
• •

•

•

•

•
•

Microsoft® WindowsTM
Version 3.1

The WindowsTM Interface
An Application Design Guide

For the Microsoft® WindowsTM Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure agree­
ment and may be used or copied only in accordance with the terms of the agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ­
ing photocopying and recording, for any purpose, without the express written permission of Microsoft
Corporation.

©Copyright 1987, 1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Copyright 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Times, and Times
Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright 1991 Monotype Corporation PLC. All rights reserved.

Microsoft, MS, and MS-DOS are registered trademarks, and Windows is a trademark of Microsoft
Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.
The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of

AGFA Compugraphic Division of Agfa Corporation.
Apple True Type is a registered trademark of Apple Computer, Inc.
Helvetica, Linotype, Times, and Times Roman are registered trademarks of Linotype AG and/or its

subsidiaries.
Arial and Times New Roman are registered trademarks of the Monotype Corporation, PLC.

The information contained in this document represents the current view of Microsoft Corporation
with respect to the subject matter and development techniques and is provided solely for infor­
mational purposes. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT AND SHALL NOT BE LIABLE FOR ANY USE OF SUCH INFORMATION BY
THE RECIPIENT.

Document No. PC28921-0692

Contents

Introduction .. ix

Purpose .. ix
Scope ix
Implementation .. x
Support for Input Methods .. x
Recommendation Levels .. xi
Notation for Keys and Key Combinations ... xi

Chapter 1 Principles and Methodology ... 1
1.1 Principles of User Interface Design... 3

1.1.1 User Control. ... 3
1.1.2 Directness .. 3
1.1.3 Consistency ... 4
1.1.4 Clarity ... 4
1.1.5 Aesthetics .. 4
1.1.6 Feedback ... 4
1.1.7 Forgiveness ... 5
1.1.8 Awareness of Human Strengths and Limitations 5

1.2 Design Methodology .. 5
1.3 Selected Bibliography .. 6

Chapter 2 Fundamental Input Elements .. 7
2.1 Mouse Input ... 9

2.1.1 Basic Operations ... 9
2.1.2 Guidelines for Using Mouse Operations .. 10

2.2 Keyboard Input .. 11
2.2.1 Text Keys .. 11
2.2.2 Editing Keys ... 11
2.2.3 Mode Keys .. 12
2.2.4 Navigation Keys ... 14
2.2.5 Shortcut Keys .. 15
2.2.6 Escape Key ... 18

iv An Application Design Guide

Chapter 3 General Techniques ... 19
3.1 Selection ... 21

3.1.1 Concepts of Selection ... 21
3.1.2 Mouse Selection ... 24
3.1.3 Keyboard Selection .. 28

3.2 Focus ... 29
3.3 Navigation ... 30

3.3.1 Mouse Navigation .. 30
3.3.2 Keyboard Navigation ... 30
3.3.3 Keyboard Access to Control Bars .. 33

3.4 Transfer Interface ... 34
3.5 DirectManipulation .. 34

3.5.1 Differentiating Selection from Direct Manipulation 37
3.6 Providing Feedback .. 37

3.6.1 Visual Feedback .. 37
3.6.2 Auditory Feedback .. 42

3.7 Editing Text .. 43
3.8 Moving Objects .. 44
3.9 Text Frames .. 44

Chapter 4 Windows .. 47
4.1 Screen Window Types .. 49

4.1.1 Application Windows ... 49
4.1.2 Document Windows (MDI) .. 50
4.1.3 Launching Files Associated with MDI Applications 53
4.1.4 "Always on Top" Windows .. 54

4.2 Screen Window Components ... 55
4.2.1 Window Frame ..•.......... 55
4.2.2 Title Bar .. 56
4.2.3 Menu Bar .. 57
4.2.4 Scroll Bars ... 58
4.2.5 Split Box and Split Bar ... 59
4.2.6 Message Bar .. 60
4.2.7 Status Bar .. 61
4.2.8 Control Bars: Ribbons, Rulers, Toolboxes, and Palettes 63

4.3 Window Operations .. 64
4.3.1 Moving Windows ... 64
4.3.2 Resizing Windows .. 65

Contents v

4.3.3 Closing Windows .. 65
4.3.4 Splitting Windows into Panes .. 65
4.3.5 Switching Windows and Panes .. 65
4.3.6 Scrolling Data in Windows and Panes ... 68

Chapter 5 Menus .. 73
5.1 Types of Menus .. 75

5.1.1 Drop-Down Menus ... 75
5.1.2 Pop-Up Menus .. 76
5.1.3 Cascading Menus .. 78

5.2 Menu Components ... 79
5.2.1 Menu Titles ... 79
5.2.2 Menu Items ... 80

5.3 Menu Operations .. 84
5.3.1 Mouse Methods .. 84
5.3.2 Keyboard Methods .. 86

5.4 Standard Menus .. 88
5.4.1 Control Menu .. 88
5.4.2 File Menu .. 91
5.4.3 Edit Menu ... 93
5.4.4 Help Menu .. 95

5.5 Common Optional Menus .. 97
5.5.1 View Menu ... 97
5.5.2 Window Menu .. 97

Chapter 6 Dialog Box Controls•........•.•.••••....•.......•.....•.....•....•..•.•.•..••....•..•.•................ 101
6.1 Buttons .. 103

6.1.1 Command Buttons .. 103
6.1.2 Option Buttons .. 105

6.2 Check Boxes ... 106
6.3 ListBoxes ... 108

6.3.1 Single-Selection List Boxes .. 108
6.3.2 Extended-Selection and Multiple-Selection List Boxes 112

6.4 Text Boxes .. 113
6.4.1 Combo Boxes .. 114
6.4.2 Spin Boxes .. 116

6.5 Read-Only Pop-Up Text Fields 117
6.6 Sliders ... 118
6.7 Static Text Fields..... 119

vi An Application Design Guide

6.8 Group Boxes ... 119
6.9 Control Labels .. 120
6.10 Validation offuput .. 121

Chapter 7 Using Dialog Boxes .. 123
7.1 Types of Dialog Boxes ... 125

7.1.1 Movable vs. Fixed Dialogs ... 125
7.1.2 Unfolding Dialogs ... 126
7.1.3 Modal vs. Modeless Dialogs ... 126
7.1.4 Message Dialogs ... 128

7.2 Dialog Placement. ... 130
7.3 Using Command Buttons in Dialogs .. 130

7.3.1 Recommended Buttons ... 131
7.3.2 Default Buttons ... 131
7.3.3 Dynamic Button Labels .. 132
7.3.4 Navigation to Related Dialog Boxes .. 132
7.3.5 Arrangement of Buttons ... 133
7.3.6 Command Buttons in Message Dialogs ... 137

7.4 Fonts in Dialogs .. 138
7.5 Samples in Dialogs ... 138

Chapter 8 Common Dialog Boxes ... 139
8.1 File Operations ... 141

8.1.1 File Open Dialog ... 141
8.1.2 File Save As Dialog .. 147
8.1.3 File New Dialog .. 148

8.2 Printing ... 148
8.2.1 Print Dialog .. 148
8.2.2 Print Setup Dialog ... 152

8.3 Text Search and Substitution .. 154
8.3.1 Command Names and Menu Location 154
8.3.2 Dialog Type and Operation of Commands 155
8.3.3 Labels .. 156
8.3.4 Other Controls ... 156

8.4 Character Properties ... 157
8.4.1 Character Dialog Box Controls .. 159

8.5 Page Setup Dialogs ... 162
8.6 About <Application-Name> Dialog .. 162

8.6.1 Recommended Elements ; 163
8.6.2 Optional fuformation .. 163

Contents vii

Chapter 9 Object Linking and Embedding ... 165
9.1 Compound Documents ... 167
9.2 OLE Concepts .. 168
9.3 OLE Interface ... 171

9.3.1 Clients and Servers ... 171
9.3.2 Inserting Objects ... 173
9.3.3 Viewing Objects ... 179
9.3.4 Activating Objects .. 180
9.3.5 Editing Objects ... 184

9.4 Links and Link Dialogs .. 187
9.4.1 Update Option Buttons ... 187
9.4.2 Link Command Buttons .. " 188
9.4.3 Dialog Control Buttons ... 190
9.4.4 Link Status Entries .. 190
9.4.5 Other Dialogs for Link Updating ... 190

9.5 Status Line Message Recommendations .. 192

Chapter 10 The Pen Interface ... 193
10.1 Pen Input. .. 195

10.1.1 Pointing .. 195
10.1.2 Writing ... 195
10.1.3 Dragging ... 195
10.1.4 Gestures ... 196

10.2 Designing Pen Interfaces .. 200
10.2.1 Simplicity and Directness 200
10.2.2 Recognition Issues .. 202
10.2.3 Hardware Constraints ... 206

Chapter 11 Miscellaneous Topics .. 209
11.1 Loading and Initialization .. 211

11.1.1 Memory Check ... 211
11.1.2 Display of Application Window ... 211
11.1.3 Display of Startup Message .. 211

11.2 User Levels and Customization ... 212
11.2.1 Unfolding Dialog Boxes ... 212
11.2.2 Customization Dialogs ... 213
11.2.3 Considerations for Disabled Users ... 213

11.3 Help .. 213
11.3.1 Access to Help .. 214

viii An Application Design Guide

11.4 International Concerns ...•.. 215
11.4.1 Interface Text .. 215
11.4.2 Hardware ... 215
11.4.3 Formats ... 216

Index ... 217

Introduction

Purpose

Scope

This design guide provides guidelines for developing user interfaces for applica­
tions that run in the Microsoft® Windows™ graphical environment. It describes the
components of the Windows user interface and explains design principles for soft­
ware developers and designers of Windows-based applications.

The purpose of this design guide is to promote visual and functional consistency
within and across Windows-based applications. This has several advantages:
When the interface for applications is consistent, users can move from one applica­
tion to another with ease and speed. Consistency facilitates the learning process
and minimizes the need for training when new applications are introduced into the
workplace, resulting in increased productivity. Consistency also alleviates the
confusion introduced by applications with divergent interfaces and eliminates the
associated costs in efficiency and training. It gives users a sense of stability, which
increases their confidence in the reliability of an application and in all applications
with the same interface.

Most of the elements and techniques described in this guide are incorporated in the
Windows operating system, version 3.1; some of these may not be available in ear­
lier versions of the Windows environment. See your Microsoft Windows Software
Development Kit (SDK) documentation for specific information on what is
supported.

Because of the evolving nature of applications, this guide cannot provide specific
recommendations for every possible interface issue. If an application requires
elements or techniques not discussed in this guide, designers or developers may
extend the existing guidelines in accordance with the principles in Chapter 1. They
should review these guidelines as the minimum requirements for consistency with
other Windows-based applications, and should evaluate their applications
accordingly.

x An Application Design Guide

This guide focuses on recommendations that are specific to the development of
Windows-based applications. These guidelines were developed to be generally
compatible with guidelines that may be appropriately applied from the mM®
Common User Access (CUA) version 2.0 definition, published in IBM Common
User Access: Advanced Interface Design Guide (Boca Raton, FL: mM, 1989); but
they are not intended to describe user interface requirements for CUA compliance.

The guidelines include recommendations that are generally applicable to a variety
of Windows version 3.0 applications, as well as recommendations relating to new
Windows version 3.1 features.

The information in this guide is tailored to applications developed for English­
speaking countries. However, many ofthe guidelines are generally applicable to
applications developed for non-English-speaking countries as well.

Implementation
The Microsoft Windows Software Development Kit (SDK) contains code samples
for implementing many of the features described in this guide. See the SDK docu­
mentation for more information.

Support for Input Methods
This guide describes techniques for the mouse and keyboard, and includes a
discussion of the pen which is gaining increasing acceptance as an input device.
While a mouse is the preferred means of interaction in many cases, applications
should also provide keyboard access to the interface for users who have systems
without a mouse or who prefer using the keyboard. For applications that rely on
the keyboard for entering data (for example, database, word-processing, or spread­
sheet programs), keyboard access might be the preferred method of interaction for
many users who do not wish to remove their hands from the keys. On the other
hand, you may find that keyboard access to many features in graphics applications
(such as drawing or painting programs) is a hindrance rather than a help. For this
reason, you may wish to avoid keyboard access wherever its use is cumbersome.

Introduction xi

Recommendation Levels
As stated earlier, the purpose of this design guide is to promote visual and
functional consistency within and across Windows-based applications. The infor­
mation presented is provided as a tool for those who would like to use it.
Developers may choose to adopt any number of the guidelines in their own user in­
terface designs. There is no conformance requirement, expressed or implied, in
this set of guidelines.

The following definitions are provided to give designers an idea of the importance
of specific guidelines:

• Guidelines that are labeled "recommended" represent the common way specific
features, functions, operations, or behaviors should be implemented for the
greatest degree of consistency. All recommended items need not be included in
an application; however, if the items exist, the guidelines describe the preferred
means of implementation. For example, although F6 is the recommended key
for switching between panes, all applications need not include panes. Some of
the recommended guidelines may be defined by the system (for example,
ALT+ESC); others may be defined by the application (for example, Fl).

• Guidelines that are labeled "optional" are common extensions that an applica­
tion may implement. If these features or operations are implemented, the stated
guidelines are the preferred means of implementation. The File and View
menus illustrate the difference between recommended and optional guidelines:
The File menu is recommended for all applications that provide access to data
through files. The View menu is optional, but its contents follow preferred
implementation guidelines.

• Guidelines that are labeled "suggested" state a particular direction that applica­
tions should follow, to the extent that the guidelines apply and do not conflict
with other uses in the application.

Notation for Keys and Key Combinations
• Key names appear in small capitals; for example, CTRL or SHIFT.

• Simultaneous key combinations are linked by plus signs; for example, CTRL+B

or CTRL+SHIFT +B. This notation indicates that the user should hold down the
CTRL key while pressing the B key; or hold down the CTRL and SHIFT keys while
pressing the B key.

• Sequential key combinations are linked by commas; for example: ALT,F. This
notation indicates that the user should press and release the ALT key, and then
press and release the F key.

Principles and Methodology

Chapter 1

1.1 Principles of User Interface Design... 3
1.1.1 User Control. ... 3
1.1.2 Directness .. 3
1.1.3 Consistency ... 4
1.1.4 Clarity ... 4
1.1.5 Aesthetics .. 4
1.1.6 Feedback ... 4
1.1.7 Forgiveness ... 5
1.1.8 Awareness of Human Strengths and Limitations 5

1.2 Design Methodology .. 5
1.3 Selected Bibliography .. 6

Principles and Methodology 3

1.1 Principles of User Interface Design
Because applications continually evolve, it is impossible to provide specific recom­
mendations that cover every possible interface issue. Applications should follow
the general principles in this section, even when they include elements and tech­
niques not covered in this guide.

1 .1.1 User Control
One of the most important principles of user interface design is that the user
should always be in control of the application, not vice versa. This principle has
several implications.

First, applications should always be as interactive as possible. The user should not
have to wait a long time for processing to be completed. In general, applications
should avoid modes that severely restrict the interactions available to the user at
any given time. If modes must be used, they should be visually obvious (for ex­
ample, the pointer can change shape), easy to learn, and easy to get out of.

A second implication of the principle of user control concerns customization.
Because users' abilities and preferences vary, users should be able to customize
aspects of the interface (including aesthetic qualities, like color and function) such
as the content and structure of menus. However, designers should provide good de­
faults and should not depend on the user customizing these settings. (Customiza­
tion methods are discussed in Chapter 11, section 11.2.)

Finally, the interface should facilitate the user's tasks rather than calling attention
to itself. The best interface is often the one that is hardly noticed. Users want to ac­
complish tasks, not to use computers; they want to write letters, calculate profits,
manage projects, and prepare presentations-not to slide scroll boxes, open drop­
down lists, pull down menus, and navigate among dialog boxes.

1.1.2 Directness
The interface should give users direct and intuitive ways to accomplish their tasks.
The object-action paradigm supports this principle. The user performs tasks by
selecting an object (such as an icon, a window, or some text), then selecting an
action (such as move, close, or underline) for that object.

Manipulating objects directly, although not appropriate in all situations, is often
easier than typing complex commands. For example, it is much easier to move a
window by dragging it with the mouse than by visually estimating new coordi­
nates and then typing them into a dialog box.

4 An Application Design Guide

1.1.3 Consistency

1.1.4 Clarity

Two broad categories of consistency are particularly important: consistency with
the real world, and consistency within and among applications. First, applications
should build on the user's real-world experience by exploiting concrete metaphors
and natural mapping relationships. The use of familiar concepts and metaphors re­
duces the amount of new material that users must learn and thereby makes appli­
cations easier to use. Second, each application should be conceptually,
linguistically, visually, and functionally consistent within itself and with other ap­
plications. Such consistency benefits users. It also benefits designers and
developers, who can produce well-designed applications more quickly by reusing
standard interface elements.

Occasionally the goals of cross-platform consistency and within-platform con­
sistency may conflict. For example, two platforms may provide different inter­
faces for accomplishing the same function. In such cases, within-platform
consistency should be given priority, because most users only work within one
platform.

An application interface should be visually, conceptually, and linguistically clear.
Visual elements should be immediately comprehensible, ideally because they
relate to real-world analogues, and should be arranged so that their functions are
comprehensible. Conceptual metaphors should be simple and realistic. Interface
text should be clear, unambiguous, and free of jargon.

1.1.5 Aesthetics

1.1.6 Feedback

Both aesthetic appeal and visual clarity can be substantially enhanced by attention
to basic graphic design principles concerning spatial grouping, contrast, and three­
dimensional representation. The best interfaces combine powerful yet accessible
functionality with a pleasing appearance.

The user should receive immediate and tangible feedback for actions within an
application. For example, when a person picks up a pencil, tactile and visual sensa­
tions provide feedback that the pencil has been touched. Similarly, ifthe user of an
application selects a data object with the mouse, the application should provide
visual feedback that the object has been selected. Graphical feedback is particu­
larly effective, but textual and auditory feedback are also useful (see Chapter 3,
section 3.6).

Principles and Methodology 5

1.1.7 Forgiveness
Users like to explore an application and learn by trial and error. Such self-moti­
vated learning can be extremely effective, but users may not always be aware of
potential dangers. Even with the best-designed interface, users make mistakes­
both physical mistakes (accidentally pointing to the wrong command or data) and
mental mistakes (making a wrong decision about which command or data to
select). The interface should accommodate user exploration and mistakes without
pain or penalty, should minimize the opportunities for errors, and should handle
errors gracefully. Error messages should not imply that the user is at fault; instead,
they should state the problem objectively and offer possible solutions (see
Chapter 3, section 3.6.1.2).

1.1.8 Awareness of Human Strengths and Limitations
By the age of five, we are wonderfully adept at many linguistic and visual tasks
that stymie even the most advanced computer systems. Nevertheless, we also have
unavoidable limitations in perception, memory, and reasoning. Applications
should respect these limitations rather than forcing the user to overcome them. For
example, the user should not be required to calculate information (such as the day
of the week corresponding to a certain date) that can be provided by the applica­
tion. Similarly, the user should not be required to recall complex sets of options or
commands. Instead, the available choices should be presented explicitly; recogniz­
ing items is much easier than recalling them.

1.2 Design Methodology
For maximum effectiveness, design principles must be used in conjunction with a
design methodology that puts the user at the heart of the design process, encom­
passes the broad context within which the application will be used, and leaves
room for iterative testing and redesign of the interface.

6 An Application Design Guide

Even the most creative and experienced designers cannot always produce the right
interface design on the first try. Indeed, sometimes experience in user interface de­
sign can be a barrier to finding the right solution; to the extent that designers are in­
timately familiar with an interface, they are removed from the viewpoint of the
new or casual user. It is essential to test new designs on real users-not only on
colleagues from down the hall. Schedules should include time to redesign the inter­
face in light of usability test results. Time spent in usability testing is time well
spent; it is far better to uncover interface problems early in the design stage rather
than after a product has been launched.

In designing and testing an interface, it is crucial to keep in mind the larger context
within which the application will be used. For example, will it run on a stand­
alone computer or as part of a network? Will it be used alone or with other applica­
tions? In the increasingly networked and multitasking computer environment of
the 1990s, applications that allow for easy exchange of data with other users and
other applications will have an enormous advantage over traditional stand-alone
applications. The interface should reflect and facilitate this new integration by pro­
viding data exchange techniques that are consistent from one application to
another.

1.3 Selected Bibliography
Chew, Jane Carrasco, and John Whiteside, eds. Empowering People: CHI '90

Conference Proceedings. New York, NY: ACM Press, 1990.

Helander, Martin, ed. Handbook of Human-Computer Interaction. Amsterdam:
North-Holland,1988.

IBM Corporation. Common User Access: Advanced Interface Design Guide.
Boca Raton, FL: IBM, 1989.

Laurel, Brenda, ed. The Art of Human-Computer Interface Design. Reading, MA:
Addison-Wesley, 1990.

Nielsen, Jakob, ed. Coordinating User Interfacesfor Consistency. Boston: Aca­
demic Press, 1989.

Norman, Donald A. The Design of Everyday Things. New York: Basic Books,
1988.

Robertson, S.P., G.M. Olson, and J.S. Olson, eds. Reaching Through Technology:
CHI '91 Conference Proceedings. Reading, MA: Addison-Wesley, 1991.

Shneiderman, Ben. Designing the User Interface: Strategies for Effective Human­
Computer Interaction. Reading, MA: Addison-Wesley, 1987.

Tufte, Edward R. Envisioning Information. Cheshire, CT: Graphics Press, 1990.

In addition, ACM/SIGCHI publishes proceedings on computer-human interactions
on a regular basis.

Fundamental Input Elements

Chapter 2

2.1 Mouse Input ... 9
2.1.1 Basic Operations ... 9
2.1.2 Guidelines for Using Mouse Operations .. 10

2.2 Keyboard Input .. 11
2.2.1 Text Keys .. 11
2.2.2 Editing Keys 11
2.2.3 Mode Keys .. 12
2.2.4 Navigation Keys ... 14
2.2.5 Shortcut Keys .. 15
2.2.6 Escape Key ... 18

Fundamental Input Elements 9

The user interface is grounded in a relatively small set of fundamental input ele­
ments that define the user's interaction with the computer. The two basic elements
are the mouse and the keyboard.

2.1 Mouse Input ~
The most important mouse operations are pointing, clicking, and dragging. These
operations may be combined with modifier keys (SHIff, ClRL, and ALT).

2.1.1 Basic Operations
• Button 1. This is the selection button. Most mouse actions rely on mouse

button 1. 1

• Button 2. This button is used to bring up context-specific actions and options.
Assigning alternate operations to button 2 may confuse the user.

Additional mouse buttons may be supported but are typically not available. There­
fore, a third (or additional) button should be assigned to operations or functions
already in the interface. For example, a third mouse button (the middle button)
can be used as an additional way to distinguish selection from direct (drag)
manipulation.2

Table 2.1 lists the basic mouse input elements and gives examples of their use. For
information on using modifier keys in conjunction with the mouse, see Chapter 3,
section 3.1.2.

1 By default, button 1 is the left button, but the Microsoft Windows Control Panel allows the user to switch
the left/right mapping.

2 A third mouse button can be simulated with a two-button device by using both buttons or the ALT key+
button 2 combination.

10 An Application Design Guide

Table 2.1 Mouse Input

Operation Definition

Point Move pointer ("hot spot*") to
desired screen location.

Press Press and hold the button.

Click Press and release button without
moving mouse.

Double-c1ick** Press and release button twice
within specified interval,
without moving mouse.

Drag

Double-drag

Press button and hold while
moving mouse.

Press button twice and hold
while moving mouse.

Common Usage (Using Button 1)

Navigates; prepares for
selection or for operation of
control.

Identifies object to be selected.

Selects insertion point or item;
operates control; activates
inactive window or control.

Shortcut for common
operations, for example,
activates icon, opens file, selects
word.

Identifies range of objects;
moves or resizes items.

Identifies selection by larger
unit (for example, words).

* The hot spot is the position in the mouse pointer that marks the exact screen location that will be affected
by a mouse action.

** There are no recommended assignmentS for triple-clicking or additional multi-clicking operations.
Applications may define their own assignments, but remember that these operations are often difficult for
users to master.

A mouse action is proposed when the mouse button is pressed down, and con­
firmed when the mouse button is released. For example, if the pointer is over a
menu item, the item is highlighted when the button is pressed down and initiated
when the button is released. Similarly, during drag operations the user gets visual
feedback (for example, highlighting) while the button is down, but the operations
are not accepted until the button is released. While this is the general rule, there
may be occasional exceptions. For example, scrolling is initiated as soon as the
user presses the mouse button over a scroll arrow; the action auto-repeats as long
as the mouse button is down.

2.1.2 Guidelines for Using Mouse Operations
Mouse operations should not require extraordinary hand-eye coordination from the
user. For example:

• If an object is so small or thin that pointing or clicking to select it would require
extremely precise mouse positioning, provide a "hot zone" around the object to
increase the area where clicking will select the object.

• The rapid button-pressing required by double-clicks and double-drags is diffi­
cult for some users; never use these input techniques as the only means of
carrying out essential operations such as opening files.

Fundamental Input Elements 11

• Do not require the user to point at a moving target, except in games.

2.2 Keyboard Input IIiiil

2.2.1 Text Keys

Keyboard input involves pressing types of keys: text keys, editing keys, mode
keys, navigation keys, and shortcut (function) keys.

Text keys can be defined as the alphanumeric (a-z, 0-9), punctuation, symbol, TAB,

and ENTER keys, and the SPACEBAR. In applications that have text-entry modes,
pressing a text key in text mode causes the corresponding character to appear on
the screen. (TAB and ENTER may not be visible except in certain views.) In non-text­
entry modes, these keys can be used as shortcuts for other operations, such as
choosing tools from a toolbox or selecting an item with a matching first letter from
a list. In addition, TAB is used for navigation (see section 2.2.4), ENTER is used to
press the default button in dialog boxes, and the SPACEBAR is used as the default
Select key for explicit keyboard selection (see Chapter 3, section 3.1.3).

PC keyboards include two keys labeled ENTER: the normal ENTER\ and the keypad
ENTER. These keys have the same label, so their default functions should be the
same.

2.2.2 Editing Keys
Table 2.2 lists the editing keys and their functions. Unless otherwise indicated,
these functions apply to text editing.

Table 2.2 Editing Keys

Key

DEL

BACKSPACE*

INS

Recommended Function

• If there is a selection: Deletes entire selection.

• If there is an insertion point and no selection: Deletes character to
right of insertion point.

• If there is a selection: Deletes entire selection.

• If there is an insertion point and no selection: Deletes character to
left of insertion point.

Toggles between Insert mode (new text characters push old ones to
right) and Overtype mode (new text characters overwrite old ones).

* Characters deleted by the DEL and BACKSPACE keys are not placed on the clipboard. For additional
information, see Chapter 3, section 3.7.

12 An Application Design Guide

2.2.3 Mode Keys
Mode keys change the actions of the other keys. The two kinds of mode keys are
toggle keys and modifier keys.

2.2.3.1 Toggle Keys
A toggle key turns a particular mode on or off each time it is pressed and released.
For example, the INS key toggles between Insert mode (in which new text charac­
ters push old ones to the right) and Overtype mode (in which new characters over­
write old ones).

Table 2.3 lists the principal toggle keys. Function keys may also be used to toggle
modes.

Table 2.3 Toggle K eys3

Key

INS

CAPS LOCK

NUMLOCK

SCROLL LOCK

F8

SHIFT+F8

Function

Toggles between Insert mode (new text characters push old one to
right) and Overtype mode (new text characters overwrite old ones).

Pressing alphabetic key yields uppercase.

Numeric keypad keys yield numbers rather than direction.

Navigation keys scroll data without moving cursor; existing
selections are preserved.

Toggles Extend mode. In this mode, selection behaves as if the
SHIFT key is locked down for all direction keys and mouse actions
(see Chapter 3, section 3.1.1.5).

Toggles Add mode, which allows disjoint selection through the
keyboard. In Add mode, navigation keys move the focus without
affecting existing selections, and pressing the SPACEBAR toggles the
selection state of an item (see Chapter 3, section 3.1.3.2).

3 Although these are the recommended assignments, applications need not support all of these keys.

Fundamental Input Elements 13

2.2.3.2 Modifier Keys
The modifier keys are SHIFT, CTRL, and ALT. Like toggle keys, modifier keys also
change the actions of other keys. Unlike toggle keys, however, the mode estab­
lished by a modifier key remains in effect only while the key is pressed down; in
other words, the mode is "spring-loaded," and the user must actively maintain it.
Spring-loaded modes are preferable to self-maintaining modes, because the active
maintenance required for a spring-loaded mode prevents the user from forgetting
that a mode is in effect. Accordingly, if you need to switch modes from the key­
board, modifier keys are preferable to toggle keys, as long as the required actions
within the mode can be quickly and easily accomplished while one hand is
occupied by holding down the modifier key.

Table 2.4 lists the most common functions of the modifier keys. For more detailed
descriptions, see the sections in Chapter 3 covering the functions mentioned in the
table. Typically, the modifier key is pressed at the beginning of the operation and
held down during the operation if its release cancels or changes the operation.

Table 2.4 Modifier Keys

Key

SHIFT

CTRL

ALT

Typical Functions

• With alphanumeric keys, yields uppercase or the character
inscribed on the top half of the key. *

• With mouse click or navigation keys, extends or shrinks the
contiguous selection range.

• With function keys, alters meaning of action (for example, Fl
brings up the Help application window, pressing SHIFT+Fl enters
Help mode).

• With mouse click, selects or deselects an item without affecting
previous selections.

• With alphabetic keys, yields shortcuts.

• With navigation keys, typically moves cursor by a larger unit than
the unmodified key.

With alphabetic key, navigates to the menu or control marked with
that key as a mnemonic.

* With CAPS LOCK on, yields lowercase characters.

14 An Application Design Guide

2.2.4 Navigation Keys
The navigation keys are HOME, END, PAGE UP, PAGE DOWN, the four arrow keys
(LEFT, RIGHT, UP, and DOWN), and TAB. Table 2.5 lists the functions ofthese keys,
singly and in combination with various modifier keys. The cTRL+key combination
is generally used to move by a larger increment than the unmodified key. Naviga­
tion operations may also be assigned to keys in addition to those listed here (for
example, to function keys).

Table 2.5 Navigation Keys

Key Unmodified Key Moves Cursor To... CTRL+Key Moves Cursor To ...

HOME Beginning of line. (Leftmost
position in current line.)

END End of line. (Rightmost position
occupied by data in current line.)

PAGE UP Screen up. (Previous screen, same
horizontal position.)

PAGE DOWN Screen down. (Next screen, same
horizontal position.)

LEFT ARROW Left one unit.§

RIGHT ARROW Right one unit.§

UP ARROW Up one unit/line.#
DOWN ARROW Down one unit/line.#

TAB Dialogs: Next field; may move left
to right or top to bottom at
designer's discretion; after last field,
wraps to first. (SHIFT+TAB moves in
the reverse order.)

Beginning of data. (Top left
position in current field or
document. *)

End of data. (Bottom right
position occupied by data in
current field or document.**)

Screen left/beginning. (Top
of window; or, moves left
one screen.)

Screen right/end. (Bottom of
window; or, moves right one
screen.)

Left one (larger) unit.§§

Right one (larger) unit.§§

Up one (larger) unit.##
Down one (larger) unit.##

(Not defined.)

* If there is no left dimension, the key combination may also be used to move to the top position.

* * If there is no right dimension, the key combination may also be used to move to the bottom position.

§ For text, this moves between characters.

§§ For text, this is generally used to move between words (to the beginning of the next or previous word).
Other usage may also be appropriate, as long as applications follow the general principle that
cTRL+navigation key moves by a larger unit than the unmodified key.

Generally maintaining the same position.

For text, this is generally used to move between paragraphs. Other usage may also be appropriate, as long
as applications follow the general principle that cTRL+navigation key moves by a larger unit than the
unmodified key.

Fundamental Input Elements 15

2.2.5 Shortcut Keys
Shortcut keys or key combinations can be used to provide more rapid access to
frequently performed operations. Function keys and cTRL+letter combinations are
often used as shortcuts. You may also use ALT+function key combinations, with
the exceptions noted in section 2.2.5.3. Note that ALT+letter combinations are not
recommended as shortcut keys because they provide standard keyboard access to
menus and controls.

2.2.5.1 Function Key Shortcuts
Table 2.6 lists recommended PC function key assignments. Function keys that do
not have recommended assignments are available for use by applications.

16 An Application Design Guide

Table 2.6 Recommended PC Function Key Assignments

(No modifier) SHIFT CTRL ALT

FI Help (Chapter 11, Enter Help mode (No recommended (No recommended
section 11.3.1). (Chapter 11, assignment.) assignment.)

section 11.3.1).

F2,F3 (No recommended (No recommended (No recommended (No recommended
assignment.) assignment.) assignment.) assignment.)

F4 (No recommended (No recommended Close document Close application
assignment.) assignment.) window (Chapter 5, window (Chapter 5,

section 5.4.1). section 5.4.1).

F5 (No recommended (No recommended (No recommended (No recommended
assignment.) assignment.) assignment.) assignment.)

F6* Move clockwise to Move Move to next doc- Move to application's
next pane of active counterclockwise to ument window; top next open non-
window (Chapter 4, next pane of active window moves to document window
section 4.3.5.2.2). window (Chapter 4, bottom of stack (Chapter 4, section

section 4.3.5.2.2). (Chapter 4, section 4.3.5.2.3). (Adding
4.3.5.2.3). (Adding SHIFT reverses order
SHIFT reverses action: of movement.)
previous window
moves to top.)

F7 (No recommended (No recommended (No recommended (No recommended
assignment.) assignment.) assignment.) assignment.)

F8 Toggle Extend mode, Toggle Add mode, if (No recommended (No recommended
if supported (Chapter supported (Chapter 3, assignment.) assignment.)
3, section 3.1.1.5). section 3.1.3.2).

F9 (No recommended (No recommended (No recommended (No recommended
assignment.) assignment.) assignment.) assignment.)

F10 Toggle menu bar (No recommended (No recommended (No recommended
activation. assignment.) assignment.) assignment.)
(Supported for CVA
2.0 compatibility.)

FlI, FI2 (No recommended (No recommended (No recommended (No recommended
assignment.) assignment.) assignment.) assignment.)

* In addition to the keys discussed here, applications may define their own specialized navigation keys.

If some target users of an application are unlikely to have keyboards that provide
function keys, the application should avoid using function keys as the only means
of performing essential operations.

Fundamental Input Elements 17

2.2.5.2 Control Key Shortcuts
cTRL+letter combinations may also be used as keyboard shortcuts. Table 2.7 lists
recommended cTRL+letter shortcuts that are equivalent to Edit menu commands.
If an application does not provide the function corresponding to a particular recom­
mended key combination, the application should avoid assigning that key combina­
tion to any other function.

Table 2.7 Recommended cTRL+Letter Shortcuts4

Key Function

CTRL+Z Undo

CTRL+X Cut

CTRL+C Copy

CTRL+ V Paste

Table 2.8 lists additional suggested shortcuts.

Table 2.8 Suggested CTRL+Letter Shortcuts

Key Function

CTRL+N New

CTRL+O Open

CTRL+P Print

CTRL+S Save

CTRL+B Bold*

CTRL+I Italic *

CTRL+U Underline*

* These shortcuts are suggested for text-fonnatting applications, in the context for which they make sense.
Applications may use other modifiers for these operations.

4 The shortcuts for Undo, Cut, Copy, and Paste are new in Windows version 3.1. For backward compatibility,
we recommend that applications designed to run under Windows version 3.0 also support the old shortcuts:
Undo = ALT+BACKSPACE, Cut = SHIFf+DEL, Copy = CTRL+INS, and Paste = SHIFf+INS. However, the old short­
cuts should not be documented in user manuals or listed on the Edit menu.

18 An Application Design Guide

2.2.5.3 Guidelines for Assigning Shortcut Keys
When selecting function keys or key combinations as shortcuts for actions in an
application, designers should observe the following guidelines:

• Assign single keys for frequently performed, small-scale tasks. For example, if
the application contains a command to split a window, a single function key
(such as F6) can be used to move from one pane to another.

• Assign sHIFT+key combinations for actions that extend or are complementary to
the actions of the key or key combination used without the SHIFT key. For ex­
ample, if F6 moves from one pane to another in a clockwise direction, SHIFT +F6
moves through the panes in a counterclockwise direction.

• Assign cTRL+key combinations for infrequent actions, or for tasks that repre­
sent larger-scale versions of the tasks assigned to the unmodified key. For ex­
ample, in text, LEFT ARROW moves left by one character, whereas CTRL+LEFT
ARROW moves left to the beginning of the current word (see Table 2.5). Simi­
larly, F6 moves clockwise from one window pane to the next, whereas CTRL+F6
moves clockwise from one document window to the next (see Table 2.6). Fol­
lowing the guideline for SHIFT listed above, SHIFT+CTRL+F6 moves counterclock­
wise through the document windows.

• Avoid assigning ALT+letter combinations; they are used as mnemonic access
characters for menus and dialog box controls. You may use ALT+function key
combinations, except for ALT+F4 and ALT+F6, which have the recommended
assignments listed in Table 2.6. In addition, the ALT+TAB, ALT+ESC, and
ALT+SPACEBAR assignments are reserved for system use.

• Function keys should not be the first choice for shortcuts. When deciding
between a function key shortcut (with or without a modifier key) and a modi­
fier+letter shortcut, remember that function key shortcuts are easier to localize
but may be harder to remember because they are mapped to functions arbi­
trarily. Modifier+letter shortcuts offer more mnemonic possibilities and are eas­
ier to reach on the keyboard. Applications should use function key shortcuts in
addition to modifier+letter shortcuts, or for operations that do not have good
mnemonics.

2.2.6 Escape Key
The ESC key is generally used to terminate a function in process or to cancel a
direct manipulation operation. It is also used to press the Cancel button in a dialog
box. Thus, ESC is in some sense the opposite of ENTER, which presses the default
button.5 Applications may also allow the user to press ESC to cancel or to interrupt
lengthy operations, such as printing.

5 If Cancel is the default button (has a bold border), the ENTER key is used to press it.

General Techniques

Chapter 3

3.1 Selection ... 21
3.1.1 Concepts of Selection ... 21
3.1.2 Mouse Selection ... 24
3.1.3 Keyboard Selection .. 28

3.2 Focus ... 29
3.3 Navigation .. 30

3.3.1 Mouse Navigation .. 30
3.3.2 Keyboard Navigation ... 30
3.3.3 Keyboard Access to Control Bars .. 33

3.4 Transfer Interface ... 34
3.5 Direct Manipulation ... 34

3.5.1 Differentiating Selection from Direct Manipulation........ 37
3.6 Providing Feedback .. 37

3.6.1 Visual Feedback .. 37
3.6.2 Auditory Feedback .. 42

3.7 Editing Text .. 43
3.8 Moving Objects .. 44
3.9 Text Frames .. 44

General Techniques 21

Just as the visual components of the interface should be consistent from applica­
tion to application, the techniques employed by the user to interact with interface
components should also remain consistent. If visual consistency is reinforced with
procedural consistency, users can develop habits that transfer from one application
to another.

In general, mouse and keyboard access to an application should be parallel. How­
ever, techniques should be optimized for the input device. Well-tailored techniques
should prevail over strict parallelism between mouse and keyboard techniques.

3.1 Selection
For the object-action paradigm (see Chapter 1, section 1.1.2) to work properly, the
user must be able to select the object to which an action will apply. Applications
therefore need to provide a means for the user to select data.

3.1.1 Concepts of Selection
Many selection concepts-highlighting, types of selection, adjusting selections,
deselection, and selection modes-apply to both mouse and keyboard selection.

3.1.1.1 Indicating Selections: Highlighting
When data is selected, it appears highlighted. The appearance of highlighted text
depends on the abilities of the system and the display. On monochrome displays,
reverse video (XOR) should be used to indicate selected data (see Figure 3.1). On
gray-scale displays, the selection should be marked with a shade of gray. On color
displays, a highlight color should be used. Graphics may be highlighted in these
same ways or by the addition of rectangles with resizing handles; these two
methods may also be combined.

Figure 3.1 Indicating Selection by Reverse Video

22 An Application Design Guide

Text in dialog boxes should be highlighted with the same methods used in data
windows. For toolboxes and other collections of 3-D buttons, the depressed-button
graphic should be used to indicate selection. For value set controls that do not con­
tain 3-D buttons, an outline frame in the highlight color should surround the
chosen value.

As a general guideline, selection highlighting should be visible only while the win­
dow is active. Leaving the selection highlighted in an inactive window is accept­
able in special cases, when it is useful to the user. For example, if the user chooses
a command with a dialog box that affects the selection, the selection can remain
highlighted while the dialog box is open.

3.1.1.2 Types of Selection
Selections may be classified as single (involving only one item) or multiple (in­
volving several items). Multiple selections may be further classified as contiguous
or disjoint, depending on their spatial ordering. These selection types are illustrated
in Figures 3.2, 3.3, and 3.4.

Figure 3.2 Single Selection

Figure 3.3 Contiguous Multiple Selection

General Techniques 23

Figure 3.4 Disjoint Multiple Selection

Multiple selections may also be classified as homogeneous or heterogeneous, de­
pending on the properties of the selected items. For example, if a text selection
contains both plain and bold text, the selection is heterogeneous with respect to
character attributes {see Figure 3.5). The user makes homogeneous and hetero­
geneous selections in the same way. In some cases, however, controls that indicate
property settings for a selection should reflect the difference between the two
types (see Chapter 6, sections 6.1.2 and 6.2).

Mouse and keyboard techniques for single and multiple selection are explained in
sections 3.1.2 and 3.1.3.

Figure 3.5 Heterogeneous Selection

3.1.1.3 Adjusting Selections
Adjusting a selection means changing its size relative to its original starting point,
or anchor point. The opposite end of the selection is the active end of the selection.
To extend the selection, the user moves the active end away from the anchor point.
To shorten the selection, the user moves the active end toward the anchor point.
When the active end reaches the anchor point, the selection is an insertion point.
From the insertion point, the user can extend the selection in either direction, but
not in both directions at the same time.

24 An Application Design Guide

3.1.1.4 Deselection
To deselect data, the user generally clicks to make a new selection. Deselecting
does not delete the data. Deselection is overridden when the user applies disjoint
selection techniques. Multiple-selection list boxes (see Chapter 6, section 6.3.2)
also override this default deselection behavior.

In multiple (contiguous or disjoint) selections, items can be deselected individu­
ally or as a f,0up. To deselect a single item with the mouse, the user uses
CTRL+click. This combination toggles the selection state of the clicked item while
preserving the selection state of all other items. For example, if an item is selected,
CTRL+click deselects it without affecting other items. If the item is not selected,
CTRL+click selects it. To deselect all currently selected items, the user clicks to
make a new selection.

3.1.1.5 Selection Modes
Selection techniques that set a special selection mode are generally not recom­
mended, except in special contexts. A selection mode should only supplement
standard selection techniques. If selection modes are used, a visual cue should indi­
cate that the mode is active. For example, if the mode affects a data window, a
mode indicator should be displayed in the status bar (if there is one).

Extend mode is an example of a selection mode. In Extend mode, selection be­
haves as if the SHIFT key is locked down for all direction keys and mouse actions.
The key for toggling Extend mode is F8.

3.1.2 Mouse Selection L:l
Mouse selection relies on the basic techniques of clicking and dragging. In
general, clicking selects a single item or location, and dragging selects a range con­
sisting of all items between the button-down and button-up locations. If dragging
is already used by the application for item movement, outline selection (see
section 3.1.2.4) may be used to select a range of items.

1 See section 3.1.3 for keyboard deselection techniques.

General Techniques 25

3.1.2.1 Mouse Selection Techniques for Item-Oriented Applications
In most item-oriented applications, selections made with the mouse can be contigu­
ous (range selection) or disjoint (selected items are separated by nonselected
items). The user clicks mouse button 1 without a modifier to make contiguous
selections. Disjoint selection requires the use of the CTRL key with mouse button 1.
Selections can be adjusted by using the SHIFT key with mouse button 1.2

Table 3.1 describes how these techniques work.

Table 3.1 Mouse Selection

Action Clicked Item Is ••• Resulting Selection = Focus Moves To... Anchor Moves To ...

Click Selected

SHIFT+click Set to selection state
of anchor item (which
currently mayor may
not be selected)

CTRL+click Toggled

SHIFT+CTRL (Same as SHIFT+click)
+click

Clicked item

Extend anchor item's
selection state to
clicked item (and all
items in between). (If
the anchor was not
selected, SHIFT+click
selects only the
current item.)

Existing selection +/­
clicked item

Existing selection +/­
new range, as defined
for SHIFT+click

Clicked item

Clicked item

Clicked item

Clicked item

Clicked item (anchor
= focus)
No movement (anchor
remains where it was)

Clicked item (anchor
= focus)
(Same as SHIFT+click)

2 Graphic objects in drawing applications have no well-defined ordering, so selection adjustment is not de­
fined for such objects. In these applications, SHIFT+click may be defmed as equivalent to CfRL+click
(= disjoint selection).

26 An Application Design Guide

3.1.2.2 Mouse Selection Techniques for Text-Oriented Applications
Table 3.2 shows the recommended techniques for contiguous text selection with
the mouse.

Table 3.2 Mouse Selection in Text

Action Resulting Selection= Focus Moves To ••• Anchor Moves To •..

Click or drag All text from button-down to Beginning of selection Button-down
button-up (for a click, this is just
an insertion point)

SHIFf+click or All text between anchor and Beginning of selection No movement
sHIFf+drag button-up location*

CTRL+click or Entire sentences from button- Beginning of fIrst Beginning of selection**
CTRL+drag down to button-up selected sentence

Double-click Entire words from button-down Beginning of fIrst Beginning of selection**
or Double-drag to button-up selected word

* Optional enhancement: If the original selection unit was a word (selected by double-click or double-drag) or sentence (selected by
CTRL+click or Cl'RL+drag), the selection can be extended beyond the button-up location to the end of the unit.

** In some applications, the anchor point encompasses the entire selection; a subsequent SlflFf+click extends the selection from the most
distant end. The Windows Write program puts the anchor point at the beginning of the selection.

3.1.2.3 Margin Selection in Text and Arrays
Margin selection is a convenient way to select large sections of data with a single
click. ill text, margin selection is used to select lines, paragraphs, or entire docu­
ments; in data arrays, it is used to select rows and columns. The margin selection
area can be the row and column labels of a data array or the left margin area be­
tween the left window frame and the left edge of text.

Table 3.3 shows the actions that should be assigned to the mouse for margin selec­
tion in text and in data arrays.

General Techniques 27

Table 3.3 Margin Selection in Text and in Data Arrays*

Action in Margin Resulting Selection= Focus Moves To ... Anchor Moves To ...

Click or drag Entire lines, rows, or Beginning of selection Beginning of selection
columns next to pointer
from button-down to
button-up

SHIFT +click or Entire lines, rows, or Beginning of selection No movement
SHIFT+drag columns between anchor

and button-up location

CTRL+click or
CTRL+drag

in text documents Entire document Beginning of document Encompasses entire
document

in data arrays Previous selections + Beginning of new selection Beginning of new selection
entire rows or columns
next to pointer from
button-down to button-up

Double-click or
Double-drag

in text documents Entire paragraphs from Beginning of first selected Beginning of first selected
button-down to button-up paragraph paragraph**

in data arrays (Same as click or drag) (Same as click or drag) (Same as click or drag)

* In this table, for text documents, the beginning of a selection is defined as the part nearest the beginning of the document. For data
arrays, the beginning of a selection is defined as the cell nearest the button-down point.

** In some applications, the anchor point encompasses the entire first selected paragraph; a subsequent sHIFT+click extends the selection
from the most distant end of that paragraph, Windows Write puts the anchor point at the beginning of the first selected paragraph,

3.1.2.4 Outline Selection of Graphical Objects
Outline selection is an extended form of drag selection that is particularly useful
for graphical objects when normal drag selection conflicts with moving objects
with the mouse, This technique allows the user to drag an outline frame (rectangu­
lar or free-form) around an object, a set of objects, or a portion of an object. When
the mouse button is released, existing selections are removed, and all objects fal­
ling completely within the frame (including the frame itself) are selected. When
outline selection is used with bitmaps rather than with graphical objects, only the
bits falling within the frame are selected.

28 An Application Design Guide

3.1.3 Keyboard Selection 1'--11
Keyboard selection uses a selection cursor (such as a dotted outline box or an
insertion point) and a form of selection emphasis (see section 3.1.1.1) to indicate
the data that will be affected by any action the user initiates. There are two types
of keyboard selection techniques: implicit and explicit.

• In implicit selection, the item under the selection cursor becomes selected
automatically when the selection cursor moves; thus, the selection cursor and
emphasis travel together. In general, implicit selection is associated with
contiguous selection.

• In explicit selection, the selection cursor moves independently of the selection
emphasis. That is, the item under the selection cursor is selected and given the
selection emphasis only when the user explicitly selects it with the Select key.3

The Select key may also be used to deselect selected items; in other words, it
toggles selection states. In general, explicit selection/deselection is associated with
disjoint selection, in which selected data can be separated by nonselected items,
and a new selection can be added to existing selections at any point in the data.

3.1.3.1 Keyboard Techniques for Contiguous Selection
In text-oriented applications, the user can select a single insertion point with the
keyboard by simply navigating to the desired location. The anchor point is set at
the new location. A range of characters is selected by using the SHIFT key in con­
junction with navigation keys. While holding down the SHIFT key, the user can
press any navigation key (or any combination of keys defined for navigation, such
as CTRL+END; see section 3.3 for details). The cursor then moves to the location im­
plied by the navigation key, and all characters between the anchor point and the
destination are selected. The anchor point does not move.

The sHIFT+navigation technique works similarly for item-based applications, with
one difference: Whereas in text, all characters between the anchor point and the
destination are selected, in item-based applications, the fate of the items between
the anchor and the destination depends on the selection state of the anchor item. If
the anchor item is currently selected, all items in the range become selected; if the
anchor item is not currently selected, all items in the range become deselected.

3 By default, the Select key is the SPACEBAR, unless this assignment conflicts with the needs of an application
in a specific context.

3.2 Focus

General Techniques 29

3.1.3.2 Keyboard Techniques for Disjoint Selection
The keyboard technique for making disjoint selections relies on using SHIFT+F8 to
enter Add mode. In this mode navigation keys move the focus without affecting
existing selections or the current anchor point. Pressing the SPACEBAR toggles the
selection state of the item at the new location and sets a new anchor point there.
sHIFT+navigation (while still in Add mode) can then be used in the usual way to
extend the selection from the new anchor point, without disturbing previous selec­
tions. Pressing SHIFT+F8 again toggles the application out of Add mode.

Disjoint selection may also be permitted in list boxes, to let the user select multi­
ple items from the list (see Chapter 6, section 6.3.2).

The "focus" represents the part of the interface that will receive the next piece of
input if no navigation occurs before the input is generated. For mouse input, the
focus always coincides with the pointer (button down) location. For keyboard
input, the focus depends on the context:

• In text, the focus is shown by an insertion point, which indicates where newly
typed characters will be inserted.

• In spreadsheets, the focus is shown by a highlighted cell border, which marks
the cell that will receive typed input and that will be affected by commands.

• In menus and dialog box controls, the focus is shown by an active control
indicator (described below), which identifies the control that will be affected by
the Select key or by typing.

The active control indicator can be an insertion point, highlighting, or a dotted box:

• The insertion point is used for text boxes.

• Text highlighting is used in conjunction with the insertion point when the text
box is initially activated (for example, with ALT+mnemonic). If the user then
clicks the mouse over the text, the highlighting disappears, and the insertion
point is placed at the click location.

• The dotted box is used for option buttons, check boxes, and command buttons;
the box should enclose the label of the control (see Figure 3.6). The dotted box
is also used for list boxes. In single-selection lists, the box should enclose the
list item that is currently selected or that will be selected if the user presses the
Select key. In multiple-selection lists, the box should enclose the item whose
selection state will be toggled by pressing the Select key. In extended-selection
lists, the box should enclose the most recently selected item, unless the list is in
Add mode. In Add mode, the box should enclose the item whose selection state
will be toggled by pressing the Select key. (For further information on these
types of list boxes, see Chapter 6, section 6.3.)

3D An Application Design Guide

- Change Attributes

D L!;\~~:~~Ji.~)y.J
o Archive

D Hidden

D fuostem

Figure 3.6 Use of Dotted Box to Indicate Active Control

When a window is reactivated, the focus and the selection should be displayed in
the same locations as when the window was last active.

3.3 Navigation
The user can move the input focus by navigating on the screen.

3.3.1 Mouse Navigation L:J
Navigation with the mouse is simple: When the mouse is moved left or right on
the user's desktop, the pointer moves left or right on the screen; when the mouse is
moved away from or toward the user, the pointer moves up or down. By moving
the mouse, the user can move the pointer to any location on the screen. Mouse
navigation typically does not affect existing selections.

3.3.2 Keyboard Navigation I'=-il
Keyboard navigation is more complicated than mouse navigation. Several keys,
such as HOME, END, and the arrow keys, are dedicated to keyboard navigation with
respect to data items, as discussed in Chapter 2, section 2.2.4. Unlike mouse navi­
gation, keyboard navigation changes the selection, unless Scroll Lock mode is in
effect (see Chapter 2, section 2.2.3).

Keyboard navigation to controls relies primarily on mnemonic access characters
and on the TAB, ENTER, and ESC keys. With mnemonic access, when the user
presses ALT plus the mnemonic letter in a control label, the focus moves to the con­
trol, and the control is selected or operated. For example, "F" is the mnemonic as­
signed to the .rile menu, so ALT+p'l selects and opens that menu.

4 ALT,mnemonic (for example, ALT,F) is also supported.

General Techniques 31

The ALT+mnemonic method can also be used to navigate among controls in dialog
boxes. If the control that currently has the focus does not capture character input
(that is, if the control is not a text box, spin box, list box, or combo box5), mnemonics
can be used without ALT. For example, the user can select the No command button
in a dialog box by pressing ALT +N or just N. If the user presses the mnemonic for a
dimmed control, the focus remains unchanged, and no action is taken on the
control.

When the AL T+mnemonic method is used to reach and operate a control, the focus
usually remains on the control after the operation (unless the operation closes the
dialog). However, if the focus is on a list box and the user uses ALT+mnemonic to
reach and operate a button associated with the list, the focus should return to the
list after the button is pressed. For example, if the user adds or deletes individual
items from a list box by selecting an item, then pressing the Add or Delete com­
mand button, the focus should return to the list after each Add or Delete operation
so the user can select another item.

Dialog boxes also permit the use of the TAB, ENTER, and ESC keys for navigation:

• TAB moves the active control indicator among the available controls without
operating them (the SPACEBAR can then be used to operate the control that
currently has the focus).

• The ENTER key chooses the default command button.6

• The ESC key chooses the Cancel or Close command button if the dialog
contains one of these buttons.

Table 3.4 lists recommended keyboard navigation techniques.

5 See Chapter 6 for descriptions of these dialog box controls.

6 The OK command button is typically the default. but a different button may be assigned instead if it is a
more likely choice for the dialog. Users can also change the default button through keyboard navigation.

32 An Application Design Guide

Table 3.4 Keyboard Access to Controls

Key

ALT +mnemonic

TAB

SHIFT+TAB

SPACEBAR

Arrow keys

Action

Navigates to and selects or operates control. The mnemonic
letter can be pressed without ALT if the current focus does not
capture character input.

Moves focus to next control. The order of movement is
generally from left to right and from top to bottom. *

Moves focus to preceding control. The order of movement is
generally from right to left and from bottom to top (that is, the
reverse ofTAB).*

• Selects or operates a command button, option button, or
check box that has the focus (equivalent to a mouse click on
the control).

• In text box, combo box, or spin box, inserts a space character.

• In text box, moves insertion point left and right.

• In group of option buttons, selects next button, wraps around
at top and bottom of group.

• In group of check boxes, moves to next box without changing
its state, wraps around at top and bottom of group.

• In list box, selects next item; stops at top and bottom of list.

• In spin box, increases or decreases value; wraps around at
highest and lowest values.

DOWN ARROW Opens a closed drop-down list box or drop-down combo box
that currently has the focus.** If the drop-down control is
already open, DOWN ARROW navigates within the list
(see Chapter 6, section 6.3.1.3).

ALT +DOWN ARROW Toggles state (collapsed or expanded) of active drop-down list
box or drop-down combo box.***

ALT +UP ARROW Toggles state (collapsed or expanded) of active drop-down list
box or drop-down combo box. ** *

Alphanumeric keys • As a mnemonic, see "ALT+mnemonic" at the beginning of

ENTER

ESC

this table.

• In list box, selects next item beginning with the character.

• If typed as the first character in the text field of a combo box,
scrolls list to the first item beginning with the character.

Presses default command button, if one is implemented.
Otherwise, presses selected command button.

Presses the Cancel or Close button, if one is implemented.

* Unless there is a more logical order defined within the context of the operation.

** This is a new recommendation. Windows version 3.1 includes a style bit to enable the new behavior.

*** The use of F4 to open and close drop-down controls is no longer recommended.

General Techniques 33

3.3.3 Keyboard Access to Control Bars
ALT+mnemonic access can also be used in control bars (for example, ribbons and
rulers; see Chapter 4, section 4.2.8), for labeled non-button controls, and for
textual buttons (that is, buttons labeled with ordinary text rather than graphics).

• Purely graphical buttons (for example, for drawing tools) do not require mne­
monic access. Keyboard access to these buttons is defined by the application.

• If the button label contains an underlined letter, the ALT+mnemonic method
must be implemented. (In addition, applications may define CTRL+letter short­
cuts.)

• Formatting buttons in ribbons and rulers often contain graphical text and thus
are neither purely textual nor purely graphical. These buttons usually represent
commands that are available through shortcuts, even when the control bar is not
visible. These shortcuts typically use cTRL+letter (see Chapter 2, section 2.2.5.2).
If the control bar happens to be visible, the command invoked by the shortcut
also depresses the button. In a sense, then, the button is accessed by cTRL+let­
ter. This behavior is acceptable; it is not necessary to add ALT+mnemonic as an
additional access method.

Toolboxes are primarily a mouse-oriented feature, so keyboard access to toolboxes
is not crucial and need not be implemented. For advanced users, however, key­
board access can be useful. Experienced graphics designers use a two-handed
mouselkeyboard technique for operating the tools without interruption: the left
hand presses keys to switch between tools while the right hand remains on the
mouse to use the current tool. For example, the right hand draws a rectangle with
the rectangle tool, the left hand presses a key to switch to the paint bucket tool,
and the right hand fills the rectangle. Keyboard access to toolboxes can also be
used to facilitate automated software testing.

The following methods are recommended for applications that choose to
implement keyboard access to toolboxes:

• If the user will not typically access tools when the focus is in a text field, assign
single-letter mnemonics to tools (for example, T for a text tool, R for a rectangle
tool). Pressing the letter chooses the corresponding tool and depresses its
button. The focus need not be in the toolbox when the letter is pressed. This
method provides the most rapid access.

• If the user will need to access tools when the focus is in a text field, use
CTRL+letter mnemonics instead of unmodified letters.

34 An Application Design Guide

• The preceding methods provide rapid, direct access to tools, but they are some­
what obscure, because the mnemonic letters are not visible anywhere and so
must be memorized. The following method provides a more standard way of
accessing tools through the keyboard; it requires knowledge of standard
Windows techniques for switching between non-document windows or
between panes:

• If the toolbox is a separate palette window, use the standard method of
switching between non-document windows (ALT+P6) to activate the window.

• If the toolbox is a pane (or a fixed child window) within the main application
window (for example, as in Windows Paintbrush), use the standard method
of switching between panes (P6 or SHIFT +P6) to move the focus to the pane.
(TAB may also be used, as in the File Manager.)

• Once the toolbox is active, use the arrow keys to choose a tool. When the
arrow keys are used to move from one tool button to another, the new button
is depressed and the old button returns to the up position.

3.4 Transfer Interface
The current interface for transferring objects and data from one location to another
relies on a combination of techniques, such as direct manipulation (see the next
section) and Edit menu commands (for example, Cut, Copy, Paste, and Paste Link;
see Chapter 5, section 5.4.3, and Chapter 9, section 9.3.2).

3.5 Direct Manipulation
Direct manipulation is frequently used for moving an object from one location to
another: The object is dragged with the mouse and dropped into the new location.
For example, some file management programs use drag-and-drop to move files be­
tween directories on the same disk. Similarly, many word-processing applications
use drag-and-drop to move tab stops on rulers.

Drag-and-drop can also be interpreted as a Copy or Link operation, if the context
makes those operations more appropriate than a Move. For example, in the File
Manager, dragging a file icon to a directory on a different disk causes the file to be
copied rather than moved. Dropping a file icon from the File Manager into the
Program Manager creates a link in the Program Manager. When more than one
interpretation of drag-and-drop is possible for a given context, the application
should provide a way to override the default interpretation by using modifier keys
in conjunction with dragging.

General Techniques 35

In some cases, drag-and-drop is interpreted as "use the drop target to process
(for example, open or print) the thing that was dropped." For example, dropping a
document icon on the minimized Print Manager means "print the document.,,7 In
the File Manager, dropping a document icon on the associated application icon
means "open the document for editing within the application." Dropping a docu­
ment icon onto any non-document area of an open application window-for ex­
ample, onto the title bar, menu bar, status bar, application workspace in a
multiple-document interface (MDI) application, and so on-has the same mean­
ing. Suppose, however, that the document icon is dropped into the document area
of an open application window (for example, the text area of a mail memo or the
drawing area of a paint program); in other words, the document icon is dropped
into an open document. In this case, if the open document supports object embed­
ding (see Chapter 9), the dropped document is copied (embedded) into the open
document and displayed as an icon.8

Direct manipulation is particularly useful in pen-based systems, because manipula­
tion of objects with the pen is even more direct than manipulation with the mouse.
For a discussion of direct manipulation in pen applications, see Chapter 10,
section 10.2.1.2.

7 This feature is new in Windows version 3.l.

8 What actually happens is that the file represented by the document is encapsulated in a "package"; this
package is then embedded into the open document. To the user, however, the iconic document simply
appears to have been embedded into the open document. For more information on packages, see Chapter 9.

36 An Application Design Guide

Table 3.5 summarizes current recommendations for drag-and-drop operations with
unmodified mouse button 1, originating in Windows version 3.1 File Manager.

Table 3.5 Unmodified Button 1 Drag/Drop Operations Originating in the File Manager

Dragged Object

Document icon
(representing, for
example, a text
document,
spreadsheet, or
drawing)

Any file icon
(representing, for
example, a
document or
application)

Drop Target

Open document

Non-document area of open application
window (for example, title bar, menu bar,
status bar, MDI application workspace)

Print Manager

Application icon in File Manager

Program Manager group window (open or
closed)

Result

If target document supports embedding,
embed dropped document and display it
as an icon. Otherwise do nothing.

If dropped document is readable by
application, open document within
application window.

Print document:

1. Launch associated application and bring
window to top.

2. Load file.

3. Display dialog if Print command within
application would normally lead to
dialog; user can change settings if
necessary.

4. If user presses Cancel, close application
immediately without printing; if user
presses OK, print file and then close
application.

Start application, using dropped
document as initial file. For example, if
text document is dropped on word­
processing application, open document
for editing.

Create program item in Program Manager
that points to the file.

General Techniques 37

3.5.1 Differentiating Selection from Direct Manipulation
There are a variety of techniques for differentiating selection of an object from
direct (drag) manipulation. It is difficult to come up with universal conventions
that can be applied to all types of selected objects. In addition, it is common prac­
tice to use the left mouse button (button 1) to do this. This means that selection
and drag manipulation may overlap. To distinguish these operations, it is recom­
mended that a drag handle appropriate to the object be displayed when the object
is selected. This can be a frame around the object or on the object. In many cases,
it can simply be the object itself (for example, in icons). Some form of visual feed­
back (that is, a change in the pointer or in the object) should be provided on the
button-down transition as a clue to the user that the operation will not result in
selection, but instead in some form of direct manipulation. This visual feedback
should be maintained during the operation, until the button-up (release) transition.9

Objects are not limited to displaying their drag manipulation handles when
selected; it depends on the object. For example, window title bars and size borders
act as manipulation handles that are always present. However, for many objects in
context, the drag handle should only be displayed when the object is selected to
avoid visual clutter.

3.6 Providing Feedback
Applications should keep the user informed about the current state of the applica­
tion by providing feedback. Feedback can inform the user that a particular mode
has been entered, acknowledge a command, point out an error, track the progress
of an operation, and so on. Visual (either graphical or textual) feedback is the most
common, but auditory feedback is also useful.

3.6.1 Visual Feedback
The user interface is primarily visual, therefore visual feedback is particularly
effective. This type of feedback can consist of graphics, text, or both.

3.6.1.1 Graphical Feedback
Many of the interface techniques discussed previously in this chapter involve
graphical feedback. Text selection, for example, is confirmed by the appearance of
a highlight color; shifts of the focus are shown by movements of a dotted box,
selection highlight, or insertion point. Another useful type of graphical feedback
involves changing the pointer to reflect the current state of the application.

9 This does not preclude changing the pointer further during the operation, if the nature of the destination or
pressing a modifier key might change the operation while the button is down.

38 An Application Design Guide

3.6.1.1.1 Pointers The mouse is linked with a graphic on the screen called the
pointer. By positioning the pointer and clicking the buttons on the mouse, the user
selects data, icons, commands, and controls to initiate and complete actions. The
shape of the pointer changes according to the current action or the current pointer
position on the screen. Applications should use only as many pointer shapes as
needed to inform the user about current status and position; too many shapes can
confuse users.

Tables 3.6 through 3.9 list the suggested pointer shapes and their uses. Applica­
tions may supplement these pointers with modifier keys or add visual effects, such
as animation. Animation is an effective technique for drawing the user's attention
and conveying information, but should be used with caution. Remember that the
main function of a pointer is to communicate information, so the movement of the
pointer should not be distracting.

Table 3.6 Suggested Selection Pointers

Shape Screen Location Selects ...

ht Over items or controls Items and controls*

t1 Left margin of document or cell Lines, rows, cells

I (I-beam)
Text Insertion point or characters

... Top of table column Column

* Also used for resizing and moving objects; see Tables 3.7 and 3.8.

Table 3.7 Suggested Pointers for Resizing

Shape Screen Location Resizes ...

ht On resize handles Graphics *

+++ Along column gridlines Column width

+ Along row headings Row height

~ Top or bottom window border Window vertically

<X> Left or right window border Window horizontally

t? Lower left or upper right Window diagonally
window border

C}j Upper left or lower right Window diagonally
window border

* Also used for selecting and moving objects; see Tables 3.6 and 3.8.

General Techniques 39

Table 3.8 Suggested Movement Pointers

Shape Screen Location Movement

~ On item Unconstrained *

t On item Vertical

...... On item Horizontal

+ On item Vertical or horizontal

* Also used for selecting and resizing objects; see Tables 3.6 and 3.7.

Table 3.9 Other Suggested Pointers

Shape Screen Location Use

Z Anywhere Indicates that a lengthy
operation is in progress

~ Any region or control Click activates associated help

Q Inside window Zooms

<@> Inside window Indicates that direction keys will
move or resize window

CS» An object that can't have other Indicates that dropping is not
objects dropped on it allowed*

.i. Split box in vertical scroll bar Splits window horizontally
~~ Split box in horizontal scroll bar Splits window vertically

* Typically, the pointer does not change over valid drop targets (unless the nature of the operation changes).
For additional infonnation, see section 3.6.1.1.2.

3.6.1.1.2 Feedback for Drag-and-Drop Operations For drag-and-drop opera­
tions, applications should provide the following types of visual feedback:

• As the pointer moves, the object, its outline, or some reasonable representation
should move along with the pointer.

• The user should get feedback, if possible, over the target area. For example,
possible destination locations can be highlighted or otherwise emphasized as
the object is dragged over them.

• The pointer should change to the shape shown in Table 3.9 over invalid drop
targets.

40 An Application Design Guide

• As an optional but recommended extension, the pointer can be changed during
the drag operation to reflect the operation (for example, Move, Copy, or Link)
that will result if the object is dropped in the current location.

3.6.1.1.3 Progress Indicators When an operation that takes more than two or
three seconds is in progress and the user cannot continue working in that appli­
cation until the operation finishes, the application should display the hourglass
pointer over the inaccessible window to indicate that the user must wait. If the user
moves the mouse pointer to a second, accessible window, the normal pointer for
that window should appear. If possible, the first application should let the user
access the system or work in another application.

If an operation takes longer than five seconds and prevents access to the window
during that time, the application should display a progress indicator in addition to
the hourglass pointer. 10 Progress indicators reassure the user that the program is
working on the task and indicate how much of the job has been completed. A pro­
gress indicator must be dynamic (applications should not use static messages or
pictures) and the feedback from the progress indicator must be unmistakable and
obvious.

The best progress indicators are graphical. For example, progress can be repre­
sented by a long rectangular bar that is initially empty but is gradually filled with
color from left to right as the operation proceeds (see Figure 3.7). Animated
cursors can also be used as graphical progress indicators.

- Sample Application

Updating links .. _

70%
I ••••••••••••••••••••••

Figure 3.7 Graphical Progress Indicator

If graphical indicators take too long to update, percentage-complete messages can
be used as a supplement or replacement. If the extent of the task is not known in
advance, or a particular stage in the task takes a long time to complete (thereby
freezing the percentage), an elapsed-time message can be used instead of the
percentage-complete message. If the task is very long, applications may consider
breaking it down into subtasks and using progress indicators for each subtask.

lOUnless posting and updating the progress indicator takes longer than the process itself.

General Techniques 41

When possible, progress indicators should include a way of pausing and resuming
lengthy operations, in case the performance of the rest of the system is adversely
affected. The recommended way to provide pause/resume capability is through a
command button whose label alternates between Pause and Resume. If the nature
of a particular operation does not permit pause/resume functionality but does
allow an irreversible interruption of the operation, the progress indicator should
contain a command button labeled Cancel or Stop. The Cancel button interrupts
the operation and returns the application and data to its state before the operation
was invoked. If a return to that state is not possible, Stop should be used instead of
Cancel. The Stop button interrupts the operation but does not reverse any changes
that the operation has already caused.

3.6.1.1.4 Flashing for Attention An application can flash for attention when
it is inactive but needs to display a message dialog. If the application is a window,
it flashes its title bar. If it is minimized, it flashes its icon. When the user activates
the application, the message dialog is displayed. The flash rate should be based on
the cursor blink rate (which can be adjusted by the user through the Control Panel).

The flashing technique has two advantages. First, it preserves the user's control
over the work flow by allowing the response to the message to be postponed. Sec­
ond, by preventing the sudden display of the message dialog while the user is typ­
ing, this technique ensures that the dialog is not accidentally closed by keypresses
stored in the type-ahead buffer.

As an additional warning mechanism, the flash is accompanied by one or two
beepsY This audible warning also allows applications to attract the user's
attention when their title bars or icons are not visible.

3.6.1.2 Textual Feedback
Graphical feedback can be highly effective and can enhance the visual appeal of
applications, but sometimes it is not precise enough to convey details. In such
cases applications should provide textual feedback in the form of brief messages.
Such messages are usually provided in the message bar or status bar at the bottom
of the screen (if provided; see Chapter 4, sections 4.2.6 and 4.2.7) or in modal
dialog boxes called message dialogs (see Chapter 7, section 7.1.4).

Application designers should observe the following guidelines when writing
message text:

• State the information, problem, or error clearly. Avoid technical descriptions or
explanations, and use straightforward, easily understood terminology.

• Limit the message to two or three lines. Status bar messages should not exceed
one line.

llNote that the warning beep can be turned off by the user.

42 An Application Design Guide

• If possible, suggest a remedy for error situations. For example, if the user enters
a measurement that is too large, the error message should not only say "Mea­
surement is too large" but should also ask the user to enter a number within a
specified range (for example, "Please enter a number between 1 and 10").

• Avoid phrasing that blames the user or implies user error. For example, use
"Cannot find <file name>" instead of "File name error. " Avoid the word
"error" altogether.

• Use "Cannot" instead of "Can not" or "Can't."

• Use "Not enough to " (for example, "Not enough space on
drive C: to save file SAMPLE.TXT") instead of messages such as "Disk is full,
save not completed," "Insufficient memory," or "Low on memory."

• Do not use colons in a message. For example, use "Cannot read <file name>"
instead of "Cannot read: <file name>."

• If a message is accompanied by a message number, place the number at the end
of the message text.

• Left-align multiple-line messages.

3.6.2 Auditory Feedback
The most common auditory feedback is the system beep, which can alert the user
to minor and obvious errors (for example, invalid keypresses or mouse clicks). For
example, if the user scrolls to the top of the data and clicks the up scroll arrow or
presses the UP ARROW key, the system can beep instead of displaying a message.
The beep can also be used with other forms of notification, such as flashing
(discussed in section 3.6.1.1.4) or message dialogs.

System beeps should be used sparingly for the following reasons. First, many
users (as well as non-users within hearing distance of the computer) find beeps
annoying. Second, frequent use of the system beep jades the user to its sound.
Third, beeps are ephemeral messages that leave no trace. If the user is momentarily
away from the computer or if working conditions prevent the user from hearing
the beep when it occurs, the beep will fail to convey its message. Finally, the user
can tum the warning beep off, so it is not a reliable source of feedback.

General Techniques 43

3.7 Editing Text
Applications should implement the following text-editing actions to let users edit
text in windows and dialog boxes:

• When text is being inserted with only an insertion point, the insertion point
moves one character to the right for each character the user types, and new char­
acters appear to the left of the insertion point.

• With any selection, inserting text (by typing or by using the Paste command) re­
moves the selected text and reduces the selection to an insertion point. The in­
sertion point then acts as described above. The deleted text does not go into the
clipboard.

• With any selection, deleting text (by means of BACKSPACE, DEL, or Cut) re­
moves the selected text. The Cut command and its shortcut (CTRL+X) put the de­
leted text on the clipboard; the BACKSPACE and DEL keys do not.

• When the selection is only an insertion point, BACKSPACE deletes the character
to the left and moves the insertion point to the left. The deleted character does
not go onto the clipboard.

• When the selection is only an insertion point, DEL deletes the character to the
right of the insertion point, which does not move. The text to the right of the
insertion point moves to the left to fill the place of the deleted character. The de­
leted character does not go onto the clipboard.

• Whenever text is deleted, close the gap. (This operation is sometimes called
"auto-joining. ")

• The following behavior is suggested when the user selects one or more words
by double-clicking or double-dragging: If there is a space after the last word in
the selection, the space is also selected. If the user then deletes the selection, the
fate of this trailing space depends on how the selection was deleted.

• If the user deleted the selection by using BACKSPACE, DEL, or Cut, the trailing
space is also deleted. As a result, the words before and after the deleted selec­
tion are separated by one space instead of two. In most cases, this result is
precisely what the user wants.

• If the user deleted the selection by typing one or more new words, the trail­
ing space is not deleted. Instead, it is retained to separate the last new word
from the first word following the selection. Otherwise, the user would have
to reinsert the space so that the two words do not run together.

• As an acceptable extension to the basic text-editing model, applications can
implement a user-selectable mode that provides nondestructive typing and back­
spacing when text is selected.

44 An Application Design Guide

3.8 Moving Objects
Objects are moved by clicking and dragging either within their filled area or on
their border with mouse button 1. Users should not be required to click on other re­
gions (for example, special borders or handles) to move objects.

3.9 Text Frames
Text frames are sizable fields into which the user can type text (see Figure 3.8).12
They are generally rectangular, but other shapes may also be used. When the user
resizes the text frame, the text is rewrapped to fit within the new borders of the
frame.

Figure 3.8 Text Frame

The pointer appears as an arrow over an unselected text frame; the user can click
to select the frame. A selected frame has resize handles. While the frame is
selected, the pointer changes to an I-beam over the text, to an arrow over the
border, and to a resize pointer over a resize handle. These selection rules follow
the general principle for hierarchical selection of objects and their contents: The
first click selects the container, and the second click selects its contents.

When the pointer is an I-beam, the user can follow standard text selection tech­
niques to select the text within the frame. Formatting commands apply whenever
the text frame or the text within it is selected. If the user selects text from the
frame, then moves the pointer over the border of the frame, the pointer changes
back to an arrow to allow the frame to be selected.

12 A text frame is a dynamic fonn of an edit field and should not be confused with the text box discussed in
Chapter 6, section 6.4.

General Techniques 45

The user can move a text frame by dragging its border. If the frame is not cur­
rently selected, the user can also move the frame by clicking and dragging within
it.

The Cut command, the Copy command, and the DEL key apply to the text frame as
a whole if the frame is selected but does not contain a selection or an insertion
point. If text is selected within the frame, the commands apply to the text. If there
is no selection but there is an insertion point, Cut and Copy are dimmed, and DEL

deletes the character after the insertion point.

When a text frame contains selected text or an insertion point, its resize handles
are not displayed. Clicking in the empty space below the text places an insertion
point at the end of the text.

Windows

Chapter 4

4.1 Screen Window Types ... 49
4.1.1 Application Windows ... 49
4.1.2 Document Windows (MDI) .. 50
4.1.3 Launching Files Associated with MDI Applications 53
4.1.4 "Always on Top" Windows .. 54

4.2 Screen Window Components ... 55
4.2.1 Window Frame ... 55
4.2.2 Title Bar .. 56
4.2.3 Menu Bar .. 57
4.2.4 Scroll Bars ... 58
4.2.5 Split Box and Split Bar ... 59
4.2.6 Message Bar .. 60
4.2.7 Status Bar .. 61
4.2.8 Control Bars: Ribbons, Rulers, Toolboxes, and Palettes 63

4.3 Window Operations .. 64
4.3.1 Moving Windows ... 64
4.3.2 Resizing Windows .. 65
4.3.3 Closing Windows .. 65
4.3.4 Splitting Windows into Panes .. 65
4.3.5 Switching Windows and Panes .. 65
4.3.6 Scrolling Data in Windows and Panes ... 68

Windows 49

Windows are the fundamental interface objects through which data, commands,
and controls are organized and presented to the user.

4.1 Screen Window Types
There are three types of screen windows: application windows, document
windows, and dialog boxes.!

4.1.1 Application Windows
Application windows are movable and sizable, and they constitute the fundamen­
tal visual framework for data and commands in an application. Virtually all
activity in an application takes place within the application window, with three
exceptions:

• If the application window has been resized so that one of its dialogs or menu
drop-downs will not fit inside it, the dialog or menu drop-down may appear
partially outside the window.

• Movable dialogs may be moved outside the application window.

• The Help window is actually an independent application window and may be
moved outside the primary application window.

Figure 4.1 shows an example of an application window. Application windows
should always include a sizable frame and a title bar that contains at least the title
of the application, a Control-menu box, and Minimize and Restore (or Maximize)
buttons. Application windows may also include some or all of the other com­
ponents discussed in section 4.2.

Figure 4.1 Application Window

1 Dialog boxes are different in many ways from other types of windows and will be discussed separately in
Chapter 7. Toolboxes and palettes are examples of control bars and may appear in any type of window.
These are discussed in section 4.2.8.

50 An Application Design Guide

If an application that works with documents operates only on a single view of a
single document at any given time, the document is displayed in the application
window, and the document title is displayed in the title bar after the application
title, separated from it by a hyphen (for example, "Write - REPORT.WRI").
Applications that allow users to open multiple views or multiple documents simul­
taneously can display the different views or documents in document windows,
using the multiple document interface (MDI) instead of the single document
interface (SDI).

4.1.2 Document Windows (MOl)
The multiple document interface (MDI) allows an application to manage multiple
documents, or multiple views of the same document, within the main application
window (also known as the "workspace"). These views or documents are dis­
played in separate windows called "document windows." Document windows may
also be referred to by names that describe the contents of the windows more
specifically, such as "group windows" (in the Windows Program Manager),
"directory windows" (in the Windows File Manager), or "worksheet windows,"
"chart windows," and "macro windows." Figure 4.2 illustrates an MDI applica­
tion, the Windows Program Manager, in which two group windows, Main and
Accessories, are open.

:~ Program Manager aa

File Manager

Print Manager Clipboard Notepad
Viewer

:
Recorder

II
Object

Packager

Figure 4.2 MDI: Windows Program Manager with Two Group
Windows Open

Windows 51

4.1.2.1 Characteristics of Document Windows
A document window can be manipulated in the same way as the application win­
dow. Because document windows are movable and sizable, they have a title bar
and a sizable window frame. All document windows must appear within the
borders of the application window. If the user reduces the size of the application
window so that it is smaller than a document window, the document window
should be clipped.

A document window title bar should contain a caption that displays the name of
the document in the window, a Control-menu box, and a Maximize button. Option­
ally, applications can allow document windows to be minimized; in this case, a
Minimize button should appear on the title bar of the document window, to the left
of the Maximize button (see Figure 4.2). Minimized windows are represented as
icons. Applications should define a particular space within the application window
(typically at the bottom) where the icons are placed by default, even ifthe user is
allowed to move the icons elsewhere within the application window.

The Control menu for a document window parallels the Control menu for the
application window. The document window Control menu can be accessed from
the keyboard by typing ALT,HYPHEN (or ALT+HYPHEN). The document's Control
menu can also be accessed through arrow keys, like other menus. Control menus
are discussed further in Chapter 5, section 5.4.1.

If an MDI application has a menu bar, it should appear within the application win­
dow, along with any application controls (such as ribbons or toolboxes) that apply
to all document windows. Placing these controls in the application window makes
them available to all document windows. Scroll bars, however, are not shared
among document windows; each document window should have its own scroll
bar. The application window has a scroll bar if icons representing minimized docu­
ment windows are hidden below the bottom of the application window, or if the
application window contains a maximized document window that requires scrol­
ling. The title bar of the application window should identify the application name
but not the current document name, unless that document window is maximized.

4.1.2.2 Maximizing Document Windows
The multiple document interface allows the user to maximize the current docu­
ment window to increase the amount of data that can be viewed. Maximization has
the following effects, which are illustrated in Figure 4.3:

• The data from the document window is displayed in the application window.

• The document window and all associated controls disappear, except for the
document window Control-menu box, which is displayed to the left of the first
menu in the application window menu bar.

52 An Application Design Guide

• The document title is placed in the application window title bar after the appli­
cation name, separated from it by a hyphen (exactly as in an SOl application).

• A Restore button for the document window is added at the extreme right of the
menu bar.

I " Ii II ~ ,<, ,;

III'E'I;P@· Control Panel Print Manager Clipboard MS-DOS PIF Editor
Viewer Prompt

.. ~ [I]
Windows

Setup Read Me System Editor

Figure 4.3 MDI: Windows Program Manager with Maximized
Group Window

If the user maximizes one document window and then switches to another, the sec­
ond window should also be maximized. Similarly, restoring one document
window should restore the others to their pre-maximized sizes and locations.

4.1.2.3 Saving Window Configurations
If the user switches from an MOl application to another application (leaving the
first application running) and then switches back, the arrangement of all document
windows should be preserved, and the window that was active before the switch
should be reactivated. If the user restarts an MOl application after exiting it, the
application should provide a way to restore the workspace to its previous config­
uration, with all document windows arranged exactly as before. If the application
cannot automatically preserve the information for restoring the previous configura­
tion, a "Save Workspace" command may be added to the File menu. (This com­
mand generally follows the conventions ofthe Save command.) The user opens
this file after restarting the application to restore the previous configuration. If the
user opens other document windows before restoring the configuration, the new
windows should be left open when the configuration is restored.

Windows 53

4.1.3 Launching Files Associated with MDI Applications
Suppose that one instance of an MDI application is running, and the user opens a
file associated with the application by one of the following methods: by double­
clicking an icon in the File Manager or Program Manager; by using the File Open
command in the File Manager or Program Manager; or by dragging the file icon
onto the application icon in the File Manager. In these cases, should a new in­
stance of the MDI application be started, or should the file be loaded into a new
document window within the existing instance?

Plausible scenarios favor each alternative. For example, if the user double-clicks
on one file and then on another one immediately afterward, it is likely that he or
she wants to load both files into the same MDI window. On the other hand, sup­
pose that the user left the MDI application running earlier in the day with several
files loaded into it. If the user later double-clicks on another file associated with
the same application, it is not at all clear that he or she wants the new file loaded
into the old instance; the new file may be part of a completely unrelated task.

Worse yet, suppose that the MDI application is a spreadsheet and that the newly
opened file is an autoexecute macro that will operate on any other files that happen
to be in the same MDI workspace. If the newly opened macro file were loaded
into a spreadsheet window left over from some previous unrelated task, the results
could be disastrous. Workspace configuration files are another type of file that the
user almost certainly would not want to open inside an existing MDI window.

The cases mentioned so far-leftover unrelated instances, autoexecute files, and
workspace configuration files-all argue that files opened from the Program
Manager or the File Manager should be opened within new rather than existing
instances of the application. An additional argument for the new-instance behavior
is that all SDI applications already behave that way because they have no other
alternative. Furthermore, the new-instance behavior is more consistent with the
probable future movement away from an application-oriented window grouping
model and toward a task-oriented model. Finally, the user who wants to open mul­
tiple files within the same MDI window can always do so by using the File Open
command within the MDI window (rather than within the File Manager or the
Program Manager). Because this method is available from the MDI application, it
is not as important to provide same-instance functionality from the File Manager
or from the Program Manager.

54 An Application Design Guide

For these reasons, it is suggested that files opened from the File Manager or the
Program Manager start a new instance of the associated application, except in the
following cases:2

• File already open: If the file is already open, its window should be surfaced. If
the file is already open inside an MDI application that contains several open
document windows, its window should be brought to the front.

• Memory problems: If the file is associated with an MDI application that does
not use memory efficiently when multiple instances are running, the application
should make an intelligent decision about what to do. For example, the applica­
tion could check available memory to see whether running one more instance
would be likely to cause problems. If so, the application could display a warn­
ing and, if possible, offer the user a choice between starting a new instance or
loading the file into an existing instance.

4.1.4 "Always on Top" Windows
Windows version 3.1 includes support for creating windows that remain on top of
other windows.3 This feature is useful for keeping control bar (palette) windows or
modeless dialogs on top ofthe windows that they modify. However, the facility
must be used carefully because these windows also sit on top of other application
windows. Therefore, an application that uses this feature should change this attri­
bute or hide supplemental windows when the main application window is inactive
(or minimized).

It is suggested that windows that always exist on top of others be given a gray
shadow (along the right and bottom edges) to visually distinguish them from other
windows.

If the "always on top" feature is used on the main window of an application, the
user should be allowed to change the attribute so that the window will not always
float on top of other application windows. It is recommended that such applica­
tions include an "Always on Top" entry in the window's Control menu. Selecting
this option should place a check mark next to the menu item and should set the
attribute for the window. Selecting it again should remove the check mark and
reset the window to overlap with other windows.

2 One additional case will not be supported in Windows version 3.1, but is likely to be supported in future re­
leases: Suppose that the file is part of a multiple selection in the File Manager. Any files in the selection
that are associated with the same MOl application should be opened within the same MOl window, with
each file in a separate document window. This behavior will provide a quick way to open a group of
related files within the same window, without using the File Open command inside the MOl application.

3 This feature should be used carefully because it is not explicity supported in Windows versions p~or to 3.1.

Windows 55

4.2 Screen Window Components
All windows should include a frame, a title bar4, and a control-menu box. In addi­
tion, windows may include some or all of the following components: menu bar,
scroll bar, message bar, status bar, and control bars. Some ofthese components are
illustrated in Figure 4.4.

Menu Bar Title Bar

Scroll Box Status Bar Scroll Bar Window Frame

Figure 4.4 Screen Window Components

4.2.1 Window Frame
All windows have frames, except when they are maximized and fill the entire
screen.s The frame defines the window boundary and distinguishes each window
from others that it overlaps.

The frames of dialog windows are not sizable. The frame of a modal dialog is a
one-pixel-thick line (default color black), inside which is a thicker border that
shares the color of the title bar (default color blue). The frame of a modeless
dialog is a single-pixel black line without an inner border. This difference in
frames provides a visual cue for determining whether a dialog box is modal or

4 Modal dialog windows in many current applications do not include title bars, but it is recommended that
title bars be added to all dialogs. The title bar serves two purposes. First, it clarifies the purpose of the
dialog by including the name of the command that invoked the dialog. Second, the title bar allows the user
to move the dialog to reveal data obscured by the dialog. Adding a title bar to a dialog requires only trivial
changes to program code.

S When the window is maximized to fill the entire screen, its frame is coextensive with the screen edge.

56 An Application Design Guide

4.2.2 Title Bar

modeless; the distinction was previously provided by the presence or absence of a
title bar (see footnote 4). For more information on types of dialog boxes, see
Chapter 7, section 7.1.

Most other windows have sizable frames that consist of parallel one-pixel-thick
lines inside of which is a thicker border. (Colors and border thickness are based on
the settings in the Windows Control Panel.) When the pointer is moved over the
border, it changes into the appropriate resizing pointer (see Chapter 3, Table 3.7).
The user can then drag the frame with the mouse to resize the window. During the
drag operation, a gray "ghost" frame moves under the pointer; when the mouse
button is released, the window is redrawn at the new size. Dragging on the corners
resizes the window horizontally and vertically at the same time; dragging on the
horizontal parts of the frame resizes the window vertically, and dragging on the
vertical parts of the frame resizes the window horizontally.

As shown in Figure 4.4, a title bar can contain a title, a Control-menu box (also
known as a System-menu box), a Minimize button, and a Maximize button (if the
window is not maximized) or a Restore button (if the window is currently maxi­
mized) . If the window is not maximized, the user can drag the title bar with the
mouse to move the window to a new position. During the drag operation, a gray
"ghost" window frame moves under the pointer; after the mouse button is re­
leased, the window is redrawn at the new location.

4.2.2.1 Title
The title is a unique label that identifies the application window. This identifica­
tion is especially important when the user is working with multiple applications.
At a minimum, the title should contain the name of the application with the first
letter capitalized (for example, "Write"). The title may also contain additional text.
For example, if the application operates on data files, the application name should
be followed by a hyphen and the current file name (in uppercase letters and includ­
ing any extension). The storage place for the file should not be included, because it
may be long and it can intimidate inexperienced users who have no use for the in­
formation.6 If no file is currently active, the title should contain a placeholder docu­
ment name, such as (Untitled), Documentn, Sheetn, Chartn, and so on, where n
indicates a number (as in "Document! "). The placeholder should be in mixed case
to provide a visual cue that it is not an official file name.

6 Users can obtain this information from the Save As dialog box.

4.2.3 Menu Bar

Windows 57

If a dialog box is displayed as the direct result of a command, its title should
match the command name, unless the command name does not contain enough
information. For example, in the Windows Write program, the dialog box pro­
duced by the File menu Open command is entitled Open, but the File menu Re­
paginate command is entitled Repaginate Document. If an intermediary message
dialog is displayed before the dialog box (for example, to warn the user to save
changes before executing the command), the application identifies itself in the title
of the message dialog.

4.2.2.2 Control Menu
The Control menu contains commands for manipulating--changing the size,
changing the position, and closing-the main window. These commands are de­
scribed in Chapter 5, section 5.4.1. The Control menu is primarily an aid for key­
board users; the mouse has direct access to the actions the commands perform, but
can also be used to select the commands from the Control menu. For example, the
mouse user can double-click the Control menu to close the application window, in­
stead of choosing the Close command from the Control menu.

4.2.2.3 Minimize, Maximize, and Restore Buttons
The Minimize, Maximize, and Restore buttons are graphical equivalents of the
corresponding commands on the Control menu. Clicking the Minimize button re­
duces the main window to its minimum size (usually an icon) and hides all as­
sociated windows, including floating palettes or toolboxes. Clicking the Maximize
button enlarges the main window to its maximum size; on many screens, the maxi­
mized main window fills the entire screen. When the user clicks the Maximize but­
ton or chooses the Maximize command from the Control menu, the Restore button
replaces the Maximize button. When the user clicks the Restore button or chooses
the Restore command, the Maximize button replaces the Restore button. Fixed­
size windows do not have Maximize buttons.

When a menu bar is used to provide access to commands in an application, it
should be placed directly under the title bar of the application window. Document
windows and dialogs do not generally have menu bars. The menu bar in the appli­
cation window contains the titles of the menus provided by the application. The
menus themselves contain items representing commands. Applications that sup­
port more than one document type may replace one menu bar with another accord­
ing to the type of document displayed in the active window. (For additional
information on menus, see Chapter 5, section 5.2.)

58 An Application Design Guide

4.2.4 Scroll Bars
Applications should provide scroll bars for all windows in which the size of the
data may exceed the size of the window. Scroll bars allow the user to move data
through a window with the mouse, thereby revealing previously hidden portions of
the data. A window can have vertical scroll bars, horizontal scroll bars, or both. If
the user would never scroll in either direction, the associated scroll bar can be
omitted. If a window with a scroll bar becomes inactive, the scroll bar should be
left intact.

Inactive scroll bars in lists are discussed in Chapter 6, section 6.3.1.1.

4.2.4.1 Scroll Arrows
Scroll arrows appear at each end of the scroll bar, pointing in opposite directions
away from the center of the scroll bar. The scroll arrows point in the direction that
the window "moves" over the data, as if the data is fixed. When the user clicks a
scroll arrow, the data in the window appears to move in the opposite direction of
the arrow by an appropriate amount (for example, one line for text applications
and one row or column for spreadsheets). When the window cannot be scrolled
any farther in one direction or the other, the associated scroll arrow should be
dimmed.

4.2.4.2 Scroll Box
The scroll box (also called the elevator, thumb, or slider) moves along the scroll
bar to represent how far the current view of the document is from the top (for verti­
cal scroll bars) or from the left edge (for horizontal scroll bars). For example, if
the current view is at the middle of the document, the scroll box in the vertical
scroll bar is in the middle ofthe scroll bar.7 This behavior ofthe scroll box makes
it a useful indicator for keyboard users as well as mouse users. The user can also
drag the scroll box along the scroll bar to move to a different view of the docu­
ment. If possible, the view should be updated continuously as the scroll box is
dragged. However, ifthe view cannot be updated continuously with sufficient
speed, it can be updated in a single jump at the end of the drag operation.

If documents in a particular application (for example, a spreadsheet) by default
have substantial but mostly unused length and width, the behavior of the scroll
box can be modified as follows: When the scroll box is dragged to the bottom of a
vertical scroll bar or to the right of a horizontal scroll bar, the document scrolls to
the end of the currently used portion of the document (that is, the portion contain­
ing data) rather than to the actual limit of the document. Pressing the scroll arrow
next to the scroll box continues the scrolling into the unused portion of the document.

7 As an optional extension to this model, applications may implement a proportional scroll box whose size in­
dicates what portion of the document is visible in the window.

Windows 59

4.2.4.3 Scroll Bar Shaft
Clicking inside a vertical scroll bar shaft scrolls the data forward by the height of
the window (if the click location is below the scroll box) or backward by the
height of the window (if the click location is above the scroll box). To help users
keep their place within a document, the new screen should preserve at least one
line of data from the old screen. In other words, if the data is scrolled forward, the
top line on the new screen should be the line that was at the bottom of the old
screen; if the data is scrolled backward, the bottom line on the new screen should
be the line that was at the top of the old screen. Similar recommendations apply to
horizontal scroll bars.

4.2.5 Split Box and Split Bar
Applications can allow the user to split the application window into two or more
separate viewing areas, called panes, as shown in Figure 4.5. For example, a user
can split a window and then examine two parts of a spreadsheet at the same time.
A split window can also display different views of the same data (for example,
text view and outline view). Applications can let the user split the window into as
many panes as is useful and practical. All panes, however, should be kept within
the window.

This window is split into two panes, with each pane showing a different part of
the document. In this e)(ample, the top pane shows the beginning of the
document and the bottom pane shows the end of the document which contains
a row ofX's.

document and the bottom pane shows the end of the document which contains
a row ofX's.

~

Figure 4.5 Application Window Split into Panes

For all splittable windows, applications should provide a split box. (For example,
this could be implemented as a solid box located at the top of the vertical scroll bar
and at the left end of the horizontal scroll bar beyond the tip of the scroll arrow.)
The user can drag the split box with the mouse to split the window into two sepa­
rate panes at the desired split position. Double-clicking on the split box is an op­
tional shortcut for splitting a window in the middle. Keyboard techniques for
splitting windows are discussed in section 4.3.4.

60 An Application Design Guide

Splitting the window sets up a split bar between the panes. The split bar is a
double line with a blank pixel between the lines. If the application allows only one
split in a single direction, the split box appears only at the end of the split bar
when the window is split. If the application allows multiple splits in a single direc­
tion, the split box appears at its original position, as well as at the end of each split
bar.

When the pointer is positioned over the split bar or the split box, it changes to the
split pointer (see Chapter 3, Table 3.9). After the window is split, the user can drag
anywhere on the split bar or the split box with the mouse to adjust the sizes of the
two panes proportionally. If the window is split both horizontally and vertically,
the user can adjust multiple panes at once by dragging the intersection of the split
bars. Dragging the split bar or box to either end of the workspace closes the pane
in the direction of the drag. For example, if the user drags the split bar or box to
the top of the window, the upper pane closes. Double-clicking on the split bar or
box is an optional shortcut for closing the pane.

Applications should establish a minimum height and width for each pane. For ex­
ample, the minimum height might be the amount needed to display the three parts
of a scroll bar-two scroll arrows and a scroll box. The minimum width might be
the amount needed to display the title bar controls and the shortest recognizable
part of the title.

When the user splits a window, the application should display scroll bars to scroll
each pane perpendicular to the direction of the split. For example, if the user splits
a window horizontally (one pane above the other), each pane should have its own
vertical scroll bar. The user can operate these scroll bars independently of each
other, in the same way as for a window that is not split. The panes should share a
single scroll bar in the direction parallel to the split border, unless users are likely
to require independent scrolling of the panes in this direction. For example, if the
split is horizontal, both panes should share one horizontal scroll bar (if any) that
appears at the bottom of the lower pane.

For additional information about scrolling in panes, see section 4.3.6.

4.2.6 Message Bar
The message bar is an optional component at the bottom of an active window that
lets an application request information from the user or display status information
about a selection, a command, or a process. The message bar is also a convenient
place to explain menu and control bar items as the user highlights each item (see
Figure 4.6) and to display help information. Messages longer than the message bar
should be displayed in message dialogs (see Chapter 7, section 7.1.4).

Windows 61

The standard placement of the message bar is at the bottom of the window, but
applications may allow users to select another location. The application may also
provide an option for suppressing the message bar, so this area should not be used
to present essential information or messages that require acknowledgment by the
user. 8

Message8ar

Figure 4.6 Message Bar

4.2.7 Status Bar
A more elaborate form of the message bar is the status bar (see Figure 4.7), an
optional window component that displays information about the current state of
the application.

In addition to brief messages, the status bar may include information such as the
current cursor location and any current keyboard-initiated modes for selection
(for example, Extend mode) and typing (for example, Overtype and Caps Lock).
The "normal" modes, such as Insert or non-Caps-Lock mode, are indicated in the
status bar by the absence of the indicator for the opposite mode.

8 These message bar options, if provided, should be available from the dialog or menu used for other viewing
options.

62 An Application Design Guide

;;:~ Sample Application ~ SAMPLE.TXT Iala
<=I file f.dit !:!.elp

Status Bar

Figure 4.7 Status Bar

Table 4.1 lists the mode indicators that can optionally be used on the status bar.
Applications can spell these out if there is enough room on the status bar. Addi­
tional keyboard modes can be indicated at the right end of the status bar, after the
spaces reserved for the more common modes.

Table 4.1 Suggested Mode Indicators for Use in Status Bars9

Mode Indicator

Extend Selection EXT

Caps Lock CAPS

NumLock NUM

Scroll Lock SCRL

Overtype OVR
Recording Macro REC

Note: The mode indicators are listed in the order in which they should appear (from left to right) on the
status bar.

Because the status bar takes up space that could be used to display data, applica­
tions should always provide a way for the user to control whether the status bar is
displayed. Applications that contain a View menu should include a Status Bar
toggle item on that menu. 10

9 Indicators that are not supported by the application can be omitted.

lCThe application should remember the display state for status bars, message bars, and control bars and
restore them the next time the application is invoked.

Windows 63

4.2.8 Control Bars: Ribbons, Rulers, Toolboxes, and Palettes
Applications may implement control bars to provide quick and convenient access
to frequently used choices and commands. In word-processing applications, rib­
bons and rulers are examples of control bars. In painting programs, toolboxes and
color/pattern palettes are sometimes implemented as control bars, although they
often appear as independent movable windows. Figures 4.8 and 4.9 show examples
of control bars.

Ribbon

Figure 4.8 Control Bars Ribbon

Figure 4.9 Control Bars: Toolbox and Color/Pattern Palette in Paintbrush

Control bars may occupy a fixed position within the application window, or they
may be placed in a supplemental window or a dialog box and thus become mova­
ble. A movable control bar is always in front of the window to which it applies
(see section 4.1.4). Thus, a control bar is never hidden by its associated parent
window, although it may be hidden by one of its peers.

64 An Application Design Guide

Movable control bars should include a miniature title bar and a Control-menu box.
The title bar need not contain a title; its main purpose is to allow the mouse user to
drag the control bar to a new location. The Control menu should contain the Move
command to allow keyboard users to move the control bar. In addition, the Control
menu may also include the Close command. Control menus for control bars typi­
cally do not include the other commands (for example, Maximize) that are found
on Control menus for application or document windows (see Chapter 5, section
5.4.1).1 1

Like status bars, control bars take up space that could otherwise be used to display
data, so applications should provide commands to specify which control bars are
displayed. Commands for movable control bars should appear on the Window
menu; commands for fixed-position control bars that are part of the main applica­
tion window should appear on the View menu.

Mnemonic access to controls on control bars is discussed in Chapter 3, section 3.3.3.

4.3 Window Operations
Basic window operations include moving, resizing, and closing windows; splitting
windows into panes; switching between windows or panes; and scrolling data in
windows and panes. Mouse techniques for many of these operations rely on the
window components described previously and have already been discussed in the
sections devoted to those components. Keyboard techniques for many of these
operations rely on Control menu commands and are discussed in Chapter 5,
section 5.4.1. This section briefly summarizes all the major window techniques,
but focuses on those not covered elsewhere-namely mouse techniques that do
not involve specific window components and keyboard techniques that do not rely
on Control menu commands.

4.3.1 Moving Windows
To move a window with the mouse, the user drags the title bar of the window. To
move a window with the keyboard, the user chooses the Move command from the
Control menu. This causes a gray "ghost" window frame to appear on top of the
regular frame. The pointer changes to the window movement pointer (the last
pointer shown in Chapter 3, Table 3.8). The arrow keys can be used to move the
ghost frame to the desired location. Pressing ENTER completes the command and
redraws the window at the new location.

llSize can be included if the window is sizable.

Windows 65

4.3.2 Resizing Windows
Mouse techniques for resizing windows rely on direct manipulation of window
components (the window frame and the Minimize, Maximize, and Restore but­
tons) and have already been discussed in sections 4.2.1 and 4.2.2.3. Keyboard
techniques rely on the Control menu resizing commands: Minimize, Maximize,
Restore, and Size (see Chapter 5, section 5.4.1). These commands can also be
accessed with the mouse. 12

4.3.3 Closing Windows
To close a window with the mouse, the user can double-click on the Control-menu
box. Windows can also be closed by selecting the Close command from the
Control menu (see Chapter 5, section 5.4.1); this command can be selected with
the mouse or with the keyboard.

4.3.4 Splitting Windows into Panes
The mouse user can split a window into panes by dragging the split bar to the
desired location, as described previously in section 4.2.5. The keyboard user can
split a window into panes by choosing the Split command from the View menu. 13

This results in a split bar being placed across the middle of the window, with a
split box at the right end, inside the scroll bar. Pressing arrow keys moves the split
bar up or down; pressing ENTER sets the split at the current position of the split bar.

4.3.5 Switching Windows and Panes
Either the mouse or the keyboard can be used to switch from one application win­
dow to another, from one child window to another child window within the same
application, or from one pane to another pane within the same window. The reacti­
vation of a window or pane does not affect any pre-existing selection there; the
selection and focus are restored to the state that existed when the window or pane
was last active.

12Some applications let users size windows by dragging the area at the intersection of the vertical and hori­
zontal scroll bars. This behavior is a carryover from Windows version 1.0 and is neither encouraged nor
supported in Windows version 3.1, particularly because this area is likely to be used for different purposes
in the future.

13For MDI applications, the Split command can also be placed on the document window's Control menu or
on the Window menu.

66 An Application Design Guide

4.3.5.1 Mouse Techniques tJ
• To switch from one window or pane to another, the user simply clicks on the

desired window or pane.

• To switch to an application window that has been minimized, the user double­
clicks on the icon; this reactivates the window and restores it to its previous size.

• To switch to an application window that is completely obscured by other win­
dows, the user can double-click on the screen background (outside any applica­
tion windows) to obtain a dialog that contains a list of running applications.
(The same dialog is available from the Switch To command on the Control
menu.) The user can activate the desired application by first clicking on its
name to select it, and then pressing a confirmation button in the dialog. Double­
clicking on the name of the application immediately activates the application
without requiring confirmation.

~
4.3.5.2 Keyboard Techniques liii
Users can also switch between application windows, window panes, and document
windows with the keyboard.

4.3.5.2.1 Switching Application Windows with the Keyboard Several key­
board techniques are available for switching between application windows (or
between icons that represent minimized application windows):

• CTRL+ESC (equivalent to the Switch To command on the Control menu) invokes
an explicit list of available applications.

• ALT+ESC and ALT+TAB (with or without SHIFT) treat the application windows as a
stack of cards. The visible window is at the top and is called the active window.
When a window becomes "active," it moves to the front of the stack. The key­
board user can manipulate the windows in the following ways:

• Move the front window to the back of the stack (AL T +ESC) or the back
window to the front (ALT+SHIFT+ESC).

• Shuffle through the windows from front to back (ALT+successive TABS), or
from back to front (ALT+SHIFT+successive TABS), and pick one to put at the
front of the stack.

Table 4.2 describes these window-switching techniques in detail.

Windows 67

Table 4.2 Keyboard Techniques for Switching Application Windows

Key

ALT+ESC

ALT +SHIFT +ESC

ALT+TAB

ALT +SHIFT + TAB

CTRL+ESC

Action

Moves top (active) application to bottom of stack, thereby
deactivating the application. The application that was second in
the stack is now on top. If its window was open, it is
automatically activated; if it was minimized, it can be opened
and activated by pressing ALT +SPACEBAR to display the Control
menu and choosing Restore.

Opposite of ALT +ESC: Moves bottom application to top of stack.
The application that was on top is now second and is
deactivated.

Shuffles one step from front to back through stack of windows,
displaying next application's name. Releasing ALT places
named window on top of the stack, thereby activating it; if the
window was minimized, it is restored to its previous size. All
other windows remain in their previous relative stack positions.

Opposite of ALT + TAB: Shuffles one step from back to front
through stack of windows, displaying next application's name.
Releasing ALT activates named window. All other windows
remain in their previous relative stack positions.

Invokes a dialog that allows the user to switch to any
application in a list of currently running applications.

4.3.5.2.2 Switching Window Panes with the Keyboard Switching between
panes follows either a clockwise or a counterclockwise rotation. Table 4.3 lists the
relevant techniques.

Table 4.3 Keyboard Techniques for Switching Panes

Key

F6

SHIFT+F6

Action

Moves clockwise to next pane of active window.

Moves counterclockwise to next pane of active window.

4.3.5.2.3 Switching Windows within an Application with the Keyboard
Switching between windows within an application is conceptually similar to
switching between panes. Consequently, the keyboard assignments for switching
windows are extensions of the keys that switch panes. Table 4.4 lists these key
assignments. Users can also choose a window from the numbered list provided in
the Windows menu (see Chapter 5, section 5.5.2.1) through standard keyboard
techniques.

68 An Application Design Guide

Table 4.4 Keyboard Techniques for Switching Windows Within an
Application

Key

ALT+F6

ALT +SHIFT +F6

CTRL+F6*

CTRL+SHIFT +F6*

* MDI applications only.

Action

Moves to the application's next open non-document window,
such as a mode less dialog box or movable control bar.

Same as ALT +F6, but moves through the non-document
windows in the reverse order.

Moves top document window to bottom of stack, thereby
activating the formerly second document window. (Analogous
to ALT+ESC for application windows.)

Reverse of CTRL+F6; moves bottom document window to top of
stack. (Analogous to ALT+SHIFT+ESC for application windows.)

4.3.6 Scrolling Data in Windows and Panes
When a window or pane is too small to display all the available data, the user must
be able to scroll the data to bring previously hidden portions into view.

4.3.6.1 Mouse Scrolling tj
The mouse can scroll data either explicitly or automatically.

4.3.6.1.1 Explicit Scrolling Mouse techniques for explicit scrolling rely on
scroll bars and have already been discussed in section 4.2.4. Table 4.5 lists these
techniques. Note that explicit scrolling with the mouse does not move the cursor
or change the selection.

Windows 69

Table 4.5 Mouse Techniques for Scrolling

Mouse Action

Click vertical scroll arrow

Click horizontal scroll arrow

Click scroll bar shaft
between scroll arrow and
scroll box

Drag scroll box to new
position in shaft

Effect

View moves over data in direction of arrow by height
of one data unit (for example, line of text or
spreadsheet cell). *
View moves over data in direction of arrow by width
of one data unit (for example, character or spreadsheet
cell). *
View moves over data in direction of arrow by size of
window. To help user maintain context orientation,
make old and new window contents overlap by at least
one data unit (for example, for forward scrolling,
display last line of old contents at top of new contents).

Move view to the location analogous to the location of
the scroll box within the shaft (for example, middle of
shaft represents middle of document). If performance
permits, view should be updated continuously as box
is dragged; otherwise, view can be changed in a single
jump after drag is complete.

* If the data unit is very small (for example, a pixel in a graphics program), applications may choose to
move the view by more than one unit, to make scrolling less tedious.

4.3.6.1.2 Automatic Scrolling The mouse scrolling techniques summarized
in Table 4.5 all have scrolling as their explicit goal. Users may also scroll data as a
secondary result of employing mouse techniques for object selection or object
movement. This type of scrolling is called automatic scrolling. For example, in
word-processing applications, if the user moves the pointer to the bottom bound­
ary of the window during text selection, the data is scrolled upward (or equiv­
alently, the view is moved downward) to allow the selection to be extended
downward. Similarly, in graphics applications, if the user drags an object to the
boundary of a window, the graphics document is automatically scrolled to let the
user place the object in a part of the document that was not previously visible.

70 An Application Design Guide

4.3.6.2 Keyboard Scrolling I.m. II1II II
The keyboard can also be used to scroll data through windows. An application can
provide three types of keyboard scrolling:

• Normal scrolling moves data through the window and also moves the cursor.

• Automatic scrolling moves data or text when the user presses a cursor key with
the cursor at the "boundary" of the visible data. (This type of scrolling is simi-
1ar to the automatic mouse scrolling described previously; the only difference is
that the cursor plays the role of the pointer.)

• Scroll Lock scrolling moves the data through the window without moving the
cursor.

4.3.6.2.1 Normal Scrolling For normal scrolling with the keyboard, the user
presses one of the navigation keys. These keys move the data through the window
and reposition the cursor within the visible data. The application is responsible for
establishing a new position for the cursor in the data when scrolling moves the cur­
rent cursor position outside the view of the data. If scrolling leaves the current cur­
sor position in view, the position need not change. The navigation keys are listed
in Chapter 2, Table 2.5.

4.3.6.2.2 Automatic Scrolling When the cursor reaches the "boundary" of the
visible data, pressing the arrow key that moves the cursor toward that boundary
scrolls the data by some reasonable amount-typically, the height or width of one
data unit. For example, if the user presses the down arrow key when the cursor is
in the last line of the window, the window scrolls by one line. If a data unit is very
small (for example, a single character in a line of text that is being scrolled hori­
zontally), the application may scroll the data by a larger amount.

Mouse and keyboard techniques for automatic scrolling can also be used for lists
and for text in text boxes.

4.3.6.2.3 Scroll Lock Scrolling Applications can also (optionally) implement
scrolling that is modified by the SCROLL LOCK key. When the user presses SCROLL

LOCK and then uses a navigation key, the data scrolls as described previously, but
the position of the cursor does not change and existing selections are preserved. In
Scroll Lock mode, scrolling with the keyboard is the equivalent of scrolling with
the mouse, which also does not change the cursor position and preserves existing
selections.

Windows 71

4.3.6.3 linked Scrolling in Panes
In most cases, scrolling data in panes is the same as scrolling data in windows. If
two panes have separate scroll bars for scrolling in a particular direction, scrolling
one pane has no effect on the other. If two panes share a scroll bar for a particular
direction, scrolling one pane scrolls the other by the same amount. In a few cases,
however, it is useful to provide special scrolling linkages between panes.

Suppose that the user splits a window into two panes and displays a different view
of the data in each pane. Scrolling the data in one pane should move the data in the
other by the same amount, but because different views result in different spacing
arrangements, this movement may not result in the same data being displayed in
the two panes. Instead, scrolling should move the data in different amounts, if nec­
essary, so that both panes display the same information. For example, in a word­
processing program with an outlining facility, suppose the user splits the window
into two panes and turns on outline view in the top pane. Scrolling the outline
view to the fifteenth outline heading in the document would also scroll the text
view to the fifteenth heading. The outline view would only need to scroll by a
small amount (through the headings) to reach the fifteenth heading, whereas the
text view would have to scroll through a larger amount (through the headings and
the text) to reach the fifteenth heading.

Grid-oriented applications, such as spreadsheets and databases, may provide a
special type of linked scrolling with a Freeze Panes command. Suppose that the
user has a large table of data with row and column headings. If the row headings
are placed in a pane at the left and the column headings are placed in a pane at the
top, the Freeze Panes command links the panes so that the headings are always
kept in view when the user scrolls the data within the table. For example, if the
user scrolls the data pane downward, the column headings do not move (that is,
they remain in view), but the row headings scroll down with the data. Similarly, if
the user scrolls the data pane to the right, the row headings do not move, but the
column headings scroll right with the data. Thus, the relevant row and column
headings for any part of the data always remain in view. The command also pre­
vents the data pane from being scrolled into the area shown in the heading panes.
When selected, the Freeze Panes menu item changes to Unfreeze Panes to allow
the command to be reversed.

Menus

Chapter 5

5.1 Types of Menus .. 75
5.1.1 Drop-DownMenus ... 75
5.1.2 Pop-Up Menus .. 76
5.1.3 Cascading Menus .. 78

5.2 Menu Components ... 79
5.2.1 Menu Titles ... 79
5.2.2 Menu Items ... 80

5.3 Menu Operations .. 84
5.3.1 Mouse Methods .. 84
5.3.2 Keyboard Methods .. 86

5.4 Standard Menus .. 88
5.4.1 Control Menu .. 88
5.4.2 File Menu .. 91
5.4.3 Edit Menu ... 93
5.4.4 Help Menu .. 95

5.5 Common Optional Menus .. 97
5.5.1 View Menu ... 97
5.5.2 Window Menu .. 97

Menus 75

A menu is a list of items from which the user can choose; each item represents a
command, either explicitly (for example, Cut) or implicitly (for example, Bold­
that is, "apply bold formatting"). All applications that have comma.,ds should
provide menus to give the user access to the commands.

5.1 Types of Menus
An application can implement three types of menus:

• Drop-down (also known as pull-down) menus on a menu bar.

• Pop-up (also known as contextual) menus.

• Cascading (also known as hierarchical) menus.

5.1.1 Drop-Down Menus
A drop-down menu is represented by a menu title (for example, File, Edit, Help)
that appears in the menu bar of an application window (see Figure 5.1).

Figure 5.1 Closed Drop-Down Menus in Menu Bar

To display the menu, the user can either click on the menu title, or press ALT fol­
lowed by the underlined mnemonic access character in the menu title. 1 Figure 5.2
shows an open drop-down menu. Drop-down menus are by far the most common
type of menus in current applications, but applications may also use pop-up menus
and cascading menus, as discussed in sections 5.1.2 and 5.1.3.

1 ALT + underlined mnemonic access character is also supported.

76 An Application Design Guide

Page 1 IJ".
Figure 5.2 Open Drop-Down Menu

5.1.2 Pop-Up Menus
Pop-up menus are floating menus that appear when specifically invoked by the
user. The items displayed on the menu depend on where the pointer was located
when the button was pressed; hence, pop-up menus are also called contextual
menus. For example, if the pointer was positioned over selected text, the menu
might include text-specific commands; if the pointer was on the title bar of a win­
dow, the menu might include commands for moving and resizing the window.

Pop-up menus provide an efficient way to access commands. Because they are pre­
sented at the pointer's location, they eliminate the need for the user to navigate to
a menu bar or control bar. Furthermore, pop-up menus are only displayed on
demand, so they do not take up dedicated screen space.

5.1.2.1 Appearance and Location
A pop-up menu follows the guidelines for standard drop-down menus discussed in
section 5.2, except that it does not have a title (see Figure 5.3).

This version of Write uses iiii._. 11 ...---------.
Text Properties ...

Figure 5.3 Pop-Up Menu

Move
Copy
Delete

Help

Menus 77

It is suggested that the pointer's hot spot be initially positioned close enough that
the user can move into the menu easily; but not so close that the pointer is posi­
tioned on an item, thus selecting a command on the menu inadvertently. If the
pointer is positioned in such a way that the menu would appear clipped or off­
screen, the menu is adjusted so that it appears fully on the screen.

Pop-up menus are primarily designed for mouse users. At the present time, there is
no defined keyboard interface, except for UP ARROW, DOWN ARROW, ENTER, and the
ESC key, which can be used to cancel a pop-up menu. Consequently, menu items
should not have mnemonic access letters or shortcut keys. For information on
accessing pop-up menus with the mouse, see section 5.3.1.1.2.

5.1.2.2 Additional Guidelines
• Pop-up menus are designed to provide an efficient method for accessing com­

mon, contextual commands. For this reason, a pop-up menu should not include
too many commands or multi-level cascading menus. Single-level cascading
menus are acceptable and should follow the guidelines in section 5.1.3.

• If the pointer is positioned over selected text that contains heterogeneous items
(for example, both text and graphics), at the minimum the pop-up menu should
provide the commands that represent the intersection of pop-up commands per­
taining to all items.

• Applications should not place individual property settings on pop-up menus.
Commands for bold, italic, font family, style, and size are better presented in
property dialogs or in special property viewers like control bars. (However, a
pop-up menu can contain commands that result in property setting dialogs.)

• Applications should use pop-up menus for frequently used commands and not
simply repeat the menu items from the menu bar. Pop-up menus may also in­
clude commands that logically apply to the limited context of the selected ob­
ject. For example, a pop-up menu for a text selection can include separate items
for a character properties dialog and a paragraph properties dialog, although
these would be better presented as different "pages" of a single text properties
dialog. Another example is Undo. This command may not apply to the particu­
lar selection, but to the domain to which that selection belongs.

78 An Application Design Guide

5.1.3 Cascading Menus
A cascading or hierarchical menu is a submenu (also known as a child menu) at­
tached to the right side of a menu item (called the parent item, in the parent menu).
Figure 5.4 illustrates a cascading menu. Menu items that lead to cascading menus
are marked with a right-pointing triangle after the menu item name. Cascading
menus can be added to drop-down menus, contextual menus, or even other cascad­
ing menus. In general, however, the use of multilayer cascading menus should be
avoided, because they compound the difficulties discussed in section 5.1.3.2 for
single-layer cascades. The user drops down a cascading menu by selecting the
parent menu item with any of the usual techniques for menu item selection.

;; Sample Application aa
= file .Edit F.!!rmat

fill 'iiii·. Show Markers Ctrl+ M II

Figure 5.4 Cascading Menu

5.1.3.1 Advantages of Cascading Menus
• The top-level (parent) menus are simplified, because some commands are

hidden in the cascading menu.

• More first-letter mnemonics are available. Mnemonics need only be unique
within either the parent menu or the cascading menu, so there are fewer first­
letter conflicts .

• High-level command browsing is easier. By dragging the mouse across the
menu bar, the user can see important commands or command groups without
being distracted by the details hidden in the submenus.

5.1.3.2 Disadvantages of Cascading Menus
• Access to submenu items is more difficult than access to top-level items.

• Dragging to a submenu item requires extra coordination to negotiate the
change in direction. .

• Accessing the submenu item by means of mouse clicks requires an extra
click and a change in mouse direction.

Menus 79

• Keyboard access requires an extra keypress.

• Exhaustive command browsing is more difficult; the user cannot see all menu
items by dragging the mouse across the menu bar.

Except for complex products with many commands, the disadvantages of cascad­
ing menus tend to outweigh the advantages. In general, cascading menus should
be avoided whenever possible. If they are used, they are most appropriate for ordi­
nary commands (for example, Insert Break -> Section), dialog box commands (for
example, File Print -> Preview), and interdependent (one-of-N) settings (for ex­
ample, Format Alignment -> Left). Cascading menus are less appropriate for inde­
pendent (M-of-N) settings (for example, Format Character -> Bold), especially if
users may want to choose more than one setting at a time (for example, Bold,
Italic, and Underline). In such cases, it is preferable to place independent settings
in a dialog or on a ribbon so that users who want to set multiple attributes can
simply open the dialog once or directly access the ribbon buttons, rather than re­
peatedly working through two levels of menus.

5.2 Menu Components
Each menu consists of a menu title and one or more menu items.

5.2.1 Menu Titles
All drop-down and cascading menus should have menu titles. A pop-up menu typi­
cally does not have a title. Titles for drop-down and cascading menus should repre­
sent the entire menu and should reveal as clearly as possible the purpose of all
items on the menu. In drop-down menus, the menu title is the term that appears on
the menu bar. In cascading menus, the menu title is the name of the parent menu
item.

Compound titles are acceptable (for example, Fontsize) but should be used spar­
ingly because they may strike users as odd. The title may not contain numbers or
spaces; spaces would increase the possibility of confusing a single two-word title
with two one-word titles. Avoiding the use of spaces is especially important for
systems that provide proportionally spaced system fonts.

As shown in Figure 5.1, each menu title should contain an underlined mnemonic
access character that gives the user direct access to the menu through the key­
board. The access character should be (in suggested order of preference):

• The first letter of the menu title, unless another letter offers a stronger mne­
monic link or the first letter conflicts with another menu title (for example, File
and Format).

80 An Application Design Guide

• A distinctive consonant in the title.

• A vowel in the title.

No two menu titles should use the same access character. If an application uses a
non-Roman writing system (such as Kanji) but runs on a standard keyboard (such
as an ffiM® PC keyboard), the menu names can be given a Roman alphabetic char­
acter prefix as the menu access character.

Menu titles may be temporarily removed from the menu bar under the following
conditions:

• Applications that support different document types may display different menu
bars, depending on the document type that currently has the focus. In such appli­
cations, if no documents are open, there is no basis for deciding which menu
bar to display. Accordingly, all menu titles should be removed from the menu
bar, except for titles of menus containing commands that remain active even
when no documents are open (for example, the Control and File menus).

• In applications that support only one document type, menu titles should not be
removed from the menu bar when no documents are open. Instead, the titles of
menus that do not contain any active commands should be dimmed.2

5.2.2 Menu Items
Menu items can be names of actions (for example, Cut or Paste), attributes (for
example, Bold), documents (for example, "REPORT.DOC"), or windows (for ex­
ample, "REPORT.DOC:2"). Menu items can also be graphical (for example, repre­
senting patterns or drawing tools). If an item has a keyboard shortcut, the shortcut
should be listed on the menu next to the item. Shortcuts should be aligned with
other keyboard shortcuts in the menu. By default, Windows provides left-align­
ment; however, applications may choose to right-align shortcuts to conserve space.

Whenever a menu contains items that fall into logical groups, the groups should be
separated with a line (see Figure 5.5). The basic separator is a solid single line that
spans the width of the menu. If a group has logical sub groupings, a dashed line
can. separate subgroups. People tend to remember information in chunks of three
or four items. Accordingly, whenever possible, a menu should contain no more
than four groups of items, with three or four items in each group. It is possible to
implement scrolling menus that hold a very large number of items. However, such
menus are not recommended, because the items are never visible at the same time
and are therefore difficult to remember.

2 Although the menu titles are dimmed (indicating unavailability; see section 5.2.2.3), they should still be
selectable. This will allow the user to explore menu contents and to obtain help on a menu item.

Menus 81

The Document menu in Write has
separator lines between menu item groups.F

Figure 5.5 Drop-Down Menu with Separator Lines Between Groups

5.2.2.1 Types of Menu Items
Some menu items take effect as soon as they are chosen, but others require further
information before the command can be completed. Menu items that require
further information are called dialog box commands, because the additional infor­
mation that they require is obtained through a dialo~ box. The names of dialog box
commands should be followed by an ellipsis (" ... ").

Choosing a menu item results in the initiation of a process. For most menu items
(for example, those for opening files, checking spelling, and so on) this is the most
natural interpretation. Some menu items, however, are best understood in terms of
properties rather than processes. Menu items that change attributes of data or prop­
erties of the interface are called settings. The two types of settings are independent
(M-of-N) and interdependent (one-of-N).

• Independent settings are the menu equivalents of check boxes in dialogs (see
Chapter 6, section 6.2). For example, character attributes such as Bold, Italic,
and Underline, if placed on a menu, would form a group of independent set­
tings. Each of these can be changed without affecting the others, although they
are related by virtue of being applicable to a single piece of text.

• Interdependent settings are the menu equivalents of option buttons in dialogs
(see Chapter 6, section 6.1.2). For example, alignment properties such as Left,
Center, and Right, when placed on a menu, would form a group of interdepend­
ent settings. Selecting one setting deselects the others because a particular para­
graph can only have one type of alignment.

3 Some commands mayor may not lead to a dialog, depending on the state of the data or on the setting of an
application option. Although it would be possible to add or remove the ellipsis dynamically for such com­
mands, the benefit to users is probably too small to justify the extra implementation cost. Instead, the ellip­
sis should always be omitted in such cases. This rule ensures that users will never see an ellipsis and
mistakenly expect a dialog (which typically offers opportunities to cancel a command) and then be sur­
prised when the command is executed immediately.

82 An Application Design Guide

Groups of related (ingependent or interdependent) settings should be separated
from other items on the menu with a single horizontal line. A group of indepen­
dent settings can also include an item that turns off all the other settings in the
group.

When a setting is selected, a check mark should be placed to its left, as illustrated
in Figure 5.6.

Figure 5.6 Current Settings Indicated with Check Marks ~

As an optional extension to this method, applications can use graphics other than
check marks to distinguish between interdependent and independent settings.

1 Arial
l AVANTGARDE

I11III.-----1.1 Times New Roman

Figure 5.7 Independent and Interdependent Menu Settings

In some cases, it is appropriate to indicate the state of a setting by changing the
name of the menu item rather than adding a graphic. As a rule of thumb:

• If the two states of a setting are clear and obvious opposites, a graphic mark
should be used to show the states. For example, a View menu item named
Ruler should show a check mark when "on" and no check mark when "off."

Menus 83

• If the two states of a setting are not obvious opposites, a pair of alternating
menu item names should be used to indicate the two states. For example, a
naive user might guess that the opposite of a menu item called "Full Duplex" is
"Empty Duplex." Because of this ambiguity, applications should pair "Full Du­
plex" with the alternative name "Half Duplex," rather than using graphics to in­
dicate the alternative states. The item name does not represent the current state;
it indicates the state that will be obtained by choosing the item. The same mne­
monic access character should be used for both names whenever possible. This
can often be accomplished by incorporating the same word as part of both
names. For example, "Full Duplex" and "Half Duplex" both contain "Duplex,"
so D can be used for the mnemonic access character (if other menu items pre­
sent no conflicts).

Sometimes the state of a setting is indeterminate-for example, when a text selec­
tion contains words with different attributes. Applications should remove the
graphic marks from all groups for which the settings are indeterminate.

Applications should avoid menu items whose names and functions change depend­
ing on whether the SHIFT key is held down while the menu is opened. The shifted­
state functionality of such items is normally hidden, thus it often remains
undiscovered and unused. If possible, the shifted-state command should be added
to the menu as a regular menu item. If this cannot be done because of limited
menu space, a cascading menu that includes the unshifted- and shifted-state com­
mands can be added as a last resort. Designers should carefully weigh the draw­
backs discussed in section 5.1.3.2 before using cascading menus.

5.2.2.2 Names of Menu Items
Each menu item should be represented by a descriptive name or graphic. Applica­
tions should follow these guidelines when naming menu items:

• Item names should be unique within a menu, but may be repeated in different
menus to represent similar or different actions.

• Item names may be single words, compound words, or multiple words (for
example, Save As).

• Each item name should have a mnemonic access character for users who
choose commands with the keyboard. The guidelines for selecting a menu mne­
monic access character for menu titles also apply to menu items, except that
mnemonics for menu items can also be numbers. Numbers are appropriate for
menu items that are graphics or that are part of a varying list of items. For ex­
ample, if a menu contains a list offile names, the names may vary, but numeric
access characters for each position in the list provide constant, consistent user
access to the items in the list.

84 An Application Design Guide

• An ellipsis (" ... ") should follow the names of commands that require more
information before they can be completed.

• Item names should be arranged in a single column. Multi-column menus are
generally not recommended, except for menus that contain a long list of items
(for example, sizes or amounts). If multi-column menus are used, the items
should be presented in a logical order (for example, numeric ascending order
would be appropriate for a list of font sizes), with the sequence organized by
columns rather than by rows. For example, a numeric sequence would begin
with the lowest numbered item at the upper left and proceed down all items in
the first column before continuing to the second and subsequent columns.

5.2.2.3 Unavailable Items
Menu items that cannot be chosen meaningfully in the current state of an applica­
tion should be disabled. To preserve the stability of the menus, applications should
not remove disabled commands. Instead, the names of the commands should be
dimmed to inform the user that they are unavailable. Similarly, if all items on a
menu are temporarily unavailable, the menu title should be dimmed but not re­
moved. Users can open a dimmed menu to explore its contents and to obtain help
on menu items. If a user chooses a dimmed command, the application may option­
ally provide a brief message explaining why the command is unavailable. For ex­
ample, if there is no current selection and the user tries to choose the dimmed Cut
command on the Edit menu, the application could provide the message "You must
make a selection before choosing Cut."

5.3 Menu Operations
Users can display menus and choose menu items with the mouse, with the
keyboard, or with both methods.

5.3.1 Mouse Methods
Mouse techniques for menus rely almost exclusively on mouse button 1. The
single exception is that mouse button 2 is used to display pop-up menus. The
following discussion assumes mouse button 1, unless otherwise indicated.

5.3.1.1 Displaying Menus
The user must display a menu before selecting an item from it. Mouse techniques
for displaying menus vary according to whether the menu is a drop-down, pop-up,
or cascading menu.

Menus 85

5.3.1.1.1 Displaying Drop-Down Menus To display a drop-down menu, the
user uses the mouse to point to the menu title and presses the mouse button. This
procedure highlights the title and opens the menu. If the user releases the button
while the pointer is still on the menu title, the menu remains open so that the
pointer can be moved to the desired menu item. Alternatively, the pointer can be
moved to the item while the button is still held down. If the user moves the pointer
to a second menu title before releasing the button, the first menu closes and the
second menu opens. This lets users switch easily from one menu to another or see
an overview of all menus by dragging the mouse across the menu bar. If the user
drags the pointer out of a menu frame to any location other than a menu title, the
menu remains open. However, if the user then releases the mouse button outside
the menu frame, the menu closes without initiating any commands.

5.3.1.1.2 Displaying Pop-Up Menus To display a pop-up menu, the user posi­
tions the mouse pointer over an object and presses mouse button 2 (for details, see
section 5.1.2.1). Ifthe user releases the button at the button-down point (or within
four pixels of the button-down point), the menu remains displayed. If the user
moves the pointer and releases the button outside the menu, the menu is canceled
(removed from the screen). This is similar to the behavior of drop-down menus.

A pop-up menu is also canceled when the user clicks mouse button 1 or 2 outside
the menu. Consequently, there can be only one pop-up menu displayed at any
time. Clicking mouse button 1 outside the menu removes the menu and sets the
selection to the clicked 10cation.4 Clicking mouse button 2 outside the menu only
removes the menu.

Generally, a pop-up menu is invoked when the pointer is over an object selected
explicitly with mouse button 1. (Explicit selection techniques are discussed in
Chapter 3, section 3.1.2.) However, mouse button 2 can be used to select an object
and display its pop-up menu simultaneously. For example, if icon A is currently
selected and the user presses mouse button 2 over icon B, icon B becomes selected
and its pop-up menu is displayed. Likewise, if there is no current selection,
pressing mouse button 2 both selects an object and displays its menu.

If an object is selected implicitly, pressing mouse button 2 displays its menu.
Implicit selection unifies the act of selection and action into one, but does not
directly change explicit selections. For example, dragging a scroll box implicitly
selects an object (the scroll box) and identifies its action (move). It is possible to
get a pop-up menu for the scroll box by pressing mouse button 2 while the pointer
is over the scroll bar. This does not result in scrolling, but simply displays the
menu.

4 Note that this may reset an existing selection.

86 An Application Design Guide

5.3.1.1.3 Displaying Cascading Menus To display a cascading menu, the
user clicks on the parent item (this is the item with the right pointing triangle) or
drags the mouse to that item. If the drag method is used, there is a brief pause
before the submenu is displayed. This pause prevents the submenu from flashing
when the user is dragging across the parent item on the way to another item. If the
user releases the mouse on the parent item after the submenu appears, the sub­
menu and the parent menu remain open. Alternatively, the user can drag the
mouse into the submenu to choose an item from the submenu. If the user clicks on
the parent item after the submenu has already been displayed, the submenu should
disappear but the parent menu should remain open. The relationship of a submenu
to its parent item parallels the relationship of a non-cascading menu to its menu
title: The first click on the higher-level element opens the menu, and the second
click closes the menu.

5.3.1.2 Choosing Menu Items
Mouse techniques for choosing menu items are the same for all types of menus.
To select a menu item, the user releases the mouse button while the pointer is on
the item. The release (that is, button up transition) is the second half of a mouse
click. The press and release need not occur on the same item. In other words, the
user may click on the item directly or may release the button there after dragging
the mouse to the item from another location, either from the menu title or from
another menu item. Whenever the mouse button is down and the pointer is over a
menu item, the item is highlighted to indicate that it will be chosen if the mouse
button is released.

If the menu is already open, the user can click a menu item to execute it. In drop­
down and cascading menus, mouse button 1 is used for this purpose. In pop-up
menus, the user can click mouse button 1 or 2.

5.3.2 Keyboard Methods
Table 5.1 lists keyboard techniques for drop-down and cascading menus. As
explained in section 5.1.2.1, pop-up menus have no keyboard interface, except for
UP ARROW, DOWN ARROW, ENTER, and the ESC key.

Menus 87

Table 5.1 Keyboard Techniques for Drop-Down and Cascading Menus

Key

ALT

LEFT ARROW

RIGHT ARROW

UPARROW

DOWN ARROW

Mnemonic character

ENTER

ESC

Function

Toggles activation of menu bar (if inactive, activates it; if
active, deactivates it and closes any open menu).

• In menu bar, moves to previous menu; at extreme left, wraps
to rightmost menu.

• In cascading menu, closes submenu but leaves parent menu
open.

• In multicolumn menu, moves left one column.

• In menu bar, moves to next menu; at extreme right, wraps to
leftmost menu.

• In multicolumn menu, moves right one column.

• In open menu, selects item above current item; at top, wraps
to bottom.

• In multicolumn menu, wraps to bottom of previous column.

• If no menu is open, opens selected menu.

• In open menu, selects item below current item; at bottom of
menu, wraps to top.

• In multicolumn menu, wraps to top of next column.

• When menu bar is active, chooses and opens menu with
corresponding underlined mnemonic access character.

• When menu is open, chooses item with corresponding access
character.

Chooses selected menu item.

• If menu is open, closes menu but leaves menu bar active.

• If no menu is open but menu bar is active, deactivates menu
bar.

A frequently used menu item may be assigned a keyboard shortcut (also known as
an accelerator), which provides a single-step method of keyboard access, rather
than the three-step method of ALT, menu title access character, and menu item
access character. The shortcut key combination should be displayed at the first tab
position after the name of the longest item in the menu that has a shortcut, and
should be left-justified; spaces should not be used for alignment because they will
not work properly with proportional system fonts. Key names should match those
inscribed on the keyboard (for example, "CTRL" rather than "CONTROL"). CTRL and
SHIff key combinations should be displayed as "cTRL+key" (not ""+key"),
"SHIFf+key", or "CTRL+sHIFf+key". As an optional alternative, applications can
substitute graphical representations of key caps for the words "CTRL" and "SHIFT".

If the application uses function keys for shortcut keys, the name of the key should
appear as "pn", where n is the function key number. P is uppercase and there is no
space between P and the number. Note that function key shortcuts (with or without
modifier keys) are easier to localize than modifier+letter shortcuts.

88 An Application Design Guide

When the user presses a shortcut key combination, the command is executed
immediately; the menu that contains the command may appear highlighted but
does not drop down.

Guidelines for assigning keyboard shortcuts are discussed in Chapter 2,
section 2.2.5.

5.4 Standard Menus
Every application should include a set of standard menus, to give users a common
starting point for each new application and to speed learning. The standard menus
are Control, File, Edit, and Help. In the application window, the Control menu is
represented at the left end of the title bar by a small box. For maximized document
windows, it appears at the left end of the menu bar. On the menu bar, generally
File appears first, followed by Edit (if supported). Help is generally the last menu
on the bar. For application window Control menus, the access character is SPACE­

BAR (that is, the user types ALT+SPACEBAR); for document window Control menus,
the access character is HYPHEN. The access character for the File menu is F, Edit is
E, and Help is H.

5.4.1 Control Menu
Every movable window (application, document, or dialog window) contains a
Control menu at the left end of its title bar (see Figure 5.8). The Control menu is
reserved for commands that provide keyboard control over the active window.
Applications should avoid adding commands to the Control menu, unless no other
menus are in the window and there are no suitable alternatives for providing
access to the commands.

Figure 5.8 Control Menu

Menus 89

Control menus for dialog windows contain only Move and Close commands. The
standard menu items on all other Control menus are Restore, Move, Size, Min­
imize, Maximize, and Close (in that order). Control menus for application win­
dows also include a Switch To command for switching to other application
windows.5 Optionally, the Next command may also be included on the Control
menu of MDI document windows to allow the user to switch to the next document
window.

If one of the standard items is never used in an application, it may be removed
from the menu. Tables 5.2 and 5.3 summarize Control menu items and keyboard
shortcuts. Items in the first table appear on both application window and document
window Control menus; items in the second table appear on only one type of
Control menu. The items should appear in the order shown in the tables, with
those in the first table preceding those in the second.

5 The Control menu should not include a Run command. This command was included with applications
delivered with runtime Windows, to allow the user to run other applications such as the Control Panel.
With applications that depend on Windows version 3.0 or later, however, the Program Manager can be
used to run other applications, so the Run command is no longer necessary.

90 An Application Design Guide

Table 5.2 Control Menu Items Common to Application and
Document Windows

Item

,Restore

Move

~ize

Minimize

Ma!imize

~lose§

Function

Restores window from its maximum or
minimum size to its previous intermediate
size.

Gray "ghost" window frame appears on top
of regular frame; pointer changes to window
movement pointer. Arrow keys move ghost
frame. ENTER completes command and
redraws window at new location.

Changes pointer to sizing mode pointer.
Arrow keys move pointer to nearest border
and change pointer to appropriate resizing
pointer. Arrow keys then resize ghost
window frame. ENTER completes command
and redraws window at new size.

Replaces window with its minimized
representation (usually an icon). If window
is an application window, all supplemental
windows (document windows, dialogs,
floating palettes, toolboxes, and so on) are
hidden.

Expands window to maximum size.

Closes window; displays a dialog asking
user whether to save data if window contains
unsaved changes. If window is an
application window, all supplemental
windows (document windows, dialogs,
floating palettes, and so on) are also
closed.§§ If window is a dialog window,
committed transactions are accepted and
uncommitted transactions are not accepted.

Note: Mnemonic access characters for menu items are underlined.

* The mouse can also be used to select menu items from the Control menu.

Mouse Alternative*

Click Restore
button.**

Drag title bar.

Drag window
frame.

Click Minimize
button.

Click Maximize
button.**

Double-click
Control menu.

** Some applications support a double-click on the title bar as an equivalent shortcut for Maximize or
Restore. This shortcut may conflict with future system-defined behavior for title bars and should not be
documented.

§ The recommended keyboard shortcut for Close is ALT+F4 for dialog and application windows and CTRL+F4

for document windows. CTRL+ESC is the shortcut for Switch To (see Table 5.3). No other keyboard
shortcuts are currently recommended for commands in this table.

§§ As a rule, the Close command removes windows from the screen, whereas the Exit command (on the File
menu) ends the active application. Close is functionally equivalent to Exit when it is used to close the main
application window.

5.4.2 File Menu

Table 5.3 Additional Control Menu Items

Item

S'!y:itch To

Function

Displays dialog that contains a list of
running applications so user can switch to
another application. This command is only
available on application window Control
menus. (Keyboard shortcut: CTRL+ESC.)

Switches among open document windows
and icons. This command is only available
on document window Control menus.
(Keyboard shortcut: CTRL+P6.)

Note: Mnemonic access characters for menu items are underlined.

* The mouse can also be used to select menu items from the Control menu.

Menus 91

Mouse AIternative*

Click on.desired
application
window; or double­
click on desktop to
show task list.

Click on desired
window.

Applications that use data files should include a File menu, which provides all the
commands the user needs to open, create, and save files. Figure 5.9 shows a stan­
dard File menu. If an application has a File menu, it should be the first menu on
the menu bar (except for the Control menu for a maximized document window in
MDI applications). The mnemonic access character for the File menu is F.

Figure 5.9 Standard File Menu

92 An Application Design Guide

5.4.2.1 Standard Items
The File menu contains the following items in the order listed (other items may be
interspersed): New or New (always the first item), Open, Save, Save As, Print or
Print, Print Setup,6 and Exit (always the last item). In applications that deal with
multiple open document files (MDI), the Close command may optionally be added
(after Open) to close the document file displayed in the active window. Table 5.4
lists the standard File menu items.

Table 5.4 Standard File Menu Items

Item Function

New or New ... * Creates new document with default name such as Untitled,
Documentn, Sheetn, or hnagen. Applications that can create
different types of documents (for example, spreadsheets and charts)
should display the standard dialog to allow user to choose type.
Most common type should be default choice, and user-supplied file
name should not be required; user should be able to create new
document quickly by simply pressing OK after dialog appears.**

Qpen* Leads to standard dialog that allows the user to open existing files,
which may be located in different directories or on different storage
devices.**

S.ave Saves fIle displayed in active window. If fIle has never been saved,
displays Save As dialog so that user can specify ftle name.

Save As Displays standard dialog that allows user to save current file under a
new name, in the same or different directory.

Erint or !Pot... Prints active document at currently selected printer; if appropriate,
first displays standard dialog that allows user to set print options (for
example, page range and number of copies) before printing.

Print Setup*** Displays standard dialog that allows user to switch from one printer
connection to another and to specify settings for selected printer.

E!it* Terminates application and closes all windows belonging to it. (In
applications that do not include File menus, the Exit command
should be the last command on the leftmost application menu, after
the Control menu.)

Note: Mnemonic access characters are underlined. No standard keyboard shortcuts are currently
recommended for File menu commands.

* If executing this command would cause infonnation to be lost, the application should display a message
dialog prompting user ("Save changes to <file name> ?") before executing the command. This dialog
should contain the Yes, No, and Cancel buttons for user response. For further infonnation about message
dialogs, see Chapter 7, section 7.104.

** If the New or Open command results in closing an existing file that has unsaved changes, the user should
be queried to save the changes before the New or Open dialog is displayed.

*** Note that the name of this dialog is Print Setup, not Printer Setup. The latter name is now reserved for
the system dialog that changes global printer settings.

6 Not "Printer Setup"; see note to Table SA.

Menus 93

5.4.2.2 Common Optional Items
In addition to the standard items in Table 5.4, the File menu frequently includes
optional items, such as the most recently used (MRU) list of files.

5.4.2.2.1 MRU List The MRU list provides quick access to recently used
files, without requiring the user to work through a dialog box to specify the loca­
tion of the files. When the user chooses a file name from the MRU list, the file is
opened immediately. (If the file is already open, a new window should not be
opened; instead, the existing window for the file should be brought to the front.) If
present, the MRU list should precede the Exit command, which is always the last
menu item so that it can be easily located.

The number of files on the MRU list may vary between applications but should re­
main constant within an application.7 The appropriate length for the list depends
on the length of the File menu but should not be less than three or more than eight.
When the user opens a file (or saves a new document in a file), the file name is
placed at the top of the list, next to the number 1, which can be used as a mne­
monic access character. The numbered list continues through progressively less re­
cently opened files, with the least recently opened file at the bottom. The MRU list
entry may also display all or part of the pathname, but it is preferable to display
only as much of the pathname as is necessary for the user to distinguish between
similar file names. Internally, however, the full pathname of the file should be re­
corded so that the file can be opened immediately without asking the user for
storage information.

5.4.3 Edit Menu
The Edit menu follows the File menu on the menu bar. The mnemonic access
character for the Edit menu is E. Figure 5.10 shows the standard Edit menu items.

Ctrl+X
Ctrl+C
Ctrl+V

Figure 5.10 Standard Edit Menu

7 Except for the first few times an application is used, when there may not be enough previously used files to
fill the list.

94 An Application Design Guide

5.4.3.1 Standard Items
The standard Edit menu provides commands for:

• Reversing the last action that altered the user's data (Undo).

• Moving, copying, and linking data and objects (Cut, Copy, Paste). These opera­
tions rely on the system clipboard, which is a common data buffer used to move
data within and between applications.

Undo is always the first command on the Edit menu. The remaining standard
items (which may be interspersed with others) appear in the following order: Cut,
Copy, and Paste. Paste Link and Links are added in applications that support link­
ing and embedding (see Chapter 9).

Table 5.5 lists the standard Edit menu items.

Table 5.5 Standard Edit Menu Items

Item Shortcut

Undo CTRL+Z*

Cu!** CTRL+X*

~opy** CTRL+C*

,Easte*** CTRL+V*

Paste 1ink*** (none)

Li~s ... (none)

Function

Reverses last action that altered user's data.
(Applications may also provide more extensive
Undo support.) Name of last action appears after
"Undo" (for example, Undo Cut). If action can't
be reversed, command is dimmed; optionally,
name may also change to Can't Undo.

Transfers selected data to clipboard and deletes
data from current window or field.

Copies selected data, objects, or references to
clipboard; marks current selection for subsequent
use in Paste Link operations.

Pastes data, object, or reference from clipboard
into document at current insertion point. Replaces
current selection (if any).

At insertion point in current document (that is,
destination), creates link to item previously
marked in source (by means of Copy).

Displays Links dialog for changing link
properties and accessing linked objects.

Note: Mnemonic access characters are underlined.

* The shortcuts for Undo, Cut, Copy, and Paste are new in Windows version 3.1. For backward compati­
bility, we recommend that applications designed to run under Windows version 3.0 also support the old
shortcuts: Undo = ALT+BACKSPACE, Cut = SHIFT+DEL, Copy = CTRL+INS, and Paste = SHIFT+INS. However,
the old shortcuts should not be documented in user manuals or listed on the Edit menu.

* * Command should be dimmed if there is no selection.

*** Command should be dimmed ifthe clipboard is empty.

Menus 95

5.4.3.2 Common Optional Items
Common optional items on the Edit menu include Paste Special, Repeat
<Action>, Find, Replace, Clear, and Delete. (The Paste Special command is
discussed in Chapter 9, section 9.3.2.4.)

5.4.3.2.1 Repeat <Action> Repeat <Action> repeats the most recent action.
The name of the action appears after "Repeat" (for example, Repeat Paste). If pre­
sent, the Repeat command should follow Undo on the Edit menu.

5.4.3.2.2 Find and Replace Applications that provide Find and Replace com­
mands for text search and substitution should place those commands on the Edit
menu (see Chapter 8, section 8.3).

5.4.3.2.3 Clear VS. Delete The Clear command applies only to container
objects such as text boxes and grid cells; it removes the contents of the object
without removing the object itself. The contents are not placed on the clipboard.

The Delete command is equivalent to the DEL key; it deletes the current selection
without placing it on the clipboard. If the user selects a container object such as a
text box or a grid cell, Delete removes both the object and its contents. The Clear
command, on the other hand, deletes only the contents of a selected object. If the
user selects only the contents of the object, Delete has the same effect as Clear; it
removes the contents.

Delete is the more common of the two commands because it can apply both to con­
tainers and non-containers, and because it can be used to accomplish the same pur­
poses as Clear. If an application provides an interface in which a container and its
contents can easily be distinguished, the application need only implement the De­
lete command. If the distinction between the container and its contents is blurry
and the user needs a quick way to clear the contents of the container, the applica­
tion should also implement the Clear command.

5.4.4 Help Menu
The Help menu is always the rightmost menu of the menu bar (see Figure 5.11),
immediately following the next-to-Iast item.8

8 Some applications currently place the Help menu at the extreme right of the menu bar. The current recom­
mendation is that the Help menu immediately follow the next-to-Iast menu item, for three reasons: (I) to
increase the accessibility of the Help menu; (2) to decrease the likelihood of pressing the Maximize or
Minimize buttons by mistake when trying to access Help; and (3) to make the space at the extreme right of
the menu bar available in MDI applications for a Restore icon for maximized child windows.

96 An Application Design Guide

Figure 5.11 Help Menu in Windows Write

5.4.4.1 Standard Items
The Help menu contains the items Contents, Search for Help On, How to Use
Help, and About <Application-Name> in the order listed. Other items may be
interspersed.

Table 5.6 Standard Help Menu Items

Item Function

hontents

.s.earch for Help On

How to Use Help

About <Application-Name>

Opens Help window and displays list of main topics.9

Opens Help window and displays dialog that allows
the user to search for Help topics containing specific
keywords.

Opens Help window and displays instructions for
using Help.

Displays standard dialog box containing application
name, version number, copyright message, icon, serial
number, and user's name; plus optional additional
information such as amount of available workspace in
memory or amount of storage space on active storage
device. For more information on the About dialog, see
Chapter 8, section 8.6.

Note: Mnemonic access characters are underlined.

9 This item was called "Index" in Windows version 3.0. "Index" is now an optional item that leads to a full al­
phabetic index rather than a selective list of main topics.

Menus 97

5.4.4.2 Common Optional Items
The Help menu may also include additional items that access broad subcategories
of Help (for example, Commands, Procedures, Keyboard), or that provide equiv­
alents for commands used by other products in the same category. If the
application includes an online tutorial, the menu can include a Tutorial item that
starts the tutorial. This item should follow Search for Help on and precede How to
Use Help; the mnemonic access character is T.

5.5 Common Optional Menus
In addition to the standard menus, applications frequently include the View and
Window menus.

5.5.1 View Menu
The View menu includes commands for changing the user's view of the data in
the window; these commands change only the view, never the data itself. For ex­
ample, in a word-processing application, the View menu might include commands
for switching between text and outline view; in a graphics application, the View
menu might include Zoom In and Zoom Out commands.

The View menu may also include commands for controlling the display of inter­
face elements, such as status bars and control bars that are a fixed part of the appli­
cation window. (The display of movable control bars should be controlled by
commands on the Window menu.) The View menu can also include commands
for displaying specialized window panes (such as or annotation panes) or general­
purpose panes. Applications that support general-purpose panes should provide a
Split command on the View menu.lO (For additional information on the Split com­
mand, see Chapter 4, section 4.2.5.) If present, the View menu typically follows
the Edit menu.

5.5.2 Window Menu
The ability to open multiple document windows adds a requirement for additional
menu commands that manipulate document windows as whole entities (for ex­
ample, commands that place document windows in an orderly arrangement). MDI
applications should include a Window menu for these commands. This menu
should be the last menu before Help. A sample Window menu is illustrated in
Figure 5.12.

10This command can also be placed on the Window menu.

98 An Application Design Guide

.show ...

.;! SAMPLE.TXT
2 TEST.TXT

1 TEST2.TXT

Figure 5.12 Sample Window Menu

5.5.2.1 Standard Items
Because document windows in MDI applications can overlap or even completely
obscure each other, activating them by clicking on them with the mouse can be­
come difficult or impossible. Consequently, the Window menu should contain a
numbered list of open windows to allow the user to select and activate any win­
dow easily. When the user selects a document window from the Window menu,
the currently active window is deactivated, and the selected window is activated
and displayed on top of the other document windows.

The list of windows appears after all other menu items and is separated from them
by a horizontal line. Each list item is preceded by a number, which serves as its
mnemonic access character. An active window is indicated by a check mark
before its number. The list shows the first nine open document windows. When
more than nine document windows are open, the list contains a More command
(with M as its mnemonic access character), which displays a dialog box listing all
the open document windows, including those that were already shown on the
Window menu. The application window, secondary windows, and dialog boxes
never appear on the list. The order of windows in the list is the order in which the
user opened the windows. When the user closes a document window, the list is re­
numbered.

5.5.2.2 Common Optional Items
Common optional items on Window menus include New Window, window arrange­
ment commands, and the list of open windows. Applications that allow windows
to be split into panes should include a Split command on the View menu. If the
application has no View menu, the command should be placed on the Window
menu.

Menus 99

5.5.2.2.1 New Window The New Window command creates a duplicate
window that opens another view on the active document. ll When multiple win­
dows are open for a single document, the title bar of each window indicates the
document name and the number of the window. For example, if a spreadsheet
application has a chart window named ChartA open, and the user selects the New
Window menu item, the first document window containing ChartA shows
"ChartA: 1" in its title bar. The second document window containing ChartA
shows "ChartA:2" in its title bar, and so on.

5.5.2.2.2 Window Arrangement Commands Window arrangement com­
mands are optional but highly recommended. As users open new document win­
dows and resize old ones, the windows can overlap and eventually obscure or hide
one another. Consequently, the user needs a way to arrange the windows so that
all document windows are at least partially visible. This can be done in a variety of
ways:

• The Tile menu item arranges the document windows in tiled style, with each
window displayed in its own space within the application window.

• The Cascade command arranges the document windows in overlapping style,
like offset note cards.

• The Arrange command (Arrange ... or Arrange All) can be used for more
general window arrangements.

You can also include arrangement commands that specifically affect minimized
windows.

lIThe New Window command should not be confused with the File New command, which creates a new
document.

Dialog Box Controls

Chapter 6

6.1 Buttons .. 103
6.1.1 Command Buttons .. 103
6.1.2 Option Buttons .. 105

6.2 Check Boxes ... 106
6.3 List Boxes .. '" 1 08

6.3.1 Single-Selection List Boxes .. 108
6.3.2 Extended-Selection and Multiple-Selection List Boxes 112

6.4 Text Boxes .. 113
6.4.1 Combo Boxes .. 114
6.4.2 Spin Boxes .. 116

6.5 Read-Only Pop-Up Text Fields .. 117
6.6 Sliders ... 118
6.7 Static Text Fields .. 119
6.8 Group Boxes ... 119
6.9 Control Labels .. 120
6.10 Validation of Input ... 121

6.1 Buttons

Dialog Box Controls 103

This chapter discusses controls that appear primarily in dialog boxes (and in
control bars, which are essentially modeless dialogs): buttons, check boxes, lists,
and edit controls. Applications may also contain custom controls, but widespread
use of such controls defeats the benefits of consistency. Before deciding to use
custom controls, application designers should carefully consider whether existing
controls can be used instead.

Buttons are graphical controls that initiate actions and change data object proper­
ties or the interface itself. Users can choose buttons by clicking them with the
mouse. Users can also choose most buttons using the keyboard, either through
mnemonic access characters (for example, ALT+O for an Options» button in a
dialog) or keyboard shortcuts (for example, ESC for the Cancel button in a dialog
or CTRL+B for the Bold button on a control bar).

Three-dimensional buttons that set properties should be shown in the depressed
position whenever the specified property is in effect. For example, if a control bar
contains a graphical button for turning on the Bold text style, the button should be
shown in the depressed position whenever the current selection is in the Bold
style. Similarly, a button that causes a drop-down control to open should remain
depressed as long as the control is open.

When a button is inactive (that is, when the user cannot choose it because the
associated action or setting is unavailable), the button label should be dimmed.

The standard interface uses two types of buttons: command buttons and option
buttons.

6.1.1 Command Buttons
A command button! is a rectangular shape containing a label that specifies the
action or response represented by the button, for example, "Assign" or "Cancel".
Figure 6.1 shows a dialog containing several command buttons. Button labels are
usually textual, but in control bars (for example, ribbons, palettes, or toolboxes),
graphical labels may also be used. Graphical labels are particularly appropriate
when the function of the button cannot be concisely represented with a textual
label but can be summarized by a single picture. For example, buttons for setting
text alignment can be labeled with miniature representations of appropriately
aligned text instead of long textual labels, such as "Align Text with Left Margin."
Graphical labels are also useful in reducing clutter when many buttons are pre­
sented in a small space, as in toolboxes.

1 Also known as a push button.

104 An Application Design Guide

- Select Files

[ile(s):
Command Buttons

Figure 6.1 Command Buttons in Dialog Box

The user can choose a command button by clicking the mouse while the pointer is
over the button. The action associated with the command button is initiated when
the mouse button is released.2 If the function of a command button changes de­
pending on the state of the application, its label should change accordingly. For ex­
ample, in transactional dialogs (also known as multiple-action dialogs), the user is
allowed to perform several actions before closing the dialog. As soon as the user
performs any action that cannot be canceled, the label of the Cancel button should
change to Close, to reflect that the action cannot be undone.

A dialog box may contain several types of command buttons:

• Command buttons that initiate an action.

• GoT0 3 buttons, which close the current dialog box and open a related one.

• GoSub buttons, which open a related dialog box on top of the current dialog
box without closing the current dialog box.

• Unfold buttons (such as Options »), which expand the dialog to include
additional options.

One command button in a dialog may be designated as the default. This button is
pushed automatically when the user presses ENTER (see Chapter 7, section 7.3.2).

2 Auto-repeat buttons (for example, scroll arrow buttons) are exceptions to this rule; their action is initiated
as soon as the mouse button is pressed and continues until the mouse button is released.

3 GoTo, GoSub, and Unfold are used descriptively; they are not the actual button labels. Applications should
choose appropriate labels for these buttons.

Dialog Box Controls 105

6.1.2 Option Buttons
An option button4 represents a single choice in a limited set of mutually exclusive
choices. Accordingly, in any group of option buttons, the user can only select one
at any time. Option buttons are represented by circles, as shown in Figure 6.2.
When an option button choice is selected, the circle is filled; when the choice is
not selected, the circle is empty. If the number of option buttons in a group
exceeds four, the buttons can be replaced by a standard or drop-down list to save
space. If space is not at a premium, however, option buttons provide easier access
to choices.

Sort by -----...,

o !l!ame

@ r.tYii.~ ~
o Si~e

Figure 6.2 Option Buttons

A group of option buttons can be used to choose among a fixed set of attributes for
a selection. Whenever the user makes a new selection, the option button group
should indicate which attribute currently applies to the selection; that is, the option
button corresponding to the current attribute should be filled, and the other option
buttons should be empty. If the current selection is heterogeneous with respect to
the set of attributes (that is, if more than one attribute is represented in the selec­
tion), all the option buttons in the group should be empty, as shown in Figure 6.3.
Choosing any button applies the associated attribute to the entire selection.

- Transportation

Vehicle -----...,

OC.fa·r···· ,
o Iruck
o !;!us

Figure 6.3 Option Buttons for Heterogeneous Selection

4 Also known as a radio button.

106 An Application Design Guide

In dialog boxes, double-clicking on an option button is an optional shortcut for
selecting the button and choosing the default command button in the dialog, thus
closing the dialog.

An application can also implement value sets, which are groups of adjacent rec­
tangular option buttons in which the labels are contained inside the buttons. The
labels may be graphical or textual. Value sets are particularly appropriate for op­
tions that can best be represented by graphical labels (for example, colors, pat­
terns, or drawing tools), but they are also useful for options with textual labels that
are short enough to fit within a small rectangle. When the user selects an item in a
value set, the item should denote selection.

6.2 Check Boxes
Check boxes control individual choices that are either turned on or off. When the
choice is turned on, the check box shows an X in it (see Figure 6.4). When the
choice is turned off, the check box is blank. The user can toggle the state of a
check box by clicking on the box or the label with the mouse or by pressing the
Select key (SPACEBAR) when the check box has the focus.

- Change Attributes

o l!i~~.~··jj·~·i;r..1
fZl Archive

o Hidden

o ~stern

Figure 6.4 Check Boxes

Check boxes can be grouped, but grouping does not prevent the user from turning
the check boxes on and off in any combination. Two exceptions to the indepen­
dence of check boxes are allowed:

• If it is desirable to provide a quick way to tum off all check boxes in a group,
an additional check box that performs that function can be added to the group.

Dialog Box Controls 107

• Suppose that a large group of related, but in most cases independent, options
(for example, type style options in a character properties dialog) contains two
dependent options (for example, Uppercase and Small Caps). Applications
should consider using option buttons or drop-down lists in such cases, but those
alternatives do have some disadvantages. Option buttons force a third choice to
be added (for example, Normal) to indicate that neither of the two options ap­
plies. Drop-down lists not only force this third choice to be added, but they hide
all but one of the choices and make them harder to access. Accordingly, in
crowded and complex dialogs, it is permissible to use check boxes for two
dependent options that are in the middle of other independent options.

Check boxes may be used to set properties of a selection. As with option buttons,
check boxes should correctly reflect the properties of each new selection. If the
selection is heterogeneous, the check box for each heterogeneous property should
be filled with a gray pattern, as shown in Figure 6.5. Grayed check boxes can be
cycled through three states. Clicking a grayed check box once turns on the asso­
ciated property for the entire selection (and places an X in the box). Clicking the
check box again turns off the associated property for the entire selection (and re­
moves the X). Clicking the check box a third time returns the selection to its origi­
nal heterogeneous state (and restores the original gray pattern in the box).

Change Attributes

D lii~~.~Q~J~j
IZl Archive

II Hidden

II ~stem

Figure 6.5 Check Boxes for Heterogeneous Selection

As with buttons, when a check box is inactive, its label should be dimmed.

108 An Application Design Guide

6.3 list Boxes
List boxes are used to display choices for the user. The choices may be repre­
sented by text, color, or graphics (bitmaps or metafile graphic objects). Selected
choices are highlighted according to the guidelines described in Chapter 3,
section 3.1.1.1.

If a particular choice is not available in the current context, it should generally be
omitted from the list. For example, if a certain point size is not available for the
currently selected font, that size should not be displayed in the list. However, if it
is important to communicate to the user both the existence and the current inacces­
sibility of a list item (for example, a file), the item can be dimmed rather than
omitted. For example, in the standard File Save As dialog (see Chapter 8, section
8.1.2), the files in the current directory are displayed in the file name list so that
users know which files already exist, but the names are dimmed and un selectable
to reduce the likelihood of accidentally overwriting an existing file.

When a list box is inactive, its label should be dimmed. As an optional but recom­
mended extension, applications can also dim textual list items when a list is
inactive.

List boxes can be classified according to whether they permit the selection of one
or multiple items. Single-selection lists are the most common.

6.3.1 Single-Selection List Boxes
The two types of single-selection list boxes are standard and drop-down.

6.3.1.1 General Characteristics
Because single-selection lists allow the user to select only one item, the items in
the list are functionally similar to option buttons. Applications should use single­
selection lists rather than option buttons in these cases: when the size or composi­
tion of a set of choices is variable, when the set of choices is large (more than four
or five items), or when space or layout considerations make option buttons
impractical.

Dialog Box Controls 109

The currently selected item in a single-selection list should be highlighted. The
arrow keys can be used to move the selection highlight up and down in the list.
The mouse may also be used to select items and to scroll the list with the scroll
bar. If scrolling is not possible, either because the list is inactive or because all
items in the list are already visible, then the scroll arrows should be dimmed, the
scroll box should be removed, and the interior of the scroll bar shaft should be
changed to the background color of the dialog box.5 (For an example, see the illus­
tration of the File New dialog in Chapter 8, Figure 8.3.) List boxes also support
automatic scrolling (see Chapter 4, sections 4.3.6.1.2 and 4.3.6.2.2).

If the user presses a character key while a single-selection list box has the focus,
the list scrolls to the first item that begins with that character (if there are any such
items), and the item is selected. If no matching item is found, the list does not
scroll, nor does the highlight move.

6.3.1.2 Standard Single-Selection Lists
Standard lists always remain the same size: tall enough to show from three to eight
choices, depending on the available height in the dialog box, and several spaces
wider than the average width of the items in the list. When the list contains an item
that is too wide for the list, a horizontal scroll bar may be optionally placed at the
bottom of the list. Figure 6.6 shows examples of standard lists.

D Iclionaries

Dictionaries in Use: User ~ords:

american. die Edsel
british. die Honda

Nissan
user2.dic Toyota

~====~
User Dictionary \\I.!!.rd: LI C_h_ev_r_ol_et ___ ---'

rChange Dictionaries in Use~

I AQd ... II Remoye II t!jiU

Figure 6.6 Standard Single-Selection List

In dialog boxes, double-clicking on an item in a single-selection list is an optional
shortcut for selecting the item and choosing the default command button in the
dialog, thus closing the dialog. This behavior parallels the shortcut for option but­
tons described previously.

5 This is a new recommendation in Windows version 3.1.

110 An Application Design Guide

If the choices in a list represent possible attribute values for a selection, the current
value should be selected when the list is first displayed. If the selection is hetero­
geneous, no value should be selected.

When space is limited, standard lists may be replaced by drop-down lists.

6.3.1.3 Drop-Down Single-Selection Lists
Like a standard single-selection list, a drop-down single-selection list has a fixed
width, which should be several spaces wider than the average width of the items in
the list. As in a standard list, a horizontal scroll bar may be added at the bottom of
a drop-down list if a particular item is too wide for the list.

Unlike a standard list, however, a drop-down list has two possible heights. When
closed, a drop-down list is only tall enough to show one item. When opened, a
drop-down list should be large enough to show three to eight items, just like a
standard list. If the drop-down list contains more than eight or a variable number
of items, it should have a vertical scroll bar. A drop-down list may drop outside
the dialog box, but if there is not enough space on the screen for the list to drop
down, it should open upward.

Figure 6.7 shows several drop-down lists. Note that the drop-down arrow button
abuts the end of the associated list box. The lack of a gap between the list and the
drop-down arrow is a visual distinction between a drop-down list and a drop-down
combo box, which does have a gap (see section 6.4.1.2).

li International

J;.ountr.l':

.Language: IEnglish (American) II

~e.l'board La.l'out: ILu_s ________ --'II_

Measurement: ILE--'ng:::..li_sh _______ --'II_

Figure 6.7 Closed Drop-Down Single-Selection Lists

When a drop-down list is open (see Figure 6.8), the list extends to the right edge
of the drop-down arrow button, to allow the user to drag into the list.

- International

J;;ountry:

!,.anguage:

!S,.eyboard Layout: English (International)
Finnish
French
French Canadian M.easurement:

Figure 6.8 Open Drop-Down List

Dialog Box Controls 111

A drop-down list can be toggled between the closed and open state by:

• Clicking on the drop-down arrow.

• Pressing ALT+DOWN ARROW.

• Pressing ALT+VP ARROW.

• Pressing or clicking on the field at the top of the list.

When a list has the focus and is closed, pressing DOWN ARROW opens it. Scrolling
is permitted only when the list is open.6 Any new item selection made while the
list was open is accepted and displayed in the list field.

An open list can be closed by:

• ALT+DOWNARROW

• ALT+UPARROW

• TAB or other navigation method

• ENTER (which does not close the dialog)

If the choices in a drop-down list represent possible attribute values for a selection
and the selection is heterogeneous, no value should be displayed when the list is
closed, and no value should be selected when the list is open.

6 Windows version 3.0 allowed users to scroll and autoselect items from a closed drop-down list. This be­
havior was changed in version 3.1 to avoid delays associated with updating and processing information.
For example, in a database application, changing the selection in a drop-down list may change the current
query and thereby require a new database search. Similarly, scrolling the Drives drop-down list in the File
Open dialog box would require the files list to be updated with each new drive selection.

112 An Application Design Guide

6.3.2 Extended-Selection and Multiple-Selection List Boxes
Although most list boxes are single-selection lists, occasionally it is useful to let
the user select more than one item. This functionality can be obtained with either
extended-selection or multiple-selection list boxes.

Extended-selection lists should support the mouse and keyboard techniques for
contiguous and disjoint selection described in Chapter 3, sections 3.1.2 and 3.1.3.1
For example, pressing SIllFT+F8 turns on Add mode, which allows the focus indi­
cator (the dotted box) to move independently of the selection highlight. Pressing
SPACEBAR toggles the selection state of the item that has the focus and sets a new
anchor point there, without deselecting other items. SHIFI'+navigation or
slllFT+click propagates the selection state of the item at the current anchor point.
Note that when no modifier keys or special modes are in effect, extended-selection
lists behave just like single-selection lists.

Extended-selection lists are particularly useful under the following conditions:

• The user may want an action (for example, printing or deleting) to apply to
more than one list entry at a time.

• Contiguous list entries are related in ways meaningful to the user. Because re­
lated entries are contiguous, extending a selection with the SIllFT key can easily
pick out meaningful groups. This type of ordering frequently arises when the
entries represent objects that have been created and named by the user.

When users want to select several entries from a list but the entries are not
grouped in a way that makes extended selection useful, multiple-selection lists can
be used. Whereas extended-selection lists provide easy range selection, multiple­
selection lists are optimized for disjoint selection. The suggested appearance of
items in a multiple-selection list includes a check box preceding each item, as
shown in Figure 6.9.

~; Print Options

Print Options:

D [¢.~:~~~~~~!
t2J Index

t2J Header
t2J Foot.er
t2J Hidden Text

Figure 6.9 Multiple-Selection List8

7 The directory windows in the Windows File Manager are examples of extended selection in lists.

8 The multiple-selection list is not a predefined Windows program control.

Dialog Box Controls 113

The two main reasons for using check boxes rather than check marks are:

• Check boxes are a more familiar and widely used part of the interface.

• Even if no items in the list have been selected, the boxes are always present to
indicate that the list is a multiple-selection list. This advantage outweighs the
slight increase in visual clutter caused by the always-present check boxes.

When the focus moves to the list, the dotted focus rectangle surrounds the first
item name (that is, the first check box label) but not the check box itself. Pressing
the SPACEBAR toggles the state ofthe check box without affecting other items. The
user can also toggle a check box by clicking on it (or its label) with the mouse.
The behavior of check boxes in multiple-selection lists matches the behavior of
free-standing check boxes (see section 6.2): If an item is selected, its check box
has an X; if it is not selected, its check box is empty. Reverse video is not used to
indicate selection.

6.4 Text Boxes
Text boxes are edit controls into which the user types information, as shown in
Figure 6.10.9 The user can accept the current text, edit it, delete it, or replace it.
The LEFT ARROW and RIGHT ARROW keys move the insertion point within the text in
a text box; when combined with CTRL, the same keys move the insertion point to
the beginning and end of the text. Mouse and keyboard selection of text within
text boxes follows the standard methods described in Chapter 3, sections 3.1.2
and 3.1.3.

-i Document Information

Subject:

(;omments:

IIDmtitilluitiinntldl1

This is a multi-line
text box. The box
above is a single­
line text box.

Figure 6.10 Text Boxes

,
9 Text boxes are not the same as text frames, which are discussed in Chapter 3, section 3.9.

114 An Application Design Guide

Most text boxes are only one line tall, but applications may also use multi-line text
boxes, such as the Comments box in Figure 6.10. In multi-line text boxes, data
that is too long to fit on one line may either wrap to the next line or extend beyond
the right boundary of the box. Both single-line and multi-line text boxes should
support automatic keyboard and mouse scrolling (see Chapter 4, section 4.3.6), to
allow hidden data to be brought into view. Multi-line text boxes may also include
scroll bars. To insert a carriage return in a multi-line text box in a dialog, the user
can press CTRL+ENTER, because ENTER alone would perform its usual function of
choosing the default button 10 and closing the dialog.

To activate a text box, the user either presses the access key combination or
presses the TAB key to move the active control indicator into the text box. When a
text box is activated in this way, its contents should be highlighted, and an inser­
tion point should be placed inside the box at the end of the highlighted contents. If
the text box is activated with a mouse click, an insertion point should be placed in
the contents of the box as near as possible to the click location, but the contents
should not be highlighted.

If a text box is inaccessible (for example, because it is associated with an unselected
option), the label ofthe box should be dimmed.

In certain situations, fixed-length auto-exit text boxes can be used to speed up data
entry. As soon as such a box is filled (that is, as soon as the last character is
typed), the focus moves to the next control. For example, a five-character auto-exit
text box could be used to facilitate entry of zip codes. As soon as the fifth digit is
typed, the focus moves to the next control. Because the automatic focus shift can
be unexpected and disconcerting, auto-exit text boxes should be used sparingly. In
general, they are best limited to situations involving extensive data entry.

It is not unusual to link controls in a dialog box, such as a text box and a list, so
that user interaction with one control also affects another. The standard File Open
dialog box demonstrates the benefits of integrating a text box with a list box. This
type of linking can be taken one step further by merging the two controls into one,
called a combo box.

6.4.1 Combo Boxes
A combo box is a text box with an attached, integrated, and interdependent list.
Combo boxes are useful when the application requires user input and can display a
list of possible responses. The user can type a response in the text box if the cor­
rect one is not available in the list. Combo boxes can be classified into two catego­
ries, standard and drop-down, according to the type of list it includes.

IOENTER can be used if there is no default button.

Dialog Box Controls 115

6.4.1.1 Standard Combo Boxes
Standard combo boxes include a text box and a standard list, as shown in Figure
6.11. If the list is never expected to display more entries than can be shown at one
time, the scroll bar may be omitted. The left border of the list is indented from the
edit control by the width of a numeric digit in the character set. The entries in the
list should be in alphabetic order unless there is a compelling reason to use a differ­
ent order. For example, a list of file names should be in alphabetic order, but a list
of dates should be in chronological order.

-2 Browse

Figure 6.11 Standard Combo Box

When a combo box has the focus, the UP ARROW and DOWN ARROW keys move the
selection up and down in the list and put the selected item into the text box. The
LEFT ARROW and RIGHT ARROW keys move the cursor left and right in the edit field.
The user can press character keys to enter characters in the text box. The list
scrolls to the first item that begins with the characters in the text box. When the
target item is brought into view, however, it is not automatically selected (as it
would be in an independent list). Pressing the DOWN ARROW key selects the target
item and places it in the text box.

When space is at a premium, standard combo boxes may be replaced by drop­
down combo boxes.

6.4.1.2 Drop-Down Combo Boxes
A drop-down combo box includes a text box and a drop-down list. Figure 6.12
shows two drop-down combo boxes, one for changing fonts and the other for
changing point size.

116 An Application Design Guide

Format Character

Font: Point Size:

1~IiIY~~·I·;!Y;hllllll~11I ~II
Style-----,

D Bold

Gl Italic

Gl Underline

D Strikeout

Color:

AaBbCcYvZz

Figure 6.12 Two Drop-Down Combo Boxes

Note the gap between the end of the text box and the drop-down arrow button.
This gap provides a visual distinction between a drop-down combo box and a drop­
down list (such as the color control in Figure 6.12), which does not have a gap.
When the list portion of a drop-down combo box is open, the list should extend to
the right edge of the drop-down arrow button, to allow the user to drag into the list.

6.4.2 Spin Boxes
Spin boxes are specialized text boxes that accept only a limited set of discrete,
ordered input values. A spin box consists of a text box with a pair of arrows (an
upward-pointing arrow above a downward-pointing arrow) attached to the right
side of the text box, as shown in Figure 6.13.

-~ Window Size

Sizing Grid-----,

.!iranularity: ~
Jtorder Width: ~

Figure 6.13 Spin Boxes

The user can type a new value into the text box, click the UP ARROW key to in­
crease the value, or click the DOWN ARROW key to decrease the value. In effect, the
arrows function like scroll arrows for a hidden list that is sorted in descending
order (in contrast to actual list controls, in which entries normally should be sorted
in ascending order).

Dialog Box Controls 117

Spin boxes may be used to display values that consist of several subcomponents
(for example, time, which consists of hours, minutes, and seconds). In such cases,
the text box is divided into several subfields and the subfields are separated by sui­
table separators (for example, in the U.S., ":" for time and "/" for date). The
arrows affect the selected subfield; if no subfield is selected, the arrows affect the
subfield representing the smallest unit of measurement.

A value typed into the text field of a spin box should be validated either immedi­
ately or as soon as the user navigates away from the spin box. For example, if the
user types a letter into a spin box that is only meant to accept numeric values, the
application may beep (or alert the user in some other appropriate way) and either
remove or simply never display the letter. Optionally, the value can be validated
when the user submits the dialog. At that time, if the value is invalid, the applica­
tion should display an appropriate error message in a message dialog that contains
a single OK button. Choosing OK to acknowledge the message should close the
message dialog, but leave the original dialog open so that the user can change the
invalid value. See section 6.10 for additional guidelines for validation of input.

6.5 Read-Only Pop-Up Text Fields11

Space limitations often restrict the amount of interface text that can be displayed.
For example, long path names may not fit in a file dialog. Similarly, in Help text,
it is usually impossible to include in-line definitions for every term. In such
situations, applications can use the read-only pop-up text field illustrated in
Figures 6.14 and 6.15.

'lou CBn find information quickly by using the :=::."J')],C::!1t~I~Jj[m --+---.- Read-Only
in the Help 'window. The Search button opens the Search Pop-Up Text Field
diB.log boy, where you seled B. t:.~)Ni,m:j that you want to
search for. All Help topics associated with that keyword are
listed. B.ndyou CB.n seled one to view. For example .. to find
out how to SB.ve a fil u could seled "save" from the list of

Figure 6.14 Closed Read-Only Pop-Up Text Field

liThe read-only pop-up text field is not a predefined Windows program control.

118 An Application Design Guide

6.6 Sliders

Displays the keywords you can use to search for related
topics. Use this button to look for topics related to a keyword. It
is in the Help button bar near the top of the Help window.

Figure 6.15 Open Read-Only Pop-Up Text Field

As shown in Figure 6.15, a dotted underline beneath the text contained in the text
field indicates that the user can click on the text to obtain a pop-up with additional
information. The pointer changes to a hand with an extended finger (as in
Windows Help) when over the field, to provide an additional indication that more
information is available. The pop-up opens when the user presses mouse button 1
over the text and remains open when the button is released. Clicking anywhere
closes the pop-up.

From the keyboard, the user can navigate to the text field with TAB. If the field is
labeled (as it should be, unless it appears in a continuous stream of text), the mne­
monic in the field label can also be used to navigate to the field. To open and close
the pop-up, the user can press the Select key (SPACEBAR) or any of the keys used
for opening and closing drop-down controls (see section 6.3.1.3). When the pop­
up opens, its top left comer appears at the same position as the top left comer of
the original text. If the contents of the pop-up can change between invocations, the
pop-up should be dynamically sized so that it is large enough to hold its current
contents.

Sliders are used to display and adjust values on continuous dimensions such as
pitch, loudness, and brightness. A slider consists of a bar containing notches or
measurement markings, plus an indicator perpendicular to the bar, as shown in
Figure 6.16. The indicator shows the present value and can be dragged along the
bar with the mouse to set a new value.

Dialog Box Controls 119

'-"-~ Sound

••
R

SpeakerB:

~.i""""""."E.m ••
L R

Figure 6.16 Slider

6.7 Static Text Fields
Static text fields are used to present read-only textual infonnation (for example,
the current directory location). These fields are static in the sense that the user can­
not change the text in them; the application, however, can alter the text to reflect
the current state of the application. Static text fields are often used to label controls
that are not automatically labeled by the system (see section 6.9). When the user
accesses a static text field using a keyboard mnemonic, the focus is passed to the
next control in the TAB order. Accordingly, when a static text field is used as a
label, it should immediately precede the labeled control in the TAB order.

6.8 Group Boxes
Group boxes, though technically considered controls, do not process any mouse or
keyboard input; they may be used to provide visual grouping of related controls.
Group boxes consist of a rectangular one-pixel frame with a label at the upper left,
as shown in Figure 6.17.

120 An Application Design Guide

~ Communication Preferences

Modes -----,

IZI Line ~rap
D Local.E.cho

IZI ~ound
'---------'

CR -) CR/LF ilia
D !!~~:~~:~~:! ilia
D .Q.utbound

L..--_------' _

Cursor--------,

@ IDock 0 .!J.nderline

IZI Blinl!"

1.r anslation

~ United Kingdom
~ Denmark/Norwa

IZI ~how Scroll Bars B ufler Lines: 11 00 1

Figure 6.17 Group Boxes

6.9 Control Labels

Group Box

Buttons, check boxes, and group boxes are automatically supplied with labels by
the system; other controls can be labeled with static text fields (see section 6_7).
Labels identify the function of the control and provide direct keyboard access to
the control. The following guidelines are suggested for control labels:

• Capitalize the first and last words of labels. In addition, capitalize the initial let­
ters of all other words in labels, except for articles (for example, a, an, and the),
coordinate conjunctions (for example, and, or, nor, and/or), prepositions (for
example, by, through, and with), and the to in infinitives.

• Provide a unique mnemonic access character for labels of controls to which the
user needs direct keyboard access. If possible, use the first character of the label
as the access character. In the following cases, use another letter from the label:

a. Another letter offers a stronger mnemonic link (for example, the letter X in
Exit).

b. The label contains multiple words, one of which is more significant than the
first word (for example, "Process" in Set Process).

c. The first character has already been used as a mnemonic for another control.

Use consonants in preference to vowels because consonants are usually more
distinctive and more easily remembered. Do not assign mnemonics to the OK
command button because it can be accessed through the ENTER key.

• Dim the labels of unavailable or inapplicable controls.

Dialog Box Controls 121

• Use a bold font so that dimmed labels are not illegible.

• Position control labels according to the rules in Table 6.1.

Table 6.1 Position of Control Labels

Control

Command button
Check box or option button
Text box, spin box, list, combo box,
slider, read-only pop-up text field

Group box

6.10 Validation of Input

Label Position

Inside button.
To right of box or button.
Above or to left of control, followed by a
colon, and left-aligned with the section of
the dialog in which it appears.
On top of (and replacing) part of top
frame line, starting just after upper left
comer.

Applications can validate input (or other dialog settings) immediately, after navi­
gating away from a field, or when the dialog is submitted. Generally, the first two
techniques provide better feedback because the user remains in the context where
the information is supplied. However, these may not be appropriate when data
fields cannot be processed individually.

Valid input can also be controlled by the type of control used to receive the input.
For example, option buttons, check boxes, and drop-down lists limit the type of
input that can be selected. Other types of controls (for example, those with text
boxes) generally provide more flexibility for user input.

Using Dialog Boxes

Chapter 7

7.1 Types of Dialog Boxes... 125
7.1.1 Movable vs. Fixed Dialogs ... 125
7.1.2 Unfolding Dialogs .. 126
7.1.3 Modal vs. Modeless Dialogs .. 126
7.1.4 Message Dialogs ... 128

7.2 Dialog Placement ... 130
7.3 Using Command Buttons in Dialogs ... 130

7.3.1 Recommended Buttons ... 131
7.3.2 DefaultButtons ... 131
7.3.3 Dynamic Button Labels .. 132
7.3.4 Navigation to Related Dialog Boxes .. 132
7.3.5 Arrangement of Buttons ... 133
7.3.6 Command Buttons in Message Dialogs ... 137

7.4 Fonts in Dialogs .. 138
7.5 Samples in Dialogs ... 138

Using Dialog Boxes 125

Some application commands require additional information from the user before
they can be completed. For example, if the user selects File Open, the application
needs the name of the file and where it is stored. If the user does not or cannot
supply the information when issuing the command, the application can request the
information by displaying a special window called a dialog box. A dialog box con­
tains controls that collect the user's information and choices. These controls show
the attributes of the selected data when the dialog box first opens. Dialogs do not
generally contain menu bars, window scroll bars, split bars, resizing buttons, or sta­
tus bars.

This chapter discusses types of dialog boxes and the use of command buttons in
dialog boxes. For information on navigation in dialogs, see Chapter 3, section 3.3.
Dialog box controls are discussed in Chapter 6 and several standard dialogs are de­
scribed in Chapter 8.

7.1 Types of Dialog Boxes
Dialog boxes can be classified according to various characteristics:

• They may be movable or fixed in position.

• They may have a single size or two alternate sizes.

• They may be modal (that is, may require the user to respond before continuing),
semimodal, or modeless.

• They may present simple messages with limited response options, or more
complex transactional choices accompanied by a variety of controls.

7.1.1 Movable VS. Fixed Dialogs
The appearance of a dialog box depends on whether it is movable. A movable
dialog box has a title bar containing a Control menu (which includes only the
Move and Close commands) and a title. A dialog box that is not movable has no
title bar. In general, an application should use only movable dialog boxes; the user
can reposition these to view obscured data and maintain a sense of context because
the name of the command or application is displayed in the title bar of the dialog.
The title of dialog boxes that present messages should simply reflect the applica­
tion name (or the source of the error, if the message represents a system or net­
work error; see section 7.1.4 for details). The title of dialog boxes that represent
completions of menu commands should reflect the name of the command that led
to the dialog, without an ellipsis. The menu name should not be included in the
dialog title, unless the same command exists on two different menus, or unless the
command name alone is uninformative without the menu name.

126 An Application Design Guide

7.1.2 Unfolding Dialogs
Whether they are movable or not, all dialog boxes have a non-sizable frame. Appli­
cations may, however, have dialogs of two sizes: a small size containing the basic
controls and a larger size that includes advanced options. The user can expand the
dialog from the small size to the large size by pressing an unfold button (a com­
mand button with chevrons, for example, "Options »") included in the small
form of the dialog. The dialog box may expand to the right, downward, or in both
directions. The expanded form of the dialog contains both basic and advanced
options.

After the dialog is expanded, applications may optionally leave the button active
with the chevrons facing the opposite direction (for example, "Options «") to
allow the user to return the dialog to its original size. If the application does not
allow the dialog to be returned to its original size, the button label should be
dimmed. The next time the dialog box is displayed, it appears in its original (unex­
panded) form; however, applications may provide options for using the expanded
form instead.

7.1.3 Modal VS. Modeless Dialogs
Dialog boxes can also be classified according to whether they require the user to
respond before continuing to work in the current application and in other applica­
tions. The four types of dialog boxes in this classification are: application modal,
system modal, application modeless, and application semimodal.

Table 7.1 describes the characteristics ofthese dialog box types.

Using Dialog Boxes 127

Table 7.1 Modal, Modeless, and Semimodal Dialog Boxes

Type of Dialog

Application
modal

System modal

Application
modeless

Application
semimodal

Characteristics

User must respond to dialog
before continuing work in current
application, but can switch to and
work in other applications without
responding.

User must respond before doing
anything else in any running
applications.

User can continue work in current
application without responding to
dialog; dialog remains on display.

User can perform a limited
number of operations outside the
dialog as a means of responding to
the dialog.

Uses

Obtain information required before current
application can continue. Should be used sparingly;
modeless dialogs should be used instead whenever
possible because the user can leave them open (for
easier access) while continuing to work in the
application.

Obtain information required before any applications
can continue. Should be used only for severe system
problems, for example, impending fatal system error
or unrecoverable error with active storage device.

Display information or offer options that don't require
immediate attention; obtain information for
commands that need not be completed before
proceeding (for example, Find). Useful for frequently
used commands; user can leave dialog open rather
than reselecting command from menu. When a
movable palette or toolbox is implemented as a
modeless dialog, it should always stay in a layer
above the window to which it applies. In MDI
applications, it should stay in a layer above all
document windows.

Offer alternative ways of responding. For example, a
semimodal dialog in a spreadsheet might allow the
user to specify ranges by clicking and dragging
outside the dialog in the worksheet, as well as by
using controls within the dialog.

Although semimodal dialog boxes are not part of the recommended minimum
requirements of interface style, special situations within some applications may
make such dialogs appropriate. Semimodal dialogs are similar to modal dialogs, in
that the user must complete the dialog before continuing to work on a document in
other ways.1 Semimodal dialogs, however, permit a limited set of actions outside
the dialog as a means of completing the dialog when the focus is on certain con­
trols within the semimodal dialog. In particular, semimodal dialogs are appropriate
in situations where it is convenient to accept mouse input or keyboard shortcuts
from outside a dialog as a means of setting controls or defining attributes within
the dialog. The user may only perform actions that set controls in the dialog but is
not confined to using only the dialog box controls. For example, if column width
can be set in a dialog text box, a semimodal dialog could also permit the user to
drag columns to a new location with the mouse, with the text box echoing the
measurements as the user drags the column border.

1 Visually, semimodal dialogs should use the same wiudow style as modal dialogs.

128 An Application Design Guide

7.1.4 Message Dialogs
Modal dialog boxes that are used to display error messages and other important
information are called message dialogs. Because message dialogs are modal dial­
ogs, they require a response by the user before work with the application can
proceed. Message dialogs for critical messages, which inform the user of serious
system-related problems, are system modal dialogs. All other types of messages
appear in application modal message dialogs. Message text should follow the
guidelines in Chapter 3, section 3.6.1.2. An application should post messages only
when it is the active application; when inactive, it should flash or beep for atten­
tion, as described in Chapter 3, sections 3.6.1.1.4 and 3.6.2.

Every message dialog has a title bar. The title is particularly important in a multi­
tasking environment because it identifies the source of the message. The title of
message dialogs in applications should consist simply of the name of the applica­
tion. The title of message dialogs associated with system or network processes
should contain the name of the system or network product, plus the word "Mes­
sage" (see Figure 7.3). The reason for this longer title is that users are often un­
aware of the system and network processes that are occurring behind the scenes.
The longer title "<System or Network Product Name> Message" helps clarify the
purpose of the message dialog, which may have appeared unexpectedly while the
user was working in an application. Message dialog titles should never include the
word "Error," which has a negative effect on users.

Each message dialog also includes a graphical symbol that indicates what kind of
message is being presented. The three types of messages are:

• Information messages

• Warnings

• Critical messages

Table 7.2 describes each message type and shows the associated symbol.

Using Dialog Boxes 129

Table 7.2 Message Types and Associated Symbols

Symbol Message Type

Information

Warning

• Critical

Description

Provides information about results of commands. Offers
no user choices; user acknowledges message by
clicking OK button.

Alerts user to an error condition or situation that
requires user decision and input before proceeding, such
as an impending action with potentially destructive,
irreversible consequences. The message can be a
question (for example, "Save changes to
REPORT.WRI?"). *
Informs user of a serious system-related or application­
related problem that must be corrected before work can
continue with the application.

* Some applications may find the question mark symbol more appropriate if the message is a question.
However, note that the question mark is also used as the help symbol and may therefore confuse users.

Figures 7.1, 7.2, and 7.3 present examples of complete message dialogs.

Microsoft Write

~l·\ W Finished checking selection.

Figure 7.1 Information Message

- Write

The server application cannot be found.

Make sure thatthe application is properly
installed. or exists in your DOS path. and that it
has not been deleted. moved, or renamed.

Figure 7.2 Warning Message

130 An Application Design Guide

Microsoft LAN Manager Message

Ii' Unable to connect to network drive.

I.,,,ijl

Figure 7.3 Critical Message

Message dialogs should contain only command button controls. If the application
needs additional information, such as a file name, then a regular dialog box should
be used instead of a message dialog. The standard command button combinations
for message dialogs are discussed in section 7.3.6.

7.2 Dialog Placement
Dialog boxes are usually centered vertically and horizontally within the applica­
tion window. If an application finds a more appropriate location for the dialog
box, it may choose to place it elsewhere. On large screens, this rule could cause
small dialogs to be positioned quite far from the menu bar at the top of the win­
dow, which is where users must focus their attention in order to obtain most dial­
ogs.

7.3 Using Command Buttons in Dialogs
A command button is a rectangular shape containing a label that indicates what the
button does (for example, Assign or Cancel), as discussed in Chapter 6, section
6.1.1. After the user presses and releases (that is, clicks) the command button, the
action begins. A dialog box may contain several types of command buttons:

• Command buttons that initiate actions.

• GoT02 buttons, which close the current dialog box and open a related one.

• GoSub buttons, which open a related dialog box on top of the current one
without closing the current dialog box.

• Unfold buttons, which expand the dialog to include additional options.

2 GoTo, GoSub, and Unfold are used descriptively; tbey are not the actual button labels. Applications should
choose appropriate labels for these buttons.

Using Dialog Boxes 131

7.3.1 Recommended Buttons
Every dialog box contains at least one button that closes the dialog. Message dial­
ogs that require only an acknowledgment from the user (rather than a choice) con­
tain a single button labeled OK. All other dialog boxes contain at least two
buttons: One closes the dialog and initiates an action; the other closes the dialog
without initiating any action. The button that initiates the action is usually labeled
either OK or <Action-Name>. The button that closes the dialog box without initiat­
ing an action is usually labeled Cancel. Some dialogs (called multiple-action dial­
ogs) include additional buttons that allow the user to initiate actions without
closing the dialog. In these dialogs, if the actions performed by the additional but­
tons irreversibly change the user's data, the label of the Cancel button should
change to Close as soon as the first such action is carried out. Whether the button
is labeled Cancel or Close, the keyboard user can press this button by pressing
ESC. (The OK and Cancel buttons do not have mnemonics.) If the label is Close, C
is underlined and serves as a mnemonic access character. This additional means of
access helps users who know that ESC presses the Cancel button, but who may not
realize that ESC also presses the Close button after Cancel changes to Close.

7.3.2 Default Buttons
One command button in a dialog box may be designated the default button, which
will be pushed when the user presses ENTER. The default button should be distin­
guished from the others with a heavy border. In multiple-action dialogs, it may be
appropriate for different buttons to be the default button at different times, depend­
ing on the current state of the data and the user's interaction with the dialog. In
general, the button that indicates the most likely next action at any given time
should be designated the default. However, a button that initiates an action with
far-reaching and potentially destructive consequences should never be the default.
For example, in a text search and substitution dialog, the Replace All button
should never be the default.

If the user navigates to a command button that is not usually the default, the new
button is temporarily designated the default (that is, the heavy border moves from
the original default to the new button, and ENTER now pushes the new button rather
than the old one). If the focus moves away from the temporary default button to a
control that is not a command button, the button that was originally the default be­
comes the default again. For additional information on keyboard navigation to
controls, see Chapter 3, section 3.3.2.

132 An Application Design Guide

7.3.3 Dynamic Button Labels
The labels of individual buttons can change in two ways to reflect the possibilities
currently available to the user:

• If the action represented by the button is not currently available, the label
should be dimmed.

• If the nature of the action represented by the button changes depending on
circumstances, the button label can be modified to reflect that change. For ex­
ample, as mentioned previously, the label ofthe Cancel button should change to
Close after any actions that cannot be cancelled have been carried out. When
the dialog closes, however, the button label should be reset to Cancel for the
next time the dialog appears.

7.3.4 Navigation to Related Dialog Boxes
As an application becomes more complex and provides additional features, the
need to display options in a consistent and efficient manner becomes increasingly
important. For example, if the application allows the user to set character proper­
ties from several dialogs, there is no need to complicate each dialog by repeating
the controls for setting those properties. Instead, each dialog should provide a
means to navigate to a single, uniform character properties dialog.

To provide for consistent presentation of controls and to keep individual dialogs
simple, applications may use GoTo and GoSub command buttons to let the user
navigate to related dialog boxes. A GoTo button typically closes the original
dialog before opening the new dialog, whereas a GoSub button leaves the original
dialog open and returns to it when the new dialog is closed. When a GoTo or
GoSub button leads to a dialog that is also associated with a menu item, the dialog
should have the same title as when it is invoked by selecting the menu item; typi­
cally this title will be the name of the menu item. The labels for GoTo and GoSub
buttons should include a trailing ellipsis (" ... "), which indicates that the commands
represented by the buttons require additional information (the information col­
lected in the new dialog) before they can be completed.3

If the user invokes a GoSub dialog and then returns to the original dialog, the
Cancel button in the original dialog should cancel all changes that were made in
both dialogs if the transaction has been committed and cannot be undone at that
point.

3 The ellipsis implies that the command leads to a dialog, but the reverse is not always true; commands that
lead to message dialogs should not be followed by an ellipsis.

Using Dialog Boxes 133

7.3.5 Arrangement of Buttons
Before users can decide which buttons to press in a dialog, they must first take in
the information presented by the dialog. This information is scanned by eye move­
ments that typically proceed as in normal reading; that is, from left to right and
from top to bottom. Accordingly, the most appropriate places for buttons in dialog
boxes are at the right or at the bottom, where the buttons will be seen after the user
has already scanned the relevant information. Whenever possible, buttons should
be arranged in one of two ways:

A. Stacked along the right border of the dialog, starting in the top right comer
(see Figures 7.4, 7.5, and 7.6). In this case, buttons should generally be the
same width-as wide as necessary to accommodate the longest button text.
Group the command buttons according to whether they initiate an action
(that is, Add, Remove, Find) or not (that is, GoSub, GoTo, or unfold buttons).
If there is an OK button, OK and Cancel should be grouped together, separated
from the other action verbs (see Figure 7.5). If there is no OK button, Cancel
should be grouped with other action buttons (see Figure 7.6). Leave at least
3 dialog units (DU s) between the bottom of one button and the top of the next
within the same group.4 Between groups, do not use horizontal lines, which
simply clutter the dialog; instead, insert at least an extra 5 DU s of white space,
for a minimum total of 8 DUs between groups. Leave at least 6 DUs between
the edge of the dialog and the edges of the buttons (that is, the top of the first
button, the bottom of the last button, and the right edges of all the buttons).

Vertical without Options and Help

Recommended Minimum Button
Spacing (in Dialog Units):

Top: 6
Bottom: 6
Right: 6
I ntr a-group: 3
Inter-group: 8

Figure 7.4 Vertical Button Layout Without Options and Help

4 The measurements mentioned in this section are based on the use of 8-point MS Sans Serif Bold in the Win­
dows Dialog Editor.

134 An Application Design Guide

- Vertical with OK. Cancel. Verbs. Options and Help

Recommended Minimum Bulton
Spacing (in Dialog Units):

Top: 6
Boltom: 6
Right: 6
I ntr a-group: 3
Inter-group: 8

Figure 7.5 Vertical Button Layout with OK, Cancel, Verbs,
Options, and Help

- Vertical with Options and Help

Recommended Minimum Button
Spacing (in Dialog Units):

Top: 6
Boltom: 6
Right: 6
Intra-group: 3
Inter-group: 8

Figure 7.6 Vertical Button Layout with Options and Help

B. Line buttons up across the bottom of the dialog (see Figures 7.7,7.8, and 7.9).
Group the command buttons according to whether they initiate an action
(that is, Add, Remove, Find) or not (that is, GoSub, GoTo, or unfold buttons).
If there is an OK button, OK and Cancel should be grouped together, separated
from the other action verbs (see Figure 7.8). If there is no OK button, Cancel
should be grouped with other action buttons. Space the buttons evenly within
each group, leaving at least 4 DDs between the right edge of one button and the
left edge of the next. Between groups, do not use horizontal lines, which simply
clutter the dialog; instead, insert at least an extra 5 DDs of white space, for a
minimum total of 9 DDs between groups. Leave at least 6 DDs between the
edge of the dialog and the edges of the buttons (that is, the left edge of the first

Using Dialog Boxes 135

button, the right edge ofthe last button, and the bottom of all the buttons).
Normally the buttons should all be the same width, but individual buttons may
be made wider to accommodate exceptionally long text (see Figure 7.9). It is
not necessary to align buttons with other dialog controls, because the buttons
should form their own visual group rather than being grouped with the other
controls.

Horizontal without Options and Help

Recommended Minimum Button

Spacing (in Dialog Units):

Bottom: 6
Left-Right: 6
Intra-group: 4
Inter-group: 9

Figure 7.7 Horizontal Button Layout Without Options and Help

Horizontal with Options and Help

Recommended Minimum Button Spacing
(in Dialog Units):

Bottom: 6
Left-Right: 6
Intra-group: 4
Inter-group: 9

Figure 7.8 Horizontal Button Layout with Options and Help

136 An Application Design Guide

- Horizontal with Long Button T eKt

11M.

Recommended Minimum Button Spacing
lin Dialog Units):

Bottom: 6
Left-RighI: 6
Intra-group: " Inter-group: 9

Figure 7.9 Horizontal Button Layout with Long Button Text

Additional guidelines:

• The most important button-typically, the default command-should be placed
at the top (if arrangement A is used) or at the left (if arrangement B is used),
followed by other command buttons that initiate actions, followed by remaining
command buttons (if present) in this order: GoTo or GoSub button, unfold
button, and Help button (see Figures 7.6 and 7.8).

• The Help button is placed after all other buttons so that it will be located near
the bottom right of the dialog, where it will be visible to users after they scan
the dialog.

• If an OK buttonS is present, place the Cancel button immediately after it; other­
wise, place the Cancel button after all other command buttons, but before GoTo
or GoSub, unfold, and Help buttons (see Figures 7.6 and 7.8). If OK is not the
default button, it should still be placed first. (This will keep its location con­
sistent with the large number of dialogs where it is first because it is the de­
fault.)

• If there is not enough room to fit all buttons in a single location, use arrange­
ment A for the most important command buttons and arrangement B for all
other command buttons.

5 If there is a single, obvious default action in the dialog box, use OK rather than a verb, For example, to
access the File Open dialog, the user selects Open from the File menu, and Open appears in the title bar of
the dialog, In this case, it is clear that the default action is to open something (a file or a directory), so there
is no need to repeat "Open" as the default button name; "OK" is sufficient. In contrast, if the nature of the
interaction in the dialog makes the intended action ambiguous (for example, if there are several possible
actions, none of which is clearly the default), consider replacing "OK" with a verb,

Using Dialog Boxes 137

• Except in message dialogs, arrangement A (vertical stacking at the right) is
more common than arrangement B (horizontal alignment at the bottom).
Accordingly, if either method would work equally well in terms of dialog lay­
out, arrangement A should be given priority because it will be more familiar to
users. Message dialogs are an exception to this rule; buttons in message dialogs
should be placed at the bottom (arrangement B), where they will not interfere
with the left-to-right flow of message text.

• The recommended minimum size for OK and Cancel buttons is 40 x 14 DUs.
The recommended minimum space between the left or right edge of a button
and the nearest edge of the text within the button is approximately the width of
a lowercase "n".

• Other arrangements may be used if there is a compelling reason, such as a natu­
ral mapping relationship. For example, it would make sense to place buttons
labeled North, South, East, and West in a compass-like layout.

7 .3.6 Command Buttons in Message Dialogs
Command buttons are the only controls used in message dialogs; they represent
the responses or choices offered to the user. The safest or most typical response
should be designated the default command button.

If a message requires no user choice and only needs acknowledgment, the message
dialog should contain only an OK button and (optionally) a Help button. (If this
type of message appears as the result of a dialog submission, acknowledging the
message should dismiss the message but leave the dialog open, so that the user can
correct the error.) If the message requires the user to make a choice, the dialog
should contain a button for each option. The clearest way to present the choices is
to ask the user a question and provide a button for each response. When possible,
questions should be phrased to permit Yes or No answers, which can be repre­
sented by Yes and No command buttons. The use of OK and Cancel buttons in
place of Yes and No is permissible. However, Yes and No are preferable, because
OK and Cancel can be ambiguous for questions that imply cancellation, such as
"Interrupt file transfer?" or "Delete reservation?" If the message cannot be phrased
unambiguously for Yes or No responses, the command buttons can instead be
labeled with the names of the relevant actions (for example, "Save" and "Delete").

Some message dialogs offer the user the following three choices:

• Performing a preliminary action (for example, saving data) before carrying out
the process that led to the message dialog (for example, closing a document).

• Not performing the preliminary action before carrying out the process.

• Canceling the process altogether.

138 An Application Design Guide

The appropriate buttons for this type of message dialog are Yes, No, and Cancel.
Yes means "Perform the preliminary action and then carry out the process"; No
means "Don't perform the preliminary action, but do carry out the process"; and
Cancel means "Don't perform the preliminary action, and don't carry out the
process either."

Help buttons in message dialogs are optional but highly recommended, especially
for warning and critical message dialogs.6 They allow the user to obtain further
information or suggestions about the problem described by the message.

7.4 Fonts in Dialogs
As mentioned in Chapter 6, section 6.9, a bold font is suggested for control labels
in dialogs, so that the labels remain legible when dimmed to reflect unavailability.
The font used for control labels in the dialog box is also typically used for other
text, but different fonts may be used if there is a good reason to do so. For example,
if a dialog displays a sample of text from another document, the text could be dis­
played in its original fonts. If reproducing the original fonts is too difficult, the text
could be displayed in a single font that is different from the font used in the rest of
the dialog. The use of a different font emphasizes that the displayed text represents
data from another document, rather than standard elements within the dialog.

7.5 Samples in Dialogs
Dialog boxes are frequently used to change visual properties or attributes. If the
changes selected in the dialog are not reflected immediately in the document, it is
helpful to provide a sample inside the dialog that shows the effect of the changes.
For example, the standard character properties dialog includes a text sample that
reflects changes to the font, type style, point size, and color (see Chapter 8,
Figure 8.10).

6 The user can also press the PI key to obtain help.

Common Dialog Boxes

Chapter 8

8.1 File Operations ... 141
8.1.1 File Open Dialog ... 141
8.1.2 File Save As Dialog .. 147
8.1.3 File New Dialog .. 148

8.2 Printing ... 148
8.2.1 Print Dialog ... 148
8.2.2 Print Setup Dialog ... 152

8.3 Text Search and Substitution .. 154
8.3.1 Command Names and Menu Location ... 154
8.3.2 Dialog Type and Operation of Commands 155
8.3.3 Labels .. 156
8.3.4 Other Controls .. 156

8.4 Character Properties ... 157
8.4.1 Character Dialog Box Controls .. 159

8.5 Page Setup Dialogs ... 162
8.6 About <Application-Name> Dialog .. 162

8.6.1 Recommended Elements .. 163
8.6.2 Optional Information .. 163

Common Dialog Boxes 141

This chapter describes common dialog boxes for the following operations:

• Opening and saving files (sections 8.1.1 and 8.1.2)

• Creating new documents (section 8.1.3)

• Printing files (section 8.2)

• Searching and replacing text strings (section 8.3)

• Setting character properties (section 8.4)

• Setting page margins (section 8.5)

• Displaying information about an application (section 8.6)

The dialog boxes discussed in this chapter provide a starting point for applica­
tions; they can be customized depending on an application's specific needs.

8.1 File Operations
The next three sections describe the new standard for File Open, File Save As, and
File New dialogs. Applications that use other dialogs that involve file browsing
(for example, Insert File) should model them after the File Open dialog.

8.1.1 File Open Dialog
Figure 8.1 shows the File Open dialog.

-::qI Open

FileN.ame: .!!.irectories:

I- I c:\win31

bootlOg.tKt II &c:\
setup.tKt iltwin31

I:ili::l msapps
I:ili::l system
I:ili::l temp

Ii I:ili::l wrkit • list Files of l.!'pe: Drixes:

ITeKt Files '".TXT) Ii] IIiiiiII c: Iii

FigureS.1 File Open Dialog

142 An Application Design Guide

8.1.1.1 Directories Control
The Directories control is a list box that displays:

• First, the parent directories, preceded by 12:7
• Next, the current directory, preceded by ~

• Finally, the child directories of the current directory, preceded by LJ

The directory icons and names are indented according to their depth in the
directory tree. To move to a directory, the user double-clicks the directory name or
icon, or selects it and then chooses OK (or presses EN1ER). If the indentation
causes directory names to be clipped at the right, a horizontal scroll bar appears at
the bottom of the list.

If the current directory contains so many child directories that there is not enough
room in the list box to display all the parents, the immediate parent is displayed at
the top of the list, followed by the current directory and its child directories. Dis­
playing the immediate parent helps the user maintain a sense of orientation in the
directory tree, and allows the user to move up at least one level in the directory
tree without having to scroll the list.

When the user switches to a new drive, the directory list box should always show
the root directory at the top, even in the rare case that the active path directory is
so far down in the directory tree that it is not visible. Displaying the root directory
at the top helps users orient themselves to the directory structure of the newly
selected drive.

Note that the Directories list box contains no " .. " entry because the parent directo­
ries are shown. Note also that the root directory is indicated by a drive letter
followed by a backslash (for example, "c:\"), not by the backslash alone.

Mter the user switches to a new directory, the keyboard focus may optionally
move to the File Name text box so that the user can type a new file name immedi­
ately. This automatic shift of focus away from the Directories control makes re­
peated directory navigation slightly more difficult for keyboard users. However,
most users will change directories only once (if at all) during each dialog invoca­
tion and will want to type a file name immediately after changing directories.

Common Dialog Boxes 143

8.1.1.1.1 Directory Tracking Text The non-editable text item above the
directory list box should show not only the current directory name (for example,
"xyz") but rather a longer string (for example, "c:\ .. \xyz") that indicates the cur­
rent position in the directory tree. To truncate this string when pathnames are long,
use the following rule: If N is the maximum number of wide characters (for ex­
ample, W is a wide character) that can fit in the available space after an initial
"c:\ .. ", the string should show as many entire nodes as will fit into N characters. It
should not show parts of nodes unless the number of entire nodes that will fit is
less than one; that is, unless even the last node will not fit. In that case, the begin­
ning of the last node should be truncated.

Table 8.1 lists truncation rules. Note that increasing N from 10 to 11 changes the
tracking text in all cases; increasing N from 11 to 12 changes the first two cases;
and increasing N from 12 to 13 only affects the "GammaAndDelta" case.

Table 8.1 Truncation of Directory Tracking Text

N Path Tracking Text

10 c:\Alpha\Beta\GammaAndDelta c :\. .. maAndDelta

10 c:\Alpha\Beta\Gamma\Delta c:\. .. \Delta

10 c:\Alpha\Beta\Gamm\Delta c:\. .. Gamm\Delta

11 c:\Alpha\Beta\GammaAndDelta c:\. .. mmaAndDelta

11 c:\Alpha\Beta\Gamma\Delta c:\. .. Gamma\Delta

11 c:\Alpha\Beta\Gamm\Delta c:\. .. \Gamm\Delta

12 c:\Alpha\Beta\GammaAndDelta c:\. .. ammaAndDelta

12 c:\Alpha\Beta\Gamma\Delta c:\. .. \Gamma\Delta

12 c:\Alpha\Beta\Gamm\Delta c:\. .. \Gamm\Delta

13 c:\Alpha\Beta\GammaAndDelta c:\. .. GammaAndDe1ta

13 c:\Alpha\Beta\Gamma\Delta c:\. .. \Gamma\Delta

13 c:\Alpha\Beta\Gamm\Delta c:\. .. \Gamm\Delta

144 An Application Design Guide

Showing a small number of whole nodes rather than parts of a larger number of
nodes is recommended for two reasons:

• First, whole nodes (for example, "Report" as opposed to "ort") are recognized
and understood more easily.

• Second, if parts of two nodes are displayed, the ellipsis between them is some­
what ambiguous. Unless the user knows the truncation rules, it is not immedi­
ately apparent that the last ellipsis represents truncation of only one node. For
example, "c:\ .. Beta\ .. amma" could represent "c:\a\b\Beta\Gamma",
"c:\a\b\Beta\Foo\Gamma", "c:\a\b\Beta\Foo\Bar\Gamma", and so on.

The recommended minimum length for N is 12. Because N does not include the
initial drive letter, colon, backslash, and ellipsis, 12 is enough for an 8-character
directory name, followed by a period and a 3-character extension. If possible, N
should be larger than 12 to allow more of the path to be displayed. I

8.1 .1.2 Drives Control
The drives are displayed in a drop-down list box labeled Drives. This list displays
the drive letter followed by the volume name (or server+share names), not the
drive letter alone. The suggested format for volume names is "c: [volume]" (with
two spaces after the colon, and the volume name in square brackets). For server+
share names, the format is similar, except that the brackets are omitted to save
space (for example, "f: \\server\Share"). Each drive name should be preceded by
an appropriate drive icon (floppy, hard disk, or network), as in the File Manager.
If the drives list is open and the selection is changed with arrow keys, the files list
is not updated until the drives list is collapsed, because on-the-fly updates would
take too long. The drives list can be collapsed with ALT+DOWN ARROW,

ALT+VP ARROW, TAB (which also navigates to the next control), or ENTER (which
does not close the dialog so the user can see the effect of changing drives).2

8.1.1.3 File Name Control
This control consists of a text box labeled File Name and a list box immediately
below it. The list box shows the existing files in the current directory. It should be
tall enough to contain at least eight items. The list box should track typing in the
text box, and selecting from the list should replace the contents of the text box.

1 N should be easily modifiable by product localizers so that it can be changed for different languages on
systems supporting long file names.

2 As explained in Chapter 6, section 6.3.1.3, drop-down lists no longer allow scrolling and autoselection in
their closed state. This prevents delays associated with processing or updating information.

Common Dialog Boxes 145

8.1.1.3.1 Entering a String in the File Name Text Box In the text box, the
user can type a file name, a filter, a drive, a directory, a complete path in the form
"drive:directory\ .. \filename", or a universal naming convention (UNC) pathname.

When the user types a string in the text box and presses ENTER, the following
algorithm is used to process the string:

• If the string is a filter, filter the list accordingly.

• If the string is not a filter, try to open the storage location (drive, directory, or
file) represented by the string.

• If successful, update the controls (if the string represents a drive or
directory) or close the dialog and display the file (if the string represents a
file). The updating of controls proceeds as if the new drive or directory had
been chosen in the drive or directory controls.

• If the open fails, divide the string into two parts (internally, not in the text
box): the part before the last backslash (\), which represents a drive or a path,
and the part after the last backslash. If the string contains no backslashes but
does contain a colon (:), divide the string at the colon, and leave the colon
attached to the first part of the string. (For example, "c:\foo" is divided into
"c:" and "foo"; while "c:\foo\bar.txt" is divided into "c:\foo" and "bar.txt";
and "c:foo" would be divided into "c:" and "foo".) Try to change to the drive
or directory represented by the first part of the string. In other words, elimi­
nate the part of the original string that might represent a file name, and try to
change to the drive or directory where the user thought the file was located.

8.1.1.3.2 Effect of Navigation on Contents of Text Box Suppose that the user
types a string in the text box, but then decides to navigate with the drive or
directory controls (without first pressing ENTER to confirm the string). Any initial
part of the string that could represent a drive or path is deleted, leaving only the
part that could be a file name. In practice, this means that characters from the text
box are deleted up to and including the last colon or backslash. The current filter is
always shown in the type control, so there is no need to reproduce it in the text box
and destroy a file name typed by the user.

8.1.1.4 Type Control
This control is a drop-down list labeled List Files of Type displayed below the list
of files. Selecting a type modifies the contents of the files list box so that only files
of the selected type are displayed. As an optional extension, applications can
precede each type description in the list with a distinctive icon. The same icons
can be used in the files list to distinguish between files of different types.

146 An Application Design Guide

The purpose of the type list is to allow users to view all files that match a set of cri­
teria, such as parent application (for example, Write), document category (for ex­
ample, spreadsheet or template), or file format (for example, TIFF). (The set of
criteria may be empty, in which case all files match it.) The type list adds the filter
name in parentheses after the class description, to acknowledge that the resulting
file list is based on name matches only, not on the more abstract class description.
For example, the type list may contain items such as TIFF Files (*. TIP), Write
Files (* .WRI) , and so on. An application can include any filter that is appropriate.

There are two additional optional extensions:

• User-supplied types can be added to the type list. If the user types a filter in the
text box that is not already included in the type list, the new filter becomes the
first item in the type list, but is not given a label. If the user types in another
new filter, this filter replaces the previous one; thus, the type list never includes
more than one user-defined filter. The user-defined filter is preserved in the list
in subsequent invocations of the dialog (but not in subsequent invocations of
the application); but the dialog always opens with the type set to the default
filter for the application.

• The type can optionally be preserved as the default during the current session.
For example, if the user changes the extension to *. TXT, this remains as the
filter until the user changes it or reruns the application. This allows the user to
browse for files of a particular type without having to reset the type filter
between invocations of the File Open command.

8.1.1.5 Layout
Most layout guidelines are shown in Figure 8.1. The following points deserve
explicit mention:

• Align control labels with the left edges of the controls, not with the text inside
the controls.

• Align the left edge of the List Files of Type control with the left edge of the File
Name text box and list.

• Align the left edge of the Drives control with the left edge of the Directories list.

• The layout of the command buttons follows the recommendations in Chapter 7,
section 7.3.5.

• Add application-specific controls either at the bottom of the dialog or under the
Cancel command button.

Common Dialog Boxes 147

8.1.2 File Save As Dialog
The File Save As dialog (see Figure 8.2) is similar in appearance to the File Open
dialog, except for the following differences:

• The dialog contains the File Name text box and the list box underneath, but the
list box items are dimmed and nonselectable, although still scrollable.

• The type control is labeled Save File as Type instead of List Files of Type.
Selecting a type specifies the format of the file to be saved. It also filters the list
offiles, but does not affect the files directly. The type control contains only for­
mat descriptions, such as Normal, Text Only, Windows Write, and so on.
Changing the type does not affect the contents of the File Name text box. Appli­
cations should provide appropriate extensions for each format and supply the
extension if the user does not specify one in the File Name box. The format
indicated by the type control overrides the extension specified by the user in the
File Name box.

-: Save As

FileH.ame: llilectolies:

c:\win31

IlZJ. c:\
.. win31
C!::ll msapps
C!::ll system
C!::ll temp
C!::ll Wlkit

Save File as !ype: Dliyes:

~IT_ex_t_Fi_le_s~(' __ T_XT~J __ ~I~_~ ~liB __ c_: __________ ~liJ~

Figure 8.2 File Save As Dialog

148 An Application Design Guide

8.1.3 File New Dialog

8.2 Printing

Applications that allow the user to create more than one type of document may
provide a File New dialog similar to that shown in Figure 8.3.

\1,1 orksheet
Chari
Macro Sheel

Figure 8.3 File New Dialog

The New list contains the predefined document types for the application, as well
as any document types that the user has created. When the dialog opens, the most
common document type should be selected as the default. When the user presses
the OK button, the dialog is closed, and a document based on the selected type is
created and displayed in a window. The File New dialog should not slow down the
process of document creation by requiring a user-supplied file name, because the
user may create a temporary document without intending to save it as a file.

As discussed in Chapter 5, section 5.4.2.1, the Print and Print Setup commands are
common items in the File menu. These commands lead to the common dialogs de­
scribed in sections 8.2.1 and 8.2.2. The Print dialog allows the user to set proper­
ties for a particular print job (for example, page range and number of copies). The
Print Setup dialog allows the user to set printing properties that will be stored with
the current document (for example, paper type and orientation). Both dialogs are
modal.

8.2.1 Print Dialog
The recommended format for the Print dialog is shown in Figure 8.4. The printing
properties set in the Print dialog last only for the duration of a particular print job;
they are not stored with the document.

,.;; Punt

Printer: System Printer (HP Laseriet Plus)

Print Range--------,

@AII
o S.!l.lection
Oeages

[rom: D 1.0: D

Print .Quality: I Final (300 dpiJ. J;;.opies: ITJI
D Print to File IZI Collate Copies

Figure 8.4 Print Dialog

Common Dialog Boxes 149

Most features of the Print dialog are self-explanatory, but a few deserve comment:

• In the Print Range group box, the Pages option button allows the user to print
specific pages (or units) by typing the appropriate numbers in the From and To
text boxes. You can enter ranges of pages as well; and leaving a box blank re­
sults in the printing of all remaining pages (or all preceding pages). Examples
are shown in Table 8.2:

Table 8.2 Printing Ranges

From: To: Print Result: *
1 1 Page 1

3 Page 3 to end of document
2 3 Pages 2 and 3

5 Beginning of document to page 5

3 Pages 3 to 1 in reverse order

* In pages or in other appropriate document units.

• The Print Quality drop-down list box allows the user to choose from the list of
printing resolutions provided by the printer device driver.

• If the Print to File check box is checked, a new dialog appears after the user
presses OK and asks for the name of the file to which the print output should be
sent. A file created in this way will print properly only on the printer for which
it was generated; it is a device-dependent file, not a metafile.

150 An Application Design Guide

• The Collate Copies check box is turned on by default. When printing multiple
copies of multipage documents on page-oriented printers, users can tum off this
check box to speed up printing.3 On printers that do not support the printing of
uncollated copies, the Collate Copies check box should always be checked, and
the check box and its label should both be dimmed.

• The Setup button allows the user to reach the Print Setup dialog without going
back to the File menu.

• The Options button unfolds the dialog to include application-specific options,
such as controls for reversing print order, printing hidden text, and so on, as de­
scribed in Chapter 7, section 7.1.2. This button may be omitted if the applica­
tion includes no printing options. Applications that include only one or two
printing options may also omit this button and simply add the options at the
bottom of the dialog.

When the user chooses Print from the File menu, the following two conditions are
tested before the Print dialog opens: Is the printer that was stored with the docu­
ment currently available? If not, has the current printer already been explicitly
chosen or acknowledged by the user? If neither of these conditions is met, a
warning message (see Figure 8.5) is displayed with the text:

This document was previously formatted for the printer "<stored
printer name>", but that printer is not available. Use system printer
"<default printer name>"?

The message dialog contains three buttons: Yes, No, and Setup. Pressing any of
these buttons closes the message dialog. Yes opens the Print dialog, No returns to
the document, and Setup opens the Print Setup dialog so that the user can choose a
different printer. The same tests are used if the user chooses Print Setup from the
File menu, but the resulting message dialog contains no Setup button, and the
message text is:

This document was previously formatted for the printer "<stored
printer name>", but that printer is not available. The initial
settings shown in the Print Setup ... dialog are for the current
system printer "<default printer name>".

3 On page-oriented printers, printing all the copies of the first page before going on to the second page is
faster than printing the entire document once before going on to the second copy of the document.

Common Dialog Boxes 151

~ Microsoft 'Write

(])
This document was preuious!p formatted for the printer

• ··PCLlHP LaserJ et on L TP1 : •• , but that printer is not available.
Use default printer "Postscript Printer on LPT2:"?

1 - Pllnt Setup

~ Pllnt
[Return to
Document)

Cboose prjnt [Controls)

[Controls)

Current = 5 tored
Printer? or Current
Printer has
been chosen or r
acknowledged?

NO YES r h
(I ~ _.. OK

.. _______ ... - SETUP CA~CEI I

~ M,crosoft 'Write

I Choose prjnt SetuQ
Current = 5 tored Printer
or Current Printer has
been chosen or
acknowledged?

YES NO
,J..

r!\ This document was preuiouslP formatted for the printer W ··PCLlHP Laserjet on LPT1 :"", but that printer is not available.
The initial settings shown in the Print Setup~._ dialog are
'or the current default printer ··Postscript Printer on LPT2: oo

•

Figure 8.5 Message Dialogs for Printing

A message is also provided if all the following conditions are met when the user
chooses Print or Print Setup:

• The document was previously stored with the default printer as the printer.

• The default printer was subsequently changed from the Control Panel.

• The new default printer does not support one of the settings (for example, land­
scape) that was previously stored with the document.

This "default printer changed" message does not change to reflect the condition;
there is just one general-purpose message, with slight variations for Print versus
Print Setup. For the Print dialog, the message is:

This document was previously formatted for a different default
printer, "<stored default printer name>". Use current default printer
"<current default printer name>"?

This message appears in a message dialog that contains Yes, No, and Setup but­
tons, like the "Non-default printer not available" message described previously
(see also Figure 8.5). If the user presses Yes, the default settings of the new de­
fault printer are used wherever the ones stored with the document aren't available.

For the Print Setup dialog, the "Default printer changed" message is:

152 An Application Design Guide

This document was previously formatted for a different default
printer, "<stored default printer name>". The initial settings shown
in the Print Setup ... dialog are for the current system printer
"<current default printer name>".

This message is displayed in a message dialog that contains OK and Cancel but­
tons, like the Print Setup version of the "Nondefault printer not available" message
described previously (see also Figure 8.5).

The user is not warned if the current printer matches the stored printer, but the cur­
rent orientation or paper type do not match the stored settings. This situation is
rare but could occur if a driver-specific dialog was used to modify the list of availa­
ble paper types for a particular printer. In this case, the application should simply
provide the best possible match to the stored values.

8.2.2 Print Setup Dialog
The recommended format for the Print Setup dialog is shown in Figure 8.6.4 The
printing properties set in this dialog are stored with the current document; they do
not affect systemwide defaults, which can be changed only from the system
Printer Setup dialog. Applications may expand the Print Setup dialog downward to
include controls for document-specific properties such as margin settings.

~ Print Setup

printer---------------------,

@ l!i.~·i.·~.~i(.~.i.!~.!.~!·j ...
(culienU, PostScript Printer on \\s,smki\pscript (lPT2:]J

o Specific e,rinter:

I PostScript Printer on \\s,smkt\pscript (lPT2:) II -
~o:rie:n:ta:l:io:n=~~~~=-=-=-:,~~p~a~pe:r~==::::==::::::==~

r:::?i @ Portrait Si~e: I leiter 8 112 H 11 in

~ 0 .ka~dscape .s.ource: I Upper Tra,

Figure 8.6 Print Setup Dialog

• II

When the user chooses Print Setup from the File menu, the application should test
the same conditions that are tested when Print is chosen (see Figure 8.5). The Print
Setup dialog operates as follows:

4 Note that the name is Print Setup, not Printer Setup. The latter name is now reserved for the system dialog
that changes systemwide printing defaults.

Common Dialog Boxes 153

• If the Default Printer option button is selected, the document is printed on the
printer established as the default by the system Printer Setup dialog. As a result,
if the user changes the system default printer, all documents that were stored
with the default printer setting will automatically print on the new printer. For
some documents, however, users may want to choose a particular target printer
and store that choice with the document so that the document will always print
on that printer, even if the system default printer is changed. This capability is
provided by the Specific Printer option button and its associated drop-down list.
The list entries are in the form "peL / HP Laserjet on LPTl," "PostScript
Printer on LPT2," and so on.

• The Orientation controls allow the user to choose portrait or landscape printing;
the icon changes to reflect the choice. In portrait mode, the lines of text or the
tops of the graphics are parallel to the short edge of the page; in landscape
mode they are parallel to the long edge. If one of the modes is not available for
the current combination of printer and paper type, the label and option button
for that mode are dimmed, and the option button for the available mode is
selected.

• The Paper Size drop-down list allows the user to choose from the list of paper
sizes provided by the printer device driver. This list specifies the paper sizes
that can be loaded into the printer, not the sizes that are actually loaded at the
time of printing. The list may also include custom forms added in the printer
properties dialog provided by the printer device driver. If the current printer
does not support the paper size that was stored with the document, the default
size for the current printer is used.

• The Paper Source drop-down list specifies the source of the paper (for example,
Upper Tray, Lower Tray, or Manual Feed).

• The Options button leads to a dialog that allows the user to select additional
driver-supplied printing options (for example, duplex printing) that will be
stored with the document. This button is dimmed if no such options are pro­
vided by the current printer driver.

154 An Application Design Guide

8.3 Text Search and Substitution
Most of the recommendations and design decisions for the common Find and Re­
place dialogs are shown in Figures 8.7 and 8.8; the key points are summarized
below. The recommendations have the following order of priority: (l) Command
names; (2) Names and behaviors of controls within dialogs; (3) Type of dialog
(modal versus modeless) and menu location of commands.s

~ Find

Find What: L:lo:..:..le::..:g'-=0.:c:.n _________ ----ll

D Match :!/lhole WOld Onl,

D Match.!;;ase

Figure 8.7 Find Dialog

[Dilection
OMp @I!own

~! Replace

I

Find What: L.:lo:..:.le::.:g!.:o.:::n _________ ----II
Rel!lace With: IWashington I _

D Match :!/lhole WOld Onl,

D Match.!;;ase

Figure 8.8 Replace Dialog

8.3.1 Command Names and Menu Location

--
The text search command should be named Find (rather than Search) in all applica­
tions. "Find" is a more common, familiar word. The substitution command should
be named Replace (rather than Change, which is too vague).

The Find and Replace commands should both be on the Edit menu. Replace is
clearly an editing operation; Find is less so, but is placed on the same menu as Re­
place because it is a logical component of that command. Placing both commands
on the Edit menu, which is present in all applications, will make the commands
easier to fmd for users of many different applications.

5 As shown in the illustrations, the Find and Replace dialogs are very similar. Applications may consolidate
the two dialogs and provide access to these functions through a single command called Find/Replace on
the Edit menu. If a single dialog is used, its design should be consistent with the guidelines for the Find
and Replace dialogs.

Common Dialog Boxes 155

8.3.2 Dialog Type and Operation of Commands
If possible, the dialogs invoked by the Find and Replace commands should be
modeless. If making the dialogs modeless is too difficult, they should at least have
a title bar and be movable, to let the user expose text hidden by the dialogs.

8.3.2.1 Operation ofthe Find Command
Searches in the Find dialog may proceed forward or backward, according to the
option chosen with the option buttons at the bottom of the dialog (see Figure 8.7).
Searches begin at the current insertion point or at the beginning of the current
selection. The top command button in the Find dialog is always labeled Find Next.
This button causes the search to proceed in the specified direction until the next in­
stance, if any, of the search text is found. Each time an instance is found, the docu­
ment is scrolled behind the dialog box to show the text and some context before
and after the text.

When a forward search reaches the end of the document or a backward search
reaches the beginning, a message is displayed. For forward searches, the following
text is suggested: "No matches found. Continue search from beginning of docu­
ment?" (where "document" may be replaced by "spreadsheet," "presentation," and
so on as appropriate). For backward searches, the text reads, "Continue search
from end of document?" In both cases, the message dialog contains two buttons
below the text: the default button Yes on the left, and Noon the right. Pressing
either button closes the message but leaves the Find dialog open. Pressing Yes
continues the search from the appropriate boundary of the document. If the other
boundary of the document is reached again, another message is shown, with the
text "No matches found. <Boundary> of document reached" (where <Boundary>
is "Beginning" or "End" as appropriate). This message contains a single button
labeled OK beneath the text. Pressing OK closes the message but leaves the Find
dialog open.

8.3.2.2 Operation of the Replace Command
The Replace command invokes a single four-button dialog that stays open until
the user has finished replacing text. The single-dialog model allows easy adjust­
ment of replacement text in the middle of a series of replacements, without requir­
ing the user to start over again.

The Replace dialog uses the document-boundary messages described for the Find
dialog. If the user changes the search string in the middle of a series of replace­
ments so that it no longer matches the current selection, the search is considered to
have restarted from the beginning of the selection. This new starting location is
used to determine document-boundary messages.

156 An Application Design Guide

8.3.3 Labels

The four command buttons for the Replace dialog are arranged as shown in
Figure 8.8.

• The top button is always the default button and is always labeled Find Next.
This button finds the next instance, if any, of the search text without replacing
the current instance.

• The second button is labeled Replace. This button replaces the current instance
of the search text and finds the next instance. The button is active when a selec­
tion matches the search string; otherwise it is dimmed.

• The third button is labeled Replace AlL If there is a selection when the dialog
opens or is reactivated, the button replaces all instances of the search text in the
selection and retains the selection. If there is no selection when the dialog opens
or is reactivated, this button replaces all instances of the search text from the
current location to the end of the document. The document-boundary message
discussed previously allows the user to continue the replacement operation
from the beginning of the document.

• The bottom button, Cancel, closes the dialog. The label of this button should
change to Close after the first replacement if replacements cannot be undone.

If the user uses the Find or Replace command to search for text, changes the cur­
sor location, and then continues the search, the next search starts at the new loca­
tion. If the user switches to another document window, the search proceeds from
the current cursor location of that window.

The Search text should be labeled Find What. Replacement text should be labeled
Replace With.

The check box for limiting matching to whole words should be labeled Match
Whole Word Only. The check box for turning on case sensitivity should be
labeled Match Case.

8.3.4 Other Controls

8.3.4.1 Direction Controls
All applications should include options for forward and backward searches in the
Find dialog. The simplest case will have only two such options (labeled either Up
and Down, or Forward and Backward), represented by option buttons in a group
box labeled Direction. Applications that include variations on these options (for
example, Forward from Start, Forward from Here) may use a drop-down list in
place of option buttons.

Common Dialog Boxes 157

8.3.4.2 Application-Specific Options
An Options button can be placed beneath the Cancel button in the Find dialog and
to the left of the Cancel button in the Replace dialog. This button unfolds the
dialog to include application-specific options (see Chapter 7, section 7.1.2). If
these options are used frequently, the application can provide easier access to them
by omitting the Options button and simply adding the options to the bottom of the
dialog.

8.4 Character Properties
Figure 8.9 shows the recommended format for the dialog used for changing
character properties such as font, size, type style, and color.

-, Font

£onl:
Bookman
'If Arial
~ AvanteGarde
~ Bookman
'If Courier
'If Helvelica-Nallow

Effects -------,

D Stri.!>.eout

D lJ.nderline
.l;.olor:

•

Font S~le:
Regular
Regular
Bold
Bold Italic
Italic
Demibold

[s··~aBbYYZz
T his font is from your printer -- Windows cannot

display it correctly on your screen

Figure 8.9 Basic Version of Character Properties Dialog

Applications that require advanced features can add them at the bottom of the
dialog. Figure 8.10 shows an example of how such features can be added.

158 An Application Design Guide

Eonl:
Times New Roman
~ Arial
~ AvanteGarde
~ Bookman
~ Courier
~ Helvetica-Narrow

Eflects ---------,
o llutline

o Stri.!>.eout

o !:!.idden

o Small Caps

o All Caps
Underline:

1 Single.
Color:

Font Sw.le:
Regular
Regular
Bold
Bold Italic
Italic
Demibold

Superisubscript:

1 None I.
~acing: !tJo:
LI N_o ___ rm_a_I __ 1 I.

[S"AaBb YyZz

Figure 8.10 Example of Enhanced Version of Character Properties Dialog

Adding features may involve adding new controls, altering old ones, or reposition­
ing otherwise unchanged controls to make the best use of space, but the overall
structure ofthe dialog should be preserved as much as possible. In Figure 8.10, for
example, the Underline check box has been changed to a drop-down list to allow
more underlining options, and the Sample box has been moved to make room for
the Super/Subscript and Spacing controls, but the appearance and position of the
buttons and the Font, Size, and Color controls remain essentially unchanged from
the basic dialog.

Applications that offer advanced features should use an expanded dialog rather
than an unfolding dialog, for two reasons:

• First, for many users, the only reason to invoke the dialog at all is to access the
advanced features because the basic ones are usually available in other ways
(for example, from menus, from a ribbon, or through keyboard shortcuts).
Accordingly, the advanced features should be immediately available without
the intermediate step of pressing an Options button_

• Second, it is difficult to construct a space-efficient basic dialog that neatly un­
folds into an advanced version through simple addition of elements. As Figures
8.9 and 8.10 show, the basic dialog has to be somewhat reorganized to accom­
modate new controls_ Having this reorganization suddenly occur after the user
presses the Options button would be visually disruptive_

Common Dialog Boxes 159

8.4.1 Character Dialog Box Controls

8.4.1.1 Choice of Controls
The font and size controls are combo boxes rather than lists for two reasons:
speed, because users can quickly type in names rather than seeking them in the
lists; and flexibility, since users who don't currently have a particular font or size
available can type its name, even though it doesn't appear in the list; the name will
be stored for later use.

8.4.1.2 Font Combo Box
This combo box lists font family names. If the user selects a printer font, the fol­
lowing message is displayed under the sample box: "This font is from your
printer-Windows cannot display it correctly on your screen." If the user selects a
screen font, the following message is displayed: "This is a Windows screen font­
it may not print correctly on your printer."

8.4.1.3 Font Style Combo Box
When the user selects a font style (that is, a particular weight, slant, or combina­
tion of weight and slant), the system attempts to provide a built-in typeface corre­
sponding to the selected style. For example, if the current font is Helvetica and the
user checks Bold and Italic, the system uses the built-in Helvetica Bold Italic type­
face. If a built-in font is not available, the system synthesizes it and displays the
following message under the sample box: "This font style is simulated by
Windows-it may not print correctly on your printer."

8.4.1.4 Size Combo Box
This combo box contains a list of point sizes. Users may type any size, but the list
box should provide the following sizes for TrueType™ and vector fonts: 8,9, 10,
11, 12, 14, 16, 18,20,22,24,26,28,36,48,72. (For fonts that are not infinitely
scalable, only actually available sizes should be listed.) Applications may alter this
list to suit the needs of their users; for example, desktop presentation programs
may want to include additional large sizes.

8.4.1.5 Effects Check Boxes
These check boxes allow the user to choose effects such as strikeout and under­
line, which do not involve weight and slant, and typically do not correspond to
built-in typefaces.

160 An Application Design Guide

8.4.1.6 Color List
This drop-down list may contain color patches followed by color names. Using a
list rather than a palette is recommended, because a palette would give too much
space and emphasis to a relatively infrequently used part of the dialog.

The list will contain the eight most commonly used standard system colors (black,
white, red, green, blue, yellow, cyan, and magenta) and additional colors if the
application provides them. On monochrome systems, the color patches will be
mapped to patterns. The choices available in the list should be independent of
what is currently available on the printer and on the display. Optionally, applica­
tions may include an Auto list entry, which means "Use black on the printer and
the system default text color on the screen."

Applications that provide a large set of colors may replace the color drop-down
list by a patch of the current color next to a button labeled Color, which leads to a
color selection dialog. The form of the dialog is not addressed in this guide.

8.4.1.7 Sample Box
The sample box contains the string "AaBbYyZz" displayed in the selected type­
face with all the selected attributes. "AaBb YyZz" includes one character with an
ascender and one with a descender, and will present fewer internationalization
problems than a sample word. The sample box should be at least large enough to
accommodate a 24-point font.

8.4.1.8 Command Buttons
The dialog contains two required command buttons (OK and Cancel) and two
optional buttons (Apply and Help).

• The OK button accepts all changes and closes the dialog.

• The Apply button applies all changes but leaves the dialog open. Although this
button is optional, we suggest including it whenever possible. The Apply button
is useful whether the dialog is modal or modeless. In modal dialogs, it allows
the user to see the effect of changes one step at a time; this makes it easier to
reverse a decision by resetting the property that was just changed. (The sample
box also shows the effect of changes but isn't sufficient by itself; the user must
press Apply to see the changes. Also, the sample box shows only a few charac­
ters.) In modeless dialogs, Apply is useful for the same reasons. In addition, it
allows the user to apply changes to one piece of text and then select a different
piece of text and apply different changes, without having to close and reopen
the dialog.

Common Dialog Boxes 161

• The Cancel button changes to Close once any changes have been applied. This
button closes the dialog, ignoring any changes made since the last Apply com­
mand but accepting all previous changes.

• The optional Help button allows the user to obtain further information about the
current font family or about the current combination of font family, size, and
attributes. For example, the Help information might provide advice on the most
appropriate uses for particular fonts. The exact content of Help information is
determined by the application.

8.4.1.9 Effect of Undo
If the dialog is modeless, it would be difficult for Edit Undo to restore all character
properties to their state before the dialog opened; too much could have happened
in the meantime. Instead, Undo should have one of the following effects (for con­
sistency, the same recommendations apply if the dialog is modal):

A. Reverse all formatting changes made to the last selection.

B. Reverse all formatting changes committed by the last Apply or OK. (If the user
commits some changes with Apply and then presses OK without making
further changes, Undo should cancel the changes made by Apply rather than
doing nothing.)

Option A is preferable, but B is acceptable if implementing A is too difficult. Here
is an example of how the two options would work:

1. User makes selection, opens dialog, checks Bold, presses Apply.

2. Bold formatting is added to the selection in the document window.

3. User checks Italic and Underline, presses Apply.

4. Selection is italicized and underlined.

5. User activates document window, either by clicking on it or by pressing OK or
Close to close the dialog.

6. User chooses Edit Undo. (Undo is dimmed if document window isn't active.)

7. In case A, the italics, underlining, and bold formatting are removed from the
selection; in case B, the italics and underlining are removed, but the bold
formatting is left intact.

162 An Application Design Guide

8.5 Page Setup Dialogs
There is no common dialog for setting page margins, but there is a standard layout
for text boxes used to set top, bottom, left, and right page margins. Consider the
following two layouts:

Option A:

OptionB:

Top
Bottom

Left
Top

Left
Right

Right
Bottom

Option A is the suggested layout because it places the two members of a natural
pair (two opposites) closer to each other. The arrangement also makes it easier to
compare the values of pair members. This is useful because the user often wants to
set paired margins equal (for example, top and bottom margins of 1 inch, left and
right margins of 1.25 inches).

8.6 About <Application-Name> Dialog
Figure 8.11 shows the common About <Application-Name> dialog. This dialog
should be accessed by an About <Application-Name> item on the Help menu.
Some elements of the dialog are recommended; others are optional.

III About Microsoft Sample Application

Microsoft SampleApp Version 2.0 1IIIItii
Cop~right@ 1990·1992 Microsoft Corporation

T his product is licensed to:
ELVIS Z. PRESLEY
S erial number: 1234567890123456

386 Enhanced Mode
Conventional Memow 18069 KB Free
Expanded M emor~: None
Math Co· processor: None
Disk Space: 39316 KB Free

Figure 8.11 About <.Application-Name> Dialog

Common Dialog Boxes 163

8.6.1 Recommended Elements
The dialog has a title bar that includes a title in the form About <Application­
Name>, where <Application-Name> is the official name of the application. The
fIrst line of the dialog repeats the offIcial name of the application. The second line
displays the version number. The next line contains a copyright statement in the
form "Copyright (c) 19xx-19xx <Corporation-Name>." An icon (or other
graphic) associated with the application appears to the left of these lines; this is
typically the icon used to identify the application on the desktop, but other icons
may also be used. An OK button appears in the top-right comer of the dialog.

8.6.2 Optional Information
The licensing information above the horizontal black line in the dialog is optional.
The system information below the line is optional but highly recommended. If pre­
sent, it should be formatted as shown in Figure 8.11. Note that the labels are left­
aligned, following standard dialog box style. If this information is not present, the
black line should be omitted. Applications may also add graphics, animated icons,
and logos, as appropriate, to the dialog box.

Object Linking and Embedding

Chapter 9

9.1 Compound Documents ... 167
9.2 OLE Concepts .. 168
9.3 OLE Interface ... 171

9.3.1 Clients and Servers ... 171
9.3.2 Inserting Objects ... 173
9.3.3 Viewing Objects ... 179
9.3.4 Activating Objects .. 180
9.3.5 Editing Objects ... 184

9.4 Links and Link Dialogs .. 187
9.4.1 Update Option Buttons ... 187
9.4.2 Link Command Buttons .. 188
9.4.3 Dialog Control Buttons ... 190
9.4.4 Link Status Entries .. 190
9.4.5 Other Dialogs for Link Updating ... 190

9.5 Status Line Message Recommendations .. 192

Object Linking and Embedding 167

This chapter introduces object linking and embedding (OLE), which is the process
of creating compound documents that contain embedded and linked objects. OLE
can best be understood through the concept of the compound document.

9.1 Compound Documents
Over the last decade, productivity applications have become sophisticated man­
agers of specific types of information; for example, spreadsheets, databases,
charts, richly formatted text, and so on. This specialization has resulted in an
inability to create documents that integrate different types of information; in
general, it is difficult to include charts in a spreadsheet, or tables and figures in a
text document.

This frustrates users who want to create documents that integrate several types of
information through one graphical interface, without switching between applica­
tions and without using cumbersome methods to assemble and to maintain inte­
grated information over time. Users want a consistent way to manipulate a given
type of information without dealing with different interfaces. For example, it is dif­
ficult enough to master one drawing tool, let alone different tools for different
applications; users want one drawing capability that they can access from all
applications.

The answer lies in the concept of compound documents. A compound document is
a container document that includes components from various source applications.
The compound document provides the framework for housing different compo­
nents and for invoking their respective applications.

In a compound document, users can point to any location and insert any kind of
information-for example, text, a table, a picture, or a chart. If the user wants to
insert a chart, the container application invokes a charting application. If the user
wants to insert a table, the container application invokes a spreadsheet application,
and so on.

In an ideal implementation of compound documents, the user is unaware that
different source applications are being invoked. The process of browsing, select­
ing, and editing information is seamless; users can manipulate various types of in­
formation within the body of a single document without the inconvenience of
switching from one application to another. They can create a single document that
either links (references) or embeds different packets of information (objects);
hence the term "object linking and embedding."

168 An Application Design Guide

OLE is the process of creating compound documents that contain embedded and
linked objects. These objects can be of the same type or of different types. For
example, the bulk of a Microsoft Word for Windows document (client.doc) shown
in Figure 9.1 is probably text, but it also contains a link to a Paintbrush™ object
illustrating the company's logo and embeds a Microsoft Graph object summariz­
ing the company's monthly expenses over the last year. Objects and their applica­
tions come in all shapes and sizes-voice objects, audiovisual objects, equation
editors, graphic designers, and so on. The power of OLE, however, is limited only
by the user's imagination (and perhaps by hardware).

Figure 9.1 Linked and Embedded Objects in Word Document (client. doc)

9.2 OLE Concepts

• Object. Objects are information entities (for example, text, graphics, sound,
video, and so on) that are the components of a compound document. An object
is like an opaque package that contains the source application's data (or a
linked reference to that data) and the name of the source application. OLE
objects are "opaque" because the container application never looks inside the
object and therefore doesn't need to understand its contents or its format.
Instead, the container application simply calls application programming inter­
faces (APIs) in the OLE dynamic link library whenever it needs to display an
object or wants to invoke the object's source application program.

• Class. The object class describes the type of information contained within an
object and is assigned by the server application. Examples of Microsoft object
classes include Drawing (Microsoft Draw), Picture (Microsoft Paintbrush),
Worksheet (Microsoft Excel), Document (Microsoft Word), and Chart (Micro­
soft Graph).

Object linking and Embedding 169

• Client. The client is the container application that produces the container docu­
ment. The use of the term "client" in OLE is similar to its use in network termi­
nology. That is, the application that receives and stores the object is the client.
For example, if a Microsoft Excel chart is embedded within a Word document,
Word is the client application, the Word document is the container document,
and the Microsoft Excel chart is the embedded object.

• Server. The server is the source application that produces the embedded or
linked object. The use of the term "server" in OLE is similar to its use in net­
work terminology. That is, the application that remotely creates, edits, and dis­
plays (or plays) the object is the server. For example, if a Paintbrush picture is
embedded within a Word document, Paintbrush is the server application and
the Paintbrush picture is the embedded object. In object linking, the server pro­
duces a source document from which the container document can extract
information (or an image thereof).

• Package. A package is a special type of OLE object that contains an OLE
object, a file, or a command line. It is represented by an arbitrary and selectable
icon or other graphic. Double-clicking a packaged object activates the object
inside the package. Packages present compact tokens of large files or OLE
objects. They also provide some of the functionality associated with hyperlinks.

• Embedding. Embedding is the process of inserting a new or an existing object
into a container document (see Figure 9.2). All information normally stored in a
file created by a server is instead embedded into the body of a file created by
the client. This allows all components of a compound document to be stored in
a single file. The user can spend more time composing and updating a single
document and less time dealing with the bookkeeping of multiple source docu­
ments. For example, embedding a chart within a Word document is easier than
remembering the location of the chart on disk.

• Linking. Linking achieves the effect of copying information from one docu­
ment into another without actually making a physical copy (whereas in embed­
ding the actual information is stored within the document). When the user links
information from a source document into a container document, the information
appears inside the container as if it had been physically copied there. In fact, the
container simply contains a link, that is, a reference to where the information
exists in the source document and where the source document can be found.
The container document uses the link to get this information when needed-for
example, when updating the display (sometimes a bitmap or metafile will be
placed into the container as a facade). Links provide an effective way for docu­
ments on a local drive or documents distributed over machines on a network to
share information. For example, Figure 9.3 shows how a Microsoft Excel work­
sheet that contains a summary of monthly financial transactions can be used for
linking. The user can link the summary lines (omitting the raw data) into an end­
of-month document for the manager and link all the data over a network into a
database at corporate headquarters. Updating the monthly transactions automat­
ically updates the end-of-month document and the corporate database.

Compound documents can contain any number of embedded and linked objects.

170 An Application Design Guide

Figure 9.2 Embedding (Microsoft Excel Worksheet
Embedded Within Word Document)

in C:\DOCS

'L-- LI N KED ----l"
--r-

in D:\DATA

Figure 9.3 Linking (Separate Word Documents Link
Fragment of Microsoft Excel Worksheet)

Object Linking and Embedding 171

9.3 OLE Interface
The OLE interface provides easy methods for inserting, editing, viewing, and
activating linked and embedded objects, and modifying the properties of such
objects.

9.3.1 Clients and Servers
The OLE process requires a dialog between client and server. Any application is
capable of being a client, a server, or both. In addition to the changes in function­
ality, there are several key differences in the interface of clients and servers.

• Clients have four commands added to the Edit menu below the Paste command:
Paste Special (and/or Paste Linkl), Links, Object, and Insert Object, (see
Figure 9.12). If there is an Insert menu, the Insert Object command may be
placed there as Object instead.

• There are two types of servers: full servers and mini-servers. The title bar for
both server types should read: "<Server> - <Descriptive-Class-Name> in
<Container-Document>" (see Figure 9.4). An object class must always be pre­
sented to the user (in window titles, list panes, dialogs, and so on) in the human­
readable format provided by the registration database. The client application
must supply an appropriate <Container-Document> string to the server. Be­
cause link servers open the source document, their title bars display the
standard information: "<Server> - <Source-Document>".

9.3.1.1 Mini-Servers
A mini-server looks like a dialog box and requires three command buttons: OK,
Cancel, and Help. (The example mini-server in Figure 9.4 includes an optional
Apply button.)

I Paste Link is optional if you have the preferred Paste Special command discussed in section 9.3.2.4.

172 An Application Design Guide

- Microsoft WordArt - WordArt in MINISRVR.WRI

Eont

Si.?;e

£tyle

Fill

Align

I Enumclaw

IBest Fit

lArch Up

I Center

III

III

III

III

Options --------,

o Shado.!!

o Color .!!ackground

LJ Stretch ¥.ertical

Preview

Figure 9.4 Mini-Server Interface

9.3.1.2 Full Servers

In Write,
double click

on)!our
Wordllrt to

edit it.

A full server is a stand-alone application with a full set of menus. In a full server
(or in a server window in an MDI application), the File menu should be modified
as follows (see Figure 9.5):

• The Save command should be replaced by Update <Container-Document>.
I

• The Close command (MDI applications) should be replaced by Close & Return
to <Container-Document>.

• The Save As command should change to Save Copy As.

• The Exit command should be replaced by Exit & Return to <Container-Docu­
ment>. The client application must supply the appropriate <Container-Docu­
ment> string to the server.

Additional note: SDI applications should not implement New and Open when run­
ning as servers. It is recommended that these commands be replaced by the Import
command, which would allow the loading of an existing file (object) without
severing the connection with the client. (See section 9.3.5.1.)

Object linking and Embedding 173

Microsoft Style Guide

Client Server

.. & Return to CLlENT.DOC

)iave
Save As ...

Page Se!up .••
Erint. ••
Print Setup

!!pdate CLIENT. DOC
Save Copy 8s ...

Page Se!up ...
Erint ••.
Print Setup ...

Figure 9.5 Full Server Interface Changes

If the user attempts to launch a server (for example, a mini-server) that cannot be
run as a stand-alone application, the error message shown in Figure 9.6 should be
issued.

-" Microsoft StyleGuide

SERVER.EXE can only be run from
within an applicllltion that supports
Object Linking & Embedding.

Figure 9.6 Warning Message When a Server Cannot Be Run Stand-Alone

9.3.2 Inserting Objects
The basic user interface for inserting linked and embedded objects relies on the fa­
miliar Cut, Copy, and Paste commands on the Edit menu, plus one additional com­
mand-Paste Special (and/or Paste Link)-for inserting linked objects and for
providing additional control over data formats. To accelerate object embedding,
applications should implement the Insert Object2 command. The use of Copy and
Paste is not limited to selected document fragments. Entire files may be linked or
embedded into documents and displayed as double-clickable icons (that is, pack­
ages) with Copy/Paste or by using drag/drop from the File Manager.

2 Paste Special and Insert Object are optional only if a cogent argument can be made for their omission.
Paste Link is optional if the preferred Paste Special is used.

174 An Application Design Guide

9.3.2.1 Inserting Embedded Objects with the Insert Object
Command
To accelerate the procedure for embedding new objects, applications should imple­
ment an Insert Object command. In applications that include an Insert menu, the
command should appear on that menu and should be called Object. In applications
that do not include an Insert menu, the command should appear on the Edit menu
and should be called Insert Object. The command leads to the dialog shown in
Figure 9.7.

~~ I nsert Object

llbiect T }Ope:
uation

Microsoft Excel Worksheet Object
Microsoft Ellt::el Chari
Microsoft Drawing
loiS Note·1t
loiS Works Chart
loiS Works Spreadsheet
Ob"ect Collection

Figure 9.7 Insert Object Dialog Box

The Object Type list box in the Insert Object dialog contains the descriptive object
class names drawn from the registration database maintained by Windows. The
client application must sort and display the list in alphabetical order. To embed an
object, the user selects its name from the list and presses OK. This results in the
following:

• A rectangle (default size is determined by the client application) immediately
appears at the insertion point as an interim placeholder until the new object
image is available. The rectangle is masked with the open visualization (see
Figure 9.13) to indicate that its server is currently open.

• The server application is launched for the selected object type. The server dis­
plays a blank or default window in which the user can create or edit the object.

If the client application fails to locate the requested server when the user selects
the entry from the Insert Object dialog or double-clicks on an object, the following
error message should be displayed.

Object linking and Embedding 175

- Write

The server application cannot be found.

Make sure that the application is properly
installed. 0 r exists ill your DOS path. and that it
has not been deleted. moved. or renamed.

Figure 9.8 Warning Message When Server Application Cannot Be Found

While editing, the user may select the Update <Container-Document> command
from the server's File menu at any time to place the current rendition of the
embedded object in the client at the current cursor location. (This will replace the
placeholder if it is the first update.) After editing is complete, the user selects the
Exit & Return to <Container-Document> command from the File menu of the
server. This command closes the server and returns focus to the container docu­
ment. If the user does not choose the Update command for a modified embedded
object before exiting, the prompt shown in Figure 9.9 is displayed.

- Microsoft StyleGuide

This object has been changed.
Update CLlENT.DOC before proceeding?

Figure 9.9 Warning Message When Exiting Server with a Modified
Embedded Object

9.3.2.2 Inserting Embedded Objects with Cut, Copy, and Paste
Although the Insert Object command for embedding objects is preferred, most
users are familiar with the Cut, Copy, and Paste commands and will want to use
these commands. The basic procedure for inserting embedded objects with Cut,
Copy, and Paste is simple. For example, inserting a drawing into a text document
requires the following steps:

• In the server application for the drawing, select all or part of the drawing and
choose the Copy (or Cut) command from the Edit menu.

176 An Application Design Guide

• Switch to the text application.

• In the text application, position the cursor as desired and choose the Paste
command from the Edit menu.

This procedure inserts the drawing at the current cursor location in the text
document.

In general, for applications that support OLE, the Paste command will embed the
object that is on the clipboard. Under some circumstances, however, the applica­
tion may choose not to embed the object. In particular, if the object is represented
on the clipboard not only by the embedded object format but also by an alternate
format that completely represents the original data and that the application knows
how to edit, the application should insert this editable data rather than embedding
the object. Most applications, however, will not be able to provide full editing
capabilities for alternate formats, so they will simply embed the object and allow
the source application to later function as a server.

Thus, in most applications that support OLE, the Paste command will embed the
object in the current document when the clipboard contains an object from another
application. Note that in applications that do not support OLE, the Paste command
simply inserts a static copy of the data without providing easy access to the tools
required to edit the data.

9.3.2.3 Inserting linked Objects with Copy and Paste link
Inserting linked objects is as easy as inserting embedded objects. To continue the
previous example, suppose that instead of embedding the drawing, the user wanted
to insert a link to the drawing. The following steps would be required:

• In the drawing application, select all or part of the drawing and choose the
Copy command from the Edit menu. (Do not use Cut because it eliminates the
source.)

• Switch to the text application.

• In the text application, position the cursor as desired and choose the Paste Link
(or Paste Special) command from the Edit menu.

Note that the only difference between linking and embedding an object is the selec­
tion of Paste Link instead of Paste in the final step.

This procedure inserts a linked object to the drawing at the current cursor location
in the text document. The drawing is displayed in the text document but stored in
the original drawing file. The link is an "automatic" link; in other words, when­
ever the drawing file changes, the drawing in the text file is updated automatically.
Automatic and manual links are described more fully in section 9.4.

Object Linking and Embedding 177

9.3.2.4 Selectively Inserting Linked and Embedded Objects with the
Paste Special Command
Some applications will need only the simple methods discussed in the preceding
sections for inserting linked and embedded objects. Most applications, however,
may want to provide additional control with the Paste Special command.

Some applications can interpret and edit data in a variety of formats-for example,
formatted text (that is, rich text format or RTF), ASCII text, bitmaps, and object­
oriented picture formats. These applications may provide a Paste Special com­
mand on the Edit menu to provide greater control over the format to be pasted.

By default, the standard Paste and Paste Link commands look on the clipboard for
a format that completely represents the original data and that the client application
can edit with its own tools. If such a format is found, the original data is translated
into that format and inserted into the client; if not, an image representing the origi­
nal data is usually inserted. In some cases, however, the user may want to override
the default format. For example, special tools or editing operations (for example,
rotation, translation, applying format) might be available only for a nondefault for­
mat (for example, copying the format, but not the contents, of a paragraph to
another paragraph). Alternatively, the user might want to force the data to be in­
serted as an embedded object so that the tools of the original creator application
can easily be invoked to edit the object. These format choices are supported by the
Paste Special dialog shown in Figure 9.10.3

- Paste Special

Source: Microsoft E~cefWorksheet
REVENUE.XLS R1 C1:R55C55

.!!ata hope:
Microsoft Excel Worksheet Obiect

Unformatted Text
Picture
Bitmap

Figure 9.10 Paste Special Dialog Box

3 Although not shown, a Help button may be included in the Paste Special dialog box if elaboration on data
types or paste behavior is useful.

178 An Application Design Guide

The Data Type list in the Paste Special dialog shows the fonnats available on the
clipboard that the client can process. The names of these fonnats should clearly
suggest the resulting capability of the pasted infonnation. The list also includes
one additional entry, <Descriptive-Class-Name> Object (for example, Microsoft
Excel Worksheet Object). When the dialog opens, the fonnat that would have
been used if the Paste command had been selected from the Edit menu is
highlighted. The dialog contains two command buttons, Paste and Paste Link,
which operate as follows:

• The Paste button translates the data into the selected fonnat and inserts it into
the document without establishing a link to the original source of the data. (If
the user does not change the default fonnat that is originally selected in the list,
pressing Paste in this dialog is equivalent to choosing Paste from the Edit
menu.) If the user selects <Descriptive-Class-Name> Object instead ofa data
fonnat, the data is not translated into a native fonnat, but inserted as an
embedded object.

• Like Paste, the Paste Link button translates the data into the selected fonnat and
inserts it into the document. (If a particular data type cannot support a link, the
Paste Link button is dimmed.) Unlike Paste, however, Paste Link establishes an
automatic link to the original source of the data. Because the Paste Special
dialog provides a superset of the functionality provided by the Paste Link com­
mand, applications that include Paste Special need not also include Paste Link.
The Paste Link button should be dimmed only when the clipboard does not con­
tain an object link fonnat. Paste-linking <Descriptive-Class-Name> Object be­
haves like any other link-that is, it inserts a facade into the container
document along with a reference to the source file.

9.3.2.5 Copying Linked Objects
When a linked object exists in one document, it can be inserted in other documents
with Copy and Paste (not Paste Link). For example, suppose that Documentl
contains Linkl, which refers to a bitmap in a graphics file (see Figure 9.11). If
Linkl is selected, the Copy command copies Linkl, not the bitmap that is the
source object. The Paste command then inserts a copy ofLinkl (which we can call
CopyOfLinkl) at the current cursor location. Like Linkl, CopyOfLinkl refers to
the original bitmap. If Paste Link is used instead of Paste, a link to (not a copy ot)
Linkl is inserted. This new link (LinkToLinkl) refers to Linkl, which in tum re­
fers to the original bitmap. Linkl, CopyOfLinkl, and LinkToLinkl all yield
exactly the same visual presentation (a representation of the original bitmap) in
their client documents, but Linkl and CopyOfLinkl refer directly to the bitmap,
whereas LinkToLinkl refers to the bitmap only indirectly, through Linkl.

Object Linking and Embedding 179

clientl.doc source.bmp

r&l _______ L-inkl ------+r&l
~ (Copy bitmap from ~

source.bmp, Paste Link into

client2.doc

client1.doc)

Lin kToLin kl

(Copy Link1 from
client1.doc, Paste Link
into dient2.doc)

client3.doc

CopyOfLinkl

(Copy Link1 from
Paste into client3.

Figure 9.11 Transferring Links: Paste vs. Paste Link

Just as linked objects can be copied from one location to another with Copy and
Paste, they can also be moved with Cut and Paste. In this respect, linked objects
behave like all other objects that can be manipulated from the clipboard.

9.3.3 Viewing Objects
Compound documents may contain several OLE objects interspersed with objects
that are native to the document. Because OLE objects support operations different
from those supported by the native objects, it is convenient to be able to visually
distinguish the two. For this purpose, applications should provide visual indica­
tions of OLE object boundaries. The boundaries for a particular object should
appear whenever the object is selected. In addition, applications should provide a
way for all object boundaries to be turned on or off at once, to facilitate easy view­
ing of all OLE objects in a document. For example, applications can reveal object
boundaries and other normally hidden information with a Hidden Structure
command on the View menu or a Show All check box in an Options dialog.

Figure 9.12 shows recommended boundaries for linked and embedded objects.

I I

~---------------~

Linked object with dotted borner Embedded object with solid border

Figure 9.12 Recommended Boundaries for Linked and Embedded Objects

180 An Application Design Guide

In addition, when an embedded or packaged object is open in the server applica­
tion, its appearance should be masked in the container document. The masking is
also applied to objects whose representation is an icon (like sound). There is no
masking for open linked objects.

Figure 9.13 shows recommended visuals for the inactive, selected, and open
(embedded or packaged objects only) states of an object.

Inactive

Selected

Opened

Figure 9.13 Visual Appearance Recommendations

9.3.4 Activating Objects
When OLE objects are inserted into a document, the standard user interface pro­
vides two methods for editing the objects: by double-clicking and through the Edit
menu <Descriptive-Class-Name> Object command.

Object Linking and Embedding 181

9.3.4.1 Double-Clicking
Double-clicking on the object boundary (or selecting the object and pressing
ENTER4) invokes the server application associated with the object. If the object is
unitary (that is, if only the whole object can be selected in the container document)
the user can double-click anywhere on the object to invoke the server.5 If the ser­
ver is an SDI server, a new instance of the server is started, even if one is already
running. This tight connection between the new instance and the current object
helps promote the impression that the object is an integral part of the compound
document in which it is displayed.

There are three exceptions to the rule that a new instance of the server should be
started to edit an object. No new instance is necessary in the following cases:

1. The object is already open in an existing instance of the server. In this case, the
existing instance should be surfaced.

2. The server application is an MDI application and is the same as the client
application (that is, the editor for the object is the client itself). The appropriate
behavior depends on whether the link is external or internal.

a. External links: For example, suppose that one Word document contains a
link to another Word document. In this case, double-clicking on the linked
object should not start a new instance of Word. Instead, if a document win­
dow for the source document is already open within the current instance
(case 1 above), that document window should be surfaced. Otherwise, a new
document window should be opened for it within the current instance of
Word.

b. Internal links: If the link refers to another part of the same document, double­
clicking on the linked object should scroll to show the source of the link.

3. If the server is an MDI application that does not use memory efficiently when
multiple instances are running, it should make an intelligent decision about
what to do. For example, the application can check available memory to see
whether running one more instance is likely to cause problems. If so, the appli­
cation can issue a warning and/or offer the user a choice between starting a new
instance or loading the file into an existing instance.

4 Selection+ENTER need not be implemented in a single or multiple-edit line because, by default, this should
replace the selection with a carriage return and a line feed. In this case, the user can activate the object by
using the <Descriptive-Class-Name> Object command discussed in section 9.3.4.2.

5 The double-click or (selection+ENTER) starts the server and invokes the primary verb for that object. Some­
times the primary verb is not Edit. Instead, it is an Activate-type verb such as Run (for a script), Play (for a
voice note), and so on. The distinction between primary and secondary verbs is described further in the
discussion of the <Descriptive-Class-Name> Object command in section 9.3.4.2.

182 An Application Design Guide

9.3.4.2 The <Descriptive-Class-Name> Object Command
If an object supports only one verb, it appears as <Verb-O> <Descriptive-Class­
Name> Object on the Edit menu. If an object supports multiple verbs, they appear
within a cascading menu; selecting <Descriptive-Class-Name> Object from the
Edit menu displays a submenu for <Verb-O>, <Verb-l>, and so on. Scripts,
videos, and voice notes are examples of objects that may support multiple verbs
such as play, edit, and rewind.6 The commands should change dynamically in the
menus to reflect object class-specific verb names retrieved from the registration
database. The menus must access the verbs from the database; no fixed commands
should be used. These verbs should be registered as mixed-case strings and follow
the general style of menu commands described in Chapter 5. Each registered verb
should also have an assigned mnemonic (underlined letter) for keyboard access.
Also note that each verb should be a single word to ensure that the status bar mes­
sages and menus in the client application (described later) will read correctly.

If a selection contains multiple objects of the same class or of different classes, the
object verbs should not be available to the user. The object verbs should appear
only when there is exactly one object in the current selection; no attempt should be
made to join verbs of multiple objects in a selection.7

The most frequent operations for an object should be registered as its primary verb
(<Verb-O». Mouse users can invoke the primary verb through double-clicking;
keyboard users can invoke the primary verb by selecting the object and pressing
ENTER. 8

Figure 9.14 shows an example of a <Descriptive-Class-Name> Object submenu
that leads to dynamic, object-specific menu items. The primary verb is accessed
by the first (topmost) item, followed by subsequent verbs in order.

6 When such an object plays, if possible, it should provide a way for the user to interrupt playing and start
editing. For example, a voice note can display a control panel with buttons for stop, rewind, and so on.

7 Verbs are not displayed even if the selection contains objects of the same class, because applying a verb
concurrently to the whole set would have ambiguous results.

8 Selection+ENTER need not be implemented in a single or multiple-edit line because, by default, this should
replace the selection with a carriage return and a line feed. In this case, the user can activate the object by
using the <Class> Object command.

Object Linking and Embedding 183

Figure 9.14 <.Descriptive-Class-Name> Object Command with
Object-Specific Verbs

For packages (which are always embedded, never linked), the primary verb is the
primary verb of the object inside the package; the primary menu item name is
Activate Contents. This means that the mouse user can invoke the primary verb of
the object inside the package by double-clicking on the package icon.

The secondary verb for a package is Edit Package. Selecting this verb invokes the
Packager. Some objects (for example, text objects) have no secondary verb. For
such objects, the <Descriptive-Class-Name> Object command does not lead to a
cascading menu; the command simply executes the primary verb. The verb is pre­
pended to the menu item: <Verb> <Descriptive-Class-Name> Object. For
example, if the object is a Word document, the menu item is Edit Word Document
Object.

9.3.4.3 Busy and Unavailable Servers
A server may be busy or unavailable for several reasons. For example, it may be
busy printing, it may be waiting for user input to a modeless error message, or it
may be hung or accidentally deleted. If the server is not available, the warning
message in Figure 9.15 should be displayed. The recommended time between the
first request and displaying the dialog is 2-3 seconds.

184 An Application Design Guide

:w:: Microsoft StyleGuide

This action cannot be completed because
SERVER is busy. You may 'Switch to'
SERVER and correct the problem or you
may 'Cancel' the action for now.

Figure 9.15 Server Busy Warning Message

Three different cases can cause the warning message in Figure 9.15 to be dis­
played: Busy, Blocked, and OLE_BUSY. Table 9.1 describes the behavior of the
buttons in each case.

Table 9.1 Behavior Caused by Different States

State Caused By Button Pressed

Switch To ... Cancel

Busy Client receives Will invoke The OLE operation is
OLE_QUERY _RETRY Task Manager discontinued. The
callback notification dialog is dismissed.

Blocked Client timed out before Will invoke The OLE operation will
getting OLE_RELEASE Task Manager continue. The dialog is

dismissed.

OLE_BUSY OLE libraries returned Will invoke The previous OLE
OLE_BUSY from an Task Manager operation will continue.
API call The dialog is dismissed.

9.3.5 Editing Objects
When the server window opens, the object is loaded into the window. For embed­
ded objects, the window is initially sized to show only the portion of the object
that was displayed in the client.9 The user can resize the window to display addi­
tional portions of the embedded object. In the case of linked objects, the entire
linked file is loaded, and the linked portion is selected. If possible, the server
should not corne up maximized and should obscure as little of the object in the
container document as possible.

9 Some embedded objects such as spreadsheets may include portions that are not displayed. These hidden
portions are included only if the displayed portion draws data from them.

Object linking and Embedding 185

The user can modify the object with the editing tools provided by the server. The
process for updating the object in the container file varies depending on whether
the server supports the single document interface (SDI) or the multiple document
interface (MDI).

9.3.5.1 Updating Objects from SOl Servers

9.3.5.1.1 The Update Command When an SDI application functions as a
server for an embedded object, the Save command on the File menu changes to
Update, as illustrated in Figure 9.5. (This change occurs only for embedded ob­
jects, not for linked objects.) The Update command updates the object in the con­
tainer document, but (like Save) does not close the server; the server is left open to
allow the user to make further changes after seeing the effects (for example, re­
pagination) of the update in the client. If the user tries to exit the server without up­
dating the object, the warning message shown in Figure 9.8 is displayed.

9.3.5.1.2 The Save Copy As, File New, and Open Commands When editing
an embedded object, the user can choose the Save Copy As command from the
File menu to save a copy of the embedded object in a separate file. Save Copy As
does not sever the connection with the client. The inclusion of the New or Open
commands in the File menu is not recommended for SDI applications. These com­
mands should be replaced by the Import command, which allows the user to load
an existing file (object) into the server application without severing the connection
between the server and the client application.

If an SDI application implements the File New and File Open commands, which
sever the connection to the client, the warning shown in Figure 9.16 should be
displayed.

-! Microsoft StyleGuide

This object has been changed.
Update CLlENT.DOC before proceeding?

Figure 9.16 Warning Message when Terminating OLE Connection with
Modified Object

186 An Application Design Guide

9.3.5.1.3 Closing (Exiting) a Server or a Client When the server closes, the
focus returns to the client. If the user closes a client while servers for that client
are still open, the usual client application save confirmation appears. (The con­
tainer document is considered modified as soon as any object is opened.) If the
user chooses to save the container document, all objects are updated without
prompting before the file is actually saved. Declining to save the file will likewise
discard any modifications made to the objects.

9.3.5.2 Updating Objects from MOl Servers
The procedure for editing and updating objects from MDI servers is similar to the
procedure for SDI servers, with the following exceptions:

• If the focus changes from the embedded object window to a "normal" docu­
ment window (that is, a window containing an existing file or a new document),
the File menu reflects that of a client (see Figure 9.5). If the embedded object
window regains focus, File menu reflects that of a server again.

• When the user chooses the File New or File Open command, the window
containing the embedded object remains open. Therefore, it is not necessary to
display any warning messages about updating the object.

• When the user chooses the File Save As command, the client application is
informed and the link follows the newly saved file.

9.3.5.3 Operations in Clients Containing Open OLE Objects

9.3.5.3.1 Save Command When the user saves the container document with
the File Save command, all open objects are automatically updated in the con­
tainer document before the document is saved. The server application remains
open.

9.3 .. 5.3.2 Delete Command Deleting a selection destroys objects (whether or
not they are open) just as it destroys native data. Servers of deleted objects close
silently. The client should request an update from the server before deletion so that
the user can get the latest updates in the case of an undo.

9.3.5.3.3 Close (Exit) Command The case of closing a client containing an
open object was discussed in section 9.3.5.1.3.

9.3.5.3.4 Cut and Copy Commands When the user chooses the Cut or Copy
command, open objects will silently update and the updated versions will be car­
ried to the clipboard. Copying open objects leave their servers open and connected
to the original object; cutting open objects close their servers.

Object linking and Embedding 187

9.3.5.3.5 Paste Command (Dropping on, Inserting over, Typing over, etc.)
Pasting over objects (whether or not they are open) replaces them just as it re­
places native data. Pasting over open objects also closes their servers. Before clos­
ing the server, the client should request an update to prevent data loss in the case
that the user wants to undo the paste operation.

9.4 Links and Link Dialogs
Links are "displayed" references to data stored in external documents (or some­
times to data stored within the same document), as illustrated in Figure 9.1.
Because linking relies on a dialog with source documents, an interface for main­
taining and updating such links is necessary. Figure 9.17 shows the Links dialog,
which allows users to change the type of updating (automatic or manual) for links,
update linked objects, cancel links, and repair broken links.

links:
VideoPro Video

Word Document
Word Document
PowerPoint Slide

-- I."

Update: O,Automatic @ lti~~~~i:

Figure 9.17 Links Dialog

Links

OLE-DOC
OLE.DOC
UIGUIDE_PPT

h arne l-frame564 Automatic

DDE link5
DOE linkl
slide3

Unavailab
Unavaila~
Manual

When the Links dialog first opens, the Links list shows each link contained in the
document. Links contained in the current selection in the document are initially
selected in the list. (Embedded objects are not shown in the list.) The list is an
extended-selection list; the user can select one or several links by using
SHIFT+click for range selection and cTRL+click for disjoint selection, as described
in Chapter 3, section 3.1.2.1.

9.4.1 Update Option Buttons
Below the Links list, the Links dialog contains two Update option buttons: Auto­
matic and Manual. When the dialog opens, these buttons reflect whether the cur­
rently selected links are automatically updated whenever the linked file changes,
or whether they must be manually updated. If the selected links have different
update rules, neither button is selected. In this case, choosing one of the buttons
changes all the selected links to have the corresponding update behavior.

188 An Application Design Guide

9.4.2 Link Command Buttons
At the bottom of the Links dialog, three push buttons allow the user to update,
cancel, and change the selected links.

• Update Now updates all links selected in the Links list. In other words, the pre­
sentations of the linked objects in the client are updated to reflect the current
data in the linked files. Suppose that the selected links are all associated with a
file called SOURCE.DOC. It is possible that the client contains other, currently
unselected links associated with the same file. In this case, after the selected
links are updated, the message dialog shown in Figure 9.18 is displayed. If the
links selected originally are associated with several files and if the document
contains other unselected links to those files, the message dialog is displayed
once for each file.

Microsoft StyleGuide

The selected links to SOURCE.XLS have been
updated. CLlENT.DOC contains additional links
to SOURCE.XLS,

Update additional links?

Figure 9.18 Message for Updating Additional Links to the Same File

• Cancel Link permanently breaks the link between the client and the server. The
linked object in the container document is changed to a picture that can no
longer be updated or edited with the standard OLE techniques. The picture can
still be edited with the older Cut, Copy, and Paste techniques, but it is unlikely
that the picture will retain all the data present in the original linked object.
When the user presses the Cancel Link button, the entry for the link disappears
from the Links list in the Links dialog. Offering the option of changing an
embedded object into a picture should be part of an application's own controls
(like a menu or a button).

• The Change Link button is dimmed if the selection in the Links list includes
multiple links that are not all linked to the same file. Otherwise, the button is
active and leads to a dialog exactly like the File Open dialog, except that the
title is Change Link (see Figure 9.19). The standard File Open dialog is de­
scribed in Chapter 8, section 8.1.1.

File Jiame:

payroll_xis
schedule_xis
income_xis
revenue_xis

list Files of !ype:

IldiCI08011 EIGcl '".1111) III

Change Link

Jlirectories:
c:\sheets

E;7c:\

o corp
~ finance

Driyes:

IIiiiI c: ms-dos_'5

Figure 9.19 Change Link Dialog Box

Object Linking and Embedding 189

1111

The Change Link dialog allows the user to change the file to which a link re­
fers. For example, if a linked file is renamed or moved to a new location, this
dialog lets the user reconnect the link in the container document, using the new
name or the new location of the linked file.

When the user chooses a file and presses OK in the Change Link dialog, the
links that were selected in the Links list are disconnected from their previous
file and connected to the newly chosen file. It is possible that the previous file
was also associated with other, currently unselected links in the container docu­
ment. In this case, after the selected links are changed, the message dialog
shown in Figure 9.20 is displayed. This message is analogous to the one shown
in Figure 9.17.

Microsoft SWleGuide

(~I.·.·. The selected links to SOURCE.XLS have been
Ci) changed. CLlENT.DOC contains additional links

to SOURCE.XLS.

Change add itional links?

Figure 9.20 Message for Changing Additional Links to the Same File

190 An Application Design Guide

9.4.3 Dialog Control Buttons
• The OK button confirms the changes that the user made in the dialog and closes

the dialog.

• The Cancel button discards all the changes that the user made and closes the
dialog.

9.4.4 Link Status Entries
The link status entries in the Links list box consist of four parts: the human-read­
able form of the class name, the source file for the link, the item name for the link,
and the status of the link.

• The human-readable form of the class name is the string that is registered in the
registration database for that object class.

• The source file for the link contains the full pathname for the link. If the full
path is too long to be displayed, the entry should be truncated.

• The item name contains the server-specific item name for the object.

• The status of the link can be Automatic, Manual, or Unavailable:

• An automatic link is updated automatically when it is changed in the server
or when the linked object is loaded and the server is open with that object. It
is also updated when the linked object is loaded and the user responds "Yes"
to the Link Update Message Dialog (Figure 9.21).

• A manual link is a link that the user must explicitly update through the Links
dialog. The update takes place when the link is selected and the user presses
the Update Link button in the Links dialog.

• The link receives an unavailable status when the attempt to update the link
(upon loading the file or requesting OleUpdate) fails.

9.4.5 Other Dialogs for Link Updating
When the user opens a file containing links (manual or automatic IO), a message
dialog is displayed to ask the user whether to update the links (see Figure 9.21).
If the user presses the Yes button, the application updates all of the links.

10 Automatic links are not automatically updated unless the server is open and the source of the link is
loaded, because this could make simple viewing of the file cum1;lersome,

Microsoft StyleGuide

This file contains links to other
documents.

Update links now?

Figure 9.21 Link Update Message Dialog

Object Linking and Embedding 191

The progress indicator shown in Figure 9.22 may be displayed while the links are
being updated. The Cancel button interrupts the update process and cancels all
updating that has already been carried out.

- Microsoft StyleGuide

Updating links ...

70%
I •••••••••••••••••••••

Figure 9.22 Progress Indicator for Link Updating

If some of the linked files are unavailable, the warning dialog shown in Figure 9.23
is displayed. This dialog contains two buttons, OK and Links. The OK button
closes the dialog without updating the links. The Links button displays the Links
dialog (see Figure 9.17) with all the links listed. Unavailable linked files are
marked with the word "Unavailable" in the third column of the list. The user can
attempt to locate the unavailable files by using the Change Link dialog (see
Figure 9.19), which is available from the Change Link command button in the
Links dialog.

Microsoft StyleGuide

Some linked files were unavailable
and could not be updated.

Figure 9.23 Warning Message for Unavailable Links

192 An Application Design Guide

9.5 Status Line Message Recommendations
If a client application uses the status line to elaborate on menu commands, the
messages below can be used for OLE commands.

Table 9.2 Status Line Messages

Menu Commands

File Menu

Update

Save Copy As

Exit & Return to
<Container-Document>

Edit Menu

Paste

Paste Special

Paste Link

Insert Object

< Verb> 12<Descriptive-Class-N ame>
Object

<Descriptive-Class-Name> Object

<Descriptive-Class-Name> Object
<Verb>

Links

Options (Preferences) Menu

Show Objects

Mouse Interface

When an object is selected

Status Line Message

Update changes in <Container­
Document>

Save a copy of <Descriptive-Class­
Name> in a separate file

Exit <Server> and return to <Container­
Document>

Inserts clipboard contents as <Default­
Data-Type> 11

Inserts clipboard contents as a linked
object, embedded object, or other format

Inserts a link to <Descriptive-Class­
Name> Object from <Source-Document>

Inserts a new embedded object

None

Apply the following commands to
<Descriptive-Class-Name> Object

None

Allows links to be viewed, updated,
opened, or canceled

Displays the borders around objects
(toggle)

Double-click to <Primary-Verb>
<Descriptive-Class-Name> Object

11<De!ault-Data-Type> is identical to the initially highlighted value in the Paste Special Data Type list.
This status line message indicates the data format used to paste clipboard contents.

12If no verb in the registration database is specified, "Activate" should be used as the default.

The Pen Interface

Chapter 10

10.1 Pen Input. .. 195
10.1.1 Pointing .. 195
10.1.2 Writing ... 195
10.1.3 Dragging ... 195
10.1.4 Gestures ... 196

10.2 Designing Pen Interfaces .. 200
10.2.1 Simplicity and Directness ... 200
10.2.2 Recognition Issues .. 202
10.2.3 Hardware Constraints ... 206

The Pen Interface 195

Pen-based computers let users provide input by tapping or writing on the surface
of the computer screen with a special pen. The pen provides a natural and intuitive
way of interacting with the computer. The number of pen-capable computers and
applications is expected to grow rapidly in the next few years. Any application that
makes good use of menus and graphical controls has a head start on a good pen
interface.

10.1 Pen Input
The pen can be used for both pointing and writing, depending on where it is placed.

10.1.1 POinting ~
When the pen is moved over menus or controls, it becomes a pointing device and
lets the user select menu commands, choose buttons, or perform other mouse-like
operations. Tappingl the pen once on the screen is equivalent to clicking mouse
button 1 once. A double-tap is equivalent to a double-click. If the user holds down
the barrel button of the pen while tapping, the tap is equivalent to a click with
mouse button 2.

10.1.2 Writing "
When the pen is over an edit control or a text area, it becomes a writing tool and
the pointer changes into a pen shape. When the tip of the pen touches the screen,
the pen starts "inking"-that is, tracing lines on the screen. The user can draw
shapes, characters, and other patterns; these can remain on the screen exactly as
drawn or can be recognized, interpreted, and redisplayed.

10.1.3 Dragging
The pen retains the power of the mouse even in contexts where it normally func­
tions as a writing or a drawing tool. If the user presses the pen tip down on a text
area and holds it steady for a certain period before moving it, the subsequent pen
movements are interpreted as mouse movements. Thus, the pen can be used for
drag selection of text, outline selection of graphical objects, object movement, and
other mouselike operations.

I To tap, the user presses the pen tip on the screen and releases it without moving the pen.

196 An Application Design Guide

Table 10.1 summarizes the principal pen techniques described above and gives a
few examples of their use.

Table 10.1 Pen Techniques

Technique

Tap

Double-tap

Drag

Press/hold/drag

Write/draw

Examples of Use

Select object or menu command; set insertion point in text;
push command button.

Open object; select word.

Move object (for example, to move a window, drag its title bar);
resize object (for example, to resize a window, drag its border;
to resize a graphical object, drag its resize handles).

Select text from pen-down location to pen-up location; perform
drag operations (for example, object movement or marquee
selection) in contexts where the pen normally functions as a
writing or drawing tool.

Enter text or graphics; execute gestural commands
(see Table 10.2).

When the pen is used for writing, certain ink patterns are interpreted as "gestures"
-special symbols that issue a command, such as deleting text, or produce a non­
printing text character, such as a carriage return or a TAB. For example, the "A"
shape is equivalent to the Paste command. Mter a gesture is interpreted, its ink is
removed from the display. Table 10.2 lists the 12 standard pen gestures.

The Pen Interface 197

Table 10.2 Pen Gestures
Name Glyph Hot Spot Acts Where? Granularity Effect Equivalent** Comments

Space tk- Insert space Space character Don't replace
where drawn. selection. (For

non-positional

New Line ~ First point Insert new line New line operation,

where drawn. character which replaces
selection, use

Tab Insertion Insert tab Tab character
on-screen key-

T- board, menu,
point where drawn. or circled

letters.)
Paste /\ Top Positional Paste where SHIFf+INS***

drawn.

Extend

1 tlt2
Center Extend selection SHIFf+click Start downward

Selection from anchor to avoid con-
point to gesture. fusion with t.

Backspace

~
Lowest Character Delete character BACKSPACE Start in either
point under gesture. direction.

Delete ..:L.. Left, right Word Delete words Double-click
Words 04- under gesture. +DEL****

Edit Text .I Inside center Put selection -

of lower "v" (if any) or word
into Edit Text
dialog.

Cut

%
First point Selection Cut selection if SHIFf+DEL***

Act on selection or word any, otherwise
if one exists; cut word under
otherwise gesture.*
positional*

Copy
~

Center of (always Copy selection CTRL+INS*** Feedback: copy
bounding positional in if any, otherwise pointer flashes.

boxed edit box controls). copy word under
gesture. *

Delete y: Lowest Selection Delete selection DEL Start in either
point or character if any, otherwise direction.

delete character
under gesture. *

Undo 0 None Non-positional Operation Undo last ALT+
operation. BACKSPACE***

* Cut, Copy, and Delete never act positionally in Windows applications that were not designed for the pen. If there is no selection, they
act at the insertion point. For Cut and Copy, this usually means that no operation is performed.

** This column specifies keyboard and mouse equivalents used in Windows applications that were not designed specifically for the pen.

*** This column is not intended to represent the recommended shortcuts for Cut/Copy/paste, but to show the mapping that Windows for
Pen Computing uses for compatibility with Windows version 3.0 applications.

**** Note that double-click+DEL deletes only one word, whereas the Delete Words gesture is capable of deleting multiple words.

198 An Application Design Guide

10.1.4.1 Positionalily of Gestures
Most gestures act positionally. They contain a "hot spot" that can be used to deter­
mine where the gesture should act. For example, the hot spot of the Paste gesture
is at the top of the "A" shape. When the user draws the Paste gesture, the pasted
data is inserted at the location of the hot spot.

Undo is the only gesture that never acts positionally. Regardless of where the user
draws it, this gesture cancels the last operation. Positional, object-specific Undo
functionality is a possible extension for future interfaces.

10.1.4.2 Basic and Advanced Gestures
To reduce the amount that new users must learn, the gestures are divided into two
sets: basic and advanced.

The basic gestures are Edit Text, Backspace, Space, New Line, Cut, and Undo.
Cut is included instead of Delete for two reasons:

• In handwriting edit controls and in pen-centric applications, Cut can be used to
delete one word at a time.

• Delete is only necessary when the user doesn't want to destroy the contents of
the clipboard. This is an advanced situation that beginning users don't need to
know about.

Undo is included in the basic set, despite its availability on the Edit menu of many
applications. Rapid gestural access to Undo functionality makes the interface seem
more forgiving and approachable.

The advanced gestures are Copy, Paste, Delete, Delete Words, Extend Selection,
and Tab. Copy and Paste are included in the advanced set instead of the basic set
for two reasons:

• Copy and Paste commands are available on the Edit menu of most applications.

• Users can remember the basic set more easily if it is limited to fewer commands.

Pen applications should support both the basic and advanced gestures. However,
documentation should focus on the basic set, and pen application designers should
ensure that their applications can be used productively with the basic set alone.

The Pen Interface 199

10.1.4.3 Circled-Letter Gestures
The pen interface also allows users to define gestures consisting of circled letters
that can be mapped to specific functions or key equivalents. Four circled-letter ges­
tures are assigned default meanings: C (Copy), P (Paste), U (Undo), and X (Cut).
These gestures are non-positional in handwriting edit (hedit) controls and in
Windows applications that were not designed specifically for the pen. In boxed
edit (bedit) controls, the circled-letter gestures are positional.

10.1.4.4 Advantages of Gestures
Pointing, drawing, and text input are important functions already supported by cur­
rent mouse-based and keyboard-based applications. A unique virtue of the pen is
its ability to specify a selection (the "noun" for an operation) as well as an action
(the "verb" for that operation) directly through a gesture. Gestures eliminate the
"select object then select operation from a menu" interface enforced by the mouse
and by the keyboard. With the pen, users make a single gesture at the object. The
application then determines which data to change and which operation to perform.

The rapidity and naturalness of gestural commands are among the key advantages
of the pen interface. However, applications should not rely on gestures as the only
way to perform commands, because gestures are hidden from the user. As a
supplement, applications should also provide menu commands or buttons to carry
out the functions performed by the gestures. Applications can put a bitmap of the
gesture next to the corresponding menu command. This bitmap helps the users
learn gestures; it replaces the keyboard shortcut text that appears on standard Win­
dowsmenus.

200 An Application Design Guide

10.2 Designing Pen Interfaces
These guidelines ensure that pen applications take advantage of the strengths of
the pen while avoiding its weaknesses.

10.2.1 Simplicity and Directness

10.2.1.1 Keep The Interface Simple
Pen applications are often used by unsophisticated users on machines with small
displays and limited storage space, so simplicity is especially important for pen
interfaces. Pen applications should forego kitchen-sink interfaces in favor of
streamlined simplicity: short menus, small dialog boxes, uncrowded control bars,
few overlapping windows, and simple metaphors. Many pen applications can dis­
pense with some of the standard interface elements altogether. For example, the
Microsoft Windows for Pen Computing tutorial uses a simple interface with no
menus or dialog boxes.

10.2.1.2 Exploit Direct Manipulation
Direct manipulation is particularly useful in pen-based systems for two reasons:

• First, dragging objects with the pen requires less coordination than dragging
them with the mouse., because the user does not have to press a button while
manipulating the pen.

• Second, manipulating objects with the pen is even more direct than manipulat­
ing objects with the mouse. The mouse is located on the user's desk, separated
from the pointer on the screen, whereas the pen points directly to the object on
the screen. To drag objects with the pen, the user presses the pen tip onto the
screen over the object and then moves the pen along the surface of the screen
without lifting it.

Pen applications should provide adequate hot zones around small areas that will be
targets for pen taps or drag-and-drops. In general, the minimum area of the target
plus the hot zone should be at least five pixels. Hot zones are especially important
for pen systems because the thickness of the display surface can cause distortion
and make precise positioning difficult.

10.2.1.3 Take Advantage of Positionality
One of the great strengths of the pen is its ability to specify a spatial position as it
draws a gesture, a character, or a graphical object. Pen applications can take advan­
tage of this feature to process pen input intelligently. For example:

The Pen Interface 201

• A gesture typically affects the object underneath it; however, if the user does
not draw the gesture directly on any object, the application can apply the ges­
ture to the nearest appropriate object.

• ill free-form input, a character can be inserted where it was written; in formatted
text, it can be snapped into alignment with the nearest neighboring character.

• In flow charts or organization charts, a square drawn in empty space can be left
at the drawing location, whereas a square drawn near an arrow can be moved to
abut the arrow (see Figure 10.1).

• In an application that supports both shape and character recognition, an "0"

shape can be interpreted as a character or as a circle, depending on whether it
was closer to other characters or to other graphical objects.

---0
Figure 10.1 Using Proximity to Determine Placement After Recognition

Some pen hardware can detect the proximity of the pen to the display surface.
Applications can use this information to provide feedback about the operations
that will be available if the user taps or draws on the display. One way to provide
this feedback is with pointer changes, as described in the next section.

10.2.1.4 Use Pointers to Increase Accuracy and to Provide
Feedback ~"¢t> <S> *
Because the pen (unlike the mouse) points directly at the screen, graphical on­
screen pointers may seem superfluous; however, they do have an important role to
play. Usability tests show that pointers help pen users select small targets faster.
Moreover, changes from one pointer to another provide useful feedback about the
actions supported by the object under the pen. For example, when the pen moves
over a resizable border, the pointer can change from a pen (indicating that writing
is possible) to a resize pointer (indicating that the border can be dragged to resize
the object). Pen applications should use this type of feedback whenever possible to
help users understand the actions that are currently enabled by the application. For
a list of suggested pointers, see Chapter 3, section 3.6.1.1.1.

202 An Application Design Guide

In principle, pen applications could dispense with pointers altogether and instead
provide target feedback by changing the object under the pen. However, this ap­
proach has some disadvantages. First, it can easily lead to a larger number of dis­
tracting display changes than are required with pointers. For example, when the
pen is moved over a tool bar, the pointer approach only requires one small change
(from pen to arrow pointer). The object-change approach, however, would proba­
bly require either one, much larger, change (such as highlighting the whole tool
bar) or many small changes (such as making each button flash as the pen passes
over it). Another potential disadvantage of the object-change approach is its lack
of real-world intuitiveness; real objects typically don't change when we approach
them. The pointer approach is slightly more realistic in that respect; our hands
(analogous to pointers) can undergo changes (for example, sensations of heat and
cold) when moved near objects. For these reasons, the object-change approach can­
not be recommended without further design work and usability testing.

10.2.2 Recognition Issues

10.2.2.1 Minimize the Need For Writing and Recognition
Because handwriting recognition takes extra time and may occasionally result in
errors that must be corrected by the user, pen applications should minimize the
need for the user to write text that must be recognized. Two general rules for min­
imizing writing and recognition are (l) avoid text boxes and (2) preserve ink
where appropriate.

10.2.2.1.1 Avoid Text Boxes Text boxes can sometimes be replaced by lists,
combo boxes, or spin boxes; these controls present entries that the user can select
without typing or writing. If your application has some knowledge of possible
values for the text box, you can use:

• Standard or drop-down lists, if the entire set of possible input values is known
(for example, list of available macros or templates or see Figure 10.2). For addi­
tional information on lists, see Chapter 6, section 6.3.

• Standard or drop-down combo boxes, if likely field values are known but others
are also possible (for example, font names). For additional information, see
Chapter 6, section 6.4.1.

• Spin boxes, if likely values are known but others are possible, if the values are
intrinsically ordered, and if the user typically only wants to make small incre­
ments or decrements (for example, margin settings or month names). For addi­
tional information, see Chapter 6, section 6.4.2.

III Choose Flavor

Flavor:

1,:mtHfiiUMJ.i

III Choose Flavor

Flavor:

Chocolate
Chocolate Chip
Fudge Swirl
Mocha
Pistachio
Raspberrv
Rock Road

The Pen Interface 203

Figure 10.2 Replace a Text Box (Left) with a List (Right) Whenever Possible

10.2.2.1.2 Preserve Unrecognized Ink When Appropriate In situations
where writing cannot be avoided, it is sometimes appropriate to avoid recognition
by preserving the ink exactly as written. For example, in applications involving
personal notes, annotations, or electronic mail, uninterpreted handwriting is a
simple and natural means of expression (see Figure 10.3). Handwriting edit con­
trols and boxed edit controls both support the ability to accept and preserve ink
input without recognizing it. Inking capabilities can be added to existing window
classes without much effort.

III Notes

Co. II fve.ot

3 :00 c;taft. Vv1 t-ttT~

Figure 10.3 Ink Need Not be Recognized to Be Useful

Many of the convenient features of traditional word processors-alignment,
cut/paste, bold versus plain styles, and so on-are equally valuable for uninter­
preted ink. Ink also opens up many new possibilities such as free-form sketches,
annotations, ink erasure, selective recognition for indexing, and more.

204 An Application Design Guide

10.2.2.2 Aid Recognition By Providing Input Areas for Neat
Handwriting
When the need for recognition cannot be avoided, applications can improve the
accuracy of recognition by providing input areas that encourage neat, well-seg­
mented handwriting.

10.2.2.2.1 Use Boxed Edit Controls Use boxed edit controls (see Figure 10.4)
to get handwritten input from the user whenever possible. Users write more neatly
when constrained. Moreover, boxed edit controls provide excellent segmentation
and baseline information for the handwriting recognizer. Boxed edit controls func­
tion best when the input length and type are known, for example, in a social secu­
rity number, a phone number, a first name, and so on. Boxed input is less than
optimal when the amount of user input cannot be predicted or restrained.

10.2.2.2.2 Provide Large Areas for Handwriting Input Applications can
improve recognition in boxed edit controls and in handwriting edit controls by pro­
viding plenty of space (see Figure 10.4). In general, larger handwriting is recog­
nized more accurately. People write more neatly and deliberately in large spaces
as opposed to small spaces. Ample space also makes selection, correction, and
other modifications easier.

II Name

Filst Name: 1 ____ ---'

Last Name: 1

Not recommended

II Name

Filst Name: lr-....J....---J'---....J....---JL....-....L.._---J_....L.._---'_....L.._---'

Last Name: l~-'---....J....---J'---....L..----'L....-....L..----'-....L..----'-....I

Recommended

Figure 10.4 Replacing Small Text Boxes with Spacious Boxed Edit Controls

The Pen Interface 205

10.2.2.3 Use Contextual Constraints to Improve Recognition
Applications can improve recognition accuracy by telling the recognizer what type
of data to expect. For example, an address book application can constrain fields,
such as phone number and zip code, to contain only numbers. Applications can
also constrain recognition by supplying lists of acceptable values (for example,
currently registered license plates). In addition to providing strictly defined con­
straints to the recognizer, applications can apply their own, more flexible, heuristic
constraints after the recognizer returns a set of possible results. For example, sup­
pose that after the user writes text in a spreadsheet cell, the recognizer returns
"25", "2s", "z5", and "sz" as possibilities. Because the spreadsheet cells can con­
tain text as well as numbers, all four choices are potentially valid, but the spread­
sheet can select "25" as the most likely choice.

10.2.2.4 Use Recognition for Graphical Input
Recognition is not limited to writing. Special recognizers (such as the shape recog­
nizer that is included with Windows for Pen Computing) can convert drawn graph­
ics to application-specific or context-specific input. Examples include a drawing
package that can snap a rough circle or square to a perfect one (see Figure 10.5)
and a CAD/CAM application that can recognize the symbols specific to that
industry.

o D
Before Recognition After Recognition

Figure 10.5 Recognizing Graphical Objects

206 An Application Design Guide

10.2.3 Hardware Constraints
Pen application designers should take the constraints imposed by pen-capable hard­
ware into consideration.

10.2.3.1 Economize on Storage iii
Many early pen machines have limited RAM and disk space. As a result, simple,
streamlined applications are preferable to large, feature-laden applications. Simple
applications not only require less storage but also tend to be easier to use, and ease
of use is a key factor for the pen market.

10.2.3.2 Provide Configurable Layouts II a
A pen application interface should be adaptable to the variety of screen sizes,
shapes, and orientations that will be available on pen machines from different man­
ufacturers. Most computer screens adopt a horizontal (landscape) orientation. Clip­
board-style pen computers can also be used in a vertical (portrait) orientation. This
is a result of how we traditionally hold clipboards. The impact on applications is
that the display, which is 640x480 when held horizontally, suddenly becomes
480x640 when held vertically. Pen applications should provide layouts that take
both orientations into account. Dialog boxes and control bars must also be de­
signed to fit in both orientations.

Pen applications should also take different screen sizes into account. Hardware
manufacturers will soon be providing a wide range of display sizes for pen ma­
chines, including some displays as small as 320x200. Pen applications can prepare
for this market-while also increasing their simplicity and usability-by streamlin­
ing their interfaces (for example, by keeping menus short and dialogs small), and
by making interface elements scalable or resizable whenever possible.

10.2.3.3 Don't Rely on Color ??
For at least the next year or so, clipboard computers will not provide color dis­
plays; instead, most will provide 16 shades of gray. For this reason, pen applica­
tions should not rely on color to distinguish interface elements or to provide other
essential information.

10.2.3.4 Don't Assume An Auxiliary Keyboard ??
Pen-based clipboard computers will often be used without a keyboard. Accord­
ingly, pen application designers should ensure that the application can be driven
entirely from its menus, dialog boxes, and control bars. The most important ac­
tions should be directly available through on-screen buttons or easily remembered
gestures.

The Pen Interface 207

10.2.3.5 Minimize Setup and Startup Time i
Because pen computers are frequently used by people on the go, pen applications
should minimize setup and startup time. One helpful technique is to restore the
interface settings that were in effect the last time the application was used. For
example, applications can automatically restore the previous window location and
layout. In some applications, it may also be appropriate to reload the most recently
used data and to scroll the window to the most recently viewed portion of the data.

10.2.3.6 Conserve Power
Although power management is not strictly a user interface issue, pen application
designers should be aware of the power implications of interface decisions and
minimize power consumption whenever possible. For example, features such as
automatic background repagination substantially increase power consumption and
thus reduce the operating time of a portable pen-based computer. In general, when
waiting for user input, pen applications should simply wait in the Windows mes­
sage loop rather than trying to accomplish numerous background tasks.

Miscellaneous Topics

Chapter 11

11.1 Loading and Initialization .. 211
11.1.1 Memory Check ... 211
11.1.2 Display of Application Window... 211
11.1.3 Display of Startup Message .. 211

11.2 User Levels and Customization ... 212
11.2.1 Unfolding Dialog Boxes ... 212
11.2.2 Customization Dialogs ... 213
11.2.3 Considerations for Disabled Users ... 213

11.3 Help .. 213
11.3.1 Access to Help .. 214

11.4 International Concerns ... 215
11.4.1 Interface Text .. 215
11.4.2 Hardware ... 215
11.4.3 Formats ... 216

Miscellaneous Topics 211

11.1 Loading and Initialization
The following list shows the suggested sequence of steps for an application after it
is invoked:

1. Display the application window.

2. Display the startup message.

In general, additional initialization tasks may be performed any time after the
application window is displayed---either before or after the startup message. These
tasks typically have no visible results. If they take a long time to complete, they
should be divided into two groups. The first group should be performed before the
startup message is displayed; the second group should be performed after the start­
up message. The appearance of the startup message between the two sets of tasks
serves as a progress indicator that makes the lengthy initialization seem shorter.

11.1.1 Memory Check
Generally, if insufficient memory is available when the application is invoked, the
system posts a message informing the user. However, once the application code is
executed, it becomes the application's responsibility to inform the user if insuffi­
cient memory is available for performing specific operations.

11.1.2 Display of Application Window
The application should display the application window as soon as possible, rather
than leaving the screen blank until the application is fully started and ready for
user interaction.

11.1.3 Display of Startup Message
After the application window has been displayed, the application should display a
modal dialog window that includes copyright, version, and user identification
information. (The dialog window need not include a title bar.) Figure 11.1 shows
the standard format for this information. The startup message window may also
contain an icon or other graphic that identifies the application; typically this will
be the same icon that is used in the About <Application-Name> dialog box (see
Chapter 8, section 8.6). Once the application is loaded and ready for user input, the
startup window should be automatically removed.

212 An Application Design Guide

Microsoft SampleApp Version 20
Copyright® 1990,1992 Microsoft Corporation

Spelling Checker and T hesauruo
Copyright® Soft,Art, 1987,1990

T his product is licensed to:
ELVIS Z. PRESLEY

Warning: This computer program is protected by
copyright law and international treaties. Unauthorized
reproduction or distribution of this program, or any
portion 01 it .. may result in severe civil and criminal
penalities, and will be prosecuted to the maximllm
extent possible under law.

Figure 11.1 Startup Screen

11.2 User levels and Customization
To accommodate user preferences and skill levels, applications may provide
means for the user to customize the interface. When the user quits an application,
the current customizations should be saved so that they can be set up in the same
way the next time the user invokes the application.

Customization methods differ widely in how much flexibility they offer the user.
Some only allow the user to choose from a limited set of predefined possibilities,
whereas others allow the user to rearrange parts of the interface in a virtually un­
limited number of ways, or even to create completely new commands.

11.2.1 Unfolding Dialog Boxes
Large, complex dialog boxes can intimidate new or inexperienced users. To pro­
vide simple, easy-to-understand dialogs for these users while retaining advanced
functionality for experienced users, applications can implement dialog boxes that
have two sizes-small and expanded. Whenever the dialog is invoked, it should
initially appear in the small size, which includes the basic controls necessary to
provide the most common functions in the dialog. The small size also includes an
unfold button (typically labeled Options »), which the user can press to expand
the dialog. The expanded form of the box contains both basic and advanced con­
trols. For more information on unfolding dialogs, see Chapter 7, section 7.1.2.

Miscellaneous Topics 213

11.2.2 Customization Dialogs
Applications may also allow users to customize the interface by providing one or
more customization dialogs. For example, such dialogs may offer options for dis­
playing or hiding interface elements (such as special characters, gridlines, or hori­
zontal scroll bars) or for changing interface behavior (such as whether typing
replaces an existing selection). Customization dialogs may also let the user change
the location of menu commands or even add new commands (for example, com­
mands created with macros).

11.2.3 Considerations for Disabled Users

11.3 Help

Some customization methods provided by the application (for example, menu re­
configuration) or the system (for example, mouse, keyboard, and volume adjust­
ments) allow disabled users to adjust the interface to suit their needs. Applications
can further accommodate disabled users by observing the following guidelines:

• Use multiple perceptual input channels.

• Avoid using only audio cues, such as beeps, for any situation that absolutely
requires attracting the user's attention.

• Don't rely on color alone to provide essential information.

• Do not require rapid responses.

• Avoid time-out situations that require a quick response, except in games.
If time-outs are used at all, either make the time-out period long (at least one
minute) or permit the user to run the application in a "slow" mode.

• Avoid rapid flashing on the screen.

• Avoid using high rates of flashing for any interface elements or data items.
Rapid flashing can cause seizures in some users.

Applications can facilitate users' tasks by providing small amounts of helpful in­
formation automatically while the user is working, either through the message bar
(see Chapter 4, section 4.2.6) or through message dialogs (see Chapter 7, section
7.1.4). However, the scarcity of screen space and the need to keep the application
window uncluttered limit the amount of helpful text that can be displayed during
the user's normal interaction with the application. Applications should therefore
provide a way for users to access additional help whenever they need it.

214 An Application Design Guide

11.3.1 Access to Help
Users may access help from the Help menu, the Help key (FI), or Help mode
(SHIFT+FI, followed by a mouse click on the element for which help is desired).
For information on the Help menu, see Chapter 5, section 5.4.4.

11.3.1.1 Help Key
When the user presses the Help key (FI), the Help application window appears.
Whenever possible, the information initially displayed in the Help window should
be context-sensitive; that is, it should reflect the currently active interface element.
For example, if a menu command is selected, the Help window should provide
information about the command; if a message dialog is being displayed, the Help
window should provide additional information about the message. If the applica­
tion cannot support context-sensitive help, the Help window should initially dis­
playa list of possible help topics when FI is pressed.

11.3.1.2 Help Mode
As an optional extension to Help, applications may implement a Help mode. To
enter Help mode, the user presses SHIFT+FI, which changes the mouse pointer to
the Help pointer (the standard selection pointer joined to a question mark; see
Chapter 3, Table 3.9). To cancel Help mode, the user presses ESC. In Help mode,
the user positions the pointer over the interface element for which help is desired.
When the user clicks mouse button 1, the Help window appears with information
appropriate to that element. As a rule of thumb, applications should always pro­
vide the most specific help possible for the context, to the extent that the context
can be determined.

Keyboard access to menu items is also available in Help mode. Choosing a menu
item with the keyboard in Help mode displays Help information for the menu item
instead of initiating the item. If a dialog box is open when the user initiates Help
mode, the Help window and appropriate information should appear without further
user intervention; that is, the user should not have to close the dialog first.

11.3.1.3 Help in Dialogs and Messages
When using dialog boxes, users can always obtain Help by pressing Flo For more
visible access to Help, applications may also provide a Help command button in
the dialog box. The "H" in the button label should be underlined to indicate that it
is a mnemonic access character. The keyboard user can press the Help button with
FI or ALT+H. Although the ALT+H method is somewhat redundant, it provides two
advantages over the FI method. First, the H mnemonic is more visible. Second, it
is easier to remember because H is the first letter in Help and because ALT+H is
also used to access the Help menu outside dialog boxes.

Miscellaneous Topics 215

Help buttons in message dialogs are optional but highly recommended, especially
for warning and critical messages. They provide additional information or sugges­
tions about the problem described by the message.

11.4 International Concerns
To compete successfully in international markets, applications should ensure that
their interfaces can be easily adapted to accommodate differences in language,
culture, and hardware.

11.4.1 Interface Text
The process of internationalizing an interface starts with translating the interface
text. Interface text includes title bar titles, menu names, menu items, control
labels, list items, and messages. For easy localization, such text should be stored
as resources in the resource file rather than being included in the source code for
the application.

Translation of interface text from English to other languages typically increases
the length of the text by 30% or more. In some extreme cases, the character count
can increase by more than 100%; for example, the word "restore" becomes
"zuriickspeichern" or "wiederherstellen" in German. Accordingly, ifthe amount of
space for displaying text is strictly limited, as in the status bar, the length of the
English interface text should be limited to approximately one-half the available
space. (Mode indicators in the status bar, such as NUM, may use all the available
space because localized versions try to use the same number of letters as the U.S.
version.) In contexts that allow more flexibility, such as dialog boxes, the interface
design should allow for text expansion of at least 30%; message text in message
dialogs, however, should allow for expansion by about 100%. Applications should
never rely on the position of text in a menu, dialog box, or window because trans­
lation might require that the text be moved.

11.4.2 Hardware
Outside the U.S., display hardware is not dominated by EGA or VGA standards.
Accordingly, dialog boxes and other interface elements should be designed to
maintain their aesthetic appeal on various resolutions and screen aspect ratios.

International keyboards may also differ from those in the U.S. installed base. In
particular:

• ALT+key combinations should be chosen carefully because some international
keyboards use them to enter certain characters.

• Function key accelerators are easier to localize than modifier+letter accelerators.

216 An Application Design Guide

11.4.3 Formats

• Shortcuts that use punctuation marks should be chosen carefully because some
punctuation marks (for example, braces and brackets) are frequently not found
on international keyboards or are only available in combination with the ALT

key.

• All international applications should support multiple code pages and sorting ta­
bles to allow for the use of different extended character sets. For sorting and
case conversion, applications should use system-supplied rather than applica­
tion-specific routines whenever possible.

Different countries often use substantially different formats for dates, time,
money, measurements, and telephone numbers. As a result, international applica­
tions should allow these formats to be changed easily. The setup program for the
application should initialize the formats to the default values obtained from the sys­
tem Control Panel. The application itself may also allow the formats to be changed
whenever necessary during normal use of the application. Such changes may be
saved on an application-specific or document-specific basis, but should not affect
the system defaults.

Table 11.1 lists the most common format categories.

Table 11.1 Formats for International Applications

Category Format Considerations

Date Order, separator, and long/short formats

Time Separator and cycle (12-hour vs. 24-hour)

Physical quantity Metric vs. English measurement system

Currency Symbol and format (for example, trailing vs. preceding symbol)

Separators List, decimal, and thousandths separators

Telephone numbers Separators for area codes and exchanges

Paper sizes U.S. vs. European paper sizes

Index

A
Access characters, 79
Activating objects

busy and unavailable servers, 183-184
double-clicking, 181
Edit <Descriptive-Class-Name> Object

command, 182
object verbs, 182
packages, 183
Server Busy Warning Message, 184

Active control indicator, 29
Aesthetics, interface design principles, 4
ALT+H,214
ALT+mnemonic access, 33
Appearance of objects. See Objects (OLE)
Application loading/initialization, 211
Arrangement commands, windows, 99
Array selection, 27
Auto-repeat, 10
Automatic scrolling

B

keyboard techniques, 70
mouse techniques, 69

Barrel button, 195
Bedit controls. See Pen interface
Beep. See System beep
Bibliography, 6
Boundaries for linked and embedded objects, 179
Boxed edit controls, 204

See also Pen interface, recognition issues
Button 1,9,36
Button 2, 9
Buttons

arrangement in dialog boxes
additional guidelines, 136-137
examples, 133-136
Help button, 136
horizontal layout, 134-135
if not enough room, 136
most important button, 136
OK button, 136
overview, 133

Buttons (continued)

c

arrangement in dialog boxes (continued)
vertical layout, 133-134

command buttons 103-104
default buttons, 131
recommended buttons, 131
types, 130

dynamic button labels, 132
in message dialogs, 137
labels, changing, 132
Maximize/minimize, 57
OK and Cancel buttons vs. Yes and No, 137
option buttons, 105-106
overview, 103
Restore button, 57

Cancel button, 156
Cancel Link button, 188
Cascading menus

advantages/disadvantages, 78
displaying

keyboard methods, 87
mouse methods, 84

overview, 78
Change Link button, 188
Changing button labels, 132
Character properties dialog

basic version, recommended format, 156
color, 160
controls, 159
enhanced version, recommended format, 157

Check boxes, 106-107
Chevrons, 126
Child menus. See Cascading menus
Circled-letter gestures. See Pen gestures
Clarity, interface design principles, 4
Classes (OLE), 168
Clicking (mouse), 24-27
Clients (OLE), 169
Close & Return to <Container-Document>

command, 172
Closing windows, 65
Code samples, x

218 Index

Collate Copies check box, 150
Collecting user information and choices, 125
Color

disabled users, 213
for pen interface. See Pen interface, hardware

constraints
Combo boxes, 114
Command buttons, 103-104

See also Buttons
Commands with the pen. See Pen interface
Common menus. See Menus
Common optional menus. See Menus, common

optional menus
Compound documents, 167
Configurable layouts, 206

See also Pen interface, hardware constraints
Consistency, 4, 21
Constraint. See Pen interface, hardware constraints
Context-specific actions, 9
Contextual menus. See Pop-up menus
Contiguous selection (mouse), 22
Control bars

keyboard access, 33
palettes, 63-64
ribbons, 63-64
rulers, 63-64
toolboxes, 63-64

Control labels
guidelines and overview, 120
overview, 120
position, 121

Control menu, 57,88-91
items, 90-91

Controls, keyboard access, 32
Conversions, international

dates, 216
hardware, 216
measurements, 216
money formats, 216
telephone numbers, 216
time formats, 216

Copy command. See Edit Copy command
Copying linked objects, 178
Cross-platform consistency, interface design

principles, 4
cTRL+c1ick, 24-27
cTRL+drag, 26-27
Culture and language. See Iuternational concerns
Customization. See User customization
Cut command. See Edit Cut command

D
Data

scrolling in windows/panes, 68
selecting, 21
transferring, 34

Data Type List, 178
Dates, international conversion, 216
Default buttons, 131
Default Printer option button, 153
Descriptive Class Name object, 178
Deselection, 24
Designing pen interface. See Pen interface,

designing
Dialog box controls

See any of the following:
Buttons
Check boxes
Control labels
Group boxes
List boxes
Read-only pop-up text boxes
Scroll bars
Static text fields
Text boxes
Validation of input

Dialog boxes
About <Application Name> dialog box, 162
button layout, 133-137
character properties

color, 160
controls, 159-161
overview, 157-158

need for consistent presentation, 132
expanding/unfolding, 126
File New dialog, 148
File Open dialog

directories control, 142
directory tracking text, 143-144
drives control, 144
file name control, 144
layout, 146
type control, 145

File Print Setup dialog, 152-153
File Print dialog, 148-152
File Save As dialog, 147
fonts in dialogs, 138
maintaining simplicity in dialogs, 132
modal vs. modeless, 126
movable vs. fixed, 125
overview, 125

Dialog boxes (continued)
Page Setup dialogs, 162
placement on screen, 130
providing samples of changes, 138
semimodal,126-127
text search and replace

application-specific option, 157
check box labels, 156
command buttons, 155
direction controls, 155
Find command, operation, 155
overview, 154
Replace command, operation, 155
labels, 156

types, 125, 127
unfolding/expanding, 126,212
user response required/not required, 126

Direct manipulation, 34-36
vs. selection, 37
See also Drag-and-drop

Directness, interface design principles, 3
Directories, selecting, 142-144
Directory icons, 142
Disabled users

customization,213
flashing for attention, 213

Disjoint selection (mouse), 22
Displaying menus

cascading menus
keyboard methods, 87
mouse methods, 86

drop-down menus
keyboard methods, 87
mouse methods, 85

pop-up menus
mouse methods, 85

Displaying messages, 128, 129
Document icon, drag and drop, 35
Document selection, 27
Document windows. See Windows
Double-click, 26-27
Double-drag, 26-27
Double-tap with the pen. See Pen interface
Drag-and-drop

feedback, 39
overview, 34-36
with unmodified mouse Button 1, 36

Dragging (mouse), 24, 27
Dragging with the pen. See Pen interface
Drawing with the pen. See Pen interface
Drives, selecting, 144

Drop-down combo boxes, 115
Drop-down menus

described, 75
displaying

keyboard methods, 87
mouse methods, 84

Index 219

Drop-down single-selection lists, 110-111
Dynamic button labels, 132

E
Edit Clear command, 95
Edit Copy command, 45

with OLE objects, 173, 186
Edit Cut command, 45

with OLE objects, 173, 186
Edit Delete command 95

with OLE objects, 186
Edit Find command, 95
Edit Insert Object dialog, 174
Edit menu

common optional items, 93
overview, 93
standard items, 94

Edit Paste command, 173
Objects (OLE), 187

Edit Paste Link command, 173, 176, 178
Edit Paste Special command, 173,177
Edit Repeat command, 95
Edit Replace command, 95
Editing keys, 11
Editing objects

File New command, 185
File Open command, 185
File Save command, 186
File Save Copy As command, 185
File Update command, 185
MDI servers, 186
SDI servers, 185

Editing text, 43
EGA. See International concerns, hardware
Elevator. See Scroll bars
Embedding (OLE). See Object Linking and

Embedding (OLE)
Error messages, 128

See also Messages
Error, use of the word, 128
Expanding dialog boxes, 126
Explicit scrolling, mouse techniques, 68
Explicit selection (keyboard), 28

220 Index

F
FI key, 214
Feedback

auditory, 42
graphical,37
interface design principles, 4
pointers, 38
progress indicators, 40
text feedback, 41
validation of input, 121
visual,37

File Close command, with OLE objects, 186
File Exit & Return to <Container-Document>

command, 172, 175
File menu

common optional items, 93
description, 91
most recently used (MRU) list, 93
standard items, 92

File menu modifications in full server or server
window, 172

File Name Text Box, 145
File names, entering and selecting, 144--145
File New command, 185
File New dialog box, 148
File Open command, 185
File Open dialog box

directories control, 142
directory tracking text, 143-144
drives control, 144
file name control, 144
layout, 146
text box, effect of navigation on contents, 145
type control, 145

File Print dialog box
warning messages, 148-152
See also any o/the/ollowing:

Collate Copies check box
Print Options button
Print Quality list box
Print Setup button
Print to File check box

File Print Setup dialog box, 152-153
File Save As dialog box, 147
File Save command
File Save Copy As command, 185
File Update <Container-Document> command, 175
File Update command, 185

Files
launching, files associated with MDI applications,

53-54
most recently used (MRU) list, 93
opening a group of related files, 53
type control, 145

Find dialog, 155
Fixed dialog boxes, 125
Flashing for attention, 41

disabled users, 213
See also Feedback

Focus. See Input focus
Fonts in dialog boxes, 138
Forgiveness, interface design principles, 5
Formats. See International concerns
Frame

dragging/selecting, 27
window frame overview, 55

Full servers, OLE interface, 172-173
File menu modifications, 172

Function keys, 15-16

G
Gestures with the pen. See Pen gestures
Glyph, 197
GoSub buttons, 132-136
GoTo buttons, 132-136
Group boxes, 119

H
Handwriting edit controls. See Pen interface
Handwriting recognition. See Pen interface,

recognition issues
Hardware constraints, pen interface. See Pen

interface
Hardware, international conversion, 215
Hedit controls. See Pen interface
Help

About <Application Name> dialog, 162
Help button, placement in dialog box, 136
Help key, 214
Help menu, 96-97
Help mode, 214
help in dialogs and messages, 214

Heterogeneous selection, 23
Hierarchical menus. See Cascading menus
Highlighting, 21
Homogeneous selection, 23
Horizontal button layout, 134--137
Hot spot, 10, 198

Hot zones, 10, 200
Human limitations/strengths, interface design

principles, 5

I-beam pointer, 44
IBM Common User Access, x
Implementing features, described, x
Implicit selection, 28
Inactive state, appearance, 180
Information and choices, collecting, 125
Information messages, 128

See also Messages
Initialization, 211
Ink. See Pen interface
Inking with the pen. See Pen interface
Input elements

keyboard,11-18
mouse, 9-10
See also Keyboard input or Mouse input

Input focus, indicating, 29
Input methods, support for, x
Insert Object Dialog Box, 174
Inserting objects (OLE), 173-178

copying linked objects, 178
data formats, 177
Edit Copy command, 173-176
Edit Cut command, 173-175
Edit Insert Object command, 173
Edit Paste command, 173-175
Edit Paste Link command, 176
Edit Paste Special command, 177
File Exit & Return to <Container-Document>

command, 175
File Update <Container-Document> command,

175
Insert Object Dialog Box, 174
Paste Special Dialog Box, 177, 178

Interface design principles
aesthetics, 4
awareness of human limitations/strengths, 5
clarity, 4
consistency, 4
cross-platform consistency, 4
directness, 3
feedback,4
forgiveness, 5
methodology, 5, 6
user control, 3
within-platform consistency, 4

Interface text limitations, 117
International concerns

dates, 216
hardware, 215
interface text, 215
measurements, 216
money formats, 216
telephone numbers, 216
time formats, 216

Items, mouse selection, 25

K
Keyboard access

control bars, 33
controls, 32
text buttons, 33
toolboxes, 33-34

Keyboard input
control key assignments, 17-18
displaying menus, 86-88
editing keys, 11
escape key assignment, 18
function key assignments, 16
menu shortcuts, 87
mode keys, 12
modifier keys, 13
navigation keys, 14
scrolling windows, 70
shortcut key guidelines, 18
shortcut keys, 15
support for, x
switching windows, 66-68
text keys, 11
toggle keys, 12

Keyboard navigation
overview, 30-31
techniques, 32

Index 221

Keyboard selection, implicit/explicit, 28
Keyboards for pen interface. See Pen interface,

hardware constraints

L
Labels. See Control labels
Language and culture. See International concerns
Launching files. See Files
Layouts for pen interface. See Pen interface,

hardware constraints
Line selection, 27
Linked scrolling in panes, 71

222 Index

Linking (OLE). See Object Linking and
Embedding (OLE)

Links Dialog
overview, 187
Update Option buttons, 187

Links. See Object Linking and Embedding (OLE)
List boxes

extended selection, 112-113
multiple selection, 112-113
overview, 108
single selection

drop-down lists, 11 0-111
overview, 108-109
standard single-selection lists, 109

Loading and initialization, 211
Localization issues. See International concerns

M
Margin selection, 26-27
Maximize button, 57
MDI. See Multiple Document Interface (MDI)
Measurements, international conversion, 216
Memory check, 211
Menu bar, 57
Menu items. See Menus, items
Menu operations, mouse methods, 84
Menus

cascading menus
advantages/disadvantages, 78
displaying (mouse methods), 86
keyboard methods, 87
overview, 78

choosing items, 86
common optional menus

View menu, 97
Window menu, 97

drop-down menus, 75
displaying (mouse methods), 85
keyboard methods, 87

items
menu item groups, 80
names of items, 83
overview, 80
settings, 81-83
types of menu items, 81
unavailable items, 84

menu types, 75
operations, mouse methods, 84
pop-up menus

additional guidelines, 77

Menus (continued)
pop-up menus (continued)

appearance and location, 76
displaying (mouse methods), 84--85
overview, 76

standard menus
Control menu, 88-91
Edit menu, 93-95
File menu, 91-93
Help menu, 95-96

titles, 79
translating menu text, 215
user customization, 213

Message bar, 60-61
Message dialogs, 128

command buttons, 137
examples, 129-130
help buttons, 215

Message text, translating, 215
Messages, 41---42

critical messages, 128-130
displaying error messages, 128
information messages, 128
message dialogs, 128
OLE status messages, 192
print warning messages, 150-152
startup message, 211
translating, 215
types of graphical symbols, 128-129
warning messages, 128-129

insufficient memory, 211
print warning messages, 150-152
server busy, 184
unavailable links, 191
when exiting server with modified embedded

object, 175
when server application cannot be found, 175

See also Feedback
Methodology, interface design principles,S
Mini servers, OLE interface, 171
Minimize button, 57
Mnemonic access, 33, 120

mnemonic access character, 79
Modal dialog boxes, 126-127
Mode indicators, 62
Mode keys, input, 12-13
Modeless dialog boxes, 126-127
Modifier keys, 13
Money formats, international conversion, 216
Most recently used (MRU) list, 93

Mouse
button 1, 36
button 2, 195
input

basic operations, 9
displaying menus, 84--86
drag-and-drop, 34--36
guidelines, 10
scrolling windows, 68
support for, x
switching windows, 66

navigation, 30
selection

arrays, 27
documents, 27
frame, 27
item-oriented applications, 25
items, 25, 27
margin, 26-27
outline selection, 27
paragraphs, 27
rows/columns, 27
text, 26

Movable dialog boxes, 125
Movement pointers, 39
Moving objects, 44
Moving windows, 64
MRU list, 93
Multiple Document Interface (MDI), 184--186

applications, new vs. existing instance, 53
launching files, 53--54
windows, 49-54
See also Editing Objects; Object Linking and

Embedding (OLE)
Multiple selection lists, 112-113

N
Navigation keys, 14
Navigation to related dialog boxes, 132
Navigation, mouselkeyboard, 30-34
Normal scrolling, keyboard techniques, 70
Notation for keys and key combinations, xi

o
Object Linking and Embedding (OLE)

classes, 168
clients, 168
compound documents, 167
embedding, 169

Index 223

Object Linking and Embedding (OLE) (continued)
interface

appearance, inactive state, 180
appearance, opened state, 180
appearance, selected state, 180
boundaries for linked and embedded objects, 179
busy and unavailable servers, 183-184
clients and servers, 171
clients containing open OLE objects, 186
copying linked objects, 178
Data Type list, 178
double-clicking, 181
Edit <Descriptive-Class-Name> Object

command, 182
Edit Copy command, 173
Edit Cut command, 173
Edit Insert Object command, 174
Edit Paste command, 173
Edit Paste Link command, 176
Edit Paste Special command, 177
Edit Paste Special Dialog Box, 177
editing objects, 184--187
File Exit & Retum to <Container-Document>

command, 175
File New command, 185
File Open command, 185
File Save Copy As command, 185
File Update <Container-Document> command,

175
File Update command, 185
full servers, 172-173
Insert Object Dialog Box, 174
inserting objects, 173-179
MDI servers, 186
mini servers, 171
new server instance unnecessary, 181
object boundaries, 179
object verbs, 182
packages, 183
SDI servers, 185
Server Busy Warning Message, 184
updating objects from MDI servers, 186
updating objects from SDI servers, 185
updating objects, 185-187
verbs, 182
viewing objects, 179-180

linking, defined, 169
links

Cancel Link button, 188
Change Link button, 188
dialog control buttons, 190

224 Index

Object Linking and Embedding (OLE) (continued)
links (continued)

link command buttons, 188-189
link status entries, 190
Link Update Message Dialog, 191
Links Dialog, 187
OLE status messages, 192
Progress Indicator for Link Updating, 191
Update Now button, 188
Update Option buttons, 187
warning message for Unavailable Links, 191

objects, defined, 168
packages, defined, 169
servers, defined, 169

Objects
drag-and-drop,34-36
moving, 44
transferring objects and data, 34

Objects (OLE)
appearance, inactive state, 180
appearance, opened state, 180
appearance, selected state, 180
boundaries, 179
busy and unavailable servers, 183-184
copying linked objects, 178
objects defined, 168
double-clicking, 181
Edit <Descriptive-Class-Name> Object command,

182
editing objects, 184-187
inserting objects, 173-179

data formats, 177
Data Type List, 178
Edit Copy command, 173
Edit Copy command, 173, 175-176
Edit Cut command, 173, 175
Edit Insert Object command, 174
Edit Paste command, 173, 175
Edit Paste Link command, 176
Edit Paste Special command, 177
File Exit & Return to <Container-Document>

command, 175
File Update <Container-Document> command,

175
Insert Object Dialog Box, 174
Paste Special Dialog Box, 177-178

links
Cancel Link button, 188
Change Link button, 188
dialog control buttons, 190
link command buttons, 188-189

Objects (OLE) (continued)
links (continued)

link status entries, 190
Link Update Message Dialog, 191
Links Dialog, 187
OLE status messages, 192
Progress Indicator for Link Updating, 191
Update Now button, 188
Update Option buttons, 187
Warning Message for Unavailable Links, 191

new server instance unnecessary, 11, 181
object boundaries, 179
object verbs, 182
operations in clients

Edit Copy command, 186
Edit Cut command, 186
Edit Delete command, 186
Edit Paste command, 187
File Close command, 186
File Save command, 186

packages, 183
Server Busy Warning Message, 184
updating objects

clients containing open OLE objects, 186
MDI servers, 186
SDI servers, 185

verbs, 182
viewing objects, 179-180

OK and Cancel buttons vs. Yes and No, 137
OK button, placement in dialog box, 136
Open command. See File Open command
Opened state, appearance, 180
Option buttons, 105-106
Optional guidelines, overview, xi
Orientation controls (printing), 153
Other pointers, 39
Outline frame, dragging, 27

p
Packages (OLE), defined, 169
Page setup dialog, 162
Palettes, 63-64
Panes

linked scrolling, 71
split box and split bar, 59-60
switching panes, 67

Paper Size list, 153
Paper Source list, 153
Paragraph selection, 27
Parallelism between mouse and keyboard access, 21

Parent menus. See Cascading menus
Paste Link command. See Edit Paste Link command
Paste Special command. See Edit Paste Special

command
Paste Special Dialog Box, 178
Pen gestures

advanced
Copy, 198
Delete, 198
Delete Words, 198
Extend Selection, 198
Paste, 198
Tab, 198

advantages of gestures, 199
basic

Backspace, 198
Cut, 198
Edit Text, 198
New Line, 198
Space, 198
Undo, 198

circled-letter gestures, 199
overview, 196
positionality, 198
standard gestures listed, 197

Pen input, support for, x
Pen interface

bedit controls, 199
boxed edit controls, 199
designing

direct manipulation, 200
hot zones, 200
menus, 199
need for simplicity, 200
positionality, 200
target for pen, 200
use pointers, 201

handwriting edit controls, 199
hardware constraints

auxiliary keyboard, 206
color, 206
configurable layouts, 206
power conservation, 207
setup/startup time, 207
storage, 206
variety of layouts, 206

hedit controls, 199
overview, 195
pen input

double-tap, 195
dragging, 195

Pen gestures (continued)
pen input (continued)

pen gestures. See Pen Gestures
pen techniques, 196
pointing, 195
tapping, 195
writing, 195

recognition issues
boxed edit controls, 204
input areas, provide, 204

Index 225

input, contextual constraints, 205
input, converting drawn graphics, 205
recognition, preserve ink without, 203
text boxes, 202
writing/recognition, minimize, 202

Pointers
movement, 39
other pointers, 39
resizing, 38
selection, 38
shapes, 38

Pointing with the pen. See Pen interface
Pop-up menus

additional guidelines, 77
appearance and location, 76
displaying, mouse methods, 84

Pop-up text fields. See Read-only pop-up text fields
Positionality of pen gestures. See Pen gestures; Pen

interface
Power conservation, 207
Print dialog box, 148-152
Print Options button, 150
Print orientation controls, 153
Print Quality list box, 149
Print ranges, 149
Print Setup button, 150
Print Setup dialog box, 152-153
Print to File check box, 149
Progress indicators, 40

See also Feedback
Pull-down menus. See Drop-down menus
Purpose of the Style Guide, ix

Q
Question mark symbol, 129

R
Radio button. See Option buttons
Read-only pop-up text fields, closed and open

examples, 117-118

226 Index

Recognition issues, pen interface. See Pen interface
Recommendation levels in the Style Guide, xi
Recommended buttons, 131
Recommended guidelines, xi
References, 6
Replace, 154

See also Edit Replace command; Text search and
replace

Replace All button, 156
Replace button, 156
Resize handles, 44, 45
Resizing pointers, 38
Resizing windows, 65
Restore button, 57
Ribbons, 63-64
Root directory, 142
Row/column selection, 27
Rulers, 63-64

s
Samples in dialog boxes, 138
Save Copy As command. See File Save Copy As

command
Scope of the Style Guide, ix
Scroll bars, 58
Scroll lock scrolling, keyboard techniques, 70
Scrolling, 10
Scrolling windows, 58-59

automatic scrolling, 69, 70
explicit scrolling, 68
keyboard techniques, 70
linked scrolling in panes, 71
mouse techniques, 68
normal scrolling, 70
scroll lock scrolling, 70

SDI (Single Document Interface). See Objects
(OLE); Object Linking and Embedding (OLE)

Search. See Text Search and replace
Selected state, appearance, 180
Selecting

directories and drives, 142-145
types of files, 145

Selection
adjusting, 23
changing size, 23
contiguous selection (keyboard), 28
contiguous selection (mouse), 22
deselecting, 24
disjoint selection (keyboard), 29
disjoint selection (mouse), 22

Selection (continued)
documents, 27
frame, 27
heterogeneous selection, 23
homogeneous selection, 23
implicit/explicit, 28
indicating selection, 21
items, 25
lines, 27
margin, 26-27
modes, 24
outline selection, 27
paragraphs, 27
pointers, 38
rows/columns, 27
selecting data, 21
selecting multiple items, 112-113
selecting single items, 108-111
single selection, 22
text, 26
vs. direct manipulation, 37

Semimodal dialog boxes, 126-127
Server application, new instance is unnecessary, 181
Server Busy Warning Message, 184
Servers (OLE), 169
Servers, OLE interface

full servers, 172
mini servers, 171

SHIFT+ciick, 25-27
SHIFT+drag, 26-27
SHIFT+Fl,214
Shortcut keys, 15-18,87
Single Document Interface (SDI), 185
Sliders. See Scroll bars
Spin boxes, 116
Split bar, 59-60
Split box, 59-60
Splitting windows, 59-60
Standard combo boxes, 115
Standard menus. See individual menus by name;

Menus, standard menus
Startup

application window display, 211
startup message, 211
example of startup screen, 212

Static text fields, 119
Status bar, 61
Status messages. See Messages
Style Guide

implementing features, x
purpose, ix

Style Guide (continued)
recommendation levels, xi
scope, ix

Submenus. See Cascading menus
Substitution command, 154
Suggested guidelines, overview, xi
Switching windows

application windows, 66
keyboard techniques, 66-68
mouse techniques, 66
panes, 67
switching within an application, 67

System beep 41, 42
disabled users, 213
See also Feedback

T
Tap with the pen. See Pen interface
Target for pen. See Pen Interface, designing
Telephone numbers, international conversion, 216
Text

editing, 43
mouse selection, 26
translating, 215

Text boxes
combo boxes

drop-down combo boxes, 114-116
overview, 114
standard combo boxes, 114-115

overview, 113
pen interface, 202
spin boxes, 116

Text fields. See Read-only pop-up text fields
Text fields. See Static text fields
Text formatting dialog

basic version, recommended format, 157
color, 160
controls, 159-161
enhanced version, recommended format, 158

Text frames, 44
Text keys, 11
Text search and replace

application-specific options, 157
check box labels, 156
command buttons, 155
direction controls, 156
Find command, operation, 155
overview, 154
Replace command, operation, 155-156
text box labels, 156

Textual buttons, keyboard access, 33
Thumb. See Scroll bars

Index 227

Time formats, international conversion, 216
Title bar, 56
Toggle keys, 12
Toolboxes, 63-64

keyboard access, 33-34
Transferring objects and data, 34
Translation. See International concerns

u
Unavailable menu items, 84
Undo, text formatting, 161
Unfold button, 126
Unfolding dialog boxes, 126
Update command. See File update command
Update Now button, 188
Updating objects

clients containing open OLE objects, 186
Edit Copy command, 186
Edit Cut command, 186
Edit Delete command, 186
Edit Paste command, 187
File Close command, 186
File New command, 185
File Open command, 185
File Save command, 186
File Save Copy As command, 185
File Update command, 185
MDI servers, 186
SDI servers, 185

User control, interface design principles, 3
User customization

customization dialogs, 213
dialog boxes, unfolding/expanding, 212
disabled users, 213
menus, 213

User information and choices, collecting, 125

v
Validation of input, 121
Value sets, 106
Vertical button layout, 133
VGA. See International concerns, hardware
View menu, 97
Viewing objects, 179-180
Visual feedback. See Feedback

228 Index

w
Warning mechanisms, 41

See also Feedback
Warning messages. See Messages
Window Arrange command, 99
Window Cascade command, 99
Window menu

common optional items, 98-99
overview, 97
sample menu, 98
standard items, 98

Window New Window command, 99
Window operations

application window display on startup, 211
closing, 65
moving, 64
resizing, 65
scrolling

keyboard techniques, 70
mouse techniques, 68

splitting, 65
switching

keyboard techniques, 66-68
mouse techniques, 66

switching application windows, 66
switching panes, 67
switching within an application, 67

Window Tile command, 99
Windows

"always on top", 54
application windows, 49

display on startup, 211
components

buttons, 57
control menu, 57
frame, 55
menu bar, 57
message bar, 60-61
Minimize, Maximize, Restore buttons, 57
mode indicators, 62
palettes, 63-64
ribbons, 63-64
rulers, 63-64
scroll bars, 58-60
split bar, 59-60
split box, 59-60
status bar, 61
title bar, 56
title, 56
toolboxes, 63-64

Windows (continued)
control bars, 63-64
document windows (MDI)

characteristics, 51
described, 50
maximizing, 51
saving window configurations, 52

Help window, 49
message bar, 60-61
Multiple Document Interface (MDI), 50-54
saving window configurations, 52
screen window types, 49
splitting, 60

Within-platform consistency, interface design
principles, 4

Writing with the pen. See Pen interface

y
Yes and No buttons vs. OK and Cancel, 137

z
Zoom In/Zoom Out commands, 97

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-63~

0592 Part No. 2892

