR_WAVE_OUTPUTSINUSE

All waveform devices that can play files in the current format are in use. Wait until
one of these devices is free; then, try again.

MCIERR_WAVE_OUTPUTSUNSUITABLE

No installed waveform device can play files in the current format. Use the Drivers
option from the Control Panel to install a suitable waveform device.

MCIERR_WAVE_OUTPUTUNSPECIFIED
You can specify any compatible waveform playback device.

MCIERR_WAVE_SETINPUTINUSE

The current waveform device is in use. Wait until the device is free; then, try again to
set the device for recording.

MCIERR_WAVE_SETINPUTUNSUITABLE
The device you are using to record a waveform cannot recognize the data format.

MCIERR_WAVE_SETOUTPUTINUSE

The current waveform device is in use. Wait until the device is free; then, try again to
set the device for playback.

MCIERR_WAVE_SETOUTPUTUNSUITABLE
The device you are using to playback a waveform cannot recognize the data format.

Use the MCI_OPEN command to obtain the device ID specified by wDevicelD.

mciGetErrorString, mciSendString

mciSetYieldProc 3-27

MCIERR_NEW_REQUIRES_ALIAS
You must specify an alias when using the “new” parameter.

MCIERR_NO_CLOSING_QUOTE
The string parameter is missing a closing double quotation mark, which you must
supply.

MCIERR_NOTIFY_ON_AUTO_OPEN
You cannot use the “notify” flag with automatically opened devices.

MCIERR_PARAM_OVERFLOW

The output string was too large to fit in the return buffer. Increase the size of the
buffer.

MCIERR_PARSER_INTERNAL

The device driver returned an invalid return type. Check with the device manufacturer
about obtaining a new driver.

MCIERR_UNRECOGNIZED_KEYWORD
The driver cannot recognize the specified command parameter.

See Also mciGetErrorString, mciSendCommand
mciSetYieldProc
Syntax BOOL mciSetYieldProc(wDevicelD, fpYieldProc, dwYieldData)

This function sets the address of a callback procedure to be called periodically when an
MCI device is completing a command specified with the WAIT flag.

Parameters UINT wDevicelD

Specifies the device ID of the MCI device to which the yield procedure is to be
assigned.

YIELDPROC fpYieldProc

Specifies the callback procedure to be called when the given device is yielding.
Specify a NULL value to disable any existing yield procedure.

DWORD dwYieldData
Specifies the data sent to the yield procedure when it is called for the given device.

Return Value Returns TRUE if successful. Returns FALSE for an invalid device ID.

Callback int CALLBACK YieldProc(wDevicelD, dwData)

YieldProc is a placeholder for the application-supplied function name. Export the actual
name by including it in the EXPORTS statement in your module-definition file.

midilnClose 3-29

Comments The data buffer must be prepared with midilnPrepareHeader before it is passed to
midilnAddBuffer. The MIDIHDR data structure and the data buffer pointed to by its
IpData field must be allocated with GlobalAlloc using the GMEM_MOVEABLE and
GMEM_SHARE flags, and locked with GlobalLock.

See Also midilnPrepareHeader

midilnClose

Syntax UINT midilnClose(hMidiln)
This function closes the specified MIDI input device.

Parameters HMIDIIN hMidiln

Return Value

Comments

See Also

Specifies a handle to the MIDI input device. If the function is successful, the handle is
no longer valid after this call.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

MIDIERR_STILLPLAYING
There are still buffers in the queue.

If there are input buffers that have been sent with midilnAddBuffer and haven’t been
returned to the application, the close operation will fail. Call midiInReset to mark all
pending buffers as being done.

midiInOpen, midiInReset

midilnGetlD 3-31

midilnGetErrorText

Syntax

Parameters

Return Value

Comments

UINT midilnGetErrorText(wError, IpText, wSize)

This function retrieves a text description of the error identified by the specified
error number.

UINT wError
Specifies the error number.

LPSTR IpText
Specifies a far pointer to the buffer to be filled with the text error description.

UINT wSize
Specifies the length of buffer pointed to by IpText.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADERRNUM
Specified error number is out of range.

If the text error description is longer than the specified buffer, the description is truncated.
The returned error string is always null-terminated. If wSize is zero, nothing is copied, and
the function returns zero. All error descriptions are less than MAXERRORLENGTH
characters long.

midilnGetID
Syntax

Parameters

Return Value

UINT midilnGetID(hMidiln, lpwDevicelD)

This function gets the device ID for a MIDI input device.

HMIDIIN hMidiln
Specifies the handle to the MIDI input device.

UINT FAR* IpwDevicelD

Specifies a pointer to the WORD-sized memory location to be filled with the
device ID.

Returns zero if successful. Otherwise, returns an error number. Possible error returns are:

MMSYSERR_INVALHANDLE
The hMidiln parameter specifies an invalid handle.

midiinOpen 3-33

Parameters

Return Value

Callback

LPHMIDIIN IphMidiln

Specifies a far pointer to an HMIDIIN handle. This location is filled with a handle
identifying the opened MIDI input device. Use the handle to identify the device
when calling other MIDI input functions.

UINT wDevicelD

Identifies the MIDI input device to open. Specify a valid MIDI input device ID (see
the following “Comments” section) or the following constant:

MIDI_MAPPER
MIDI mapper. The function will return an error if no MIDI mapper is installed.

DWORD dwCallback

Specifies the address of a fixed callback function or a handle to a window called
with information about incoming MIDI messages.

DWORD dwCallbackInstance

Specifies user instance data passed to the callback function. This parameter is not
used with window callbacks.

DWORD dwFlags
Specifies a callback flag for opening the device.

CALLBACK_WINDOW
If this flag is specified, dwCallback is assumed to be a window handle.

CALLBACK_FUNCTION

If this flag is specified, dwCallback is assumed to be a callback procedure
address.

Returns zero if the function was successful. Otherwise, it returns an error number.
Possible error returns are:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_ALLOCATED
Specified resource is already allocated.

MMSYSERR_NOMEM
Unable to allocate or lock memory.

void CALLBACK MidiInFunc(hMidiln, wMsg, dwinstance, dwParaml, dwParam?2)

MidiInFunc is a placeholder for the application-supplied function name. The actual
name must be exported by including it in an EXPORTS statement in the DLL’s module
definition file.

midilnPrepareHeader 3-35

See Also

The callback function must reside in a DLL. You do not have to use MakeProcInstance
to get a procedure-instance address for the callback function.

Because the callback is accessed at interrupt time, it must reside in a DLL, and its code
segment must be specified as FIXED in the module-definition file for the DLL. Any data
that the callback accesses must be in a FIXED data segment as well. The callback should
not make any system calls except for PostMessage, timeGetSystemTime, timeGetTime,
timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg, and
OutputDebugStr.

midilnClose

midilnPrepareHeader

Syntax

Parameters

Return Value

Comments

See Also

UINT midilnPrepareHeader(hMidiln, IpMidilnHdr, wSize)
This function prepares a buffer for MIDI input.

HMIDIIN hMidiln
Specifies a handle to the MIDI input device.

LPMIDIHDR IpMidilnHdr
Specifies a pointer to a MIDIHDR structure that identifies the buffer to be prepared.

UINT wSize
Specifies the size of the MIDIHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

MMSYSERR_NOMEM
Unable to allocate or lock memory.

The MIDIHDR data structure and the data block pointed to by its IpData field must be
allocated with GlobalAlloc using the GMEM_MOVEABLE and GMEM_SHARE flags,
and locked with GlobalLock. Preparing a header that has already been prepared has no
effect, and the function returns zero.

midilnUnprepareHeader

midilnStop 3-37

Comments

See Also

This function resets the timestamps to zero; timestamp values for subsequently received
messages are relative to the time this function was called.

All messages other than system-exclusive messages are sent directly to the client when
received. System-exclusive messages are placed in the buffers supplied by midilnAddBuffer;
if there are no buffers in the queue, the data is thrown away without notification to the client,
and input continues.

Buffers are returned to the client when full, when a complete system-exclusive message
has been received, or when midiInReset is called. The dwBytesRecorded field in the
header will contain the actual length of data received.

Calling this function when input is already started has no effect, and the function
returns zero.

midiInStop, midiInReset

midilnStop
Syntax

Parameters

Return Value

Comments

See Also

UINT midiInStop(hMidiln)

This function terminates MIDI input on the specified MIDI input device.

HMIDIIN hMidiln
Specifies a handle to the MIDI input device.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

Current status (running status, parsing state, etc.) is maintained across calls to midiInStop
and midiInStart. If there are any system exclusive message buffers in the queue, the
current buffer is marked as done (the dwBytesRecorded field in the header will contain
the actual length of data), but any empty buffers in the queue remain there. Calling this
function when input is not started has no effect, and the function returns zero.

midilnStart, midiInReset

midiOutCacheDrumPatches 3-39

midiOutCacheDrumPatches

Syntax

Parameters

UINT midiOutCacheDrumPatches(hMidiOut, wPatch, IpKeyArray, wFlags)

This function requests that an internal MIDI synthesizer device preload a specified set of
key-based percussion patches. Some synthesizers are not capable of keeping all percussion
patches loaded simultaneously. Caching patches ensures specified patches are available.

HMIDIOUT hMidiOut

Specifies a handle to the opened MIDI output device. This device should be an
internal MIDI synthesizer.

UINT wPatch

Specifies which drum patch number should be used. To specify caching of the default
drum patches, set this parameter to zero.

LPKEYARRAY IpKeyArray

Specifies a pointer to a KEYARRAY array indicating the key numbers of the
specified percussion patches to be cached or uncached.

UINT wFlags

Specifies options for the cache operation. Only one of the following flags can be
specified:

MIDI_CACHE_ALL

Cache all of the specified patches. If they can’t all be cached, cache none, clear
the KEYARRAY array, and return MMSYSERR_NOMEM.

MIDI_CACHE_BESTFIT

Cache all of the specified patches. If all patches can’t be cached, cache as many
patches as possible, change the KEYARRAY array to reflect which patches
were cached, and return MMSYSERR_NOMEM.

MIDI_CACHE_QUERY
Change the KEYARRAY array to indicate which patches are currently cached.

MIDI_UNCACHE
Uncache the specified patches and clear the KEYARRAY array.

midiOutCachePatches 3-41

Parameters

Return Value

HMIDIOUT AMidiOut

Specifies a handle to the opened MIDI output device. This device must be an internal
MIDI synthesizer.

UINT wBank

Specifies which bank of patches should be used. To specify caching of the default
patch bank, set this parameter to zero.

LPPATCHARRAY IpPatchArray

Specifies a pointer to a PATCHARRAY array indicating the patches to be cached
or uncached.

UINT wFlags

Specifies options for the cache operation. Only one of the following flags can
be specified:

MIDI_CACHE_ALL

Cache all of the specified patches. If they can’t all be cached, cache none, clear
the PATCHARRAY array, and return MMSYSERR_NOMEM.

MIDI_CACHE_BESTFIT

Cache all of the specified patches. If all patches can’t be cached, cache as many
patches as possible, change the PATCHARRAY array to reflect which patches
were cached, and return MMSYSERR_NOMEM.

MIDI_CACHE_QUERY

Change the PATCHARRAY array to indicate which patches are currently
cached.

MIDI_UNCACHE
Uncache the specified patches and clear the PATCHARRAY array.

Returns zero if the function was successful. Otherwise, it returns one of the following
error codes:

MMSYSERR_INVALHANDLE
The specified device handle is invalid.

MMSYSERR_NOTSUPPORTED
The specified device does not support patch caching.

MMSYSERR_NOMEM
The device does not have enough memory to cache all of the requested patches.

midiOutGetDevCaps 3-43

midiOutGetDevCaps

Syntax UINT midiOutGetDevCaps(wDevicelD, IpCaps, wSize)
This function queries a specified MIDI output device to determine its capabilities.

Parameters UINT wbDevicelD

Identifies the MIDI output device to query. Specify a valid MIDI output device ID
(see the following “Comments” section) or the following constant:

MIDI_MAPPER
MIDI mapper. The function will return an error if no MIDI mapper is installed.

LPMIDIOUTCAPS [pCaps

Specifies a far pointer to a MIDIOUTCAPS structure. This structure is filled
with information about the capabilities of the device.

UINT wSize
Specifies the size of the MIDIOUTCAPS structure.

Return Value Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_NODRIVER
The driver was not installed.

Comments The device ID specitied by wDevicelD varies from zero to one less than the number of
devices present. Use midiOutGetNumDevs to determine the number of MIDI output
devices present in the system.

Only wSize bytes (or less) of information is copied to the location pointed to by IpCaps. If
wSize is zero, nothing is copied, and the function returns zero.

See Also midiOutGetNumDevs

midiOutGetVolume 3-45

midiOutGetNumDevs

Syntax UINT midiOutGetNumDevs()

This function retrieves the number of MIDI output devices present in the system.

Parameters None.

Return Value Returns the number of MIDI output devices present in the system.
See Also midiOutGetDevCaps

midiOutGetVolume

Syntax UINT midiOutGetVolume(wDevicelD, IpdwVolume)

This function returns the current volume setting of a MIDI output device.

Parameters UINT wDevicelD
Idenifies the MIDI output device.

LPDWORD IpdwVolume

Specifies a far pointer to a location to be filled with the current volume setting. The
low-order word of this location contains the left channel volume setting, and the
high-order word contains the right channel setting. A value of OxFFFF represents
full volume, and a value of 0x0000 is silence.

If a device does not support both left and right volume control, the low-order word
of the specified location contains the mono volume level.

The full 16-bit setting(s) set with midiOutSetVolume is returned, regardless of
whether the device supports the full 16 bits of volume-level control.

Return Value Returns zero if the function was successful. Otherwise, it returns an error number.
Possible error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

MMSYSERR_NOTSUPPORTED
Function isn’t supported.

MMSYSERR_NODRIVER
The driver was not installed.

midiOutMessage 3-47

Comments

See Also

The data buffer must be prepared with midiOutPrepareHeader before it is passed to
midiOutLongMsg. The MIDIHDR data structure and the data buffer pointed to by its
IpData field must be allocated with GlobalAlloc using the GMEM_MOVEABLE and
GMEM_SHARE flags, and locked with GlobalLock. The MIDI output device driver
determines whether the data is sent synchronously or asynchronously.

MIDI status is maintained across consecutive calls to midiOutLongMsg and
midiOutShortMsg.

midiOutShortMsg, midiOutPrepareHeader

midiOutMessage

Syntax

Parameters

Return Value
Comments

See Also

DWORD midiOutMessage(hMidiOut, msg, dwParaml, dwParam?2)

This function sends a message to a MIDI output device driver. Use it to send
driver-specific messages that aren’t supported by the MIDI APIs.

HMIDIOUT hMidiOut
Specifies the handle to the audio device driver.

UINT msg
Specifies the message to send.

DWORD dwParaml
Specifies the first message parameter.

DWORD dwParam?2
Specifies the second message parameter.

Returns the value returned by the audio device driver.
Do not use this function to send standard messages to an audio device driver.

midilnMessage

midiOutOpen 3-49

Return Value

Callback

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are as follows:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_ALLOCATED
Specified resource is already allocated.

MMSYSERR_NOMEM
Unable to allocate or lock memory.

MIDIERR_NOMAP
There is no current MIDI map. This occurs only when opening the mapper.

MIDIERR_NODEVICE

A port in the current MIDI map doesn’t exist. This occurs only when opening
the mapper.

void CALLBACK MidiOutFunc(hMidiOut, wMsg, dwlnstance, dwParaml, dwParam?2)

MidiOutFunc is a placeholder for the application-supplied function name. The actual
name must be exported by including it in an EXPORTS statement in the DLL’s
module-definition file.

Callback Parameters

HMIDIOUT hMidiOut
Specifies a handle to the MIDI device associated with the callback.

UINT wMsg
Specifies a MIDI output message.

DWORD dwlnstance
Specifies the instance data supplied with midiOutOpen.

DWORD dwParaml
Specifies a parameter for the message.

DWORD dwParam2
Specifies a parameter for the message.

midiOutSetVolume 3-51

Comments The MIDIHDR data structure and the data block pointed to by its IpData field must be
allocated with GlobalAlloc using the GMEM_MOVEABLE and GMEM_SHARE flags
and locked with GlobalLock. Preparing a header that has already been prepared has no
effect, and the function returns zero.

See Also midiOutUnprepareHeader

midiOutReset

Syntax UINT midiOutReset(hMidiOut)

This function turns off all notes on all MIDI channels for the specified MIDI output
device. If any long output buffers (from midiOutLongMsg) are pending, they are marked
as done and returned to the application.

Parameters HMIDIOUT hMidiOut

Return Value

Specifies a handle to the MIDI output device.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

Comments To turn off all notes, a note-off message for each note for each channel is sent. In addition,
the sustain controller is turned off for each channel.

See Also midiOutLongMsg, midiOutClose

midiOutSetVolume

Syntax UINT midiOutSetVolume(wDevicelD, dwVolume)
This function sets the volume of a MIDI output device.

Parameters UINT wDevicelD

Identifies the MIDI output device.

DWORD dwVolume
Specifies the new volume setting. The low-order word contains the left channel
volume setting, and the high-order word contains the right channel setting. A value
of OxFFFF represents full volume, and a value of 0x0000 is silence.

If a device does not support both left and right volume control, the low-order word
of dwVolume specifies the volume level, and the high-order word is ignored.

midiOutUnprepareHeader 3-53

Return Value

Comments

See Also

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

MIDIERR_NOTREADY
The hardware is busy with other data.

A system exclusive message can be started or completed using midiQutShortMsg by
sending a start system exclusive message (0x000000FO0) or an end of system exclusive
message (0x000000F7); but, the system exclusive data bytes must be sent using
midiOutLongMsg.

MIDI status is maintained across consecutive calls to midiOutShortMsg and
midiOutLongMsg; but, a midiOutShortMsg message must contain all data bytes
for a MIDI event.

midiOutShortMsg supports, as recommended usage, the status byte associated with each
MIDI message; including the status byte with a MIDI message clarifies that message.

This function might not return until the message has been sent to the output device.

midiOutLongMsg

midiOutUnprepareHeader

Syntax

Parameters

UINT midiOutUnprepareHeader(hMidiOut, IpMidiOutHdr, wSize)

This function cleans up the preparation performed by midiOutPrepareHeader. The
midiOutUnprepareHeader function must be called after the device driver fills a data
buffer and returns it to the application. You must call this function before freeing the
data buffer.

HMIDIOUT hMidiOut
Specifies a handle to the MIDI output device.

LPMIDIHDR IpMidiOutHdr
Specifies a pointer to a MIDIHDR structure identifying the buffer to be cleaned up.

UINT wSize
Specifies the size of the MIDIHDR structure.

mmioAdvance 3-55

Return Value

Comments

See Also

The return value is zero if the operation is successful. Otherwise, the return value specifies
an error code. The error code can be one of the following codes:

MMIOERR_CANNOTWRITE
The contents of the buffer could not be written to disk.

MMIOERR_CANNOTREAD
An error occurred while re-filling the buffer.

MMIOERR_UNBUFFERED
The specified file is not opened for buffered 1/0.

MMIOERR_CANNOTEXPAND

The specified memory file cannot be expanded, probably because the adwInfo[0]
field was set to zero in the initial call to mmioOpen.

MMIOERR_OUTOFMEMORY
There was not enough memory to expand a memory file for further writing.

If the specified file is opened for writing or for both reading and writing, the I/O
buffer will be flushed to disk before the next buffer is read. If the I/O buffer
cannot be written to disk because the disk is full, then mmioAdvance will return
MMIOERR_CANNOTWRITE.

If the specified file is only open for writing, the MMIO_WRITE flag must be specified.

If you have written to the I/O buffer, you must set the MMIO_DIRTY flag in the dwFlags
field of the MMIOINFO structure before calling mmioAdvance. Otherwise, the buffer
will not be written to disk.

If the end of file is reached, mmioAdvance will still return success, even though no
more data can be read. Thus, to check for the end of the file, it is necessary to see if the
pchNext and pchEndRead fields of the MMIOINFO structure are equal after calling
mmioAdvance.

mmioGetInfo, MMIOINFO

mmioCreateChunk 3-57

mmioClose
Syntax

Parameters

Return Value

UINT mmioClose(hmmio, wFlags)

This function closes a file opened with mmioOpen.

HMMIO hmmio
Specifies the file handle of the file to close.

UINT wFlags
Specifies options for the close operation.

MMIO_FHOPEN

If the file was opened by passing the MS-DOS file handle of an already-opened
file to mmioOpen, then using this flag tells mmioClose to close the MMIO file
handle, but not the MS-DOS file handle.

The return value is zero if the function is successful. Otherwise, the return value is an error
code, either from mmioFlush or from the I/O procedure. The error code can be one of the
following codes:

MMIOERR_CANNOTWRITE
The contents of the buffer could not be written to disk.

See Also mmioOpen, mmioFlush
mmioCreateChunk
Syntax UINT mmioCreateChunk(hmmio, Ipck, wFlags)

This function creates a chunk in a RIFF file opened with mmioOpen. The new chunk is
created at the current file position. After the new chunk is created, the current file position
is the beginning of the data portion of the new chunk.

mmioDescend 3-59

mmioDescend

Syntax UINT mmioDescend(hmmio, Ipck, IpckParent, wFlags)

This function descends into a chunk of a RIFF file opened with mmioOpen. It can also
search for a given chunk.

Parameters HMMIO hmmio
Specifies the file handle of an open RIFF file.

LPMMCKINFO Ipck

Specifies a far pointer to a caller-supplied MMCKINFO structure that mmioDescend
fills with the following information:

e The ckid field is the chunk ID of the chunk.

® The cksize field is the size of the data portion of the chunk. The data size includes
the form type or list type (if any), but does not include the 8-byte chunk header or
the pad byte at the end of the data (if any).

® The fecType field is the form type if ckid is “RIFF”, or the list type if ckid is
“LIST”. Otherwise, it is NULL.

® The dwDataOffset field is the file offset of the beginning of the data portion of the
chunk. If the chunk is a “RIFF” chunk or a “LIST” chunk, then dwDataOffset is
the offset of the form type or list type.

® The dwFlags contains other information about the chunk. Currently, this
information is not used and is set to zero.

If the MMIO_FINDCHUNK, MMIO_FINDRIFF, or MMIO_FINDLIST flag is
specified for wFlags, then the MMCKINFO structure is also used to pass parameters
to mmioDescend:

® The ckid field specifies the four-character code of the chunk ID, form type, or list
type to search for.

LPMMCKINFO IpckParent
Specifies a far pointer to an optional caller-supplied MMCKINFO structure
identifying the parent of the chunk being searched for. A parent of a chunk is the
enclosing chunk—only “RIFF” and “LIST” chunks can be parents. If [pckParent
is not NULL, then mmioDescend assumes the MM CKINFO structure it refers to
was filled when mmioDescend was called to descend into the parent chunk, and
mmioDescend will only search for a chunk within the parent chunk. Set [pckParent
to NULL if no parent chunk is being specified.

mmioFOURCC 3-61

mmioFlush

Syntax UINT mmioFlush(hmmio, wFlags)

This function writes the I/O buffer of a file to disk, if the I/O buffer has been written to.

Parameters HMMIO hmmio

Specifies the file handle of a file opened with mmioOpen.
UINT wFlags
Is not used and should be set to zero.

Return Value The return value is zero if the function is successful. Otherwise, the return value specifies
an error code. The error code can be one of the following codes:
MMIOERR_CANNOTWRITE

The contents of the buffer could not be written to disk.

Comments Closing a file with mmioClose will automatically flush its buffer.

If there is insufficient disk space to write the buffer, mmioFlush will fail, even if the
preceding mmioWrite calls were successful.

mmioFOURCC

Syntax FOURCC mmioFOURCC(ch0, chl, ch2, ch3)

This macro converts four characters to a four-character code.

Parameters CHAR chO
The first character of the four-character code.

CHAR chl
The second character of the four-character code.

CHAR ch2
The third character of the four-character code.

CHAR ch3
The fourth character of the four-character code.

Return Value The return value is the four-character code created from the given characters.

Comments This macro does not check to see if the four character code follows any conventions
regarding which characters to include in a four-character code.

See Also mmioStringToFOURCC

mmiolnstalllOProc 3-63

mmiolnstalllOProc

Syntax

Parameters

Return Value

Callback

LPMMIOPROC mmiolnstalllOProc(fccIOProc, pIOProc, dwFlags)

This function installs or removes a custom I/O procedure. It will also locate an installed
I/0 procedure, given its corresponding four-character code.

FOURCC fcclOProc

Specifies a four-character code identifying the I/O procedure to install, remove, or
locate. All characters in this four-character code should be uppercase characters.

LPMMIOPROC pIOProc

Specifies the address of the I/O procedure to install. To remove or locate an I/0
procedure, set this parameter to NULL.

DWORD dwFlags

Specifies one of the following flags indicating whether the I/O procedure is being
installed, removed, or located:

MMIO_INSTALLPROC

Installs the specified I/O procedure. To allow other procedures to use the
specified I/O procedure, also specify the MMIO_GLOBALPROC flag.

MMIO_REMOVEPROC

Removes the specified I/O procedure. When removing a global I/O procedure,
only the task that registers a global I/O procedure can unregister that procedure.

MMIO_FINDPROC
Searches local, then global procedures for the specified I/O procedure.

MMIO_GLOBALPROC
Identifies the I/O procedure being installed as a global procedure.

The return value is the address of the I/O procedure installed, removed, or located. If there
is an error, the return value is NULL.

LONG FAR PASCAL 10Proc(lpmmioinfo, wMsg, I[Paraml, [Param2)

IOProc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in a EXPORTS statement in the application’s
module-definitions file.

mmiolnstalllOProc 3-65

See Also

To share an I/O procedure among applications, each application can install and use local
copies of the I/O procedure or one application can install a global copy of the I/O
procedure for one or more applications to use. To use multiple, local copies of an I/O
procedure among several applications, the I/O procedure must reside in a DLL called by
each application using it. Each application using the shared I/O procedure must call
mmiolnstalllOProc to install the procedure (or call the DLL to install the procedure on
behalf of the application). Each application must call mmioInstallIOProc to remove the
/0 procedure before terminating.

If an application calls mmioInstalllOProc more than once to register the same local I/O
procedure, then it must call mmiolnstallIOProc to remove the procedure once for each
time it installed the procedure.

mmiolnstalllOProc will not prevent an application from installing two different I/O
procedures with the same identifier, or installing an I/O procedure with one of the
predefined four-character codes (“DOS ”, “MEM ”, or “BND). The most recently
installed procedure takes precedence and the most recently installed procedure is the first
one to get removed.

To use a single copy of an I/O procedure among several applications, one application must
install the I/O procedure as a global procedure. Then, other applications locate the global
procedure before they use it. An application that installs a global 1/0 procedure can,
without regard to other applications using the procedure, unregister that procedure at any
time.

An application installs a global copy of an I/O procedure by calling mmioInstallIOProc
with the flags MMIO_INSTALLPROC and MMIO_GLOBALPROC. Once an application
globally installs a procedure, that application can use the global procedure. To unregister a
procedure, the application that installed the procedure must call mmiolnstalllOProc.

Other applications must locate an installed, global I/O procedure before using it.

To locate a global procedure, an application calls mmioInstalllOProc with the flag
MMIO_FINDPROC. Once an application locates the global procedure, it can call the
procedure as needed. Applications that use, but do not install, a global I/O procedure, are
exempt from actions to unregister that procedure.

mmioOpen

mmioOpen 3-67

MMIO_WRITE
Opens the file for writing. You should not read from a file opened in this mode.

MMIO_READWRITE
Opens the file for both reading and writing.

MMIO_CREATE
Creates a new file. If the file already exists, it is truncated to zero length. For
memory files, MMIO_CREATE indicates the end of the file is initially at the
start of the buffer.

MMIO_DELETE
Deletes a file. If this flag is specified, szFilename should not be NULL.
The return value will be TRUE (cast to HMMIO) if the file was deleted
successfully, FALSE otherwise. Do not call mmioClose for a file that has
been deleted. If this flag is specified, all other flags are ignored.

MMIO_PARSE
Creates a fully qualified filename from the path specified in szFileName. The
fully qualified filename is placed back into szFileName. The return value will
be TRUE (cast to HMMIO) if the qualification was successful, FALSE
otherwise. The file is not opened, and the function does not return a valid
MMIO file handle, so do not attempt to close the file. If this flag is specified, all
other file opening flags are ignored.

MMIO_EXIST

Determines whether the specified file exists and creates a fully qualified
filename from the path specified in szFileName. The fully qualified filename is
placed back into szFileName. The return value will be TRUE (cast to HMMIO)
if the qualification was successful and the file exists, FALSE otherwise. The
file is not opened, and the function does not return a valid MMIO file handle,
so do not attempt to close the file.

MMIO_ALLOCBUF
Opens a file for buffered 1/0. To allocate a buffer larger or smaller than the
default buffer size (8K), set the cchBuffer field of the MMIOINFO structure
to the desired buffer size. If cchBuffer is zero, then the default buffer size is
used. If you are providing your own I/O buffer, then the MMIO_ALLOCBUF
flag should not be used.

MMIO_COMPAT
Opens the file with compatibility mode, allowing any process on a given
machine to open the file any number of times. mmioOpen fails if the file
has been opened with any of the other sharing modes.

mmioOpen 3-69

See Also

® To request that mmioOpen determine which I/0 procedure to use to open the file
based on the filename contained in szFilename, set both fecIOProc and pIOProc to
NULL. This is the default behavior if no MMIOINFO structure is specified.

= To open a memory file using an internally allocated and managed buffer, set the
pchBuffer field to NULL, feclOProc to FOURCC_MEM, cchBuffer to the initial
size of the buffer, and adwInfo[0] to the incremental expansion size of the buffer. This
memory file will automatically be expanded in increments of aawInfo[0] bytes when
necessary. Specify the MMIO_CREATE flag for the dwOpenFlags parameter to
initially set the end of the file to be the beginning of the buffer.

= To open a memory file using a caller-supplied buffer, set the pchBuffer field to point
to the memory buffer, fcclOProc to FOURCC_MEM, cchBuffer to the size of the
buffer, and adwInfo[0] to the incremental expansion size of the buffer. The expansion
size in adwlnfo[0] should only be non-zero if pchBuffer is a pointer obtained by
calling GlobalAlloc and GlobalLock, since GlobalReAlloc will be called to expand
the buffer. In particular, if pchBuffer points to a local or global array, a block of
memory in the local heap, or a block of memory allocated by GlobalDosAlloc,
adwlInfo[0] must be zero.

Specify the MMIO_CREATE flag for the dwOpenFlags parameter to initially set the
end of the file to be the beginning of the buffer; otherwise, the entire block of memory
will be considered readable.

m To use a currently open MS-DOS file handle with MMIO, set the fecIOProc field to
FOURCC_DOS, pchBuffer to NULL, and adwInfo[0] to the MS-DOS file handle.
Note that offsets within the file will be relative to the beginning of the file, and will not
depend on the MS-DOS file position at the time mmioOpen is called; the initial
MMIO offset will be the same as the MS-DOS offset when mmioOpen is called.
Later, to close the MMIO file handle without closing the MS-DOS file handle, pass the
MMIO_FHOPEN flag to mmioClose.

You must call mmioCleose to close a file opened with mmioOpen. Open files are not
automatically closed when an application exits.

mmioClose

mmioSeek 3-71

mmioSeek

Syntax LONG mmioSeek(hmmio, [Offset, iOrigin)

This function changes the current file position in a file opened with mmioOpen. The
current file position is the location in the file where data is read or written.

Parameters HMMIO hmmio
Specifies the file handle of the file to seek in.

LONG [Offser
Specifies an offset to change the file position.

int iOrigin
Specifies how the offset specified by [Offset is interpreted. Contains one of
the following flags:

SEEK_SET
Seeks to [Offset bytes from the beginning of the file.

SEEK_CUR
Seeks to [Offset bytes from the current file position.

SEEK_END
Seeks to [Offset bytes from the end of the file.

Return Value The return value is the new file position in bytes, relative to the beginning of the file. If
there is an error, the return value is —1.

Comments Seeking to an invalid location in the file, such as past the end of the file, may not cause
mmioSeek to return an error, but may cause subsequent I/O operations on the file to fail.

To locate the end of a file, call mmioSeek with [Offset set to zero and iOrigin set to
SEEK_END.

mmioSetinfo 3-73

Return Value

Comments

LONG cchBuffer

Specifies the size of the caller-supplied buffer, or the size of the buffer for
mmioSetBuffer to allocate.

UINT wFlags
Is not used and should be set to zero.

The return value is zero if the function is successful. Otherwise, the return value specifies
an error code. If an error occurs, the file handle remains valid. The error code can be one
of the following codes:

MMIOERR_CANNOTWRITE

The contents of the old buffer could not be written to disk, so the operation was
aborted.

MMIOERR_OUTOFMEMORY
The new buffer could not be allocated, probably due to a lack of available memory.

To enable buffering using an internal buffer, set pchBuffer to NULL and cchBuffer to the
desired buffer size.

To supply your own buffer, set pchBuffer to point to the buffer, and set cchBuffer to the
size of the buffer.

To disable buffered I/0, set pchBuffer to NULL and cchBuffer to zero.

If buffered 1/O is already enabled using an internal buffer, you can reallocate the buffer to
a different size by setting pchBuffer to NULL and cchBuffer to the new buffer size. The
contents of the buffer may be changed after resizing.

mmioSetinfo

Syntax

Parameters

UINT mmioSetInfo(hmmio, [pmmioinfo, wFlags)

This function updates the information retrieved by mmioGetInfo about a file opened with
mmioOpen. Use this function to terminate direct buffer access of a file opened for
buffered I/O.

HMMIO hmmio
Specifies the file handle of the file.

LPMMIOINFO Ipmmioinfo

Specifies a far pointer to an MMIOINFO structure filled with information with
mmioGetInfo.

UINT wFlags
Is not used and should be set to zero.

OutputDebugStr 3-75

Comments The current file position is incremented by the number of bytes written.

See Also mmioRead

mmsystemGetVersion

Syntax WORD mmsystemGetVersion()
This function returns the current version number of the multimedia system software.
0x0100 is the value returned with the Multimedia Extensions 1.0.
0x0101 is the value returned with version 3.1 of Windows.

Parameters None.

Return Value The return value specifies the major and minor version numbers of the multimedia system

software. The high-order byte specifies the major version number. The low-order
byte specifies the minor version number.

OutputDebugStr

Syntax

Parameters

Comments

void OutputDebugStr(lpOutputString)

This function sends a debugging message directly to the COM1 port or to a secondary
monochrome display adapter. Because it bypasses MS-DOS, it can be called by low-level
callback functions and other code at interrupt time.

LPCSTR IpOutputString
Specifies a far pointer to a null-terminated string.

This function is available only in the debugging version of Windows. The DebugOutput
keyname in the [mmsystem] section of SYSTEM.INI controls where the debugging
information is sent. If DebugOutput is 0, all debug output is disabled. If DebugOutput is 1,
debug output is sent to the COM1 port. If DebugOutput is 2, debug output is sent to a
secondary monochrome display adapter.

To print the contents of a register, use the pound sign (#) followed by one of the following
I'egister deSignatiOnS: “a_X”, 5‘bx’7’ “CX”’ “dx$7, “Si”, 6‘di’9’ L‘bp7’, “Sp”’ é‘al?’, “bl”, “Cl”’ ‘6dl”.
For for systems that support the 80386 architecture, OutputDebugStr also supports the
following registers: “fs”, “gs”, “edi”, “esi”, “eax”, “ebx”, “ecx”, “edx”.

For example, to print the stack pointer and accumulator registers, pass the following string
to OutputDebugStr:

"SP=#sp\r\nAX=fax\rin"

timeBeginPeriod 3-77

Return Value

Comments

Returns TRUE if the sound is played, otherwise returns FALSE.

The sound must fit in available physical memory and be playable by an installed
waveform audio device driver. The directories searched for sound files are, in order: the
current directory; the Windows directory; the Windows system directory; the directories
listed in the PATH environment variable; the list of directories mapped in a network. See
the Windows OpenFile function for more information about the directory search order.

If you specify the SND_MEMORY flag, IpszSoundName must point to an in-memory
image of a waveform sound. If the sound is stored as a resource, use LoadResource and
LockResource to load and lock the resource and get a pointer to it. If the sound is not a
resource, you must use GlobalAlloc with the GMEM_MOVEABLE and GMEM_SHARE
flags set and then GlobalLock to allocate and lock memory for the sound.

timeBeginPeriod

Syntax

Parameters

Return Value

Comments

See Also

UINT timeBeginPeriod(wPeriod)

This function sets the minimum (lowest number of milliseconds) timer resolution that an
application or driver is going to use. Call this function immediately before starting to use
timer-event services, and call timeEndPeriod immediately after finishing with the
timer-event services.

UINT wPeriod
Specifies the minimum timer-event resolution that the application or driver will use.

Returns zero if successful. Returns TIMERR_NOCANDO if the specified wPeriod
resolution value is out of range.

For each call to timeBeginPeriod, you must call timeEndPeriod with a matching
wPeriod value. An application or driver can make multiple calls to timeBeginPeriod,
as long as each timeBeginPeriod call is matched with a timeEndPeriod call.

timeEndPeriod, timeSetEvent

timeKillEvent 3-79

Parameters

Return Value

LPMMTIME IpTime
Specifies a far pointer to an MMTIME data structure.

UINT wSize
Specifies the size of the MMTIME structure.

Returns zero. The system time is returned in the ms field of the MMTIME structure.

Comments The time is always returned in milliseconds.

See Also timeGetTime

timeGetTime

Syntax DWORD timeGetTime()

This function retrieves the system time in milliseconds. The system time is the time
elapsed since Windows was started.

Parameters None.

Return Value The return value is the system time in milliseconds.

Comments The only difference between this function and the timeGetSystemTime function is
timeGetSystemTime uses the standard multimedia time structure MMTIME to return the
system time. The timeGetTime function has less overhead than timeGetSystemTime.

See Also timeGetSystemTime

timeKillEvent

Syntax UINT timeKillEvent(wTimerID)

This functions destroys a specified timer callback event.

Parameters UINT wTimerID

Return Value

Comments

See Also

Identifies the event to be destroyed.

Returns zero if successful. Returns TIMERR_NOCANDO if the specified timer event
does not exist.

The timer event ID specified by wTimerID must be an ID returned by timeSetEvent.

timeSetEvent

timeSetEvent 3-81

Callback

Comments

See Also

void CALLBACK TimeFunc(wTimerID, wMsg, dwUser, dwl, dw2)

TimeFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in the EXPORTS statement of the module-definition file
for the DLL.

Callback Parameters

UINT wTimerID
The ID of the timer event. This is the ID returned by timeSetEvent.

UINT wMsg
Not used.

DWORD dwUser
User instance data supplied to the dwUser parameter of timeSetEvent.

DWORD dwl
Not used.

DWORD dw2
Not used.

Using this function to generate a high-frequency periodic-delay event (with a period less
than 10 milliseconds) can consume a significant portion of the system CPU bandwidth.
Any call to timeSetEvent for a periodic-delay timer must be paired with a call to
timeKillEvent.

The callback function must reside in a DLL. You don’t have to use MakeProcInstance to
get a procedure-instance address for the callback function.

Because the callback is accessed at interrupt time, it must reside in a DLL, and its code
segment must be specified as FIXED in the module-definition file for the DLL. Any data
that the callback accesses must be in a FIXED data segment as well. The callback may
not make any system calls except for PostMessage, timeGetSystemTime, timeGetTime,
timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg, and
OutputDebugStr.

timeKillEvent, timeBeginPeriod, timeEndPeriod

wavelnGetDevCaps 3-83

WAVERR_STILLPLAYING
There are still buffers in the queue.

Comments If there are input buffers that have been sent with waveInAddBuffer, and haven’t been
returned to the application, the close operation will fail. Call waveInReset to mark all
pending buffers as done.

See Also wavelnOpen, waveInReset

wavelnGetDevCaps

Syntax UINT wavelnGetDevCaps(wDevicelD, IpCaps, wSize)

This function queries a specified waveform input device to determine its capabilities.

Parameters UINT wDevicelD

Return Value

Comments

See Also

Identifies the waveform input device to query. Use a valid waveform input device ID
(see the following “Comments” section) or the following constant:

WAVE_MAPPER

Wave mapper. If no wave mapper is installed, the function returns an error
number.

LPWAVEINCAPS [pCaps

Specifies a far pointer to a WAVEINCAPS structure. This structure is filled with
information about the capabilities of the device.

UINT wSize
Specifies the size of the WAVEINCAPS structure.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_NODRIVER
The driver was not installed.

The device ID specified by wDevicelD varies from zero to one less than the number of
devices present. Use waveInGetNumDevs to determine the number of waveform input
devices present in the system.

Only wSize bytes (or less) of information is copied to the location pointed to by IpCaps. If
wSize is zero, nothing is copied, and the function returns zero.

wavelnGetNumDevs

wavelnGetPosition 3-85

wavelnGetNumDevs

Syntax UINT wavelnGetNumDevs()

This function returns the number of waveform input devices.

Parameters None.

Return Value Returns the number of waveform input devices present in the system.
See Also wavelnGetDevCaps

wavelnGetPosition

Syntax UINT wavelnGetPosition(hWaveln, IpInfo, wSize)

This function retrieves the current input position of the specified waveform input device.

Parameters HWAVEIN hWaveln
Specifies a handle to the waveform input device.

LPMMTIME Ipinfo
Specifies a far pointer to an MMTIME structure.

UINT wSize
Specifies the size of the MMTIME structure.

Return Value Returns zero if the function was successful. Possible error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

Comments Before calling wavelnGetPosition, set the wType field of the MMTIME structure to
indicate the time format that you desire. After calling waveInGetPosition, be sure to
check the wType field to determine if the desired time format is supported. If the desired
format is not supported, wType will specify an alternative format.

The position is set to zero when the device is opened or reset.

waveinOpen 3-87

UINT wDevicelD

Identifies the waveform input device to open. Use a valid waveform input device ID
(see the following “Comments” section) or the following constant:

WAVE_MAPPER

Wave mapper. If no wave mapper is installed, the system selects a waveform
input device capable of recording in the given format.

LPWAVEFORMAT IpFormat

Specifies a pointer to a WAVEFORMAT data structure that identifies the desired
format for recording waveform data.

DWORD dwCallback

Specifies the address of a callback function or a handle to a window called during
waveform recording to process messages related to the progress of recording.

DWORD dwCallbackInstance

Specifies user instance data passed to the callback. This parameter is not used with
window callbacks.

DWORD dwFlags
Specifies flags for opening the device.

WAVE_FORMAT_QUERY

If this flag is specified, the device will be queried to determine if it supports the
given format but will not actually be opened.

WAVE_ALLOWSYNC

Allows a synchronous (blocking) waveform driver to be opened. If this flag is
not set while opening a synchronous driver, the open will fail.

CALLBACK_WINDOW
If this flag is specified, dwCallback is assumed to be a window handle.

CALLBACK_FUNCTION

If this flag is specified, dwCallback is assumed to be a callback procedure
address.

wavelnPrepareHeader 3-89

If a window is chosen to receive callback information, the following messages are
sent to the window procedure function to indicate the progress of waveform input:
MM_WIM_OPEN, MM_WIM_CLOSE, MM_ WIM_DATA.

If a function is chosen to receive callback information, the following messages are sent to
the function to indicate the progress of waveform input: WIM_OPEN, WIM_ CLOSE,
WIM_DATA. The callback function must reside in a DLL. You do not have to use
MakeProcInstance to get a procedure-instance address for the callback function.

Because the callback is accessed at interrupt time, it must reside in a DLL and its code
segment must be specified as FIXED in the module-definition file for the DLL. Any data
that the callback accesses must be in a FIXED data segment as well. The callback may not
make any system calls except for PostMessage, timeGetSystemTime, timeGetTime,
timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg, and
OutputDebugStr.

See Also wavelnClose

wavelnPrepareHeader

Syntax UINT wavelnPrepareHeader(hWaveln, [pWavelnHdr, wSize)
This function prepares a buffer for waveform input.

Parameters HWAVEIN hWaveln

Return Value

Comments

See Also

Specifies a handle to the waveform input device.

LPWAVEHDR IpWavelnHdr
Specifies a pointer to a WAVEHDR structure that identifies the buffer to be prepared.

UINT wSize
Specifies the size of the WAVEHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

MMSYSERR_NOMEM
Unable to allocate or lock memory.

The WAVEHDR data structure and the data block pointed to by its IpData field must be
allocated with GlobalAlloc using the GMEM_MOVEABLE and GMEM_SHARE flags,
and locked with GlobalLock. Preparing a header that has already been prepared will have
no effect, and the function will return zero.

wavelnUnprepareHeader

wavelnUnprepareHeader 3-91

wavelnStop
Syntax UINT wavelnStop(hWaveln)
This function stops waveform input.
Parameters HWAVEIN hWaveln
Specifies a handle to the waveform input device.

Return Value Returns zero if the function was successful. Otherwise, it returns an error number.
Possible error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

Comments If there are any buffers in the queue, the current buffer will be marked as done (the
dwBytesRecorded field in the header will contain the actual length of data), but any
empty buffers in the queue will remain there. Calling this function when input is not
started has no effect, and the function returns zero.

See Also wavelnStart, waveInReset

wavelnUnprepareHeader

Syntax UINT waveInUnprepareHeader(hWaveln, [pWavelnHdr, wSize)

This function cleans up the preparation performed by wavelnPrepareHeader. The
function must be called after the device driver fills a data buffer and returns it to the
application. You must call this function before freeing the data buffer.

Parameters HWAVEIN hWaveln
Specifies a handle to the waveform input device.

LPWAVEHDR IpWavelnHdr

Specifies a pointer to a WAVEHDR structure identifying the data buffer to be
cleaned up.

UINT wSize
Specifies the size of the WAVEHDR structure.

waveOutGetDevCaps 3-93

waveOutClose

Syntax UINT waveOutClose(hWaveOut)

This function closes the specified waveform output device.

Parameters HWAVEOUT hWaveOut

Specifies a handle to the waveform output device. If the function is successful, the
handle is no longer valid after this call.

Return Value Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

WAVERR_STILLPLAYING
There are still buffers in the queue.

Comments If the device is still playing a waveform, the close operation will fail. Use waveOutReset
to terminate waveform playback before calling waveOutClose.

See Also waveOutOpen, waveOutReset

waveQutGetDevCaps

Syntax UINT waveOutGetDevCaps(wDevicelD, IpCaps, wSize)

This function queries a specified waveform device to determine its capabilities.

Parameters UINT wDevicelD

Identifies the waveform output device to query. Use a valid waveform output device
ID (see the following “Comments” section) or the following constant:

WAVE_MAPPER

Wave mapper. If no wave mapper is installed, the function returns an error
number.

LPWAVEOUTCAPS IpCaps

Specifies a far pointer to a WAVEOUTCAPS structure. This structure is filled with
information about the capabilities of the device.

UINT wSize
Specifies the size of the WAVEOUTCAPS structure.

waveOQutGetNumDevs 3-95

Comments If the text error description is longer than the specified buffer, the description is truncated.
The returned error string is always null-terminated. If wSize is zero,
nothing is copied, and the function returns zero. All error descriptions are less than
MAXERRORLENGTH characters long.

waveQutGetlD

Syntax UINT waveOutGetID(hWaveOut, [pwDevicelD)
This function gets the device ID for a waveform output device.

Parameters HWAVEOUT hWaveOut

Return Value

Specifies the handle to the waveform output device.

UINT FAR* IpwDevicelD

Specifies a pointer to the WORD-sized memory location to be filled with the
device ID.

Returns zero if successful. Otherwise, it returns an error number. Possible error returns are:

MMSYSERR_INVALHANDLE
The hWaveOut parameter specifies an invalid handle.

waveOutGetNumDevs

Syntax

Parameters
Return Value

See Also

UINT waveOutGetNumDevs()

This function retrieves the number of waveform output devices present in the system.
None.
Returns the number of waveform output devices present in the system.

waveOutGetDevCaps

waveOutGetPlaybackRate 3-97

waveQutGetPlaybackRate

Syntax

Parameters

Return Value

Comments

See Also

UINT waveOutGetPlaybackRate(hWaveOut, IpdwRate)

This function queries the current playback rate setting of a waveform output device.

HWAVEOUT hWaveOut
Specifies a handle to the waveform output device.

LPDWORD IpdwRate
Specifies a far pointer to a location to be filled with the current playback rate.
The playback rate setting is a multiplier indicating the current change in playback
rate from the original authored setting. The playback rate multiplier must be a
positive value.

The rate is specified as a fixed-point value. The high-order word of the DWORD
location contains the signed integer part of the number, and the low-order word
contains the fractional part. The fraction is expressed as a WORD in which a value
of 0x8000 represents one half, and 0x4000 represents one quarter. For example, the
value 0x00010000 specifies a multiplier of 1.0 (no playback rate change), and a value
of 0x000F8000 specifies a multiplier of 15.5.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

MMSYSERR_NOTSUPPORTED
Function isn’t supported.

Changing the playback rate does not change the sample rate but does change the
playback time.

Not all devices support playback rate changes. To determine whether a device supports
playback rate changes, use the WAVECAPS_PLAYBACKRATE flag to test the
dwSupport field of the WAVEOUTCAPS structure (filled by waveOutGetDevCaps).

waveQOutSetPlaybackRate, waveOutSetPitch. waveOutGetPitch

waveOutMessage 3-99

Return Value Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

MMSYSERR_NOTSUPPORTED
Function isn’t supported.

MMSYSERR_NODRIVER
The driver was not installed.

Comments Not all devices support volume changes. To determine whether the device supports
volume control, use the WAVECAPS_VOLUME flag to test the dwSupport field of
the WAVEOUTCAPS structure (filled by waveOutGetDevCaps).

To determine whether the device supports volume control on both the left and right
channels, use the WAVECAPS_VOLUME flag to test the dwSupport field of the
WAVEOUTCAPS structure (filled by waveOutGetDevCaps).

See Also waveOutSetVolume
waveQutMessage
Syntax DWORD waveOutMessage(hWaveOut, msg, dwl, dw2)

This function sends a message to a waveform output device driver. Use it to send
driver-specific messages that aren’t supported by the waveform APIs.

Parameters HWAVEOUT hWaveOut
Specifies the handle to the audio device driver.

UINT msg
Specifies the message to send.

DWORD dwl
Specifies the first message parameter.

DWORD dw2
Specifies the second message parameter.

Return Value Returns the value returned by the audio device driver.
Comments Do not use this function to send standard messages to an audio device driver.

See Also waveIlnMessage

waveQutOpen 3-101

DWORD dwFlags
Specifies flags for opening the device.

WAVE_FORMAT_QUERY

If this flag is specified, the device is be queried to determine if it supports the
given format but is not actually opened.

WAVE_ALLOWSYNC

Allows a synchronous (blocking) waveform driver to be opened. If this flag is
not set while opening a synchronous driver, the open will fail.

CALLBACK_WINDOW
If this flag is specified, dwCallback is assumed to be a window handle.

CALLBACK_FUNCTION

If this flag is specified, dwCallback is assumed to be a callback procedure
address.

Return Value Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_BADDEVICEID
Specified device ID is out of range.

MMSYSERR_ALLOCATED
Specified resource is already allocated.

MMSYSERR_NOMEM
Unable to allocate or lock memory.

WAVERR_BADFORMAT
Attempted to open with an unsupported wave format.

WAVERR_SYNC

Attempted to open a synchronous driver without specifying the
WAVE_ALLOWSYNC flag.

waveOutPause 3-103

If a function is chosen to receive callback information, the following messages are

sent to the function to indicate the progress of waveform output: WOM_OPEN,

WOM_ CLOSE, WOM_DONE. The callback function must reside in a DLL. You don’t
have to use MakeProcInstance to get a procedure-instance address for the callback
function.

Because the callback is accessed at interrupt time, it must reside in a DLL and its code
segment must be specified as FIXED in the module-definition file for the DLL. Any data
that the callback accesses must be in a FIXED data segment as well. The callback may
not make any system calls except for PostMessage, timeGetSystemTime, timeGetTime,
timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg, and
OutputDebugStr.

See Also waveOutClose

waveQutPause

Syntax UINT waveOutPause(hWaveOur)
This function pauses playback on a specified waveform output device. The current
playback position is saved. Use waveOutRestart to resume playback from the current
playback position.

Parameters HWAVEOUT hWaveOut

Return Value

Comments

See Also

Specifies a handle to the waveform output device.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

Calling this function when the output is already paused has no effect, and the function
returns zero.

waveQutRestart, waveQutBreakLoop

waveOutRestart 3-105

waveQutReset

Syntax

Parameters

Return Value

UINT waveOutReset(hWaveOur)

This function stops playback on a given waveform output device and resets the
current position to 0. All pending playback buffers are marked as done and returned
to the application.

HWAVEOUT hWaveOut
Specifies a handle to the waveform output device.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

See Also waveOutWrite, waveOutClose
waveQutRestart
Syntax UINT waveOutRestart(hWaveOur)
This function restarts a paused waveform output device.
Parameters HWAVEOUT hWaveOut

Return Value

Comments

See Also

Specifies a handle to the waveform output device.

Returns zero if the function was successful. Otherwise, it returns an error number.
Possible error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

Calling this function when the output is not paused has no effect, and the function
returns zero.

waveQutPause, waveQutBreakLoop

waveQutSetPlaybackRate 3-107

waveOQutSetPlaybackRate

Syntax

Parameters

Return Value

Comments

See Also

UINT waveOutSetPlaybackRate(hWaveOut, dwRate)

This function sets the playback rate of a waveform output device.

HWAVEOUT hWaveOut
Specifies a handle to the waveform output device.

DWORD dwRate
Specifies the new playback rate setting. The playback rate setting is a multiplier
indicating the current change in playback rate from the original authored setting.
The playback rate multiplier must be a positive value.

The rate is specified as a fixed-point value. The high-order word contains the signed
integer part of the number, and the low-order word contains the fractional part. The
fraction is expressed as a WORD in which a value of 0x8000 represents one half, and
0x4000 represents one quarter. For example, the value 0x00010000 specifies a
multiplier of 1.0 (no playback rate change), and a value of 0x0O00F8000 specifies a
multiplier of 15.5.

Returns zero if the function was successful. Otherwise, it returns an error number. Possible
error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

MMSYSERR_NOTSUPPORTED
Function isn’t supported.

Changing the playback rate does not change the sample rate but does change the
playback time.

Not all devices support playback rate changes. To determine whether a device supports
playback rate changes, use the WAVECAPS_PLAYBACKRATE flag to test the
dwSupport field of the WAVEOQUTCAPS structure (filled by waveOutGetDevCaps).

waveOutGetPlaybackRate, waveOutSetPitch, waveOQutGetPitch

waveOutUnprepareHeader 3-109

waveOutUnprepareHeader

Syntax

Parameters

Return Value

Comments

See Also

UINT waveOutUnprepareHeader(hWaveOut, lpWaveOutHdr, wSize)

This function cleans up the preparation performed by waveOutPrepareHeader. The
function must be called after the device driver is finished with a data block. You must
call this function before freeing the data buffer.

HWAVEOUT hWaveOur
Specifies a handle to the waveform output device.

LPWAVEHDR IpWaveOutHdr

Specifies a pointer to a WAVEHDR structure identifying the data block to be
cleaned up.

UINT wSize
Specifies the size of the WAVEHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number.
Possible error returns are:

MMSYSERR_INVALHANDLE
Specified device handle is invalid.

WAVERR_STILLPLAYING
IpWaveOutHdr is still in the queue.

This function is the complementary function to waveQutPrepareHeader. You must
call this function before freeing the data buffer with GlobalFree. After passing a buffer
to the device driver with waveQutWrite, you must wait until the driver is finished with
the buffer before calling waveQutUnprepareHeader.

Unpreparing a buffer that has not been prepared has no effect, and the function
returns zero.

waveOutPrepareHeader

Chapter 4
Message Overview

This chapter gives an overview of the multimedia messages in Windows. The messages
are organized into the following categories, some of which contain smaller groups of
related messages:

® Audio Messages

®m Media Control Interface Messages
m Joystick Messages

m File I/O Messages

For detailed information on any of the messages listed in this chapter, see Chapter 5,
“Message Directory.” Chapter 5 is an alphabetical listing of the messages in the
Multimedia extensions to Windows.

About the Multimedia Messages

The multimedia messages fall into two broad categories:

m Messages sent to windows. These are processed by window functions and are similar
to the messages defined in the WINDOWS.H header file. Multimedia messages sent to
windows all have an MM _ prefix.

m Messages specific to a callback function or message-based API. These include Media
Control Interface command messages, which an application sends to communicate
with MCI, as well as messages sent to callback functions.

This chapter describes each message in detail.

Audio Messages 4-3

Waveform Input Messages

Waveform input messages are sent by audio device drivers to an application to inform the
application about the status of waveform input operations. By specifying flags with the
waveInOpen function, applications can route messages either to a window or to a
low-level callback function. Use the following messages to manage waveform audio
recording:

MM_WIM_CLOSE
Sent to a window when a waveform input device is closed.

MM_WIM_DATA

Sent to a window when an input data buffer is full and is being returned
to the application.

MM_WIM_OPEN
Sent to a window when a waveform input device is opened.

WIM_ CLOSE

Sent to a low-level callback function when a waveform input device
is closed.

WIM_DATA

Sent to a low-level callback function when an input data buffer is full and
is being returned to the application.

WIM_OPEN
Sent to a low-level callback function when a waveform input device is opened.

Audio Messages 4-5

R I

MM_MIM_ERROR
Sent to a window when an invalid MIDI message is received by the device.

MM_MIM_LONGERROR

Sent to a window when an invalid MIDI system-exclusive message is received
by the device.

MM_MIM_LONGDATA

Sent to a window when a MIDI system-exclusive data buffer is filled and is being
returned to the application.

MM_MIM_OPEN
Sent to a low-level callback function when a MIDI input device is opened.

MIM_OPEN
Sent to a window when a MIDI input device is opened.

MIM_CLOSE
Sent to a low-level callback function when a MIDI input device is closed.

MIM_DATA

Sent to a low-level callback function when a MIDI message is received by the device.
The parameters to this message include a time stamp specifying the time that the
MIDI message was received.

MIM_ERROR

Sent to a low-level callback function when an invalid MIDI message is received
by the device.

MIM_LONGERROR

Sent to a low-level callback function when an invalid MIDI system-exclusive
message is received by the device.

MIM_LONGDATA
Sent to a low-level callback function when a MIDI system-exclusive message
is received by the device. The parameters to this message include a time stamp
specifying the time that the MIDI message was received.

Media Control Interface Messages 4-7

Playing and Recording Multimedia Data

The following command messages control the playback and recording of multimedia data:

MCI_PAUSE
Sent by an application to pause a device.

MCI_PLAY
Sent by an application to start a device playing.

MCI_RECORD
Sent by an application to start recording with a device.

MCI_RESUME
Sent by an application to resume playback or recording after a pause.

MCL_STEP
Sent by an application to step a device one or more frames.

MCIL_STOP
Sent by an application to stop a device from playing or recording.

Getting Device Information

The following command messages return information about devices:

MCI_GETDEVCAPS
Sent by an application to obtain information about device capabilities.

MCL_INFO
Sent by an application to obtain information about a device.

MCI_STATUS
Sent by an application to obtain status information about a device.

MCIL_SYSINFO
Sent by an application to obtain system-related information about a device.

Media Control Interface Messages 4-9

MCI_LOAD
Sent by an application to load a file.

MCI_PASTE
Sent by an application to paste data from the Clipboard to the MCI element.

MCI_SAVE
Sent by an application to save the current file.

Controlling Video Images

The following command messages control the presentation of video images:

MCI_FREEZE
Sent by an application to stop capture.

MCIL_PUT
Sent by an application to define a source or destination clipping rectangle.

MCI_REALIZE
Sent by an application to tell a graphic device to realize its palette.

MCI_UNFREEZE
Sent by an application to restore capture.

MCI_UPDATE
Sent by an application to tell a graphic device to update or paint the current frame.

MCI_WHERE
Sent by an application to determine the extent of a clipping rectangle.

MCI_WINDOW

Sent by an application to specify a window and the characteristics of the window for a
graphic device to use for its display.

File I/0 Messages 4-11

MM_JOY2BUTTONUP
Sent to a window that has captured joystick 2 when a button has been released.

MM_JOY2MOVE<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>