Programmers Reference,

Volume 3: Messages, Structures,
and Macros

SOFTWARE DEVELOPMENT KIT

Microsoft. Windows™

Version 3.1

Programmer’s Reference
Volume 3: Messages,
Structures, and Macros

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure agree-
ment and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ-
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

ITC Zapf Chancery and ITC Zapf Dingbats fonts. Copyright © 1991 International Typeface
Corporation. All rights reserved.

Copyright © 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino, New
Century Schoolbook, Times, and Times Roman typefont data is the property of Linotype or its
licensors.

Arial and Times New Roman fonts. Copyright © 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, QuickC, and CodeView are registered trademarks, and Windows and
QuickBasic are trademarks of Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.

The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of
AGFA Compugraphic Division of Agfa Corporation.

Apple, Macintosh, and TrueType are registered trademarks of Apple Computer, Inc.

PANOSE is a trademark of ElseWare Corporation.

Epson and FX are registered trademarks of Epson America, Inc.

Hewlett-Packard, HP, LaserJet, and PCL are registered trademarks of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines Corporation.

ITC Zapf Chancery and ITC Zapf Dingbats are registered trademarks of the International Typeface
Corporation.

Helvetica, New Century Schoolbook, Palatino, Times, and Times Roman are registered trademarks of
Linotype AG and/or its subsidiaries.

Arial and Times New Roman are registered trademarks of the Monotype Corporation PLC.

Okidata is a registered trademark of Oki America, Inc.

Document No. PC28917-0492

Contents

Chapter 1
Chapter 2

Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Chapter 8
Chapter 9
Chapter 10
Appendix A

INPOAUCTION ...t v
Organization of This Manual..............ccceveeiiiiininieiecce s v
Document CONVENTIONScccverierieieeterteeieeteestesereseesteesaeseesseeessesssessesnsesssenses vi
Data Types 1
Messages 1
2.1 WiINAOW MESSAZES....c..erveveriiieierieiirieircrtetentete e st eiesbesseeesaesnenesneane 14
2.2 Notification MESSAZESccvvverieuirieinieieirieneeiteerieeeieeressestesesresseeesessenes 213
Structures 229
Macros 429
Printer Escapes 449
Dynamic Data Exchange Transactions 513
File Manager Events and Messages 529
7.1 File Manager Events............cccccccoeeunenne. s 531
7.2 File Manager MeSSages.........c.cccvueueirrieuieeeieneneeeeeieenseeeesenessenesessenenenes 534
Control Panel Messages 54
Common Dialog Box Messages 551
Installable Driver Messages 559
Binary and Ternary Raster-Operation Codes CYA
A.1 Binary Raster Operationsccceevevererenirneenienenenseneeneesreeeesteseeeenne 573

A.2 Ternary Raster OPerationscoccveerererervtereneneneeneeseeneneeeeeeneeneenes 576

iv Microsoft Windows Programmer’s Reference

Appendix B Virtual-Key Codes 987
Appendix C Character Sets 593
C.1 ANSI CRAracter SELcceeivirreriererireeeeeriessresesteresreseessenseessesessessenenee 596
C.2 Symbol Character SEtccceeeerierierieriererieeeree e seseeseeseesessesreseeneenes 597
C.3 OEM Character SELcovreeenerieneereeereereenteseseestessessesasseeseesesseeseenes 598

Introduction

This manual, Microsoft Windows Programmer’s Reference, Volume 3, describes
the data types, messages, structures, macros, and printer escapes supported by the
Microsoft® Windows™ operating system. In addition, dynamic data exchange
(DDE) transactions, File Manager events, raster-operation codes, virtual-key
codes, and character tables are presented.

Organization of This Manual

Following are brief descriptions of the chapters and appendixes in this manual:

Chapter 1, “Data Types,” describes the keywords that define the size and mean-
ing of parameter and return values associated with the Windows application
programming interface (API).

Chapter 2, “Messages,” describes formatted window messages, through which
the Windows operating system communicates with applications, and notifica-
tion messages, which notify a control’s parent window of actions that occur
within the control.

Chapter 3, “Structures,” defines the data structures associated with the func-
tions that are part of the Windows APIL.

Chapter 4, “Macros,” describes the purpose and defines the parameters of mac-
ros used to help manipulate data in Windows applications.

Chapter 5, “Printer Escapes,” lists printer escapes for the Windows operating
system.

Chapter 6, “Dynamic Data Exchange Transactions,” describes the transactions
sent by the Dynamic Data Exchange Management Library (DDEML) to an ap-
plication’s dynamic data exchange (DDE) callback function. The transactions
notify the application of DDE activity that affects the application.

Chapter 7, “File Manager Events and Messages,” provides descriptions of the
events and menu commands File Manager sends to communicate with a File
Manager extension dynamic-link library (DLL). The chapter also describes mes-
sages the DLL can send File Manager to retrieve information.

Chapter 8, “Control Panel Messages,” lists the messages Control Panel sends to
communicate with a Control Panel DLL.

vi Microsoft Windows

Programmer’s Reference

Chapter 9, “Common Dialog Box Messages,” describes the messages a com-
mon dialog box can send to notify applications that the user has made or
changed a selection in the dialog box.

Chapter 10, “Installable Driver Messages,” lists the messages the Windows
operating system sends to notify installable drivers about specific events.

Appendix A, “Binary and Ternary Raster-Operation Codes,” lists and describes
the binary and ternary raster operations used by the graphics device interface
(GDI).

Appendix B, “Virtual-Key Codes,” shows the symbolic constant names,
hexadecimal values, and keyboard equivalents for Windows virtual-key codes.

Appendix C, “Character Tables,” illustrates the Windows character set, the
Symbol character set, and the OEM character set used by the Windows operat-
ing system.

Document Conventions

The following conventions are used throughout this manual to define syntax:

Convention Meaning

Bold text Denotes a term or character to be typed literally, such as a

resource-definition statement or function name (MENU or
CreateWindow), a command, or a command-line option
(/mod). You must type these terms exactly as shown.

Italic text Denotes a placeholder or variable: You must provide the

[]
I

actual value. For example, the statement SetCursorPos(X,Y)
requires you to substitute values for the X and Y parameters.

Enclose optional parameters.
Separates an either/or choice.
Specifies that the preceding item may be repeated.

BEGIN Represents an omitted portion of a sample application.

END

Introduction vii

In addition, certain text conventions are used to help you understand this material:

Convention Meaning

SMALL CAPITALS Indicate the names of keys, key sequences, and key combina-
tions—for example, ALT+SPACEBAR.

FULL CAPITALS Indicate filenames and paths, type names and most structure
names (which are also bold), and constants.

monospace Sets off code examples and shows syntax spacing.

s

Data Types

Chapter 1

Alphabetic REfErenceccoviiiiiiiiiiiiiictcece e

Chapter 1 Data Types 3

The data types in this chapter are keywords that define the size and meaning of
parameters and return values associated with functions for the Microsoft Windows
operating system, version 3.1. The following table contains character, integer, and
Boolean types; pointer types; and handles. The character, integer, and Boolean
types are common to most C compilers. Most of the pointer-type names begin
with a prefix of P, N (for near pointers), or LP (for long pointers). A near pointer
accesses data within the current data segment, and a long pointer contains a 32-bit
segment:offset value. A Windows application uses a handle to refer to a resource

that has been loaded into memory. Windows provides access to these resources
through internally maintained tables that contain individual entries for each
handle. Each entry in the handle table contains the address of the resource and a
means of identifying the resource type.

The Windows data types are defined in the following table:

Type Definition

ABORTPROC 32-bit pointer to an AbortProc callback function.

ATOM 16-bit value used as an atom handle.

BOOL 16-bit Boolean value.

BYTE 8-bit unsigned integer. Use LPBYTE to create
32-bit pointers. Use PBYTE to create pointers
that match the compiler memory model.

CATCHBUFI[9] 18-byte buffer used by the Catch function.

COLORREF 32-bit value used as a color value.

DLGPROC 32-bit pointer to a dialog box procedure.

DWORD 32-bit unsigned integer or a segment:offset
address. Use LPDWORD to create 32-bit
pointers. Use PDWORD to create pointers that
match the compiler memory model.

FARPROC 32-bit pointer to a function.

FNCALLBACK 32-bit value identifying the DdeCallback func-
tion. Use PFNCALLBACK to create pointers
that match the compiler memory model.

FONTENUMPROC 32-bit pointer to an EnumFontsProc callback
function.

GLOBALHANDLE 16-bit value used as a handle to a global memory
object.

GNOTIFYPROC 32-bit pointer to a NotifyProc callback function.

GOBJENUMPROC 32-bit pointer to a EnumObjectsProc callback
function.

GRAYSTRINGPROC 32-bit pointer to a GrayStringProc callback

function.

4 Microsoft Windows Programmer’s Reference

Type Definition

HANDLE 16-bit value used as a general handle. Use
LPHANDLE to create 32-bit pointers. Use
SPHANDLE to create 16-bit pointers. Use
PHANDLE to create pointers that match the
compiler memory model.

HCURSOR 16-bit value used as a cursor handle.

HFILE 16-bit value used as a file handle.

HGDIOBJ 16-bit value used as a graphics device interface
(GDI) object handle.

HGLOBAL 16-bit value used as a handle to a global memory
object.

HHOOK 32-bit value used as a hook handle.

HKEY 32-bit value used as a handle to a key in the regis-
tration database. Use PHKEY to create 32-bit
pointers.

HLOCAL 16-bit value used as a handle to a local memory
object.

HMODULE 16-bit value used as a module handle.

HOBJECT 16-bit value used as a handle to an OLE object.

HWND 16-bit value used as a handle to a window.

HOOKPROC 32-bit pointer to a hook procedure.

HRSRC 16-bit value used as a resource handle.

LHCLIENTDOC 32-bit value used as a handle to an OLE client
document.

LHSERVER 32-bit value used as a handle to an OLE server.

LHSERVERDOC 32-bit value used as a handle to an OLE server
document.

LINEDDAPROC 32-bit pointer to a LineDDAProc callback func-
tion.

LOCALHANDLE 16-bit value used as a handle to a local memory
object.

LONG 32-bit signed integer.

LPABC 32-bit pointer to an ABC structure.

LPARAM 32-bit signed value passed as a parameter to a
window procedure or callback function.

LPBI 32-bit pointer to a BANDINFOSTRUCT struc-
ture.

LPBITMAP 32-bit pointer to a BITMAP structure. Use

NPBITMAP to create 16-bit pointers. Use PBIT-
MAP to create pointers that match the compiler
memory model.

Chapter 1 Data Types

5

Type

Definition

LPBITMAPCOREHEADER

LPBITMAPCOREINFO

LPBITMAPFILEHEADER

LPBITMAPINFO

LPBITMAPINFOHEADER

LPCATCHBUF
LPCBT_CREATEWND

LPCHOOSECOLOR
LPCHOOSEFONT
LPCLIENTCREATESTRUCT

LPCOMPAREITEMSTRUCT

LPCPLINFO

LPCREATESTRUCT
LPCSTR
LPCTLINFO

LPCTLSTYLE

LPDCB
LPDEBUGHOOKINFO

32-bit pointer to a BITMAPCOREHEADER
structure. Use PBITMAPCOREHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a BITMAPCOREINFO struc-
ture. Use PBITMAPCOREINFO to create point-
ers that match the compiler memory model.
32-bit pointer to a BITMAPFILEHEADER
structure. Use PBITMAPFILEHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a BITMAPINFO structure. Use
PBITMAPINFO to create pointers that match
the compiler memory model.

32-bit pointer to a BITMAPINFOHEADER
structure. Use PBITMAPINFOHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a CATCHBUF array.

32-bit pointer to a CBT_ CREATEWND struc-
ture.

32-bit pointer to a CHOOSECOLOR structure.
32-bit pointer to a CHOOSEFONT structure.

32-bit pointer to a CLIENTCREATESTRUCT
structure.

32-bit pointer to a COMPAREITEMSTRUCT
structure. Use PCOMPAREITEMSTRUCT to
create pointers that match the compiler memory
model.

32-bit pointer to a CPLINFO structure. Use
PCPLINFO to create pointers that match the
compiler memory model.

32-bit pointer to a CREATESTRUCT structure.
32-bit pointer to a nonmodifiable character string.
32-bit pointer to a CTLINFO structure. Use

PCTLINFO to create pointers that match the
compiler memory model.

32-bit pointer to a CTLSTYLE structure. Use
PCTLSTYLE to create pointers that match the
compiler memory model.

32-bit pointer to a DCB structure.

32-bit pointer to a DEBUGHOOKINFO
structure.

Microsoft Windows Programmer’s Reference

Type

Definition

LPDELETEITEMSTRUCT

LPDEVMODE

LPDEVNAMES
LPDOCINFO
LPDRAWITEMSTRUCT
LPDRIVERINFOSTRUCT

LPDRVCONFIGINFO

LPEVENTMSG

LPDRIVERINFOSTRUCT

LPFINDREPLACE
LPFMS_GETDRIVEINFO

LPFMS_GETFILESEL

LPFMS_LOAD
LPHANDLETABLE

LPHELPWININFO

LPINT

LPKERNINGPAIR

32-bit pointer to a DELETEITEMSTRUCT
structure. Use PDELETEITEMSTRUCT to
create pointers that match the compiler memory
model.

32-bit pointer to a DEVMODE structure. Use
NPDEVMODE to create 16-bit pointers. Use
PDEVMODE to create pointers that match the
compiler memory model.

32-bit pointer to a DEVNAMES structure.
32-bit pointer to a DOCINFO structure.

32-bit pointer to a DRAWITEMSTRUCT struc-
ture. Use PDRAWITEMSTRUCT to create
pointers that match the compiler memory model.
32-bit pointer to a DRIVERINFOSTRUCT
structure.

32-bit pointer to a DRVCONFIGINFO struc-
ture. Usc PDRVCONFIGINFO to create point-
ers that match the compiler memory model.
32-bit pointer to a EVENTMSG structure. Use
NPEVENTMSG to create 16-bit pointers. Use
PEVENTMSG to create pointers that match the
compiler memory model.

32-bit pointer to a DRIVERINFOSTRUCT
structure.

32-bit pointer to a FINDREPLACE structure.

32-bit pointer to a FMS_GETDRIVEINFO
structure.

32-bit pointer to a FMS_GETFILESEL struc-
ture.

32-bit pointer to a FMS_LOAD structure.
32-bit pointer to a HANDLETABLE structure.
Use PHANDLETABLE to create pointers that
match the compiler memory model.

32-bit pointer to a HELPWININFO structure.
Use PHELPWININFO to create pointers that
match the compiler memory model.

32-bit pointer to a 16-bit signed value. Use PINT
to create pointers that match the compiler
memory model.

32-bit pointer to a KERNINGPAIR structure.

Chapter 1 Data Types

Type

Definition

LPLOGBRUSH

LPLOGFONT

LPLOGPALETTE

LPLOGPEN

LPLONG

LPMAT2
LPMDICREATESTRUCT

LPMEASUREITEMSTRUCT

LPMETAFILEPICT
LPMETARECORD

LPMOUSEHOOKSTRUCT

LPMSG

LPNCCALCSIZE_PARAMS

LPNEWCPLINFO

32-bit pointer to a LOGBRUSH structure. Use
NPLOGBRUSH to create 16-bit pointers. Use
PLOGBRUSH to create pointers that match the
compiler memory model.

32-bit pointer to a LOGFONT structure. Use
NPLOGFONT to create 16-bit pointers. Use
PLOGFONT to create pointers that match the
compiler memory model.

32-bit pointer to a LOGPALETTE structure.
Use NPLOGPALETTE to create 16-bit point-
ers. Use PLOGPALETTE to create pointers that
match the compiler memory model.

32-bit pointer to a LOGPEN structure. Use
NPLOGPEN to create 16-bit pointers. Use
PLOGPEN to create pointers that match the com-
piler memory model.

32-bit pointer to a 32-bit signed integer. Use
PLONG to create pointers that match the com-
piler memory model.

32-bit pointer to a MAT2 structure.

32-bit pointer to an MDICREATESTRUCT
structure.

32-bit pointer to a MEASUREITEMSTRUCT
structure. Use PMEASUREITEMSTRUCT to
create pointers that match the compiler memory
model.

32-bit pointer to a METAFILEPICT structure.
32-bit pointer to a METARECORD structure.
Use PMETARECORD to create pointers that
match the compiler memory model.

32-bit pointer to a MOUSEHOOKSTRUCT
structure.

32-bit pointer to an MSG structure. Use NPMSG
to create 16-bit pointers. Use PMSG to create
pointers that match the compiler memory model.

32-bit pointer to an NCCALCSIZE_PARAMS
structure.

32-bit pointer to an NEWCPLINFO structure.
Use PNEWCPLINFO to create pointers that
match the compiler memory model.

8 Microsoft Windows Programmer’s Reference

Type

Definition

LPNEWTEXTMETRIC

LPOFSTRUCT

LPOLECLIENT
LPOLECLIENTVTBL
LPOLEOBJECT
LPOLEOBJECTVTBL
LPOLESERVER
LPOLESERVERDOC

LPOLESERVERDOCVTBL

LPOLESERVERVTBL
LPOLESTREAM
LPOLESTREAMVTBL

LPOLETARGETDEVICE

LPOPENFILENAME

LPOUTLINETEXTMETRIC

LPPAINTSTRUCT

LPPALETTEENTRY
LPPOINT

LPPOINTFX
LPPRINTDLG

LPRASTERIZER_STATUS

LPRECT

32-bit pointer to a NEWTEXTMETRIC struc-
ture. Use NPNEWTEXTMETRIC to create
16-bit pointers. Use PNEWTEXTMETRIC to
create pointers that match the compiler memory
model.

32-bit pointer to an OFSTRUCT structure. Use
NPOFSTRUCT to create 16-bit pointers. Use
POFSTRUCT to create pointers that match the
compiler memory model.

32-bit pointer to OLECLIENT structure.

32-bit pointer to OLECLIENTVTBL structure.
32-bit pointer to OLEOBJECT structure.

32-bit pointer to OLEOBJECTVTBL structure.
32-bit pointer to OLESERVER structure.

32-bit pointer to OLESERVERDOC structure.
32-bit pointer to OLESERVERDOCVTBL
structure.

32-bit pointer to OLESERVERVTBL structure.
32-bit pointer to OLESTREAM structure.
32-bit pointer to OLESTREAMVTBL structure.
32-bit pointer to OLETARGETDEVICE struc-
ture.

32-bit pointer to OPENFILENAME structure.
32-bit pointer to an OUTLINETEXTMETRIC
structure.

32-bit pointer to a PAINTSTRUCT structure.
Use NPPAINTSTRUCT to create 16-bit point-
ers. Use PPAINTSTRUCT to create pointers
that match the compiler memory model.

32-bit pointer to a PALETTEENTRY structure.
32-bit pointer to a POINT structure. Use
NPPOINT to create 16-bit pointers. Use
PPOINT to create pointers that match the com-
piler memory model.

32-bit pointer to a POINTFX structure.

32-bit pointer to a PRINTDLG structure.

32-bit pointer to a RASTERIZER_STATUS
structure.

32-bit pointer to a RECT structure. Use
NPRECT to create 16-bit pointers. Use PRECT
to create pointers that match the compiler
memory model.

Chapter 1 Data Types 9

Type Definition

LPRGBQUAD 32-bit pointer to a RGBQUAD structure.

LPRGBTRIPLE 32-bit pointer to a RGBTRIPLE structure.

LPSEGINFO 32-bit pointer to a SEGINFO structure.

LPSIZE 32-bit pointer to a SIZE structure. Use NPSIZE
to create 16-bit pointers. Use PSIZE to create
pointers that match the compiler memory model.

LPSTR 32-bit pointer to a character string. Use NPSTR
to create 16-bit pointers. Use PSTR to create
pointers that match the compiler memory model.

LPTEXTMETRIC 32-bit pointer to a TEXTMETRIC structure.
Use NPTEXTMETRIC to create 16-bit point-
ers. Use PTEXTMETRIC to create pointers that
match the compiler memory model.

LPTTPOLYCURVE 32-bit pointer to a TTPOLYCURVE structure.

LPTTPOLYGONHEADER 32-bit pointer to a TTPOLYGONHEADER
structure.

LPVOID 32-bit pointer to an unspecified type.

LPWINDOWPLACEMENT 32-bit pointer to a WINDOWPLA CEMENT
structure. Use PWINDOWPLA CEMENT to
create pointers that match the compiler memory
model.

LPWINDOWPOS 32-bit pointer to a WINDOWPOS structure.

LPWNDCLASS 32-bit pointer to a WNDCLASS structure. Use
NPWNDCLASS to create 16-bit pointers. Use
PWNDCLASS to create pointers that match the
compiler memory model.

LPWORD 32-bit pointer to a 16-bit unsigned value. Use
PWORD to create pointers that match the com-
piler memory model.

LRESULT 32-bit signed value returned from a window pro-
cedure or callback function.

MFENUMPROC 32-bit pointer to an EnumMetaFileProc call-
back function.

NEARPROC 16-bit pointer to a function.

OLECLIPFORMAT 16-bit value used as a standard clipboard format.

PATTERN Equivalent to the LOGBRUSH structure. Use
LPPATTERN to create 32-bit pointers. Use
NPPATTERN to create 16-bit pointers. Use
PPATTERN to create pointers that match the
compiler memory model.

PCONVCONTEXT 32-bit pointer to a CONVCONTEXT structure.

PCONVINFO 32-bit pointer to a CONVINFO structure.

10 Microsoft Windows Programmer’s Reference

Type Definition

PHSZPAIR 32-bit pointer to a HSZPAIR structure.

PROPENUMPROC 32-bit pointer to an EnumPropFixedProc or
EnumPropMovableProc callback function.

RSRCHDLRPROC 32-bit pointer to a LoadProc callback function.

TIMERPROC 32-bit pointer to a TimerProc callback function.

UINT 16-bit unsigned value.

WNDENUMPROC 32-bit pointer to an EnumWindowsProc call-
back function.

WNDPROC 32-bit pointer to a window procedure.

WORD 16-bit unsigned value.

WPARAM 16-bit signed value passed as a parameter to a

window procedure or callback function.

Messages

Chapter 2
2.1 WINAOW MESSAZESeovemiemreririieiteieieteieseetentesresseeetesee et ntesresseeseeseenes 14
2.2 Notification MESSAZES......ccceerreriererieirierieienieeeientereereneeseesecesresreseenseeenes 213

Chapter2 Messages 13

The Microsoft Windows operating system communicates with applications
through formatted window messages. These messages are sent to an application’s
window procedure for processing.

Some messages return values that contain information about the success of the
message or contain other data needed by an application. To obtain the return
value, the application must call the SendMessage function to send the message to
a window. This function does not return until the message has been processed.

If the application does not require the return value of the message, it can call the
PostMessage function to send the message. This function places a message in a
window’s application queue and then returns immediately. If a message does not
have a return value, the application can use either function to send the message, un-
less the message description indicates otherwise.

A message consists of three parts: a message number, a word parameter, and a
long parameter. Message numbers are identified by predefined message names.
Each message name begins with letters that suggest the meaning or origin of the
message. The word parameter and long parameter, named wParam and [Param re-
spectively, contain values that depend on the message number.

The [Param parameter often contains more than one type of information. For ex-
ample, the high-order word may contain a handle to a window and the low-order
word may contain an integer value. The HIWORD and LOWORD utility macros
can be used to extract the high- and low-order words of the /[Param parameter.
The HIBYTE and LOBYTE utility macros can be used with HIWORD and
LOWORD to access any of the bytes. Casting can also be used.

Following are the four ranges of message numbers:

Range Meaning

0 through WM_USER -1 Messages reserved for use by Windows.
WM_USER through Ox7FFF Integer messages for use by applications.
0x8000 through OxBFFF Messages reserved for use by Windows.
0xCO000 through OxFFFF String messages for use by applications.

Message numbers in the first range (0 through WM_USER - 1) are defined by
Windows. Values in this range that are not explicitly defined are reserved for
future use by Windows. This chapter describes messages in this range.

Message numbers in the second range (WM_USER through 0x7FFF) can be
defined and used by an application to send messages within a private window
class. Such predefined control classes as BUTTON, EDIT, LISTBOX, and
COMBOBOX may use values in this range. Messages in this range should not be
sent to other applications unless the applications have been designed to exchange
messages and to attach the same meaning to the message numbers.

14 BM_GETCHECK

Message numbers in the third range (0x8000 through 0xBFFF) are reserved for
future use by Windows.

Message numbers in the fourth range (0xC000 through OxFFFF) are defined at run
time when an application calls the RegisterWindowMessage function to obtain a
message number for a string. All applications that register the identical string can
use the associated message number for exchanging messages with each other. The
actual message number, however, is not a constant and cannot be assumed to be
the same in different Windows sessions.

2.1 Window Messages

This section describes window messages. These messages are presented in alpha-
betic order.

BM_GETCHECK [2x]

BM_GETCHECK
wParam 9; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends a BM_GETCHECK message to retrieve the check state of a

button.
Parameters This message has no parameters.
Return Value The return value from a button created with the BS_ AUTOCHECKBOX,

BS_AUTORADIOBUTTON, BS_AUTO3STATE, BS_CHECKBOX,
BS_RADIOBUTTON, or BS_3STATE style may be one of the following values:

Value Meaning

0 Button state is unchecked.

1 Button state is checked.

2 Button state is indeterminate (applies only if the button has the

BS_3STATE or BS_AUTO3STATE style).

If the button has any other style, the return value is 0.

BM_GETSTATE 15

Example This example determines if the ID_MYCHECKBOX control is currently checked:

int checked;

checked = (int) SendDlgltemMessage(hwndDlg, ID_MYCHECKBOX,
BM_GETCHECK, @, 0L);

See Also BM_GETSTATE, BM_SETCHECK

BM_GETSTATE [2x]

BM_GETSTATE
wParam 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends a BM_GETSTATE message to retrieve the state of a button.
Parameters This message has no parameters.

Return Value The return value specifies the current state of the button. You can use the follow-
ing masks to extract information about the state:

Mask Description

0x0003 Specifies the check state (radio buttons and check boxes only). A value of 0
indicates the button is unchecked. A value of 1 indicates the button is
checked. A radio button is checked when it contains a dot; a check box is
checked when it contains an X. A value of 2 indicates the check state is in-
determinate (3-state check boxes only). The state of a 3-state check box is
indeterminate when it is grayed.

0x0004 Specifies the highlight state. A nonzero value indicates that the button is
highlighted. A button is highlighted when the user presses and holds the left
mouse button. The highlighting is removed when the user releases the
mouse button.

0x0008 Specifies the focus state. A nonzero value indicates that the button has the
focus.

16 BM_SETCHECK

Example This example determines whether a button currently has the focus:

f#fdefine BFFOCUS 0x0008
DWORD dwResult;

dwResult = SendDlgitemMessage(hdlg, ID_MYBUTTON, BM_GETSTATE, @, 0L);
if (dwResult & BFFOCUS)

/* button has the focus */

See Also BM_GETCHECK, BM_SETSTATE

BM_SETCHECK 5]

BM_SETCHECK
wParam = (WPARAM) fCheck; /* check state */
1Param = 0L; /* not used, must be zero */

An application sends a BM_SETCHECK message to set the check state of a
button.

Parameters fCheck
Value of wParam. Specifies the check state. This parameter can be one of the
following values:

Value Meaning

0 Set the button state to unchecked.

1 Set the button state to checked.

2 Set the button state to indeterminate. This value can be used only if the

button has the BS_3STATE or BS_AUTO3STATE style.

Return Value The return value is always zero.
Comments The BM_SETCHECK message has no effect on push buttons.
Example This example places a dot inside a radio button:

SendDlgItemMessage(hdlg, ID_MYRADIOBUTTON, BM_SETCHECK, TRUE, 0OL);

See Also BM_GETCHECK, BM_GETSTATE, BM_SETSTATE

BM_SETSTATE 17

BM_ SETSTATE 5]

Parameters

Return Value

Comments

Example

See Also

BM_SETSTATE
wParam (WPARAM) fState; /* highlight state */
1Param oL; /* not used, must be zero */

An application sends a BM_SETSTATE message to set the highlight state of a
button.

SfState
Value of wParam. Specifies whether the button is to be highlighted. A nonzero
value highlights the button. A zero value removes any highlighting.

The return value is always zero.

Highlighting affects the exterior of a button. It has no effect on the check state of a
radio button or check box.

A button is automatically highlighted when the user presses and holds the left
mouse button. The highlighting is removed when the user releases the mouse
button.

This example highlights and then removes highlighting from a push button, simu-
lating the visual effect of a user clicking the button:

SendDlgltemMessage(hdlg, ID_MYPUSHBUTTON, BM_SETSTATE, TRUE, @L);
/%
Perform some action; then remove the highlighting,
* thereby returning it to its normal state.
*/

SendDT1gItemMessage(hdig, ID_MYPUSHBUTTON, BM_SETSTATE, FALSE, @L);

BM_GETSTATE, BM_SETCHECK

18 BM_SETSTYLE

BM_SETSTYLE [2x]

BM_SETSTYLE
wParam (WPARAM) LOWORD(dwStyle); /#* style */
1Param MAKELPARAM(fRedraw, 0); /% redraw flag */

An application sends a BM_SETSTYLE message to change the style of a button.

Parameters dwStyle
Value of wParam. Specifies the button style. For an explanation of button
styles, see the following Comments section.

JRedraw
Value of the low-order word of /Param. Specifies whether the button is to be
redrawn. A value of TRUE redraws the button. A value of FALSE does not
redraw the button.

Return Value The return value is always zero.
Comments The following are the button styles:
Value Meaning
BS_3STATE Creates a button that is the same as a check box, ex-

cept that the box can be grayed (dimmed) as well as
checked. The grayed state typically is used to show
that a check box has been disabled.

BS_AUTO3STATE Creates a button that is the same as a three-state
check box, except that the box changes its state when
the user selects it. The state cycles through checked,
grayed, and normal.

BS_AUTOCHECKBOX Creates a button that is the same as a check box, ex-
cept that an X appears in the check box when the user
selects the box; the X disappears (is cleared) the next
time the user selects the box.

BS_AUTORADIOBUTTON Creates a button that is the same as a radio button,
except that when the user selects it, the button auto-
matically highlights itself and clears (removes the
selection from) any other buttons in the same group.

BS_CHECKBOX Creates a small square that has text displayed to its
right (unless this style is combined with the
BS_LEFTTEXT style).

BS_DEFPUSHBUTTON Creates a button that has a heavy black border. The
user can select this button by pressing the ENTER key.
This style is useful for enabling the user to quickly
select the most likely option (the default option).

CB_ADDSTRING 19

Value Meaning

BS_GROUPBOX Creates a rectangle in which other buttons can be
grouped. Any text associated with this style is dis-
played in the rectangle’s upper-left corner.

BS_LEFTTEXT Places text on the left side of the radio button or
check box when combined with a radio button or
check box style.

BS_OWNERDRAW Creates an owner-drawn button. The owner window

receives a WM_MEASUREITEM message when the
button is created, and it receives a
WM_DRAWITEM message when a visual aspect of
the button has changed. The BS_OWNERDRAW
style cannot be combined with any other button

styles.

BS_PUSHBUTTON Creates a push button that posts a WM_COMMAND
message to the owner window when the user selects
the button.

BS_RADIOBUTTON Creates a small circle that has text displayed to its

right (unless this style is combined with the
BS_LEFTTEXT style). Radio buttons are usually
used in groups of related but mutually exclusive
choices.

An application should not attempt to change a button’s type (for example, chang-
ing a radio button to a check box).

Example This example sends a BM_SETSTYLE message to make a button become the de-
fault push button:

SendDlgItemMessage(hdlg, ID_MYPUSHBUTTON, BM_SETSTYLE,
(WPARAM) BS_DEFPUSHBUTTON, TRUE);

CB_ADDSTRING

CB_ADDSTRING
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (LPCSTR) 1psz; /* address of string to add */

An application sends a CB_ADDSTRING message to add a string to the list box
of a combo box. If the list box does not have the CBS_SORT style, the string is
added to the end of the list. Otherwise, the string is inserted into the list and the list
is sorted.

20 CB_DELETESTRING

Parameters Ipsz
Value of [Param. Points to the null-terminated string to be added. If the combo
box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, the value of the lpsz parameter is stored rather than
the string it would otherwise point to.

Return Value The return value is the zero-based index to the string in the list box. The return
value is CB_ERR if an error occurs; the return value is CB_ERRSPACE if insuffi-
cient space is available to store the new string.

Comments If an owner-drawn combo box was created with the CBS_SORT style but not the
CBS_HASSTRINGS style, the WM_COMPAREITEM message is sent one or
more times to the owner of the combo box so that the new item can be properly
placed in the list box.

To insert a string into a specific location within the list, use the
CB_INSERTSTRING message.

Example This example adds the string “my string” to a list box:

DWORD dwlIndex;

dwindex = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_ADDSTRING, @, (LPARAM) ((LPCSTR) "my string™));

See Also CB_INSERTSTRING, WM_COMPAREITEM

CB_DELETESTRING

CB_DELETESTRING
wParam (WPARAM) index; /#* item to delete */
TParam aL; /* not used, must be zero x/

An application sends a CB_DELETESTRING message to delete a string in the list
box of a combo box.

Parameters index
Value of wParam. Specifies the zero-based index of the string to delete.

Return Value The return value is a count of the strings remaining in the list. The return value is
CB_ERR if the index parameter specifies an index greater than the number of
items in the list.

CB_DIR 21

Comments

Example

See Also

If the combo box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, a WM_DELETEITEM message is sent to the owner
of the combo box so that the application can free any additional data associated
with the item.
This example deletes the first string in a combo box:
DWORD dwRemaining;
dwRemaining = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,

CB_DELETESTRING, @, 0OL);

WM_DELETEITEM

CB_DIR

Parameters

CB_DIR
wParam = (WPARAM) (UINT) uAttrs; /* file attributes */
1Param = (LPARAM) (LPCSTR) 1pszFileSpec; /* address of filename */

An application sends a CB_DIR message to add a list of filenames to the list box
of a combo box.

uAttrs
Value of wParam. Specifies the attributes of the files to be added to the list
box. It can be any combination of the following values:

Value Meaning
0x0000 File can be read from or written to.
0x0001 File can be read from but not written to.

0x0002 File is hidden and does not appear in a directory listing.

0x0004 File is a system file.

0x0010 The name pointed to by the IpszFileSpec parameter specifies a directory.
0x0020 File has been archived.

0x4000 All drives that match the name specified by the IpszFileSpec parameter
are included.

0x8000 Exclusive flag. If the exclusive flag is set, only files of the specified
type are listed. Otherwise, files of the specified type are listed in addi-
tion to files that do not match the specified type.

22 CB_FINDSTRING

Return Value

Example

See Also

IpszFileSpec
Value of [Param. Points to the null-terminated string that specifies the filename
to add to the list. If the filename contains any wildcards (for example, *.*), all
files that match and have the attributes specified by the uAtrs parameter will be
added to the list.

The return value is the zero-based index of the last filename added to the list. The
return value is CB_ERR if an error occurs. The return value is CB_ERRSPACE if
insufficient space is available to store the new strings.

This example adds the names of all available drives to a combo box:

DWORD dwIndexlLastItem;

dwIndexLastItem = SendDligltemMessage(hdlg, ID_MYCOMBOBOX, CB_DIR,
0x4000 | 0x8000, (LPARAM) ((LPCSTR) "*"));

DIlgDirList

CB_FINDSTRING

Parameters

Return Value

CB_FINDSTRING
wParam (WPARAM) indexStart; /* item before start of search */
1Param (LPARAM) (LPCSTR) 1pszFind; /#* address of prefix string */

An application sends a CB_FINDSTRING message to find the first string that con-
tains the prefix specified in the list box of a combo box.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszFind
Value of [Param. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi-
nation of uppercase and lowercase letters.

The return value is the zero-based index of the matching item, or it is CB_ERR if
the search was unsuccessful.

CB_FINDSTRINGEXACT 23

Comments

Example

See Also

If the combo box’s style is owner-drawn but not CBS_HASSTRINGS and
CBS_SORT, CB_FINDSTRING is used. If the styles are owner-drawn and
CBS_SORT but not CBS_HASSTRINGS, WM_COMPAREITEM messages
are sent.

This example searches for the string “my string” in a combo box and copies it, if
found, to the szBuf buffer:

char szBuf[20];
DWORD dwIndex;

dwIndex = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_FINDSTRING, @, (LPARAM) ((LPCSTR) "my string™));
if (dwIndex != CB_ERR)
SendD1gltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXT, (WPARAM) dwIndex, (LPARAM) ((LPCSTR) szBuf));

CB_FINDSTRINGEXACT, CB_SETCURSEL

CB_FINDSTRINGEXACT [31]

Parameters

Return Value

CB_FINDSTRINGEXACT
wParam (WPARAM) indexStart; /* item before start of search */
1Param = (LPARAM) (LPCSTR) 1pszFind; /* address of prefix string */

An application sends a CB_FINDSTRINGEXACT message to find the first list
box string (in a combo box) that matches the string specified in the IpszFind
parameter.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszFind
Value of [Param. Points to the null-terminated string to search for. This string
can contain a complete filename, including the extension. The search is not
case-sensitive, so this string can contain any combination of uppercase and
lowercase letters.

The return value is the zero-based index of the matching item, or it is CB_ERR if
the search was unsuccessful.

24 CB_GETCOUNT

Comments

See Also

If the combo box’s style is owner-drawn but not CBS_HASSTRINGS and
CBS_SORT, CB_FINDSTRING is used. If the styles are owner-drawn and
CBS_SORT but not CBS_HASSTRINGS, WM_COMPAREITEM messages
are sent.

CB_FINDSTRING, CB_SETCURSEL

CB_GETCOUNT

Parameters
Return Value

Comments

Example

CB_GETCOUNT
wParam 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends a CB_GETCOUNT message to retrieve the number of items
in the list box of a combo box.

This message has no parameters.
The return value is the number of items in the list box.

The returned count is one greater than the index value of the last item (the index is
zero-based).

This example retrieves the number of items in a combo box:

WORD cListItems;

cListItems = (WORD) SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETCOUNT, 0, 0);

CB_GETCURSEL

CB_GETCURSEL
wParam = 0; /* not used, must be zero */
1Param = QL; /* not used, must be zero */

An application sends a CB_GETCURSEL message to retrieve the index of the cur-
rently selected item, if any, in the list box of a combo box.

CB_GETDROPPEDCONTROLRECT 25

Parameters

Return Value

Example

See Also

This message has no parameters.

The return value is the zero-based index of the currently selected item, or it is
CB_ERR if no item is selected.

This example retrieves the index of the currently selected string in the list box of a
combo box and then retrieves that string:

char szBuf[20];
DWORD dwlIndex;

dwIndex = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX, CB_GETCURSEL, @, 0);
if (dwIndex != CB_ERR)
SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXT, (WPARAM) dwIndex, (LPARAM) ((LPCSTR) szBuf));

CB_SETCURSEL

CB_GETDROPPEDCONTROLRECT [31]

Parameters

Return Value

CB_GETDROPPEDCONTROLRECT
wParam 0; /* not used, must be zero */
1Param = (LPARAM) (RECT FAR*) Tprc; /* address of RECT structure =/

An application sends a CB_GETDROPPEDCONTROLRECT message to retrieve
the screen coordinates of the visible (dropped-down) list box of a combo box.

Iprc
Value of [Param. Points to the RECT structure that is to receive the coordi-
nates. The RECT structure has the following form:

typedef struct tagRECT { /* rc x/
int left;
int top;
int right;
int bottom;
} RECT;

The return value is always CB_OKAY.

26 CB_GETDROPPEDSTATE

Example

This example retrieves the bounding rectangle of the list box of a combo box:

RECT rcl;

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETDROPPEDCONTROLRECT, @, (DWORD) ((LPRECT) &rcl));

CB_GETDROPPEDSTATE

Parameters
Return Value

Example

See Also

CB_GETDROPPEDSTATE
wParam 0; /* not used, must be zero */
1Param = @L; /* not used, must be zero */

[31]

An application sends a CB_GETDROPPEDSTATE message to determine whether

the list box of a combo box is visible (dropped down).

This message has no parameters.

The return value is nonzero if the list box is visible; otherwise, it is zero.

This example determines whether the list box of a combo box is visible:

BOOL fDropped;

fDropped = (BOOL) SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETDROPPEDSTATE, @, 0L);

CB_SHOWDROPDOWN

CB_GETEDITSEL

CB_GETEDITSEL
wParam = 0; /* not used, must be zero */
1Param = OL; /* not used, must be zero */

[2x]

An application sends a CB_GETEDITSEL message to retrieve the starting and
ending character positions of the current selection in the edit control of a combo

box.

CB_GETEXTENDEDUI 27

Parameters

Return Value

Example

See Also

This message has no parameters.

The return value is a doubleword value that contains the starting position in the
low-order word and the position of the first nonselected character after the end of
the selection in the high-order word.

This example retrieves the selection positions of the edit control of a combo box,
and converts them into starting and ending positions:

DWORD dwResult;
WORD wStart, wEnd;

dwResult = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETEDITSEL, @, @L);

wStart = LOWORD(dwResult);

wEnd = HIWORD(dwResult);

CB_SETEDITSEL

CB_GETEXTENDEDUI [31]

Parameters

Return Value

Comments

CB_GETEXTENDEDUI
wParam = 0; /* not used, must be zero */
1Param = @L; /* not used, must be zero */

An application sends a CB_GETEXTENDEDUI message to determine whether a
combo box has the default user interface or the extended user interface.

This message has no parameters.

The return value is nonzero if the combo box has the extended user interface;
otherwise, it is zero.

The extended user interface differs from the default user interface in the following

ways:

» Clicking the static control displays the list box (CBS_DROPDOWNLIST style
only).

® Pressing the DOWN ARROW key displays the list box (F4 is disabled).

® Scrolling in the static control is disabled when the item list is not visible (arrow
keys are disabled).

28 CB_GETITEMDATA

Example This example determines whether a combo box has the extended user interface:

BOOL»fExtended;

fExtended = (BOOL) SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETEXTENDEDUI, @, 0L);

See Also CB_SETEXTENDEDUI

CB_GETITEMDATA

CB_GETITEMDATA
wParam (WPARAM) index; /#* item index */
1Param oL; /* not used, must be zero */

non

An application sends a CB_GETITEMDATA message to a combo box to retrieve
the application-supplied doubleword value associated with the specified item in
the combo box. (This is the value in the /Param parameter of a CB_SETITEM-
DATA message.)

Parameters index
Value of wParam. Specifies the zero-based index of the item.

Return Value The return value is the doubleword value associated with the item, or it is
CB_ERR if an error occurs.

See Also CB_SETITEMDATA

CB_GETITEMHEIGHT [31]

CB_GETITEMHEIGHT
wParam (WPARAM) index; /#* item index */
1Param oL; /* not used, must be zero */

An application sends a CB_GETITEMHEIGHT message to retrieve the height of
list items in a combo box.

CB_GETLBTEXT 29

Parameters

Return Value

Example

See Also

index
Value of wParam. Specifies the component of the combo box whose height is
to be retrieved. If the index parameter is —1, the height of the edit-control (or
static-text) portion of the combo box is retrieved. If the combo box has the
CBS_OWNERDRAWYVARIABLE style, index specifies the zero-based index
of the list item whose height is to be retrieved. Otherwise, index should be set
to zero.

The return value is the height, in pixels, of the list items in a combo box. The re-
turn value is the height of the item specified by the index parameter if the combo
box has the CBS_OWNERDRAWVARIABLE style. The return value is the
height of the edit-control (or static-text) portion of the combo box if index is —1.
The return value is CB_ERR if an error occurred.

This example sends a CB_GETITEMHEIGHT message to retrieve the height of
the list items in a combo box:

LRESULT TrHeight;

1rHeight = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETITEMHEIGHT, 0, 0L);

CB_SETITEMHEIGHT

CB_GETLBTEXT

Parameters

CB_GETLBTEXT
wParam = (WPARAM) index; /* item index */
1Param (LPARAM) (LPCSTR) 1pszBuffer; /* address of buffer */

An application sends a CB_GETLBTEXT message to retrieve a string from the
list box of a combo box.

index
Value of wParam. Specifies the zero-based index of the string to retrieve.
IpszBuffer
Value of [Param. Points to the buffer that receives the string. The buffer must
have sufficient space for the string and a terminating null character. A
CB_GETLBTEXTLEN message can be sent before the CB_GETLBTEXT mes-
sage to retrieve the length, in bytes, of the string.

30 CB_GETLBTEXTLEN

Return Value The return value is the length of the string, in bytes, excluding the terminating null
character. If the index parameter does not specify a valid index, the return value is
CB_ERR.

Comments If the combo box was created with an owner-drawn style but without the

CBS_HASSTRINGS style, the buffer pointed to by the IpszBuffer parameter of
the message receives the doubleword value associated with the item.

Example This example retrieves the length of the first item in the list box of a combo box,
allocates sufficient memory for the string, and sends a CB_GETLBTEXT message
to retrieve the string:

DWORD cbItemString;
PSTR psz;

cbItemString = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXTLEN, @, 0L);
if (cbItemString != CB_ERR) {
psz = (PSTR) LocalAlloc(LMEM_FIXED, (WORD) cbItemString);
SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXT, @, (LPARAM) ((LPCSTR) psz));

See Also CB_GETLBTEXTLEN

CB_GETLBTEXTLEN

CB_GETLBTEXTLEN
wParam (WPARAM) 1index; /* item index */
1Param = 0L; /* not used, must be zero */

An application sends a CB_GETLBTEXTLEN message to retrieve the length of a
string in the list box of a combo box.

Parameters index
Value of wParam. Specifies the zero-based index of the string.

Return Value The return value is the length of the string, in bytes, excluding the terminating null
character. If the index parameter does not specify a valid index, the return value is
CB_ERR.

CB_INSERTSTRING 31

Example This example retrieves the length of the first item in the list box of a combo box:

DWORD cbItemString;

cbItemString = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXTLEN, @, 0OL);

See Also CB_GETLBTEXT

CB_INSERTSTRING

CB_INSERTSTRING
wParam = (WPARAM) index; /* item index */
1Param = (LPARAM) (LPCSTR) 1psz; /* address of string to insert */

An application sends a CB_INSERTSTRING message to insert a string into the
list box of a combo box. Unlike the CB_ADDSTRING message, the
CB_INSERTSTRING message does not cause a list with the CBS_SORT style to
be sorted.

Parameters index
Value of wParam. Specifies the zero-based index of the position at which to in-
sert the string. If this parameter is —1, the string is added to the end of the list.

Ipsz

Value of [Param. Points to the null-terminated string that is to be inserted. If
the combo box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, the value of the Ipsz parameter is stored rather than
the string it would otherwise point to.

Return Value The return value is the index of the position at which the string was inserted. The
return value is CB_ERR if an error occurs. The return value is CB_ERRSPACE if
insufficient space is available to store the new string.

Example This example inserts the string “my string” into the third position in the list box of
a combo box:
SendDlgltemMessage(hdig, ID_MYCOMBOBOX,
CB_INSERTSTRING, 2, (LPARAM) ((LPCSTR) "my string"));

See Also CB_ADDSTRING

32 CB_LIMITTEXT

CB_LIMITTEXT

CB_LIMITTEXT
wParam = (WPARAM) cchlLimit; /* maximum number of characters */
1Param = @L; /* not used, must be zero */

An application sends a CB_LIMITTEXT message to limit the length of the text
that the user may type in the edit control of a combo box.

Parameters cchLimit
Value of wParam. Specifies the length, in bytes, of the text the user can enter.
If this parameter is zero, the text length is set to 65,535 bytes.

Return Value The return value is 1 if the message is successful. If this message is sent to a
combo box with the style CBS_DROPDOWNLIST, the return value is CB_ERR.

Comments If the combo box does not have the style CBS_AUTOHSCROLL, setting the text
limit to be larger than the size of the edit control has no effect.

The CB_LIMITTEXT message limits only the text the user can enter. It has no ef-
fect on any text already in the edit control when the message is sent, nor does it af-
fect the length of the text copied to the edit control when a string in the list box is
selected.

Example This example limits the text of the edit control of a combo box to five characters:

SendD1gItemMessage(hdlg, ID_MYCOMBOBOX, CB_LIMITTEXT, 5, OL);

CB_RESETCONTENT

CB_RESETCONTENT
wParam = 0; /* not used, must be zero */
TParam = 0L; /* not used, must be zero */

An application sends a CB_RESETCONTENT message to remove all items from
the list box and edit control of a combo box.

Parameters This message has no parameters.

Return Value The return value is always CB_OKAY.

CB_SELECTSTRING 33

Comments

Example

See Also

If the combo box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, the owner of the combo box receives a
WM_DELETEITEM message for each item in the combo box.

This example removes all items from the list box and edit control of a combo box:

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_RESETCONTENT, @, OL);

WM_DELETEITEM

CB_SELECTSTRING

Parameters

Return Value

Comments

CB_SELECTSTRING
wParam = (WPARAM) indexStart; /* item before first selection */
1Param = (LPARAM) (LPCSTR) TpszSelect; /* address of prefix string */

An application sends a CB_SELECTSTRING message to search for a string in the
list box of a combo box and, if the string is found, to select the string in the list
box and copy it to the edit control.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszSelect
Value of [Param. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi-
nation of uppercase and lowercase letters.

The return value is the index of the selected item if the string was found. The re-
turn value is CB_ERR and the current selection is not changed if the search was
unsuccessful.

A string is selected only if its initial characters (from the starting point) match the
characters in the prefix string.

If the combo box’s style is owner-drawn but not CBS_HASSTRINGS and
CBS_SORT, CB_FINDSTRING is used. If the styles are owner-drawn and
CBS_SORT but not CBS_HASSTRINGS, WM_COMPAREITEM messages
are sent.

34 CB_SETCURSEL

Example

See Also

This example searches the entire list box of a combo box for the string “my string”
and, if the string is found, selects it:

DWORD dwIndexFoundString;

dwIndexFoundString = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_SELECTSTRING, -1, (LPARAM) ((LPCSTR) "my string"));

CB_FINDSTRING

CB_SETCURSEL

Parameters

Return Value

Example

See Also

CB_SETCURSEL
wParam = (WPARAM) index; /* item index */
1Param = 0QL; /* not used, must be zero */

An application sends a CB_SETCURSEL message to select a string in the list box
of a combo box. If necessary, the list box scrolls the string into view (if the list
box is visible). The text in the edit control of the combo box is changed to reflect
the new selection. Any previous selection in the list box is removed.

index
Value of wParam. Specifies the zero-based index of the string to select. If the
index parameter is —1, any current selection in the list box is removed and the
edit control is cleared.

The return value is the index of the item selected if the message is successful. The
return value is CB_ERR if the index parameter is greater than the number of items
in the list or if index is set to —1 (which clears the selection).

This example retrieves the number of items in the list box of a combo box and
sends a CB_SETCURSEL message to select the last item in the list:

WORD cListlItems;

cListItems = (WPARAM) SendDlgltemMessage(hdlg,
ID_MYCOMBOBOX, CB_GETCOUNT, @, 0);
SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_SETCURSEL,
cListItems - 1, /* zero-based index, so subtract one from total */
oL);

CB_GETCURSEL, CB_FINDSTRING

CB_SETEXTENDEDUI 35

CB_SETEDITSEL

CB_SETEDITSEL
wParam Q; /* not used, must be zero */
TParam MAKELPARAM(ichStart, ichEnd); /* start and end positions */

An application sends a CB_SETEDITSEL message to select characters in the edit
control of a combo box.

Parameters ichStart
Value of the low-order word of [Param. Specifies the starting position. If this
parameter is set to —1, the selection, if any, is removed.

ichEnd
Value of the high-order word of [Param. Specifies the ending position. If this
parameter is set to —1, all text from the starting position to the last character in
the edit control is selected.

Return Value The return value is nonzero if the message is successful. It is CB_ERR if the mes-
sage is sent to a combo box with the CBS_DROPDOWNLIST style.

Comments The positions are zero-based. To select the first character of the edit control, you
specify a starting position of zero. The ending position is for the character just
after the last character to select. For example, to select the first four characters of
the edit control, you would use a starting position of 0 and an ending position of 4.

Example This example selects the first four characters of the edit control of a combo box:

SendDlgIltemMessage(hdlg, ID_MYCOMBOBOX,
CB_SETEDITSEL, @, MAKELONG(Q, 4));

See Also CB_GETEDITSEL

CB_SETEXTENDEDUI [31]

CB_SETEXTENDEDUI
wParam = (WPARAM) (BOOL) fExtended; /* extended UI flag */
1Param = 0OL; /* not used, must be zero */

An application sends a CB_SETEXTENDEDUI message to select either the de-
fault user interface or the extended user interface for a combo box that has the
CBS_DROPDOWN or CBS_ DROPDOWNLIST style.

36 CB_SETITEMDATA

Parameters JfExtended
Value of wParam. Specifies whether the combo box should use the extended
user interface or the default user interface. A value of TRUE selects the ex-
tended user interface; a value of FALSE selects the standard user interface.

Return Value The return value is CB_OKAY if the operation is successful, or it is CB_ERR if
an error occurred.

Comments The extended user interface differs from the default user interface in the following
ways:

» Clicking the static control displays the list box (CBS_DROPDOWNLIST style
only).
® Pressing the DOWN ARROW key displays the list box (F4 is disabled).

= Scrolling in the static control is disabled when the item list is not visible (the
arrow keys are disabled).

Example This example selects the extended user interface for a combo box:
SendDlgltemMessage(hdlg, ID_MYCOMBOBOX, CB_SETEXTENDEDUI,
TRUE, @L);
See Also CB_GETEXTENDEDUI

CB_SETITEMDATA

CB_SETITEMDATA
wParam = (WPARAM) index; /% item index */

1Param = (LPARAM) (DWORD) dwData; /* item data */

An application sends a CB_SETITEMDATA message to set the doubleword value
associated with the specified item in a combo box. If the item is in an owner-
drawn combo box created without the CBS_HASSTRINGS style, this message re-
places the doubleword value that was contained in the /[Param parameter of the
CB_ADDSTRING or CB_INSERTSTRING message that added the item to the
combo box.

Parameters index
Value of wParam. Specifies the zero-based index to the item.

dwData
Value of [Param. Specifies the new value to be associated with the item.

CB_SETITEMHEIGHT 37

Return Value The return value is CB_ERR if an error occurs.

See Also CB_ADDSTRING, CB_INSERTSTRING

CB_SETITEMHEIGHT [31]

CB_SETITEMHEIGHT
wParam (WPARAM) 1index; /* item index */
TParam (LPARAM) (int) height; /* item height */

An application sends a CB_SETITEMHEIGHT message to set the height of list
items in a combo box or the height of the edit-control (or static-text) portion of a
combo box.

Parameters index
Value of wParam. Specifies whether the height of list items or the height of the
edit-control (or static-text) portion of the combo box is set.

If the combo box has the CBS_OWNERDRAWVARIABLE style, the index
parameter specifies the zero-based index of the list item whose height is to be
set; otherwise, index must be zero and the height of all list items will be set.

If index is —1, the height of the edit-control or static-text portion of the combo
box is to be set.

height
Value of the low-order word of [Param. Specifies the height, in pixels, of the
combo box component identified by index.

Return Value The return value is CB_ERR if the index or height is invalid.

Comments The height of the edit-control (or static-text) portion of the combo box is set inde-
pendently of the height of the list items. An application must ensure that the height
of the edit-control (or static-text) portion isn’t smaller than the height of a particu-
lar list box item.

Example This example sends a CB_SETITEMHEIGHT message to set the height of list
items in a combo box:

LPARAM TrHeight;

SendD1gltemMessage(hdlg, ID_MYCOMBOBOX, CB_SETITEMHEIGHT,
0, TrHeight);

See Also CB_GETITEMHEIGHT

38 CB_SHOWDROPDOWN

CB_SHOWDROPDOWN

CB_SHOWDROPDOWN
wParam (WPARAM) (BOOL) fShow; /* the show/hide flag */
1Param = 0L; /* not used, must be zero */

An application sends a CB_SHOWDROPDOWN message to show or hide the list
box of a combo box that has the CBS_DROPDOWN or CBS_DROPDOWNLIST
style.

Parameters fShow
Value of wParam. Specifies whether the drop-down list box is to be shown or
hidden. A value of TRUE shows the list box. A value of FALSE hides the list

box.
Return Value The return value is always nonzero.
Comments This message has no effect on a combo box created with the CBS_SIMPLE style.
Example This example shows the list box of a combo box:

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_SHOWDROPDOWN, TRUE, OL);

DM_GETDEFID

DM_GETDEFID
wParam 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends a DM_GETDEFID message to get the identifier of the de-
fault push button for a dialog box.

Parameters This message has no parameters.

Return Value The return value is a doubleword value. If the default push button has an identifier
value, the high-order word contains DC_HASDEFID and the low-order word con-
tains the identifier value. The return value is zero if the default push button does
not have an identifier value.

EM_CANUNDO 39

. Example This example gets the identifier of the default push button of a dialog box:

DWORD dwResult;
WORD idDefPushButton;

dwResult = SendMessage(hdlg, DM_GETDEFID, @, QL);

if (HIWORD(dwResult) == DC_HASDEFID)
idDefPushButton = LOWORD(dwResult);

See Also DM_SETDEFID

DM_SETDEFID [2x]

DM_SETDEFID
wIDPushBtn = wParam; /* identifier of new default push button */

An application sends a DM_SETDEFID message to change the identifier of the de-
fault push button for a dialog box.

Parameters wIDPushBtn
Value of wParam. Specifies the identifier of the push button that will become
the default.

Return Value The return value is always nonzero.

EM_CANUNDO [2x]

EM_CANUNDO
wParam = 0; /* not used, must be zero */
1Param = @L; /* not used, must be zero */

An application sends an EM_CANUNDO message to determine whether an edit-
control operation can be undone.

Parameters This message has no parameters.

Return Value The return value is nonzero if the last edit operation can be undone, or it is zero if
the last edit operation cannot be undone.

40 EM_EMPTYUNDOBUFFER

Example This example sends an EM_CANUNDO message to determine whether the last
edit-control operation can be undone and, if so, sends an EM_UNDO message to
undo the last operation:

if (SendDlgItemMessage(hdlg, ID_MYEDITCONTROL, EM_CANUNDO, 0, @L))
SendD1gItemMessage(hdlg, ID_MYEDITCONTROL, EM_UNDO, @, OL);

See Also EM_UNDO

EM_EMPTYUNDOBUFFER

EM_EMPTYUNDOBUFFER
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends an EM_EMPTYUNDOBUFFER message to reset (clear) the
undo flag of an edit control. The undo flag is set whenever an operation within the
edit control can be undone.

Parameters This message has no parameters.
Return Value This message does not return a value.
Comments The undo flag is automatically cleared whenever the edit control receives a

WM_SETTEXT or EM_SETHANDLE message.

Example This example resets the undo flag of an edit control:

SendDl1gItemMessage(hdlg, ID_MYEDITCONTROL, EM_EMPTYUNDOBUFFER, @, OL);

See Also EM_CANUNDO, EM_SETHANDLE, EM_UNDO, WM_SETTEXT

EM_FMTLINES Y|

EM_FMTLINES [2x]

EM_FMTLINES
wParam = (WPARAM) (BOOL) fAddEOL; /* line break flag */
1Param = 0L; /* not used, must be zero */

An application sends an EM_FMTLINES message to set the inclusion of soft line
break characters on or off within a multiline edit control. A soft line break consists
of two carriage returns and a linefeed inserted at the end of a line that is broken be-
cause of wordwrapping.

This message is processed only by multiline edit controls.

Parameters fAddEOL
Value of wParam. Specifies whether soft line break characters are to be in-
serted. A value of TRUE inserts the characters; a value of FALSE removes

them.
Return Value The return value is identical to the fAddEOL parameter.
Comments This message affects only the buffer returned by the EM_GETHANDLE message

and the text returned by the WM_GETTEXT message. It has no effect on the dis-
play of the text within the edit control.

A line that ends with a hard line break is not affected by the EM_FMTLINES mes-
sage. A hard line break consists of one carriage return and a linefeed.

Example This example sends an EM_FMTLINES message to turn off soft line breaks, then
allocates a buffer for the text, and then retrieves the text by sending a
WM_GETTEXT message:

WPARAM chText;
HGLOBAL hmem;
LPSTR 1pstr;

SendDlgItemMessage(hdig, ID_MYEDITCONTROL,
EM_FMTLINES, FALSE, @);

cbText = (WPARAM) SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
WM_GETTEXTLENGTH, @, @L);
chbText++; /* make room for the terminating null character */
hmem = (HGLOBAL) GlobalAlloc(GMEM_MOVEABLE, (DWORD) cbText);
1pstr = GlobalLock(hmem);
SendD1gltemMessage(hdlg, ID_MYEDITCONTROL,
WM_GETTEXT, cbText, (LPARAM) Tpstr);

See Also EM_GETHANDLE, WM_GETTEXT

42 EM_GETFIRSTVISIBLELINE

EM_GETFIRSTVISIBLELINE [31]

EM_GETFIRSTVISIBLELINE
wParam 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends an EM_GETFIRSTVISIBLELINE message to determine the
topmost visible line in an edit control.

Parameters This message has no parameters.

Return Value The return value is the zero-based index of the topmost visible line. For single-line
edit controls, the return value is zero.

Example This example gets the index of the topmost visible line in an edit control:
int FirstVis;

FirstVis = (int) SendDlgltemMessage(hdlg, IDD_EDIT,
EM_GETFIRSTVISIBLELINE, @, OL);

EM_GETHANDLE [2x]

EM_GETHANDLE
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends an EM_GETHANDLE message to retrieve a handle to the
memory currently allocated for a multiline edit control. The handle is a local
memory handle and can be used by any of the functions that take a local memory
handle as a parameter.

This message is processed only by multiline edit controls.

Parameters This message has no parameters.

Return Value The return value is a local memory handle identifying the buffer that holds the con-
tents of the edit control. If an error occurs, such as sending the message to a single-

line edit control, the return value is zero.

Comments An application can send this message to a multiline edit control in a dialog box
only if it created the dialog box with the DS_LOCALEDIT style flag set. If the

EM_GETLINE 43

Example

See Also

DS_LOCALEDIT style is not set, the return value is still nonzero, but the return
value will not be meaningful.

This example sends an EM_GETHANDLE message to a multiline edit control and
calls the LocalSize function to determine the current size of the edit control using
the handle returned by the EM_GETHANDLE message:

HANDLE hmemMle;
WORD cbMle;

hmemMle = (HLOCAL) SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,

EM_GETHANDLE, @, 0L);
cbMle = LocalSize(hmemMle);

EM_SETHANDLE

EM_GETLINE [2x]

Parameters

Return Value

Comments

EM_GETLINE
wParam = (WPARAM) Tine; /* 1ine number to retrieve */
1Param = (LPARAM) (LPSTR) 1pch; /+* address of buffer for line */

An application sends an EM_GETLINE message to retrieve a line of text from an
edit control.

line
Value of wParam. Specifies the line number of the line to retrieve from a multi-
line edit control. Line numbers are zero-based; a value of zero specifies the first
line. This parameter is ignored by a single-line edit control.

Ipch
Value of [Param. Points to the buffer that receives a copy of the line. The first
word of the buffer specifies the maximum number of bytes that can be copied
to the buffer.

The return value is the number of bytes actually copied. The return value is zero if
the line number specified by the line parameter is greater than the number of lines
in the edit control.

The copied line does not contain a terminating null character.

44 EM_GETLINECOUNT

Example

See Also

This example sets the maximum size of the buffer, sends an EM_GETLINE mes-
sage to get the first line of the multiline edit control, and adds a terminating null
character to the end of the retrieved line:

unsigned char szBuf[128];
WORD cbText;

*(WORD *) szBuf = sizeof(szBuf) - 1; /* sets the buffer size */
cbText = (WORD) SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETLINE,
Q, /* 1ine number */
(DWORD) (LPSTR) szBuf); /* buffer address */
szBuf[cbhText] = "\0"'; /* terminating null character */

EM_LINELENGTH, WM_GETTEXT

EM_GETLINECOUNT [2x]

Parameters

Return Value

Example

See Also

EM_GETLINECOUNT
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends an EM_GETLINECOUNT message to retrieve the number
of lines in a multiline edit control.

This message is processed only by multiline edit controls.
This message has no parameters.

The return value is an integer containing the number of lines in the multiline edit
control. If no text is in the edit control, the return value is 1.

This example sends an EM_GETLINECOUNT message to retrieve the number of
lines in a multiline edit control and then sends an EM_LINESCROLL message to
scroll the edit control so that the last line is displayed at the top of the edit control.

int clLines;

cLines = (int) SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETLINECOUNT, @, QL);

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINESCROLL, @, MAKELONG(cLines - 1, 0));

EM_GETLINE, EM_LINELENGTH

EM_GETMODIFY 45

EM_GETMODIFY [2x]

EM_GETMODIFY
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends an EM_GETMODIFY message to determine whether the
contents of an edit control have been modified.

Parameters This message has no parameters.

Return Value The return value is nonzero if the edit-control contents have been modified, or it is
zero if the contents have remained unchanged.

Comments Windows maintains an internal flag indicating whether the contents of the edit con-
trol have been changed. This flag is cleared when the edit control is first created;
or an EM_SETMODIFY message can be sent to clear the flag.

Example This example sends an EM_GETMODIFY message to determine whether the edit
control has been modified and, if it has, retrieves the current contents of the edit
control and clears the modification flag by sending an EM_SETMODIFY mes-
sage:

char szBuf[128];

if (SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETMODIFY, @, 0L)) {
SendD1gltemMessage(hdlg, ID_MYEDITCONTROL,
WM_GETTEXT, sizeof(szBuf), (LPARAM) ((LPCSTR) szBuf));
SendD1gltemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETMODIFY, FALSE, 0L);

See Also EM_SETMODIFY

46 EM_GETPASSWORDCHAR

EM_GETPASSWORDCHAR [31]

EM_GETPASSWORDCHAR
wParam = 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends an EM_GETPASSWORDCHAR message to retrieve the
password character displayed in an edit control when the user enters text.

Parameters This message has no parameters.

Return Value The return value specifies the character to be displayed in place of the character
typed by the user. The return value is NULL if no password character exists.

Comments If the edit control is created with the ES_PASSWORD style, the default password
character is set to an asterisk (*).

See Also EM_SETPASSWORDCHAR

EM_GETRECT 7]

EM_GETRECT
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (RECT FAR%) 1lprc; /+* address of RECT structure */

An application sends an EM_GETRECT message to retrieve the formatting rect-
angle of an edit control. The formatting rectangle is the limiting rectangle of the
text. The limiting rectangle is independent of the size of the edit-control window.

Parameters Iprc
Value of [Param. Points to the RECT structure that receives the formatting
rectangle. The RECT structure has the following form:

typedef struct tagRECT { /% rc */
int left;
int top;
int right;
int bottom;
} RECT;

Return Value The return value is not a meaningful value.

EM_GETSEL 47

Comments The formatting rectangle of a multiline edit control can be modified by the
EM_SETRECT and EM_SETRECTNP messages.

Example This example sends an EM_GETRECT message to retrieve the formatting
rectangle of an edit control:

RECT rcl;

SendDl1gltemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETRECT, @, (DWORD) ((LPRECT) &rcl));

See Also EM_SETRECT

EM_GETSEL | [2x]

EM_GETSEL
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends an EM_GETSEL message to get the starting and ending char-
acter positions of the current selection in an edit control.

Parameters This message has no parameters.

Return Value The return value is a doubleword value that contains the starting position in the
low-order word and the position of the first nonselected character after the end of
the selection in the high-order word.

Example This example gets the selection positions of an edit control and converts them into
starting and ending positions:

DWORD dwResult;
WORD wStart, wEnd;

dwResult = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX, EM_GETSEL, @, @L);
wStart LOWORD(dwResult);
wEnd HIWORD(dwResult);

See Also EM_SETSEL

48 EM_GETWORDBREAKPROC

EM_GETWORDBREAKPROC [31]

Parameters

Return Value

Comments

See Also

EM_GETWORDBREAKPROC
wParam = 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends the EM_GETWORDBREAKPROC message to an edit con-
trol to retrieve the current wordwrap function.

This message has no parameters.

The return value specifies the procedure-instance address of the application-de-
fined wordwrap function. The return value is NULL if no wordwrap function ex-
ists.

A wordwrap function scans a text buffer (which contains text to be sent to the dis-
play), looking for the first word that does not fit on the current display line. The
wordwrap function places this word at the beginning of the next line on the dis-
play. A wordwrap function defines at what point Windows should break a line of
text for multiline edit controls, usually at a space character that separates two
words.

EM_SETWORDBREAKPROC, MakeProcInstance, WordBreakProc

EM_LIMITTEXT [2x]

Parameters

Return Value

EM_LIMITTEXT
wParam (WPARAM) cchMax; /* text length */
1Param oL; /* not used, must be zero */

An application sends an EM_LIMITTEXT message to limit the length of the text
the user can enter into an edit control.

cchMax
Value of wParam. Specifies the length, in bytes, of the text the user can enter.

If this parameter is zero, the text length is set to 65,535 bytes.

This message does not return a value.

EM_LINEFROMCHAR 49

Comments The EM_LIMITTEXT message limits only the text the user can enter. It has no
effect on any text already in the edit control when the message is sent, nor does it
affect the length of text copied to the edit control by the WM_SETTEXT message.

If an application uses the WM_SETTEXT message to place more text into an edit
control than is specified in the EM_LIMITTEXT message, the user can edit the en-
tire contents of the edit control.

See Also WM_SETTEXT

EM_LINEFROMCHAR (2]

EM_LINEFROMCHAR
wParam = (WPARAM) ich; /* character index */
TParam = 0L; /* not used, must be zero */

An application sends an EM_LINEFROMCHAR message to retrieve the line num-
ber of the line that contains the specified character index. A character index is the
number of characters from the beginning of the edit control.

This message is processed only by multiline edit controls.

Parameters ich
Value of wParam. Specifies the character index of the character contained in
the line whose number is to be retrieved. If the ich parameter is —1, either the
line number of the current line (the line containing the caret) is retrieved or, if
there is a selection, the line number of the line containing the beginning of the
selection is retrieved.

Return Value The return value is the zero-based line number of the line containing the character
index specified by ich.
Example This example sends an EM_LINEFROMCHAR message to retrieve the line num-

ber of the current line in a multiline edit control:

SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINEFROMCHAR, -1, 0L);

See Also EM_LINEINDEX

50 EM_LINEINDEX

EM_LINEINDEX [2x]

Parameters

Return Value

Example

See Also

EM_LINEINDEX
wParam (WPARAM) Tine; /* Tine number */
1Param oL; /* not used, must be zero */

An application sends an EM_LINEINDEX message to retrieve the character index
of a line within a multiline edit control. The character index is the number of char-
acters from the beginning of the edit control to the specified line.

This message is processed only by multiline edit controls.

line
Value of wParam. Specifies the zero-based line number. A value of —1 speci-
fies the current line number (the line that contains the caret).

The return value is the character index of the line specified in the line parameter,
or it is —1 if the specified line number is greater than the number of lines in the
edit control.

This example uses the EM_GETLINECOUNT message to retrieve the number of
lines in an edit control and then uses EM_LINEINDEX to retrieve the character
index for the last line in the edit control:

WPARAM cLines, index;

cLines = (WPARAM) SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETLINECOUNT, @, OL);

index = (WPARAM) SendDlgIltemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINEINDEX, clLines - 1, 0L);

EM_LINEFROMCHAR

EM_LINELENGTH 2]

EM_LINELENGTH
wParam (WPARAM) ich; /* character index */
1Param oL; /* not used, must be zero */

An application sends an EM_LINELENGTH message to retrieve the length of a
line in an edit control.

EM_LINESCROLL 51

Parameters ich
Value of wParam. Specifies the character index of a character in the line whose
length is to be retrieved when EM_LINELENGTH is sent to a multiline edit
control. If this parameter is —1, the message returns the number of unselected
characters on lines containing selected characters. For example, if the selection
extended from the fourth character of one line through the eighth character
from the end of the next line, the return value would be 10 (three characters
on the first line and seven on the next).

When EM_LINELENGTH is sent to a single-line edit control, this parameter is
ignored.

Return Value The return value is the length, in bytes, of the line specified by the ich parameter
when an EM_LINELENGTH message is sent to a multiline edit control. The re-
turn value is the length, in bytes, of the text in the edit control when an
EM_LINELENGTH message is sent to a single-line edit control.

Comments Use the EM_LINEINDEX message to retrieve a character index for a given line
number within a multiline edit control.

See Also EM_LINEINDEX

EM_LINESCROLL 2]

EM_LINESCROLL
wParam = 0; /* not used, must be zero */
TParam MAKELPARAM(dv, dh); /* 1ines and characters to scroll =/

An application sends an EM_LINESCROLL message to scroll the text of a multi-
line edit control.

This message is processed only by multiline edit controls.

Parameters dv
Value of the low-order word of /Param. Specifies the number of lines to scroll
vertically.

dh
Value of the high-order word of /Param. Specifies the number of character posi-
tions to scroll horizontally. This value is ignored if the edit control has either
the ES_RIGHT or ES_CENTER style.

52 EM_REPLACESEL

Return Value The return value is nonzero if the message is sent to a multiline edit control, or it is
zero if the message is sent to a single-line edit control.

Comments The edit control does not scroll vertically past the last line of text in the edit con-
trol. If the current line plus the number of lines specified by the dv parameter
exceeds the total number of lines in the edit control, the value is adjusted so that
the last line of the edit control is scrolled to the top of the edit-control window.

The EM_LINESCROLL message can be used to scroll horizontally past the last
character of any line.

Example This example sends an EM_LINESCROLL message to scroll the text in a multi-
line edit control vertically by five lines:

SendD1gItemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINESCROLL, @, MAKELONG(5, @));

EM_REPLACESEL [2x]

EM_REPLACESEL
wParam 0; /* not used, must be zero */
1Param (LPARAM) (LPCSTR) TpszReplace; /* address of new string =*/

An application sends an EM_REPLACESEL message to replace the current selec-
tion in an edit control with the text specified by the IpszReplace parameter.

Parameters IpszReplace
Value of [Param. Points to a null-terminated string containing the replacement
text.

Return Value This message does not return a value.

Comments Use the EM_REPLACESEL message when you want to replace only a portion of

the text in an edit control. If you want to replace all of the text, use the
WM_SETTEXT message.

If there is no current selection, the replacement text is inserted at the current cursor
location.

EM_SETHANDLE 53

Example

See Also

This example sets the selection to the beginning of the edit control and inserts the
string “C:\":

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, @, MAKELONG(@, 0));

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_REPLACESEL, @, (LPARAM) ((LPCSTR) "C:\\"));

WM_SETTEXT

EM_SETHANDLE [2x]

Parameters

Return Value

Comments

EM_SETHANDLE
wParam (WPARAM) (HLOCAL) hloc; /#* handle of local memory object */
TParam oL; /* not used, must be zero */

An application sends an EM_SETHANDLE message to set the handle to the local
memory that will be used by a multiline edit control.

This message is processed only by multiline edit controls.

hloc
Value of wParam. Identifies the local memory. This handle must have been
created by a previous call to the LocalAlloc function using the
LMEM_MOVEABLE flag. The memory should contain a null-terminated
string, or the first byte of the allocated memory should be set to zero.

This message does not return a value.

Before an application sets a new memory handle, it should send an
EM_GETHANDLE message to retrieve the handle to the current memory buffer
and should free that memory by using the LocalFree function.

Sending an EM_SETHANDLE message clears the undo buffer (EM_CANUNDO
returns zero) and the internal modification flag (EM_GETMODIFY returns zero).
The edit-control window is redrawn.

An application can send this message to a multiline edit control in a dialog box
only if it has created the dialog box with the DS_LOCALEDIT style flag set.

54 EM_SETHANDLE

Example

See Also

This example frees the current memory for the edit control, allocates new
memory, and reads up to BUF_SIZE bytes of a file into the allocated memory. It
then sends an EM_SETHANDLE message to set the handle of the edit control to
the new memory, effectively placing up to BUF_SIZE bytes of the file into the
edit control.

f#fdefine BUF_SIZE 4 * 1024

HANDLE hFile;

OFSTRUCT ofs;

HLOCAL hO1dMem, hNewMem;
PSTR pBuf;

int cbRead;

/* Get the handle to the old memory and free it. #*/

hO0TdMem = (HLOCAL) SendDlgItemMessage(hdlg,
ID_MYEDITCONTROL, EM_GETHANDLE, @, @OL);
LocalFree(h01dMem);

/* Allocate new memory and read the file into it. */

hNewMem = LocalAlloc(LMEM_MOVEABLE, BUF_SIZE);

pBuf = LocalLock(hNewMem);

hFile = OpenFile("test.txt", &ofs, OF_READ);

chRead = _1read(hFile, pBuf, BUF_SIZE);

pBuf[cbRead] = '\@'; /* terminating null character */
_lclose(hFile);

/% Adjust the buffer for the amount actually read in. */
LocalReAlloc(hNewMem, cbRead, 9);

/* Set the handle to the new buffer. */
LocalUnTock(hNewMem) ;

SendDl1gItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETHANDLE, hNewMem, 0OL);

EM_CANUNDO, EM_GETHANDLE, EM_GETMODIFY, LocalAlloc,
LocalFree

EM_SETPASSWORDCHAR 55

EM_SETMODIFY [2x]

EM_SETMODIFY
wParam (WPARAM) (UINT) fModified; /* modification flag */
1Param = 0L; /* not used, must be zero */

An application sends an EM_SETMODIFY message to set or clear the modifica-
tion flag for an edit control. The modification flag indicates whether the text
within the edit control has been modified. It is automatically set whenever the user
changes the text. An EM_GETMODIFY message can be sent to retrieve the value
of the modification flag.

Parameters fModified
Value of wParam. Specifies the new value for the modification flag. A value of
TRUE indicates the text has been modified, and a value of FALSE indicates it
has not been modified.

Return Value This message does not return a value.

Example This example sends an EM_SETMODIFY message to clear the modification flag:

SendD1gItemMessage(hdlg, ID_MYEDITCONTROL, EM_SETMODIFY, FALSE, @L);

See Also EM_GETMODIFY

EM_SETPASSWORDCHAR

EM_SETPASSWORDCHAR
wParam = (WPARAM) (UINT) ch; /* character to display */
TParam = 0OL; /* not used, must be zero */

An application sends an EM_SETPASSWORDCHAR message to set or remove a
password character displayed in an edit control when the user types text. When a
password character is set, that character is displayed for each character the user

types.

This message has no effect on a multiline edit control.

Parameters ch
Value of wParam. Specifies the character to be displayed in place of the charac-
ter typed by the user. If the ch parameter is zero, the actual characters typed by
the user are displayed.

56 EM_SETREADONLY

Return Value The return value is nonzero if the message is sent to an edit control.

Comments When the EM_SETPASSWORDCHAR message is received by an edit control,
the edit control redraws all visible characters by using the character specified by
the ch parameter.

If the edit control is created with the ES_PASSWORD style, the default
password character is set to an asterisk (*). This style is removed if an
EM_SETPASSWORDCHAR message is sent with the wParam parameter
set to zero.

Example This example sends an EM_SETPASSWORDCHAR message to set the password
character of an edit control to a question mark:
SendDl1gItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETPASSWORDCHAR, (WORD) '?', @L);

See Also EM_GETPASSWORDCHAR

EM_SETREADONLY [31]

EM_SETREADONLY
wParam (WPARAM) (BOOL) fReadOnly; /* read-only flag */
1Param oL; /* not used, must be zero */

An application sends an EM_SETREADONLY message to set the read-only state
of an edit control.

Parameters fReadOnly
Value of wParam. Specifies whether to set or remove the read-only state of the
edit control. A value of TRUE sets the state to read-only; a value of FALSE
sets the state to read/write.

Return Value The return value is nonzero if the operation is successtul, or it is zero if an error
occurs.
Comments When the state of an edit control is set to read-only, the user cannot change the

text within the edit control.

Example This example sets the state of an edit control to read-only:

SendDlgItemMessage(hdlg, IDD_EDIT, EM_SETREADONLY,
TRUE, oL);

EM_SETRECT 57

EM_SETRECT 5]

Parameters

Return Value

Comments

EM_SETRECT
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (const RECT FAR#) 1prc; /* address of RECT */

An application sends an EM_SETRECT message to set the formatting rectangle of
a multiline edit control. The formatting rectangle is the limiting rectangle of the
text. The limiting rectangle is independent of the size of the edit-control window.
When the edit control is first created, the formatting rectangle is the same as the
client area of the edit-control window. By using the EM_SETRECT message, an
application can make the formatting rectangle larger or smaller than the edit-
control window.

This message is processed only by multiline edit controls.

Ipre
Value of [Param. Points to a RECT structure that specifies the new dimensions
of the rectangle. The RECT structure has the following form:

typedef struct tagRECT { /* rc x/
int left;
int top;
int right;
int bottom;
} RECT;

This message does not return a value.

The EM_SETRECT message causes the text of the edit control to be redrawn. To
change the size of the formatting rectangle without redrawing the text, use the
EM_SETRECTNP message.

If the edit control does not have a horizontal scroll bar, and the formatting rect-
angle is set to be larger than the edit-control window, lines of text exceeding the
width of the edit-control window (but smaller than the width of the formatting
rectangle) are clipped instead of wrapped.

If the edit control contains a border, the formatting rectangle is reduced by the size
of the border. If you are adjusting the rectangle returned by an EM_GETRECT
message, you must remove the size of the border before using the rectangle with
the EM_SETRECT message.

58 EM_SETRECTNP

Example

See Also

This example retrieves the current formatting rectangle for a multiline edit control,
removes the border width dimensions, and sets the right border to 32767 so that all
text sent to the edit control is clipped rather than wrapped if it exceeds the width of
the edit-control window. The example then sends an EM_SETRECT message to
set the new formatting rectangle.

RECT rect;

SendDT1gItemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETRECT, @, (LPARAM) (RECT FAR*) &rect);

rect.left = 0; /* remove border width =/
rect.right = 32767; /* clip all Tines */
rect.bottom += rect.top; /* remove border height =/
rect.top = 0; /* remove border height */

SendDlgltemMessage(hdig, ID_MYEDITCONTROL,
EM_SETRECT, @, (LPARAM) (RECT FAR*) &rect);

EM_GETRECT, EM_SETRECTNP, MoveWindow

EM_SETRECTNP [2x]

EM_SETRECTNP

wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (const RECT FARx) lprc; /* address of RECT */

An application sends an EM_SETRECTNP message to set the formatting rect-
angle of a multiline edit control. The formatting rectangle is the limiting rectangle
of the text. The limiting rectangle is independent of the size of the edit-control win-
dow. When the edit control is first created, the formatting rectangle is the same as
the client area of the edit-control window. By using the EM_SETRECTNP mes-
sage, an application can make the formatting rectangle larger or smaller than the
edit-control window.

The EM_SETRECTNP message is identical to the EM_SETRECT message, ex-
cept that the edit-control window is not redrawn.

This message is processed only by multiline edit controls.

EM_SETSEL 59

Parameters

Return Value

See Also

Iprc
Value of [Param. Points to a RECT structure that specifies the new dimensions
of the rectangle. The RECT structure has the following form:

typedef struct tagRECT { /* rc *x/
int left;
int top;
int right;
int bottom;
} RECT;

This message does not return a value.

EM_SETRECT

EM_SETSEL

Parameters

Return Value

Comments

(2]

(WPARAM) (UINT) fScroll; /* flag for caret scrolling */
MAKELPARAM(ichStart, ichEnd); /* start and end positions */

EM_SETSEL
wParam
1Param

An application sends an EM_SETSEL message to select a range of characters in
an edit control.

fScroll
Value of wParam. When this parameter is zero, the caret is scrolled into view.
When this parameter is 1, the caret is not scrolled into view.

ichStart
Value of the low-order word of /Param. Specifies the starting position.

ichEnd
Value of the high-order word of /Param. Specifies the ending position.

The return value is nonzero if the message is sent to an edit control.

If the ichStart parameter is O and the ichEnd parameter is —1, all the text in the edit
control is selected. If ichStart is —1, any current selection is removed. The caret is
placed at the end of the selection indicated by the greater of the two values ichEnd
and ichStart.

60 EM_SETTABSTOPS

Example

See Also

This example sends an EM_SETSEL message to select the entire contents of an
edit control. It then sends a WM_CUT message to copy the contents of the edit
control to the clipboard and then to delete the contents of the edit control.

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, @, MAKELONG(@, -1));

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
WM_CUT, @, oL);

EM_GETSEL, EM_REPLACESEL

EM_SETTABSTOPS [30]

Parameters

Return Value

Comments

EM_SETTABSTOPS
wParam = (WPARAM) cTabs; /* number of tab stops */
TParam = (LPARAM) (const int FAR=) 1pTabs; /* tab-stop array */

An application sends an EM_SETTABSTOPS message to set the tab stops in a
multiline edit control (MLE). When text is copied to an MLE, any tab character in
the text causes space to be generated up to the next tab stop.

This message is processed only by MLE:s.

cTabs
Value of wParam. Specifies the number of tab stops contained in the [pTabs
parameter. If this parameter is 0, the I[pTabs parameter is ignored and default
tab stops are set at every 32 dialog box units. If this parameter is 1, tab stops are
set at every n dialog box units, where is the distance pointed to by the IpTabs
parameter. If the cTabs parameter is greater than 1, [pTabs points to an array of
tab stops.

IpTabs
Low and high-order words of /Param. Points to an array of unsigned integers
specifying the tab stops, in dialog box units. If the cTabs parameter is 1, [pTabs
points to an unsigned integer containing the distance between all tab stops, in
dialog units.

The return value is nonzero if the tabs were set; otherwise, the return value is zero.
The EM_SETTABSTOPS message does not automatically redraw the edit-control

window. If the application is changing the tab stops for text already in the edit con-
trol, it should call the InvalidateRect function to redraw the edit-control window.

EM_SETWORDBREAKPROC 61

Example This example sends an EM_SETTABSTOPS message to set tab stops at every 64
dialog box units. It then calls InvalidateRect to redraw the edit-control window.

WORD wTabSpacing = 64;

SendD1gltemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETTABSTOPS, 1, (LPARAM) (int farx) &wTabSpacing);
InvalidateRect(GetDIgltem(hdlg, ID_MYEDITCONTROL),
NULL, TRUE);

See Also GetDialogBaseUnits

EM_SETWORDBREAKPROC [31]

EM_SETWORDBREAKPROC
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (EDITWORDBREAKPROC) ewbprc; /* address of function */

An application sends the EM_SETWORDBREAKPROC message to an edit
control to replace the default wordwrap function with an application-defined
wordwrap function.

Parameters ewbprc
Value of [Param. Specifies the procedure-instance address of the application-
defined wordwrap function. The MakeProcInstance function must be used to
create the address. For more information, see the description of the Word-
BreakProc callback function.

Return Value This message does not return a value.

Comments A wordwrap function scans a text buffer (which contains text to be sent to the dis-
play), looking for the first word that does not fit on the current display line. The
wordwrap function places this word at the beginning of the next display line.

A wordwrap function defines the point at which Windows should break a line of
text for multiline edit controls, usually at a space character that separates two
words. Either a multiline or a single-line edit control might call this function when
the user presses arrow keys in combination with the CTRL key to move the cursor
to the next word or previous word. The default wordwrap function breaks a line of
text at a space character. The application-defined function may define wordwrap
to occur at a hyphen or a character other than the space character.

See Also EM_GETWORDBREAKPROC, MakeProcInstance, WordBreakProc

62 EM_UNDO

EM_UNDO [2x]

EM_UNDO
wParam = 0; /* not used, must be zero */
1Param = @L; /* not used, must be zero */

An application sends an EM_UNDO message to undo the last edit-control

operation.
Parameters This message has no parameters.
Return Value The return value is always nonzero for a single-line edit control. For a multiline

edit control, the return value is nonzero if the undo operation is successful or zero
if the undo operation fails.

Comments An undo operation can also be undone. For example, you can restore deleted text
with the first EM_UNDO message and remove the text again with a second
EM_UNDO message as long as there is no intervening edit-control operation.

Example This example undoes the last edit-control operation:

SendDlgltemMessage(hdlg, ID_MYEDITCONTROL, EM_UNDO, @, OL);

See Also EM_CANUNDO

LB_ADDSTRING [2x]

LB_ADDSTRING
wParam 0; /* not used, must be zero */
1Param (LPARAM) (LPCSTR) 1psz; /* address of string to add */

An application sends an LB_ADDSTRING message to add a string to a list box. If
the list box does not have the CBS_SORT style, the string is added to the end of
the list. Otherwise, the string is inserted into the list and the list is sorted.

Parameters Ipsz
Value of [Param. Points to the null-terminated string that is to be added. If the
list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the value of the Ipsz parameter is stored rather than
the string it would otherwise point to.

LB_DELETESTRING 63

Return Value The return value is the zero-based index to the string in the list box. The return
value is LB_ERR if an error occurs; the return value is LB_ ERRSPACE if insuffi-
cient space is available to store the new string.

Comments If an owner-drawn list box was created with the LBS_SORT style but not the
LBS_HASSTRINGS style, the WM_COMPAREITEM message is sent one or
more times to the owner of the list box so the new item can be properly placed in
the list box.

Example This example adds the string “my string” to a list box:

DWORD dwlIndex;

dwIndex = SendDlgltemMessage(hdig, ID_MYLISTBOX,
LB_ADDSTRING, @, (LPARAM) ((LPCSTR) "my string™));

See Also LB_DELETESTRING, LB_INSERTSTRING, WM_COMPAREITEM

LB_DELETESTRING [2x]

LB_DELETESTRING
wParam (WPARAM) 1index; /* index of string to delete */
1Param oL; /* not used, must be zero */

An application sends an LB_DELETESTRING message to delete a string in a list
box.

Parameters index
Value of wParam. Specifies the zero-based index of the string to delete.

Return Value The return value is a count of the strings remaining in the list. The return value is
LB_ERR if the index parameter specifies an index greater than the number of
items in the list.

Comments If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, a WM_DELETEITEM message is sent to the owner of
the list box so that the application can free any additional data associated with the
item.

64 LB_DIR

Example This example deletes the first string in a list box:

DWORD dwRemaining;

dwRemaining = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_DELETESTRING, @, @L);

See Also LB_ADDSTRING, WM_DELETEITEM

LB_DIR [2.x]

LB_DIR
wParam = (WPARAM) (UINT) uAttrs; /* file attributes */
TParam = (LPARAM) (LPCSTR) 1pszFileSpec; /* filename string's address */

An application sends an LB_DIR message to add a list of filenames to a list box.

Parameters uAttrs
Value of wParam. Specifies the attributes of the files to be added to the list
box. It can be any combination of the following values:

Value Meaning
0x0000 File can be read from or written to.
0x0001 File can be read from but not written to.

0x0002 File is hidden and does not appear in a directory listing.

0x0004 File is a system file.

0x0010 The name pointed to by the ipszFileSpec parameter specifies a directory.
0x0020 File has been archived.

0x4000 All drives that match the name specified by the IpszFileSpec parameter
are included.

0x8000 Exclusive flag. If the exclusive flag is set, only files of the specified
type are listed. Otherwise, files of the specified type are listed in addi-
tion to files that do not match the specified type.

IpszFileSpec
Value of [Param. Points to the null-terminated string that specifies the filename
to add to the list. If the filename contains wildcards (for example, *.*), all files
that match and have the attributes specified by the uAttrs parameter are added
to the list.

LB_FINDSTRING 65

Return Value

Example

See Also

The return value is the zero-based index of the last filename added to the list. The
return value is LB_ERR if an error occurs; the return value is LB_ERRSPACE if
insufficient space is available to store the new strings.

This example adds the names of all available drives to a list box:
DWORD dwIndexLastItem;

dwindexLastItem = SendDigltemMessage(hdlg, ID_MYLISTBOX, LB_DIR,
0x4000 | 0x8000, (LPARAM) ((LPCSTR) "x*"));

DlgDirList

LB_FINDSTRING

Parameters

Return Value

Comments

LB_FINDSTRING
wParam = (WPARAM) indexStart; /* item before start of search =/
1Param = (LPARAM) (LPCSTR) TpszFind; /* address of search string */

An application sends an LB_FINDSTRING message to find the first string in a list
box that contains the specified prefix.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszFind
Value of [Param. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi-
nation of uppercase and lowercase letters.

The return value is the index of the matching item, or it is LB_ERR if the search
was unsuccessful.

If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the action taken by LB_FINDSTRING depends on
whether the LBS_SORT style is used. If LBS_SORT is used, WM_COM-
PAREITEM messages are sent to the owner of the list box to determine which
item matches the specified string. Otherwise, LB_FINDSTRING attempts to
match the doubleword value against the value of IpszFind.

66 LB_FINDSTRINGEXACT

Example

See Also

This example searches for the string “my string” in a list box and copies it, if
found, to the szBuf buffer:

char szBuf[20];
DWORD dwlIndex;

dwIndex = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_FINDSTRING, @, (LPARAM) ((LPCSTR) "my string"));
if (dwIndex != LB_ERR)
SendDTgltemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXT, (WPARAM) dwIndex, (LPARAM) ((LPCSTR) szBuf));

LB_ADDSTRING, LB_FINDSTRINGEXACT, LB_INSERTSTRING

LB_FINDSTRINGEXACT [31]

Parameters

Return Value

LB_FINDSTRINGEXACT
wParam (WPARAM) indexStart; /* item before start of search */
1Param (LPARAM) (LPCSTR) 1pszFind; /* address of search string */

An application sends an LB_FINDSTRINGEXACT message to find the first list
box string that matches the string specified in the /pszFind parameter.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszFind
Value of [Param. Points to the null-terminated string to search for. This string
can contain a complete filename, including the extension. The search is not
case-sensitive, so the string can contain any combination of uppercase and
lowercase letters.

The return value is the index of the matching item, or it is LB_ERR if the search
was unsuccessful.

LB_GETCARETINDEX 67

Comments If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the action taken by LB_ FINDSTRINGEXACT de-
pends on whether the LBS_SORT style is used. If LBS_SORT is used,
WM_COMPAREITEM messages are sent to the owner of the list box to deter-
mine which item matches the specified string. Otherwise, LB_FINDSTRINGEX-
ACT attempts to match the doubleword value against the value of IpszFind.

See Also LB_ADDSTRING, LB_FINDSTRING, LB_INSERTSTRING

LB_ GETCARETINDEX [31]

LB_GETCARETINDEX
wParam 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends an LB_GETCARETINDEX message to determine the index
of the item that has the focus rectangle in a multiple-selection list box. The item
may or may not be selected.

Parameters This message has no parameters.

Return Value The return value is the zero-based index of the item that has the focus rectangle in
a list box. If the list box is a single-selection list box, the return value is the index
of the item that is selected, if any.

Example This example sends an LB_GETCARETINDEX message to retrieve the index of
the item that has the focus rectangle in the list box:

LRESULT TrIndex;

TrIndex = SendDlgltemMessage(hdig, ID_MYLISTBOX,
LB_GETCARETINDEX, @, OL);

See Also LB_SETCARETINDEX

68 LB_GETCOUNT

LB_GETCOUNT [2x]

Parameters

Return Value

Comments

Example

LB_GETCOUNT
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends an LB_GETCOUNT message to retrieve the number of
items in a list box.

This message has no parameters.

The return value is the number of items in the list box, or it is LB_ERR if an error
occurs.

The returned count is one greater than the index value of the last item (the index is
zero-based).

This example retrieves the number of items in a list box:

DWORD cListItems;

cListItems = SendDlgltemMessage(hdlg, ID_MYLISTBOX, LB_GETCOUNT, @, 0);

LB_GETCURSEL (2]

Parameters

Return Value

Comments

LB_GETCURSEL
wParam 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends an LB_GETCURSEL message to retrieve the index of the
currently selected item, if any, in a single-selection list box.

This message has no parameters.

The return value is the zero-based index of the currently selected item. It is
LB_ERR if no item is currently selected.

An application should use the LB_ GETCARETINDEX to retrieve the index of the
item that has the focus rectangle in a multiple-selection list box.

The LB_GETCURSEL message cannot be sent to a multiple-selection list box.

LB_GETHORIZONTALEXTENT 69

Example This example retrieves the index of the currently selected string in a list box and
then retrieves that string:

char szBuf[20];
DWORD dwiIndex;

dwindex = SendDlgltemMessage(hdlg, ID_MYLISTBOX, LB_GETCURSEL, @, @);
if (dwIndex != LB_ERR)
SendDlgltemMessage(hdig, ID_MYLISTBOX,
LB_GETTEXT, (WPARAM) dwIndex, (LPARAM) ((LPCSTR) szBuf));

See Also LB_GETCARETINDEX

LB_ GETHORIZONTALEXTENT

LB_GETHORIZONTALEXTENT
wParam = 0; /* not used, must be zero */
1Param = @L; /* not used, must be zero */

An application sends the LB_GETHORIZONTALEXTENT message to retrieve
from a list box the width, in pixels, by which the list box can be scrolled horizon-
tally if the list box has a horizontal scroll bar.

Parameters This message has no parameters.
Return Value The return value is the scrollable width of the list box, in pixels.
Comments To respond to the LB_ GETHORIZONTALEXTENT message, the list box must

have been defined with the WS_HSCROLL style.

Example This example gets the horizontal extent of a list box:

SendD1gItemMessage(hDlg, ID_MYLISTBOX,
LB_GETHORIZONTALEXTENT, @, 0L);

See Also LB_SETHORIZONTALEXTENT

70 LB_GETITEMDATA

LB_GETITEMDATA

Parameters

Return Value

Example

See Also

LB_GETITEMDATA
wParam (WPARAM) index; /* item index */
1Param oL; /* not used, must be zero */

An application sends the LB_GETITEMDATA message to retrieve the

application-supplied doubleword value associated with the specified item in a
list box. (This is the value of the /Param parameter of an LB_SETITEMDATA

message.)

index
Value of wParam. Specifies the zero-based index of the item.

The return value is the doubleword value associated with the item, or it is

LB_ERR if an error occurs.

This example retrieves the value associated with an item in a list box. The value is

the handle of a global memory object.

HGLOBAL hlLBData;
LPSTR 1pLBData;
HWND hListBox;
WPARAM nlndex;

if ((hLBData = LOWORD(SendMessage(hListBox, LB_GETITEMDATA,
nIndex, 0L)))) {
if ((1pLBData = GlobalLock(hLBData))) {

. /* Access or manipulate the data */

GlobalUnlock(hLBData);

LB_ADDSTRING, LB_INSERTSTRING, LB_SETITEMDATA

LB_GETITEMRECT n

LB_GETITEMHEIGHT

Parameters

Return Value

Example

See Also

LB_GETITEMHEIGHT
wParam (WPARAM) 1index; /* item index */
1Param oL; /* not used, must be zero */

An application sends an LB_GETITEMHEIGHT message to determine the height
of items in a list box.

index
Value of wParam. Specifies the zero-based index of the item in the list box.
This parameter is used only if the list box has the
LBS_OWNERDRAWYVARIABLE style; otherwise, it should be set to zero.

The return value is the height, in pixels, of the items in the list box. The return
value is the height of the item specified by the index parameter if the list box has
the LBS_OWNERDRAWVARIABLE style. The return value is LB_ERR if an
error occurs.

This example sends LB_GETITEMHEIGHT to retrieve the height of the items in
a list box:

LRESULT TrHeight;

1rHeight = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_GETITEMHEIGHT, @, OL);

LB_SETITEMHEIGHT

LB_GETITEMRECT

LB_GETITEMRECT
wParam (WPARAM) 1index; /* item index */
TParam (LPARAM) (RECT FAR*) 1lprc; /* address of RECT structure */

An application sends an LB_GETITEMRECT message to retrieve the dimensions
of the rectangle that bounds an item as it is currently displayed in the list box win-
dow.

72 LB_GETSEL

Parameters index
Value of wParam. Specifies the zero-based index of the item.

Iprc
Value of [Param. Specifies a long pointer to a RECT structure that receives the
client coordinates for the item in the list box. The RECT structure has the fol-
lowing form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

Return Value The return value is LB_ERR if an error occurs.

LB_ GETSEL [2.x]

LB_GETSEL
wParam = (WPARAM) index; /* item index */
1Param = 0OL; /* not used, must be zero */

An application sends an LB_GETSEL message to retrieve the selection state of an
item.

Parameters index
Value of wParam. Specifies the zero-based index of the item.

Return Value The return value is a positive number if an item is selected; otherwise, it is zero.
The return value is LB_ERR if an error occurs.

See Also LB_SETSEL

LB_GETSELITEMS 73

LB_GETSELCOUNT

LB_GETSELCOUNT
wParam Q; /* not used, must be zero */
TParam oL; /* not used, must be zero */

An application sends an LB_GETSELCOUNT message to retrieve the total num-
ber of selected items in a multiple-selection list box.

Parameters This message has no parameters.

Return Value The return value is the count of selected items in a list box. The return value is
LB_ERR if the list box is a single-selection list box.

See Also LB_SETSEL

LB_GETSELITEMS

LB_GETSELITEMS
wParam (WPARAM) cltems; /* maximum number of items */
1Param (LPARAM) (int FARx) 1plItems; /* address of buffer */

An application sends an LB_GETSELITEMS message to fill a buffer with an
array of integers that specify the item numbers of selected items in a multiple-
selection list box.

Parameters cltems
Value of wParam. Specifies the maximum number of selected items whose
item numbers are to be placed in the buffer.

Ipltems
Value of [Param. Specifies a long pointer to a buffer large enough for the num-
ber of integers specified by the cltems parameter.

Return Value The return value is the actual number of items placed in the buffer. The return
value is LB_ERR if the list box is a single-selection list box.

See Also LB_GETSELCOUNT

74 LB_GETTEXT

LB_GETTEXT 5]

LB_GETTEXT
wParam = (WPARAM) index; /* item index */
1Param = (LPARAM) (LPCSTR) 1pszBuffer; /* address of buffer =/

An application sends an LB_GETTEXT message to retrieve a string from a list
box.

Parameters index
Value of wParam. Specifies the zero-based index of the string to retrieve.
IpszBuffer
Value of [Param. Points to the buffer that receives the string. The buffer must
have sufficient space for the string and a terminating null character. An
LB_GETTEXTLEN message can be sent before the LB_GETTEXT message to
retrieve the length, in bytes, of the string.

Return Value The return value is the length of the string, in bytes, excluding the terminating null
character. The return value is LB_ERR if the index parameter does not specify a
valid index.

Comments If the list box was created with an owner-drawn style but without the

LBS_HASSTRINGS style, the buffer pointed to by the IpszBuffer parameter
receives the doubleword value associated with the item.

Example This example retrieves the length of the first item in the list box, allocates suffi-
cient memory for the string, and then sends an LB_ GETTEXT message to retrieve
the string:

DWORD cbhItemString;
PSTR psz;

cbItemString = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXTLEN, @, QL);
if (cbItemString != LB_ERR) {
psz = (PSTR) LocalAlloc(LMEM_FIXED, (WORD) cbItemString);
SendDlgIltemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXT, @, (LPARAM) ((LPCSTR) psz));

See Also LB_GETTEXTLEN

LB_GETTOPINDEX 75

LB_GETTEXTLEN [2x]

Parameters

Return Value

Example

See Also

LB_GETTEXTLEN
wParam (WPARAM) index; /* item index */
1Param oL; /* not used, must be zero */

An application sends an LB_GETTEXTLEN message to retrieve the length of a
string in a list box.

index
Value of wParam. Specifies the zero-based index of the string.

The return value is the length of the string, in bytes, excluding the terminating null
character. The return value is LB_ERR if the index parameter does not specify a
valid index.

This example retrieves the length of the first item in the list box:
DWORD cbItemString;

cbItemString = SendDlgItemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXTLEN, 0, 0OL);

LB_GETTEXT

LB_GETTOPINDEX

Parameters
Return Value

See Also

LB_GETTOPINDEX
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends an LB_GETTOPINDEX message to retrieve the index of the
first visible item in a list box. Initially, the item with index O is at the top of the list
box, but if the list box is scrolled, another item may be at the top.

This message has no parameters.

The return value is the zero-based index of the first visible item in a list box.

LB_SETTOPINDEX

76 LB_INSERTSTRING

LB_INSERTSTRING [2x]

Parameters

Return Value

Example

See Also

LB_INSERTSTRING
wParam = (WPARAM) index; /* item index */
1Param = (LPARAM) (LPCSTR) 1psz; /* address of string to insert %/

An application sends an LB_INSERTSTRING message to insert a string into a list
box. Unlike the LB_ADDSTRING message, the LB_INSERTSTRING message
does not cause a list with the LBS_SORT style to be sorted.

index
Value of wParam. Specifies the zero-based index of the position at which to in-
sert the string. If this parameter is —1, the string is added to the end of the list.
Ipsz
Value of [Param. Points to the null-terminated string that is to be inserted. If
the list was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the value of the Ipsz parameter is stored rather than
the string it would otherwise point to.

The return value is the index of the position at which the string was inserted. The
return value is LB_ERR if an error occurs. The return value is LB_ERRSPACE if
insufficient space is available to store the new string.
This example inserts the string “my string” into the third position of the list box:
SendD1gltemMessage(hdlg, ID_MYLISTBOX,

LB_INSERTSTRING, 2, (LPARAM) ((LPCSTR) "my string"));

LB_ADDSTRING

LB_RESETCONTENT [2x]

Parameters

Return Value

LB_RESETCONTENT
wParam 0; /* not used, must be zero */
TParam oL; /* not used, must be zero */

An application sends an LB_RESETCONTENT message to remove all items from
a list box.

This message has no parameters.

This message does not return a value.

LB_SELECTSTRING 77

Comments

Example

See Also

If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the owner of the list box receives a
WM_DELETEITEM message for each item in the list box.

This example removes all items from a list box:

SendDlgItemMessage(hdlg, ID_MYLISTBOX, LB_RESETCONTENT, @, @L);

WM_DELETEITEM

LB_SELECTSTRING [2x]

Parameters

Return Value

Comments

LB_SELECTSTRING
wParam = (WPARAM) indexStart; /* item before start of search */
1Param = (LPARAM) (LPCSTR) 1pszFind; /* address of search string */

An application sends an LB_SELECTSTRING message to search the list box for
an item that matches the specified string, and if a matching item is found, to select
the item.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszFind
Value of I[Param. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi-
nation of uppercase and lowercase letters.

The return value is the index of the selected item if the search was successful. The
return value is LB_ERR if the search was unsuccessful and the current selection is
not changed.

The list box is scrolled, if necessary, to bring the selected item into view.

An item is selected only if its initial characters (from the starting point) match the
characters in the string specified by the IpszFind parameter.

78 LB_SELITEMRANGE

If the list box was created with an owner-drawn style but without the LBS_HAS-
STRINGS style, the action taken by LB_SELECTSTRING depends on whether
the LBS_SORT style is used. If LBS_SORT is used, WM_COMPAREITEM
messages are sent to the owner of the list box to determine which item matches
the specified string. Otherwise, LB_SELECTSTRING attempts to match the
doubleword value against the value of IpszFind.

Example This example searches the entire list box for an item that matches the string “my
string” and, if the item is found, selects it:

DWORD dwIndexFoundString;

dwIndexFoundString = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_SELECTSTRING, -1, (LPARAM) ((LPCSTR) "my string"));

See Also LB_ADDSTRING, LB_FINDSTRING, LB_INSERTSTRING

LB_SELITEMRANGE

LB_SELITEMRANGE
wParam (WPARAM) (BOOL) fSelect; /* selection flag */
1Param MAKELPARAM(wFirst, wlLast); /* first and last items */

An application sends an LB_SELITEMRANGE message to select one or more
consecutive items in a multiple-selection list box.

Parameters fSelect
Value of wParam. Specifies how to set the selection. If the fSelect parameter is
nonzero, the string is selected and highlighted; if fSelect is zero, the highlight is
removed and the string is no longer selected.

wFirst
Value of the low-order word of [Param. Specifies the zero-based index of the
first item to set.

wLast
Value of the high-order word of [Param. Specifies the zero-based index of the
last item to set.

Return Value The return value is LB_ERR if an error occurs.

Comments This message should be used only with multiple-selection list boxes.

LB_SETCOLUMNWIDTH 79

LB_SETCARETINDEX [31]

Parameters

Return Value

Example

See Also

LB_SETCARETINDEX
wParam (WPARAM) index; /* item index */
1Param MAKELPARAM(fScroll, @); /* flag for scrolling item */

An application sends an LB_SETCARETINDEX message to set the focus rect-
angle to the item at the specified index in a multiple-selection list box. If the item
is not visible, it is scrolled into view.

index
Value of wParam. Specifies the zero-based index of the item to receive the
focus rectangle in the list box.

fScroll
Value of [Param. If this value is zero, the item is scrolled until it is fully visible.
If this value is nonzero, the item is scrolled until it is at least partially visible.

The return value is LB_ERR if an error occurs.

This example sends an LB_SETCARETINDEX message to set the focus rectangle
to an item in a list box:

WPARAM wIndex;
windex = 0; /* set index to first item %/

SendD1gItemMessage(hdlg, ID MYLISTBOX, LB_SETCARETINDEX,
windex, 0L);

LB_GETCARETINDEX

LB_SETCOLUMNWIDTH

LB_SETCOLUMNWIDTH
wParam (WPARAM) cxColumn; /* column width */
TParam oL; /* not used, must be zero */

An application sends an LB_SETCOLUMNWIDTH message to a multiple-
column list box (created with the LBS_MULTICOLUMN style) to set the width,
in pixels, of all columns in the list box.

80 LB_SETCURSEL

Parameters cxColumn
Value of wParam. Specifies the width, in pixels, of all columns.

Return Value This message does not return a value.

Example This example sets the width of the columns in a multiple-column list box:

WPARAM wColWidth;
wColWidth = 100; /* set column width to 100 pixels */

SendDigltemMessage(hD1g, ID_MYLISTBOX, LB_SETCOLUMNWIDTH,
wColWidth, 0OL);

LB_SETCURSEL [2x]

LB_SETCURSEL
wParam (WPARAM) 1index; /* item index */
1Param oL; /* not used, must be zero */

An application sends an LB_SETCURSEL message to select a string and scroll it
into view, if necessary. When the new string is selected, the list box removes the
highlight from the previously selected string.

Parameters index
Value of wParam. Specifies the zero-based index of the string that is selected.
If the index parameter is —1, the list box is set to have no selection.

Return Value The return value is LB_ERR if an error occurs. The return value will be LB_ERR
even though no error has occurred if the index parameter is —1.

Comments This message should be used only with single-selection list boxes. It cannot be
used to set or remove a selection in a multiple-selection list box.

See Also LB_GETCURSEL

LB_SETHORIZONTALEXTENT 81

LB_SETHORIZONTALEXTENT

LB_SETHORIZONTALEXTENT
wParam (WPARAM) cxExtent; /* horizontal scroll width */
1Param = 0OL; /* not used, must be zero */

An application sends the LB_SETHORIZONTALEXTENT message to set the
width, in pixels, by which a list box can be scrolled horizontally. If the size of the
list box is smaller than this value, the horizontal scroll bar horizontally scrolls
items in the list box. If the size of the list box is equal to or greater than this value,
the horizontal scroll bar is hidden.

Parameters cxExtent
Value of wParam. Specifies the number of pixels by which the list box can be
scrolled.

Return Value This message does not return a value.

Comments To respond to the LB_SETHORIZONTALEXTENT message, the list box must

have been defined with the WS_HSCROLL style.

By default, the horizontal extent of a list box is zero. Windows does not display
the scroll bar unless the horizontal extent is set to a value greater than the width, in
pixels, of the client area of the list box.

Example This example sets the horizontal extent of a list box based on the width of the
string about to be added to the list box. The horizontal extent is set if the string is
wider than the widest string in the list box and is wider than the client area of the
list box.

DWORD dwStringExt;
HDC hdclLB;

PSTR pszString;
TEXTMETRIC tm;
WORD wlLongest;
WORD wLBWidth;

dwStringExt = GetTextExtent(hdcLB, (LPSTR) pszString,
strlen(pszString)) + tm.tmAveCharWidth;

82 LB_SETITEMDATA

if ((LOWORD(dwStringExt) > wlLongest) &&
(LOWORD(dwStringExt) > wLBWidth)) {
SendD1gItemMessage(hDlg, ID_MYLISTBOX, LB_SETHORIZONTALEXTENT,
LOWORD(dwStringExt), @L);
wlongest = LOWORD(dwStringExt);
}

SendD1gItemMessage(hDlg, ID_MYLISTBOX, LB_ADDSTRING, @,
(LPARAM) ((LPCSTR) pszString));

See Also LB_GETHORIZONTALEXTENT

LB_SETITEMDATA

LB_SETITEMDATA
wParam = (WPARAM) index; /* item index */

1Param = (LPARAM) dwData; /* value to associate with item */

An application sends the LB_SETITEMDATA message to set a doubleword value
associated with the specified item in a list box.

Parameters index
Value of wParam. Specifies the zero-based index of the item.

dwData
Value of [Param. Specifies the value to be associated with the item.

Return Value The return value is LB_ERR if an error occurs.
Example This example associates a handle of a 64-byte memory object with each item in a
list box:

HGLOBAL hLBData;
LPSTR TplLBData;
HWND hListBox;
WPARAM nlIndex;

case WM_INITDIALOG:

LB_SETITEMHEIGHT 83

if ((hLBData = GlobalAlloc(GMEM_MOVEABLE, 64))) {
if ((1pLBData = GlobalLock(hLBData))) {

. /* Store the data in the memory object. */

GlobalUnlock(hLBData);
}
}
SendMessage(hListBox, LB_SETITEMDATA, nlndex,
MAKELONG(hLBData, 0));

See Also LB_ADDSTRING, LB_GETITEMDATA, LB_INSERTSTRING

LB_SETITEMHEIGHT [31]

LB_SETITEMHEIGHT
wParam = (WPARAM) index; /* item index */
1Param = MAKELPARAM(cyItem, @); /#* item height =*/

An application sends an LB_SETITEMHEIGHT message to set the height of
items in a list box. If the list box has the LBS_OWNERDRAWVARIABLE style,
this message sets the height of the item specified by the wParam parameter. Other-
wise, this message sets the height of all items in the list box.

Parameters index
Value of wParam. Specifies the zero-based index of the item in the list box.
This parameter is used only if the list box has the
LBS_OWNERDRAWYVARIABLE style; otherwise, it should be set to zero.

cyltem
Value of the low-order word of [Param. Specifies the height, in pixels, of the
item.
Return Value The return value is LB_ERR if the index or height is invalid.
Example This example sends an LB_SETITEMHEIGHT message to set the height of the

items in a list box:
LPARAM 1pmHeight;

SendD1gItemMessage(hdlg, ID_MYLISTBOX, LB_SETITEMHEIGHT,
0, 1pmHeight);

See Also LB_GETITEMHEIGHT

84 LB_SETSEL

LB_SETSEL 5]

LB_SETSEL
wParam = (WPARAM) (BOOL) fSelect; /* selection flag */
1Param = MAKELPARAM(index, 0); /* item index */

An application sends an LB_SETSEL message to select a string in a multiple-
selection list box.

Parameters [fSelect
Value of wParam. Specifies how to set the selection. If the fSelect parameter is
TRUE, the string is selected and highlighted; if fSelect is FALSE, the highlight
is removed and the string is no longer selected.

index
Value of the low-order word of [Param. Specifies the zero-based index of the
string to set. If the index parameter is —1, the selection is added to or removed
from all strings, depending on the value of fSelect.

Return Value The return value is LB_ERR if an error occurs.
Comments This message should be used only with multiple-selection list boxes.
See Also LB_GETSEL

LB_SETTABSTOPS

LB_SETTABSTOPS
wParam = (WPARAM) cTabs; /* number of tab stops */
TParam (LPARAM) (int FAR*) 1pTabs; /#* address of tab-stop array */

An application sends an LB_SETTABSTOPS message to set the tab-stop posi-
tions in a list box.

Parameters cTabs
Value of wParam. Specifies the number of tab stops in the list box.

IpTabs
Value of /Param. Points to the first member of an array of integers containing
the tab stops, in dialog box units. The tab stops must be sorted in increasing
order; back tabs are not allowed.

LB_SETTOPINDEX 85

Return Value The return value is nonzero if all the tabs were set; otherwise, the return value is
Zero.
Comments To respond to the LB_SETTABSTOPS message, the list box must have been

created with the LBS_USETABSTOPS style.

If the cTabs parameter is zero and the [pTabs parameter is NULL, the default tab
stop is two dialog box units.

If c¢Tabs is 1, the edit control will have tab stops separated by the distance
specified by IpTabs.

If IpTabs points to more than a single value, a tab stop will be set for each value in
IpTabs, up to the number specified by cTabs.

A dialog box unit is a horizontal or vertical distance. One horizontal dialog box
unit is equal to one-fourth of the current dialog box base width unit. The dialog
box base units are computed based on the height and width of the current system
font. The GetDialogBaseUnits function returns the current dialog box base units,
in pixels.

LB_SETTOPINDEX

LB_SETTOPINDEX
wParam = (WPARAM) index; /* item index */
1Param = @L; /* not used, must be zero */

An application sends an LB_SETTOPINDEX message to ensure that a particular
item in a list box is visible.

Parameters index
Value of wParam. Specifies the zero-based index of the item in the list box.

Return Value The return value is LB_ERR if an error occurs.

Comments The system scrolls the list box so that either the specified item appears at the top
of the list box or the maximum scroll range has been reached.

86 STM_GETICON

Example This example searches for an item in a list box that matches the string “my string”
and, if a match is found, ensures that the item is visible:

int ilndex;

iIndex = (int) SendMessage(hMyListbox, LB_FINDSTRING, -1,
(LPARAM) (LPCSTR) "my string");

if (iIndex != LB_ERR)
SendMessage(hMyListbox, LB_SETTOPINDEX, (WPARAM) iIndex, OL);

See Also LB_GETTOPINDEX

STM_GETICON [3.1]

STM_GETICON
wParam = 0; /* not used, must be zero */
1Param = 0OL; /* not used, must be zero */

An application sends an STM_GETICON message to retrieve the handle of the
icon associated with an icon resource.

Parameters This message has no parameters.

Return Value The return value is the icon handle if the operation is successful, or it is zero if the
icon has no associated icon resource or if an error occurred.

Example This example gets the handle of the icon associated with an icon resource:

HICON hlcon;

hIcon = (HICON) SendDlgItemMessage(hdlg, IDD_ICON,
STM_GETICON, 0, OL);

See Also STM_SETICON

WM_ACTIVATE 87

STM_SETICON 5

Parameters

Return Value

Example

See Also

STM_SETICON
wParam (WPARAM) (HICON) hicon; /* handle of the icon */
1Param = 0L; /* not used, must be zero */

An application sends an STM_SETICON message to associate an icon with an
icon resource.

hicon
Value of wParam. Identifies the icon to associate with the icon resource.

The return value is the handle of the icon that was previously associated with the
icon resource, or it is zero if an error occurred.

This example associates the system-defined question-mark icon with an icon re-
source:

HICON hIcon, hOldIcon;
hIcon = LoadIcon((HANDLE) NULL, IDI_QUESTION);

h01dIcon = (HICON) SendDlgltemMessage(hdlg, IDD_ICON,
STM_SETICON, hlIcon, @L);

STM_GETICON

WM_ACTIVATE

Parameters

WM_ACTIVATE

fActive = wParam; /* activation flag */
fMinimized = (BOOL) HIWORD(1Param); /* minimized flag =/
hwnd = (HWND) LOWORD(1Param); /* window handle */

The WM_ACTIVATE message is sent when a window is being activated or
deactivated. This message is sent first to the window procedure of the main win-
dow being deactivated and then to the window procedure of the main window
being activated.

JActive
Value of wParam. Specifies whether the window is being activated or deacti-
vated. It can be one of the following values:

88 WM_ACTIVATEAPP

Return Value

Comments

Example

See Also

Value Description
WA_INACTIVE The window is being deactivated.
WA_ACTIVE The window is being activated through some method

other than a mouse click (for example, by use of the key-
board interface to select the window).

WA_CLICKACTIVE The window is being activated by a mouse click.

[Minimized
Value of the high-order word of [Param. Specifies the minimized state of the
window being activated or deactivated. A nonzero value indicates the window
is minimized.

hwnd
Value of the low-order word of /Param. Identifies the window being activated
or deactivated. This handle can be NULL.

An application should return zero if it processes this message.

If the window is activated with a mouse click, it also receives a
WM_MOUSEACTIVATE message.

This example sets the input focus while processing the WM_ACTIVATE message:

case WM_ACTIVATE:
if (wParam && !HIWORD(1Param))

SetFocus(hwnd);
break;

WM_MOUSEACTIVATE, WM_NCACTIVATE

WM_ACTIVATEAPP [2x]

WM_ACTIVATEAPP
fActive = (BOOL) wParam; /* the activation/deactivation flag */
htask = (HTASK) LOWORD(1Param); /#* task handle */

The WM_ACTIVATEAPP message is sent when a window is about to be acti-
vated and that window belongs to a different task than the active window. The
message is sent to all top-level windows of the task being activated and to all top-
level windows of the task being deactivated.

WM_ASKCBFORMATNAME 89

Parameters SfActive
Value of wParam. Specifies whether the window is being activated or deacti-
vated. A nonzero value means the window is being activated. A zero value
means the window is being deactivated.

htask
Value of the low-order word of [Param. Specifies a task handle. If the fActive
parameter is nonzero, the handle identifies the task that owns the window being
deactivated. If fActive is zero, the handle identifies the task that owns the win-
dow being activated.

Return Value An application should return zero if it processes this message.

See Also WM_ACTIVATE

WM_ASKCBFORMATNAME [2x]

WM_ASKCBFORMATNAME
wParam (WPARAM) cbMax; /* maximum bytes to copy */
1Param (LPARAM) 1pszFormatName; /* address of format name */

A clipboard viewer application sends a WM_ASKCBFORMATNAME message
to the clipboard owner when the clipboard contains the data handle of the
CF_OWNERDISPLAY format (that is, when the clipboard owner should display
the clipboard contents).

Parameters cbMax
Value of wParam. Specifies the maximum number of bytes to copy.

IpszFormatName
Value of [Param. Points to the buffer where the copy of the format name is to
be stored.

Return Value An application should return zero if it processes this message.

Comments The clipboard owner should copy the name of the CF_OWNERDISPLAY format
into the specified buffer, not exceeding the maximum number of bytes.

See Also WM_PAINTCLIPBOARD

90 WM_CANCELMODE

WM_ CANCELMODE | 2x]

WM_CANCELMODE

The WM_CANCELMODE message is sent to inform a window to cancel any in-
ternal mode. This message is sent to the focus window when a dialog box or mes-
sage box is displayed, giving the focus window the opportunity to cancel modes
such as mouse capture.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments The DefWindowProc function processes this message by calling the Release-

Capture function. DefWindowProc does not cancel any other modes.

See Also DefWindowProc, ReleaseCapture

WM_CHANGECBCHAIN [2x]

WM_CHANGECBCHAIN
hwndRemoved = (HWND) wParam; /* handle of removed window */
hwndNext = (HWND) LOWORD(T1Param); /* handle of next window */

The WM_CHANGECBCHAIN message notifies the first window in the clipboard-
viewer chain that a window is being removed from the chain.

Parameters hwndRemoved
Value of wParam. Identifies the window that is being removed from the
clipboard-viewer chain.

hwndNext
Value of the low-order word of [Param. Identifies the window that follows the
window being removed from the clipboard-viewer chain.

Return Value An application should return zero if it processes this message.

WM_CHAR 91

Comments

See Also

Each window that receives the WM_CHANGECBCHAIN message should call
the SendMessage function to pass the message on to the next window in the
clipboard-viewer chain. If the window being removed is the next window in the
chain, the window specified by the ~iwndNext parameter becomes the next window
and clipboard messages are passed on to it.

ChangeClipboardChain, SendMessage

WM_CHAR

Parameters

WM_CHAR
nVKey = wParam; /* virtual-key code */
dwKeyData = (DWORD) 1Param; /* key data */

The WM_CHAR message is sent when a WM_KEYUP message and a
WM_KEYDOWN message are translated. The WM_CHAR message contains the
value of the key being pressed or released.

nVKey
Value of wParam. Specifies the virtual-key code value of the key.

dwKevData
Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.

27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is O if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being re-

leased, or it is O if the key is being pressed.

92 WM_CHARTOITEM

Return Value An application should return zero if it processes this message.

Comments Because there is not necessarily a one-to-one correspondence between keys
pressed and character messages generated, the information in the high-order word
of the dwKeyData parameter is usually not useful to applications. The information
in the high-order word applies only to the most recent WM_KEYUP or
WM_KEYDOWN message that precedes the posting of the character message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

See Also WM_KEYDOWN, WM_KEYUP

WM_CHARTOITEM

WM_CHARTOITEM

nKey = wParam; /* key value */
hwndListBox = (HWND) LOWORD(1Param); /* list box handle */
iCaretPos = HIWORD(1Param); /* caret position */

The WM_CHARTOITEM message is sent by a list box with the
LBS_WANTKEYBOARDINPUT style to its owner in response to a WM_CHAR
message.

Parameters nKey
Value of wParam. Specifies the value of the key the user pressed.

hwndListBox
Value of the low-order word of [Param. Identifies the list box.

iCaretPos
Value of the high-order word of [Param. Specifies the current caret positior.

Return Value The return value specifies the action that the application performed in response {0
the message. A return value of —2 indicates that the application handled ali aspects
of selecting the item and requires no further action by the list box. A return value
of —1 indicates that the list box should perform the default action in response to
the keystroke. A return value of 0 or greater specifies the zero-based index of an
item in the list box and indicates that the list box should perform the default action
for the keystroke on the given item.

WM_CHOOSEFONT_GETLOGFONT 93

Comments Only owner-drawn list boxes that do not have the LBS_HASSTRINGS style can
receive this message.

See Also WM_CHAR, WM_VKEYTOITEM

WM_CHILDACTIVATE [2x]

WM_CHILDACTIVATE

The WM_CHILDACTIVATE message is sent to a multiple document interface
(MDI) child window when the user clicks the window’s title bar or when the win-
dow is activated, moved, or sized.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
See Also MoveWindow, SetWindowPos

WM_CHOOSEFONT_GETLOGFONT [31]

WM_CHOOSEFONT_GETLOGFONT
wParam = 0; /* not used, must be zero */
1p1f = (LPLOGFONT) T1Param; /* address of a LOGFONT structure */

An application sends a WM_CHOOSEFONT_GETLOGFONT message to the
Font dialog box created by the ChooseFont function to retrieve the current
LOGFONT structure.

Parameters Iplf
Points to a LOGFONT structure that receives information about the current
logical font.

Return Value This message does not return a value.

94 WM_CLEAR

Comments An application uses this message to retrieve the LOGFONT structure while the
Font dialog box is open. When the user closes the dialog box, the ChooseFont
function receives information about the LOGFONT structure.

See Also WM_GETFONT

WM_CLEAR 5]

WM_CLEAR
wParam = 0; /% not used, must be zero */
TParam = @L; /* not used, must be zero */

An application sends a WM_CLEAR message to an edit control or combo box to
delete (clear) the current selection, if any, in the edit control.

Parameters This message has no parameters.

Return Value The return value is nonzero if this message is sent to an edit control or a combo
box.

Comments The deletion performed by the WM_CLEAR message can be undone by sending

the edit control an EM_UNDO message.

To delete the current selection and place the deleted contents into the clipboard,
use the WM_CUT message.

Example This example sends an EM_SETSEL message to select the entire contents of an
edit control. It then sends a WM_CLEAR message to delete the contents of the
edit control.

SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, @, MAKELONG(®@, -1));

SendD1gltemMessage(hdlg, ID_MYEDITCONTROL,
WM_CLEAR, @, 0L);

See Also EM_UNDO, WM_COPY, WM_CUT, WM_PASTE

WM_COMMAND 95

WM_CLOSE

Parameters
Return Value

Example

See Also

[2x]

WM_CLOSE
wParam = 0; /* not used, must be zero */
1Param = @L; /* not used, must be zero */

The WM_CLOSE message is sent as a signal that a window or an application
should terminate. An application can prompt the user for confirmation prior to
destroying the window by processing the WM_CLOSE message and calling the
DestroyWindow function only if the user confirms the choice.

This message has no parameters.
An application should return zero if it processes this message.

This example processes a WM_CLOSE message and requests confirmation from
the user before terminating the application:

case WM_CLOSE:

if (MessageBox(hwnd, "Are you sure you want to exit?", "MyApp",
MB_ICONQUESTION | MB_OKCANCEL) == IDOK)
DestroyWindow(hwnd);
return 0L;

DestroyWindow, PostQuitMessage WM_DESTROY, WM_QUIT

WM_COMMAND [2x]

WM_COMMAND

idltem = wParam; /% control or menu item identifier */
hwndCt1 = (HWND) LOWORD(1Param); /* handle of control */
wNotifyCode = HIWORD(1Param); /* notification message */

The WM_COMMAND message is sent to a window when the user selects an item
from a menu, when a control sends a notification message to its parent window, or
when an accelerator keystroke is translated.

96 WM_COMMAND

Parameters

Return Value

Comments

Example

See Also

idltem
Value of wParam. Specifies the identifier of the menu item or control.

hwndCtl
Value of the low-order word of /Param. Identifies the control sending the mes-
sage if the message is from a control. Otherwise, this parameter is zero.

whNotifyCode
Value of the high-order word of [Param. Specifies the notification message if
the message is from a control. If the message is from an accelerator, this
parameter is 1. If the message is from a menu, this parameter is O.

An application should return zero if it processes this message.

Accelerator keystrokes that are defined to select items from the System menu
(sometimes referred to as the Control menu) are translated into
WM_SYSCOMMAND messages.

If an accelerator keystroke that corresponds to a menu item occurs when the win-
dow that owns the menu is minimized, no WM_COMMAND message is sent.
However, if an accelerator keystroke occurs that does not match any of the items
on the window’s menu or on the System menu, a WM_COMMAND message is
sent even if the window is minimized.

This example creates an Options dialog box in response to a WM_COMMAND
message sent as a result of a menu selection:

FARPROC 1pProc;

case WM_COMMAND:
switch (wParam) {
case IDM_OPTIONS:
1pProc = MakeProcInstance(OptionsProc, hInstance);
DialogBox(hInstance, "OptionsBox", hwnd, 1pProc);
FreeProcInstance(1pProc);
break;

.. /* Process other menu commands. */

}
break;

WM_SYSCOMMAND

WM_COMMNOTIFY 97

WM_COMMNOTIFY [31]

Parameters

Return Value

Comments

See Also

WM_COMMNOTIFY
idDevice = wParam; /* communication-device ID */
nNotifyStatus = LOWORD(1Param); /* notification-status flag */

The WM_COMMNOTIFY message is posted by a communication device driver
whenever a COM port event occurs. The message indicates the status of a win-
dow’s input or output queue.

idDevice
Value of wParam. Specifies the identifier of the communication device that is
posting the notification message.

nNotifyStatus
Value of the low-order word of /Param. Specifies the notification status in the
low-order word. The notification status may be one or more of the following
flags:

Value Meaning

CN_EVENT Indicates that an event has occurred that was enabled in the
event word of the communication device. This event was
enabled by a call to the SetCommEventMask function. The
application should call the GetCommEventMask function to
determine which event occurred and to clear the event.

CN_RECEIVE Indicates that at least chWriteNotify bytes are in the input
queue. The chbWriteNotify parameter is a parameter of the
EnableCommNotification function.

CN_TRANSMIT Indicates that fewer than chOutQueue bytes are in the output
queue waiting to be transmitted. The cbOutQueue parameter
is a parameter of the EnableCommNotification function.

An application should return zero if it processes this message.

This message is sent only when the event word changes for the communication
device. The application that sends WM_COMMNOTIFY must clear each event to
be sure of receiving future notifications.

EnableCommNotification

98 WM_COMPACTING

WM_COMPACTING

Parameters

Return Value

Comments

See Also

WM_COMPACTING
wCompactRatio = wParam; /* compacting ratio */

The WM_COMPACTING message is sent to all top-level windows when Win-
dows detects that more than 12.5 percent of system time over a 30- to 60-second
interval is being spent compacting memory. This indicates that system memory is
low.

wCompactRatio
Value of wParam. Specifies the ratio of central processing unit (CPU) time cur-
rently spent by Windows compacting memory to CPU time currently spent by
Windows performing other operations. For example, 0x8000 represents 50 per-
cent of CPU time spent compacting memory.

An application should return zero if it processes this message.

When an application receives this message, it should free as much memory as
possible, taking into account the current level of activity of the application and the
total number of applications running with Windows. The application can call the

GetNumTasks function to determine how many applications are running.

GetNumTasks

WM_COMPAREITEM

WM_COMPAREITEM
idCt1 = wParam; /* control identifier */
Tpcis = (const COMPAREITEMSTRUCT FAR%) 1Param; /#* structure */

The WM_COMPAREITEM message determines the relative position of a new
item in the sorted list of an owner-drawn combo box or list box. Whenever the ap-

plication adds a new item, Windows sends this message to the owner of a combo
box or list box created with the CBS_SORT or LBS_SORT style.

WM_COMPAREITEM 99

Parameters idCtl

Value of wParam. Specifies the identifier of the control that sent the
WM_COMPAREITEM message.

Ipcis
Value of [Param. Points to a COMPAREITEMSTRUCT data structure that
contains the identifiers and application-supplied data for two items in the
combo box or list box. The COMPAREITEMSTRUCT structure has the fol-
lowing form:

typedef struct tagCOMPAREITEMSTRUCT { /* cis */
UINT Ctl1Type;
UINT Ct11ID;
HWND hwndItem;
UINT itemID1;
DWORD itemDatal;
UINT 1itemID2;
DWORD itemData?2;
} COMPAREITEMSTRUCT;

Return Value The return value indicates the relative position of the two items. It may be any of
the following values:
Value Meaning
-1 Item 1 precedes item 2 in the sorted order.
0 Item 1 and item 2 are equivalent in the sorted order.
1 Item 1 follows item 2 in the sorted order.
Comments When the owner of an owner-drawn combo box or list box receives this

message, the owner returns a value indicating which of the items specified in the
COMPAREITEMSTRUCT structure should appear before the other. Typically,
Windows sends this message several times until it determines the exact position
for the new item.

See Also COMPAREITEMSTRUCT

100 WM_COPY

WM_COPY [2x]

WM_COPY
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends a WM_COPY message to an edit control or combo box to
copy the current selection to the clipboard in CF_TEXT format.

Parameters This message has no parameters.

Return Value The return value is nonzero if this message is sent to an edit control or a combo
box.

Example This example sends an EM_SETSEL message to select the entire contents of an

edit control. It then sends a WM_COPY message to copy the contents of the edit
control to the clipboard.

SendDT1gltemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, @, MAKELONG(@, -1));

SendD1gItemMessage(hdlg, ID_MYEDITCONTROL,
WM_COPY, 0, 0L);

See Also WM_CLEAR, WM_CUT, WM_PASTE

WM_CREATE (2]

WM_CREATE
Ipcs = (CREATESTRUCT FAR*) 1Param; /* structure address */

The WM_CREATE message is sent when an application requests that a window
be created by calling the CreateWindowEx or CreateWindow function. The win-
dow procedure for the new window receives this message after the window is
created but before the window becomes visible. The message is sent to the win-
dow before the CreateWindowEx or CreateWindow function returns.

Parameters Ipcs
Value of [Param. Points to a CREATESTRUCT data structure containing in-
formation about the window being created. The members of the CREATE-
STRUCT structure are identical to the parameters of the CreateWindowEx
function.

WM_CTLCOLOR 101

Return Value

See Also

The CREATESTRUCT structure has the following form:

typedef struct tagCREATESTRUCT { /* cs %/
void FAR* TpCreateParams;
HINSTANCE hlInstance;

HMENU hMenu;

HWND hwndParent;
int cy; '
int CX;

int y;

int X;

LONG style;

LPCSTR 1pszName;

LPCSTR 1pszClass;

DWORD dwExStyle;
} CREATESTRUCT;

If an application processes this message, it should return O to continue creation of
the window. If the application returns —1, the window will be destroyed and the
CreateWindowEx or CreateWindow function will return a NULL handle.

CreateWindow, CreateWindowEx, WM_NCCREATE

WM_CTLCOLOR [2x]

WM_CTLCOLOR

hdcChild = (HDC) wParam; /* child-window display context */
hwndChild = (HWND) LOWORD(1Param); /* handle of child window */
nCt1Type = (int) HIWORD(1Param); /* type of control */

The WM_CTLCOLOR message is sent to the parent of a system-defined control
class or a message box when the control or message box is about to be drawn. The
following controls send this message:

Combo boxes
Edit controls
List boxes
Buttons

Static controls
Scroll bars

102 WM_CTLCOLOR

Parameters

Return Value

Comments

Example

hdcChild
Value of wParam. Identifies the display context for the child window.

hwndChild
Value of the low-order word of [Param. Identifies the child window.

nCtlType
Value of the high-order word of /Param. Specifies the type of the control. This
parameter can be one of the following values:

Value Meaning
CTLCOLOR_BTN Button
CTLCOLOR_DLG Dialog box
CTLCOLOR_EDIT Edit control
CTLCOLOR_LISTBOX List box
CTLCOLOR_MSGBOX Message box
CTLCOLOR_SCROLLBAR Scroll bar
CTLCOLOR_STATIC Static control

If an application processes the WM_CTLCOLOR message, it must return a handle
to the brush that is to be used for painting the control background or it must return
NULL.

To change the text color, the application should call the SetTextColor function
with the desired red, green, and blue (RGB) values.

To change the background color of a single-line edit control, the application must
set the brush handle in both the CTLCOLOR_EDIT and CTLCOLOR_MSGBOX
message codes, and the application must call the SetBkColor function in response
to the CTLCOLOR_EDIT code.

The return value from this message has no effect on a button with the
BS_PUSHBUTTON or BS_DEFPUSHBUTTON style.

This example creates a green brush and passes the handle of the brush to a single-
line edit control in response to a WM_CTLCOLOR message:

static HBRUSH hbrGreen;

switch(msg) {
case WM_INITDIALOG:

/* Create a green brush */

hbrGreen = CreateSolidBrush(RGB(@, 255, 0));
return TRUE;

WM_CUT 103

case WM_CTLCOLOR:
switch(HIWORD(1Param)) {
case CTLCOLOR_EDIT:

/* Set text to white and background to green */

SetTextColor((HDC) wParam, RGB(255, 255, 255));
SetBkColor((HDC) wParam, RGB(@, 255, 0));
return hbrGreen;

break;

case CTLCOLOR_MSGBOX:

/*

* For single-line edit controls, this code must be

* processed so that the background color of the format
rectangle will also be painted with the new color.

*

*/
return hbrGreen;
}
return (HBRUSH) NULL;
}
See Also SetBkColor

WM_CUT [2.x]

WM_CUT
wParam = 0; /* not used, must be zero */
1Param = 0OL; /* not used, must be zero */

An application sends a WM_CUT message to an edit control or combo box to de-
lete (cut) the current selection, if any, in the edit control and copy the deleted text
to the clipboard in CF_TEXT format.

Parameters This message has no parameters.

Return Value The return value is nonzero if this message is sent to an edit control or a combo
box.

Comments An EM_UNDO message can be sent to the edit control to undo the deletion per-

formed by the WM_CUT message.

104 WM_DDE_ACK

To delete the current selection without placing the deleted text onto the clipboard,
use the WM_CLEAR message.

Example This example sends an EM_SETSEL message to select the entire contents of an
edit control. It then sends a WM_CUT message to delete the contents of the edit
control and to copy the deleted text to the clipboard.

SendDl1gltemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, @, MAKELONG(®@, -1));

SendD1gltemMessage(hdlg, ID_MYEDITCONTROL,
WM_CUT, @, oL);

See Also WM_CLEAR, WM_COPY, WM_PASTE

WM_DDE_ACK [2.x]

#include <dde.h>

WM_DDE_ACK
wParam = (WPARAM) hwnd; /* handle of posting window */
1Param = MAKELPARAM(wLow, wHigh); /* depending on received message */

The WM_DDE_ACK message notifies an application of the receipt and pro-
cessing of a WM_DDE_INITIATE, WM_DDE_EXECUTE, WM_DDE_DATA,
WM_DDE_ADVISE, WM_DDE_UNADVISE, or WM_DDE_POKE message,
and in some cases, of a WM_DDE_REQUEST message.

Parameters hwnd
Value of wParam. Specifies the handle of the window posting the message.
wLow

Value of the low-order word of /Param. Specifies data as follows, depending
on the message to which the WM_DDE_ACK message is responding:

Message Parameter Description

WM_DDE_INITIATE aApplication An atom that contains the name of
the replying application.

WM_DDE_EXECUTE wStatus A series of flags that indicate the

and all other messages status of the response.

WM_DDE_ACK 105

Return Value

Comments

wHigh
Value of high-order word of /Param. Specifies data as follows, depending on
the message to which the WM_DDE_ACK message is responding:

Message Parameter Description

WM_DDE_INITIATE aTopic An atom that contains the topic with
which the replying server window is
associated.

WM_DDE_EXECUTE hCommands A handle that identifies the data item
containing the command string.

All other messages altem An atom that specifies the data item
for which the response is sent.

This message does not return a value.

The wStatus word consists of a DDEACK data structure. The DDEACK structure
has the following form:

f#include <dde.h>

typedef struct tagDDEACK { /#* ddeack */
WORD bAppReturnCode:8,
reserved:6,
fBusy:1,
fAck:1;
} DDEACK;

For a full description of this structure, see Chapter 3, “Structures.”

Posting

Except in response to the WM_DDE_INITIATE message, the application posts
the WM_DDE_ACK message by calling the PostMessage function, not the Send-
Message function. When responding to WM_DDE_INITIATE, the application
sends the WM_DDE_ACK message by calling SendMessage.

When acknowledging any message with an accompanying altem atom, the applica-
tion posting WM_DDE_ACK can either reuse the altem atom that accompanied
the original message or delete it and create a new one.

When acknowledging WM_DDE_EXECUTE, the application that posts
WM_DDE_ACK should reuse the h=Commands object that accompanied the origi-
nal WM_DDE_EXECUTE message.

106

WM_DDE_ADVISE

See Also

If an application has initiated the termination of a conversation by posting
WM_DDE_TERMINATE and is awaiting confirmation, the waiting application
should not acknowledge (positively or negatively) any subsequent messages sent
by the other application. The waiting application should delete any atoms or
shared memory objects received in these intervening messages (but should not de-
lete the atoms in response to the WM_DDE_ACK message).

Receiving
The application that receives WM_DDE_ACK should delete all atoms accompany-
ing the message.

If the application receives WM_DDE_ACK in response to a message with an
accompanying hData object, the application should delete the 1Data object.

If the application receives a negative WM_DDE_ACK message posted in reply to
a WM_DDE_ADVISE message, the application should delete the AOptions object
posted with the original WM_DDE_ADVISE message.

If the application receives a negative WM_DDE_ACK message posted in reply to
a WM_DDE_EXECUTE message, the application should delete the h”Commands
object posted with the original WM_DDE_EXECUTE message.

DDEACK, PostMessage, WM_DDE_ADVISE, WM_DDE_DATA,
WM_DDE_EXECUTE, WM_DDE_INITIATE, WM_DDE_POKE,
WM_DDE_REQUEST, WM_DDE_TERMINATE, WM_DDE_UNADVISE

WM_DDE_ADVISE [2x]

#include <dde.h>

WM_DDE_ADVISE
wParam (WPARAM) hwnd; /* handle of posting window */
1Param = MAKELPARAM(hOptions, altem); /* send options and data item */

A dynamic data exchange (DDE) client application posts the WM_DDE_ADVISE
message to a DDE server application to request the server to supply an update for
a data item whenever it changes.

WM_DDE_ADVISE 107

Parameters

Return Value

Comments

hwnd
Value of wParam. Identifies the sending window.

hOptions
Value of the low-order word of [Param. Specifies a handle of a global memory
object that specifies how the data is to be sent.

altem
Value of the high-order word of [Param. Specifies the data item being re-
quested.

This message does not return a value.

The global memory object identified by the hOptions parameter consists of a DDE-
ADVISE data structure. The DDEADVISE data structure has the following form:

#include <dde.h>

typedef struct tagDDEADVISE { /% ddeadv */
WORD reserved:14,
fDeferUpd:1,
fAckReq:1;
short cfFormat;
} DDEADVISE;

For a full description of this structure, see Chapter 3, “Structures.”

If an application supports more than one clipboard format for a single topic and
item, it can post multiple WM_DDE_ADVISE messages for the topic and item,
specifying a different clipboard format with each message.

Posting
The application posts the WM_DDE_ADVISE message by calling the Post-
Message function, not the SendMessage function.

The application allocates hOptions by calling the GlobalAlloc function with the
GMEM_DDESHARE option.

The application allocates altem by calling the GlobalAddAtom function.

If the receiving (server) application responds with a negative WM_DDE_ACK
message, the posting (client) application must delete the 2ZOptions object.

108 WM_DDE_DATA

See Also

Receiving

The application posts the WM_DDE_ACK message to respond positively or nega-
tively. When posting WM_DDE_ACK, the application can reuse the alfem atom
or delete it and create a new one. If the WM_DDE_ACK message is positive, the
application should delete the 2Options object; otherwise, the application should
not delete the object.

DDEADVISE, GlobalAddAtom, GlobalAlloc, PostMessage,
WM_DDE_DATA, WM_DDE_REQUEST

WM_DDE_DATA [2x]

Parameters

Return Value

Comments

f#Finclude <dde.h>

WM_DDE_DATA
wParam = (WPARAM) hwnd; /* handle of posting window */
1Param = MAKELPARAM(hData, altem); /* memory object and data item */

A dynamic data exchange (DDE) server application posts a WM_DDE_DATA
message to a DDE client application to pass a data item to the client or to notify
the client of the availability of a data item.

hwnd
Value of wParam. Specifies the handle of the window posting the message.

hData
Value of the low-order word of /Param. Identifies the global memory object
containing the data and additional information. The handle should be set to
NULL if the server is notifying the client that the data item value has changed
during a warm link. A warm link is established when the client sends a
WM_DDE_ADVISE message with the fDeferUpd bit set.

altem
Value of the high-order word of [Param. Specifies the data item for which data
or notification is sent.

This message does not return a value.

The global memory object identified by the ~Data parameter consists of a DDE-
DATA structure. The DDEDATA structure has the following form:

WM_DDE_DATA 109

#include <dde.h>

typedef struct tagDDEDATA { /* ddedat */
WORD unused:12,
fResponse:1,
fRelease:1,
reserved:1,
fAckReq:1;
short cfFormat;
BYTE Valuell];
} DDEDATA;

For a full description of this structure, see Chapter 3, “Structures.”

Posting
The application posts the WM_DDE_DATA message by calling the PostMessage
function, not the SendMessage function.

The application allocates hData by calling the GlobalAlloc function with the
GMEM_DDESHARE option.

The application allocates altem by calling the GlobalAddAtom function.

If the receiving (client) application responds with a negative WM_DDE_ACK
message, the posting (server) application must delete the ~AData object.

If the posting (server) application sets the fRelease member of the DDEDATA
structure to FALSE, the posting application is responsible for deleting hData upon
receipt of either a positive or negative acknowledgment.

The application should not set both the fAckReq and fRelease members of the
DDEDATA structure to FALSE. If both members are set to FALSE, it is difficult
for the posting (server) application to determine when to delete ~Data.

Receiving

If fAckReq is TRUE, the application posts the WM_DDE_ACK message to re-
spond positively or negatively. When posting WM_DDE_ACK, the application
can reuse the altem atom or delete it and create a new one.

If fAckReq is FALSE, the application deletes the altem atom.

If the posting (server) application specified #Data as NULL, the receiving (client)
application can request the server to send the actual data by posting a
WM_DDE_REQUEST message.

After processing a WM_DDE_DATA message in which AData is not NULL, the
application should delete AData unless either of the following conditions is true:

110 WM_DDE_EXECUTE

See Also

m The fRelease member is FALSE.

» The fRelease member is TRUE, but the receiving (client) application responds
with a negative WM_DDE_ACK message.

DDEDATA, GlobalAddAtom, GlobalAlloc, PostMessage, WM_DDE_ACK,
WM_DDE_ADVISE, WM_DDE_POKE, WM_DDE_REQUEST

WM_DDE_EXECUTE [2x]

Parameters

Return Value

Comments

#include <dde.h>

WM_DDE_EXECUTE
wParam (WPARAM) hwnd; /* handle of posting window */
1Param MAKELPARAM(reserved, hCommands); /* commands to execute */

A dynamic data exchange (DDE) client application posts a
WM_DDE_EXECUTE message to a DDE server application to send a string to
the server to be processed as a series of commands. The server application is ex-
pected to post a WM_DDE_ACK message in response.

hwnd
Value of wParam. Identifies the sending window.

reserved
Value of the low-order word of [Param. Reserved; must be zero.

hCommands
Value of the high-order word of /Param. Identifies a global memory object con-
taining the command(s) to be executed.

This message does not return a value.

The command string is a null-terminated string, consisting of one or more opcode
strings enclosed in single brackets ([]) and separated by spaces.

Each opcode string has the following syntax. The parameters list is optional.
opcode parameters

The opcode is any application-defined single token. It cannot include spaces, com-
mas, parentheses, or quotation marks.

WM_DDE_INITIATE 11

See Also

The parameters list can contain any application-defined value or values. Multiple
parameters are separated by commas, and the entire parameter list is enclosed in
parentheses. Parameters cannot include commas or parentheses except inside a
quoted string. If a bracket or parenthesis character is to appear in a quoted string, it
must be doubled—for example, “((”.

The following are valid command strings:

[connect][download(queryl,results.txt)][disconnect]
[query("sales per employee for each district")]
[open("sample.xIm")I[run("ricl™)]

Posting
The application posts the WM_DDE_EXECUTE message by calling the Post-
Message function, not the SendMessage function.

The application allocates hCommands by calling the GlobalAlloc function with
the GMEM_DDESHARE option.

When processing a WM_DDE_ACK message posted in reply to a
WM_DDE_EXECUTE message, the application that posted the original
WM_DDE_EXECUTE message must delete the ”Commands object sent back in
the WM_DDE_ACK message.

Receiving
The application posts the WM_DDE_ACK message to respond positively or nega-

tively, reusing the A”Commands object.

PostMessage, WM_DDE_ACK

WM_DDE_INITIATE [2x]

#include <dde.h>

WM_DDE_INITIATE
wParam = (WPARAM) hwnd; /* sending window's handle =*/
1Param = MAKELPARAM(aApplication, aTopic); /= application and topic =*/

A dynamic data exchange (DDE) client application sends a WM_DDE_INITIATE
message to initiate a conversation with server applications responding to the
specified application and topic names.

112 WM_DDE_INITIATE

Parameters

Return Value

Comments

Upon receiving this message, all server applications with names that match the
aApplication application and that support the aTopic topic are expected to
acknowledge it (see the WM_DDE_ACK message).

hwnd
Value of wParam. Identifies the sending window.

aApplication
Value of the low-order word of /Param. Specifies the name of the application
with which a conversation is requested. The application name cannot contain
slash marks (/) or backslashes (\). These characters are reserved for future use
in network implementations. If aApplication is NULL, a conversation with all
applications is requested.

alopic
Value of the high-order word of [Param. Specifies the topic for which a conver-

sation is requested. If the topic is NULL, a conversation for all available topics
is requested.

This message does not return a value.

If aApplication is NULL, any application can respond. If aTopic is NULL, any
topic is valid. Upon receiving a WM_DDE_INITIATE request with the aTopic
parameter set to NULL, an application is expected to send a WM_DDE_ACK mes-
sage for each of the topics it supports.

Sending

The application sends the WM_DDE_INITIATE message by calling the Send-
Message function, not the PostMessage function. The application broadcasts the
message to all windows by setting the first parameter of SendMessage to —1, as
shown:

SendMessage(-1, WM_DDE_INITIATE, hwndClient, MAKELONG(aApp, aTopic));

If the application has already obtained the window handle of the desired server, it
can send WM_DDE_INITIATE directly to the server window by passing the
server’s window handle as the first parameter of SendMessage.

The application allocates aApplication and aTopic by calling GlobalAddAtom.

When SendMessage returns, the application deletes the aApplication and aTopic
atoms.

WM_DDE_POKE 113

See Also

Receiving

To complete the initiation of a conversation, the application responds with one or
more WM_DDE_ACK messages, where each message is for a separate topic.
When sending a WM_DDE_ACK message, the application creates new
aApplication and aTopic atoms; it should not reuse the atoms sent with the
WM_DDE_INITIATE message.

GlobalAddAtom, SendMessage, WM_DDE_ACK

WM_DDE_POKE 2]

Parameters

#include <dde.h>

WM_DDE_POKE
wParam = (WPARAM) hwnd; /* handle of posting window */
1Param = MAKELPARAM(hData, altem); /* data handle and item */

A dynamic data exchange (DDE) client application posts a WM_DDE_POKE
message to a server application. A client uses this message to request the server to
accept an unsolicited data item. The server is expected to reply with a
WM_DDE_ACK message indicating whether it accepted the data item.

hwnd
Value of wParam. Specifies the handle of the window posting the message.

hData
Value of the low-order word of [Param. Identifies the data being posted. The
handle identifies a global memory object that contains a DDEPOKE data struc-
ture. The DDEPOKE structure has the following form:

#include <dde.h>

typedef struct tagDDEPOKE { /* ddepok =/
WORD unused:13,
fRelease:1,
fReserved:2;
short cfFormat;
BYTE Value[ll;
} DDEPOKE;

114 WM_DDE_POKE

Return Value

Comments

See Also

For a full description of this structure, see Chapter 3, “Structures.”

altem
Value of the high-order word of [Param. Specifies a global atom that identifies
the data item being offered to the server.

This message does not return a value.

Posting
The posting (client) application should do the following:

= Use the PostMessage function to post the WM_DDE_POKE message.

m Use the GlobalAlloc function with the GMEM_DDESHARE option to allocate
memory for the data.

= Use the GlobalAddAtom function to create the atom for the data item.

= Delete the global memory object if the server application responds with a nega-
tive WM_DDE_ACK message.

= Delete the global memory object if the client has set the fRelease member of
the DDEPOKE structure to FALSE and the server responds with either a posi-
tive or negative WM_DDE_ACK.

Receiving
The receiving (server) application should do the following:

= Post the WM_DDE_ACK message to respond positively or negatively. When
posting WM_DDE_ACK, reuse the data-item atom or delete it and create a new
one.

= Delete the global memory object after processing WM_DDE_POKE unless
either the fRelease flag was set to FALSE or the fRelease flag was set to
TRUE but the server has responded with a negative WM_DDE_ACK message.

DDEPOKE, GlobalAlloc, PostMessage, WM_DDE_ACK, WM_DDE_DATA

WM_DDE_REQUEST 115

WM_DDE_REQUEST [2x]

Parameters

Return Value

Comments

See Also

#include <dde.h>

WM_DDE_REQUEST
wParam = (WPARAM) hwnd; /* handle of posting window */
1Param = MAKELPARAM(cfFormat, altem); /* clipboard format and item */

A dynamic data exchange (DDE) client application posts a WM_DDE_REQUEST
message to a DDE server application to request the value of a data item.

hwnd
Value of wParam. Identifies the sending window.

c¢fFormat
Value of the low-order word of /Param. Specifies a standard or registered clip-
board format number.

altem
Value of the high-order word of [Param. Specifies which data item is being re-
quested from the server.

This message does not return a value.

Posting
The application posts the WM_DDE_REQUEST message by calling the Post-
Message function, not the SendMessage function.

The application allocates altem by calling the GlobalAddAtom function.

Receiving
If the receiving (server) application can satisfy the request, it responds with a

WM_DDE_DATA message containing the requested data. Otherwise, it responds
with a negative WM_DDE_ACK message.

When responding with either a WM_DDE_DATA or WM_DDE_ACK message,
the application can reuse the alfem atom or delete it and create a new one.

GlobalAddAtom, PostMessage, WM_DDE_ACK

116 WM_DDE_TERMINATE

WM_DDE_TERMINATE

Parameters

Return Value

Comments

See Also

#include <dde.h>

WM_DDE_TERMINATE
wParam (WPARAM) hwnd; /* handle of posting window */
1Param oL; /* not used, must be zero */

A dynamic data exchange (DDE) application (client or server) posts a
WM_DDE_TERMINATE message to terminate a conversation.

hwnd
Value of wParam. Identifies the sending window.

This message does not return a value.

Posting
The application posts the WM_DDE_TERMINATE message by calling the Post-
Message function, not the SendMessage function.

While waiting for confirmation of the termination, the posting application should
not acknowledge any other messages sent by the receiving application. If the post-
ing application receives messages (other than WM_DDE_TERMINATE) from the
receiving application, it should delete any atoms or shared memory objects accom-
panying the messages.

Receiving
The application responds by posting a WM_DDE_TERMINATE message.

PostMessage

WM_DDE_UNADVISE 117

WM_DDE_UNADVISE [2x]

#Hinclude <dde.h>

WM_DDE_UNADVISE
wParam = (WPARAM) hwnd; /* handle of posting window */
1Param = MAKELPARAM(cfFormat, altem); /* clipboard format and item =/

A dynamic data exchange (DDE) client application posts a
WM_DDE_UNADVISE message to inform a server application that

the specified item or a particular clipboard format for the item should no
longer be updated. This terminates the warm or hot link for the specified item.

Parameters hwnd
Value of wParam. Identifies the sending window.

cfFormat
Value of the low-order word of [Param. Specifies the clipboard format of the
item for which the update request is being retracted. When the cfFormat
parameter is NULL, all active WM_DDE_ADVISE conversations for the item
are to be terminated.

altem
Value of the high-order word of [Param. Specifies the item for which
the update request is being retracted. When altem is NULL, all active
WM_DDE_ADVISE conversations associated with the client are to be

terminated.
Return Value This message does not return a value.
Comments Posting

The application posts the WM_DDE_UNADVISE message by calling the Post-
Message function, not the SendMessage function.

The application allocates altem by calling the GlobalAddAtom function.

Receiving

The application posts the WM_DDE_ACK message to respond positively or nega-
tively. When posting WM_DDE_ACK, the application can reuse the altem atom
or delete it and create a new one.

See Also GlobalAddAtom, PostMessage, WM_DDE_ACK

118 WM_DEADCHAR

WM_DEADCHAR [2x]

WM_DEADCHAR
chDeadKey
dwKeyData

wParam; /* dead-key character =/
(DWORD) 1Param; /#* key data */

The WM_DEADCHAR message is sent when a WM_KEYUP message and a
WM_KEYDOWN message are translated. It specifies the character value of a
dead key. A dead key is a key, such as the umlaut (double-dot) character, that is
combined with other characters to form a composite character. For example, the
umlaut-O character consists of the dead key, umlaut, and the O key.

Parameters chDeadKey
Value of wParam. Specifies the dead-key character value.
dwKeyData

Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following

table:
Bit Description
0-15 Specifies the repeat count. The value is the number of times the keystroke

is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.

27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.
30 Specifies the previous key state. The value is 1 if the key is down before

the message is sent, or it is 0 if the key is up.

31 Specifies the key-transition state. The value is 1 if the key is being re-
leased, or it is O if the key is being pressed.

Return Value An application should return zero if it processes this message.

Comments An application typically uses the WM_DEADCHAR message to give the user
feedback about each key pressed. For example, an application can display the
accent in the current character position without moving the caret.

Because there is not necessarily a one-to-one correspondence between keys
pressed and character messages generated, the information in the high-order word

WM_DELETEITEM 119

See Also

of the dwKeyData parameter is usually not useful to applications. The information
in the high-order word applies only to the most recent WM_KEYUP or
WM_KEYDOWN message that precedes the posting of the character message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

WM_KEYDOWN

WM_DELETEITEM

Parameters

Return Value

See Also

WM_DELETEITEM
idCt1 = wParam; /* control identifier */
1pdis = (const DELETEITEMSTRUCT FAR*) 1Param; /* structure */

The WM_DELETEITEM message is sent to the owner of an owner-drawn list box
or combo box when the list box or combo box is destroyed or when items are re-
moved by the LB_DELETESTRING, LB_RESETCONTENT,
CB_DELETESTRING, or CB_RESETCONTENT message.

idCtl
Value of wParam. Specifies the identifier of the control that sent the
WM_DELETEITEM message.

Ipdis
Value of [Param. Points to a DELETEITEMSTRUCT structure that contains
information about the item deleted from the list box. The DELETEITEM-
STRUCT structure has the following form:

typedef struct tagDELETEITEMSTRUCT { /* deli =/
UINT Ctl1Type;
UINT Ct1ID;
UINT itemlD;
HWND hwndItem;
DWORD itemData;
} DELETEITEMSTRUCT;

An application should return TRUE if it processes this message.

CB_DELETESTRING, CB_RESETCONTENT, LB_DELETESTRING,
LB_RESETCONTENT

120 WM_DESTROY

WM_DESTROY 5]

WM_DESTROY

The WM_DESTROY message is sent when a window is being destroyed. It is'sent
to the window procedure of the window being destroyed after the window is re-
moved from the screen.

This message is sent first to the window being destroyed and then to the child win-
dows as they are destroyed. During the processing of the WM_DESTROY mes-
sage, it can be assumed that all child windows still exist.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments If the window being destroyed is part of the clipboard-viewer chain (set by calling

the SetClipboardViewer function), the window must remove itself from the
clipboard-viewer chain by calling the ChangeClipboardChain function before
returning from the WM_DESTROY message.

Example This example processes the WM_DESTROY message by calling the PostQuit-
Message function:

case WM_DESTROY:
PostQuitMessage(d);
return OL;

See Also ChangeClipboardChain, DestroyWindow, PostQuitMessage, SetClipboard-
Viewer, WM_CLOSE

WM_DESTROYCLIPBOARD [2x]

WM_DESTROYCLIPBOARD

The WM_DESTROYCLIPBOARD message is sent to the clipboard owner when
the clipboard is emptied by a call to the EmptyClipboard function.

Parameters This message has no parameters.

WM_DRAWCLIPBOARD 121

Return Value

See Also

An application should return zero if it processes this message.

EmptyClipboard

WM_DEVMODECHANGE [2x]

Parameters

Return Value

Comments

See Also

WM_DEVMODECHANGE
1pszDev = (LPCSTR) TParam; /* address of device name */

The WM_DEVMODECHANGE message is sent to all top-level windows when
the default device-mode settings have changed.

IpszDev
Value of [Param. Points to the device name specified in the Windows initializa-
tion file, WIN.INI.

An application should return zero if it processes this message.

Applications that receive this message may reinitialize their device-mode settings.
Applications that use the ExtDeviceMode function to save and restore device set-
tings typically do not process this message.

This message is not sent when the user changes the default printer from Control
Panel. In this case, a WM_WININICHANGE message is generated.

ExtDeviceMode, WM_WININICHANGE

WM_DRAWCLIPBOARD [2x]

WM_DRAWCLIPBOARD

The WM_DRAWCLIPBOARD message is sent to the first window in the
clipboard-viewer chain when the contents of the clipboard change. Only applica-
tions that have joined the clipboard-viewer chain by calling the SetClipboard-
Viewer function need to process this message.

122 WM_DRAWITEM

Parameters
Return Value

Comments

See Also

This message has no parameters.
An application should return zero if it processes this message.

Each window that receives the WM_DRAWCLIPBOARD message should call
the SendMessage function to pass the message on to the next window in the clip-
board-viewer chain. The handle of the next window is returned by the Set-
ClipboardViewer function; the handle may be modified in response to a
WM_CHANGECBCHAIN message.

SendMessage, SetClipboardViewer, WM_CHANGECBCHAIN

WM_DRAWITEM

Parameters

WM_DRAWITEM
idCt] (int) wParam; /* control identifier */
Tpdis (const DRAWITEMSTRUCT FAR#*) 1Param; /* structure */

The WM_DRAWITEM message is sent to the owner of an owner-drawn button,
combo box, list box, or menu when a visual aspect of the button, combo box, list
box, or menu has changed.

idCtl

Value of wParam. Specifies the identifier of the control that sent the
WM_DRAWITEM message. This parameter is zero if the message was sent by
a menu.

Ipdis
Value of [Param. Points to a DRAWITEMSTRUCT structure that contains in-
formation about the item to be drawn and the type of drawing required. The
DRAWITEMSTRUCT structure has the following form:

typedef struct tagDRAWITEMSTRUCT { /% ditm */
UINT Ctl1Type;
UINT Ct1ID;
UINT itemID;
UINT itemAction;
UINT 1itemState;
HWND hwndItem;
HDC hDC;
RECT rcltem;
DWORD itemData;

} DRAWITEMSTRUCT;

WM_DRAWITEM 123

Return Value

Comments

Example

See Also

An application should return TRUE if it processes this message.

The itemAction member of the DRAWITEMSTRUCT structure defines the
drawing operation that is to be performed. The data in this member allows the
owner of the control to determine what drawing action is required.

Before returning from processing this message, an application should ensure that
the device context identified by the ADC member of the DRAWITEMSTRUCT
structure is in the default state.

This example shows how to process the WM_DRAWITEM message:

LPDRAWITEMSTRUCT 1pdis;

case WM_DRAWITEM:
Tpdis = (DRAWITEMSTRUCT FAR#*) 1Param;

switch (1pdis->itemAction) {

case ODA_DRAWENTIRE:
: /* Redraw the entire control or menu. */
}eturn TRUE;

case ODA_SELECT:
: /* Redraw to reflect current selection state. */
;eturn TRUE;

case ODA_FOCUS:
: /* Redraw to reflect current focus state. */
;eturn TRUE;

}
break;

WM_COMPAREITEM, WM_DELETEITEM, WM_INITDIALOG,
WM_MEASUREITEM

124 WM_DROPFILES

WM_DROPFILES [31]

WM_DROPFILES
hDrop = (HANDLE) wParam; /* handle of internal drop structure */

The WM_DROPFILES message is sent when the user releases the left mouse but-
ton over the window of an application that has registered itself as a recipient of
dropped files.

Parameters hDrop
Value of wParam. Identifies an internal data structure describing the dropped
files. This handle is used by the DragFinish, DragQueryFile, and DragQuery-
Point functions to retrieve information about the dropped files.

Return Value An application should return zero if it processes this message.

See Also DragAcceptFiles, DragFinish, DragQueryFile, DragQueryPoint

WM_ENABLE [2x]

WM_ENABLE
fEnabled = (BOOL) wParam; /* the enabled/disabled flag */

The WM_ENABLE message is sent when an application changes the enabled state
of a window. It is sent to the window whose enabled state is changing. This mes-
sage is sent before the EnableWindow function returns but after the enabled state
(WS_DISABLE style bit) of the window has changed.

Parameters fEnabled
Value of wParam. Specifies whether the window has been enabled or disabled.
This parameter is TRUE if the window has been enabled; it is FALSE if the
window has been disabled.

Return Value An application should return zero if it processes this message.

See Also EnableWindow

WM_ENTERIDLE 125

WM_ENDSESSION [2x]

WM_ENDSESSION
fEndSession = (BOOL) wParam; /* end-session flag */

The WM_ENDSESSION message is sent to an application that has returned
a nonzero value in response to a WM_QUERYENDSESSION message. The
WM_ENDSESSION message informs the application whether the session is
actually ending.

Parameters JfEndSession
Value of wParam. Specifies whether the session is being ended. It is TRUE if
the session is being ended; otherwise, it is FALSE.

Return Value An application should return zero if it processes this message.

Comments If the fEndSession parameter is TRUE, Windows can terminate any time after all
applications have returned from processing this message. Therefore, an application
should perform all tasks required for termination before returning from this mes-
sage.

The application does not need to call the DestroyWindow or PostQuitMessage
function when the session is ending.

See Also DestroyWindow, ExitWindows, PostQuitMessage,
WM_QUERYENDSESSION

WM_ENTERIDLE [2x]

WM_ENTERIDLE
fwSource = wParam; /* idle-source flag */
hwndDlg = (HWND) LOWORD(1Param); /* handle of dialog box or window */

The WM_ENTERIDLE message informs an application’s main window proce-
dure that a modal dialog box or a menu is entering an idle state. A modal dialog
box or menu enters an idle state when no messages are waiting in its queue after it
has processed one or more previous messages.

Parameters JfwSource
Value of wParam. Specifies whether the message is the result of a dialog box
or a menu being displayed. This parameter can be one of the following values:

126 WM_ERASEBKGND

Return Value
Comments

See Also

Value Description
MSGF_DIALOGBOX The system is idle because a dialog box is being dis-
played.
MSGF_MENU The system is idle because a menu is being displayed.
hwndDlg

Value of the low-order word of [Param. Identifies the dialog box (if fwSource
is MSGF_DIALOGBOX) or the handle of the window containing the displayed
menu (if fwSource is MSGF_MENU).

An application should return zero if it processes this message.
The DefWindowProc function returns zero when it processes this message.

DefWindowProc

WM_ERASEBKGND [2x]

Parameters

Return Value

Comments

WM_ERASEBKGND
hdc = (HDC) wParam; /#* device-context handle */

The WM_ERASEBKGND message is sent when the window background needs
to be erased (for example, when a window is resized). It is sent to prepare an in-
validated region for painting.

hdc
Value of wParam. Identifies the device context.

An application should return nonzero if it erases the background; otherwise, it
should return zero.

The DefWindowProc function erases the background by using the class back-
ground brush specified by the hbrbackground member of the WNDCLASS struc-
ture.

If the hbrbackground member is NULL, the application should process the
WM_ERASEBKGND message and erase the background color. When processing
the WM_ERASEBKGND message, the application must align the origin of the in-
tended brush with the window coordinates by first calling the UnrealizeObject
function for the brush and then selecting the brush.

WM_GETDLGCODE 127

See Also

Windows computes the background by using the MM_TEXT mapping mode. If
the device context is using any other mapping mode, the area erased may not be
within the visible part of the client area.

UnrealizeObject, WM_ICONERASEBKGND

WM_FONTCHANGE [2x]

Parameters
Return Value

Comments

See Also

WM_FONTCHANGE
wParam = 0; /* not used, must be zero */
1Param = QL; /* not used, must be zero */

An application sends the WM_FONTCHANGE message to all top-level windows
in the system after changing the pool of font resources.

This message has no parameters.
An application should return zero if it processes this message.

An application that adds or removes fonts from the system (for example, by using
the AddFontResource or RemoveFontResource function) should send this mes-
sage to all top-level windows.

To send the WM_FONTCHANGE message to all top-level windows, an applica-
tion can call the SendMessage function with the zwnd parameter set to OxFFFF.

AddFontResource, RemoveFontResource, SendMessage

WM_GETDLGCODE [2x]

WM_GETDLGCODE

The WM_GETDLGCODE message is sent to the dialog box procedure associated
with a control. Normally, Windows handles all arrow-key and TAB-key input to the
control. By responding to the WM_GETDLGCODE message, an application can
take control of a particular type of input and process the input itself.

128 WM_GETFONT

Parameters This message has no parameters.
Return Value The return value is one or more of the following values, indicating which type of
input the application processes:
Value Meaning
DLGC_DEFPUSHBUTTON Default push button
DLGC_HASSETSEL EM_SETSEL messages
DLGC_PUSHBUTTON Push button
DLGC_RADIOBUTTON Radio button
DLGC_WANTALLKEYS All keyboard input
DLGC_WANTARROWS Arrow keys
DLGC_WANTCHARS WM_CHAR messages
DLGC_WANTMESSAGE All keyboard input (the application passes this
message on to the control)
DLGC_WANTTAB TAB key
Comments Although the DefWindowProc function always returns zero in response to the

WM_GETDLGCODE message, the window procedures for the predefined control
classes return a code appropriate for each class.

The WM_GETDLGCODE message and the returned values are useful only with
user-defined dialog box controls or standard controls modified by subclassing.

WM_GETFONT

WM_GETFONT
wParam = 0; /* not used, must be zero */
1Param = 0@L; /* not used, must be zero */

An application sends a WM_GETFONT message to a control to retrieve the font
with which the control is currently drawing its text.

Parameters This message has no parameters.

Return Value The return value is the handle of the font used by the control, or it is NULL if the
‘ control is using the system font.

See Also WM_SETFONT

WM_GETMINMAXINFO 129

WM_GETMINMAXINFO [2x]

WM_GETMINMAXINFO
Tpmmi = (MINMAXINFO FAR+*) 1Param; /* address of structure %/

The WM_GETMINMAXINFO message is sent to a window whenever Windows
needs the maximized position or dimensions of the window or needs the maxi-
mum or minimum tracking size of the window. The maximized size of a window
is the size of the window when its borders are fully extended. The maximum track-
ing size of a window is the largest window size that can be achieved by using the
borders to size the window. The minimum tracking size of a window is the small-
est window size that can be achieved by using the borders to size the window.

Windows fills in a MINMAXINFO data structure, specifying default values for
the various positions and dimensions. The application may change these values if
it processes this message.

Parameters Ipmmi
Value of [Param. Points to a MINMAXINFO data structure. The MINMAX-
INFO structure has the following form:

typedef struct tagMINMAXINFO { /* mmi =*/
POINT ptReserved;
POINT ptMaxSize;
POINT ptMaxPosition;
POINT ptMinTrackSize;
POINT ptMaxTrackSize;
} MINMAXINFO;

Return Value An application should return zero if it processes this message.

Example This example processes a WM_GETMINMAXINFO message and sets the min-
imum tracking width of the window to 200 and the minimum tracking height of
the window to 500:

MINMAXINFO FAR* 1pmmi;

case WM_GETMINMAXINFO:
Tpmmi = (MINMAXINFO FAR#*) 1Param;
Tpmmi->ptMinTrackSize.x = 200;
Tpmmi->ptMinTrackSize.y = 500;

break;

130 WM_GETTEXT

WM_GETTEXT 5]

WM_GETTEXT
wParam (WPARAM) cchTextMax; /* number of bytes to copy */
1Param = (LPARAM) TpszText; /* address of buffer for text */

An application sends a WM_GETTEXT message to copy the text that corresponds
to a window into a buffer provided by the caller.

Parameters cchlextMax

Value of wParam. Specifies the maximum number of bytes to be copied, includ-
ing the terminating null character.

IpszText
Value of [Param. Points to the buffer that is to receive the text.

Return Value The return value is the number of bytes copied. It is CB_ERR if the message is
sent to a combo box that has no edit control.

Comments For an edit control, the text to be copied is the contents of the edit control. For a
combo box, the text is the contents of the edit-control (or static-text) portion of the
combo box. For a button, the text is the button name. For other windows, the text
is the window title. To copy the text of an item in a list box, an application can use
the LB_GETTEXT message.

When the WM_GETTEXT message is sent to a static control with the SS_ICON
style, the handle of the icon will be returned in the first two bytes of the buffer
pointed to by IpszText. This is true only if the WM_SETTEXT message has been
used to set the icon.

Example This example copies text from an edit control to a buffer:

HWND hwndMyEdit;
char szBuffer[32];

hwndMyEdit = GetDlgItem(hdlg, ID_MYEDITCONTROL);

SendMessage(hdlg, WM_GETTEXT, sizeof(szBuffer),
(LPARAM) ((LPSTR) szBuffer));

See Also LB_GETTEXT, WM_GETTEXTLENGTH, WM_SETTEXT

WM_GETTEXTLENGTH 131

WM_GETTEXTLENGTH [2x]

WM_GETTEXTLENGTH
wParam = @; /* not used, must be zero */
1Param = QL; /* not used, must be zero */

An application sends a WM_GETTEXTLENGTH message to determine the
length, in bytes, of the text associated with a window. The length does not include
the terminating null character.

Parameters This message has no parameters.
Return Value The return value is a word specifying the length, in bytes, of the text.
Comments For an edit control, the text to be copied is the contents of the edit control. For a

combo box, the text is the contents of the edit-control (or static-text) portion of the
combo box. For a button, the text is the button name. For other windows, the text
is the window title. To determine the length of an item in a list box, an application
can use the LB_ GETTEXTLEN message.

Example This example enables the push button in a dialog box if the user has entered text in
an edit control in the dialog box:

case ID_MYEDITCONTROL:
if (HIWORD(1Param) == EN_CHANGE)
EnableWindow(GetDlgItem(hdlg, IDOK),
(BOOL) SendMessage(LOWORD(TParam),
WM_GETTEXTLENGTH, @, 0L));
return TRUE;

See Also LB_GETTEXTLEN, WM_GETTEXT

132 WM_HSCROLL

WM_HSCROLL

Parameters

Return Value

Comments

See Also

WM_HSCROLL
wScrol1Code = wParam; /* scroll bar code */
nPos = LOWORD(1Param); /* current position of scroll box */

hwndCt1 = (HWND) HIWORD(1Param); /* handle of the control */

The WM_HSCROLL message is sent to a window when the user clicks the win-
dow’s horizontal scroll bar.

wScrollCode
Value of wParam. Specifies a scroll bar code that indicates the user’s scrolling
request. This parameter can be one of the following values:

Value Description
SB_LEFT Scroll to far left.
SB_LINELEFT Scroll left.
SB_LINERIGHT Scroll right.
SB_PAGELEFT Scroll one page left.
SB_PAGERIGHT Scroll one page right.
SB_RIGHT Scroll to far right.

SB_THUMBPOSITION Scroll to absolute position. The current position is
specified by the nPos parameter.

SB_THUMBTRACK Drag scroll box (thumb) to specified position. The cur-
rent position is specified by the nPos parameter.

nPos
Value of the low-order word of [Param. Specifies the current position of the
scroll box if the wScrollCode parameter is SB_THUMBPOSITION or
SB_THUMBTRACK; otherwise, the nPos parameter is not used.

hwndCtl
Value of the high-order word of /Param. 1dentifies the control if
WM_HSCROLL is sent by a scroll bar. If WM_HSCROLL is sent as a result of
the user clicking a pop-up window’s scroll bar, the high-order word is not used.

An application should return zero if it processes this message.

The SB_THUMBTRACK scroll bar code typically is used by applications that
give some feedback while the scroll box is being dragged.

If an application scrolls the contents of the window, it must also reset the position
of the scroll box by using the SetScrollPos function.

SetScrollPos, WM_VSCROLL

WM_HSCROLLCLIPBOARD 133

WM_HSCROLLCLIPBOARD [2x]

Parameters

Return Value

Comments

See Also

WM_HSCROLLCLIPBOARD

hwndCBViewer = (HWND) wParam; /* handle of clipboard viewer */
wScrol1Code = LOWORD(1Param); /* scroll bar code */
nPos = (int) HIWORD(TParam); /* scroll box position */

The WM_HSCROLLCLIPBOARD message is sent by the clipboard viewer to the
clipboard owner when the clipboard data has the CF_OWNERDISPLAY format
and an event occurs in the clipboard viewer’s horizontal scroll bar. The owner
should scroll the clipboard image, invalidate the appropriate section, and update
the scroll bar values.

hwndCBViewer
Value of wParam. 1dentifies a clipboard-viewer window.

wScrollCode
Value of the low-order word of [Param. Specifies a scroll bar code. This
parameter can be one of the following values:

Value Description
SB_BOTTOM Scroll to lower right.
SB_ENDSCROLL End scroll.
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.
SB_PAGEUP Scroll one page up.
SB_THUMBPOSITION Scroll to absolute position.
SB_TOP Scroll to upper left.

nPos

Value of the high-order word of [Param. Specifies the scroll box position if the
scroll bar code is SB_THUMBPOSITION; otherwise, the high-order word of
[Param is not used.

An application should return zero if it processes this message.

The clipboard owner should use the InvalidateRect function or repaint as needed.
The scroll bar position should also be reset.

InvalidateRect, WM_VSCROLLCLIPBOARD

134 WM_ICONERASEBKGND

WM_ICONERASEBKGND

WM_TICONERASEBKGND
hdc = (HDC) wParam; /* device-context handle */

The WM_ICONERASEBKGND message is sent to a minimized (iconic) window
when the background of the icon must be filled before painting the icon. A win-

dow receives this message only if a class icon is defined for the window; other-
wise, WM_ERASEBKGND is sent.

Parameters hdc
Value of wParam. Identifies the device context of the icon.

Return Value An application should return zero if it processes this message.

Comments The DefWindowProc function fills the icon background with the background
brush of the parent window.

See Also DefWindowProc, WM_ERASEBKGND

WM_INITDIALOG [2x]

WM_INITDIALOG
hwndFocus = (HWND) wParam; /* handle of control for focus */
dwData = TParam; /* application-specific data */

The WM_INITDIALOG message is sent to a dialog box procedure immediately
before the dialog box is displayed.

Parameters hwndFocus
Value of wParam. Identifies the first control in the dialog box that can be given
the input focus. Usually, this is the first control in the dialog box with the
WS_TABSTOP style.

dwData
Value of [Param. Specifies application-specific data that was passed by the
function used to create the dialog box if the dialog box was created by one of
the following functions:

CreateDialogParam
DialogBoxIndirectParam
DialogBoxParam

WM_INITMENU 135

Return Value An application should return nonzero to set the input focus to the control identified
by the hwndFocus parameter. An application should return zero if the dialog box
procedure uses the SetFocus function to set the input focus to a different control
in the dialog box.

Example This example changes the font used by controls in a dialog box to a font that is not
bold.

HFONT hD1gFont;
LOGFONT 1Font;

case WM_INITDIALOG:
/% Get dialog box font and create version that is not bold. */

hD1gFont = (HFONT) NULL;
if ((hD1gFont = (HFONT) SendMessage(hdlg, WM_GETFONT, @, 0L))) {
if (GetObject(hDlgFont, sizeof(LOGFONT), (LPSTR) &l1Font)) {
TFont.1fWeight = FW_NORMAL;
if (hD1gFont = CreateFontIndirect((LPLOGFONT) &1Font)) {
SendDlgltemMessage(hdlg, ID_CTRL1, WM_SETFONT,
hDl1gFont, @L);
SendDlgltemMessage(hdlg, ID_CTRL2, WM_SETFONT,
hD1gFont, @L);

. /* Set font for remaining controls. */

}
}
return TRUE;

See Also CreateDialogParam, DialogBoxIndirectParam, DialogBoxParam, SetFocus

WM_INITMENU [2.x]

WM_INITMENU
hmenuInit = (HMENU) wParam; /#* handle of menu to initialize */

The WM_INITMENU message is sent when a menu is about to become active. It
occurs when the user clicks an item on the menu bar or presses a menu key. This
allows an application to modify the menu before it is displayed.

136 WM_INITMENUPOPUP

Parameters

Return Value

Comments

See Also

hmenulnit
Value of wParam. Identifies the menu to be initialized.

An application should return zero if it processes this message.

This message is sent only when a menu is first accessed; only one
WM_INITMENU message is generated for each access. This means, for example,
that moving the mouse across several menu items while holding down the button
does not generate new messages. WM_INITMENU does not provide information
about menu items.

WM_INITMENUPOPUP

WM_INITMENUPOPUP

Parameters

Return Value

WM_INITMENUPOPUP

hmenuPopup = (HMENU) wParam; /* handle of pop-up menu */
nIndex = (int) LOWORD(1Param); /* index of pop-up menu */
fSystemMenu = (BOOL) HIWORD(1Param); /* System-menu flag */

The WM_INITMENUPOPUP message is sent when a pop-up menu is about to be-
come active. This allows an application to modify the pop-up menu before it is dis-
played, without changing the entire menu.

hmenuPopup
Value of wParam. Identifies the pop-up menu.

nindex
Value of the low-order word of /Param. Specifies the index of the pop-up menu
in the main menu.

fSystemMenu
Value of the high-order word of /[Param. Specifies a nonzero value if the pop-
up menu is the System menu (sometimes referred to as the Control menu);
otherwise, this parameter is zero.

An application should return zero if it processes this message.

WM_KEYDOWN 137

Example

See Also

This example initializes the items in a pop-up menu:

int nCount;
WORD witem;
UINT ulD;

case WM_INITMENUPOPUP:
nCount = GetMenultemCount(wParam);
for (witem = 0; wlitem < nCount; wlitem++) {
ulD = GetMenultemID(wParam, wlitem);
. /* Initialize menu items. */

}
break;

WM_INITMENU

WM_KEYDOWN [2x]

Parameters

WM_KEYDOWN
wVkey = wParam; /* virtual-key code */
dwKeyData = 1Param; /* key data */

The WM_KEYDOWN message is sent when a nonsystem key is pressed. A non-
system key is a key that is pressed when the ALT key is not pressed, or it is a key
that is pressed when a window has the input focus.

wVkey
Value of wParam. Specifies the virtual-key code of the given key.

dwKeydata
Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

24 Specifies whether the key is an extended key, such as a function key or a

key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it 1s 0.

138 WM_KEYUP

Return Value

Comments

See Also

Bit Description

25-26 Not used.
27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being re-

leased, or it is O if the key is being pressed.

For a WM_KEYDOWN message, the value of bit 29 (context code) is 0 and
the value of bit 31 (key-transition state) is 0.

An application should return zero if it processes this message.

Because of the autorepeat feature, more than one WM_KEYDOWN message may
occur before a WM_KEYUP message is sent. The previous key state (bit 30) can
be used to determine whether the WM_KEYDOWN message indicates the first
down transition or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER key on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

WM_CHAR, WM_KEYUP

WM_KEYUP

[2x]

WM_KEYUP
wVkey = wParam; /* virtual-key code */
dwKeyData = 1Param; /* key data */

The WM_KEYUP message is sent when a nonsystem key is released. A non-
system key is a key that is pressed when the ALT key is not pressed, or it is a key
that is pressed when a window has the input focus.

WM_KEYUP 139

Parameters

Return Value

Comments

See Also

wVkey

Value of wParam. Specifies the virtual-key code of the given key.

dwKeyData

Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following

table:

Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.

27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is O if the key is up.

31 Specifies the key-transition state. The value is 1 if the key is being re-

leased, or it is 0 if the key is being pressed.

For a WM_KEYUP message, the value of bit 29 (context code) is O and the
value of bit 31 (key-transition state) is 1.

An application should return zero if it processes this message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

WM_CHAR, WM_KEYDOWN

140 WM_KILLFOCUS

WM_KILLFOCUS

WM_KILLFOCUS

hwndGetFocus = (HWND) 1Param;

[2x]

/* handle of window receiving focus */

The WM_KILLFOCUS message is sent immediately before a window loses the

input focus.

Parameters hwndGetFocus
Value of wParam. Identifies the window that receives the input focus. (This
parameter may be NULL.)
Return Value An application should return zero if it processes this message.
Comments If an application is displaying a caret, the caret should be destroyed at this point.
See Also SetFocus, WM_SETFOCUS

WM_LBUTTONDBLCLK

WM_LBUTTONDBLCLK
fwKeys = wParam;
xPos
yPos

LOWORD(1Param);
HIWORD(1Param); /* vertical position of cursor

/% key flags

*/

/* horizontal position of cursor */

*/

The WM_LBUTTONDBLCLK message is sent when the user double-clicks the

left mouse button.

Parameters fwKeys

Value of wParam. Indicates whether various virtual keys are down. This

parameter can be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

WM_LBUTTONDOWN 141

Return Value

Comments

See Also

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

Only windows that have the CS_DBLCLKS class style can receive
WM_LBUTTONDBLCLK messages. Windows generates a
WM_LBUTTONDBLCLK message when the user presses, releases, and again
presses the left mouse button within the system’s double-click time limit. Double-
clicking the left mouse button actually generates four messages: a
WM_LBUTTONDOWN message, a WM_LBUTTONUP message, the
WM_LBUTTONDBLCLK message, and another WM_LBUTTONUP message.

WM_LBUTTONDOWN, WM_LBUTTONUP

WM_LBUTTONDOWN

Parameters

WM_LBUTTONDOWN

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_LBUTTONDOWN message is sent when the user presses the left
mouse button.

fwKeys
Value of wParam. Specifies whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

142 WM_LBUTTONUP

Return Value

See Also

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_LBUTTONDBLCLK, WM_LBUTTONUP

WM_LBUTTONUP

Parameters

Return Value

See Also

WM_LBUTTONUP

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /#* vertical position of cursor %/

The WM_LBUTTONUP message is sent when the user releases the left mouse
button.

JwKeys
Value of wParam. Indicates whether various virtual keys are down.
This parameter can be any combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-ieft corner of the window.

An application should return zero if it processes this message.

WM_LBUTTONDBLCLK, WM_LBUTTONDOWN

WM_MBUTTONDBLCLK 143

WM_MBUTTONDBLCLK [2x]

Parameters

Return Value

Comments

See Also

WM_MBUTTONDBLCLK

fwKeys = wParam; /* key flags */
xPos = LOWORD(T1Param); /* horizontal position of cursor =/
yPos = HIWORD(TParam); /* vertical position of cursor */

The WM_MBUTTONDBLCLK message is sent when the user double-clicks the
middle mouse button.

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

Only windows that have the CS_DBLCLKS class style can receive
WM_MBUTTONDBLCLK messages. Windows generates a
WM_MBUTTONDBLCLK message when the user presses, releases, and again
presses the middle mouse button within the system’s double-click time limit.
Double-clicking the middle mouse button actually generates four messages: a
WM_MBUTTONDOWN message, a WM_MBUTTONUP message, the
WM_MBUTTONDBLCLK message, and another WM_MBUTTONUP message.

WM_MBUTTONDOWN, WM_MBUTTONUP

144 WM_MBUTTONDOWN

WM_MBUTTONDOWN

WM_MBUTTONDOWN

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_MBUTTONDOWN message is sent when the user presses the middle

mouse button.

Parameters fwKeys

Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value

Description

MK_CONTROL
MK_LBUTTON
MK_RBUTTON
MK_SHIFT

xPos

Set if CTRL key is down.
Set if left button is down.
Set if right button is down.
Set if SHIFT key is down.

Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos

Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

Return Value An application should return zero if it processes this message.

See Also WM_MBUTTONDBLCLK, WM_MBUTTONUP

WM_MBUTTONUP

WM_MBUTTONUP

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_MBUTTONUP message is sent when the user releases the middle

mouse button.

WM_MDIACTIVATE 145

Parameters

Return Value

See Also

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.

MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_MBUTTONDBLCLK, WM_MBUTTONDOWN

WM_MDIACTIVATE

WM_MDIACTIVATE

/* Message sent to MDI client =*/

wParam = (WPARAM) (HWND) hwndChildAct; /#* child to activate */
1Param = @L; /* not used, must be zero */

/* Message received by MDI child =/

wParam = (WPARAM) fActivate; /* activation flag */
hwndAct = (HWND) LOWORD(1Param); /* child being activated */
hwndDeact = (HWND) HIWORD(1Param); /* child being deactivated */

An application sends the WM_MDIACTIVATE message to a multiple document
interface (MDI) client window to instruct the client window to activate a different
MDI child window. As the client window processes this message, it sends
WM_MDIACTIVATE to the child window being deactivated and to the child win-
dow being activated.

146 WM_MDICASCADE

Parameters In message sent to MDI client window:

hwndChildAct
Value of wParam. Identifies the MDI child window to be activated.

In message received by MDI child window:

[fActivate
Value of wParam. Specifies whether to activate or deactivate the child window.
If this parameter is TRUE, the child window is activated. If this parameter is
FALSE, the child window is deactivated.

hwndAct
Value of the low-order word of /Param. 1dentifies the child window being
activated.

hwndDeact
Value of the high-order word of /Param. Identifies the child window being
deactivated.

Return Value An application should return zero if it processes this message.

Comments An MDI child window is activated independently of the MDI frame window.
When the frame window becomes active, the child window that was last activated
with the WM_MDIACTIVATE message receives the WM_NCACTIVATE mes-
sage to draw an active window frame and title bar; it does not receive another
WM_MDIACTIVATE message.

See Also WM_MDIGETACTIVE, WM_NCACTIVATE, WM_MDINEXT

WM_MDICASCADE

WM_MDICASCADE
fnCascade = wParam; /* cascade flag =/

The WM_MDICASCADE message is sent to a multiple document interface
(MDI) client window to arrange all its child windows in a cascade format.

Parameters fuCascade

Value of wParam. Specifies a cascade flag. Currently, only the following flag
may be specified:

WM_MDICREATE 147

Value Meaning
MDITILE_SKIPDISABLED Prevents disabled MDI child windows from being
cascaded.
Return Value An application should return zero if it processes this message.
See Also WM_MDIICONARRANGE, WM_MDITILE

WM_MDICREATE

WM_MDICREATE
wParam = @; /* not used, must be zero */
1Param = (LPARAM) (MDICREATESTRUCT FAR*) lpmcs; /* structure address =/

An application sends the WM_MDICREATE message to a multiple document in-
terface (MDI) client window to create a child window.

Parameters Ipmcs
Value of IParam. Points to an MDICREATESTRUCT structure. The
MDICREATESTRUCT structure has the following form:

typedef struct tagMDICREATESTRUCT { /* mdic */
LPCSTR szClass;
LPCSTR szTitle;
HINSTANCE hOwner;

int X3
int y;
int CcX;
int cy;
DWORD style;

LPARAM 1Param;
} MDICREATESTRUCT;

Return Value The return value is the handle of the new window in the low-order word and zero
in the high-order word.

Comments The window is created with the style bits WS_CHILD, WS_CLIPSIBLINGS,
WS_CLIPCHILDREN, WS_SYSMENU, WS_CAPTION, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX, plus additional style bits
specified in the MDICREATESTRUCT structure to which Ipmcs points.

148 WM_MDIDESTROY

See Also

Windows adds the title of the new child window to the window menu of the frame
window. An application should create all child windows of the client window with
this message.

If the MDIS_ALLCHILDSTYLES style is set when the MDI client window is
created, CreateWindow overrides the default style bits.

If a client window receives any message that changes the activation of child win-
dows while the currently active MDI child window is maximized, Windows re-
stores the currently active child window and maximizes the newly activated child
window.

‘When the MDI child window is created, Windows sends the WM_CREATE mes-
sage to the window. The Ipmcs parameter of the WM_CREATE message contains
a pointer to a CREATESTRUCT structure. The IpCreateParams member of the
CREATESTRUCT structure contains a pointer to the MDICREATESTRUCT
structure passed with the WM_MDICREATE message that created the MDI child
window.

An application should not send a second WM_MDICREATE message while a
WM_MDICREATE message is still being processed. For example, it should not
send a WM_MDICREATE message while an MDI child window is processing its
WM_CREATE message.

WM_MDIDESTROY

WM_MDIDESTROY

Parameters

Return Value

Comments

WM_MDIDESTROY
hwndChild = (HWND) wParam; /* handle of child to destroy */

An application sends the WM_MDIDESTROY message to a multiple document
interface (MDI) client window to close an MDI child window.

hwndChild
Value of wParam. 1dentifies the child window to destroy.

An application should return zero if it processes this message.

This message removes the title of the child window from the frame window and
deactivates the child window. An application should close all MDI child windows
with this message.

WM_MDIICONARRANGE 149

If a client window receives any message that changes the activation of child win-
dows while the currently active MDI child window is maximized, Windows re-
stores the currently active child window and maximizes the newly activated child
window.

See Also WM_MDICREATE

WM_MDIGETACTIVE

WM_MDIGETACTIVE
The WM_MDIGETACTIVE message retrieves the multiple document interface

(MDI) child window that is active, along with a flag indicating whether the child
window is maximized.

Parameters This message has no parameters.

Return Value The return value is the handle of the active MDI child window in its low-order
word. If the window is maximized, the high-order word is 1; otherwise, the high-
order word is 0.

See Also WM_MDIACTIVATE

WM_MDIICONARRANGE

WM_MDIICONARRANGE
The WM_MDIICONARRANGE message is sent to a multiple document interface
(MDI) client window to arrange all minimized document child windows. It does
not affect child windows that are not minimized.

Parameters This message has no parameters.

Return Value An application should return zero if it processes this message.

See Also WM_MDICASCADE, WM_MDITILE

150 WM_MDIMAXIMIZE

WM_MDIMAXIMIZE |

WM_MDIMAXIMIZE
hwndMaximize = (HWND) wParam; /* handle of child to maximize */

The WM_MDIMAXIMIZE message causes a multiple document interface (MDI)
client window to maximize an MDI child window. When a child window is maxi-
mized, Windows resizes it to make its client area fill the client window. Windows
places the child window’s System menu (sometimes referred to as the Control
menu) in the frame’s menu bar so that the user can restore or minimize the child
window; Windows adds the title of the child window to the frame window’s menu
of child windows.

Parameters hwndMaximize
Value of wParam. Identifies the child window to maximize.

Return Value An application should return zero if it processes this message.

Comments If an MDI client window receives any message that changes the activation of its
child windows while the currently active MDI child window is maximized, Win-
dows restores the currently active child window and maximizes the newly acti-
vated child window.

WM_ MDINEXT

WM_MDINEXT
wParam = (WPARAM) hwndChild; /* handle of child window */
1Param = (LPARAM) fNext; /* next or previous child window */

An application sends the WM_MDINEXT message to a multiple document inter-
face (MDI) client window to activate the child window immediately behind the
currently active child window and place the currently active child window behind
all other child windows.

Parameters hwndChild
Value of wParam. Specifies the handle of the child window.

fNext

Value of [Param. If this parameter is zero, the message specifies that the next
MDI child window should be activated. If this parameter is nonzero, the mes-
sage specifies that the previous MDI child window should be activated.

WM_MDISETMENU 151

Return Value An application should return zero if it processes this message.

Comments If an MDI client window receives any message that changes the activation of its
child windows while the currently active MDI child window is maximized, Win-
dows restores the currently active child window and maximizes the newly acti-
vated child window.

See Also WM_MDIACTIVATE, WM_MDIGETACTIVE

WM_MDIRESTORE

WM_MDIRESTORE
wParam = (WPARAM) wIDChild; /* handle of child window */

An application sends the WM_MDIRESTORE message to a multiple document in-

terface (MDI) client window to restore an MDI child window from maximized or
minimized size.

Parameters wiIDChild
Value of wParam. Specifies the handle of the child window.

Return Value An application should return zero if it processes this message.

See Also WM_MDIMAXIMIZE

WM_MDISETMENU

WM_MDISETMENU
wParam = (WPARAM) (BOOL) fRefresh; /* refresh flag */
1Param = MAKELPARAM(hmenuFrame, hmenuWindow); /* new menus */

An application sends a WM_MDISETMENU message to replace the menu of a
multiple document interface (MDI) frame window, the Window pop-up menu, or
both.

Parameters fRefresh
Value of wParam. Specifies whether to refresh the current menus or specify
new menus. It is TRUE if the menus should just be refreshed. It is FALSE if,

152 WM_MDITILE

Return Value

Comments

See Also

instead, the hmenuFrame and hmenuWindow parameters should be used to
specify new menus for the window.

hmenuFrame
Value of the low-order word of [Param. Identifies the new frame-window
menu. If this parameter is zero, the frame-window menu is not changed.

hmenuWindow
Value of the high-order word of /Param. Identifies the new Window pop-up
menu. If this parameter is zero, the Window pop-up menu is not changed.

The return value is the handle of the frame-window menu replaced by this mes-
sage.

After sending this message, an application must call the DrawMenuBar function
to update the menu bar.

If this message replaces the Window pop-up menu, MDI child-window menu
items are removed from the previous Window menu and added to the new Win-
dow pop-up menu.

If an MDI child window is maximized and this message replaces the MDI frame-
window menu, the System menu (sometimes referred to as the Control menu) and
restore controls are removed from the previous frame-window menu and added to
the new menu.

DrawMenuBar

WM_MDITILE

Parameters

WM_MDITILE
fTile = wParam; /* tiling flag */

The WM_MDITILE message is sent to a multiple document interface (MDI)
client window to arrange all its child windows in a tiled format.

[fTile
Value of wParam. Specifies a tiling flag. This parameter can be one of the fol-
lowing flags:

WM_MEASUREITEM 153

Value Meaning

MDITILE_HORIZONTAL Tiles MDI child windows so that they are wide
rather than tall.

MDITILE_SKIPDISABLED Prevents disabled MDI child windows from being
tiled.

MDITILE_VERTICAL Tiles MDI child windows so that they are tall

rather than wide.

Return Value An application should return zero if it processes this message.

See Also WM_MDICASCADE, WM_MDIICONARRANGE

WM_MEASUREITEM

WM_MEASUREITEM
nIDCtT = (int) wParam; /* control identifier */
TpmisCtl = (MEASUREITEMSTRUCT FAR#%) 1Param; /#* address of structure =/

The WM_MEASUREITEM message is sent to the owner of an owner-drawn but-
ton, combo box, list box, or menu item when the control is created. When the
owner receives the message, the owner fills in the MEASUREITEMSTRUCT
structure pointed to by the [pmisCtl message parameter and returns; this informs
Windows of the dimensions of the control. If a list box or combo box is created
with the LBS_OWNERDRAWVARIABLE or CBS_OWNERDRAWVARIABLE
style, this message is sent to the owner for each item in the control; otherwise, this
message is sent once.

Parameters nIDCtl
Value of wParam. Specifies the identifier of the control that sent the
WM_MEASUREITEM message. This parameter is O if the message was sent
by a menu. This parameter is —1 when the system is requesting the dimensions
of an edit control in an owner-drawn combo box.

IpmisCtl
Value of [Param. Points to a MEASUREITEMSTRUCT structure that con-
tains the dimensions of the owner-drawn control.

154 WM_MENUCHAR

Return Value

Comments

See Also

The MEASUREITEMSTRUCT structure has the following form:

typedef struct tagMEASUREITEMSTRUCT { /* mi */
UINT CtiType;
UINT Ct1ID;
UINT itemlID;
UINT itemWidth;
UINT itemHeight;
DWORD itemData;
} MEASUREITEMSTRUCT;

An application should return TRUE if it processes this message.

Windows sends the WM_MEASUREITEM message to the owner of a combo

box or list box created with the OWNERDRAWFIXED style before sending
WM_INITDIALOG. As a result, when the owner receives this message, Windows
has not yet determined the height and width of the font used in the control; func-
tion calls and calculations requiring these values should occur in the main function
of the application or library.

WM_COMPAREITEM, WM_DELETEITEM, WM_DRAWITEM,
WM_INITDIALOG

WM_MENUCHAR

Parameters

WM_MENUCHAR

chUser = wParam; /* ASCII character */
fMenu = LOWORD(1Param); /* menu flag */
hmenu = (HMENU) HIWORD(1Param); /* handle of the menu */

The WM_MENUCHAR message is sent when the user presses the key corre-
sponding to a menu mnemonic character that doesn’t match any of the predefined
mnemonics in the current menu. It is sent to the window that owns the menu.

chUser

Value of wParam. Specifies the ASCII character that corresponds to the key the
user pressed.

fMenu

Value of the low-order word of /Param. Specifies the type of the selected
menu. This parameter can be one of the following values:

WM_MENUSELECT 155

Value Meaning

MF_POPUP The menu is a pop-up menu.

MF_SYSMENU The menu is a System menu (sometimes referred to as a
Control menu).

hmenu
Value of the high-order word of [Param. Identifies the selected menu.
Return Value The return value is one of the following command code values in the high-order
word:
Value Description
0 Informs Windows that it should discard the character corresponding to the
key the user pressed, and creates a short beep on the system speaker.
1 Informs Windows that it should close the current menu.
2 Informs Windows that the low-order word of the return value contains the

item number for a specific item. This item is selected by Windows.

The low-order word is ignored if the high-order word contains O or 1. An applica-
tion should process this message when an accelerator key has been used to select a
bitmap placed in a menu.

Comments 'The WM_MENUCHAR message is generated when the user presses ALT and any
key, even if the key does not correspond to a mnemonic character. In this case, the
hmenu parameter contains the window handle of the menu.

WM_MENUSELECT [2x]

WM_MENUSELECT

wIDItem = wParam; /* item identifier or menu handle */
fwMenu = LOWORD(1Param); /* menu flags */
hmenu = (HMENU) HIWORD(1Param); /# handle of the menu */

The WM_MENUSELECT message is sent to the window associated with a menu
when the user selects a menu item.

Parameters wiIDItem
Value of wParam. Specifies the menu-item identifier if the selected item is a
menu item. If the selected item contains a pop-up menu, wiDItem contains the
handle of the pop-up menu.

156 WM_MOUSEACTIVATE

fwMenu
Low word of [Param. Specifies one or more menu flags. This parameter can be
a combination of the following values:

Flag Description
MF_BITMAP Item is a bitmap.
MF_CHECKED Item is checked.
MF_DISABLED Item is disabled.
MF_GRAYED Item is grayed.

MF_MOUSESELECT Item was selected with a mouse.
MF_OWNERDRAW Item is an owner-drawn item.

ME_POPUP Item contains a pop-up menu.
MF_SEPARATOR Item is a menu-item separator.
MF_SYSMENU Item is contained in the System menu (sometimes re-

ferred to as the Control menu). The hmenu parameter
identifies the System menu associated with the message.

hmenu
High word of [Param. If the fwMenu parameter contains the MF_SYSMENU
flag, this parameter specifies the menu handle of the System menu.

Return Value An application should return zero if it processes this message.

Comments If the fwMenu parameter contains —1 and the hmenu parameter contains 0, Win-
dows has closed the menu. This occurs both when the menu is closed because the
user pressed ESC or clicked outside the menu and when the user has selected a
menu item.

WM_MOUSEACTIVATE [2x]

WM_MOUSEACTIVATE

hwndTopLevel = (HWND) wParam; /* handle of top-level parent %/
wHitTestCode = LOWORD(1Param); /* hit-test code */
wMsg = HIWORD(1Param); /* mouse-message identifier */

The WM_MOUSEACTIVATE message is sent when the cursor is in an inactive
window and the user presses a mouse button. The parent window receives this
message only if the child window passes it to the DefWindowProc function.

WM_MOUSEMOVE 157

Parameters hwndTopLevel
Value of wParam. Identifies the top-level parent window of the window being
activated.

wHitTestCode
Value of the low-order word of [Param. Specifies the hit-test area code. A hit
test is a test that determines the location of the cursor.

wMsg
Value of the high-order word of [Param. Specifies the identifier of the mouse
message.
Return Value The return value specifies whether the window should be activated and whether
the mouse event should be discarded. It must be one of the following values:
Value Meaning
MA_ACTIVATE Activate the window.
MA_NOACTIVATE Do not activate the window.
MA_ACTIVATEANDEAT Activate the window and discard the mouse event.
MA_NOACTIVATEANDEAT Do not activate the window; discard the mouse
event.
Comments If the child window passes the message to the DefWindowProc function, Def-

WindowProc passes this message to a window’s parent window before any pro-
cessing occurs. If the parent window returns a nonzero value, processing is halted.

WM_MOUSEMOVE [2x]

WM_MOUSEMOVE

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor =/
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_MOUSEMOVE message is sent to a window when the mouse cursor
moves. If the mouse is not captured, the message goes to the window beneath the
cursor. Otherwise, the message goes to the window that has captured the mouse.

Parameters fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

158 WM_MOVE

Return Value

Comments

See Also

Value Description

MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

An application should return zero if it processes this message.

The MAKEPOINT macro can be used to convert the [Param parameter to a
POINT structure.

SetCapture, WM_NCHITTEST

WM_MOVE

Parameters

WM_MOVE
xPos = (int) LOWORD(1Param); /* horizontal position =/
yPos = (int) HIWORD(1Param); /* vertical position */

The WM_MOVE message is sent after a window has been moved.

xPos
Value of the low-order word of [Param. Specifies the new x-coordinate of the
upper-left corner of the client area of the window.

yPos
Value of the high-order word of [Param. Specifies the new y-coordinate of the
upper-left corner of the client area of the window.

WM_NCACTIVATE 159

Return Value An application should return zero if it processes this message.

Comments The xPos and yPos parameters are given in screen coordinates for overlapped and
pop-up windows and in parent-client coordinates for child windows.

An application can use the MAKEPOINT macro to convert the /[Param parameter
to a POINT data structure.

See Also MAKEPOINT, POINT

WM_NCACTIVATE [2x]

WM_NCACTIVATE
fActive = (BOOL) wParam; /* the active/inactive flag */

The WM_NCACTIVATE message is sent to a window when its nonclient area
needs to be changed to indicate an active or inactive state.

Parameters SActive
Value of wParam. Specifies when a title bar or icon needs to be changed to indi-
cate an active or inactive state. The fActive parameter is TRUE if an active title
bar or icon is to be drawn. It is FALSE for an inactive title bar or icon.

Return Value When the fActive parameter is FALSE, an application should return TRUE to indi-
cate that Windows should proceed with the default processing or FALSE to pre-
vent the caption bar or icon from being deactivated. When fActive is TRUE, the
return value is ignored.

Comments The DefWindowProc function draws the title bar and title bar text in their active
colors when the fActive parameter is TRUE and in their inactive colors when
SfActive is FALSE.

See Also DefWindowProc

160 WM_NCCALCSIZE

WM_NCCALCSIZE o]

WM_NCCALCSIZE
fCalcValidRects = (BOOL) wParam; /* valid-area flag =/
Tpncsp = (NCCALCSIZE_PARAMS FAR#) 1Param; /* address of data */

The WM_NCCALCSIZE message is sent when the size and position of a win-
dow’s client area needs to be calculated. By processing this message, an applica-
tion can control the contents of the window’s client area when the size or position
of the window changes.

Parameters fCalcValidRects
Value of wParam. Specifies whether the application should specify which part
of the client area contains valid information. Windows will copy the valid infor-
mation to the specified area within the new client area. If this parameter is
TRUE, the application should specify which part of the client area is valid.

Ipnesp
Value of [Param. Points to an NCCALCSIZE_PARAMS data structure that
contains information an application can use to calculate the new size and posi-
tion of the client rectangle. The NCCALCSIZE_PARAMS structure has the

following form:

typedef struct tagNCCALCSIZE_PARAMS {
RECT rgrc[3];
WINDOWPOS FAR* 1ppos;

} NCCALCSIZE_PARAMS;

Regardless of the value of fCalcValidRects, the first rectangle in the array
specified by the rgrc member contains the coordinates of the window. For a
child window, the coordinates are relative to the parent window’s client area.
For top-level windows, the coordinates are screen coordinates. An application
should process WM_NCCALCSIZE by modifying the rgre[0] rectangle to re-
flect the size and position of the client area.

The rgre[1] and rgre[2] rectangles are valid only if fCalcValidRects is TRUE.
In this case, the rgre[1] rectangle contains the coordinates of the window
before it was moved or resized. The rgre[2] rectangle contains the coordinates
of the window’s client area before the window was moved. All coordinates are
relative to the parent window or screen.

Return Value An application should return zero if fCalcValidRects is FALSE.

An application can return zero or a valid combination of the following values if
fCalcValidRects is TRUE:

WM_NCCALCSIZE 161

Comments

See Also

Value

Meaning

WVR_ALIGNTOP, WVR_ALIGNLEFT,
WVR_ALIGNBOTTOM,
WVR_ALIGNRIGHT

WVR_HREDRAW,
WVR_VREDRAW

WVR_REDRAW

WVR_VALIDRECTS

These values, used in combination,
specify that the client area of the window
is to be preserved and aligned appro-
priately relative to the new location of the
client window. For example, to align the
client area to the lower-left, return
WVR_ALIGNLEFT | WVR_ALIGNTOP.

These values, used in combination with
any other values, cause the window to be
completely redrawn if the client rectangle
changed size horizontally or vertically.
These values are similar to the
CS_HREDRAW and CS_VREDRAW
class styles.

This value causes the entire window
to be redrawn. It is a combination
of WVR_HREDRAW and
WVR_VREDRAW.

This value indicates that, upon return from
WM_NCCALCSIZE, the rgrec[1] and
rgre[2] rectangles contain valid source
and destination area rectangles, respec-
tively. Windows combines these rectan-
gles to calculate the area of the window
that can be preserved. Windows copies
any part of the window image that is
within the source rectangle and clips the
image to the destination rectangle. Both
rectangles are in parent-relative or screen-
relative coordinates.

This return value allows an application to
implement more elaborate client-area pre-
servation strategies, such as centering or
preserving a subset of the client area.

If fCalcValidRects is TRUE and an application returns zero, the old client area is
preserved and is aligned with the upper-left corner of the new client area.

Redrawing of the window may occur, depending on whether CS_HREDRAW or
CS_VREDRAW was specified. This is the default, backward-compatible Def-
WindowProc processing of this message (in addition to the usual client rectangle
calculation described in the preceding table).

DefWindowProc, MoveWindow, SetWindowPos

162 WM_NCCREATE

WM_NCCREATE 2]

Parameters

Return Value

Comments

See Also

WM_NCCREATE
Tpcs = (CREATESTRUCT FARx) 1Param; /* address of initialization data */

The WM_NCCREATE message is sent prior to the WM_CREATE message when
a window is first created.

Ipcs
Value of [Param. Points to the CREATESTRUCT data structure for the win-
dow. The CREATESTRUCT structure has the following form:

typedef struct tagCREATESTRUCT { /% cs */
void FAR* TpCreateParams;
HINSTANCE hInstance;

HMENU hMenu;

HWND hwndParent;
int cy;

int CX;

int Y3

int X3

LONG style;

LPCSTR 1pszName;

LPCSTR 1pszClass;

DWORD dwExStyle;
} CREATESTRUCT;

The return value is nonzero if the nonclient area is created. It is zero if an error
occurs; in this case, the CreateWindow or CreateWindowEXx function will return
NULL.

Scroll bars are initialized (the scroll bar position and range are set), and the win-
dow text is set. Memory used internally to create and maintain the window is allo-
cated.

CreateWindow, WM_CREATE

WM_NCHITTEST 163

WM_NCDESTROY [2.x]

WM_NCDESTROY

The WM_NCDESTROY message informs a window that its nonclient area is
being destroyed. The DestroyWindow function sends the WM_NCDESTROY
message to the window following the WM_DESTROY message.
WM_NCDESTROY is used to free the allocated memory object associated with

the window.
Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments This message frees any memory internally allocated for the window.
See Also DestroyWindow, WM_NCCREATE

WM_NCHITTEST [2x]

WM_NCHITTEST
xPos (int) LOWORD(1Param); /* horizontal position of cursor */
yPos (int) HIWORD(TParam); /* vertical position of cursor */

The WM_NCHITTEST message is sent to the window that contains the cursor or
to the window that used the SetCapture function to capture the mouse input. It is
sent every time the mouse is moved.

Parameters xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, in screen coordinates.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, in screen coordinates.

Return Value The return value of the DefWindowProc function is one of the following values
indicating the position of the cursor:

164 WM_NCHITTEST

Comments

Example

Value Meaning

HTBORDER In the border of a window that does not have a sizing border

HTBOTTOM In the lower horizontal border of a window

HTBOTTOMLEFT In the lower-left corner of a window border

HTBOTTOMRIGHT In the lower-right corner of a window border

HTCAPTION In a title bar area

HTCLIENT In a client area

HTERROR On the screen background or on a dividing line between win-
dows (same as HTNOWHERE except that the DefWindow-
Proc function produces a system beep to indicate an error)

HTGROWBOX In a size box (same as HTSIZE)

HTHSCROLL In the horizontal scroll bar

HTLEFT In the left border of a window

HTMAXBUTTON In a Maximize button

HTMENU In a menu area

HTMINBUTTON In a Minimize button

HTNOWHERE On the screen background or on a dividing line between
windows

HTREDUCE In a Minimize button

HTRIGHT In the right border of a window

HTSIZE In a size box (same as HTGROWBOX)

HTSYSMENU In a System menu (sometimes referred to as a Control menu)
or in a close button in a child window

HTTOP In the upper horizontal border of a window

HTTOPLEFT In the upper-left corner of a window border

HTTOPRIGHT In the upper-right corner of a window border

HTTRANSPARENT In a window currently covered by another window

HTVSCROLL In the vertical scroll bar

HTZOOM In a Maximize button

The MAKEPOINT macro can be used to convert the [Param parameter to a

POINT structure.

This example shows a portion of a subclass procedure that detects mouse mes-
sages in a static window:

WM_NCLBUTTONDBLCLK 165

See Also

LONG 1RetVal;

case WM_NCHITTEST:
TRetVal = DefWindowProc(hwnd, msg, wParam, 1Param);
if (1RetVal == HTTRANSPARENT) {

. /* Process mouse events in static window. */

}
break;

default:
CallWindowProc(1pStaticProc, hwnd, msg, wParam, 1Param);

DefWindowProc, GetCapture

WM_NCLBUTTONDBLCLK

Parameters

Return Value
Comments

See Also

WM_NCLBUTTONDBLCLK

nHittest = wParam; /* hit-test code */
xCursor LOWORD(1Param); /* cursor horizontal position */
yCursor HIWORD(1Param); /* cursor vertical position */

The WM_NCLBUTTONDBLCLK message is sent when the user double-clicks
the left mouse button while the cursor is within a nonclient area of the window.

nHittest
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xCursor
Value of the low-order word of I[Param. Specifies the horizontal position of the
cursor, in screen coordinates.

yCursor
Value of the high-order word of IParam. Specifies the vertical position of the
cursor, in screen coordinates.

An application should return zero if it processes this message.
If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_SYSCOMMAND

166 WM_NCLBUTTONDOWN

WM_NCLBUTTONDOWN

Parameters

Return Value
Comments

See Also

WM_NCLBUTTONDOWN

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCLBUTTONDOWN message is sent to a window when the user
presses the left mouse button while the cursor is within a nonclient area of the win-
dow.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor, in screen coordinates.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor, in screen coordinates.

An application should return zero if it processes this message.

If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_NCLBUTTONDBLCLK, WM_NCLBUTTONUP,
WM_SYSCOMMAND

WM_NCLBUTTONUP

Parameters

WM_NCLBUTTONUP

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /% vertical cursor position */

The WM_NCLBUTTONUP message is sent to a window when the user releases
the left mouse button while the cursor is within a nonclient area of the window.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

WM_NCMBUTTONDBLCLK 167

Return Value
Comments

See Also

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, in screen coordinates.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor, in screen coordinates.

An application should return zero if it processes this message.
If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_NCLBUTTONDOWN, WM_NCLBUTTONUP,
WM_SYSCOMMAND

WM_NCMBUTTONDBLCLK

Parameters

Return Value

See Also

WM_NCMBUTTONDBLCLK

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCRBUTTONDOWN message is sent to a window when the user
double-clicks the middle mouse button while the cursor is within a nonclient area
of the window.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of /[Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCMBUTTONDOWN, WM_NCMBUTTONUP

168 WM_NCMBUTTONDOWN

WM_NCMBUTTONDOWN (2]

Parameters

Return Value

See Also

WM_NCMBUTTONDOWN

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(TParam); /* vertical cursor position */

The WM_NCMBUTTONDOWN message is sent to a window when the user
presses the middle mouse button while the cursor is within a nonclient area of the
window.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCMBUTTONDBLCLK, WM_NCMBUTTONUP

WM_NCMBUTTONUP (2]

Parameters

WM_NCMBUTTONUP

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCMBUTTONUP message is sent to a window when the user releases
the left mouse button while the cursor is within a nonclient area of the window.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

WM_NCMOUSEMOVE 169

Return Value

See Also

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCMBUTTONDBLCLK, WM_NCMBUTTONDOWN

WM_NCMOUSEMOVE [2x]

Parameters

Return Value
Comments

See Also

WM_NCMOUSEMOVE

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCMOUSEMOVE message is sent to a window when the cursor is
moved within a nonclient area of the window.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

An application should return zero if it processes this message.
If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_SYSCOMMAND

170 WM_NCPAINT

WM_NCPAINT [2x]

WM_NCPAINT

The WM_NCPAINT message is sent to a window when its frame needs painting.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments The DefWindowProc function paints the window frame.

An application can intercept this message and paint its own custom window frame.
The clipping region for a window is always rectangular, even if the shape of the
frame is altered.

See Also DefWindowProc

WM_NCRBUTTONDBLCLK [2x]

WM_NCRBUTTONDBLCLK

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCRBUTTONDBLCLK message is sent to a window when the user
double-clicks the right mouse button while the cursor is within a nonclient area of
the window.

Parameters wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

WM_NCRBUTTONDOWN m

Return Value

See Also

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCRBUTTONDOWN, WM_NCRBUTTONUP

WM_NCRBUTTONDOWN

Parameters

Return Value

See Also

WM_NCRBUTTONDOWN

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(TParam); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCRBUTTONDOWN message is sent to a window when the user
presses the right mouse button while the cursor is within a nonclient area of the
window.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCRBUTTONDBLCLK, WM_NCRBUTTONUP

172 WM_NCRBUTTONUP

WM_NCRBUTTONUP [2x]

WM_NCRBUTTONUP

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(TParam); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCRBUTTONUP message is sent to a window when the user releases
the right mouse button while the cursor is within a nonclient area of the window.

Parameters wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.
Return Value An application should return zero if it processes this message.

See Also WM_NCHITTEST, WM_NCRBUTTONDBLCLK, WM_NCRBUTTONDOWN

WM_NEXTDLGCTL [2x]

WM_NEXTDLGCTL
wCt1Focus = wParam; /* identifies control for focus */
fHandle = (BOOL) LOWORD(1Param); /* wParam handle flag */

An application sends the WM_NEXTDLGCTL message to a dialog box procedure
to set the focus to a different control in a dialog box.

Parameters wCtlFocus
Value of wParam. If the fHandle parameter is nonzero, the wCtlFocus parame-
ter is the handle of the control that receives the focus. If fHandle is zero,
wCtlFocus is a flag that indicates whether the next or previous control with the
WS_TABSTORP style receives the focus. If wCtlFocus is zero, the next control
receives the focus; otherwise, the previous control with the WS_TABSTOP
style receives the focus.

WM_PAINT 173

Return Value

Comments

See Also

fHandle
Low-order word of [Param. Indicates how Windows uses the wParam parame-
ter. If fHandle is nonzero, wParam is a handle associated with the control that
receives the focus; otherwise, wParam is a flag that indicates whether the next
or previous control with the WS_TABSTOP style receives the focus.

An application should return zero if it processes this message.

The effect of this message differs from that of the SetFocus function because
WM_NEXTDLGCTL modifies the border around the default button.

Do not use the SendMessage function to send a WM_NEXTDLGCTL message if
your application will concurrently process other messages that set the control
focus. In this case, use the PostMessage function instead.

PostMessage, SendMessage, SetFocus

WM_PAINT

Parameters
Return Value

Comments

[2x]

WM_PAINT

The WM_PAINT message is sent when Windows or an application makes a re-
quest to repaint a portion of an application’s window. The message is sent when
the UpdateWindow or RedrawWindow function is called or by the Dispatch-
Message function when the application obtains a WM_PAINT message by using
the GetMessage or PeekMessage function.

This message has no parameters.
An application should return zero if it processes this message.

The DispatchMessage function sends this message when there are no other mes-
sages in the application’s message queue.

A window may receive internal paint messages as a result of calling the Redraw-
Window function with the RDW_INTERNALPAINT flag set. In this case, the
window may not have an update region. An application should call the Get-
UpdateRect function to determine whether the window has an update region. If
GetUpdateRect returns zero, the application should not call the BeginPaint and
EndPaint functions.

174 WM_PAINTCLIPBOARD

See Also

It is an application’s responsibility to check for any necessary internal repainting

or updating by looking at its internal data structures for each WM_PAINT mes-

sage, because a WM_PAINT message may have been caused by both an invalid

area and a call to the RedrawWindow function with the
RDW_INTERNALPAINT flag set.

An internal WM_PAINT message is sent only once by Windows. After an internal
WM_PAINT message is returned from the GetMessage or PeekMessage function
or is sent to a window by the UpdateWindow function, no further WM_PAINT

messages will be sent or posted until the window is invalidated or until the

RedrawWindow function is called again with the RDW_INTERNALPAINT flag

set.

BeginPaint, DispatchMessage, EndPaint, GetMessage, PeekMessage, Redraw-

Window, UpdateWindow

WM_PAINTCLIPBOARD

WM_PAINTCLIPBOARD
hwndViewer = (HWND) wParam; /* handle of viewer */
pps = (PAINTSTRUCT FAR%) LOWORD(1Param); /* points to paint data */

Parameters

The WM_PAINTCLIPBOARD message is sent by a clipboard viewer to the
clipboard owner when the owner has placed data on the clipboard in the
CF_OWNERDISPLAY format and the clipboard viewer’s client area needs

repainting.

hwndViewer
Value of wParam. Specifies a handle to the clipboard viewer window.

pps

Value of the low-order word of [Param. Points to a PAINTSTRUCT data
structure that defines which part of the client area to paint. The PAINT-
STRUCT structure has the following form:

typedef
HDC
BOOL
RECT
BOOL
BOOL
BYTE

struct tagPAINTSTRUCT { /* ps */
hdc;

fErase;

rcPaint;

fRestore;

fIncUpdate;

rgbReserved[16];

} PAINTSTRUCT;

WM_PALETTECHANGED 175

Return Value An application should return zero if it processes this message.

Comments To determine whether the entire client area or just a portion of it needs repainting,
the clipboard owner must compare the dimensions of the drawing area given in the
rcPaint member of the PAINTSTRUCT structure to the dimensions given in the
most recent WM_SIZECLIPBOARD message.

An application must use the GlobalLock function to lock the memory that con-

tains the PAINTSTRUCT data structure. The application should unlock that
memory by using the GlobalUnlock function before it yields or returns control.

See Also GlobalLock, GlobalUnlock, WM_SIZECLIPBOARD

WM_PALETTECHANGED

WM_PALETTECHANGED
hwndPalChg = (HWND) wParam; /* handle of window that changed palette */

The WM_PALETTECHANGED message is sent to all top-level and overlapped
windows after the window with the input focus has realized its logical palette,
thereby changing the system palette. This message allows a window without the
input focus that uses a color palette to realize its logical palette and update its
client area.

Parameters hwndPalChg
Value of wParam. Specifies the handle of the window that caused the system
palette to change.

Return Value An application should return zero if it processes this message.

Comments This message is sent to all top-level and overlapped windows, including the one
that changed the system palette and caused this message to be sent. If any child
windows use a color palette, this message must be passed on to them.

To avoid an infinite loop, a window that receives this message should not realize
its palette unless it determines that wParam does not contain its own window
handle.

176 WM_PALETTECHANGED

Example This example shows how an application selects and realizes its logical palette:

HDC hdc;
HPALETTE hpalApp, hpalT;
UINT 1;

/%
#* If this application changed the palette, ignore the message.
*/

case WM_PALETTECHANGED:
if (wParam == hwnd)
return 0L;
/* Otherwise, fall through to WM_QUERYNEWPALETTE. =/
case WM_QUERYNEWPALETTE:
/%

* If realizing the palette causes the palette to change,
* redraw completely.

*/
hdc = GetDC(hwnd);
hpalT = SelectPalette (hdc, hpalApp, FALSE);

i = RealizePalette(hdc); /* i == entries that changed =/
SelectPalette (hdc, hpalT, FALSE);

ReleaseDC(hwnd, hdc);

/% If any palette entries changed, repaint the window. */

if (i > 0)
InvalidateRect(hwnd, NULL, TRUE);

return 1i;

See Also WM_PALETTEISCHANGING, WM_QUERYNEWPALETTE

WM_PARENTNOTIFY 177

WM_PALETTEISCHANGING [31]

Parameters

Return Value

See Also

WM_PALETTEISCHANGING
hwndRealize = (HWND) wParam; /* handle of window to realize palette */

The WM_PALETTEISCHANGING message informs applications that an applica-
tion is going to realize its logical palette.

hwndRealize
Value of wParam. Specifies the handle of the window that is going to realize its
logical palette.

An application should return zero if it processes this message.

WM_PALETTECHANGED, WM_QUERYNEWPALETTE

WM_PARENTNOTIFY

Parameters

WM_PARENTNOTIFY

fwEvent = wParam; /* event flags */
wValuel = LOWORD(1Param); /* child handle/cursor x-coordinate */
wValue2 = HIWORD(1Param); /* child ID/cursor y-coordinate */

The WM_PARENTNOTIFY message is sent to the parent of a child window
when the child window is created or destroyed or when the user clicks a mouse
button while the cursor is over the child window. When the child window is being
created, the system sends WM_PARENTNOTIFY just before the CreateWindow
or CreateWindowEx function that creates the window returns. When the child
window is being destroyed, the system sends the message before any processing to
destroy the window takes place.

fwEvent
Value of wParam. Specifies the event for which the parent is being notified. It
can be any of the following values:

Value Description
WM_CREATE The child window is being created.
WM_DESTROY The child window is being destroyed.

WM_LBUTTONDOWN The user has placed the mouse cursor over the child
window and clicked the left mouse button.

178 WM_PASTE

Return Value

Comments

See Also

Value Description

WM_MBUTTONDOWN The user has placed the mouse cursor over the child
window and clicked the middle mouse button.

WM_RBUTTONDOWN The user has placed the mouse cursor over the child
window and clicked the right mouse button.

wValuel
Value of the low-order word of [Param. If the fwEvent parameter is
WM_CREATE or WM_DESTROY, the wValuel parameter specifies the
handle of the child window. Otherwise, wValuel specifies the x-coordinate of
the cursor.

wValue?2
Value of the high-order word of [Param. If fwEvent is WM_CREATE or
WM_DESTROY, the wValue2 parameter specifies the identifier of the child
window. Otherwise, wValue2 specifies the y-coordinate of the cursor.

An application should return zero if it processes this message.

This message is also sent to all ancestor windows of the child window, including
the top-level window.

All child windows except those that have the WS_EX_NOPARENTNOTIFY send
this message to their parent windows. By default, child windows in a dialog box
have the WS_EX_NOPARENTNOTIFY style unless the CreateWindowEx func-
tion was called to create the child window without this style.

CreateWindow, CreateWindowEx, WM_CREATE, WM_DESTROY,
WM_LBUTTONDOWN, WM_MBUTTONDOWN, WM_RBUTTONDOWN

WM_PASTE

[2x]

WM_PASTE
wParam = @; /* not used, must be zero */
TParam = 0L; /* not used, must be zero */

An application sends the WM_PASTE message to an edit control or combo box to
insert the data from the clipboard into the edit control at the current cursor posi-
tion. Data is inserted only if the clipboard contains data in CF_TEXT format.

WM_POWER 179

Parameters This message has no parameters.

Return Value The return value is nonzero if this message is sent to an edit control or a combo
box.

Example This example pastes data from the clipboard to an edit control:

SendDlgItemMessage(hdlg, IDD_MYEDITCONTROL, WM_PASTE, @, OL);

See Also WM_CLEAR, WM_COPY, WM_CUT

WM_POWER [31]

WM_POWER
fwPowerEvt = wParam; /* power-event notification message */

The WM_POWER message is sent when the system, typically a battery-powered
personal computer, is about to enter the suspended mode.

Parameters JwPowerEvt
Value of wParam. Specifies a power-event notification message. This parame-
ter may be one of the following values:

Value Meaning
PWR_SUSPENDREQUEST Indicates that the system is about to enter the sus-
pended mode.

PWR_SUSPENDRESUME Indicates that the system is resuming operation
after entering the suspended mode normally—that
is, the system sent a PWR_SUSPENDREQUEST
notification message to the application before the
system was suspended. An application should per-
form any necessary recovery actions.

PWR_CRITICALRESUME Indicates that the system is resuming operation
after entering the suspended mode without first
sending a PWR_SUSPENDREQUEST notifica-
tion message to the application. An application
should perform any necessary recovery actions.

Return Value The value an application should return depends on the value of the wParam para-
meter, as follows:

180 WM_QUERYDRAGICON

Value of wParam Return Value

PWR_SUSPENDREQUEST PWR_FAIL to prevent the system from entering the
suspended state; otherwise PWR_OK

PWR_SUSPENDRESUME 0

PWR_CRITICALRESUME 0

Comments This message is sent only to an application that is running on a system that con-
forms to the advanced power management (APM) basic input-and-output system
(BIOS) specification. The message is sent by the power-management driver to
each window returned by the EnumWindows function.

The suspended mode is the state in which the greatest amount of power savings
occurs, but all operational data and parameters are preserved. Random-access
memory (RAM) contents are preserved, but many devices are likely to be turned
off.

See Also EnumWindows

WM_QUERYDRAGICON

WM_QUERYDRAGICON

The WM_QUERYDRAGICON message is sent to a minimized (iconic) window
that does not have an icon defined for its class. The system sends this message
whenever it needs to display an icon for the window.

Parameters This message has no parameters.

Return Value An application should return a doubleword value that contains a cursor or icon
handle in the low-order word. The cursor or icon must be compatible with the dis-
play driver’s resolution. If the application returns NULL, the system displays the
default cursor. The default return value is NULL.

Comments If an application returns the handle of an icon or cursor, the system converts the
icon or cursor to black-and-white.

The application can call the LoadCursor or LoadIcon function to load a cursor or
icon from the resources in its executable file and to obtain this handle.

WM_QUERYENDSESSION 181

Example This example returns an icon handle in response to the WM_QUERYDRAGICON
message. The icon is loaded from the resources in the application’s executable file.

static HICON hlIcon;

switch(msg) {
case WM_CREATE:

/* Load icon resource. */
hIcon = LoadIcon(hInstance, (LPCSTR) "MyIcon");

. /* Initialize other variables. */

return 0L;
case WM_QUERYDRAGICON:
/* Icon is about to be dragged. Return handle to custom icon. */

return (hIcon);

. /* Process other messages. */

See Also LoadCursor, LoadIcon

WM_QUERYENDSESSION [2x]

WM_QUERYENDSESSION

The WM_QUERYENDSESSION message is sent when the user chooses to end
the Windows session, or when an application calls the ExitWindows function. If
any application returns zero, the Windows session is not ended. Windows stops
sending WM_QUERYENDSESSION messages as soon as one application returns
zero and sends WM_ENDSESSION messages, with the wParam parameter set to
FALSE, to any applications that have already returned nonzero.

182 WM_QUERYNEWPALETTE

Parameters This message has no parameters.

Return Value An application should return nonzero if it can conveniently terminate; otherwise, it
should return zero.

Comments The DefWindowProc function returns nonzero when it processes this message.

See Also DefWindowProc, ExitWindows, WM_ENDSESSION

WM_QUERYNEWPALETTE

WM_QUERYNEWPALETTE

The WM_QUERYNEWPALETTE message informs an application that it is about
to receive the input focus, giving the application an opportunity to realize its logi-
cal palette when it receives the focus.

Parameters This message has no parameters.

Return Value An application should return nonzero if it realizes its logical palette; otherwise, it
should return zero.

Example This example shows how an application selects and realizes its logical palette:

HDC hdc;
HPALETTE hpalApp, hpalT;
UINT i3

/*
* If this application changed the palette, ignore the message.
*/

case WM_PALETTECHANGED:
if (wParam == hwnd)
return 0L;

/% Otherwise, fall through to WM_QUERYNEWPALETTE. =*/

WM_QUERYOPEN 183

case WM_QUERYNEWPALETTE:

VES
* If realizing the palette causes the palette to change,
* redraw completely.

*/
hdc = GetDC(hwnd);
hpalT = SelectPalette (hdc, hpalApp, FALSE);

i = RealizePalette(hdc); /* i == entries that changed =/
SelectPalette (hdc, hpalT, FALSE); /
ReleaseDC(hwnd, hdc);

/* If any palette entries changed, repaint the window. */

if (i > 0)
InvalidateRect(hwnd, NULL, TRUE);

return i;

See Also WM_PALETTECHANGED, WM_PALETTEISCHANGING

WM_QUERYOPEN [2x]

WM_QUERYOPEN

The WM_QUERYOPEN message is sent to a minimized window when the user
requests that the window be restored to its preminimized size and position.

Parameters This message has no parameters.

Return Value An application that processes this message should return a nonzero value if the
icon can be opened or zero to prevent the icon from opened.

Comments While processing this message, the application should not perform any action that
would cause an activation or focus change (for example, creating a dialog box).

The DefWindowProc function returns nonzero when it processes this message.

184 WM_QUEUESYNC

WM_QUEUESYNC [31]

Parameters

Return Value

Comments

WM_QUEUESYNC
The WM_QUEUESYNC message is sent by a computer-based training (CBT) ap-

plication to separate user-input messages from other messages sent through the
journal playback hook (WH_JOURNALPLAYBACK).

This message has no parameters.
A CBT application should return zero if it processes this message.

Whenever a CBT application uses the journal playback hook, the first and last mes-
sages rendered are WM_QUEUESYNC. This allows the CBT application to inter-
cept and examine user-initiated messages without doing so for events that it sends.

WNM_QuIT

Parameters

Return Value

See Also

[2x]

WM_QUIT
wExit = wParam; /* exit code */

The WM_QUIT message indicates a request to terminate an application and is
generated when the application calls the PostQuitMessage function. It causes the
GetMessage function to return zero.

wEXxit
Value of wParam. Specifies the exit code given in the PostQuitMessage func-

tion.

This message does not have a return value, because it causes the message loop to
terminate before the message is sent to the application’s window procedure.

GetMessage, PostQuitMessage

WM_RBUTTONDBLCLK 185

WM_RBUTTONDBLCLK [2x]

Parameters

Return Value

Comments

See Also

WM_RBUTTONDBLCLK

fwKeys = wParam; /* key flags */
xPos = LOWORD(T1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_RBUTTONDBLCLK message is sent when the user double-clicks the
right mouse button.

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

Only windows that have the CS_DBLCLKS class style can receive
WM_RBUTTONDBLCLK messages. Windows generates a
WM_RBUTTONDBLCLK message when the user presses, releases, and again
presses the right mouse button within the system’s double-click time limit.
Double-clicking the right mouse button actually generates four messages: a
WM_RBUTTONDOWN message, a WM_RBUTTONUP message, the
WM_RBUTTONDBLCLK message, and another WM_RBUTTONUP message.

WM_RBUTTONDOWN, WM_RBUTTONUP

186 WM_RBUTTONDOWN

WM_RBUTTONDOWN

Parameters

Return Value

See Also

WM_RBUTTONDOWN

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_RBUTTONDOWN message is sent when the user presses the right
mouse button.

fwKeys
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.

MK _LBUTTON Set if left mouse button is down.
MK_MBUTTON Set if middle mouse button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_RBUTTONDBLCLK, WM_RBUTTONUP

WM_RBUTTONUP

WM_RBUTTONUP

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_RBUTTONUP message is sent when the user releases the right mouse
button.

WM_RENDERALLFORMATS 187

Parameters fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left mouse button is down.
MK_MBUTTON Set if middle mouse button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.
Return Value An application should return zero if it processes this message.

See Also WM_RBUTTONDBLCLK, WM_RBUTTONDOWN

WM_RENDERALLFORMATS [2x]

WM_RENDERALLFORMATS

The WM_RENDERALLFORMATS message is sent to the clipboard owner when
the owner application is being destroyed.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments The clipboard owner should render the data in all the formats it is capable of gener-

ating and pass a data handle for each format to the clipboard by calling the Set-
ClipboardData function. This ensures that the clipboard contains valid data even
though the application that rendered the data is destroyed. The application should
call the OpenClipboard function before calling SetClipboardData and should
call the CloseClipboard function afterward.

188 WM_RENDERFORMAT

Example In this example, the application sends a WM_RENDERFORMAT message to it-
self for each clipboard format that the application supports:

case WM_RENDERALLFORMATS:
OpenClipboard(hwnd);
SendMessage(hwnd, WM_RENDERFORMAT, CF_DIB, OL);
SendMessage(hwnd, WM_RENDERFORMAT, CF_BITMAP, @L);
CloseClipboard();
break;

See Also CloseClipboard, OpenClipboard, SetClipboardData, WM_RENDERFORMAT

WM_RENDERFORMAT [2x]

WM_RENDERFORMAT
uFmt = (UINT) wParam; /* clipboard data format */

The WM_RENDERFORMAT message is sent to the clipboard owner when a par-
ticular format with delayed rendering needs to be rendered. The receiver should
render the data in that format and pass it to the clipboard by calling the Set-
ClipboardData function.

Parameters uFmt

Specifies the data format. It can be any one of the formats described with the
SetClipboardData function.

Return Value An application should return zero if it processes this message.

Comments The application should not call the OpenClipboard and CloseClipboard func-
tions while processing this message.

Example This example uses an application-defined function to render clipboard data. The
function returns a data handle that is passed to the clipboard by the SetClipboard-
Data function.

HANDLE hData;

case WM_RENDERFORMAT:
if (hData = RenderFormat(wParam))
SetClipboardData(wParam, hData);
break;

See Also CloseClipboard, OpenClipboard, SetClipboardData,
WM_RENDERALLFORMATS

WM_SETCURSOR 189

WM_SETCURSOR o

Parameters

Return Value

Comments

See Also

WM_SETCURSOR

hwndCursor = (HWND) wParam; /* handle of window with cursor */
nHittest = LOWORD(1Param); /* hit-test code */
wMouseMsg = HIWORD(1Param); /* mouse-message number */

The WM_SETCURSOR message is sent to a window if mouse input is not cap-
tured and the mouse causes cursor movement within the window.

hwndCursor
Value of wParam. Specifies a handle to the window that contains the cursor.

nHittest
Value of the low-order word of [Param. Specifies the hit-test area code.

wMouseMsg
Value of the high-order word of [Param. Specifies the number of the mouse
message.

An application should return TRUE to halt further processing or FALSE to con-
tinue.

If the nHittest parameter is HTERROR and the wMouseMsg parameter is a mouse
button—down message, the MessageBeep function is called.

The DefWindowProc function passes the WM_SETCURSOR message to a
parent window before processing. If the parent window returns TRUE, further
processing is halted. Passing the message to a window’s parent window gives the
parent window control over the cursor’s setting in a child window. The Def-
WindowProc function also uses this message to set the cursor to a pointer if it is
not in the client area or to the registered-class cursor if it is in the client area.

For a standard dialog box to set the cursor for one of its child window controls, it
must force the DefDIgProc function to return TRUE in response to the WM_SET-
CURSOR message. (DefDIgProc provides default processing for the standard
dialog box class.) When DefDIgProc returns TRUE, the dialog box procedure re-
tains control over the cursor. When the dialog box procedure processes WM_SET-
CURSOR, it can return TRUE by using the SetWindowLong function and the
DWL_MSGRESULT offset, as shown in the following example:

SetWindowLong(hwndD1g, DWL_MSGRESULT, MAKELONG(TRUE, @));

DefWindowProc, MessageBeep, SetWindowLong

190 WM_SETFOCUS

WM_SETFOCUS [2x]

WM_SETFOCUS
hwnd = (HWND) wParam; /* handle of window losing focus */

The WM_SETFOCUS message is sent after a window gains the input focus.

Parameters hwnd
Value of wParam. Contains the handle of the window that loses the input focus.
(This parameter may be NULL.)

Return Value An application should return zero if it processes this message.
Comments To display a caret, an application should call the appropriate caret functions at this
point.

WM_SETFONT

WM_SETFONT
wParam = (WPARAM) hfont; /* handle of the font */
TParam = (LPARAM) MAKELONG((WORD) fRedraw, @); /* redraw flag */

An application sends the WM_SETFONT message to specify the font that a con-
trol is to use when drawing text.

Parameters hfont
Value of wParam. Specifies the handle of the font. If this parameter is NULL,
the control will use the default system font to draw text.

JRedraw
Value of the low-order word of /Param. Specities whether the control should
be redrawn immediately upon setting the font. Setting the fRedraw parameter to
TRUE causes the control to redraw itself.

Return Value An application should return zero if it processes this message.

WM_SETFONT 191

Comments

Example

The WM_SETFONT message applies to all controls, not just those in dialog boxes.

The best time for the owner of a dialog box to set the font of the control is when it
receives the WM_INITDIALOG message. The application should call the
DeleteObject function to delete the font when it is no longer needed—for ex-
ample, after the control is destroyed.

The size of the control is not changed as a result of receiving this message. To pre-
vent Windows from clipping text that does not fit within the boundaries of the con-
trol, the application should correct the size of the control window before changing
the font.

Before Windows creates a dialog box with the DS_SETFONT style, Windows
sends the WM_SETFONT message to the dialog box window before creating the
controls. An application creates a dialog box with the DS_SETFONT style by
calling any of the following functions:

CreateDialogIndirect

CreateDialogIndirectParam

DialogBoxIndirect

DialogBoxIndirectParam

The DialogBoxHeader structure that the application passes to these functions
must have the DS_SETFONT style set and must contain the wPointSize and
szFaceName members that define the font the dialog box will use to draw text.

For more information about the DialogBoxHeader structure, see Chapter 7,
“Resource Formats Within Executable Files,” in the Microsoft Windows
Programmer’s Reference, Volume 4.

This example changes the font used by controls in a dialog box to a font that is not
bold.

HFONT hD1gFont;
LOGFONT T1Font;

case WM_INITDIALOG:

/* Get dialog box font and create version that is not bold. */

192 WM_SETREDRAW

See Also

hDTgFont = (HFONT) NULL;
if ((hD1gFont = (HFONT) SendMessage(hdlg, WM_GETFONT, @, 0L))) {
if (GetObject(hDlgFont, sizeof(LOGFONT), (LPSTR) &1Font)) {
1Font.1fWeight = FW_NORMAL;
if (hDlgFont = CreateFontIndirect((LPLOGFONT) &1Font)) {
SendDlgltemMessage(hdlg, ID_CTRL1, WM_SETFONT,
hDlgFont, @L);
SendD1gltemMessage(hdlg, ID_CTRL2, WM_SETFONT,
hDlgFont, @L);

. /* Set font for remaining controls. */
}

}
return TRUE;

CreateDialogIndirect, CreateDialogIndirectParam, DeleteObject, DialogBox-
Indirect, DialogBoxIndirectParam

WM_SETREDRAW

Parameters

Return Value

Comments

WM_SETREDRAW
wParam = (WPARAM) fRedraw; /* state of redraw flag */
1Param = QL; /* not used, must be zero */

An application sends a WM_SETREDRAW message to a window to allow
changes in that window to be redrawn or to prevent changes in that window from
being redrawn.

fRedraw
Value of wParam. Specifies the state of the redraw flag. If this parameter is
nonzero, the redraw flag is set. If this parameter is zero, the flag is cleared.

An application should return zero if it processes this message.

This message sets or clears the redraw flag. If the redraw flag is cleared, the con-
tents of the specified window will not be updated after each change, and the win-
dow will not be repainted until the redraw flag is set. For example, an application
that needs to add several items to a list box can clear the redraw flag, add the
items, and then set the redraw flag. Finally, the application can call the
InvalidateRect function to cause the list box to be repainted.

WM_SHOWWINDOW 193

WM_ SETTEXT [2x]

WM_SETTEXT
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (LPCSTR) pszText; /% address of window-text string =*/

An application sends a WM_SETTEXT message to set the text of a window.

Parameters pszText
Value of [Param. Points to a null-terminated string that is the window text.

Return Value The return value is LB_ERRSPACE (for a list box) or CB_ERRSPACE (for a
combo box) if insufficient space is available to set the text in the edit control. It is
CB_ERR if this message is sent to a combo box without an edit control.

Comments For an edit control, the text to be set is the contents of the edit control. For a
combo box, the text is the contents of the edit-control (or static-text) portion of the
combo box. For a button, the text is the button name. For other windows, the text
is the window title.

This message does not change the current selection in the list box of a combo box.
An application should use the CB_SELECTSTRING message to select the item in
the list box that matches the text in the edit control.

See Also WM_GETTEXT

WM_SHOWWINDOW 5]

WM_SHOWWINDOW
fShow = (BOOL) wParam; /* show/hide flag */
fnStatus = LOWORD(1Param); /* status flag */

The WM_SHOWWINDOW message is sent to a window when it is about to be
hidden or shown. A window is hidden or shown when the ShowWindow function
is called; when an overlapped window is maximized or restored; or when an
overlapped or pop-up window is minimized or displayed on the screen. When an
overlapped window is minimized, all pop-up windows associated with that win-
dow are hidden.

Parameters fShow
Value of wParam. Specifies whether a window is being shown. It is TRUE if
the window is being shown; it is FALSE if the window is being hidden.

194 WM_SIZE

Return Value

Comments

See Also

fnStatus
Value of the low-order word of [Param. Specifies the status of the window
being shown. The fnStatus parameter is zero if the message is sent because of a
ShowWindow function call; otherwise, fnStatus is one of the following values:

Value Description

SW_PARENTCLOSING Parent window is being minimized, or a pop-up
window is being hidden.

SW_PARENTOPENING Parent window is opening (being displayed) or a pop-
up window is being shown.

An application should return zero if it processes this message.

The DefWindowProc function hides or shows the window as specified by the
message.

The WM_SHOWWINDOW message is not sent under the following circum-
stances:

= When a main window is created with the WS_MAXIMIZE or WS_MINIMIZE
style

®= When the SW_SHOWNORMAL flag is specified in the call to the Show-
Window function

DefWindowProc, ShowWindow

WM_SIZE

Parameters

WM_SIZE

fwSizeType = wParam; /* sizing-type flag */
nWidth = LOWORD(1Param); /* width of client area */
nHeight = HIWORD(TParam); /* height of client area */

The WM_SIZE message is sent to a window after its size has changed.

fwSizeType
Value of wParam. Specifies the type of resizing requested. This parameter can
be one of the following values:

WM_SIZECLIPBOARD 195

Return Value

Comments

See Also

Value Description

SIZE_MAXIMIZED Window has been maximized.
SIZE_MINIMIZED Window has been minimized.

SIZE_RESTORED Window has been resized, but neither SIZE_MINIMIZED
nor SIZE_MAXIMIZED applies.
SIZE_MAXHIDE Message is sent to all pop-up windows when some other

window is maximized.

SIZE_MAXSHOW Message is sent to all pop-up windows when some other
window has been restored to its former size.

nWidth
Value of the low-order word of [Param. Specifies the new width of the client
area.

nHeight
Value of the high-order word of [Param. Specifies the new height of the client
area.

An application should return zero if it processes this message.

If the SetScrollPos or MoveWindow function is called for a child window as a re-
sult of the WM_SIZE message, the fRepaint parameter should be nonzero to cause
the window to be repainted.

MoveWindow, SetScrollPos

WM_SIZECLIPBOARD [2x]

Parameters

WM_SIZECLIPBOARD
hwndViewer = (HWND) wParam; /* handle of clipboard viewer */
hglb = (HGLOBAL) LOWORD(1Param); /% handle of global object */

The WM_SIZECLIPBOARD message is sent by the clipboard viewer to the clip-
board owner when the clipboard contains data with the CF_OWNERDISPLAY
attribute and the size of the client area of the clipboard-viewer window has
changed.

hwndViewer
Value of wParam. Identifies the clipboard-application window.

196 WM_SPOOLERSTATUS

hglb
Value of the low-order word of /Param. Identifies a global memory object that
contains a RECT data structure. The structure specifies the area that the clip-
board owner should paint. The RECT structure has the following form:

typedef struct tagRECT { /* rc x/
int left;
int top;
int right;
int bottom;
} RECT;

Return Value An application should return zero if it processes this message.

Comments A WM_SIZECLIPBOARD message is sent with a null rectangle (0,0,0,0) as the
new size when the clipboard application is about to be destroyed or minimized.
This permits the clipboard owner to free its display resources.

An application must use the GlobalLock function to lock the memory that con-
tains the RECT data structure. The application should unlock that memory by
using the GlobalUnlock function before it yields or returns control.

See Also GlobalLock, GlobalUnlock, SetClipboardData, SetClipboardViewer

WM_SPOOLERSTATUS

WM_SPOOLERSTATUS
fwJobStatus = wParam; /* job-status flag */
cJobslLeft = LOWORD(1Param); /* number of jobs remaining */

The WM_SPOOLERSTATUS message is sent from Print Manager whenever a
job is added to or removed from the Print Manager queue.

Parameters SfwlobStatus
Value of wParam. Specifies the SP_JOBSTATUS flag.

cJobsLeft
Value of the low-order word of [Param. Specifies the number of jobs remaining
in the Print Manager queue.

Return Value An application should return zero if it processes this message.

Comments This message is for informational purposes only.

WM_SYSCHAR 197

WM_SYSCHAR 5]

Parameters

Return Value

Comments

WM_SYSCHAR
wKeyCode = wParam; /* ASCII key code */
dwKeyData = 1Param; /* key data */

The WM_SYSCHAR message is sent to the window with the input focus when a
WM_SYSKEYUP and a WM_SYSKEYDOWN message are translated. It speci-
fies the virtual-key code of the System-menu key. (The System menu is some-
times referred to as the Control menu.)

wKeyCode
Value of wParam. Specifies the ASCII-character key code of a System-menu
key.

dwKeyData
Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.

27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is O if the key is up.

31 Specifies the key-transition state. The value is 1 if the key is being re-

leased, or it is O if the key is being pressed.

An application should return zero if it processes this message.

When the context code is zero, the message can be passed to the Translate-
Accelerator function, which will handle it as though it were a normal key mes-
sage instead of a System-menu key message. This allows accelerator keys to be
used with the active window even if the active window does not have the input
focus.

- 198 WM_SYSCOLORCHANGE

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the [Param parameter.

See Also TranslateAccelerator, WM_SYSKEYDOWN, WM_SYSKEYUP

WM_SYSCOLORCHANGE [2x]

WM_SYSCOLORCHANGE

The WM_SYSCOLORCHANGE message is sent to all top-level windows when a
change is made in the system color setting.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments Windows sends a WM_PAINT message to any window that is affected by a sys-

tem color change.

Applications that have brushes that use the existing system colors should delete
those brushes and re-create them by using the new system colors.

See Also SetSysColors, WM_PAINT

WM_SYSCOMMAND (2]

WM_SYSCOMMAND

wCmdType = wParam; /* command value */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_SYSCOMMAND message is sent when the user selects a command
from the System menu (sometimes referred to as the Control menu) or when the
user selects the Maximize button or the Minimize button.

WM_SYSCOMMAND 199

Parameters

Return Value

Comments

wCmdType
Value of wParam. Specifies the type of system command requested. This
parameter can be one of the following values:

Value Meaning
SC_CLOSE Close the window.
SC_HOTKEY Activate the window associated with the

application-specified hot key. The low-order
word of [Param identifies the window to

activate.
SC_HSCROLL Scroll horizontally.
SC_KEYMENU Retrieve a menu through a keystroke.
SC_MAXIMIZE (or SC_ZOOM) Maximize the window.
SC_MINIMIZE (or SC_ICON) Minimize the window.
SC_MOUSEMENU Retrieve a menu through a mouse click.
SC_MOVE Move the window.
SC_NEXTWINDOW Move to the next window.
SC_PREVWINDOW Move to the previous window.
SC_RESTORE Restore window to normal position and size.
SC_SCREENSAVE Execute the screen-saver application specified
in the [boot] section of the SYSTEM.INI file.
SC_SIZE Size the window.
SC_TASKLIST Execute or activate the Windows Task
Manager application.
SC_VSCROLL Scroll vertically.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, if a System-menu command is chosen with the mouse. Otherwise, this
parameter is not used.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, if a System-menu command is chosen with the mouse. Otherwise, this
parameter is not used.

An application should return zero if it processes this message.

The DefWindowProc function carries out the System-menu request for the prede-
fined actions specified in the preceding table.

In WM_SYSCOMMAND messages, the four low-order bits of the wCmdType
parameter are used internally by Windows. When an application tests the value of
wCmdType, it must combine the value O0xFFF0Q with the wCmdType value by using
the bitwise AND operator to obtain the correct result.

200 WM_SYSDEADCHAR

The menu items in a System menu can be modified by using the GetSystem-
Menu, AppendMenu, InsertMenu, and ModifyMenu functions. Applications
that modify the System menu must process WM_SYSCOMMAND messages.
Any WM_SYSCOMMAND messages not handled by the application must be
passed to the DefWindowProc function. Any command values added by an appli-
cation must be processed by the application and cannot be passed to DefWindow-
Proc.

An application can carry out any system command at any time by passing a
WM_SYSCOMMAND message to the DefWindowProc function.

Accelerator keystrokes that are defined to select items from the System menu are
translated into WM_SYSCOMMAND messages; all other accelerator key strokes
are translated into WM_COMMAND messages.

See Also AppendMenu, DefWindowProc, GetSystemMenu, InsertMenu, ModifyMenu,
WM_COMMAND

WM_SYSDEADCHAR o

WM_SYSDEADCHAR

wDeadKey = wParam; /* dead-key character */
cRepeat = (int) LOWORD(T1Param); /* repeat count */
cAutoRepeat = HIWORD(1Param); /* autorepeat count %/

The WM_SYSDEADCHAR message is sent to the window with the input focus
when WM_SYSKEYUP and WM_SYSKEYDOWN messages are translated. It
specifies the character value of a dead key.

Parameters wDeadKey
Value of wParam. Specifies the dead-key character value.

cRepeat
Value of the low-order word of /Param. Specifies the repeat count.

cAutoRepeat
Value of the high-order word of /[Param. Specifies the auto-repeat count.

Return Value An application should return zero if it processes this message.

See Also WM_SYSKEYDOWN, WM_SYSKEYUP

WM_SYSKEYDOWN 201

WM_SYSKEYDOWN [2x]

WM_SYSKEYDOWN
wVkey = wParam; /* virtual-key code */
dwKeyData = 1Param; /* key data */

The WM_SYSKEYDOWN message is sent to the window with the input focus
when the user holds down the ALT key and then presses another key. If no window
currently has the input focus, the WM_SYSKEYDOWN message is sent to the ac-
tive window. The window that receives the message can distinguish between these
two contexts by checking the context code in the dwKeyData parameter.

Parameters wVkey
Value of wParam. Specifies the virtual-key code of the key being pressed.
dwKeyData

Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following

table:

Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.
27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is O if the key is up.

31 Specifies the key-transition state. The value is 1 if the key is being re-
leased, or it is O if the key is being pressed.

For WM_SYSKEYDOWN messages, the value of bit 29 (context code) is 1 if
the ALT key is down while the key is pressed; it is O if the message is sent to the
active window because no window has the input focus. The value of bit 31 (key-
transition state) is 0.

Return Value An application should return zero if it processes this message.

202 WM_SYSKEYUP

Comments

See Also

When the context code is zero, the message can be passed to the Translate-
Accelerator function, which will handle it as though it were a normal key mes-
sage instead of a system-key message. This allows accelerator keys to be used
with the active window even if the active window does not have the input focus.

Because of the autorepeat feature, more than one WM_SYSKEYDOWN message
may occur before a WM_SYSKEYUP message is sent. The previous key state (bit
30) can be used to determine whether the WM_SYSKEYDOWN message indi-
cates the first down transition or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the /Param parameter.

TranslateAccelerator, WM_SYSKEYUP

WM_SYSKEYUP [2x]

Parameters

WM_SYSKEYUP
wVkey = wParam; /* virtual-key code */
dwKeyData = TParam; /* key data */

The WM_SYSKEYUP message is sent to the window with the input focus when
the user releases a key that was pressed while the ALT key was held down. If no
window currently has the input focus, the WM_SYSKEYUP message is sent to
the active window. The window that receives the message can distinguish between
these two contexts by checking the context code in the /Param parameter.

wVkey
Value of wParam. Specifies the virtual-key code of the key being pressed.

dwKeyData
Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

WM_SYSKEYUP 203

Return Value

Comments

See Also

Bit Description

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.

27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is O if the key is up.

31 Specifies the key-transition state. The value is 1 if the key is being re-
leased, or it is O if the key is being pressed.

For WM_SYSKEYUP messages, the value of bit 29 (context code) is 1 if the
ALT key is down while the key is pressed; it is O if the message is sent to the
active window because no window has the input focus. The value of bit 31
(key-transition state) is 1.

An application should return zero if it processes this message.

When the context code is zero, the message can be passed to the Translate-
Accelerator function, which will handle it as though it were a normal key mes-
sage instead of a system-key message. This allows accelerator keys to be used
with the active window even if the active window does not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the /Param parameter.

For non-U.S. Enhanced 102-key keyboards, the right ALT key is handled as the
CTRL+ALT key combination. The following list shows the messages that result
when the user presses and releases this key, in the sequence they occur:

WM_KEYDOWN VK_CONTROL
WM_KEYDOWN VK_MENU
WM_KEYUP VK_CONTROL
WM_SYSKEYUP VK_MENU

A LW N =

TranslateAccelerator, WM_SYSKEYDOWN

204 WM_SYSTEMERROR

WM_SYSTEMERROR [31]

WM_SYSTEMERROR
wErrSpec = wParam; /* specifies when error occurred */

The WM_SYSTEMERROR message is sent when the Windows kernel encounters
an error but cannot display the system-error message box.

Parameters wErrSpec
Value of wParam. Specifies when the error occurred. Currently, the only valid
value is 1, indicating that the error occurred when a task or library was terminat-

ing.
Return Value An application should return zero if it processes this message.
Comments A shell application should process this message, displaying a message box that in-

dicates an error has occurred.

WM_TIMECHANGE [2x]

WM_TIMECHANGE
wParam = @; /* not used, must be zero */
1Param = @L; /* not used, must be zero */

An application sends the WM_TIMECHANGE message to all top-level windows
after changing the system time.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments Any application that changes the system time should send this message to all top-

level windows. To send the WM_TIMECHANGE message to all top-level win-
dows, an application can use the SendMessage function with the hwnd parameter
set to HWND_BROADCAST.

See Also SendMessage

WM_TIMER 205

WM_TIMER

Parameters

Return Value

Comments

Example

See Also

[2x]

WM_TIMER
wTimerID = wParam; /* timer identifier */
tmprc = (TIMERPROC FAR#*) 1Param; /* address of timer callback */

The WM_TIMER message is posted to the installing application’s message queue
or sent to the appropriate TimerProc callback function after each interval
specified in the SetTimer function used to install a timer.

wTimerlD
Value of wParam. Specifies the identifier of the timer.

tmprc
Value of [Param. Points to a callback function that was passed to the SetTimer
function when the timer was installed. If the tmprc parameter is not NULL, the
system passes the WM_TIMER message to the specified callback function
rather than posting the message to the application’s message queue.

An application should return zero if it processes this message.

The DispatchMessage function sends this message when no other messages are in
the application’s message queue.

This example uses the WM_TIMER message to create a blinking effect for a line
of text:

DWORD dwXYVal;
WORD wXVal, wYVal;
char szMessage[16];

case WM_TIMER:

hdc = GetDC(hwnd);

dwXYVal = GetTextExtent(hdc, (LPCSTR) szMessage,
Tstrlen(szMessage));

wXVal = LOWORD(dwXYVal);

wYVal = HIWORD(dwXYVal);

PatB1t(hdc, 1@, 1@, (int) wXVal, (int) wYVal, PATINVERT);

ReleaseDC(hwnd, hdc);

ValidateRect(hwnd, NULL);

break;

SetTimer, TimerProc

206 WM_UNDO

WM_UNDO

Parameters

Return Value

See Also

[2x]

WM_UNDO

An application sends the WM_UNDO message to an edit control to undo the last
operation. When this message is sent to an edit control, the previously deleted text
is restored or the previously added text is deleted.

This message has no parameters.

The return value is nonzero if the operation is successful, or it is zero if an error
occurs.

WM_CLEAR, WM_COPY, WM_CUT, WM_PASTE

WM_USER

Comments

[2x]

WM_USER

WM_USER is a constant used by applications to help define private messages.

The WM_USER constant is used to distinguish between message values that are
reserved for use by Windows and values that can be used by an application to send
messages within a private window class. There are four ranges of message num-
bers:

Range Meaning

0 through WM_USER - 1 Messages reserved for use by Windows.
WM_USER through 0x7FFF Integer messages for use by private window classes.
0x8000 through OxBFFF Messages reserved for use by Windows.

0xCO000 through OxFFFF String messages for use by applications.

Message numbers in the first range (0 through WM_USER - 1) are defined by
Windows. Values in this range that are not explicitly defined are reserved for
future use by Windows. This chapter describes messages in this range.

Message numbers in the second range (WM_USER through 0x7FFF) can be de-
fined and used by an application to send messages within a private window class.
These values cannot be used to define messages that are meaningful throughout an
application, because some predefined window classes already define values in

this range. For example, such predefined control classes as BUTTON, EDIT,

WM_VKEYTOITEM 207

LISTBOX, and COMBOBOX may use these values. Messages in this range
should not be sent to other applications unless the applications have been designed
to exchange messages and to attach the same meaning to the message numbers.

Message numbers in the third range (0x8000 through OxBFFF) are reserved for
future use by Windows.

Message numbers in the fourth range (0xC000 through OxFFFF) are defined at run
time when an application calls the Register WindowMessage function to obtain a
message number for a string. All applications that register the same string can use
the associated message number for exchanging messages. The actual message
number, however, is not a constant and cannot be assumed to be the same in differ-
ent Windows sessions.

See Also RegisterWindowMessage

WM_VKEYTOITEM

WM_VKEYTOITEM

wVkey = wParam; /* virtual-key code */
hwndLB = (HWND) LOWORD(1Param); /* handle of the 1ist box */
nCaretPos = HIWORD(1Param); /* caret position */

The WM_VKEYTOITEM message is sent by a list box with the
LBS_WANTKEYBOARDINPUT style to its owner in response to a
WM_KEYDOWN message.

Parameters wVkey
Value of wParam. Specifies the virtual-key code of the key that the user
pressed.

hwndLB
Value of the low-order word of [Param. Identifies the list box.

nCaretPos
Value of the high-order word of /Param. Specifies the current position of the
caret.

Return Value The return value specifies the action that the application performed in response to
the message. A return value of —2 indicates that the application handled all aspects
of selecting the item and requires no further action by the list box. A return value
of —1 indicates that the list box should perform the default action in response to
the keystroke. A return value of 0 or greater specifies the zero-based index of an

208 WM_VSCROLL

Comments

See Also

item in the list box and indicates that the list box should perform the default action
for the keystroke on the given item.

Only list boxes that have the LBS_HASSTRINGS style can receive this message.

WM_CHARTOITEM, WM_KEYDOWN

WM_VSCROLL

Parameters

WM_VSCROLL
wScrol1Code = wParam; /% scroll bar code */
nPos = LOWORD(TParam); /* current scroll box position */

hwndCt1 = (HWND) HIWORD(1Param); /* handle of the control */

The WM_VSCROLL message is sent to a window when the user clicks the win-
dow’s vertical scroll bar.

wScrollCode

Value of wParam. Specifies a scroll bar code that indicates the user’s scrolling
request. This parameter can be one of the following values:

Value Description
SB_BOTTOM Scroll to bottom.
SB_ENDSCROLL End scroll.
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.
SB_PAGEUP Scroll one page up.

SB_THUMBPOSITION Scroll to absolute position. The current position is
specified by the nPos parameter.

SB_THUMBTRACK Drag scroll box (thumb) to specified position. The
current position is specified by the nPos parameter.
SB_TOP Scroll to top.
nPos

Value of the low-order word of [Param. Specifies the current position of the
scroll box if wScrollCode is SB_THUMBPOSITION or SB_THUMBTRACK;
otherwise, this parameter is not used.

WM_VSCROLLCLIPBOARD 209

Return Value

Comments

See Also

hwndCtl
Value of the high-order word of [Param. Identifies the control if
WM_VSCROLL is sent by a scroll bar. If WM_VSCROLL is sent as a result of
the user clicking a pop-up window’s scroll bar, the high-order word is not used.

An application should return zero if it processes this message.

The SB_THUMBTRACK message typically is used by applications that give
some feedback while the scroll box is being dragged.

If an application scrolls the contents of the window, it must also reset the position
of the scroll box by using the SetScrollPos function.

SetScrollPos, WM_HSCROLL

WM_VSCROLLCLIPBOARD

Parameters

WM_VSCROLLCLIPBOARD

hwndViewer = (HWND) wParam; /* handle of clipboard viewer */
wScrol1Code = LOWORD(1Param); /* scroll bar code */
wThumbPos = HIWORD(1Param); /* scroll box position */

The WM_HSCROLLCLIPBOARD message is sent by the clipboard viewer to the
clipboard owner when the clipboard data has the CF_OWNERDISPLAY format
and there is an event in the clipboard viewer’s vertical scroll bar. The owner
should scroll the clipboard image, invalidate the appropriate section, and update
the scroll bar values.

hwndViewer
Value of wParam. Specifies a handle to a clipboard-viewer window.

wScrollCode
Value of the low-order word of [Param. Specifies one of the following scroll
bar values:

Value Description
SB_BOTTOM Scroll to lower right.
SB_ENDSCROLL End scroll
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.

SB_PAGEUP Scroll one page up.

210 WM_WINDOWPOSCHANGED

Return Value

Comments

See Also

Value Description

SB_THUMBPOSITION Scroll to absolute position.

SB_TOP Scroll to upper left.
wThumbPos

Value of the high-order word of [Param. Specifies the scroll box position if the
scroll bar code is SB_THUMBPOSITION; otherwise, the high-order word is
not used.

An application should return zero if it processes this message.

The clipboard owner should use the InvalidateRect function or repaint the win-
dow as needed. The scroll bar position should also be reset.

InvalidateRect, WM_HSCROLLCLIPBOARD

WM_WINDOWPOSCHANGED [31]

Parameters

Return Value

WM_WINDOWPOSCHANGED
pwp = (const WINDOWPOS FAR*) 1Param; /* structure address */

The WM_WINDOWPOSCHANGED message is sent to a window whose size,
position, or z-order has changed as a result of a call to SetWindowPos or another
window-management function.

pwp
Value of IParam. Points to a WINDOWPOS data structure that contains infor-
mation about the window’s new size and position. The WINDOWZPOS struc-
ture has the following form:

typedef struct tagWINDOWPOS { /* wp */

HWND hwnd;

HWND hwndInsertAfter;
int X3

int Y;

int CcX;

int cy;

UINT flags;
} WINDOWPOS;

An application should return zero if it processes this message.

WM_WINDOWPOSCHANGING 211

Comments The DefWindowProc function, when it processes the
WM_WINDOWPOSCHANGED message, sends the WM_SIZE and
WM_MOVE messages to the window. These messages are not sent if an
application handles the WM_WINDOWPOSCHANGED message without calling
DefWindowProc. It is more efficient to perform any move or size change pro-
cessing during the WM_WINDOWPOSCHANGED message without calling
DefWindowProc.

See Also WM_MOVE, WM_SIZE, WM_WINDOWPOSCHANGING

WM_WINDOWPOSCHANGING

WM_WINDOWPOSCHANGING
pwp = (WINDOWPOS FAR*) 1Param; /* address of WINDOWPOS structure =*/

The WM_WINDOWPOSCHANGING message is sent to a window whose size,
position, or z-order is about to change as a result of a call to SetWindowPos or
another window-management function.

Parameters pwp
Value of [Param. Points to a WINDOWPOS data structure that contains infor-
mation about the window’s new size and position. The WINDOWPOS struc-
ture has the following form:

typedef struct tagWINDOWPOS { /% wp =/

HWND hwnd;

HWND hwndInsertAfter;
int X3

int y;

int CX;

int cy;

UINT flags;
} WINDOWPOS;

Return Value An application should return zero if it processes this message.

Comments During this message, modifying any of the values in the WINDOWPOS structure
affects the new size, position, or z-order. An application can prevent changes to
the window by setting or clearing the appropriate bits in the flags member of the
WINDOWPOS structure.

For a window with the WS_OVERLAPPED or WS_THICKFRAME style, the
DefWindowProc function handles a WM_WINDOWPOSCHANGING message
by sending a WM_GETMINMAXINFO message to the window. This is

212 WM_WININICHANGE

done to validate the new size and position of the window and to enforce the
CS_BYTEALIGNCLIENT and CS_BYTEALIGN client styles. An application
can override this by not passing the WM_WINDOWPOSCHANGING message
to the DefWindowProc function.

See Also WM_WINDOWPOSCHANGED

WM_ WININICHANGE [2x]

WM_WININICHANGE
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (LPCSTR) pszSection; /* address of string */

An application sends the WM_WININICHANGE message to all top-level win-
dows after making a change to the Windows initialization file, WIN.INI. The
SystemParametersInfo function sends the WM_WININICHANGE message
after an application uses the function to change a setting in the WIN.INI file.

Parameters pszSection
Value of [Param. Points to a string that specifies the name of the section that
has changed (the string does not include the square brackets that enclose the sec-

tion name).
Return Value An application should return zero if it processes this message.
Comments To send the WM_WININICHANGE message to all top-level windows, an appli-

cation can use the SendMessage function with the hiwnd parameter set to
HWND_BROADCAST.

If an application changes many different sections in WIN.INI at the same time,
the application should send the WM_WININICHANGE message once with the
pszSection parameter set to NULL. Otherwise, an application should send a sepa-
rate WM_WININICHANGE message for each change it makes to WIN.INIL

If an application receives a WM_WININICHANGE message with the pszSection

parameter set to NULL, the application should check all sections in WIN.INI that
affect the application.

See Also SendMessage, SystemParametersInfo

BN_DISABLE 213

2.2 Notification Messages

Notification messages notify a control’s parent window of actions that occur
within the control. Controls use the WM_COMMAND message to notify the
parent window of actions that occur within the control. The wParam parameter of
the WM_COMMAND message contains the control identifier; the low-order word
of the /Param parameter contains the handle of the control; and the high-order
word of /Param contains the control notification message.

This section lists notification messages in alphabetic order.

BN_CLICKED [2x]

See Also

BN_CLICKED

The BN_CLICKED notification message is sent when the user clicks a button.
This notification is provided for compatibility with applications written prior to
Windows version 3.0. New applications should use the BS_OWNERDRAW but-
ton style and the DRAWITEMSTRUCT structure for this task.

DRAWITEMSTRUCT, WM_DRAWITEM

BN_DISABLE [2x]

See Also

BN_DISABLE

The BN_DISABLE notification message is sent when a button is disabled. This
notification is provided for compatibility with applications written prior to Win-
dows version 3.0. New applications should use the BS_OWNERDRAW button
style and the DRAWITEMSTRUCT structure for this task.

DRAWITEMSTRUCT, WM_DRAWITEM

214 BN_DOUBLECLICKED

BN_DOUBLECLICKED [2x]

BN_DOUBLECLICKED

The BN_DOUBLECLICKED notification message is sent when the user double
clicks a button. This notification is provided for compatibility with applications
written prior to Windows version 3.0. New applications should use the
BS_OWNERDRAW button style and the DRAWITEMSTRUCT structure for
this task.

See Also DRAWITEMSTRUCT, WM_DRAWITEM

BN_HILITE [2x]

BN_HILITE

The BN_HILITE notification message is sent when the user highlights a button.
This notification is provided for compatibility with applications written prior to
Windows version 3.0. New applications should use the BS_OWNERDRAW but-
ton style and the DRAWITEMSTRUCT structure for this task.

See Also DRAWITEMSTRUCT, WM_DRAWITEM

BN_ PAINT (2]

BN_PAINT

The BN_PAINT notification message is sent when a button should be painted.
This notification is provided for compatibility with applications written prior to
Windows version 3.0. New applications should use the BS_OWNERDRAW but-
ton style and the DRAWITEMSTRUCT structure for this task.

See Also DRAWITEMSTRUCT, WM_DRAWITEM

CBN_CLOSEUP 215

BN_UNHILITE [2x]

See Also

BN_UNHILITE

The BN_UNHILITE notification message is sent when the highlight should be re-
moved from a button. This notification is provided for compatibility with applica-
tions written prior to Windows version 3.0. New applications should use the
BS_OWNERDRAW button style and the DRAWITEMSTRUCT structure for
this task.

DRAWITEMSTRUCT, WM_DRAWITEM

CBN_CLOSEUP [3.1]

Parameters

Comments

See Also

The CBN_CLOSEUP notification message is sent when the list box of a combo
box is hidden. The control’s parent window receives this notification message
through a WM_COMMAND message.

wParam
Specifies the identifier of the combo box.

[Param
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_CLOSEUP notification message in the high-order word.

This notification message is not sent to a combo box that has the CBS_SIMPLE
style.

The order in which notifications will be sent cannot be predicted. In parti-

cular, a CBN_SELCHANGE notification may occur either before or after a
CBN_CLOSEUP notification.

CBN_DROPDOWN, CBN_SELCHANGE, WM_COMMAND

216 CBN_DBLCLK

CBN_DBLCLK

The CBN_DBLCLK notification message is sent when the user double-clicks a
string in the list box of a combo box. The control’s parent window receives this
notification message through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the combo box.
[Param

Specifies the handle of the combo box in the low-order word and the
CBN_DBLCLK notification message in the high-order word.

Comments This notification message can occur only for a combo box with the CBS_SIMPLE
style. For a combo box with the CBS_DROPDOWN or CBS_DROPDOWNLIST
style, a double-click cannot occur because a single click hides the list box.

See Also CBN_SELCHANGE, WM_COMMAND

CBN_DROPDOWN

The CBN_DROPDOWN notification message is sent when the list box of a
combo box is about to be dropped down (made visible). The parent window of the
combo box receives this notification message through a WM_COMMAND mes-
sage.

Parameters wParam
Specifies the identifier of the combo box.

[Param
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_DROPDOWN notification message in the high-order word.

Comments This notification message can occur only for a combo box with the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

See Also CBN_CLOSEUP, WM_COMMAND

CBN_EDITUPDATE 217

CBN_EDITCHANGE

The CBN_EDITCHANGE notification message is sent after the user has taken an
action that may have altered the text in the edit-control portion of a combo box.
Unlike the CBN_EDITUPDATE notification message, this notification message is
sent after Windows updates the screen. The parent window of the combo box re-
ceives this notification message through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the combo box.

[Param
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_EDITCHANGE notification message in the high-order word.

Comments This message does not occur if the combo box has the CBS_DROPDOWNLIST
style.
See Also CBN_EDITUPDATE, WM_COMMAND

CBN_EDITUPDATE

The CBN_EDITUPDATE notification message is sent when the edit-control por-
tion of a combo box is about to display altered text. This notification is sent after
the control has formatted the text, but before it displays the text. The parent win-
dow of the combo box receives this notification message through a
WM_COMMAND message.

Parameters wParam
Specifies the identifier of the combo box.

IParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_EDITUPDATE notification message in the high-order word.

Comments This message does not occur if the combo box has the CBS_DROPDOWNLIST
style.

See Also CBN_EDITCHANGE, WM_COMMAND

218 CBN_ERRSPACE

CBN_ERRSPACE

The CBN_ERRSPACE notification message is sent when a combo box cannot
allocate enough memory to meet a specific request. The parent window of the
combo box receives this notification message through a WM_COMMAND mes-
sage.

Parameters wParam
Specifies the identifier of the combo box.

[Param
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_ERRSPACE notification message in the high-order word.

See Also WM_COMMAND

CBN_KILLFOCUS

The CBN_KILLFOCUS notification message is sent when a combo box loses the
input focus. The parent window of the combo box receives this notification mes-
sage through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the combo box.

[Param
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_KILLFOCUS notification message in the high-order word.

See Also CBN_SETFOCUS, WM_COMMAND

CBN_SELCHANGE

The CBN_SELCHANGE notification message is sent when the selection in the
list box of a combo box is about to be changed as a result of the user either click-
ing in the list box or changing the selection by using the arrow keys. The parent
window of the combo box receives this code through a WM_COMMAND
message.

CBN_SELENDOK 219

Parameters

See Also

wParam
Specifies the identifier of the combo box.

[Param
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SELCHANGE notification message in the high-order word.

CBN_DBLCLK, CB_SETCURSEL, WM_COMMAND

CBN_SELENDCANCEL [3.1]

Parameters

Comments

See Also

The CBN_SELENDCANCEL notification message is sent when the user clicks an
item and then clicks another window or control to hide the list box of a combo
box. This notification message is sent before the CBN_CLOSEUP notification
message to indicate that the user’s selection should be ignored.

wParam
Specifies the identifier of the combo box.
[Param

Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SELENDCANCEL notification message in the high-order word.

The CBN_SELENDCANCEL or CBN_SELENDOK notification message is sent
even if the CBN_CLOSEUP notification message is not sent (as in the case of a
combo box with the CBS_SIMPLE style).

CBN_SELENDOK, WM_COMMAND

CBN_SELENDOK [31]

The CBN_SELENDOK notification message is sent when the user selects an
item and then either presses the ENTER key or clicks the DOWN ARROW key to
hide the list box of a combo box. This notification message is sent before the
CBN_CLOSEUP notification message to indicate that the user’s selection should
be considered valid.

220 CBN_SETFOCUS

Parameters wParam
Specifies the identifier of the combo box.
[Param

Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SELENDOK notification message in the high-order word.

Comments The CBN_SELENDOK or CBN_SELENDCANCEL notification message is sent
even if the CBN_CLOSEUP notification message is not sent (as in the case of a
combo box with the CBS_SIMPLE style).

See Also CBN_SELENDCANCEL, WM_COMMAND

CBN_SETFOCUS Bl

The CBN_SETFOCUS notification message is sent when a combo box receives
the input focus. The parent window of the combo box receives this notification
message through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the combo box.

IParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SETFOCUS notification message in the high-order word.

See Also CBN_KILLFOCUS, WM_COMMAND

EN_CHANGE 5]

The EN_CHANGE notification message is sent when the user has taken an action
that may have altered text in an edit control. Unlike the EN_UPDATE notification
message, this notification message is sent after Windows updates the display. The
control’s parent window receives this notification message through a
WM_COMMAND message.

Parameters wParam
Specifies the identifier of the edit control.

EN_HSCROLL 221

[Param
Specifies the handle of the edit control in the low-order word, and specifies the
EN_CHANGE notification message in the high-order word.

See Also EN_UPDATE, WM_COMMAND

EN_ERRSPACE [2x]

The EN_ERRSPACE notification message is sent when an edit control cannot allo-
cate enough memory to meet a specific request. The control’s parent window re-
ceives this notification message through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the edit control.

[Param
Specifies the handle of the edit control in the low-order word, and specifies the
EN_ERRSPACE notification message in the high-order word.

See Also WM_COMMAND

EN_HSCROLL 2]

EN_HSCROLL

The EN_HSCROLL notification message is sent when the user clicks an edit con-
trol’s horizontal scroll bar. The control’s parent window receives this notification
message through a WM_COMMAND message. The parent window is notified
before the screen is updated.

Parameters wParam
Specifies the identifier of the edit control.

IParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_HSCROLL notification message in the high-order word.

See Also EN_VSCROLL, WM_COMMAND

222 EN_KILLFOCUS

EN_KILLFOCUS [2x]

The EN_KILLFOCUS notification message is sent when an edit control loses the
input focus. The control’s parent window receives this notification message
through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the edit control.

IParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_KILLFOCUS notification message in the high-order word.

See Also EN_SETFOCUS, WM_COMMAND

EN_MAXTEXT

The EN_MAXTEXT notification message is sent when the current insertion has
exceeded the specified number of characters for the edit control. The insertion has
been truncated.

This message is also sent when an edit control does not have the
ES_AUTOHSCROLL style and the number of characters to be inserted
would exceed the width of the edit control.

This message is also sent when an edit control does not have the
ES_AUTOVSCROLL style and the total number of lines resulting from
a text insertion would exceed the height of the edit control.

The control’s parent window receives this notification message through a
WM_COMMAND message.

Parameters wParam
Specifies the identifier of the edit control.

IParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_MAXTEXT notification message in the high-order word.

See Also EM_LIMITTEXT, WM_COMMAND

EN_UPDATE 223

EN_SETFOCUS [2.x]

EN_SETFOCUS

The EN_SETFOCUS notification message is sent when an edit control receives
the input focus. The control’s parent window receives this notification message
through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the edit control.

[Param
Specifies the handle of the edit control in the low-order word, and specifies the
EN_SETFOCUS notification message in the high-order word.

See Also EN_KILLFOCUS, WM_COMMAND

EN_UPDATE [2x]

EN_UPDATE

The EN_UPDATE notification message is sent when an edit control is about to
screen altered text. This notification is sent after the control has formatted the text
but before it screens the text. This makes it possible to alter the window size, if
necessary. The control’s parent window receives this notification message through
a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the edit control.

[Param
Specifies the handle of the edit control in the low-order word, and specifies the
EN_UPDATE notification message in the high-order word.

See Also EN_CHANGE, WM_COMMAND

224 EN_VSCROLL

EN_VSCROLL 2]

EN_VSCROLL

The EN_VSCROLL notification message is sent when the user clicks an edit con-
trol’s vertical scroll bar. The control’s parent window receives this notification
message through a WM_COMMAND message. The parent window is notified
before the screen is updated.

Parameters wParam
Specifies the identifier of the edit control.

[Param
Specifies the handle of the edit control in the low-order word, and specifies the
EN_VSCROLL notification message in the high-order word.

See Also EN_HSCROLL, WM_COMMAND

LBN_DBLCLK [2x]

LBN_DBLCLK

The LBN_DBLCLK notification message is sent when the user double-clicks a
string in a list box. The parent window of the list box receives this notification
message through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the list box.

[Param
Specifies the handle of the list box in the low-order word, and specifies the
LBN_DBLCLK notification message in the high-order word.
Comments Only a list box that has LBS_NOTIFY style will send this notification message.

See Also LBN_SELCHANGE, WM_COMMAND

LBN_KILLFOCUS 225

LBN_ERRSPACE [2x]

LBN_ERRSPACE

The LBN_ERRSPACE notification message is sent when a list box cannot allo-
cate enough memory to meet a specific request. The parent window of the list box
receives this notification message through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the list box.

[Param
Specifies the handle of the list box in the low-order word, and specifies the
LBN_ERRSPACE notification message in the high-order word.

See Also WM_COMMAND

LBN_KILLFOCUS

The LBN_KILLFOCUS notification message is sent when a list box loses the
input focus. The parent window of the list box receives this notification message
through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the list box.

[Param
Specifies the handle of the list box in the low-order word, and specifies the
LBN_KILLFOCUS notification message in the high-order word.

See Also LBN_SETFOCUS, WM_COMMAND

226 LBN_SELCANCEL

LBN_SELCANCEL [31]

Parameters

Comments

See Also

LBN_SELCANCEL

The LBN_SELCANCEL notification message is sent when the user cancels the
selection in a list box. The parent window of the list box receives this notification
message through a WM_COMMAND message.

wParam
Specifies the identifier of the list box.

[Param
Specifies the handle of the list box in the low-order word, and specifies the
LBN_SELCANCEL notification message in the high-order word.

This notification applies only to a list box that has the LBS_NOTIFY style.

LBN_DBLCLK, LBN_SELCHANGE, LB_SETCURSEL, WM_COMMAND

LBN_SELCHANGE (2]

Parameters

Comments

See Also

LBN_SELCHANGE

The LBN_SELCHANGE notification message is sent when the selection in a list
box is about to change. The parent window of the list box receives this notification
message through a WM_COMMAND message.

wParam
Specifies the identifier of the list box.

[Param
Specifies the handle of the list box in the low-order word, and specifies the
LBN_SELCHANGE notification message in the high-order word.

This notification is not sent if the selection is changed by the LB_SETCURSEL
message.

This notification applies only to a list box that has the LBS_NOTIFY style.

The LBN_SELCHANGE notification is sent for a multiple-selection list box when-
ever the user presses an arrow key, even if the selection does not change.

LBN_DBLCLK, LBN_SELCANCEL, LB_SETCURSEL, WM_COMMAND

LBN_SETFOCUS 227

LBN_SETFOCUS

The LBN_SETFOCUS notification message is sent when a list box receives the
input focus. The parent window of the list box receives this notification message
through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the list box.

[Param
Specifies the handle of the list box in the low-order word, and specifies the
LBN_SETFOCUS notification message in the high-order word.

See Also LBN_KILLFOCUS, WM_COMMAND

Structures

Alphabetic Reference

Chapter 3

ABC 231

This chapter defines the sizes and meanings of the structures associated with func-
tions for the Microsoft Windows operating system, version 3.1.

Following are the Windows structures, in alphabetic order.

ABC

Members

Comments

See Also

typedef struct tagABC { /* abc */

int abcA;

UINT abcB;

int abcC;
} ABC;

The ABC structure contains the width of a character in a TrueType font.

abcA
Specifies the “A” spacing of the character. A spacing is the distance to add to
the current position before drawing the character glyph.

abcB
Specifies the “B” spacing of the character. B spacing is the width of the drawn
portion of the character glyph.

abcC
Specifies the “C” spacing of the character. C spacing is the distance to add to
the current position to provide white space to the right of the character glyph.

The total width of a character is the sum of the A, B, and C spaces. Either the A or
the C space can be negative, to indicate underhangs or overhangs.

GetCharABCWidths

232 . “BITMAP

BITMAP

Members

Comments

typedef struct tagBITMAP { /% bm =/

int bmType;

int bmWidth;

int bmHeight;

int bmWidthBytes;

BYTE bmPlanes;
BYTE bmBitsPixel;
void FAR* bmBits;

} BITMAP;

The BITMAP structure defines the height, width, color format, and bit values of a
logical bitmap.

bmType
Specifies the bitmap type. For logical bitmaps, this member must be zero.
bmWidth
Specifies the width of the bitmap, in pixels. The width must be greater than
Zero.

bmHeight
Specifies the height of the bitmap, in raster lines. The height must be greater
than zero.

bmWidthBytes
Specifies the number of bytes in each raster line. This value must be an
even number since graphics device interface (GDI) assumes that the bit
values of a bitmap form an array of integer (two-byte) values. In other words,
bmWidthBytes * 8 must be the next multiple of 16 greater than or equal to the
value obtained when the bmWidth member is multiplied by the bmBitsPixel
member.

bmPlanes
Specifies the number of color planes in the bitmap.

bmBitsPixel
Specifies the number of adjacent color bits on each plane needed to define a
pixel.

bmBits
Points to the location of the bit values for the bitmap. The bmBits member
must be a long pointer to an array of one-byte values.

The currently used bitmap formats are monochrome and color. The monochrome
bitmap uses a one-bit, one-plane format. Each scan is a multiple of 16 bits.

BITMAPCOREHEADER 233

See Also

Scans are organized as follows for a monochrome bitmap of height n:

Scan @
Scan 1

Scan n-2
Scan n-1

The pixels on a monochrome device are either black or white. If the corresponding
bit in the bitmap is 1, the pixel is turned on (white). If the corresponding bit in the
bitmap is zero, the pixel is turned off (black).

All devices support bitmaps that have the RC_BITBLT bit set in the
RASTERCAPS index of the GetDeviceCaps function.

Each device has its own unique color format. In order to transfer a bitmap from
one device to another, use the GetDIBits and SetDIBits functions.

CreateBitmapIndirect, GetDIBits, GetObject, SetDIBits

BITMAPCOREHEADER

Members

typedef struct tagBITMAPCOREHEADER { /* bmch */
DWORD bcSize;
short bcWidth;
short bcHeight;
WORD bcPlanes;
WORD bcBitCount;
} BITMAPCOREHEADER;

The BITMAPCOREHEADER structure contains information about the
dimensions and color format of a device-independent bitmap (DIB). Windows ap-
plications should use the BITMAPINFOHEADER structure instead of BITMAP-
COREHEADER whenever possible.

bcSize
Specifies the number of bytes required by the BITMAPCOREHEADER
structure.

bcWidth
Specifies the width of the bitmap, in pixels.

bcHeight
Specifies the height of the bitmap, in pixels.

234 BITMAPCOREINFO

bcPlanes
Specifies the number of planes for the target device. This member must be set
to 1.

beBitCount
Specifies the number of bits per pixel. This value must be 1, 4, 8, or 24.

Comments The BITMAPCOREINFO structure combines the BITMAPCOREHEADER
structure and a color table to provide a complete definition of the dimensions and
colors of a DIB. See the description of the BITMAPCOREINFO structure for
more information about specifying a DIB.

An application should use the information stored in the beSize member to locate
the color table in a BITMAPCOREINFO structure with a method such as the fol-
lowing:

pColor = ((LPSTR) pBitmapCoreInfo + (WORD) (pBitmapCorelInfo -> bcSize))

See Also BITMAPCOREINFO, BITMAPINFOHEADER, BITMAPINFOHEADER

BITMAPCOREINFO

typedef struct tagBITMAPCOREINFO { /% bmci =/
BITMAPCOREHEADER bmciHeader;
RGBTRIPLE bmciColors[1];

} BITMAPCOREINFO;

The BITMAPCOREINFO structure fully defines the dimensions and color infor-
mation for a device-independent bitmap (DIB). Windows applications should use
the BITMAPINFO structure instead of BITMAPCOREINFO whenever
possible.

Members bmciHeader
Specifies a BITMAPCOREHEADER structure that contains information
about the dimensions and color format of a DIB.

bmciColors
Specifies an array of RGBTRIPLE structures that define the colors in the bit-
map.

Comments The BITMAPCOREINFO structure describes the dimensions and colors of a bit-
map. It is followed immediately in memory by an array of bytes which define the
pixels of the bitmap. The bits in the array are packed together, but each scan line

BITMAPCOREINFO 235

See Also

must be zero-padded to end on a LONG boundary. Segment boundaries, however,
can appear anywhere in the bitmap. The origin of the bitmap is the lower-left
corner.

The beBitCount member of the BITMAPCOREHEADER structure determines
the number of bits that define each pixel and the maximum number of colors in the
bitmap. This member may be set to any of the following values:

Value Meaning

1 The bitmap is monochrome, and the bmciColors member must contain two
entries. Each bit in the bitmap array represents a pixel. If the bit is clear, the
pixel is displayed with the color of the first entry in the bmciColors table.
If the bit is set, the pixel has the color of the second entry in the table.

4 The bitmap has a maximum of 16 colors, and the bmeiColors member con-
tains 16 entries. Each pixel in the bitmap is represented by a four-bit index
into the color table.

For example, if the first byte in the bitmap is Ox1F, the byte represents two

pixels. The first pixel contains the color in the second table entry, and the
second pixel contains the color in the sixteenth table entry.

8 The bitmap has a maximum of 256 colors, and the bmciColors member
contains 256 entries. In this case, each byte in the array represents a single
pixel.

24 The bitmap has a maximum of 2?* colors. The bmciColors member is

NULL, and each 3-byte sequence in the bitmap array represents the relative
intensities of red, green, and blue, respectively, of a pixel.

The colors in the bmciColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmciColors member can be an
array of 16-bit unsigned integers that specify an index into the currently realized
logical palette instead of explicit RGB values. In this case, an application

using the bitmap must call DIB functions with the wUsage parameter set to
DIB_PAL_COLORS.

Note The bmciColors member should not contain palette indexes if the bitmap is
to be stored in a file or transferred to another application. Unless the application
uses the bitmap exclusively and under its complete control, the bitmap color table
should contain explicit RGB values.

BITMAPINFO, BITMAPCOREHEADER, RGBTRIPLE

236 BITMAPFILEHEADER

BITMAPFILEHEADER

Members

Comments

See Also

typedef struct tagBITMAPFILEHEADER { /% bmfh =/
UINT bfType;
DWORD bfSize;
UINT bfReservedl;
UINT bfReserved?2;
DWORD bfOffBits;
} BITMAPFILEHEADER;

The BITMAPFILEHEADER structure contains information about the type, size,
and layout of a device-independent bitmap (DIB) file.

bfType
Specifies the type of file. This member must be BM.

bfSize
Specifies the size of the file, in bytes.

bfReserved1
Reserved; must be set to zero.

bfReserved2 :
Reserved; must be set to zero.

bfOffBits
Specifies the byte offset from the BITMAPFILEHEADER structure to the
actual bitmap data in the file.

A BITMAPINFO or BITMAPCOREINFO structure immediately follows the
BITMAPFILEHEADER structure in the DIB file.

BITMAPCOREINFO, BITMAPINFO

BITMAPINFO

typedef struct tagBITMAPINFO { /* bmi =/
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[1];

} BITMAPINFO;

The BITMAPINFO structure fully defines the dimensions and color information
for a Windows 3.0 or later device-independent bitmap (DIB).

BITMAPINFO 237

Members

Comments

bmiHeader
Specifies a BITMAPINFOHEADER structure that contains information about
the dimensions and color format of a DIB.

bmiColors
Specifies an array of RGBQUAD structures that define the colors in the bitmap.

A Windows 3.0 or later DIB consists of two distinct parts: a BITMAPINFO struc-
ture, which describes the dimensions and colors of the bitmap, and an array of
bytes defining the pixels of the bitmap. The bits in the array are packed together,
but each scan line must be zero-padded to end on a LONG boundary. Segment
boundaries, however, can appear anywhere in the bitmap. The origin of the bitmap
is the lower-left corner.

The biBitCount member of the BITMAPINFOHEADER structure determines
the number of bits which define each pixel and the maximum number of colors in
the bitmap. This member may be set to any of the following values:

Value Meaning

1 The bitmap is monochrome, and the bmeiColors member must contain two
entries. Each bit in the bitmap array represents a pixel. If the bit is clear, the
pixel is displayed with the color of the first entry in the bmciColors table.
If the bit is set, the pixel has the color of the second entry in the table.

4 The bitmap has a maximum of 16 colors, and the bmciColors member con-
tains 16 entries. Each pixel in the bitmap is represented by a four-bit index
into the color table.

For example, if the first byte in the bitmap is Ox1F, the byte represents two

pixels. The first pixel contains the color in the second table entry, and the
second pixel contains the color in the sixteenth table entry.

8 The bitmap has a maximum of 256 colors, and the bmciColors member
contains 256 entries. In this case, each byte in the array represents a single
pixel.

24 The bitmap has a maximum of 2%* colors. The bmciColors member is

NULL, and each 3-byte sequence in the bitmap array represents the relative
intensities of red, green, and blue, respectively, of a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the
number of color indexes in the color table actually used by the bitmap. If the
biClrUsed member is set to zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member.

The colors in the bmiColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmiColors member can be an array
of 16-bit unsigned integers that specify an index into the currently realized logical
palette instead of explicit RGB values. In this case, an application using the

238

BITMAPINFOHEADER

See Also

bitmap must call DIB functions with the wUsage parameter set to

DIB_PAL_COLORS.

Note The bmiColors member should not contain palette indexes if the bitmap is
to be stored in a file or transferred to another application. Unless the application
uses the bitmap exclusively and under its complete control, the bitmap color table
should contain explicit RGB values.

BITMAPINFOHEADER, RGBQUAD

BITMAPINFOHEADER

typedef struct tagBITMAPINFOHEADER {

DWORD
LONG
LONG
WORD
WORD
DWORD
DWORD
LONG
LONG
DWORD
DWORD

biSize;

biWidth;
biHeight;
biPlanes;
biBitCount;
biCompression;
biSizelmage;
biXPelsPerMeter;
biYPelsPerMeter;
biClrUsed;
biCirImportant;

} BITMAPINFOHEADER;

/% bmih */

The BITMAPINFOHEADER structure contains information about the dimen-

sions and color format of a Windows 3.0 or later device-independent bitmap

(DIB).

Members biSize

Specifies the number of bytes required by the BITMAPINFOHEADER

structure.
biWidth

Specifies the width of the bitmap, in pixels.

biHeight

Specifies the height of the bitmap, in pixels.

biPlanes

Specifies the number of planes for the target device. This member must be set

to 1.
biBitCount

Specifies the number of bits per pixel. This value must be 1, 4, 8, or 24.

BITMAPINFOHEADER 239

biCompression
Specifies the type of compression for a compressed bitmap. It can be one of the
following values:

Value Meaning

BI_RGB Specifies that the bitmap is not compressed.

BI_RLE8 Specifies a run-length encoded format for bitmaps with 8 bits per
pixel. The compression format is a 2-byte format consisting of a count
byte followed by a byte containing a color index. For more informa-
tion, see the following Comments section.

BI_RLE4 Specifies a run-length encoded format for bitmaps with 4 bits per
pixel. The compression format is a 2-byte format consisting of a count
byte followed by two word-length color indexes. For more informa-
tion, see the following Comments section.

biSizeImage
Specifies the size, in bytes, of the image. It is valid to set this member to zero if
the bitmap is in the BI_RGB format.

biXPelsPerMeter
Specifies the horizontal resolution, in pixels per meter, of the target device for
the bitmap. An application can use this value to select a bitmap from a resource
group that best matches the characteristics of the current device.

biYPelsPerMeter
Specifies the vertical resolution, in pixels per meter, of the target device for the
bitmap.

biClrUsed
Specifies the number of color indexes in the color table actually used by the bit-
map. If this value is zero, the bitmap uses the maximum number of colors corre-
sponding to the value of the biBitCount member. For more information on the
maximum sizes of the color table, see the description of the BITMAPINFO
structure earlier in this chapter.

If the biClrUsed member is nonzero, it specifies the actual number of colors
that the graphics engine or device driver will access if the biBitCount member
is less than 24. If biBitCount is set to 24, biClrUsed specifies the size of the
reference color table used to optimize performance of Windows color palettes.

If the bitmap is a packed bitmap (that is, a bitmap in which the bitmap array im-
mediately follows the BITMAPINFO header and which is referenced by a
single pointer), the biClrUsed member must be set to zero or to the actual size
of the color table.

biClrImportant
Specifies the number of color indexes that are considered important for display-
ing the bitmap. If this value is zero, all colors are important.

240 BITMAPINFOHEADER

Comments

The BITMAPINFO structure combines the BITMAPINFOHEADER structure
and a color table to provide a complete definition of the dimensions and colors of
a Windows 3.0 or later DIB. For more information about specifying a Windows
3.0 DIB, see the description of the BITMAPINFO structure.

An application should use the information stored in the biSize member to locate
the color table in a BITMAPINFO structure as follows:

pColor = ((LPSTR) pBitmapInfo + (WORD) (pBitmapInfo->bmiHeader.biSize))

Windows supports formats for compressing bitmaps that define their colors with 8
bits per pixel and with 4 bits per pixel. Compression reduces the disk and memory
storage required for the bitmap. The following paragraphs describe these formats.

BI_RLE8 When the biCompression member is set to BI_RLES, the bitmap is
compressed using a run-length encoding format for an 8-bit bitmap. This format
may be compressed in either of two modes: encoded and absolute. Both modes
can occur anywhere throughout a single bitmap.

Encoded mode consists of two bytes: the first byte specifies the number of con-
secutive pixels to be drawn using the color index contained in the second byte. In
addition, the first byte of the pair can be set to zero to indicate an escape that
denotes an end of line, end of bitmap, or a delta. The interpretation of the escape
depends on the value of the second byte of the pair. The following list shows the
meaning of the second byte:

Value Meaning

0 End of line.

1 End of bitmap.

2 Delta. The two bytes following the escape contain unsigned values indicat-
ing the horizontal and vertical offset of the next pixel from the current posi-
tion.

Absolute mode is signaled by the first byte set to zero and the second byte set to a
value between 0x03 and OxFF. In absolute mode, the second byte represents the
number of bytes that follow, each of which contains the color index of a single
pixel. When the second byte is set to 2 or less, the escape has the same meaning as
in encoded mode. In absolute mode, each run must be aligned on a word boundary.

The following example shows the hexadecimal values of an 8-bit compressed bit-
map:

03 04 05 06 00 @3 45 56 67 00 02 78 00 02 05 01
02 78 00 00 @09 1E 00 01

This bitmap would expand as follows (two-digit values represent a color index for
a single pixel):

BITMAPINFOHEADER 241

See Also

04 04 04

06 06 06 06 06

45 56 67

78 78

move current position 5 right and 1 down
78 78

end of line

1E 1E 1E 1E 1E 1E 1E 1E 1E

end of RLE bitmap

BI_BLE4 When the biCompression member is set to BI_RLE4, the bitmap is
compressed using a run-length encoding (RLE) format for a 4-bit bitmap, which
also uses encoded and absolute modes. In encoded mode, the first byte of the pair
contains the number of pixels to be drawn using the color indexes in the second
byte. The second byte contains two color indexes, one in its high-order nibble (that
is, its low-order four bits) and one in its low-order nibble. The first of the pixels is
drawn using the color specified by the high-order nibble, the second is drawn
using the color in the low-order nibble, the third is drawn with the color in the
high-order nibble, and so on, until all the pixels specified by the first byte have
been drawn.

In absolute mode, the first byte contains zero, the second byte contains the number
of color indexes that follow, and subsequent bytes contain color indexes in their
high- and low-order nibbles, one color index for each pixel. In absolute mode,
each run must be aligned on a word boundary. The end-of-line, end-of-bitmap, and
delta escapes also apply to BI_RLE4.

The following example shows the hexadecimal values of a 4-bit compressed bit-
map:

03 04 05 06 00 06 45 56 67 00 04 78 00 02 05 01
04 78 00 00 09 1E 00 01

This bitmap would expand as follows (single-digit values represent a color index
for a single pixel):

040

06060

455667

7878

move current position 5 right and 1 down
7878

end of Tine

1E1EL1ELIEL

end of RLE bitmap

BITMAPINFO

242 CBT_CREATEWND

CBT_CREATEWND

Members

See Also

typedef struct tagCBT_CREATEWND { /* cbtcw */
CREATESTRUCT FAR#* 1pcs;
HWND hwndInsertAfter;

} CBT_CREATEWND;

The CBT_CREATEWND structure contains information passed to a WH_CBT
hook function before a window is created.

Ipcs
Points to a CREATESTRUCT structure that contains initialization parameters
for the window about to be created.

hwndInsertAfter
Identifies a window in the window manager’s list that will precede the window
being created. If this parameter is NULL, the window being created is the top-
most window. If this parameter is 1, the window being created is the bottom-
most window.

CBTProc, SetWindowsHook

CBTACTIVATESTRUCT

Members

See Also

typedef struct tagCBTACTIVATESTRUCT { /* cas */
BOOL fMouse;
HWND hWndActive;

} CBTACTIVATESTRUCT;

The CBTACTIVATESTRUCT structure contains information passed to a
WH_CBT hook function before a window is activated.

fMouse
Specifies whether the window is being activated as a result of a mouse click.
This value is nonzero if a mouse click is causing the activation. Otherwise, this
value is zero.

hWndActive
Identifies the currently active window.

SetWindowsHook

CHOOSECOLOR 243

CHOOSECOLOR 5

Members

#include <commdlg.h>

typedef struct tagCHOOSECOLOR { /* cc */
DWORD 1StructSize;
HWND hwndOwner;
HWND hInstance;
COLORREF rgbResult;
COLORREF FAR* TpCustColors;
DWORD Flags;
LPARAM 1CustData;
UINT (CALLBACK* TpfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR 1pTemplateName;
} CHOOSECOLOR;

The CHOOSECOLOR structure contains information that the system uses to ini-
tialize the system-defined Color dialog box. After the user chooses the OK button
to close the dialog box, the system returns information about the user’s selection
in this structure.

IStructSize
Specifies the length of the structure, in bytes. This member is filled on input.

hwndOwner
Identifies the window that owns the dialog box. This member can be any valid
window handle, or it should be NULL if the dialog box is to have no owner.

If the CC_SHOWHELP flag is set, hwndOwner must identify the window that
owns the dialog box. The window procedure for this owner window receives a
notification message when the user chooses the Help button. (The identifier for
the notification message is the value returned by the Register WindowMessage
function when HELPMSGSTRING is passed as its argument.)

This member is filled on input.

hlnstance
Identifies a data block that contains the dialog box template specified by the
IpTemplateName member. This member is used only if the Flags member
specifies the CC_ENABLETEMPLATE or
CC_ENABLETEMPLATEHANDLE flag; otherwise, this member is ignored.
This member is filled on input.

rgbResult
Specifies the color that is initially selected when the dialog box is displayed,
and specifies the user’s color selection after the user has chosen the OK button
to close dialog box. If the CC_RGBINIT flag is set in the Flags member before
the dialog box is displayed and the value of this member is not among the
colors available, the system selects the nearest solid color available. If this

244 CHOOSECOLOR

member is NULL, the first selected color is black. This member is filled on
input and output.

IpCustColors
Points to an array of 16 doubleword values, each of which specifies the intensi-
ties of the red, green, and blue (RGB) components of a custom color box in the
dialog box. If the user modifies a color, the system updates the array with the
new RGB values. This member is filled on input and output.

Flags
Specifies the dialog box initialization flags. This member may be a combination
of the following values:

Value Meaning

CC_ENABLEHOOK Enables the hook function specified in the
IpfnHook member.

CC_ENABLETEMPLATE Causes the system to use the dialog box

template identified by the hInstance
member and pointed to by the
IpTemplateName member.

CC_ENABLETEMPLATEHANDLE Indicates that the hInstance member iden-
tifies a data block that contains a pre-
loaded dialog box template. If this flag is
specified, the system ignores the
IpTemplateName member.

CC_FULLOPEN Causes the entire dialog box to appear
when the dialog box is displayed, includ-
ing the portion that allows the user to
create custom colors. Without this flag,
the user must select the Define Custom
Color button to see that portion of the
dialog box.

CC_PREVENTFULLOPEN Disables the Define Custom Colors
button, preventing the user from creating
custom colors.

CC_RGBINIT Causes the dialog box to use the color
specified in the rgbResult member as the
initial color selection.

CC_SHOWHELP Causes the dialog box to show the Help
button. If this flag is specified, the
hwndOwner member must not be NULL.

These flags are used when the structure is initialized.

CHOOSECOLOR 245

Comments

See Also

1CustData
Specifies application-defined data that the system passes to the hook
function pointed to by the IpfnHook member. The system passes a pointer
to the CHOOSECOLOR structure in the /Param parameter of the
WM_INITDIALOG message; this pointer can be used to retrieve the
1CustData member.

IpfnHook
Points to a hook function that processes messages intended for the
dialog box. To enable the hook function, an application must specify the
CC_ENABLEHOOK value in the Flags member; otherwise, the system ignores
this structure member. The hook function must return zero to pass a message
that it didn’t process back to the dialog box procedure in COMMDLG.DLL.
The hook function must return a nonzero value to prevent the dialog box proce-
dure in COMMDLG.DLL from processing a message it has already processed.
This member is filled on input.

IpTemplateName
Points to a null-terminated string that specifies the name of the resource file for
the dialog box template that is to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags mem-
ber specifies the CC_ENABLETEMPLATE flag; otherwise, this member is ig-
nored. This member is filled on input.

Some members of this structure are filled only when the dialog box is created, and
some have an initialization value that changes when the user closes the dialog box.
Whenever a description in the Members section does not specify how the value of
a member is assigned, the value is assigned only when the dialog box is created.

ChooseColor

246 CHOOSEFONT

CHOOSEFONT

Members

#include <commdlg.h>

typedef struct tagCHOOSEFONT { /* cf =*/

DWORD 1StructSize;
HWND hwndOwner;

HDC hDC;

LOGFONT FAR=* TpLogFont;

int iPointSize;
DWORD Flags;

COLORREF rgbColors;
LPARAM 1CustData;

UINT (CALLBACK#* TpfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR IpTemplateName;
HINSTANCE hInstance;
LPSTR 1pszStyle;

UINT nFontType;

int nSizeMin;

int nSizeMax;

} CHOOSEFONT;

The CHOOSEFONT structure contains information that the system uses to initial-
ize the system-defined Font dialog box. After the user chooses the OK button to
close the dialog box, the system returns information about the user’s selection in
this structure.

IStructSize
Specifies the length of the structure, in bytes. This member is filled on input.

hwndOwner
Identifies the window that owns the dialog box. This member can be any valid
window handle, or it should be NULL if the dialog box is to have no owner.

If the CF_SHOWHELP flag is set, hwndOwner must identify the window that
owns the dialog box. The window procedure for this owner window receives a
notification message when the user chooses the Help button. (The identifier for
the notification message is the value returned by the RegisterWindowMessage
function when HELPMSGSTRING is passed as its argument.)

This member is filled on input.

hDC
Identifies either the device context or the information context of the printer for
which fonts are to be listed in the dialog box. This member is used only if the
Flags member specifies the CF_PRINTERFONTS flag; otherwise, this mem-
ber is ignored.

This member is filled on input.

CHOOSEFONT 247

IpLogFont

Points to a LOGFONT structure. If an application initializes the

members of this structure before calling ChooseFont and sets the
CF_INITTOLOGFONTSTRUCT flag, the ChooseFont function initializes
the dialog box with the font that is the closest possible match. After the user
chooses the OK button to close the dialog box, the ChooseFont function sets
the members of the LOGFONT structure based on the user’s final selection.

This member is filled on input and output.

iPointSize

Specifies the size of the selected font, in tenths of a point. The ChooseFont
function sets this value after the user chooses the OK button to close the dialog

box.
Flags

Specifies the dialog box initialization flags. This member can be a combination

of the following values:

Value

Meaning

CF_APPLY

CF_ANSIONLY

CF_BOTH

CF_TTONLY

CF_EFFECTS

Specifies that the ChooseFont function
should enable the Apply button.

Specifies that the ChooseFont function
should limit font selection to those fonts
that use the Windows character set. (If this
flag is set, the user cannot select a font
that contains only symbols.)

Causes the dialog box to list the available
printer and screen fonts. The hDC mem-
ber identifies either the device context or
the information context associated with
the printer.

Specifies that the ChooseFont function
should enumerate and allow the selection
of only TrueType fonts.

Specifies that the ChooseFont function
should enable strikeout, underline, and
color effects. If this flag is set, the
IfStrikeOut and IfUnderline members of
the LOGFONT structure and the
rgbColors member of the
CHOOSEFONT structure can be set
before calling ChooseFont. And, if this
flag is not set, the ChooseFont function
can set these members after the user
chooses the OK button to close the
dialog box.

248

CHOOSEFONT

Value

Meaning

CF_ENABLEHOOK

CF_ENABLETEMPLATE

CF_ENABLETEMPLATEHANDLE

CF_FIXEDPITCHONLY

CF_FORCEFONTEXIST

CF_INITTOLOGFONTSTRUCT

CF_LIMITSIZE

CF_NOFACESEL

CF_NOOEMFONTS

CF_NOSIMULATIONS

CF_NOSIZESEL

CF_NOSTYLESEL

Enables the hook function specified in the
IpfnHook member of this structure.

Indicates that the hInstance member
identifies a data block that contains the
dialog box template pointed to by
IpTemplateName.

Indicates that the hInstance member
identifies a data block that contains a pre-
loaded dialog box template. If this flag is
specified, the system ignores the
IpTemplateName member.

Specifies that the ChooseFont function
should select only monospace fonts.

Specifies that the ChooseFont function
should indicate an error condition if the
user attempts to select a font or font style
that does not exist.

Specifies that the ChooseFont function
should use the LOGFONT structure
pointed to by lpLogFont to initialize the
dialog box controls.

Specifies that the ChooseFont function
should select only font sizes within the
range specified by the nSizeMin and
nSizeMax members.

Specifies that there is no selection in the
Font (face name) combo box. Applica-
tions use this flag to support multiple font
selections. This flag is set on input and
output.

Specifies that the ChooseFont function
should not allow vector-font selections.
This flag has the same value as
CF_NOVECTORFONTS.

Specifies that the ChooseFont function
should not allow graphics-device-
interface (GDI) font simulations.

Specifies that there is no selection in the
Size combo box. Applications use this
flag to support multiple size selections.
This flag is set on input and output.

Specifies that there is no selection in the
Font Style combo box. Applications use
this flag to support multiple style selec-
tions. This flag is set on input and output.

CHOOSEFONT

249

Value

Meaning

CF_NOVECTORFONTS

CF_PRINTERFONTS

CF_SCALABLEONLY

CF_SCREENFONTS

CF_SHOWHELP

CF_USESTYLE

CF_WYSIWYG

Specifies that the ChooseFont function
should not allow vector-font selections.
This flag has the same value as
CF_NOOEMFONTS.

Causes the dialog box to list only the fonts
supported by the printer associated with
the device context or information context
that is identified by the hDC member.

Specifies that the ChooseFont function
should allow the selection of only scalable
fonts. (Scalable fonts include vector fonts,
some printer fonts, TrueType fonts, and
fonts that are scaled by other algorithms
or technologies.)

Causes the dialog box to list only the
screen fonts supported by the system.

Causes the dialog box to show the Help
button. If this option is specified, the
hwndOwner must not be NULL.

Specifies that the IpszStyle member
points to a buffer that contains a style-
description string that the ChooseFont
function should use to initialize the Font
Style box. When the user chooses the OK
button to close the dialog box, the
ChooseFont function copies the style
description for the user’s selection to this
buffer.

Specifies that the ChooseFont function
should allow the selection of only fonts
that are available on both the printer and
the screen. If this flag is set, the
CF_BOTH and CF_SCALABLEONLY
flags should also be set.

These flags may be set when the structure is initialized, except where specified.

rgbColors

If the CF_EFFECTS flag is set, this member contains the red, green, and blue
(RGB) values the ChooseFont function should use to set the text color. After
the user chooses the OK button to close the dialog box, this member contains
the RGB values of the color the user selected.

This member is filled on input and output.

250

CHOOSEFONT

ICustData
Specifies application-defined data that the application passes to the hook func-
tion. The system passes a pointer to the CHOOSEFONT data structure in the
[Param parameter of the WM_INITDIALOG message; the ICustData member
can be retrieved using this pointer.

IpfnHook
Points to a hook function that processes messages intended for the
dialog box. To enable the hook function, an application must specify the
CF_ENABLEHOOK value in the Flags member; otherwise, the system ignores
this structure member. The hook function must return zero to pass a message
that it didn’t process back to the dialog box procedure in COMMDLG.DLL.
The hook function must return a nonzero value to prevent the dialog box proce-
dure in COMMDLG.DLL from processing a message it has already processed.

This member is filled on input.

IpTemplateName
Points to a null-terminated string that specifies the name of the resource file for
the dialog box template to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags mem-
ber specifies the CF_ENABLETEMPLATE flag; otherwise, this member is ig-
nored.

This member is filled on input.

hInstance
Identifies a data block that contains the dialog box template specified by the
IpTemplateName member. This member is used only if the Flags member
specifies the CF_ENABLETEMPLATE or the
CF_ENABLETEMPLATEHANDLE flag; otherwise, this member is ignored.

This member is filled on input.

IpszStyle
Points to a buffer that contains a style-description string for the font. If the
CF_USESTYLE flag is set, the ChooseFont function uses the data in this buff-
er to initialize the Font Style box. When the user chooses the OK button to
close the dialog box, the ChooseFont function copies the string in the Font
Style box into this buffer.

The buffer pointed to by IpszStyle must be at least LF_FACESIZE bytes long.

This member is filled on input and output.

CHOOSEFONT 251

nFontType
Specifies the type of the selected font. This member can be one or more of the
values in the following list:

Value Meaning

BOLD_FONTTYPE Specifies that the font is bold. This value applies
only to TrueType fonts. This value corresponds to
the value of the ntmFlags member of the
NEWTEXTMETRIC structure.

ITALIC_FONTTYPE Specifies that the font is italic. This value applies
only to TrueType fonts. This value corresponds to
the value of the ntmFlags member of the

NEWTEXTMETRIC structure.
PRINTER_FONTTYPE Specities that the font is a printer font.
REGULAR_FONTTYPE Specifies that the font is neither bold nor italic.

This value applies only to TrueType fonts. This
value corresponds to the value of the ntmFlags
member of the NEWTEXTMETRIC structure.

SCREEN_FONTTYPE Specifies that the font is a screen font.

SIMULATED_FONTTYPE Specifies that the font is simulated by GDI. This is
not set if the CF_NOSIMULATIONS flag is set.

nSizeMin
Specifies the minimum point size that a user can select. The ChooseFont func-
tion will recognize this member only if the CF_LIMITSIZE flag is set.

This member is filled on input.

nSizeMax
Specifies the maximum point size that a user can select. The ChooseFont func-
tion will recognize this member only if the CF_LIMITSIZE flag is set.

This member is filled on input.

See Also ChooseFont

252 CLASSENTRY

CLASSENTRY

Members

See Also

f#include <toolhelp.h>

typedef struct tagCLASSENTRY { /x ce */
DWORD dwSize;
HMODULE hlInst;
char szClassName[MAX_CLASSNAME + 17;
WORD wNext;

} CLASSENTRY;

The CLASSENTRY structure contains the name of a Windows class and a near
pointer to the next class in the list. For more information about Windows classes,
see the GetClassInfo function in the Microsoft Windows Programmer’s
Reference, Volume 2.

dwSize
Specifies the size of the CLASSENTRY structure, in bytes.

hlnst
Identifies the instance handle of the task that owns the class. An application
needs this handle to call GetClassInfo. The hInst member is really a handle to
a module, since Windows classes are owned by modules. Therefore, this hInst
will not match the hInst passed as a parameter to the WinMain function of the
owning task.

szClassName
Specifies the null-terminated string that contains the class name. An application
needs this name to call GetClassInfo.

wNext
Specifies the next class in the list. This member is reserved for internal use by
Windows.

ClassFirst, ClassNext

CLIENTCREATESTRUCT 253

CLIENTCREATESTRUCT

typedef struct tagCLIENTCREATESTRUCT { /% ccs */
HANDLE hWindowMenu;
UINT idFirstChild;

} CLIENTCREATESTRUCT;

The CLIENTCREATESTRUCT structure contains information about the menu
and first multiple document interface (MDI) child window of an MDI client win-
dow. An application passes a long pointer to this structure as the [pParam parame-
ter of the CreateWindow function when creating an MDI client window.

Members hWindowMenu
Identifies the menu handle of the application’s Window menu. An application
can retrieve this handle from the menu of the MDI frame window by using the
GetSubMenu function.

idFirstChild
Specifies the child window identifier of the first MDI child window created.
Windows increments the identifier for each additional MDI child window that
the application creates, and reassigns identifiers when the application destroys a
window to keep the range of identifiers continuous. These identifiers are used
in WM_COMMAND messages to the application’s MDI frame window when a
child window is selected from the Window menu; they should not conflict with
any other command identifiers.

See Also CreateWindow, GetSubMenu

254 COMPAREITEMSTRUCT

COMPAREITEMSTRUCT

Members

typedef struct tagCOMPAREITEMSTRUCT { /* cis *x/
UINT Ctl1Type;
UINT Ct11ID;
HWND hwndItem;
UINT itemIDl;
DWORD itemDatal;
UINT itemlID2;
DWORD itemData2;
} COMPAREITEMSTRUCT;

The COMPAREITEMSTRUCT structure supplies the identifiers and applica-
tion-supplied data for two items in a sorted owner-drawn combo box or list box.

Whenever an application adds a new item to an owner-drawn combo or list box
created with the CBS_SORT or LBS_SORT style, Windows sends the owner a
WM_COMPAREITEM message. The /Param parameter of the message contains
a long pointer to a COMPAREITEMSTRUCT structure. When the owner re-
ceives the message, it compares the two items and returns a value indicating which
item sorts before the other. For more information, see the description of the
WM_COMPAREITEM message in Chapter 2, “Messages.”

CtlType
Specifies ODT_LISTBOX (which identifies an owner-drawn list box) or
ODT_COMBOBOX (which identifies an owner-drawn combo box).

CtlID
Specifies the identifier of the list box or combo box.

hwndItem
Identifies the control.

itemID1
Specifies the index of the first item in the list box or combo box being com-
pared.

itemDatal
Specifies application-supplied data for the first item being compared. (This
value was passed as the IParam parameter of the message that added the item to
the combo box or list box.)

itemID2
Specifies the index of the second item in the list box or combo box being com-
pared.

itemData2
Specifies application-supplied data for the second item being compared. This
value was passed as the [Param parameter of the message that added the item to
the combo box or list box.

COMSTAT 255

COMSTAT]

typedef struct tagCOMSTAT { /* cmst */
BYTE status; /* status of transmission */
UINT cbInQue; /* count of characters in Rx Queue */
UINT cbOutQue; /* count of characters in Tx Queue */
} COMSTAT;

The COMSTAT structure contains information about a communications device.

Members status
Specifies the status of the transmission. This member can be one or more of the
following flags:
Flag Meaning
CSTF_CTSHOLD Specifies whether transmission is waiting for the CTS
(clear-to-send) signal to be sent.
CSTF_DSRHOLD Specifies whether transmission is waiting for the DSR

(data-set-ready) signal to be sent.

CSTF_RLSDHOLD Specifies whether transmission is waiting for the RLSD
(receive-line-signal-detect) signal to be sent.

CSTF_XOFFHOLD Specifies whether transmission is waiting as a result of the
XOFF character being received.

CSTF_XOFFSENT Specifies whether transmission is waiting as a result of the
XOFF character being transmitted. Transmission halts
when the XOFF character is transmitted and used by sys-
tems that take the next character as XON, regardless of the
actual character.

CSTF_EOF Specifies whether the end-of-file (EOF) character has been
received.
CSTF_TXIM Specifies whether a character is waiting to be transmitted.
cbInQue
Specifies the number of characters in the receive queue.
cbOutQue

Specifies the number of characters in the transmit queue.

See Also GetCommError

256 CONVCONTEXT

CONVCONTEXT

Members

See Also

#include <ddeml.h>

typedef struct tagCONVCONTEXT { /* cc */
UINT ch;
UINT wFlags;
UINT wCountryID;
int iCodePage;
DWORD dwlLanglID;
DWORD dwSecurity;

} CONVCONTEXT;

The CONVCONTEXT structure contains information that makes it possible for
applications to share data in several different languages.

cb
Specifies the size, in bytes, of the CONVCONTEXT structure.

wFlags
Specifies conversation-context flags. Currently, no flags are defined for this
member.

wCountryID
Specifies the country-code identifier for topic-name and item-name strings.
iCodePage
Specifies the code page for topic-name and item-name strings. Unilingual
clients should set this member to CP_WINANSI. An application that uses the
OEM character set should set this member to the value returned by the GetKB-
CodePage function. For more information about the OEM character set, see the
Microsoft Windows Guide to Programming.

dwLangID
Specifies the language identifier for topic-name and item-name strings.

dwSecurity
Specifies a private (application-defined) security code.

GetKBCodePage

CONVINFO 257

CONVINFO

Members

[3.1]

#include <ddeml.h>

typedef struct tagCONVINFO { /* ci */
DWORD cb;
DWORD hUser;
HCONV hConvPartner;

HSZ hszSvcPartner;
HSZ hszServiceReq;
HSZ hszTopic;

HSZ hszItem;

UINT wFmt;

UINT wType;

UINT wStatus;

UINT wConvst;

UINT wlLastError;

HCONVLIST hConvlList;

CONVCONTEXT ConvCtxt;
} CONVINFO;

The CONVINFO structure contains information about a dynamic data exchange
(DDE) conversation.

cb
Specifies the length of the structure, in bytes.

hUser
Identifies application-defined data.

hConvPartner
Identifies the partner application in the DDE conversation. If the partner has not
registered itself (by using the Ddelnitialize function) to make DDE Manage-
ment Library (DDEML) function calls, this member is set to 0. An application
should not pass this member to any DDEML function except DdeQuery-
ConvlInfo.

hszSvcPartner
Identifies the service name of the partner application.

hszServiceReq
Identifies the service name of the server application that was requested for con-
nection.

hszTopic
Identifies the name of the requested topic.

hszItem
Identifies the name of the requested item. This member is transaction-specific.

258 CONVINFO

wFmt
Specifies the format of the data being exchanged. This member is transaction-
specific.

wType
Specifies the type of the current transaction. This member is transaction-
specific and can be one of the following values:

Value Meaning

XTYP_ADVDATA Informs a client that advise data from a server
has arrived.

XTYP_ADVREQ Requests that a server send updated data to the

client during an advise loop. This transaction re-
sults when the server calls the DdePostAdvise

function.
XTYP_ADVSTART Requests that a server begin an advise loop
with a client.
XTYP_ADVSTOP Notifies a server that an advise loop is ending.
XTYP_CONNECT Requests that a server establish a conversation

with a client.

XTYP_CONNECT_CONFIRM Notifies a server that a conversation with a
client has been established.

XTYP_DISCONNECT Notifies a server that a conversation has termi-
nated.
XTYP_ERROR Notifies a DDEML application that a critical

error has occurred. The DDEML may have in-
sufficient resources to continue.

XTYP_EXECUTE Requests that a server execute a command sent
by a client.

XTYP_MONITOR Notifies an application registered as
APPCMD_MONITOR of DDE data being
transmitted.

XTYP_POKE Requests that a server accept unsolicited data
from a client.

XTYP_REGISTER Notifies other DDEML applications that a
server has registered a service name.

XTYP_REQUEST Requests that a server send data to a client.

XTYP_UNREGISTER Notifies other DDEML applications that a
server has unregistered a service name.

XTYP_WILDCONNECT Requests that a server establish multiple con-
versations with the same client.

XTYP_XACT_COMPLETE Notifies a client that an asynchronous data

transaction has completed.

CONVINFO 259

See Also

wStatus
Specifies the status of the current conversation. This member can be a combina-
tion of the following values:

ST_ADVISE ST_INLIST
ST_BLOCKED ST_ISLOCAL
ST_BLOCKNEXT ST_ISSELF
ST_CLIENT ST_TERMINATED

ST_CONNECTED

wConvst
Specifies the conversation state. This member can be one of the following
values:

XST_ADVACKRCVD XST_INIT1
XST_ADVDATAACKRCVD XST_INIT2
XST_ADVDATASENT XST_NULL
XST_ADVSENT XST_POKEACKRCVD
XST_CONNECTED XST_POKESENT
XST_DATARCVD XST_REQSENT
XST_EXECACKRCVD XST_UNADVACKRCVD
XST_EXECSENT XST_UNADVSENT
XST_INCOMPLETE
wLastError
Specifies the error value associated with the last transaction.
hConvList

If the handle of the current conversation is in a conversation list, identifies the
conversation list. Otherwise, this member is NULL.

ConvCtxt
Specifies the conversation context.

CONVCONTEXT

260 CPLINFO

CPLINFO

Members

#include <cpl.h>

typedef struct tagCPLINFO { /% cpli */
int idIcon;
int idName;
int idInfo;
LONG T1Data;
} CPLINFO;

The CPLINFO structure contains resource information and a user-defined value
for an extensible Control Panel application.

idIcon
Specifies an icon resource identifier for the application icon. This icon is dis-
played in the Control Panel window.

idName
Specifies a string resource identifier for the application name. The name is the
short string displayed below the application icon in the Control Panel window.
The name is also displayed on the Settings menu of Control Panel.

idInfo
Specifies a string resource identifier for the application description. The descrip-
tion is the descriptive string displayed at the bottom of the Control Panel win-
dow when the application icon is selected.

IData
Specifies user-defined data for the application.

CREATESTRUCT 261

CREATESTRUCT [2x]

Members

typedef struct tagCREATESTRUCT { /* Ccs *x/
void FAR* TpCreateParams;
HINSTANCE hlInstance;

HMENU hMenu;

HWND hwndParent;
int cy;

int CcX;

int y;

int X3

LONG style;

LPCSTR 1pszName;

LPCSTR 1pszClass;

DWORD dwExStyle;
} CREATESTRUCT;

The CREATESTRUCT structure defines the initialization parameters passed to
the window procedure of an application.

IpCreateParams
Points to data to be used for creating the window.

hInstance
Identifies the module-instance handle of the module that owns the new window.

hMenu
Identifies the menu to be used by the new window.

hwndParent
Identifies the window that owns the new window. This member is NULL if the
new window is a top-level window.

cy
Specifies the height of the new window.

cx
Specifies the width of the new window.

Specifies the y-coordinate of the upper-left corner of the new window. Coordi-
nates are relative to the parent window if the new window is a child window.
Otherwise, the coordinates are relative to the screen origin.

Specifies the x-coordinate of the upper-left corner of the new window. Coordi-
nates are relative to the parent window if the new window is a child window.
Otherwise, the coordinates are relative to the screen origin.

style

Specifies the style for the new window.

262 CTLINFO

See Also

IpszName
Points to a null-terminated string that specifies the name of the new window.

IpszClass

Points to a null-terminated string that specifies the class name of the new win-
dow.

dwExStyle
Specifies extended style for the new window.

CreateWindow

CTLINFO

Members

#include <custcntl.h>

typedef struct tagCTLINFO {

UINT wVersion; /* control version */

UINT wCt1Types; /* control types */

char szClass[CTLCLASS]; /* control class name */

char szTit1e[CTLTITLE]; /* control title */

char szReserved[10]; /* reserved for future use */

CTLTYPE Type[CTLTYPES]; /* control type list */
} CTLINFO;

The CTLINFO structure defines the class name and version number for a custom
control. The CTLINFO structure also contains an array of CTLTYPE structures,
each of which lists commonly used combinations of control styles (called vari-
ants), with a short description and information about the suggested size.

wVersion
Specifies the control version number. Although you can start your numbering
scheme from one digit, most implementations use the lower two digits to repre-
sent minor releases.

wCtlTypes
Specifies the number of control types supported by this class. This value should
always be greater than zero and less than or equal to the CTLTYPES value.

szClass
Specifies a null-terminated string that contains the control class name supported
by the dynamic-link library (DLL). This string should be no longer than the
CTLCLASS value.

CTLSTYLE 263

Comments

See Also

szTitle
Specifies a null-terminated string that contains various copyright or author in-

formation relating to the control library. This string should be no longer than
the CTLTITLE value.

Type
Specifies an array of CTLTYPE structures containing information that relates
to each of the control types supported by the class. There should be no more ele-
ments in the array than specified by the CTLTYPES value.

An application calls the ClassInfo function to retrieve basic information about the
control library. Based on the information returned, the application can create in-
stances of a control by using one of the supported styles. For example, Dialog
Editor calls this function to query a library about the different control styles it can
display.

The return value of the ClassInfo function identifies a CTLINFO structure if the
function is successful. This information becomes the property of the caller, which
must explicitly release it by using the GlobalFree function when the structure is
no longer needed.

CTLSTYLE, CTLTYPE

CTLSTYLE

#include <custecntl.h>

typedef struct tagCTLSTYLE {

UINT wX; /* x-origin of control */
UINT wY; /* y-origin of control */
UINT wCx; /* width of control */
UINT wCy; /* height of control */
UINT wid; /* control child id */
DWORD dwStyle; /* control style */
char szClass[CTLCLASS]; /= name of control class */
char szTit1e[CTLTITLE]; /* control text */
} CTLSTYLE;

The CTLSTYLE structure specifies the attributes of the selected control, includ-
ing the current style flags, location, dimensions, and associated text.

264 CTLSTYLE

Members

Comments

See Also

wX
Specifies the x-origin, in screen coordinates, of the control relative to the client
area of the parent window.

wY
Specifies the y-origin, in screen coordinates, of the control relative to the client
area of the parent window.

wCx
Specifies the current control width, in screen coordinates.

wCy
Specifies the current control height, in screen coordinates.

wld
Specifies the current control identifier. In most cases, you should not allow the
user to change this value because Dialog Editor automatically coordinates it
with a header file.

dwStyle
Specifies the current control style. The high-order word contains the control-
specific flags, and the low-order word contains the Windows-specific flags.
You may let the user change these flags to any values supported by your control
library.

szClass
Specifies a null-terminated string representing the name of the current control
class. You should not allow the user to edit this member, because it is provided

for informational purposes only. This string should be no longer than the
CTLCLASS value.

szTitle
Specifies with a null-terminated string the text associated with the control.
This text is usually displayed inside the control or may be used to store other
associated information required by the control. This string should be no longer
than the CTLTITLE value.

An application calls the ClassStyle function to display a dialog box to edit the
style of the selected control. When this function is called, it should display a
modal dialog box in which the user can edit the CTLSTYLE members. The user
interface of this dialog box should be consistent with that of the predefined con-
trols that Dialog Editor supports.

CTLINFO, CTLTYPE

CTLTYPE 265

CTLTYPE

Members

See Also

[31]

#include <custcntl.h>

typedef struct tagCTLTYPE {

UINT wlype; /* type style */

UINT wWidth; /* suggested width =*/

UINT wHeight; /* suggested height x/

DWORD dwStyle; /* default style */

char szDescr[CTLDESCR]; /* menu name */
} CTLTYPE;

The CTLTYPE structure contains information about a control in a particular
class. The CTLINFO structure includes an array of CTLTYPE structures.

wType
Reserved; must be zero.

wWidth
Specifies the suggested width of the control when created with Dialog Editor.
The width is specified in resource-compiler coordinates.

wHeight
Specifies the suggested height of the control when created using Dialog Editor.
The height is specified in resource-compiler coordinates.

dwStyle
Specifies the initial style bits used to obtain this control type. This value in-
cludes the control-defined flags in the high-order word and the Windows-
defined flags in the low-order word.

szDescr
Defines the name to be used by other development tools when referring to this
particular variant of the base control class. Dialog Editor does not refer to this
information. This string should not be longer than the CTLDESCR value.

CTLINFO, CTLSTYLE

266 DCB

DCB [2x]

typedef struct tagDCB /* dcb */

{
BYTE Id; /* internal device identifier */
UINT BaudRate; /* baud rate */
BYTE ByteSize; /* number of bits/byte, 4-8 */
BYTE Parity; /* @-4=none,odd,even,mark,space */
BYTE StopBits; /* 0,1,2 =1, 1.5, 2 */
UINT RTsTimeout; /* timeout for RLSD to be set */
UINT CtsTimeout; /* timeout for CTS to be set */
UINT DsrTimeout; /* timeout for DSR to be set */
UINT fBinary :1; /% binary mode (skip EOF check) */
UINT fRtsDisable :1; /% don't assert RTS at init time */
UINT fParity :1; /% enable parity checking */
UINT fOutxCtsFlow :1; /% CTS handshaking on output */
UINT fOutxDsrFlow :1; /* DSR handshaking on output */
UINT fDummy :2; /* reserved */
UINT fDtrDisable :1; /% don't assert DTR at init time */
UINT fOutX :1; /% enable output XON/XOFF */
UINT fInX :1; /% enable input XON/XOFF */
UINT fPeChar :1; /% enable parity err replacement */
UINT fNull :1; /% enable null stripping */
UINT fChEvt :1; /* enable Rx character event - */
UINT fDtrflow :1; /* DTR handshake on input */
UINT fRtsflow :1; /* RTS handshake on input // */
UINT fDummy2 :1;
char XonChar; /* Tx and Rx XON character */
char XoffChar; /* Tx and Rx XOFF character */
UINT XonLim; /* transmit XON threshold */
UINT XoffLim; /* transmit XOFF threshold */
char PeChar; /* parity error replacement char */
char EofChar; /* end of Input character */
char EvtChar; /* received event character */
UINT TxDelay; /* amount of time between chars */

} DCB;
The DCB structure defines the control setting for a serial communications device.

Members Id
Specifies the communication device. This value is set by the device driver. If
the most significant bit is set, the DCB structure is for a parallel device.

BaudRate
Specifies the baud rate at which the communications device operates. If the
value of the high-order byte is equal to OxFF, the low-order byte specifies a
baud-rate index. The index can be one of the following values:

DCB 267

CBR_110
CBR_4400
CBR_9200
CBR_8400
CBR_6000
CBR_28000
CBR_9600

CBR_14400
CBR_19200
CBR_38400
CBR_56000
CBR_128000
CBR_256000

If the high-order byte is not equal to OxFF, this parameter specifies the actual

baud rate.
ByteSize

Specifies the number of bits in the characters transmitted and received. This

member can be
Parity

any number from 4 through 8.

Specifies the parity scheme to be used. This member can be any one of the fol-

lowing values:

Value Meaning

EVENPARITY Even

MARKPARITY Mark

NOPARITY No parity

ODDPARITY Odd
StopBits

Specifies the number of stop bits to be used. This member can be any one of the
following values:

Value Meaning

ONESTOPBIT 1 stop bit

ONESSTOPBITS 1.5 stop bits

TWOSTOPBITS 2 stop bits
RilsTimeout

Specifies the maximum amount of time, in milliseconds, the device should wait
for the RLSD (receive-line-signal-detect) signal. RLSD is also known as the
carrier-detect (CD) signal.

CtsTimeout

Specifies the maximum amount of time, in milliseconds, the device should wait
for the CTS (clear-to-send) signal.

DsrTimeout

Specifies the maximum amount of time, in milliseconds, the device should wait
for the DSR (data-set-ready) signal.

268 DCB

fBinary
Specifies binary mode. In nonbinary mode, the Eof Char character is recog-
nized on input and remembered as the end of data.

fRtsDisable
Specifies whether or not the RTS (request-to-send) signal is disabled. If this
member is set, RTS is not used and remains low. If this member is clear, RTS is
sent when the device is opened and turned off when the device is closed.

fParity
Specifies whether parity checking is enabled. If this member is set, parity check-
ing is performed and errors are reported.

fOutxCtsFlow
Specifies that CTS (clear-to-send) signal is to be monitored for output flow con-
trol. If this member is set and CTS is turned off, output is suspended until CTS
is again sent.

fOutxDsrFlow
Specifies that the DSR (data-set-ready) signal is to be monitored for output
flow control. If this member is set and DSR is turned off, output is suspended
until DSR is again sent.

fDummy
Reserved.

fDtrDisable
Specifies whether the DTR (data-terminal-ready) signal is disabled. If this mem-
ber is set, DTR is not used and remains low. If this member is clear, DTR is
sent when the device is opened and turned off when the device is closed.

fOutX
Specifies that XON/XOFF flow control is used during transmission. If this
member is set, transmission stops when the XoffChar character is received and
starts again when the XonChar character is received.

fInX
Specifies that XON/XOFF flow control is used during reception. If this mem-
ber is set, the XonChar character is sent when the reception queue comes
within XoffLim characters of being full and the XonChar character is sent
when the reception queue comes within XonLim characters of being empty.

fPeChar
Specifies that characters received with parity errors are to be replaced with the
character specified by this member. This member must be set for the replace-
ment to occur.

fNull
Specifies that received null characters are to be discarded.

DCB 269

See Also

fChEvt
Specifies that reception of the EvtChar character is to be flagged as an event.

fDtrflow
Specifies that the DTR (data-terminal-ready) signal is to be used for reception
flow control. If this member is set, DTR is turned off when the reception queue
comes within XoffLim characters of being full and sent when the reception
queue comes within XonLim characters of being empty.

fRtsflow
Specifies that the RTS (ready-to-send) signal is to be used for reception flow
control. If this member is set, RTS is turned off when the reception queue
comes within XoffLim characters of being full, and sent when the reception
queue comes within XonLim characters of being empty.

fDummy2
Reserved.

XonChar
Specifies the value of the XON character for both transmission and reception.

XoffChar
Specifies the value of the XOFF character for both transmission and reception.

XonLim
Specifies the minimum number of characters allowed in the reception queue
before the XON character is sent.

XoffLim
Specifies the maximum number of characters allowed in the reception queue
before the XOFF character is sent. The value of the XoffLim member is sub-
tracted from the size of the reception queue, in bytes, to calculate the maximum
number of characters allowed.

PeChar
Specifies the value of the character used to replace characters received with a
parity error.

EofChar
Specifies the value of the character used to signal the end of data.

EvtChar
Specifies the value of the character used to signal an event.

TxDelay
Not currently used.

BuildCommDCB, GetCommState, SetCommState

270 DDEACK

DDEACK

Members

See Also

#include <dde.h>

typedef struct tagDDEACK { /* ddeack =/
WORD bAppReturnCode:8,
reserved:6,
fBusy:1,
fAck:1;
} DDEACK;

The DDEACK structure contains status flags that a DDE application passes to its
partner as part of the WM_DDE_ACK message. The flags provide details about
the application’s response to a WM_DDE_ADVISE, WM_DDE_DATA,
WM_DDE_EXECUTE, WM_DDE_REQUEST, WM_DDE_POKE, or
WM_DDE_UNADVISE message.

bAppReturnCode
Specifies an application-defined return code.

fBusy
Indicates whether the application was busy and unable to respond to the part-
ner’s message at the time the message was received. A nonzero value indicates
the server was busy and unable to respond. The fBusy member is defined only
when the fAck member is zero.

fAck
Indicates whether the application accepted the message from its partner. A non-
zero value indicates the server accepted the message.

WM_DDE_ACK, WM_DDE_ADVISE, WM_DDE_DATA,
WM_DDE_EXECUTE, WM_DDE_REQUEST, WM_DDE_POKE,
WM_DDE_UNADVISE,

DDEADVISE 2N

DDEADVISE

Members

See Also

[2x]

#include <dde.h>

typedef struct tagDDEADVISE { /* ddeadv */
WORD reserved:14,
fDeferUpd:1,
fAckReq:1;
short cfFormat;
} DDEADVISE;

The DDEADVISE structure contains flags that specify how a server should
send data to a client during an advise loop. A client passes the handle of a
DDEADVISE structure to a server as part of a WM_DDE_ADVISE message.

fDeferUpd
Indicates whether the server should defer sending updated data to the client. A
nonzero value tells the server to send a WM_DDE_DATA message with a
NULL data handle whenever the data item changes. In response, the client can
posta WM_DDE_REQUEST message to the server to obtain a handle to the
updated data.

fAckReq
Indicates whether the server should set the fAckReq flag in the
WM_DDE_DATA messages that it posts to the client. A nonzero value tells the
server to set the fAckReq bit.

cfFormat
Specifies the client application’s preferred data format. The format must be a
standard or registered clipboard format. The following standard clipboard for-
mats may be used:

CF_BITMAP CF_OEMTEXT
CF_DCF_OEMTEXT CF_PALETTE
CF_DCF_PALETTE CF_PENDATA
CF_DCF_PENDATA CF_SYLK
CF_DCF_SYLK CF_TEXT
CF_DCF_TEXT CF_TIFF
CF_METAFILEPICT

WM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_UNADVISE

272 DDEDATA

DDEDATA

Members

See Also

#include <dde.h>

typedef struct tagDDEDATA { /* ddedat */
WORD unused:12,
fResponse:1,
fRelease:1,
reserved:1,
fAckReq:1;
short cfFormat;
BYTE Value[1];
} DDEDATA;

The DDEDATA structure contains the data and information about the data sent as
part of a WM_DDE_DATA message.

fResponse
Indicates whether the application receiving the WM_DDE_DATA message
should acknowledge receipt of the data by sending a WM_DDE_ACK mes-
sage. A nonzero value indicates the application should send the acknow-
ledgment.

fRelease
Indicates if the application receiving the WM_DDE_POKE message should
free the data. A nonzero value indicates the data should be freed.

fAckReq
Indicates whether the data was sent in response to a WM_DDE_REQUEST
message or a WM_DDE_ADVISE message. A nonzero value indicates the data
was sent in response to a WM_DDE_REQUEST message.

cfFormat
Specifies the format of the data. The format should be a standard or registered
clipboard format. The following standard clipboard formats may be used:

CF_BITMAP CF_OEMTEXT
CF_DCF_OEMTEXT CF_PALETTE
CF_DCF_PALETTE CF_PENDATA
CF_DCF_PENDATA CF_SYLK
CF_DCF_SYLK CF_TEXT
CF_DCF_TEXT CF_TIFF
CF_METAFILEPICT

WM_DDE_ACK, WM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_POKE,
WM_DDE_REQUEST

DDEPOKE 273

DDEPOKE 2]

#include <dde.h>

typedef struct tagDDEPOKE { /% ddepok */
WORD unused:13,
fRelease:1,
fReserved:2;
short cfFormat;
BYTE Value[l];
} DDEPOKE;

The DDEPOKE structure contains the data and information about the data sent as
part of a WM_DDE_POKE message.

Members fRelease
Indicates if the application receiving the WM_DDE_POKE message should
free the data. A nonzero value specifies the data should be freed.

cfFormat
Specifies the format of the data. The format should be a standard or registered
clipboard format. The following standard clipboard formats may be used:

CF_BITMAP CF_OEMTEXT
CF_DCF_OEMTEXT CF_PALETTE

CF_DCF_PALETTE CF_PENDATA
CF_DCF_PENDATA CF_SYLK

CF_DCF_SYLK CF_TEXT
CF_DCF_TEXT CF_TIFF
CF_METAFILEPICT
Value
Contains the data. The size of this array depends on the value of the cfFormat
member.

See Also WM_DDE_POKE

274 DEBUGHOOKINFO

DEBUGHOOKINFO 5]

Members

See Also

typedef struct tagDEBUGHOOKINFO {
HMODULE hModuleHook;
LPARAM reserved;
LPARAM 1Param;
WPARAM wParam;
int code;
} DEBUGHOOKINFO;

The DEBUGHOOKINFO structure contains debugging information.

hModuleHook
Identifies the module containing the filter function.

reserved
Not used.

IParam
Specifies the value to be passed to the hook in the /Param parameter of the
DebugProc callback function.

wParam
Specifies the value to be passed to the hook in the wParam parameter of the
DebugProc callback function.

code
Specifies the value to be passed to the hook in the code parameter of the Debug-
Proc callback function.

DebugProc, SetWindowsHook

DELETEITEMSTRUCT

typedef struct tagDELETEITEMSTRUCT { /* deli =/
UINT Ctl1Type;
UINT Ct11ID;
UINT itemID;
HWND hwndItem;
DWORD itemData;
} DELETEITEMSTRUCT;

The DELETEITEMSTRUCT structure describes a deleted owner-drawn
list-box or combo-box item. When an item is removed from the list box or
combo box or when the list box or combo box is destroyed, Windows sends the

DEVMODE

275

Members

See Also

WM_DELETEITEM message to the owner for each deleted item. The [Param
parameter of the message contains a pointer to this structure.

CtlType
Contains ODT_LISTBOX (which specifies an owner-drawn list box) or
ODT_COMBOBOX (which specifies an owner-drawn combo box).

CtlID
Contains the control identifier for the list box or combo box.

itemID
Contains the index of the item in the list box or combo box being removed.

hwndItem
Contains the window handle of the control.

itemData
Contains the value passed to the control in the /Param parameter of the
LB_INSERTSTRING, LB_ADDSTRING, CB_INSERTSTRING, or
CB_ADDSTRING message when the item was added to the list box.

WM_DELETEITEM

DEVMODE

#include <print.h>

typedef struct tagDEVMODE { /% dm */
char dmDeviceName[CCHDEVICENAME];
UINT dmSpecVersion;
UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORD dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperlLength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmDefaultSource;
int dmPrintQuality;
int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;
} DEVMODE;

276 DEVMODE

Members

The DEVMODE structure contains information about a printer driver’s initializa-
tion and environment data. An application passes this structure to the Device-
Capabilities and ExtDeviceMode functions.

dmDeviceName
Specifies the name of the device the driver supports—for example, “PCL/HP
LaserJet” in the case of the Hewlett-Packard LaserJet. Each driver has a unique
string.

dmSpecVersion
Specifies the version number of the DEVMODE structure. For Windows ver-
sion 3.1, this value should be 0x30A.

dmDriver Version
Specifies the printer driver version number assigned by the printer driver
developer.

dmSize
Specifies the size, in bytes, of the DEVMODE structure. (This value does not
include the optional dmDriverData member for device-specific data, which
can follow the structure.) If an application manipulates only the driver-inde-
pendent portion of the data, it can use this member to find out the length of the
structure without having to account for different versions.

dmDriverExtra
Specifies the size, in bytes, of the optional dmDriverData member for device-
specific data, which can follow the structure. If an application does not use
device-specific information, it should set this member to zero.

dmPFields
Specifies a set of flags that indicate which of the remaining members in the

DEVMODE structure have been initialized. It can be any combination (or it
can be none) of the following values:

Constant Value

DM_ORIENTATION 0x0000001L
DM_PAPERSIZE 0x0000002L
DM_PAPERLENGTH 0x0000004L
DM_PAPERWIDTH 0x0000008L
DM_SCALE 0x0000010L
DM_COPIES 0x0000100L
DM_DEFAULTSOURCE 0x0000200L
DM_PRINTQUALITY 0x0000400L
DM_COLOR 0x0000800L
DM_DUPLEX 0x0001000L
DM_YRESOLUTION 0x0002000L
DM_TTOPTION 0x0004000L

DEVMODE

277

A printer driver supports only those members that are appropriate for the

printer technology.

dmOrientation

Specifies the orientation of the paper. It can be either
DMORIENT_PORTRAIT or DMORIENT_LANDSCAPE.

dmPaperSize
Specifies the size of the paper to print on. This member may be set to zero

if the length and width of the paper are specified by the dmPaperLength and
dmPaperWidth members, respectively. Otherwise, the dmPaperSize member
can be set to one of the following predefined values:

Value

Meaning

DMPAPER_FIRST
DMPAPER_LETTER

DMPAPER_LETTERSMALL

DMPAPER_TABLOID
DMPAPER_LEDGER
DMPAPER_LEGAL
DMPAPER_STATEMENT
DMPAPER_EXECUTIVE

DMPAPER_LETTER
Letter, 8 1/2 x 11 in.

Letter Small, 8 1/2 x 11 in.
Tabloid, 11 x 17 in.

Ledger, 17 x 11 in.

Legal, 8 1/2 x 14 in.
Statement, 5 1/2 X 8 1/2 in.
Executive, 7 1/2 x 10 1/2 in.

DMPAPER_A3 A3,297 x 420 mm
DMPAPER_A4 A4,210 % 297 mm
DMPAPER_A4SMALL A4 Small, 210 X 297 mm
DMPAPER_AS A5, 148 x 210 mm
DMPAPER_B4 B4, 250 x 354 mm
DMPAPER_B5 BS, 182 x 257 mm

DMPAPER_FOLIO
DMPAPER_QUARTO
DMPAPER_10X14
DMPAPER_11X17
DMPAPER_NOTE

Folio, 8 1/2 x 13 in.
Quarto, 215 X 275 mm
10 X 14 in.

11 X 17 in.

Note, 8 1/2 x 11 in.

DMPAPER_ENV_9

DMPAPER_ENV_10
DMPAPER_ENV_11
DMPAPER_ENV_12
DMPAPER_ENV_14

Envelope #9, 3 7/8 x 8 7/8 in.
Envelope #10,4 1/8 X9 1/2 in.
Envelope #11,4 1/2 x 10 3/8 in.
Envelope #12,4 1/2 x 11 in.
Envelope #14,5 x 11 1/2 in.

DMPAPER_CSHEET C size sheet
DMPAPER_DSHEET D size sheet
DMPAPER_ESHEET E size sheet

DMPAPER_ENV_DL Envelope DL, 110 X 220 mm

278

DEVMODE

Value

Meaning

DMPAPER_ENV_C3
DMPAPER_ENV_C4
DMPAPER_ENV_C5
DMPAPER_ENV_C6
DMPAPER_ENV_C65
DMPAPER_ENV_B4
DMPAPER_ENV_B5
DMPAPER_ENV_B6
DMPAPER_ENV_ITALY
DMPAPER_ENV_MONARCH
DMPAPER_ENV_PERSONAL
DMPAPER_FANFOLD_US

DMPAPER_FANFOLD_STD_GERMAN

DMPAPER_FANFOLD_LGL_GERMAN
DMPAPER_LAST
DMPAPER_USER

Envelope C3, 324 x 458 mm
Envelope C4, 229 x 324 mm
Envelope C5, 162 x 229 mm
Envelope C6, 114 x 162 mm
Envelope C65, 114 x 229 mm
Envelope B4, 250 x 353 mm
Envelope B5, 176 x 250 mm
Envelope B6, 176 x 125 mm
Envelope, 110 x 230 mm
Envelope Monarch, 3 7/8 X 7 1/2 in.
Envelope, 3 5/8 X 6 1/2 in.

U.S. Standard Fanfold,
147/8 x 11 in.

German Standard Fanfold,
81/2 x 12in.

German Legal Fanfold, 8 1/2 x 13 in.
German Legal Fanfold, 8 1/2 x 13 in.
User-defined

dmPaperLength
Specifies a paper length, in tenths of a millimeter. This parameter overrides the
paper length specified by the dmPaperSize member, either for custom paper
sizes or for such devices as dot-matrix printers that can print on a variety of
page sizes.

dmPaperWidth
Specifies a paper width, in tenths of a millimeter. This parameter overrides the
paper width specified by the dmPaperSize member.

dmScale
Specifies the factor by which the printed output is to be scaled. The apparent
page size is scaled from the physical page size by a factor of dmScale/100. For
example, a letter-size paper with a dmScale value of 50 would contain as much
data as a page of size 17 by 22 inches because the output text and graphics
would be half their original height and width.

dmCopies
Specifies the number of copies printed if the device supports multiple-page co-
pies.

dmDefaultSource
Specifies the default bin from which the paper is fed. The application can over-
ride this value by using the GETSETPAPERBINS escape. This member can be
one of the following values:

DEVMODE 279

DMBIN_AUTO DMBIN_LOWER
DMBIN_CASSETTE DMBIN_MANUAL
DMBIN_ENVELOPE DMBIN_MIDDLE
DMBIN_ENVMANUAL DMBIN_ONLYONE
DMBIN_FIRST DMBIN_SMALLFMT
DMBIN_LARGECAPACITY DMBIN_TRACTOR
DMBIN_LARGEFMT DMBIN_UPPER
DMBIN_LAST

A range of values is reserved for device-specific bins. To be consistent with in-
itialization information, the GETSETPAPERBINS and ENUMPAPERBINS
escapes use these values.

dmPrintQuality
Specifies the printer resolution. Following are the four predefined device-
independent values:

DMRES_HIGH (—4)
DMRES_MEDIUM (-3)
DMRES_LOW (-2)
DMRES_DRAFT (~1)

If a positive value is given, it specifies the number of dots per inch (DPI) and is
therefore device-dependent.

If the printer initializes the dmYResolution member, the dmPrintQuality
member specifies the x-resolution of the printer, in dots per inch.

dmColor
Specifies whether a color printer is to render color or monochrome output.
Possible values are:

DMCOLOR_COLOR (1)
DMCOLOR_MONOCHROME (2)

dmDuplex
Specifies duplex (double-sided) printing for printers capable of duplex printing.
This member can be one of the following values:

DMDUP_SIMPLEX (1)
DMDUP_HORIZONTAL (2)
DMDUP_VERTICAL (3)

dmYResolution
Specifies the y-resolution of the printer, in dots per inch. If the printer initializes
this member, the dmPrintQuality member specifies the x-resolution of the
printer, in dots per inch.

dmTTOption
Specifies how TrueType fonts should be printed. It can be one of the following
values:

280 DEVNAMES

Comments

See Also

Value Meaning

DMTT_BITMAP Print TrueType fonts as graphics. This is the default
action for dot-matrix printers.

DMTT_DOWNLOAD Download TrueType fonts as soft fonts. This is the
default action for Hewlett-Packard printers that use
Printer Control Language (PCL).

DMTT_SUBDEV Substitute device fonts for TrueType fonts. This is the
default action for PostScript printers.

Only drivers that are fully updated for Windows versions 3.0 and later and that
export the ExtDeviceMode function use the DEVMODE structure.

An application can retrieve the paper sizes and names supported by a printer by
calling the DeviceCapabilities function with the DC_PAPERS, DC_PAPERSIZE,
and DC_PAPERNAMES values.

Before setting the value of the dmTTOption member, applications should find
out how a printer driver can use TrueType fonts by calling the DeviceCapabilities
function with the DC_TRUETYPE value.

Drivers can add device-specific data immediately following the DEVMODE
structure.

DeviceCapabilities, ExtDeviceMode

DEVNAMES

#include <commdlg.h>

typedef struct tagDEVNAMES { /* dn =/
UINT wDriverOffset;
UINT wDeviceOffset;
UINT wOutputOffset;
UINT wDefault;
/* optional data may appear here =/
} DEVNAMES;

The DEVNAMES structure contains offsets to strings that specify the driver,
name, and output port of a printer. The PrintDIg function uses these strings to ini-
tialize controls in the system-defined Print dialog box. When the user chooses the
OK button to close the dialog box, information about the selected printer is re-
turned in this structure.

DOCINFO 281

Members

See Also

wDriverOffset
Specifies the offset from the beginning of the structure to a null-terminated
string that specifies the Microsoft MS-DOS® filename (without extension) of
the device driver. On input, this string is used to set which printer to initially
display in the dialog box.

wDeviceOffset
Specifies the offset from the beginning of the structure to the null-terminated
string that specifies the name of the device. This string cannot exceed 32
bytes in length, including the null character, and must be identical to the
dmDeviceName member of the DEVMODE structure.

wOutputOffset
Specifies the offset from the beginning of the structure to the null-terminated
string that specifies the MS-DOS device name for the physical output medium
(output port).

wDefault
Specifies whether the strings specified in the DEVNAMES structure identify
the default printer. It is used to verify that the default printer has not changed
since the last print operation. On input, this member can be set to
DN_DEFAULTPRN. If the DN_DEFAULTPRN flag is set, the other values in
the DEVNAMES structure are checked against the current default printer.

On output, the wDefault member is changed only if the Print Setup dialog box
was displayed and the user chose the OK button to close it. If the default printer
was selected, the DN_DEFAULTPRN flag is set. If a printer is specifically
selected, the flag is not set. All other bits in this member are reserved for inter-
nal use by the dialog box procedure of the Print dialog box.

PrintDlg

DOCINFO

typedef struct { /* di */
int chSize;
LPCSTR TpszDocName;
LPCSTR 1pszOutput;

} DOCINFO;

The DOCINFO structure contains the input and output filenames used by the
StartDoc function.

282 DRAWITEMSTRUCT

Members cbSize
Specifies the size of the structure, in bytes.

IpszDocName
Points to a null-terminated string specifying the name of the document. This
string must not be longer than 32 characters, including the null terminating char-
acter.

IpszOutput
Points to a null-terminated string specifying the name of an output file. This al-
lows a print job to be redirected to a file. If this value is NULL, output goes to
the device for the specified device context.

See Also StartDoc

DRAWITEMSTRUCT

typedef struct tagDRAWITEMSTRUCT { /% ditm =/
UINT CtlType;
UINT Ct1ID;
UINT itemID;
UINT itemAction;
UINT itemState;
HWND hwndItem;
HDC hDC;
RECT rcltem;
DWORD itemData;

} DRAWITEMSTRUCT;

The DRAWITEMSTRUCT structure provides information the owner needs to
determine how to paint an owner-drawn control. The owner of the owner-drawn
control receives a pointer to this structure as the /Param parameter of the
WM_DRAWITEM message.

Members CtlType
Specifies the control type. The values for control types follow:
Value Meaning
ODT_BUTTON Owner-drawn button
ODT_COMBOBOX Owner-drawn combo box
ODT_LISTBOX Owner-drawn list box

ODT_MENU Owner-drawn menu

DRAWITEMSTRUCT 283

CtlID
Specifies the control identifier for a combo box, list box or button. This mem-
ber is not used for a menu.

itemID
Specifies the menu-item identifier for a menu or the index of the item in a list
box or combo box. For an empty list box or combo box, this member is a nega-
tive value. This allows the application to draw only the focus rectangle at the
coordinates specified by the reItem member even though there are no items in
the control. This indicates to the user whether the list box or combo box has
input focus. The itemA ction member determines whether the rectangle is to be
drawn as though the list box or combo box has input focus.

itemAction
Specifies the drawing action required. This member is one or more of the fol-

lowing values:

Value Meaning

ODA_DRAWENTIRE Bit is set when the entire control needs to be drawn.

ODA_FOCUS Bit is set when the control gains or loses input focus.
The itemState member should be checked to determine
whether the control has focus.

ODA_SELECT Bit is set when only the selection status has changed.
The itemState member should be checked to determine
the new selection state.

itemState
Specifies the visual state of the item after the current drawing action takes
place; that is, if a menu item is to be grayed, the state flag ODS_GRAYED will
be set. Following are the state flags:

Value Meaning

ODS_CHECKED Bit is set if the menu item is to be checked. This bit is used
only in a menu.

ODS_DISABLED Bit is set if the item is to be drawn as disabled.

ODS_FOCUS Bit is set if the item has input focus.
ODS_GRAYED Bit is set if the item is to be grayed. This bit is used only in a
menu.

ODS_SELECTED Bit is set if the item’s status is selected.

hwndItem
Specifies the window handle of the control for combo boxes, list boxes, and but-
tons. For menus, it contains the handle of the menu (HMENU) containing the
item.

hDC
Identifies a device context; this device context must be used when performing
drawing operations on the control.

284 DRIVERINFOSTRUCT

rcltem

Specifies a fectangle in the device context identified by the hDC member that
defines the boundaries of the control to be drawn. Windows automatically clips
anything the owner draws in the device context for combo boxes, list boxes,
and buttons, but it does not clip menu items. When drawing menu items, it must
ensure that the owner does not draw outside the boundaries of the rectangle de-

fined by the rcltem member.

itemData
Contains the value last assigned to the list box or combo box by an LB_SET-
ITEMDATA or CB_SETITEMDATA message. If the list box or combo box
has the LBS_HASSTRINGS or CBS_HASSTRINGS style, this value is ini-
tially zero. Otherwise, this value is initially the value that was passed to the list
box or combo box in the [Param parameter of one of the following messages:

CB_ADDSTRING
CB_INSERTSTRING
LB_ADDSTRING
LB_INSERTSTRING

DRIVERINFOSTRUCT

Members

See Also

typedef struct tagDRIVERINFOSTRUCT { /% drvinfst */
UINT length;
HDRVR hDriver;
HINSTANCE hModule;
char szAliasName[128];
} DRIVERINFOSTRUCT;

The DRIVERINFOSTRUCT structure contains basic information about an
installable device driver.

length
Specifies the size of the DRIVERINFOSTRUCT structure.

hDriver
Identifies an instance of the installable driver.

hModule
Identifies an installable driver module.

szAliasName
Points to a null-terminated string that specifies the driver name or an alias
under which the driver was loaded.

GetDriverInfo

EVENTMSG 285

DRVCONFIGINFO [3.1]

Members

See Also

typedef struct tagDRVCONFIGINFO {
DWORD dwDCISize;
LPCSTR 1pszDCISectionName;
LPCSTR 1pszDCIAliasName;

} DRVCONFIGINFO;

The DRVCONFIGINFO structure contains information about the entries for an
installable device driver in the SYSTEM.INI file. This structure is sent in the
[Param parameter of the DRV_CONFIGURE and DRV_INSTALL installable-
driver messages.

dwDCISize
Specifies the size of the DRVCONFIGINFO structure.

IpszDCISectionName
Points to a null-terminated string that specifies the name of the section in the
SYSTEM.INI file where driver information is recorded.

IpszDCIAliasName
Points to a null-terminated string that specifies the driver name or an alias
under which the driver was loaded.

DRV_CONFIGURE, DRV_INSTALL

EVENTMSG

Members

typedef struct tagEVENTMSG { /* em *x/
UINT message;
UINT paramlL;
UINT paramH;
DWORD time;
} EVENTMSG;

The EVENTMSG structure contains information from the Windows application
queue. This structure is used to store message information for the Journal-
PlaybackProc callback function.

message
Specifies the message number.

paramL
Specifies additional information about the message. The exact meaning de-
pends on the message value.

286 FINDREPLACE

paramH
Specifies additional information about the message. The exact meaning de-
pends on the message value.

time
Specifies the time at which the message was posted.

See Also JournalPlaybackProc, SetWindowsHook

FINDREPLACE [3.1]

f#include <commdlg.h>

typedef struct tagFINDREPLACE { /* fr *x/

DWORD 1StructSize;

HWND hwndOwner;

HINSTANCE hInstance;

DWORD Flags;

LPSTR IpstrFindWhat;

LPSTR TpstrReplaceWith;

UINT wFindWhatLen;

UINT wReplaceWithlLen;

LPARAM 1CustData;

UINT (CALLBACK#* TpfnHook)(HWND, UINT, WPARAM, LPARAM);

LPCSTR TpTemplateName;
} FINDREPLACE;

The FINDREPLA CE structure contains information that the system uses to ini-
tialize a system-defined Find dialog box or Replace dialog box. After the user
chooses the OK button to close the dialog box, the system returns information
about the user’s selections in this structure.

Members IStructSize
Specifies the length of the structure, in bytes. This member is filled on input.

hwndOwner
Identifies the window that owns the dialog box. This member can be any valid
window handle, but it must not be NULL.

If the FR_SHOWHELP flag is set, hwndOwner must identify the window that
owns the dialog box. The window procedure for this owner window receives a
notification message when the user chooses the Help button. (The identifier for
the notification message is the value returned by the RegisterWindowMessage
function when HELPMSGSTRING is passed as its argument.)

This member is filled on input.

FINDREPLACE 287

hlnstance
Identifies a data block that contains a dialog box template specified by the
IpTemplateName member. This member is only used if the Flags member
specifies the FR_ENABLETEMPLATE or the
FR_ENABLETEMPLATEHANDLE flag; otherwise, this member is ignored.
This member is filled on input.

Flags
Specifies the dialog box initialization flags. This member can be a combination
of the following values:

Value Meaning

FR_DIALOGTERM Indicates the dialog box is closing. The
window handle returned by the Find Text
or ReplaceText function is no longer
valid after this bit is set. This flag is set by
the system.

FR_DOWN Sets the direction of searches through a
document. If the flag is set, the search
direction is down; if the flag is clear, the
search direction is up. Initially, this flag
specifies the state of the Up and Down
buttons; after the user chooses the OK but-
ton to close the dialog box, this flag speci-
fies the user’s selection.

FR_ENABLEHOOK Enables the hook function specified in the
IpfnHook member of this structure. This
flag can be set on input.

FR_ENABLETEMPLATE Causes the system to use the dialog box
template identified by the hInstance and
IpTemplateName members to display the
dialog box. This flag is used only to initial-
ize the dialog box.

FR_ENABLETEMPLATEHANDLE Indicates that the hInstance member iden-
tifies a data block that contains a pre-
loaded dialog box template. The system
ignores the IpTemplateName member if
this flag is specified. This flag can be set
on input.

FR_FINDNEXT Indicates that the application should
search for the next occurrence of the
string specified by the IpstrFindWhat
member. This flag is set by the system.

FR_HIDEMATCHCASE Hides and disables the Match Case check
box. This flag can be set on input.

288 FINDREPLACE

Value Meaning

FR_HIDEWHOLEWORD Hides and disables the Match Only Whole
Word check box. This flag can be set on
input.

FR_HIDEUPDOWN Hides the Up and Down radio buttons that

control the direction of searches through a
document. This flag can be set on input.

FR_MATCHCASE Specifies that the search is to be case sen-
sitive. This flag is set when the dialog box
is created and may be changed by the sys-
tem in response to user input.

FR_NOMATCHCASE Disables the Match Case check box. This
flag is used only to initialize the dialog
box.

FR_NOUPDOWN Disables the Up and Down buttons. This
flag is used only to initialize the dialog
box.

FR_NOWHOLEWORD Disables the Match Whole Word Only
check box. This flag is used only to initial-
ize the dialog box.

FR_REPLACE Indicates that the application should re-
place the current occurrence of the string
specified in the IpstrFindWhat member
with the string specified in the Ipstr-
ReplaceWith member. This flag is set by
the system.

FR_REPLACEALL Indicates that the application should
replace all occurrences of the string
specified in the lpstrFindWhat member
with the string specified in the Ipstr-
ReplaceWith member. This flag is set by
the system.

FR_SHOWHELP Causes the dialog box to show the Help
button. If this flag is specified, the
hwndOwner must not be NULL. This
flag can be set on input.

FR_WHOLEWORD Checks the Match Whole Word Only
check box. Only whole words that match
the search string will be considered. This
flag is set when the dialog box is created
and may be changed by the system in re-
sponse to user input.

IpstrFindWhat
Specifies the string to search for. If a string is specified when the dialog box is
created, the dialog box will initialize the Find What edit control with this string.

FINDREPLACE 289

If the FR_FINDNEXT flag is set when the dialog box is created, the application
should search for an occurrence of this string (using the FR_DOWN,
FR_WHOLEWORD, and FR_MATCHCASE flags to further define the direc-
tion and type of search). The application must allocate a buffer for the string.
This buffer should be at least 80 bytes long. This flag is set when the dialog box
is created and may be changed by the system in response to user input.

IpstrReplaceWith
Specifies the replacement string for replace operations. The FindText function
ignores this member. The ReplaceText function uses this string to initialize the
Replace With edit control. This flag is set when the dialog box is created and
may be changed by the system in response to user input.

wFindWhatLen
Specifies the length, in bytes, of the buffer to which the IpstrFind What mem-
ber points. This member is filled on input.

wReplaceWithLen
Specifies the length, in bytes, of the buffer to which the IpstrReplaceWith
member points. This member is filled on input.

ICustData
Specifies application-defined data that the system passes to the hook function
identified by the IpfnHook member. The system passes a pointer to the
CHOOSECOLOR structure in the [Param parameter of the
WM_INITDIALOG message; this pointer can be used to retrieve the
1CustData member.

IpfnHook
Points to a hook function that processes messages intended for the
dialog box. To enable the hook function, an application must specify the
FR_ENABLEHOOK flag in the Flags member; otherwise, the system ignores
this structure member. The hook function must return zero to pass a message
that it didn’t process back to the dialog box procedure in COMMDLG.DLL.
The hook function must return a nonzero value to prevent the dialog box proce-
dure in COMMDLG.DLL from processing a message it has already processed.

This member is filled on input.

IpTemplateName
Points to a null-terminated string that specifies the name of the resource file for
the dialog box template that is to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags mem-
ber specifies the FR_ENABLETEMPLATE flag; otherwise, this member is ig-
nored.

This member is filled on input.

290 FIXED

Comments

See Also

Some members of this structure are filled only when the dialog box is created,
some are filled only when the user closes the dialog box, and some have an initiali-
zation value that changes when the user closes the dialog box. Whenever a descrip-
tion in the Members section does not specify how the value of a member is
assigned, the value is assigned only when the dialog box is created.

FindText, ReplaceText

FIXED

Members

Comments

See Also

typedef struct tagFIXED { /% fx */
UINT fract;
int value;

} FIXED;

The FIXED structure contains the integral and fractional parts of a fixed-point real
number.

fract
Specifies the fractional part of the number.

value
Specifies the integer part of the number.

The FIXED structure is used to describe the elements of the MAT?2 and
POINTFX structures.

GetGlyphQOutline

FIXED 291

FMS_GETDRIVEINFO

Members

See Also

include <wfext.h>

typedef struct tagFMS_GETDRIVEINFO { /% fmsgdi */
DWORD dwTotalSpace;
DWORD dwFreeSpace;
char szPath[260];
char szVolume[l4];
char szShare[128];
} FMS_GETDRIVEINFO, FAR *LPFMS_GETDRIVEINFO;

The FMS_GETDRIVEINFO structure contains information about the drive that
is selected in the currently active File Manager window.

dwTotalSpace
Specifies the total amount of storage space, in bytes, on the disk associated with
the drive.

dwFreeSpace
Specifies the amount of free storage space, in bytes, on the disk associated with
the drive.

szPath
Specifies a null-terminated string that contains the path of the current directory.

szVolume
Specifies a null-terminated string that contains the volume label of the disk
associated with the drive.

szShare
Specifies a null-terminated string that contains the name of the sharepoint (if
the drive is being accessed through a network).

FMExtensionProc, FM_GETDRIVEINFO

292 FIXED

FMS_GETFILESEL

Members

See Also

#include <wfext.h>

typedef struct tagFMS_GETFILESEL { /* fmsgfs */
UINT wTime;
UINT wDate;
DWORD dwSize;
BYTE bAttr;
char szName[260];
} FMS_GETFILESEL;

The FMS_GETFILESEL structure contains information about a selected file in
File Manager’s directory window or Search Results window.

wTime
Specifies the time when the file was created.

wDate
Specifies the date when the file was created.

dwSize
Specifies the size, in bytes, of the file.

bAttr
Specifies the attributes of the file.

szName
Specifies a null-terminated string (an OEM string) that contains the fully-
qualified path of the selected file. Before displaying this string, an extension
should use the OemToAnsi function to convert the string to a Windows ANSI
string. If a string is to be passed to the MS-DOS file system, an extension
should not convert it.

FMExtensionProc

FIXED 293

FMS_LOAD

#include <wfext.h>

typedef struct tagFMS_LOAD { /* fmsld =/
DWORD dwSize;
char szMenuName[MENU_TEXT_LEN];
HMENU hMenu;
UINT wMenuDelta;

} FMS_LOAD;

The FMS_LOAD structure contains information that File Manager uses to add a
custom menu provided by a File Manager extension dynamic-link library (DLL).
The structure also provides a delta value that the extension DLL can use to
manipulate the custom menu after File Manager has loaded the menu.

Members dwSize
Specifies the length of the structure, in bytes.

szMenuName
Contains a null-terminated string for a menu item that appears in File
Manager’s main menu.

hMenu
Identifies the pop-up menu that is added to File Manager’s main menu.

wMenuDelta
Specifies the menu-item delta value. To avoid conflicts with its own menu
items, File Manager renumbers the menu-item identifiers in the pop-up menu
identified by the hMenu member by adding this delta value to each identifier.
An extension DLL that needs to modify a menu item must identify the item to
modify by adding the delta value to the menu item’s identifier. The value of
this member can vary from session to session.

See Also FMExtensionProc

- 294 GLOBALENTRY

GLOBALENTRY

Members

#include <toolhelp.h>

typedef struct tagGLOBALENTRY { /* ge */
DWORD dwSize;
DWORD dwAddress;
DWORD dwBlockSize;
HGLOBAL hBlock;
WORD wclock;
WORD wcPagelock;
WORD wFlags;
BOOL wHeapPresent;
HGLOBAL hOwner;
WORD wType;
WORD wData;
DWORD dwNext;
DWORD dwNextAlt;

} GLOBALENTRY;

The GLOBALENTRY structure contains information about a memory object on
the global heap.

dwSize
Specifies the size of the GLOBALENTRY structure, in bytes.

dwAddress
Specifies the linear address of the global-memory object.

dwBlockSize
Specifies the size of the global-memory object, in bytes.

hBlock
Identifies the global-memory object.

wcLock
Specifies the lock count. If this value is zero, the memory object is not locked.

wcPagel.ock
Specifies the page lock count. If this value is zero, the memory page is not
locked.

wFlags
Specifies additional information about the memory object. This member can be
the following value:

Value Meaning

GF_PDB_OWNER The process data block (PDB) for the task is the owner of
the memory object.

GLOBALENTRY 295

GT_BURGERMASTER

wData

wHeapPresent

Indicates whether a local heap exists within the global-memory object.

hOwner

Identifies the owner of the global-memory object.

wType

Specifies the memory type of the object. This type can be one of the following

values:

Value Meaning

GT_UNKNOWN The memory type is not known.

GT_DGROUP The object contains the default data segment and the
stack segment.

GT_DATA The object contains program data. (It may also contain
stack and local heap data.)

GT_CODE The object contains program code. If GT_CODE is
specified, the wData member contains the segment
number for the code.

GT_TASK The object contains the task database.

GT_RESOURCE The object contains the resource type specified in
wData.

GT_MODULE The object contains the module database.

GT_FREE The object belongs to the free memory pool.

GT_INTERNAL The object is reserved for internal use by Windows.

GT_SENTINEL The object is either the first or the last object on the

global heap.

The object contains a table that maps selectors to arena
handles.

If the wType member is not GT_CODE or GT_RESOURCE, wData is zero.

If wType is GT_CODE, GT_DATA, or GT_DGROUP, wData contains the
segment number for the code.

If wType is GT_RESOURCE, wData specifies the type of resource. The type
can be one of the following values:

Value

Meaning

GD_ACCELERATORS

GD_BITMAP

The object contains data from the accelerator
table.

The object contains data describing a bitmap.
This includes the bitmap color table and the bit-
map bits.

296 GLOBALENTRY

Value Meaning

GD_CURSOR The object contains data describing a group of
cursors. This includes the height, width, color
count, bit count, and ordinal identifier for the cur-
SOrs.

GD_CURSORCOMPONENT The object contains data describing a single cur-
sor. This includes bitmap bits and bitmasks for
the cursor.

GD_DIALOG The object contains data describing controls
within a dialog box.

GD_ERRTABLE The object contains data from the error table.

GD_FONT The object contains data describing a single font.
This data is identical to data in a Windows font
file (FNT).

GD_FONTDIR The object contains data describing a group of
fonts. This includes the number of fonts in the re-
source and a table of metrics for each of these
fonts.

GD_ICON The object contains data describing a group of
icons. This includes the height, width, color
count, bit count, and ordinal identifier for the
icons.

GD_ICONCOMPONENT The object contains data describing a single icon.
This includes bitmap bits and bitmaps for the
icon.

GD_MENU The object contains menu data for normal and
pop-up menu items.

GD_NAMETABLE The object contains data from the name table.

GD_RCDATA The object contains data from a user-defined re-
source.

GD_STRING The object contains data from the string table.

GD_USERDEFINED The resource has an unknown resource identifier
or is an application-specific named type.

dwNext

Reserved for internal use by Windows.

dwNextAlt

Reserved for internal use by Windows.

See Also GlobalEntryHandle, GlobalEntryModule, GlobalFirst, GlobalNext,

GLOBALINFO

GLYPHMETRICS 297

GLOBALINFO [31]

ffinclude <toolhelp.h>

typedef struct tagGLOBALINFO { /* gi =*/
DWORD dwSize;
WORD wcltems;
WORD wcltemsFree;
WORD wcItemsLRU;
} GLOBALINFO;

The GLOBALINFO structure contains information about the global heap.

Members dwSize
Specifies the size of the GLOBALINFO structure, in bytes.

wcltems
Specifies the total number of items on the global heap.

wcltemsFree
Specifies the number of free items on the global heap.

wcltemsLRU
Specifies the number of “least recently used” (LRU) items on the global heap.

See Also Globallnfo, GLOBALENTRY

GLYPHMETRICS [3.1]

typedef struct tagGLYPHMETRICS { /% gm */
UINT gmBlackBoxX;
UINT gmBTackBoxY;
POINT gmptGlyphOrigin;
int gmCellIncX;
int gmCellIncY;
} GLYPHMETRICS;

The GLYPHMETRICS structure contains information about the placement and
orientation of a glyph in a character cell.

Members gmBlackBoxX
Specifies the width of the smallest rectangle that completely encloses the glyph
(its “black box™).

298 HANDLETABLE

gmBlackBoxY
Specifies the height of the smallest rectangle that completely encloses the glyph
(its “black box™).

gmptGlyphOrigin
Specifies the x- and y-coordinates of the upper-left corner of the smallest
rectangle that completely encloses the glyph.

gmCelllncX
Specifies the horizontal distance from the origin of the current character cell to
the origin of the next character cell.

gmCelllncY
Specifies the vertical distance from the origin of the current character cell to the
origin of the next character cell.
Comments Values in the GLYPHMETRICS structure are specified in logical units.

See Also GetGlyphOutline

HANDLETABLE [2x]

typedef struct tagHANDLETABLE { /* ht =/
HGDIOBJ objectHandle[1];
} HANDLETABLE;

The HANDLETABLE structure is an array of handles, each of which identifies a
graphics device interface (GDI) object.

Members objectHandle
Contains an array of handles.

See Also EnumMetaFile, PlayMetaFileRecord

HELPWININFO 299

HARDWAREHOOKSTRUCT [31]

Members

typedef struct tagHARDWAREHOOKSTRUCT { /% hhs */
HWND hWnd;
UINT wMessage;
WPARAM wParam;
LPARAM 1Param;
} HARDWAREHOOKSTRUCT;

The HARDWAREHOOKSTRUCT contains information about a hardware mes-
sage placed in the system message queue.

hWnd
Identifies the window that will receive the message.

wMessage
Specifies the message identifier.

wParam
Specifies additional information about the message. The exact meaning de-
pends on the wMessage parameter.

IParam
Specifies additional information about the message. The exact meaning de-
pends on the wMessage parameter.

HELPWININFO

typedef struct {

int wStructSize;

int x;

int y;

int dx;

int dy;

int wMax;

char rgchMember[2];
} HELPWININFO;

The HELPWININFO structure contains the size and position of a secondary help
window. An application can set this size by calling the WinHelp function with the
HELP_SETWINPOS value.

300 HELPWININFO

Members

Comments

See Also

wStructSize
Specifies the size of the HELPWININFO structure.

X
Specifies the x-coordinate of the upper-left corner of the window.

Specifies the y-coordinate of the upper-left corner of the window.

dx
Specifies the width of the window.

dy
Specifies the height of the window.

wMax
Specifies whether the window should be maximized or set to the given position
and dimensions. If this value is 1, the window is maximized. If it is zero, the
size and position of the window are determined by the x, y, dx, and dy mem-
bers.

rgchMember
Specifies the name of the window.

Microsoft Windows Help divides the display into 1024 units in both the x- and y-
directions. To create a secondary window that fills the upper-left quadrant of the
display, for example, an application would specify zero for the x and y members
and 512 for the dx and dy members.

WinHelp

KERNINGPAIR 301

HSZPAIR]

#include <ddemi.h>

typedef struct tagHSZPAIR { /* hp */
HSZ hszSvc;
HSZ hszTopic;

} HSZPAIR;

The HSZPAIR structure contains a dynamic data exchange (DDE) service name
and topic name. A DDE server application can use this structure during an
XTYP_WILDCONNECT transaction to enumerate the service/topic name pairs
that it supports.

Members hszSve
Identifies a service name.

hszTopic
Identifies a topic name.

KERNINGPAIR [34]

typedef struct tagKERNINGPAIR {
WORD wFirst;
WORD wSecond;
int iKernAmount;

} KERNINGPAIR;

The KERNINGPAIR structure defines a kerning pair.

Members wFirst
Specifies the character code for the first character in the kerning pair.

wSecond
Specifies the character code for the second character in the kerning pair.

iKernAmount
Specifies the amount that this pair will be kerned if they appear side by side in
the same font and size. This value is typically negative, because pair-kerning
usually results in two characters being set more tightly than normal. The value
is given in logical units—that is, it depends on the current mapping mode.

See Also GetKerningPairs

302 LOCALENTRY

LOCALENTRY

Members

#include <toolhelp.h>

typedef struct tagLOCALENTRY { /* le */
DWORD dwSize;
HLOCAL hHandle;
WORD wAddress;
WORD wSize;
WORD wFlags;
WORD wclock;
WORD wType;
WORD hHeap;
WORD wHeapType;
WORD wNext;

} LOCALENTRY;

The LOCALENTRY structure contains information about a memory object on
the local heap.

dwSize
Specifies the size of the LOCALENTRY structure, in bytes.

hHandle
Identifies the local-memory object.

wAddress
Specifies the address of the local-memory object.

wSize
Specifies the size of the local-memory object, in bytes.

wFlags
Specifies whether the memory object is fixed, free, or movable. This member
can be one of the following values:

Value Meaning
LF_FIXED The object resides in a fixed memory location.
LF_FREE The object is part of the free memory pool.

LF_MOVEABLE The object can be moved in order to compact memory.

wcLock
Specifies the lock count. If this value is zero, the memory object is not locked.

LOCALENTRY

303

wType

Specifies the content of the memory object. This member can be one of the fol-

lowing values:

Value

Meaning

LT_FREE
LT_GDI_BITMAP
LT_GDI_BRUSH
LT_GDI_DC
LT_GDI_DISABLED_DC
LT_GDI_FONT
LT_GDI_MAX
LT_GDI_METADC
LT_GDI_METAFILE
LT_GDI_PALETTE
LT_GDI_PEN
LT_GDI_RGN
LT_NORMAL
LT_USER_ATOMS
LT_USER_BWL
LT_USER_CBOX
LT_USER_CHECKPOINT
LT_USER_CLASS
LT_USER_CLIP
LT_USER_DCE
LT_USER_ED
LT_USER_HANDLETABLE

LT_USER_HOOKLIST
LT_USER_HOTKEYLIST
LT_USER_LBIV

The object belongs to the free memory pool.
The object contains a bitmap header.

The object contains a brush.

The object contains a device context.

The object is reserved for internal use by Windows.

The object contains a font header.

The object is reserved for internal use by Windows.

The object contains a metafile device context.
The object contains a metafile header.

The object contains a palette.

The object contains a pen.

The object contains a region.

The object is reserved for internal use by Windows.

The object contains an atom structure.

The object is reserved for internal use by Windows.

The object contains a combo-box structure.

The object is reserved for internal use by Windows.

The object contains a class structure.

The object is reserved for internal use by Windows.
The object is reserved for internal use by Windows.

The object contains an edit-control structure.

The object is reserved for internal use by Windows.
The object is reserved for internal use by Windows.
The object is reserved for internal use by Windows.

The object contains a list-box structure.

LT_USER_LOCKINPUTSTATE

LT_USER_MENU
LT_USER_MISC
LT_USER_MWP
LT_USER_OWNERDRAW
LT_USER_PALETTE
LT_USER_POPUPMENU
LT_USER_PROP

The object is reserved for internal use by Windows.

The object contains a menu structure.

The object is reserved for internal use by Windows.
The object is reserved for internal use by Windows.
The object is reserved for internal use by Windows.
The object is reserved for internal use by Windows.
The object is reserved for internal use by Windows.

The object contains a window-property structure.

304 LOCALENTRY

Comments

See Also

Value Meaning
LT_USER_SPB The object is reserved for internal use by Windows.
LT _USER_STRING The object is reserved for internal use by Windows.

LT_USER_USERSEEUSERDOALLOC
The object is reserved for internal use by Windows.

LT_USER_WND The object contains a window structure.
hHeap
Identifies the local-memory heap.
wHeapType
Specifies the type of local heap. This type can be one of the following values:
Value Meaning
NORMAL_HEAP The heap is the default heap.
USER_HEAP The heap is used by the USER module.
GDI_HEAP The heap is used by the GDI module.
wNext

Specifies the next entry in the local heap. This member is reserved for internal
use by Windows.

The wType values are for informational purposes only. Microsoft reserves the
right to change or delete these tags at any time. Applications should never directly
change items on the system heaps, as this information will change in future ver-
sions. The wType values for the USER module are included only in the debugging
versions of USER.EXE.

LocalFirst, LocalNext, LOCALINFO

LOGBRUSH

305

LOCALINFO

Members

See Also

[3.1]

#include <toolhelp.h>

typedef struct tagLOCALINFO { /% 11 */
DWORD dwSize;
WORD wcltems;

} LOCALINFO;

The LOCALINFO structure contains information about the local heap.

dwSize
Specifies the size of the LOCALINFO structure, in bytes.

wcltems
Specifies the total number of items on the local heap.

Locallnfo, LOCALENTRY

LOGBRUSH

Members

typedef struct tagLOGBRUSH { /* 1b %/

UINT 1bStyle;
COLORREF 1bColor;
int 1bHatch;

} LOGBRUSH;

The LOGBRUSH structure defines the style, color, and pattern of a physical
brush to be created by using the CreateBrushIndirect function.

1bStyle
Specifies the brush style. This member can be one of the following values:

Value Meaning

BS_DIBPATTERN Specifies a pattern brush defined by a device-independent
bitmap (DIB) specification.

BS_HATCHED Specifies a hatched brush.

BS_HOLLOW Specifies a hollow brush.

BS_PATTERN Specifies a pattern brush defined by a memory bitmap.
BS_NULL Equivalent to BS_HOLLOW.

BS_SOLID Specifies a solid brush.

306 LOGBRUSH
IbColor
Specifies the color in which the brush is to be drawn. If the IbStyle member is
the BS_HOLLOW or BS_PATTERN value, IbColor is ignored.
If IpStyle is the BS_DIBPATTERN value, the low-order word of IbColor
specifies whether the bmiColors members of the BITMAPINFO structure con-
tain explicit RGB values or indexes into the currently realized logical palette.
The IbColor member must be one of the following values:
Value Meaning
DIB_PAL_COLORS Color table consists of an array of 16-bit indexes into the
currently realized logical palette.
DIB_RGB_COLORS Color table contains literal RGB values.
IbHatch
Specifies a hatch style. The meaning depends on the brush style.
If the IbStyle member is the BS_DIBPATTERN style, the IbHatch member
contains a handle to a packed DIB. To obtain this handle, an application calls
the GlobalAlloc function to allocate a global memory object and then fills the
memory with the packed DIB. A packed DIB consists of a BITMAPINFO
structure immediately followed by the array of bytes which define the pixels of
the bitmap.
If the IbStyle member is the BS_HATCHED style, the IbHatch member speci-
fies the orientation of the lines used to create the hatch. This member can be
one of the following values:
Value Meaning
HS_BDIAGONAL 45-degree upward hatch (left to right)
HS_CROSS Horizontal and vertical cross-hatch
HS_DIAGCROSS 45-degree cross-hatch
HS_FDIAGONAL 45-degree downward hatch (left to right)
HS_HORIZONTAL Horizontal hatch
HS_VERTICAL Vertical hatch
If the IbStyle member is the BS_PATTERN style, IbHatch must be a handle to
the bitmap that defines the pattern.
If the IbStyle member is the BS_SOLID or the BS_HOLLOW style, IbHatch
is ignored.
See Also BITMAPINFO, CreateBrushIndirect, CreateBrushIndirect, GlobalAlloc

LOGFONT 307

LOGFONT

Members

[2x]

typedef struct tagLOGFONT { /% 1f =/

int 1fHeight;

int 1fWidth;

int 1fEscapement;

int 1fOrientation;

int 1fWeight;

BYTE 1fItalic;

BYTE 1fUnderline;

BYTE 1fStrikeOut;

BYTE 1fCharSet;

BYTE 1fOutPrecision;

BYTE 1fClipPrecision;

BYTE 1fQuality;

BYTE 1fPitchAndFamily;

BYTE 1fFaceName[LF_FACESIZE];
} LOGFONT;

The LOGFONT structure defines the attributes of a font, a drawing object used to
write text on a display surface. ,

IfHeight
Specifies the desired height, in logical units, for the font. If this value is greater
than zero, it specifies the cell height of the font. If it is less than zero, it speci-
fies the character height of the font. (Character height is the cell height minus
the internal leading. Applications that specify font height in points typically use
a negative number for this member.) If this value is zero, the font mapper uses a
default height. The font mapper chooses the largest physical font that does not
exceed the requested size (or the smallest font, if all the fonts exceed the re-
quested size). The absolute value of the IfHeight member must not exceed
16,384 after it is converted to device units.

fWidth
Specifies the average width, in logical units, of characters in the font. If this
value is zero, the font mapper chooses a reasonable default width for the
specified font height. (The default width is chosen by matching the aspect ratio
of the device against the digitization aspect ratio of the available fonts. The
closest match is determined by the absolute value of the difference.) The widths
of characters in TrueType fonts are scaled by a factor of this member divided
by the width of the characters in the physical font (as specified by the
tmAveCharWidth member of the TEXTMETRIC structure).

IfEscapement
Specifies the angle, in tenths of degrees, between the base line of a character
and the x-axis. The angle is measured in a counterclockwise direction from the
x-axis for left-handed coordinate systems (that is, MM_TEXT, in which the y
direction is down) and in a clockwise direction from the x-axis for right-handed
coordinate systems (in which the y direction is up).

308

LOGFONT

IfOrientation
Specifies the orientation of the characters. This value is ignored.
IfWeight
Specifies the font weight. This member can be one of the following values:
Constant Value
FW_DONTCARE 0
FW_THIN 100

FW_EXTRALIGHT 200
FW_ULTRALIGHT 200

FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700

FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

The actual appearance of the font depends on the type face. Some fonts
have only FW_NORMAL, FW_REGULAR, and FW_BOLD weights. If
FW_DONTCARE is specified, a default weight is used.

IfItalic
Specifies an italic font if nonzero.
IfUnderline
Specifies an underlined font if nonzero.
IfStrikeOut
Specifies a strikeout font if nonzero.
IfCharSet
Specifies the character set of the font. The following values are predefined:
Constant Value
ANSI_CHARSET 0

DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
SHIFTIIS_CHARSET 128
OEM_CHARSET 255

LOGFONT 309

The DEFAULT_CHARSET value is not used by the font mapper. An applica-
tion can use this value to allow the name and size of a font to fully describe the
logical font. If the specified font name does not exist, a font from any character
set can be substituted for the specified font; applications should use the
DEFAULT_CHARSET value sparingly to avoid unexpected results.

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. If an application uses a
font with an unknown character set, it should not attempt to translate or inter-
pret strings that are to be rendered with that font.

IfOutPrecision
Specifies the desired output precision. The output precision defines how closely
the output must match the height, width, character orientation, escapement, and
pitch of the requested font. This member can be one of the following values:

OUT_CHARACTER_PRECIS OUT_STRING_PRECIS

OUT_DEFAULT_PRECIS OUT_STROKE_PRECIS
OUT_DEVICE_PRECIS OUT_TT_PRECIS
OUT_RASTER_PRECIS OUT_TT_ONLY_PRECIS

Applications can use the values OUT_DEVICE_PRECIS,
OUT_RASTER_PRECIS, and OUT_TT_PRECIS to control how the

font mapper chooses a font when the system contains more than one font

with a given name. For example, if a system contains a font named “Symbol”
in raster and TrueType form, specifying OUT_TT_PRECIS would force the
font mapper to choose the TrueType version. (Specifying OUT_TT_PRECIS
forces the font mapper to choose a TrueType font whenever the specified font
name matches a device or raster font, even when there is no TrueType font with
the same name.)

An application can use TrueType fonts exclusively by specifying
OUT_TT_ONLY_PRECIS. When this value is specified, the system
chooses a TrueType font even when the name specified in the IfFaceName
member matches a raster or vector font.

IfClipPrecision
Specifies the desired clipping precision. The clipping precision defines how to
clip characters that are partially outside the clipping region. This member can
be any one of the following values:

CLIP_CHARACTER_PRECIS CLIP_MASK
CLIP_DEFAULT_PRECIS CLIP_STROKE_PRECIS
CLIP_EMBEDDED CLIP_TT_ALWAYS
CLIP_LH_ANGLES

To use an embedded read-only font, applications must specify the
CLIP_EMBEDDED value.

To achieve consistent rotation of device, TrueType, and vector fonts, an applica-
tion can use the OR operator to combine the CLIP_LH_ANGLES value with

310 LOGFONT

any of the other IfClipPrecision values. If the CLIP_LH_ANGLES bit is set,
the rotation for all fonts is dependent on whether the orientation of the coordi-
nate system is left-handed or right-handed. If CLIP_LH_ANGLES is not set,
device fonts always rotate counter-clockwise, but the rotation of other fonts is
dependent on the orientation of the coordinate system. (For more information
about the orientation of coordinate systems, see the description of the
IfEscapement member.)

IfQuality
Specifies the output quality of the font, which defines how carefully the
graphics device interface (GDI) must attempt to match the logical-font
attributes to those of an actual physical font. This member can be one of the
following values:

Value Meaning
DEFAULT_QUALITY Appearance of the font does not matter.
DRAFT_QUALITY Appearance of the font is less important than when the

PROOF_QUALITY value is used. For GDI raster fonts,
scaling is enabled. Bold, italic, underline, and strikeout
fonts are synthesized if necessary.

PROOF_QUALITY Character quality of the font is more important than
exact matching of the logical-font attributes. For GDI
raster fonts, scaling is disabled and the font closest in
size is chosen. Bold, italic, underline, and strikeout
fonts are synthesized if necessary.

IfPitchAndFamily
Specifies the pitch and family of the font. The two low-order bits, which
specify the pitch of the font, can be one of the following values:

DEFAULT_PITCH
FIXED_PITCH
VARIABLE_PITCH

The four high-order bits of the member, which specify the font family, can be
one of the following values:

Value Meaning

FF_DECORATIVE Novelty fonts. Old English is an example.

FF_DONTCARE Don’t care or don’t know.

FF_MODERN Fonts with constant stroke width, with or without serifs.
Pica, Elite, and Courier New® are examples.

FF_ROMAN Fonts with variable stroke width and with serifs. Times

New Roman® and New Century Schoolbook® are ex-
amples.

LOGPALETTE 311

Value Meaning

FF_SCRIPT Fonts designed to look like handwriting. Script and Cursive
are examples.

FF_SWISS Fonts with variable stroke width and without serifs.

MS® Sans Serif is an example.

An application can specify a value for the IfPitchAndFamily member by using
the Boolean OR operator to join a pitch constant with a family constant.

Font families describe the look of a font in a general way. They are intended for
specifying fonts when the exact typeface desired is not available.

IfFaceName
Specifies the typeface name of the font. The length of this string must not
exceed LF_FACESIZE — 1. The EnumFontFamilies function can be used to
enumerate the typeface names of all currently available fonts. If IfFaceName is
NULL, GDI uses a device-dependent typeface.

Comments Applications can use the default settings for most of these members when creating
a logical font. The members that should always be given specific values are
IfHeight and IfFaceName. If IfHeight and IfFaceName are not set by the applica-
tion, the logical font that is created is device-dependent.

See Also CreateFontIndirect, EnumFontFamilies

LOGPALETTE

typedef struct tagLOGPALETTE { /#* 1gpl */
WORD palVersion;
WORD palNumEntries;
PALETTEENTRY palPalEntry[11];

} LOGPALETTE;

The LOGPALETTE structure defines a logical color palette.

Members palVersion
Specifies the Windows version number for the structure. This value should be
0x300 for Windows 3.0 and later.

palNumEntries
Specifies the number of palette color entries.

palPalEntry
Specifies an array of PALETTEENTRY structures that define the color and
usage of each entry in the logical palette.

312 LOGPEN

Comments

See Also

The colors in the palette entry table should appear in order of importance, because
entries earlier in the logical palette are most likely to be placed in the system
palette.

This structure is passed as a parameter to the CreatePalette function.

CreatePalette, PALETTEENTRY

LOGPEN

Members

typedef struct tagLOGPEN { /% 1gpn */
UINT lopnStyle;
POINT TopnWidth;
COLORREF TopnColor;

} LOGPEN;

The LOGPEN structure defines the style, width, and color of a pen, a drawing ob-
ject used to draw lines and borders. The CreatePenIndirect function uses the
LOGPEN structure.

lopnStyle
Specifies the pen type. This member can be one of the following values:
Value Meaning
PS_SOLID Creates a solid pen.
PS_DASH Creates a dashed pen. (Valid only when the pen width is 1.)
PS_DOT Creates a dotted pen. (Valid only when the pen widthis 1.)
PS_DASHDOT Creates a pen with alternating dashes and dots. (Valid only

when the pen width is 1.)

PS_DASHDOTDOT Creates a pen with alternating dashes and double dots.
(Valid only when the pen width is 1.)

PS_NULL Creates a null pen.

PS_INSIDEFRAME Creates a pen that draws a line inside the frame of closed
shapes produced by graphics device interface (GDI) out-
put functions that specify a bounding rectangle (for ex-
ample, the Ellipse, Rectangle, RoundRect, Pie, and
Chord functions). When this style is used with GDI out-
put functions that do not specify a bounding rectangle (for
example, the LineTo function), the drawing area of the
pen is not limited by a frame.

MAT2 313

Comments

See Also

If a pen has the PS_INSIDEFRAME style and a color that does not match a
color in the logical color table, the pen is drawn with a dithered color. The
PS_SOLID pen style cannot be used to create a pen with a dithered color. The
PS_INSIDEFRAME style is identical to PS_SOLID if the pen width is less
than or equal to 1.

When the PS_INSIDEFRAME style is used with GDI objects produced by
functions other than Ellipse, Rectangle, and RoundRect, the line may not be
completely inside the specified frame.

lopnWidth
Specifies the pen width, in logical units. If the lopnWidth member is zero, the
pen is one pixel wide on raster devices regardless of the current mapping mode.

lopnColor
Specifies the pen color.

The y value in the POINT structure for the lopnWidth member is not used.

CreatePenlIndirect, POINT

MAT2

Members

typedef struct tagMAT2 { /* mat2 */
FIXED eM11;
FIXED eM12;
FIXED eM21;
FIXED eM22;
} MAT2;

The MAT2 structure contains the values for a transformation matrix.

eM11
Specifies a fixed-point value for the M11 component of a 2-by-2 transformation
matrix.

eM12
Specifies a fixed-point value for the M12 component of a 2-by-2 transformation
matrix.

eM21
Specifies a fixed-point value for the M21 component of a 2-by-2 transformation
matrix.

314 MDICREATESTRUCT

Comments

See Also

eM22
Specifies a fixed-point value for the M22 component of a 2-by-2 transformation
matrix.

The identity matrix produces a transformation in which the transformed graphical
object is identical to the source object. In the identity matrix, the value of eM11 is
1, the value of eM12 is zero, the value of eM21 is zero, and the value of eM22 is 1.

GetGlyphQOutline

MDICREATESTRUCT

Members

typedef struct tagMDICREATESTRUCT { /* mdic */
LPCSTR szClass;
LPCSTR szTitle;
HINSTANCE hOwner;

int X3

int y;

int CcX;
int cy;
DWORD style;

LPARAM 1Param;
} MDICREATESTRUCT;

The MDICREATESTRUCT structure contains information about the class, title,
owner, location, and size of a multiple document interface (MDI) child window.

szClass
Contains a long pointer to the application-defined class of the MDI child win-
dow.

szTitle
Contains a long pointer to the window title of the MDI child window.

hOwner
Identifies the instance handle of the application creating the MDI child window.

Specifies the initial position of the left side of the MDI child window. If this
member is set to CW_USEDEFAULT, the MDI child window is assigned a de-
fault horizontal position.

MDICREATESTRUCT 315

Specifies the initial position of the top edge of the MDI child window. If this
member is set to CW_USEDEFAULT, the MDI child window is assigned a de-
fault vertical position.

cx
Specifies the initial width of the MDI child window. If this member is set to
CW_USEDEFAULT, the MDI child window is assigned a default width.

cy
Specifies the initial height of the MDI child window. If this member is set to
CW_USEDEFAULT, the MDI child window is assigned a default height.

style
Specifies additional styles for the MDI child window. If the window was
created with the MDIS_ALLCHILDSTYLES window style, the style member
may be any combination of the window styles documented with the
CreateWindow function. Otherwise, it may be one or more of the following
values:

Value Meaning
WS_MINIMIZE MDI child window is created in a minimized state.
WS_MAXIMIZE MDI child window is created in a maximized state.

WS_HSCROLL MDI child window is created with a horizontal scroll bar.
WS_VSCROLL MDI child window is created with a vertical scroll bar.

IParam
Specifies an application-defined 32-bit value.

Comments When the MDI child window is created, Windows sends the WM_CREATE
message to the window. The [Param parameter of the WM_CREATE message
contains a pointer to a CREATESTRUCT structure. The IpCreateParams mem-
ber of CREATESTRUCT contains a pointer to the MDICREATESTRUCT
structure passed with the WM_MDICREATE message that created the MDI child
window.

See Also CREATESTRUCT

316 MEASUREITEMSTRUCT

MEASUREITEMSTRUCT

Members

typedef struct tagMEASUREITEMSTRUCT { /®* mi */
UINT Ct1Type;
UINT Ct11ID;
UINT itemlID;
UINT itemWidth;
UINT itemHeight;
DWORD itemData;
} MEASUREITEMSTRUCT;

The MEASUREITEMSTRUCT structure informs Windows of the dimensions
of an owner-drawn control. This allows Windows to process user interaction with
the control correctly. The owner of an owner-drawn control receives a pointer to
this structure as the [Param parameter of an WM_MEASUREITEM message. The
owner-drawn control sends this message to its owner window when the control is
created. The owner then fills in the appropriate members in the structure for the
control and returns. This structure is common to all owner-drawn controls.

CtlType
Specifies the control type. The values for control types are as follows:
Value Meaning
ODT_BUTTON Owner-drawn button
ODT_COMBOBOX Owner-drawn combo box
ODT_LISTBOX Owner-drawn list box
ODT_MENU Owner-drawn menu
CtlID

Specifies the control identifier for a combo box, list box, or button. This mem-
ber is not used for a menu.

itemID
Specifies the menu-item identifier for a menu or the list-box item identifier for
a variable-height combo box or list box. This member is not used for a fixed-
height combo box or list box or for a button.

itemWidth
Specifies the width of a menu item. The owner of the owner-drawn menu item
must fill this member before returning from the message.

itemHeight
Specifies the height of an individual item in a list box or a menu. Before return-
ing from the message, the owner of the owner-drawn combo box, list box, or
menu item must fill out this member. The maximum height of a list box item is
255.

MEMMANINFO 317

Comments

itemData
Contains the value that was passed to the combo box or list box in the [Param
parameter of one of the following messages:

CB_ADDSTRING
CB_INSERTSTRING
LB_ADDSTRING
LB_INSERTSTRING

Failure to fill out the proper members in the MEASUREITEMSTRUCT struc-
ture will cause improper operation of the control.

MEMMANINFO

Members

#include <toolhelp.h>

typedef struct tagMEMMANINFO { /% mmi =/
DWORD dwSize;
DWORD dwlLargestFreeBlock;
DWORD dwMaxPagesAvailable;
DWORD dwMaxPageslLockable;
DWORD dwTotallLinearSpace;
DWORD dwTotalUnlockedPages;
DWORD dwFreePages;
DWORD dwTotalPages;
DWORD dwFreelLinearSpace;
DWORD dwSwapFilePages;
WORD wPageSize;

} MEMMANINFO;

The MEMMANINFO structure contains information about the status and per-
formance of the virtual-memory manager. If the memory manager is running in
standard mode, the only valid member of this structure is the dwLargestFree-
Block member.

dwSize
Specifies the size of the MEMMANINFO structure, in bytes.

dwLargestFreeBlock
Specifies the largest free block of contiguous linear memory in the system, in
bytes.

dwMaxPagesAvailable
Specifies the maximum number of pages that could be allocated in the system
(the value of dwLargestFreeBlock divided by the value of wPageSize).

318 MENUITEMTEMPLATE
dwMaxPagesLockable
Specifies the maximum number of pages that could be allocated and locked.
dwTotalLinearSpace
Specifies the size of the total linear address space, in pages.
dwTotalUnlockedPages
Specifies the number of unlocked pages in the system. This value includes free
pages.
dwFreePages
Specifies the number of pages that are not in use.
dwTotalPages
Specifies the total number of pages the virtual-memory manager manages. This
value includes free, locked, and unlocked pages.
dwFreeLinearSpace
Specifies the amount of free memory in the linear address space, in pages.
dwSwapFilePages
Specifies the number of pages in the system swap file.
wPageSize
Specifies the system page size, in bytes.
See Also MemManlInfo

MENUITEMTEMPLATE

Members

typedef struct { /* mit =/
UINT mtOption;
UINT mtID;
char mtString[1];

} MENUITEMTEMPLATE;

The MENUITEMTEMPLATE structure defines a menu item.

mtOption
Specifies a mask of one or more predefined menu options that specify the
appearance of the menu item. The menu options follow:

Value Meaning
MF_CHECKED Item has a check mark next to it.
MF_GRAYED Item is initially inactive and drawn with a gray effect.

MF_HELP Item has a vertical separator to its left.

MENUITEMTEMPLATEHEADER 319

See Also

Value Meaning

MF_MENUBARBREAK Item is placed in a new column. The old and new
columns are separated by a bar.

MF_MENUBREAK Item is placed in a new column.

MF_OWNERDRAW Owner of the menu is responsible for drawing all
visual aspects of the menu item, including

highlighted, checked and inactive states. This option
is not valid for a top-level menu item.

MF_POPUP Item displays a sublist of menu items when selected.

mtID
Specifies an identification code for a non-pop-up menu item. The MENU-
ITEMTEMPLATE structure for a pop-up menu item does not contain the
mtID member.

mtString
Specifies a null-terminated string that contains the name of the menu item.

LoadMenulndirect, MENUITEMTEMPLATEHEADER

MENUITEMTEMPLATEHEADER

Members

Comments

See Also

typedef struct { /* mith =/
UINT versionNumber;
UINT offset;

} MENUITEMTEMPLATEHEADER;

A complete menu template consists of a header and one or more menu-item lists.

versionNumber
Specifies the version number. This member should be zero.

offset
Specifies the offset from the end of the header, in bytes, where the menu-item
list begins.

One or more MENUITEMTEMPLATE structures are combined to form the
menu-item list.

MENUITEMTEMPLATE

320 METAFILEPICT

METAFILEPICT

Members

See Also

typedef struct tagMETAFILEPICT { /* mfp */

int mm;
int xExt;
int yExt;

HMETAFILE hMF;
} METAFILEPICT;

The METAFILEPICT structure defines the metafile picture format used for ex-
changing metafile data through the clipboard.

mm
Specifies the mapping mode in which the picture is drawn.

xExt
Specifies the size of the metafile picture for all modes except the
MM_ISOTROPIC and MM_ANISOTROPIC modes. The x-extent
specifies the width of the rectangle within which the picture is drawn.
The coordinates are in units that correspond to the mapping mode.

yExt
Specifies the size of the metafile picture for all modes except the
MM_ISOTROPIC and MM_ANISOTROPIC modes. The y-extent
specifies the height of the rectangle within which the picture is drawn.
The coordinates are in units that correspond to the mapping mode.

For MM_ISOTROPIC and MM_ANISOTROPIC modes, which can be

scaled, the xExt and yExt members contain an optional suggested size in
MM_HIMETRIC units. For MM_ANISOTROPIC pictures, xExt and yExt can
be zero when no suggested size is supplied. For MM_ISOTROPIC pictures, an
aspect ratio must be supplied even when no suggested size is given. (If a sug-
gested size is given, the aspect ratio is implied by the size.) To give an aspect
ratio without implying a suggested size, set XExt and yExt to negative values
whose ratio is the appropriate aspect ratio. The magnitude of the negative xExt
and yExt values will be ignored; only the ratio will be used.

hMF
Identifies a memory metafile.

SetClipboardData

METAHEADER 321

METAHEADER [31]

Members

See Also

typedef struct tagMETAHEADER { /% mh =/
UINT mtType;
UINT mtHeaderSize;
UINT mtVersion;
DWORD mtSize;
UINT mtNoObjects;
DWORD mtMaxRecord;
UINT mtNoParameters;
} METAHEADER;

The METAHEADER structure contains information about a metafile.

mtType
Specifies whether the metafile is in memory or recorded in a disk file. This
member can be one of the following values:

Value Meaning

1 Metafile is in memory.

2 Metafile is in a disk file.
mtHeaderSize

Specifies the size, in words, of the metafile header.

mtVersion
Specifies the Windows version number. The version number for metafiles that
support device-independent bitmaps (DIBs) is 0x0300. Otherwise, the version
number is 0x0100.

mtSize
Specifies the size, in words, of the file.

mtNoObjects
Specifies the maximum number of objects that exist in the metafile at the same
time.

mtMaxRecord
Specifies the size, in words, of the largest record in the metafile.

mtNoParameters
Reserved.

METARECORD

322 METARECORD

METARECORD [31]

typedef struct tagMETARECORD { /* mr */
DWORD rdSize;
UINT rdFunction;
UINT rdParm[1];

} METARECORD;

The METARECORD structure contains a metafile record.

Members rdSize
Specifies the size, in words, of the record.

rdFunction
Specifies the function number.

rdParm
Specifies an array of words containing the function parameters, in the reverse
order in which they are passed to the function.

See Also METAHEADER

MINMAXINFO [31]

typedef struct tagMINMAXINFO { /% mmi =/
POINT ptReserved;
POINT ptMaxSize;
POINT ptMaxPosition;
POINT ptMinTrackSize;
POINT ptMaxTrackSize;
} MINMAXINFO;

The MINMAXINFO structure contains information about a window’s maximized
size and position and its minimum and maximum tracking size.

Members ptReserved
Reserved for internal use.

ptMaxSize
Specifies the maximized width (point.x) and the maximized height (point.y) of
the window.

MODULEENTRY 323

See Also

ptMaxPosition
Specifies the position of the left side of the maximized window (point.x) and
the position of the top of the maximized window (point.y).

ptMinTrackSize
Specifies the minimum tracking width (point.x) and the minimum tracking

height (point.y) of the window.

ptMaxTrackSize
Specifies the maximum tracking width (point.x) and the maximum tracking

height (point.y) of the window.

POINT, WM_GETMINMAXINFO

MODULEENTRY

Members

f#include <toolhelp.h>

typedef struct tagMODULEENTRY { /* me */
DWORD dwSize;
char szModule[MAX_MODULE_NAME + 17;
HMODULE hModule;
WORD wcUsage;
char szExePath[MAX_PATH + 1];
WORD wNext;

} MODULEENTRY;

The MODULEENTRY structure contains information about one module in the
module list.

dwSize
Specifies the size of the MODULEENTRY structure, in bytes.

szModule
Specifies the null-terminated string that contains the module name.

hModule
Identifies the module handle.

wcUsage
Specifies the reference count of the module. This is the same number returned

by the GetModuleUsage function.

324 MONCBSTRUCT

szExePath
Specifies the null-terminated string that contains the fully-qualified executable
path for the module.

wNext

Specifies the next module in the module list. This member is reserved for inter-
nal use by Windows.

See Also ModuleFindHandle, ModuleFindName, ModuleFirst, ModuleNext

MONCBSTRUCT E

#finclude <ddeml.h>

typedef struct tagMONCBSTRUCT { /* mcbst */
UINT cb;
WORD wReserved;
DWORD dwTime;
HANDLE hTask;
DWORD dwRet;

UINT wType;
UINT wkmt;
HCONV hConv;
HSZ hszl;
HSZ hsz2;

HDDEDATA hData;

DWORD dwDatal;

DWORD dwData2;
} MONCBSTRUCT;

The MONCBSTRUCT structure contains information about the current dynamic
data exchange (DDE) transaction. A DDE debugging application can use this struc-
ture when monitoring transactions that the system passes to the DDE callback
functions of other applications.

MONCBSTRUCT 325

Members

See Also

cb
Specifies the length, in bytes, of the structure.

wReserved
Reserved.

dwTime
Specifies the Windows time at which the transaction occurred. Windows time
is the number of milliseconds that have elapsed since the system was started.

hTask
Identifies the task (application instance) containing the DDE callback function
that received the transaction.

dwRet
Specifies the value returned by the DDE callback function that processed the
transaction.

wType
Specifies the transaction type.

wFmt
Specifies the format of the data (if any) exchanged during the transaction.

hConv
Identifies the conversation in which the transaction took place.

hsz1
Identifies a string.

hsz2
Identifies a string.

hData
Identifies the data (if any) exchanged during the transaction.

dwDatal
Specifies additional data.

dwData2
Specifies additional data.

MONERRSTRUCT, MONHSZSTRUCT, MONLINKSTRUCT,
MONMSGSTRUCT

- 326 MONCONVSTRUCT

MONCONVSTRUCT

Members

See Also

#include <ddeml.h>

typedef struct tagMONCONVSTRUCT { /* mcvst */
UINT cb;
BOOL fConnect;
DWORD dwTime;
HANDLE - hTask;
HSZ hszSvc;
HSZ hszTopic;
HCONV hConvClient;
HCONV hConvServer;
} MONCONVSTRUCT;

The MONCONVSTRUCT structure contains information about a conversation.
A dynamic data exchange (DDE) monitoring application can use this structure to
obtain information about an advise loop that has been established or terminated.

cb
Specifies the length, in bytes, of the structure.
fConnect

Indicates whether the conversation is currently established. A value of TRUE
indicates the conversation is established; FALSE indicates it is not.

dwTime
Specifies the Windows time at which the conversation was established or termi-
nated. Windows time is the number of milliseconds that have elapsed since the
system was started.

hTask
Identifies a task (application instance) that is a partner in the conversation.

hszSve

Identifies the service name on which the conversation is established.
hszTopic

Identifies the topic name on which the conversation is established.

hConvClient
Identifies the client conversation.

hConvServer
Identifies the server conversation.

MONCBSTRUCT, MONERRSTRUCT, MONHSZSTRUCT,
MONLINKSTRUCT, MONMSGSTRUCT

MONERRSTRUCT 321

MONERRSTRUCT [3.1]

f#include <ddeml.h>

typedef struct tagMONERRSTRUCT { /#* mest =/
UINT cb;
UINT wLastError;
DWORD dwTime;
HANDLE hTask;
} MONERRSTRUCT;

The MONERRSTRUCT structure contains information about the current dy-
namic data exchange (DDE) error. A DDE monitoring application can use this
structure to monitor errors returned by DDE Management Library functions.

Members cb
Specifies the length, in bytes, of the structure.

wLastError
Specifies the current error.

dwTime
Specifies the Windows time at which the error occurred. Windows time is the
number of milliseconds that have elapsed since the system was started.

hTask
Identifies the task (application instance) that called the DDE function that
caused the error.

See Also MONCBSTRUCT, MONCONVSTRUCT, MONHSZSTRUCT,
MONLINKSTRUCT, MONMSGSTRUCT

328 MONHSZSTRUCT

MONHSZSTRUCT

Members

#include <ddeml.h>

typedef struct tagMONHSZSTRUCT { /% mhst */
UINT cb;
BOOL fsAction;
DWORD dwTime;
HSZ hsz;
HANDLE hTask;
WORD wReserved;
char str[1];
} MONHSZSTRUCT;

The MONHSZSTRUCT structure contains information about a dynamic data
exchange (DDE) string handle. A DDE monitoring application can use this struc-
ture when monitoring the activity of the string-manager component of the DDE
Management Library (DDEML).

cb
Specifies the length, in bytes, of the structure.

fsAction
Specifies the action being performed on the string handle identified by the hsz
member.

Value Meaning

MH_CLEANUP An application is freeing its DDE resources, causing the sys-
tem to delete string handles that the application had created.
(The application called the DdeUninitialize function.)

MH_CREATE An application is creating a string handle. (The application
called the DdeCreateStringHandle function.)

MH_DELETE An application is deleting a string handle. (The application
called the DdeFreeStringHandle function.)

MH_KEEP An application is increasing the use count of a string handle.

(The application called the DdeKeepStringHandle function.)

dwTime
Specifies the Windows time at which the action specified by the fsAction mem-
ber takes place. Windows time is the’ number of milliseconds that have elapsed
since the system was booted.

hsz
Identifies the string.

hTask
Identifies the task (application instance) performing the action on the string
handle.

MONLINKSTRUCT 329

See Also

wReserved
Reserved.

str
Points to the string identified by the hsz member.

MONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT,
MONLINKSTRUCT, MONMSGSTRUCT

MONLINKSTRUCT [3.1]

Members

#include <ddeml.h>

typedef struct tagMONLINKSTRUCT { /* mlst =/
UINT cb;
DWORD dwTime;
HANDLE hTask;
BOOL fEstablished;
BOOL fNoData;

HSZ hszSvc;
HSZ hszTopic;
HSZ hszItem;
UINT wFmt;

BOOL fServer;

HCONV hConvServer;

HCONV hConvClient;
} MONLINKSTRUCT;

The MONLINKSTRUCT structure contains information about a dynamic data
exchange (DDE) advise loop. A DDE monitoring application can use this structure
to obtain information about an advise loop that has started or ended.

cb
Specifies the length, in bytes, of the structure.

dwTime
Specifies the Windows time at which the advise loop was started or ended. Win-
dows time is the number of milliseconds that have elapsed since the system was
started.

hTask
Identifies a task (application instance) that is a partner in the advise loop.

fEstablished
Indicates whether an advise loop was successfully established. A value of
TRUE indicates an advise loop was established; FALSE indicates an advise
loop was not established.

330 MONMSGSTRUCT

See Also

fNoData
Indicates whether the XTYPF_NODATA flag was set for the advise loop. A
value of TRUE indicates the flag is set; FALSE indicates the flag was not set.

hszSve
Identifies the service name of the server in the advise loop.

hszTopic
Identifies the topic name on which the advise loop is established.

hszItem
Identifies the item name that is the subject of the advise loop.

wFmt
Specifies the format of the data exchanged (if any) during the advise loop.

fServer
Indicates whether the link notification came from the server. If the notification
came from the server, this value is TRUE. Otherwise, it is FALSE.

hConvServer
Identifies the server conversation.

hConvClient
Identifies the client conversation.

MONCBSTRUCT, MONERRSTRUCT, MONHSZSTRUCT,
MONMSGSTRUCT

MONMSGSTRUCT

#include <ddeml.h>

typedef struct tagMONMSGSTRUCT { /* mmst */
UINT ch;
HWND hwndTo;
DWORD dwTime;
HANDLE hTask;
UINT wMsg;
WPARAM wParam;
LPARAM 1Param;
} MONMSGSTRUCT;

The MONMSGSTRUCT structure contains information about a dynamic data ex-
change (DDE) message. A DDE monitoring application can use this structure to
obtain information about a DDE message that was sent or posted.

MOUSEHOOKSTRUCT 331

Members

See Also

cb
Specifies the length, in bytes, of the structure.

hwndTo
Identifies the window that receives the DDE message.

dwTime
Specifies the Windows time at which the message was sent or posted. Windows
time is the number of milliseconds that have elapsed since the system was
started.

hTask
Identifies the task (application instance) containing the window that receives
the DDE message.

wMsg
Specifies the identifier of the DDE message.

wParam
Specifies the wParam parameter of the DDE message.

IParam
Specifies the [Param parameter of the DDE message.

MONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT,
MONHSZSTRUCT, MONLINKSTRUCT

MOUSEHOOKSTRUCT

Members

typedef struct tagMOUSEHOOKSTRUCT { /* ms =/
POINT pt;
HWND hwnd ;
UINT wHitTestCode;
DWORD dwExtralnfo;
} MOUSEHOOKSTRUCT;

The MOUSEHOOKSTRUCT structure contains information about a mouse
event.

pt
Specifies a POINT structure that contains the x- and y-coordinates of the
mouse cursor, in screen coordinates.

hwnd
Identifies the window that will receive the mouse message that corresponds to

the mouse event.

332 MSG

See Also

wHitTestCode
Specifies the hit-test code.

dwExtralnfo
Specifies extra information associated with the mouse event. An application
can set this information by calling the hardware_ event function and retrieve
this information by calling the GetMessageExtralnfo function.

GetMessageExtralnfo, SetWindowsHook

MSG

Members

See Also

typedef struct tagMSG { /* msg */
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM TParam;
DWORD time;
POINT pt;
} MSG;

The MSG structure contains information from the Windows application queue.

hwnd
Identifies the window that receives the message.

message
Specifies the message number.

wParam
Specifies additional information about the message. The exact meaning de-
pends on the message value.

IParam
Specifies additional information about the message. The exact meaning de-
pends on the message value.

time
Specifies the time at which the message was posted.

pt
Specifies the position of the cursor, in screen coordinates, when the message
was posted.

EVENTMSG, GetMessage

NCCALCSIZE_PARAMS 333

MULTIKEYHELP

typedef struct tagMULTIKEYHELP { /* mkh =/
UINT mkSize;
BYTE mkKeylist;
BYTE szKeyphrase[1l];

} MULTIKEYHELP;

The MULTIKEYHELP structure specifies a keyword table and an associated
keyword to be used by the Windows Help application.

Members mkSize
Specifies the length, in bytes, of the MULTIKEYHELP structure.

mkKeylist
Contains a single character that identifies the keyword table to be searched.

szKeyphrase
Contains a null-terminated text string that specifies the keyword to be located in
the keyword table.

See Also WinHelp

NCCALCSIZE_PARAMS [3.1]

typedef struct tagNCCALCSIZE_PARAMS {
RECT rgrc[3];
WINDOWPOS FAR* Tppos;

} NCCALCSIZE_PARAMS;

The NCCALCSIZE_PARAMS structure contains information that an applica-
tion can use while processing the WM_NCCALCSIZE message to calculate the
size, position, and valid contents of the client area of a window.

Members rgre
Specifies an array of rectangles. The first contains the new coordinates of a win-
dow that has been moved or resized. The second contains the coordinates of the
window before it was moved or resized. The third contains the coordinates of
the client area of a window before it was moved or resized. If the window is a
child window, the coordinates are relative to the client area of the parent win-
dow. If the window is a top-level window, the coordinates are relative to the
screen.

334 NEWCPLINFO

Ippos
Points to a WINDOWPOS structure that contains the size and position values
specified in the operation that caused the window to be moved or resized. The
WINDOWPOS structure has the following form:

typedef struct tagWINDOWPOS { /% wp */

HWND hwnd;

HWND hwndInsertAfter;
int X;

int H

int CcX;

int cy;

UINT flags;
} WINDOWPOS;

See Also MoveWindow, SetWindowPos, RECT, WINDOWPOS, WM_NCCALCSIZE

NEWCPLINFO [31]

#include <cpl.h>

typedef struct tagNEWCPLINFO { /= ncpli =/
DWORD dwSize;
DWORD dwFlags;
DWORD dwHelpContext;
LONG 1Data;
HICON hlIcon;
char szName[32];
char szInfo[64];
char szHelpFile[128];
} NEWCPLINFO;

The NEWCPLINFO structure contains resource information and a user-defined
value for a Control Panel application.

NEWCPLINFO 335

Members

dwSize
Specifies the length of the structure, in bytes.

dwFlags
Specifies Control Panel flags.

dwHelpContext
Specifies the context number for the topic in the help project (.HPJ) file that dis-
plays when the user selects help for the application. For more information on
help, see Microsoft Windows Programming Tools.

IData
Specifies data defined by the application.

hlcon
Identifies an icon resource for the application icon. This icon is displayed in the
Control Panel window.

szName
Specifies a null-terminated string that contains the application name. The name
is the short string displayed below the application icon in the Control Panel win-
dow. The name is also displayed in the Settings menu of Control Panel.

szInfo
Specifies a null-terminated string containing the application description. The de-
scription displayed at the bottom of the Control Panel window when the applica-
tion icon is selected.

szHelpFile
Specifies a null-terminated string that contains the path of the help file, if any,
for the application.

336 NEWTEXTMETRIC

NEWTEXTMETRIC

Members

typedef struct tagNEWTEXTMETRIC { /* ntm x/
int tmHeight;
int tmAscent;
int tmDescent;
int tmInternalleading;
int tmExternalleading;
int tmAveCharWidth;
int tmMaxCharWidth;
int tmWeight;
BYTE tmlItalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE tmLastChar;
BYTE tmDefaultChar;
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet;
int tmOverhang;
int tmDigitizedAspectX;
int tmDigitizedAspectY;
DWORD ntmFlags;
UINT ntmSizeEM;
UINT ntmCellHeight;
UINT ntmAvgWidth;
} NEWTEXTMETRIC;

The NEWTEXTMETRIC structure contains basic information about a physical
font. The last four members of the NEWTEXTMETRIC structure are not in-
cluded in the TEXTMETRIC structure; in all other respects, the structures are
identical. The additional members are used for information about TrueType fonts.

tmHeight
Specifies the height of character cells. (The height is the sum of the tmAscent
and tmDescent members.)

tmAscent
Specifies the ascent of character cells. (The ascent is the space between the base
line and the top of the character cell.)

tmDescent
Specifies the descent of character cells. (The descent is the space between the
bottom of the character cell and the base line.)

tmInternalLeading
Specifies the difference between the point size of a font and the physical
size of the font. For TrueType fonts, this value is equal to tmHeight minus
(s * ntmSizeEM), where s is the scaling factor for the TrueType font. For

NEWTEXTMETRIC 337

bitmap fonts, this value is used to determine the point size of a font; when an ap-
plication specifies a negative value in the IfHeight member of the LOGFONT
structure, the application is requesting a font whose height equals tmHeight
minus tmInternalLeading.

tmExternallLeading
Specifies the amount of extra leading (space) that the application adds between
rows. Since this area is outside the character cell, it contains no marks and will
not be altered by text output calls in either opaque or transparent mode. The
font designer sometimes sets this member to zero.

tmAveCharWidth
Specifies the average width of characters in the font. For ANSI_CHARSET
fonts, this is a weighted average of the characters “a” through “z” and the space
character. For other character sets, this value is an unweighted average of all
characters in the font.

tmMaxCharWidth
Specifies the “B” spacing of the widest character in the font. For more informa-
tion about “B” spacing, see the description of the ABC structure.

tmWeight
Specifies the weight of the font. This member can be one of the following
values:

Constant Value
FW_DONTCARE 0
FW_THIN 100

FW_EXTRALIGHT 200
FW_ULTRALIGHT 200

FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700

FW_EXTRABOLD 800
FW_ULTRABOLD 800

FW_BLACK 900
FW_HEAVY 900
tmltalic
Specifies an italic font if it is nonzero.
tmUnderlined

Specifies an underlined font if it is nonzero.

338

NEWTEXTMETRIC

tmStruckOut
Specifies a “struckout” font if it is nonzero.

tmFirstChar
Specifies the value of the first character defined in the font.

tmLastChar .
Specifies the value of the last character defined in the font.

tmDefaultChar
Specifies the value of the character that will be substituted for characters not in
the font.

tmBreak Char
Specifies the value of the character that will be used to define word breaks for
text justification.

tmPitchAndFamily
Specifies the pitch and family of the selected font. The four low-order bits iden-
tify the type of font, as follows:

Value Meaning

TMPF_PITCH Designates a fixed-pitch font.
TMPF_VECTOR Designates a vector or TrueType font.
TMPF_TRUETYPE Designates a TrueType font.
TMPF_DEVICE Designates a device font.

Some fonts are identified by several of these bits—for example, the bits
TMPF_PITCH, TMPF_VECTOR, and TMPF_TRUETYPE would be set for
the monospace TrueType font, Courier New. The TMPF_DEVICE bit could be
set for a TrueType font as well, because this bit is set for both downloaded and
device-resident fonts.

When the TMPF_TRUETYPE bit is set, the font is usable on all output devices.
For example, if a TrueType font existed on a printer but could not be used on
the display, the TMPF_TRUETYPE bit would not be set for that font.

The four high-order bits specify the font family. The tmPitchAndFamily mem-
ber can be combined with the hexadecimal value 0xFO by using the bitwise
AND operator and can then be compared with the font family names for an
identical match. The following font families are defined:

Value Meaning

FF_DECORATIVE Novelty fonts. Old English is an example.

FF_DONTCARE Don’t care or don’t know.

FF_MODERN Fonts with constant stroke width, with or without serifs.
Pica, Elite, and Courier New are examples.

FF_ROMAN Fonts with variable stroke width and with serifs. Times

New Roman and New Century Schoolbook are examples.

NEWTEXTMETRIC 339

Value Meaning

FF_SCRIPT Fonts designed to look like handwriting. Script and Cursive
are examples.

FF_SWISS Fonts with variable stroke width and without serifs. MS

Sans Serif is an example.

tmCharSet
Specifies the character set of the font. The following values are defined:
Constant Value
ANSI_CHARSET 0

DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
SHIFTJIS_CHARSET 128
OEM_CHARSET 255

tmOverhang
Specifies the extra width that is added to some synthesized fonts. When synthe-
sizing some attributes, such as bold or italic, graphics-device interface (GDI) or
a device adds width to a string on both a per-character and per-string basis. For
example, GDI makes a string bold by expanding the intracharacter spacing and
overstriking by an offset value and italicizes a font by skewing the string. In
either case, the string is wider after the attribute is synthesized. For bold strings,
the overhang is the distance by which the overstrike is offset. For italic strings,
the overhang is the amount the top of the font is skewed past the bottom of the
font.

The tmOverhang member is zero for many italic and bold TrueType fonts be-
cause many TrueType fonts include italic and bold faces that are not synthe-
sized. For example, the overhang for Courier New Italic is zero.

An application that uses raster fonts can use the overhang value to determine
the spacing between words that have different attributes.

tmDigitized AspectX
Specifies the horizontal aspect of the device for which the font was designed.

tmDigitizedAspectY
Specifies the vertical aspect of the device for which the font was designed. The
ratio of the tmDigitizedAspectX and tmDigitizedAspectY members is the
aspect ratio of the device for which the font was designed.

ntmFlags
Specifies some elements of the font style. This member can be one or more of
the following values:

NTM_REGULAR
NTM_BOLD
NTM_ITALIC

340 NFYLOADSEG

Comments

See Also

The NTM_BOLD and NTM_ITALIC flags could be combined with the OR
operator to specify a bold italic font.

ntmSizeEM
Specifies the size of the em square for the font, in the units for which the font
was designed (notional units).

ntmCellHeight
Specifies the height of the font, in the units for which the font was designed
(notional units). This value should be compared against the value of the
ntmSizeEM member.

ntmAvgWidth
Specifies the average width of characters in the font, in the units for which the
font was designed (notional units). This value should be compared against the
value of the ntmSizeEM member.

The sizes in the NEWTEXTMETRIC structure are typically given in logical
units; that is, they depend on the current mapping mode of the display context.

EnumFontFamilies, EnumFonts, GetDeviceCaps, GetTextMetrics

NFYLOADSEG

Members

#include <toolhelp.h>

typedef struct tagNFYLOADSEG { /* nfyls */
DWORD dwSize;
WORD wSelector;
WORD wSegNum;
WORD wlype;
WORD wclnstance;
LPCSTR 1pstrModuleName;
} NFYLOADSEG;

The NFYLOADSEG structure contains information about the segment being
loaded when the kernel sends a load-segment notification.

dwSize
Specifies the size of the NFYLOADSESG structure, in bytes.

wSelector
Contains the selector of the segment being loaded.

wSegNum
Contains the executable-file segment number.

NFYLOGERROR N

See Also

wType

Indicates the type of information in the segment. Only the low bit of wType is
used. This type can be one of the following values:

Value Meaning

0 The segment contains code.

1 The segment contains data.
wclnstance

Specifies the number of instances that share this segment. This value is valid
only for data segments.

IpstrModuleName
Points to a null-terminated string containing the name of the module that owns

the segment being loaded.

NotifyRegister

NFYLOGERROR

Members

See Also

#include <toolhelp.h>

typedef struct tagNFYLOGERROR { /#* nfyle %/
DWORD dwSize;
UINT wErrCode;
void FAR* 1plnfo;

} NFYLOGERROR;

The NFYLOGERROR structure contains information about a validation error
that caused the kernel to send an NFY_LOGERROR notification.

dwSize
Specifies the size of the NFYLOGERROR structure, in bytes.

wErrCode
Identifies the error value that caused the notification to be sent.

IpInfo
Points to additional information, dependent on the error value.

NotifyRegister

342 NFYLOGPARAMERROR

NFYLOGPARAMERROR [31]

f#include <toolhelp.h>

typedef struct tagNFYLOGPARAMERROR { /* nfylpe =/

DWORD dwSize;
UINT wErrCode;
FARPROC IpfnErrorAddr;

void FAR* FAR+ TpBadParam;
} NFYLOGPARAMERROR;

The NFYLOGPARAMERROR structure contains information
about a parameter-validation error that caused the kernel to send an
NFY_LOGPARAMERROR notification.

Members dwSize
Specifies the size of the NFYLOGPARAMERROR structure, in bytes.

wErrCode
Identifies the error value that caused the notification to be sent.

IpfnErrorAddr
Points to the address of the function with the invalid parameter.

IpBadParam
Points to the name of the invalid parameter.

See Also NotifyRegister

NFYRIP E

f#include <toolhelp.h>

typedef struct tagNFYRIP { /% nfyr */
DWORD dwSize;
WORD wIP;
WORD wCS;
WORD wSS;
WORD wBP;
WORD wExitCode;
} NFYRIP;

The NFYRIP structure contains information about the system when a system de-
bugging error (RIP) occurs.

NFYSTARTDLL 343

Members

Comments

See Also

dwSize
Specifies the size of the NFYRIP structure, in bytes.

wiP
Contains the value in the IP register at the time of the RIP.

wCS
Contains the value in the CS register at the time of the RIP.

wSS
Contains the value in the SS register at the time of the RIP.

wBP
Contains the value in the BP register at the time of the RIP.

wExitCode
Contains an exit code that describes why the RIP occurred.

The StackTraceCSIPFirst function uses the CS:IP and SS:BP values presented in
this structure. The first frame in the stack identified by these values points to the
FatalExit function. The next frame points to the routine that called FatalExit, usu-
ally in USER.EXE, GDLEXE, or either KRNL286.EXE or KRNL386.EXE.

FatalExit, NotifyRegister, StackTrace CSIPFirst

NFYSTARTDLL

Members

f#finclude <toolhelp.h>

typedef struct tagNFYSTARTDLL { /#* nfysd */
DWORD dwSize;
HMODULE hModule;
WORD wCS;
WORD wiP;
} NFYSTARTDLL;

The NFYSTARTDLL structure contains information about the dynamic-link
library (DLL) being loaded when the kernel sends a load-DLL notification.

dwSize
Specifies the size of the NFYSTARTDLL structure, in bytes.

hModule
Identifies the library module being loaded.

344 OFSTRUCT

See Also

wCS
Contains the value in the CS register at load time. This value is used with the
value of the wIP member to determine the load address of the library.

wiP
Contains the value in the IP register at load time. This value is used with the
wCS value to determine the load address of the library.

NotifyRegister

OFSTRUCT

Members

Comments

typedef struct tagOFSTRUCT { /% of */
BYTE cBytes;
BYTE fFixedDisk;
UINT nErrCode;
BYTE reserved[4];
BYTE szPathName[128];
} OFSTRUCT;

The OFSTRUCT structure contains file information which results from opening
that file.

cBytes
Specifies the length, in bytes, of the OFSTRUCT structure.
fFixedDisk

Specifies whether the file is on a fixed disk. The fFixedDisk member is non-
zero if the file is on a fixed disk.

nErrCode
Specifies the MS-DOS error value if the OpenFile function returns —1 (that is,
OpenFile fails). For a list of possible error values, see the following Comments
section.

reserved
Reserved member. Four bytes reserved for future use.

szPathName
Specifies 128 bytes that contain the path of the file. This string consists of char-
acters from the OEM character set.

The error values that may be specified in the nErrCode parameter follow:

OFSTRUCT 345
Value Meaning
0x0001 Invalid function
0x0002 File not found
0x0003 Path not found
0x0004 Too many open files
0x0005 Access denied
0x0006 Invalid handle
0x0007 Arena trashed
0x0008 Not enough memory
0x0009 Invalid block
0x000A Bad environment
0x000B Bad format
0x000C Invalid access
0x000D Invalid data
0x000F Invalid drive
0x0010 Current directory
0x0011 Not same device
0x0012 No more files
0x0013 Write protect error
0x0014 Bad unit
0x0015 Not ready
0x0016 Bad command
0x0017 CRC error
0x0018 Bad length
0x0019 Seek error
0x001A Not MS-DOS disk
0x001B Sector not found
0x001C Out of paper
0x001D Write fault
0x001E Read fault
0x001F General failure
0x0020 Sharing violation
0x0021 Lock violation
0x0022 Wrong disk
0x0023 File control block unavailable
0x0024 Sharing buffer exceeded
0x0032 Not supported
0x0033 Remote not listed
0x0034 Duplicate name

346 OFSTRUCT
Value Meaning
0x0035 Bad netpath
0x0036 Network busy
0x0037 Device does not exist
0x0038 Too many commands
0x0039 Adaptor hardware error
0x003A Bad network response
0x003B Unexpected network error
0x003C Bad remote adaptor
0x003D Print queue full
0x003E No spool space
0x003F Print canceled
0x0040 Netname deleted
0x0041 Network access denied
0x0042 Bad device type
0x0043 Bad network name
0x0044 Too many names
0x0045 Too many sessions
0x0046 Sharing paused
0x0047 Request not accepted
0x0048 Redirection paused
0x0050 File exists
0x0051 Duplicate file control block
0x0052 Cannot make
0x0053 Interrupt 24 failure
0x0054 Out of structures
0x0055 Already assigned
0x0056 Invalid password
0x0057 Invalid parameter
0x0058 Net write fault

See Also OpenFile

OLECLIENTVTBL 347

OLECLIENT

Members

Comments

[31]

#include <ole.h>

typedef struct _OLECLIENT { /#* oc */
LPOLECLIENTVTBL 1pvtbl;

/* any client-supplied state information */

} OLECLIENT;

The OLECLIENT structure points to an OLECLIENTVTBL structure and can
store state information for use by the client application.

Ipvtbl
Points to a table of function pointers for the client.

Servers and object handlers should not attempt to use any state information sup-
plied in the OLECLIENT structure. The use and meaning of this information is
entirely dependent on the client application. Because a pointer to this structure is
supplied as a parameter to the client’s callback function, this is the preferred
method for the client application to store private object-state information.

OLECLIENTVTBL

Comments

#include <ole.h>

typedef struct _OLECLIENTVTBL { /% ocv */

int (CALLBACK* CallBack)(LPOLECLIENT, OLE_NOTIFICATION,
LPOLEOBJECT);
} OLECLIENTVTBL;

The OLECLIENTVTBL structure contains a pointer to a callback function for
the client application.

The address passed as the CallBack member must be created by using the Make-
ProclInstance function.

348 OLECLIENTVTBL

Function ClientCallback

INT ClientCallback(/pclient, notification, Ipobject)
LPOLECLIENT Ipclient;
OLE_NOTIFICATION notification;
LPOLEOBJECT Ipobject;

The ClientCallback function must use the Pascal calling convention and must be
declared FAR.

Parameters Ipclient
Points to the client structure associated with the object. The library retrieves
this pointer from its object structure when a notification occurs, uses it to locate
the callback function, and passes the pointer to the client structure for the client
application’s use.

notification
Specifies the reason for the notification. This parameter can be one of the fol-
lowing values:

Value Meaning

OLE_CHANGED The linked object has changed. (This notification is
not sent for embedded objects.) A typical action to
take with this notification is either to redraw or to
save the object.

OLE_CLOSED The object has been closed in its server. When the
client receives this notification, it should not call any
function that causes an asynchronous operation until
it regains control of program execution.

OLE_QUERY_PAINT A lengthy drawing operation is occurring. This notifi-
cation allows the drawing to be interrupted.

OLE_QUERY_RETRY The server has responded to a request by indicating
that it is busy. This notification requests the client to
determine whether the library should continue to
make the request. If the callback function returns
FALSE, the transaction with the server is discon-
tinued.

OLE_RELEASE The object has been released because an asynchro-
nous operation has finished. The client should not quit
until all objects have been released. The client applica-
tion can call the OleQueryReleaseError function to
determine whether the operation succeeded. It can
also call the OleQueryReleaseMethod function, if
necessary, to verify that that operation has ended

OLECLIENTVTBL 349

Return Value

Comments

See Also

Value Meaning

OLE_RENAMED The linked object has been renamed in its server. This
notification is for information only, because the
library automatically updates its link information.

OLE_SAVED The linked object has been saved in its server. The
client receives this notification when the server calls
the OleSavedServerDoc function in response to the
user choosing the Update command in the server’s
File menu.

When the client receives the OLE_ CLOSED notification, it typically stores
the condition and returns to the client library, taking action only when the client
library returns control of program execution to the client application. If the
client application must take action before regaining control, it should not call
any functions that could result in an asynchronous operation.

Ipobject
Points to the object that caused the notification to be sent. Applications that use
the same client structure for more than one object use the [pobject parameter to
distinguish between notifications.

When the notification parameter specifies either OLE_QUERY_PAINT or
OLE_QUERY_RETRY, the client should return TRUE if the library should
continue, or FALSE to terminate the painting operation or discontinue the
server transaction. When the notification parameter does not specify either
OLE_QUERY_PAINT or OLE_QUERY_RETRY, the return value is ignored.

The client application should act on these notifications at the next appropriate
time; for example, as part of the main event loop or when closing the object. The
updating of an object can be deferred until the user requests the update, if the
client provides that functionality. The client may call the library from a notifica-
tion callback function (the library is reentrant). The client should not attempt an
asynchronous operation while certain other operations are in progress (for ex-
ample, opening or deleting an object). The client also should not enter a message-
dispatch loop inside the callback function. When the client application calls a
function that would cause an asynchronous operation, the client library returns
OLE_WAIT_FOR_RELEASE when the function is called, notifies the application
when the operation completes by using OLE_RELEASE, and returns OLE_BUSY
if the client attempts to invoke a conflicting operation while the previous one is in
progress. The client can determine if an asynchronous operation is in progress by
calling OleQueryReleaseStatus, which returns OLE_BUSY if the operation has
not yet completed.

OleQueryReleaseStatus

350 OLEOBJECT

OLEOBJECT

#include <ole.h>

typedef struct _OLEOBJECT { /* 00 */
LPOLEOBJECTVTBL 1pvtbl;

/* any server-supplied state information */

} OLEOBJECT;

The OLEOBJECT structure points to a table of function pointers for an object.
This structure is initialized and maintained by servers for the server library.

Members Ipvtbl

Points to a table of function pointers for the object.

OLEOBJECTVTBL

#Finclude <ole.h>

typedef struct _OLEOBJECTVTBL { /* oov */

void FAR% (CALLBACK:
OLESTATUS (CALLBACK:
OLESTATUS (CALLBACK:
OLESTATUS (CALLBACK=*
OLESTATUS (CALLBACK=
HANDLE FAR%*);
OLESTATUS (CALLBACK=
OLESTATUS (CALLBACK=*
OLESTATUS (CALLBACK=x

QueryProtocol) (LPOLEOBJECT, OLE_LPCSTR);
Release)(LPOLEOBJECT);

Show) (LPOLEOBJECT, BOOL);

DoVerb) (LPOLEOBJECT, UINT, BOOL, BOOL);
GetData)(LPOLEOBJECT, OLECLIPFORMAT,

SetData)(LPOLEOBJECT, OLECLIPFORMAT, HANDLE);
SetTargetDevice)(LPOLEOBJECT, HGLOBAL);
SetBounds) (LPOLEOBJECT, OLE_CONST RECT FAR#*);

OLECLIPFORMAT (CALLBACK# EnumFormats)(LPOLEOBJECT, OLECLIPFORMAT);

OLESTATUS (CALLBACK*

SetColorScheme) (LPOLEOBJECT,

OLE_CONST LOGPALETTE FAR%);

/*

* Server applications implement only the functions listed above.

*

* to modify default
*/

Object handlers can use any of the functions in this structure

server behavior.

OLEOBJECTVTBL 351

OLESTATUS (CALLBACK=* Delete)(LPOLEOBJECT);

OLESTATUS (CALLBACK+* SetHostNames)(LPOLEOBJECT, OLE_LPCSTR,
OLE_LPCSTR);

OLESTATUS (CALLBACK* SaveToStream)(LPOLEOBJECT, LPOLESTREAM);

OLESTATUS (CALLBACK+* Clone)(LPOLEOBJECT, LPOLECLIENT, LHCLIENTDOC,
OLE_LPCSTR, LPOLEOBJECT FAR*);

OLESTATUS (CALLBACK* CopyFromLink)(LPOLEOBJECT, LPOLECLIENT,
LHCLIENTDOC, OLE_LPCSTR, LPOLEOBJECT FARx*);

OLESTATUS (CALLBACK* Equal)(LPOLEOBJECT, LPOLEOBJECT);

OLESTATUS (CALLBACK#* CopyToClipboard)(LPOLEOBJECT);

OLESTATUS (CALLBACK+* Draw)(LPOLEOBJECT, HDC, OLE_CONST RECT FARx*,
OLE_CONST RECT FAR=*, HDC);

OLESTATUS (CALLBACK+* Activate)(LPOLEOBJECT, UINT, BOOL, BOOL, HWND,
OLE_CONST RECT FAR*);

OLESTATUS (CALLBACK+* Execute)(LPOLEOBJECT, HGLOBAL, UINT);

OLESTATUS (CALLBACK* Close)(LPOLEOBJECT);

OLESTATUS (CALLBACK#* Update)(LPOLEOBJECT);

OLESTATUS (CALLBACK+* Reconnect)(LPOLEOBJECT);

OLESTATUS (CALLBACK#* ObjectConvert)(LPOLEOBJECT, OLE_LPCSTR,
LPOLECLIENT, LHCLIENTDOC, OLE_LPCSTR, LPOLEOBJECT FAR%*);

OLESTATUS (CALLBACK+* GetLinkUpdateOptions)(LPOLEOBJECT,
OLEOPT_UPDATE FAR*);

OLESTATUS (CALLBACK#* SetLinkUpdateOptions)(LPOLEOBJECT,
OLEOPT_UPDATE);

OLESTATUS (CALLBACK+* Rename)(LPOLEOBJECT, OLE_LPCSTR);

OLESTATUS (CALLBACK#* QueryName)(LPOLEOBJECT, LPSTR, UINT FAR*);

OLESTATUS (CALLBACK* QueryType)(LPOLEOBJECT, LONG FARx*);

OLESTATUS (CALLBACK* QueryBounds)(LPOLEOBJECT, RECT FARx);

OLESTATUS (CALLBACK#* QuerySize)(LPOLEOBJECT, DWORD FAR*);

OLESTATUS (CALLBACK#* QueryOpen)(LPOLEOBJECT);

OLESTATUS (CALLBACK+* QueryOutOfDate)(LPOLEOBJECT);

OLESTATUS (CALLBACK+* QueryReleaseStatus)(LPOLEOBJECT);

OLESTATUS (CALLBACK* QueryReleaseError)(LPOLEOBJECT);

OLE_RELEASE_METHOD (CALLBACK=* QueryReleaseMethod)(LPOLEOBJECT);

OLESTATUS (CALLBACK#* RequestData)(LPOLEOBJECT, OLECLIPFORMAT);

OLESTATUS (CALLBACK* ObjectlLong)(LPOLEOBJECT, UINT, LONG FAR*);

} OLEOBJECTVTBL;

The OLEOBJECTVTBL structure points to functions that manipulate an object.
A server application creates this structure and an OLEOBJECT structure to give
the server library access to an object.

Server applications do not need to implement functions beyond the SetColor-
Scheme function. Object handlers can provide specialized treatment for some or
all of the functions in the OLEOBJECTVTBL structure.

The following list of structure members does not document all the functions
pointed to by the OLEOBJECTVTBL structure. For information about the func-
tions not documented here, see the documentation for the corresponding function
for object linking and embedding (OLE). For example, for more information about
the QueryProtocol member, see the OleQueryProtocol function.

352 OLEOBJECTVTBL

Comments

Function

The following functions in OLEOBJECTVTBL should return OLE_BUSY when
appropriate:

Activate SetBounds

Close SetColorScheme
CopyFromLink SetData

Delete SetHostNames

DoVerb SetLinkUpdateOptions
Execute SetTargetDevice
ObjectConvert Show

Reconnect Update

RequestData

Release

OLESTATUS (FAR PASCAL *Release)(IpObject)
LPOLEOBJECT [pObject;

Parameters

Return Value

Comments

Function

The Release function causes the server to free the resources associated with the
specified OLEOBJECT structure.

IpObject
Points to the OLEOBJECT structure to be released.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

The server application should not destroy data when the library calls the Release
function. The library calls the Release function when no clients are connected to
the object.

Show

OLESTATUS (FAR PASCAL *Show)(lpObject, fTakeFocus)
LPOLEOBJECT IpObject;

BOOL fTakeFocus;

Parameters

The Show function causes the server to show an object, displaying its window and
scrolling (if necessary) to make the object visible.

IpObject
Points to the OLEOBJECT structure to show.
flakeFocus

Specifies whether the server window gets the focus. If the server window is to
get the focus, this value is TRUE. Otherwise, this value is FALSE.

OLEOBJECTVTBL 353

Return Value

Comments

Function

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

The library calls the Show function when the server application should show the
document to the user for editing or to request the server to scroll the document to
bring the object into view.

DoVerb

OLESTATUS (FAR PASCAL *DoVerb)(IpObject, iVerb, fShow, fTakeFocus);
LPOLEOBJECT IpObject;

UINT iVerb;
BOOL fShow;
BOOL fTakeFocus;

Parameters

Return Value

Comments

The DoVerb function specifies what kind of action the server should take when a
user activates an object.

IpObject
Points to the object to activate.

iVerb
Specifies the action to take. The meaning of this parameter is determined by the
server application.

fShow

Specifies whether to show the server window. This value is TRUE to show the
window; otherwise, it is FALSE.

flakeFocus
Specifies whether the server window gets the focus. If the server window is to
get the focus, this value is TRUE. Otherwise, it is FALSE. This parameter is rel-
evant only if the fShow parameter is TRUE.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

All servers must support the editing of objects. If a server does not support any
verbs except Edit, it should edit the object no matter what value is specified by the
iVerb parameter.

354 OLEOBJECTVTBL

Function GetData

OLESTATUS (FAR PASCAL *GetData)(IlpObject, cfFormat, Iphdata)
LPOLEOBJECT IpObject;

OLECLIPFORMAT cfFormat;

HANDLE FAR* Iphdata;

The GetData function retrieves data from an object in a specified format. The
server application should allocate memory, fill it with the data, and return the data
through the Iphdata parameter.

Parameters IpObject
Points to the OLEOBJECT structure from which data is requested.

cfFormat
Specifies the format in which the data is requested.

Iphdata
Points to the handle of the allocated memory that the server application returns.
The library frees the memory when it is no longer needed.

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_BLANK
OLE_ERROR_FORMAT
OLE_ERROR_OBJECT

Function SetData

OLESTATUS (FAR PASCAL *SetData)(lpObject, cfFormat, hdata)
LPOLEOBJECT IpObject;

OLECLIPFORMAT cfFormat;

HANDLE hdata;

The SetData function stores data in an object in a specified format. This function
is called (with the Native data format) when a client opens an embedded object for
editing. This function is also used if the client calls the OleSetData function with
some other format.

Parameters IpObject
Points to the OLEOBJECT structure in which data is stored.

cfFormat
Specifies the format of the data.

hdata
Identifies a place in memory from which the server application should extract
the data. The server should delete this handle after it uses the data.

OLEOBJECTVTBL 355

Return Value

Comments

Function

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

The server application is responsible for the memory identified by the hdata
parameter. The server must delete this data even if it returns OLE_BUSY or if an
eITor OCCuUrs.

SetTargetDevice

OLESTATUS (FAR PASCAL *SetTargetDevice)(IlpObject, hotd)
LPOLEOBJECT IpObject;

HGLOBAL hotd;

Parameters

Return Value

Comments

See Also

Function

The SetTargetDevice function communicates information about the client’s target
device for the object. The server can use this information to customize output for
the target device.

IpObject
Points to the OLEOBJECT structure for which the target device is specified.

hotd
Identifies an OLETARGETDEVICE structure.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

The server application is responsible for the memory identified by the hotd
parameter. The server must delete this data even if it returns OLE_BUSY or if an
error occurs.

The library passes NULL for the hotd parameter to indicate that the rendering is
necessary for the screen.

OleSetTargetDevice

ObjectLong

OLESTATUS (FAR PASCAL *ObjectLong)(IlpObject, wFlags, [pData)
LPOLEOBJECT IpObject;

UINT wFlags;

LONG FAR* IpData;

The ObjectLong function allows the calling application to store data with an ob-
ject. This function is typically used by object handlers.

356 OLEOBJECTVTBL

Parameters

Return Value

Function

IpObject
Points to the OLEOBJECT structure for which the data is stored.
wFlags

Specifies the method used for setting and retrieving data. It can be one or more
of the following values:

Value Meaning

OF_SET Data is written to the location specified by the [pData parame-
ter, replacing any data already there.

OF_GET Data is read from the location specified by the IlpData parame-

ter.

OF_HANDLER Data is written or read by an object handler. This value pre-
vents data from an object handler from being replaced by other
applications.

If the calling application specifies OF_SET and OF_GET, the function returns a
pointer to the previous data and replaces the data pointed to by the IpData
parameter with the data specified by the calling application.

IpData
Points to data to be written or read.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

SetColorScheme

OLESTATUS SetColorScheme(/pObject, IpPal)
LPOLEOBJECT IpObject;
OLE_CONST LOGPALETTE FAR* [pPal;

Parameters

Return Value

Comments

The SetColorScheme function sends the server application the color palette rec-
ommended by the client application.

IpObject
Points to an OLEOBJECT structure for which the client application recom-
mends a palette.

IpPal
Points to a LOGPALETTE structure specifying the recommended palette.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value. '

Server applications are not required to use the palette recommended by the client
application.

OLESERVER 357

Before returning from the SetColorScheme function, the server application
should use the palette pointed to by the IpPal parameter in a call to the Create-
Palette function to create the handle of the palette:

hpal = CreatePalette(1pPal);

The server can then use the palette handle to refer to the palette.

The first palette entry in the LOGPALETTE structure specifies the foreground
color recommended by the client application. The second palette entry specifies
the background color. The first half of the remaining palette entries are fill colors,
and the second half are colors for lines and text.

Client applications typically specify an even number of palette entries. When there
is an uneven number of entries, the server should interpret the odd entry as a fill
color; that is, if there are five entries, three should be interpreted as fill colors and
two as line and text colors.

OLESERVER

Members

#include <ole.h>

typedef struct _OLESERVER { /* 0s */
LPOLESERVERVTBL 1pvtbl;

/* any server-supplied state information =*/

} OLESERVER;

The OLESERVER structure points to a table of function pointers for the server.
This structure is initialized and maintained by servers for the server library.

Ipvtbl
Points to a table of function pointers for the server.

~ 358 OLESERVERDOC

OLESERVERDOC

#include <ole.h>

typedef struct _OLESERVERDOC { /#* osd */

LPOLESERVERDOCVTBL 1pvth1;

/* any server-supplied document-state information */

} OLESERVERDOC;

The OLESERVERDOC structure points to a table of function pointers for a docu-
ment. This structure is initialized and maintained by servers for the server library.

Members Ipvtbl

Points to a table of function pointers for the document.

OLESERVERDOCVTBL

#include <ole.h>

typedef struct _OLESERVERDOCVTBL { /* odv */

OLESTATUS (CALLBACK* Save)(LPOLESERVERDOC);

OLESTATUS (CALLBACK#* Close)(LPOLESERVERDOC);

OLESTATUS (CALLBACK* SetHostNames)(LPOLESERVERDOC, OLE_LPCSTR,
OLE_LPCSTR);

OLESTATUS (CALLBACK# SetDocDimensions)(LPOLESERVERDOC,
OLE_CONST RECT FAR=*);

OLESTATUS (CALLBACK=* GetObject)(LPOLESERVERDOC, OLE_LPCSTR,
LPOLEOBJECT FAR#*, LPOLECLIENT);

OLESTATUS (CALLBACK* Release)(LPOLESERVERDOC);

OLESTATUS (CALLBACK+* SetColorScheme)(LPOLESERVERDOC,
OLE_CONST LOGPALETTE FAR=%);

OLESTATUS (CALLBACK* Execute)(LPOLESERVERDOC, HGLOBAL);

} OLESERVERDOCVTBL;

The OLESERVERDOCVTBL structure points to functions that manipulate a
document. A server application creates this structure and an OLESERVERDOC
structure to give the server library access to a document.

Documents opened or created on request from the library should not be shown to
the user for editing until the library requests that they be shown.

Every function except Release can return OLE_BUSY.

OLESERVERDOCVTBL 359

Function

Save

OLESTATUS Save(lpDoc)
LPOLESERVERDOC IpDoc;

Parameters

Return Value

Function

The Save function instructs the server to save the document.

IpDoc
Points to an OLESERVERDOC structure corresponding to the document to
save.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

Close

OLESTATUS Close(/pDoc)
LPOLESERVERDOC IpDoc;

Parameters

Return Value

Comments

The Close function instructs the server application to unconditionally close the
document. The library calls this function when the client application initiates the
closure.

IpDoc
Points to an OLESERVERDOC structure corresponding to the document to
close.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

The library always calls the Close function before calling the Release function in
the OLESERVERVTBL structure.

The server application should not prompt the user to save the document or take
other actions; messages of this kind are handled by the client application.

When the library calls the Close function, the server should respond by calling the
OleRevokeServerDoc function. The resources for the document are freed when
the library calls the Release function. The server should not wait for the Release
function by entering a message-dispatch loop after calling OleRevokeServerDoc.
(A server should never enter message-dispatch loops while processing any of
these functions.)

When a document is closed, the server should free the memory for the
OLESERVERDOCVTBL structure and associated resources.

360 OLESERVERDOCVTBL

Function

SetHostNames

OLESTATUS SetHostNames(/pDoc, IpszClient, IpszDoc)
LPOLESERVERDOC IpDoc;

OLE_LPCSTR IpszClient;

OLE_LPCSTR IpszDoc;

Parameters

Return Value

Function

The SetHostNames function sets the name that should be used for a window title.
This name is used only for an embedded object, because a linked object has its
own title. This function is used only for documents that are embedded objects.

IpDoc
Points to an OLESERVERDOC structure corresponding to a document that is
the embedded object for which a name is specified.

IpszClient
Points to a null-terminated string specifying the name of the client.

IpszDoc
Points to a null-terminated string specifying the client’s name for the object.

The return value is OLE_OXK if the function is successful. Otherwise, it is an error
value.

SetDocDimensions

OLESTATUS SetDocDimensions(/pDoc, IpRect)
LPOLESERVERDOC IpDoc;
OLE_CONST RECT FAR* [pRect;

Parameters

Return Value

The SetDocDimensions function gives the server the rectangle on the target
device for which the object should be formatted. This function is relevant only for
documents that are embedded objects.

IpDoc
Points to the OLESERVERDOC structure corresponding to the document that
is the embedded object for which the target size is specified.

IpRect
Points to a RECT structure containing the target size of the object, in
MM_HIMETRIC units. (In the MM_HIMETRIC mapping mode, the positive y-
direction is up.)

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

OLESERVERDOCVTBL 361

Function

GetObject

OLESTATUS GetObject(IpDoc, Ipszitem, IplpObject, IpClient)
LPOLESERVERDOC IpDoc;

OLE_LPCSTR Ipszltem;

LPOLEOBJECT FAR* lplpObject;

LPOLECLIENT IpClient;

Parameters

Return Value

Comments

The GetObject function requests the server to create an OLEOBJECT structure.

IpDoc
Points to an OLESERVERDOC structure corresponding to this document.

Ipszltem
Points to a null-terminated string specifying the name of an item in the
specified document for which an object structure is requested. If this string is
set to NULL, the entire document is requested. This string cannot contain a
slash mark (/).

IplpObject
Points to a variable of type LPOLEOBJECT in which the server application
should return a long pointer to the allocated OLEOBJECT structure.

IpClient
Points to an OLECLIENT structure allocated by the library. The server should
associate the OLECLIENT structure with the object and use it to notify the
library of changes to the object.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

The server application should allocate and initialize the OLEOBJECT structure,
associate it with the OLECLIENT structure pointed to by the IpClient parameter,
and return a pointer to the OLEOBJECT structure through the IplpObject argu-
ment.

The library calls the GetObject function to associate a client with the part of the
document identified by the I[pszltem parameter. When a client has been associated
with an object by this function, the server can send notifications to the client.

Applications should be prepared to handle multiple calls to GetObject for a given
object. This entails creating multiple OLECLIENT structures and sending notifi-
cations to each of these structures when appropriate. Multiple calls to GetObject
are possible because some client applications that implement object linking and
embedding (OLE) by using dynamic data exchange (DDE) rather than the OLE
dynamic-link libraries may use both NULL and an actual item name for the
Ipszltem parameter.

362 OLESERVERDOCVTBL

Function

Release

OLESTATUS Release(lpDoc)
LPOLESERVERDOC IpDoc;

Parameters

Return Value

Function

The Release function notifies the server when a revoked document has terminated
conversations and can be destroyed.

IpDoc
Points to an OLESERVERDOC structure for which the handle was revoked
and which can now be released.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

SetColorScheme

OLESTATUS SetColorScheme(/pDoc, [pPal)
LPOLESERVERDOC IpDoc;
OLE_CONST LOGPALETTE FAR* [pPal;

Parameters

Return Value

Comments

The SetColorScheme function sends the server application the color palette rec-
ommended by the client application.

IpDoc
Points to an OLESERVERDOC structure for which the client application rec-
ommends a palette.

IpPal
Points to a LOGPALETTE structure specifying the recommended palette.

The return value is OLE_OXK if the function is successful. Otherwise, it is an error
value.

Server applications are not required to use the palette recommended by the client
application.

Before returning from the SetColorScheme function, the server application
should create a handle to the palette. To do this, the server application should use
the palette pointed to by the [pPal parameter in a call to the CreatePalette func-
tion, as shown in the following example.

hpal = CreatePalette(l1pPal);

OLESERVERDOCVTBL 363

Function

The server can then use the palette handle to refer to the palette.

The first palette entry in the LOGPALETTE structure specifies the foreground
color recommended by the client application. The second palette entry specifies
the background color. The first half of the remaining palette entries are fill colors,
and the second half are colors for lines and text.

Client applications typically specify an even number of palette entries. When there
is an uneven number of entries, the server should interpret the odd entry as a fill
color; that is, if there are five entries, three should be interpreted as fill colors and
two as line and text colors.

Execute

OLESTATUS Execute(lpDoc, hCommands)
LPOLESERVERDOC IpDoc;
HGLOBAL hCommands;

Parameters

Return Value

Comments

The Execute function receives WM_DDE_EXECUTE commands sent by client
applications. The applications send these commands by calling the OleExecute
function.

IpDoc
Points to an OLESERVERDOC structure to which the dynamic data exchange
(DDE) commands apply.

hCommands
Identifies memory containing one or more DDE execute commands.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

The server should never free the handle specified in the hCommands parameter.

364 OLESERVERVTBL

OLESERVERVTBL

#include <ole.h>

typedef struct _OLESERVERVTBL { /% osv */
OLESTATUS (CALLBACK=* Open)(LPOLESERVER, LHSERVERDOC,
OLE_LPCSTR, LPOLESERVERDOC FARx*);
OLESTATUS (CALLBACK=* Create)(LPOLESERVER, LHSERVERDOC,
OLE_LPCSTR, OLE_LPCSTR, LPOLESERVERDOC FARx*);
OLESTATUS (CALLBACK=* CreateFromTemplate)(LPOLESERVER,
LHSERVERDOC, OLE_LPCSTR, OLE_LPCSTR, OLE_LPCSTR,
LPOLESERVERDOC FAR*);
OLESTATUS (CALLBACK=* Edit)(LPOLESERVER, LHSERVERDOC,
OLE_LPCSTR, OLE_LPCSTR, LPOLESERVERDOC FAR%*);
OLESTATUS (CALLBACK* Exit)(LPOLESERVER);
OLESTATUS (CALLBACK* Release)(LPOLESERVER);
OLESTATUS (CALLBACK* Execute)(LPOLESERVER, HGLOBAL);
} OLESERVERVTBL;

The OLESERVERVTBL structure points to functions that manipulate a server.
After a server application creates this structure and an OLESERVER structure,

the server library can perform operations on the server application.

Every function except Release can return OLE_BUSY.

Function Open

OLESTATUS Open(IpServer, IhDoc, IpszDoc, IplpDoc)
LPOLESERVER IpServer;

LHSERVERDOC [hDoc;

OLE_LPCSTR IpszDoc;

LPOLESERVERDOC FAR* IpipDoc;

The Open function opens an existing file and prepares to edit the contents. A
server typically uses this function to open a linked object for a client application.

Parameters IpServer
Points to an OLESERVER structure identifying the server.

IhDoc
Identifies the document. The library uses this handle internally.

IpszDoc

Points to a null-terminated string specifying the permanent name of the docu-
ment to be opened. Typically this string is a path, but for some applications it
might be further qualified. For example, the string might specify a particular

table in a database.

OLESERVERVTBL 365

Return Value

Comments

Function

IplpDoc
Points to a variable of type LPOLESERVERDOC in which the server applica-
tion returns a long pointer to the OLESERVERDOC structure it has created in
response to this function.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

When the library calls this function, the server application opens a specified docu-
ment, allocates and initializes an OLESERVERDOC structure, associates the
library’s handle with the document, and returns the address of the structure. The
server does not show the document or its window.

Create

OLESTATUS Create(lpServer, IhDoc, IpszClass, IpszDoc, IplpDoc)
LPOLESERVER I[pServer;

LHSERVERDOC /hDoc;

OLE_LPCSTR IpszClass;

OLE_LPCSTR IpszDoc;

LPOLESERVERDOC FAR* IplpDoc;

Parameters

Return Value

The Create function makes a new object that is to be embedded in the client appli-
cation. The IpszDoc parameter identifies the object but should not be used to
create a file for the object.

IpServer
Points to an OLESERVER structure identifying the server.

lhDoc
Identifies the document. The library uses this handle internally.

IpszClass
Points to a null-terminated string specifying the class of document to create.

IpszDoc
Points to a null-terminated string specifying a name for the document to be
created. This name can be used to identify the document in window titles.

IplpDoc
Points to a variable of type LPOLESERVERDOC in which the server applica-
tion should return a long pointer to the created OLESERVERDOC structure.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

366 OLESERVERVTBL

Comments When the library calls this function, the server application creates a document of a
specified class, allocates and initializes an OLESERVERDOC structure, associ-
ates the library’s handle with the document, and returns the address of the struc-
ture. This function opens the created document for editing and embeds it in the
client when it is updated or closed.

Server applications often track changes to the document specified in this function,
so that the user can be prompted to save changes when necessary.

Function CreateFromTemplate

OLESTATUS CreateFromTemplate(IpServer, IhDoc, IpszClass, IpszDoc, IpszTemplate, IplpDoc)
LPOLESERVER [pServer;
LHSERVERDOC /hDoc;

OLE_LPCSTR IpszClass;
OLE_LPCSTR IpszDoc;
OLE_LPCSTR IpszTemplate;
LPOLESERVERDOC FAR* IplpDoc;

Parameters

The CreateFromTemplate function creates a new document that is initialized
with the data in a specified file. The new document is opened for editing by this
function and embedded in the client when it is updated or closed.

IpServer
Points to an OLESERVER structure identifying the server.

lhDoc
Identifies the document. The library uses this handle internally.

IpszClass
Points to a null-terminated string specifying the class of document to create.

IpszDoc
Points to a null-terminated string specifying a name for the document to be
created. This name need not be used by the server application but can be used
in window titles.

IpszTemplate
Points to a null-terminated string specifying the permanent name of the docu-
ment to use to initialize the new document. Typically this string is a path, but
for some applications it might be further qualified. For example, the string
might specify a particular table in a database.

IplpDoc
Points to a variable of type LPOLESERVERDOC in which the server applica-
tion should return a long pointer to the created OLESERVERDOC structure.

OLESERVERVTBL 367

Return Value

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

Comments When the library calls this function, the server application creates a document of a
specified class, allocates and initializes an OLESERVERDOC structure, associ-
ates the library’s handle with the document, and returns the address of the struc-
ture.

A server application often tracks changes to the document specified in this func-
tion, so that the user can be prompted to save changes when necessary.

Function Edit

OLESTATUS Edit(ipServer, IhDoc, IpszClass, IpszDoc, IpipDoc)
LPOLESERVER IpServer;
LHSERVERDOC [hDoc;

OLE_LPCSTR IpszClass;
OLE_LPCSTR lpszDoc;
LPOLESERVERDOC FAR¥* IpipDoc;

Parameters

Return Value

The Edit function creates a document that is initialized with data retrieved by a
subsequent call to the SetData function. The object is embedded in the client appli-
cation. The server does not show the document or its window.

IpServer
Points to an OLESERVER structure identifying the server.

IhDoc
Identifies the document. The library uses this handle internally.

IpszClass
Points to a null-terminated string specifying the class of document to create.

IpszDoc
Points to a null-terminated string specifying a name for the document to be
created. This name need not be used by the server application but may be
used—for example, in a window title.

IplpDoc
Points to a variable of type LPOLESERVERDOC in which the server applica-
tion should return a long pointer to the created OLESERVERDOC structure.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

368 OLESERVERVTBL

Comments

Function

When the library calls this function, the server application creates a document of a
specified class, allocates and initializes an OLESERVERDOC structure, associ-
ates the library’s handle with the document, and returns the address of the struc-
ture.

The document created by the Edit function retrieves the initial data from the client
in a subsequent call to the SetData function. The user can edit the document after
the data has been retrieved and the library has used either the Show function in the
OLEOBJECTVTBL structure or the DoVerb function with an Edit verb to show
the document to the user.

Exit

OLESTATUS Exit(IpServer)
LPOLESERVER [pServer;

Parameters

Return Value

Comments

Function

The Exit function instructs the server application to close documents and quit.

IpServer
Points to an OLESERVER structure identifying the server.

The return value is OLE_OXK if the function is successful. Otherwise, it is an error
value.

The server library calls the Exit function to instruct a server application to termi-
nate. If the server application has no open documents when the Exit function is
called, it should call the OleRevokeServer function.

Release

OLESTATUS Release(/pServer)
LPOLESERVER /pServer;

Parameters

Return Value

The Release function notifies a server that all connections to it have closed and
that it is safe to quit.

IpServer
Points to an OLESERVER structure identifying the server.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

OLESERVERVTBL 369

Comments

Function

The server library calls the Release function when it is safe for a server to quit.
When a server application calls the OleRevokeServer function, the application
must continue to dispatch messages and wait for the library to call the Release

function before quitting.

When the server is invisible and the library calls Release, the server must exit.
(The only exception is when an application supports multiple servers; in this case,
an invisible server is sometimes not revocable when the library calls Release.) If
the server has no open documents and it was started with the /Embedding option
(indicating that it was started by a client application), the server should exit when
the library calls the Release function. If the user has explicitly loaded a document
into a single-instance multiple document interface server, however, the server
should not exit when the library calls Release. Typically, a single-instance server
is a multiple document interface (MDI) server.

All registered server structures must be released before a server can quit.

A server can call the PostQuitMessage function inside the Release function.

Execute

OLESTATUS Execute(lpServer, hCommands)
LPOLESERVER [pServer;
HGLOBAL hCommands;

Parameters

Return Value

Comments

The Execute function receives WM_DDE_EXECUTE commands sent by client
applications. The applications send these commands by calling the OleExecute
function.

IpServer
Points to an OLESERVER structure identifying the server.

hCommands
Identifies memory containing one or more dynamic data exchange (DDE) ex-
ecute commands.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

The server should never free the handle specified in the ACommands parameter.

< 370 OLESTREAM

OLESTREAM

Members

#include <ole.h>

typedef struct _OLESTREAM { /* ostr */
LPOLESTREAMVTBL 1pstbl;
} OLESTREAM;

The OLESTREAM structure points to an OLESTREAMVTBL structure that
provides stream input and output functions. These functions are used by the client
library for stream operations on objects. The OLESTREAM structure is allocated
and initialized by client applications.

Ipstbl
Points to an OLESTREAMYVTBL structure.

OLESTREAMVTBL

Comments

#Hinclude <ole.h>

typedef struct _OLESTREAMVTBL { /* ostrv */

DWORD (CALLBACK* Get)(LPOLESTREAM, void FAR*, DWORD);

DWORD (CALLBACK* Put)(LPOLESTREAM, OLE_CONST void FAR*, DWORD);
} OLESTREAMVTBL;

The OLESTREAMYVTBL structure points to functions the client library uses for
stream operations on objects. This structure is allocated and initialized by client ap-
plications.

The stream is valid only for the duration of the function to which it is passed. The
library obtains everything it requires while the stream is valid.

The return values for the stream functions may indicate that an error has occurred,
but these values do not indicate the nature of the error. The client application is re-
sponsible for any required error-recovery operations.

A client application can use these functions to provide variations on the standard
stream procedures; for example, the client could change the permanent storage of
some objects so that they were stored in a database instead of the client document.

OLESTREAMVTBL 31

Function

Get

DWORD Get(lpstream, IpszBuf, cbbuf)
LPOLESTREAM Ipstream;

void FAR* IpszBuf;

DWORD cbbuf;

Parameters

Return Value

Comments

Function

The Get function gets data from the specified stream.

Ipstream
Points to an OLESTREAM structure allocated by the client.

IpszBuf
Points to a buffer to fill with data from the stream.

cbbuf
Specifies the number of bytes to read into the buffer.

The return value is the number of bytes actually read into the buffer if the function
is successful. If the end of the file is encountered, the return value is zero. A nega-
tive return value indicates that an error occurred.

The value specified by the chbuf parameter can be larger than 64K. If the client ap-
plication uses a stream-reading function that is limited to 64K, it should call that
function repeatedly until it has read the number of bytes specified by cbbuf. When-
ever the data size is larger than 64K, the pointer to the data buffer is always at the
beginning of the segment.

Put

DWORD Put(lpstream, IpszBuf, cbbuf)
LPOLESTREAM Ipstream;
OLE_CONST void FAR* [pszBuf;

DWORD cbbuf;

Parameters

The Put function puts data into the specified stream.

Ipstream
Points to an OLESTREAM structure allocated by the client.

IpszBuf
Points to a buffer from which to write data into the stream.

cbbuf
Specifies the number of bytes to write into the stream.

372 OLETARGETDEVICE

Return Value

Comments

The return value is the number of bytes actually written to the stream. A return
value less than the number specified in the chbuf parameter indicates that either
there was insufficient space in the stream or an error occurred.

The value specified by the chbuf parameter can be greater than 64K. If the client
application uses a stream-writing function that is limited to 64K, it should call that
function repeatedly until it has written the number of bytes specified by cbbuf.
Whenever the data size is greater than 64K, the pointer to the data buffer is always
at the beginning of the segment.

OLETARGETDEVICE

Members

#include <ole.h>

typedef struct _OLETARGETDEVICE {
UINT otdDeviceNameOffset;
UINT otdDriverNameOffset;
UINT otdPortNameOffset;
UINT otdExtDevmodeOffset;
UINT otdExtDevmodeSize;
UINT otdEnvironmentOffset;
UINT otdEnvironmentSize;
BYTE otdDatal[l];

} OLETARGETDEVICE;

The OLETARGETDEVICE structure contains information about the target
device that a client application is using. Server applications can use the informa-
tion in this structure to change the rendering of an object, if necessary. A client ap-
plication provides a handle to this structure in a call to the OleSetTargetDevice
function.

otdDeviceNameOffset
Specifies the offset from the beginning of the array to the name of the device.
otdDriverNameOffset

Specifies the offset from the beginning of the array to the name of the device
driver.

OLETARGETDEVICE 373

otdPortNameOffset
Specifies the offset from the beginning of the array to the name of the port.

otdExtDevmodeOffset
Specifies the offset from the beginning of the array to a DEVMODE structure
retrieved by the ExtDeviceMode function.

otdExtDevmodeSize
Specifies the size of the DEVMODE structure whose offset is specified by the
otdExtDevmodeOffset member.

otdEnvironmentOffset
Specifies the offset from the beginning of the array to the device environment.

otdEnvironmentSize
Specifies the size of the environment whose offset is specified by the
otdEnvironmentOffset member.

otdData
Specifies an array of bytes containing data for the target device.

Comments The otdDeviceNameOffset, otdDriverNameOffset, and otdPortNameOffset
members should be null-terminated.

In Windows 3.1, the ability to connect multiple printers to one port has made
the environment obsolete. The environment information retrieved by the
GetEnvironment function can occasionally be incorrect. To ensure that the
OLETARGETDEVICE structure is initialized correctly, the application
should copy information from the DEVMODE structure retrieved by a

call to the ExtDeviceMode function to the environment position of the
OLETARGETDEVICE structure.

See Also OleSetTargetDevice

374 OPENFILENAME

OPENFILENAME

f#include <commdlg.h>

Members

typedef struct tagOPENFILENAME { /* ofn */

DWORD
HWND
HINSTANCE
LPCSTR
LPSTR
DWORD
DWORD
LPSTR
DWORD
LPSTR
DWORD
LPCSTR
LPCSTR
DWORD
UINT
UINT
LPCSTR
LPARAM
UINT
LPCSTR

1StructSize;
hwndOwner;
hlnstance;
IpstrFilter;
IpstrCustomFilter;
nMaxCustFilter;
nFilterIndex;
IpstrFile;
nMaxFile;
IpstrFileTitle;
nMaxFileTitle;
IpstrInitialDir;
IpstrTitle;

Flags;
nFileOffset;
nFileExtension;
IpstrDefExt;
1CustData;
(CALLBACK *1pfnHook) (HWND, UINT, WPARAM, LPARAM);
IpTemplateName;

} OPENFILENAME;

The OPENFILENAME structure contains information that the system uses to ini-
tialize the system-defined Open dialog box or Save dialog box. After the user
chooses the OK button to close the dialog box, the system returns information
about the user’s selection in this structure.

IStructSize

Specifies the length of the structure, in bytes. This member is filled on input.

hwndOwner

Identifies the window that owns the dialog box. This member can be any valid
window handle, or it should be NULL if the dialog box is to have no owner.

If the OFN_SHOWHELP flag is set, hwndOwner must identify the window
that owns the dialog box. The window procedure for this owner window re-
ceives a notification message when the user chooses the Help button.

(The identifier for the notification message is the value returned by the
RegisterWindowMessage function when HELPMSGSTRING is passed

as its argument.)

This member is filled on input.

OPENFILENAME 375

hInstance
Identifies a data block that contains a dialog box template specified
by the IpTemplateName member. This member is used only if the
Flags member specifies the OFN_ENABLETEMPLATE or the
OFN_ENABLETEMPLATEHANDLE flag; otherwise, this member
is ignored.

This member is filled on input.

IpstrFilter
Points to a buffer containing one or more pairs of null-terminated strings speci-
fying filters. The first string in each pair describes a filter (for example, “Text
Files”); the second specifies the filter pattern (for example, “*.txt”). Multiple fil-
ters can be specified for a single item; in this case, the semicolon (;) is used to
separate filter pattern strings—for example, “*.txt;*.doc;*.bak”. The last string
in the buffer must be terminated by two null characters. If this parameter is
NULL, the dialog box does not display any filters. The filter strings must be in
the proper order—the system does not change the order.

This member is filled on input.

IpstrCustomFilter
Points to a buffer containing a pair of user-defined strings that specify a filter.
The first string describes the filter, and the second specifies the filter pattern
(for example, “WinWord”, “*.doc”). The buffer is terminated by two null char-
acters. The system copies the strings to the buffer when the user chooses the
OK button to close the dialog box. The system uses the strings as the initial fil-
ter description and filter pattern for the dialog box. If this parameter is NULL,
the dialog box lists (but does not save) user-defined filter strings.

nMaxCustFilter
Specifies the size, in bytes, of the buffer identified by the lpstrCustomFilter
member. This buffer should be at least 40 bytes long. This parameter is ignored
if the IpstrCustomFilter member is NULL.

This member is filled on input.

nFilterIndex
Specifies an index into the buffer pointed to by the IpstrFilter member. The
system uses the index value to obtain a pair of strings to use as the initial filter
description and filter pattern for the dialog box. The first pair of strings has an
index value of 1. When the user chooses the OK button to close the dialog box,
the system copies the index of the selected filter strings into this location.
If the nFilterIndex member is 0, the filter in the buffer pointed to by the
IpstrCustomFilter member is used. If the nFilterIndex member is O and the
IpstrCustomFilter member is NULL, the system uses the first filter in the
buffer pointed to by the IpstrFilter member. If each of the three members is
either 0 or NULL, the system does not use any filters and does not show any
files in the File Name list box of the dialog box.

376

OPENFILENAME

IpstrFile
Points to a buffer that specifies a filename used to initialize the File Name edit
control. If initialization is not necessary, the first character of this buffer must
be NULL. When the GetOpenFileName or GetSaveFileName function re-
turns, this buffer contains the complete location and name of the selected file.

If the buffer is too small, the dialog box procedure copies the required size into
this member and returns 0. To retrieve the required size, cast the IpstrFile mem-
ber to type LPWORD. The buffer must be at least three bytes to receive the
required size. When the buffer is too small, the CommDIgExtendedError
function returns the FNERR_BUFFERTOOSMALL value.

nMaxFile
Specifies the size, in bytes, of the buffer pointed to by the IpstrFile member.
The GetOpenFileName and GetSaveFileName functions return FALSE if the
buffer is too small to contain the file information. The buffer should be at least
256 bytes long. If the IpstrFile member is NULL, this member is ignored.

This member is filled on input.

IpstrFileTitle
Points to a buffer that receives the title of the selected file. This buffer receives
the filename and extension but no path information. An application should use
this string to display the file title. If this member is NULL, the function does
not copy the file title. This member is filled on output.

nMaxFileTitle
Specifies the maximum length, in bytes, of the string that can be copied into the
IpstrFileTitle buffer. This member is ignored if IpstrFileTitle is NULL. This
member is filled on input.

IpstrInitialDir
Points to a string that specifies the initial file directory. If this member is
NULL, the system uses the current directory as the initial directory. (If the
IpstrFile member contains a string that specifies a valid path, the common
dialog box procedure will use the path specified by this string instead of the
path specified by the string to which IpstrInitialDir points.)

This member is filled on input.

IpstrTitle
Points to a string to be placed in the title bar of the dialog box. If this member is
NULL, the system uses the default title (that is, Save As or Open). This mem-
ber is filled on input.

Flags
Specifies the dialog box initialization flags. This member may be a combination
of the following values:

OPENFILENAME 377

Value Meaning

OFN_ALLOWMULTISELECT

Specifies that the File Name list box is to allow mul-
tiple selections. When this flag is set, the IpstrFile
member points to a buffer containing the path to the
current directory and all filenames in the selection.
The first filename is separated from the path by a
space. Each subsequent filename is separated by
one space from the preceding filename. Some of the
selected filenames may be preceded by relative
paths; for example, the buffer could contain some-
thing like this:

c:\files filel.txt file2.txt ..\bin\file3.txt

OFN_CREATEPROMPT Causes the dialog box procedure to generate a
message box to notify the user when a specified
file does not currently exist and to make it
possible for the user to specify that the file
should be created. (This flag automatically
sets the OFN_PATHMUSTEXIST and
OFN_FILEMUSTEXIST flags.)

OFN_ENABLEHOOK Enables the hook function specified in the
IpfnHook member.

OFN_ENABLETEMPLATE Causes the system to use the dialog box template
identified by the hInstance and IpTemplateName
members to create the dialog box.

OFN_ENABLETEMPLATEHANDLE

Indicates that the hInstance member identifies a
data block that contains a pre-loaded dialog box
template. The system ignores the IpTemplateName
member if this flag is specified.

OFN_EXTENSIONDIFFERENT

Indicates that the extension of the returned filename
is different from the extension specified by the
IpstrDefExt member. This flag is not set if
IpstrDefExt is NULL, if the extensions match, or if
the file has no extension. This flag can be set on out-
put.

OFN_FILEMUSTEXIST Specifies that the user can type only the names of
existing files in the File Name edit control. If this
flag is set and the user types an invalid filename in
the File Name edit control, the dialog box proce-
dure displays a warning in a message box. (This
flag also causes the OFN_PATHMUSTEXIST flag
to be set.)

OFN_HIDEREADONLY Hides the Read Only check box.

378

OPENFILENAME

Value Meaning

OFN_NOCHANGEDIR Forces the dialog box to reset the current directory
to what it was when the dialog box was created.

OFN_NOREADONLYRETURN

Specifies that the file returned will not have the
Read Only attribute set and will not be in a write-
protected directory.

OFN_NOTESTFILECREATE Specifies that the file will not be created before the
dialog box is closed. This flag should be set if the
application saves the file on a create-no-modify net-
work share point. When an application sets this
flag, the library does not check against write protec-
tion, a full disk, an open drive door, or network pro-
tection. Therefore, applications that use this flag
must perform file operations carefully—a file can-
not be reopened once it is closed.

OFN_NOVALIDATE Specifies that the common dialog boxes will
allow invalid characters in the returned filename.
Typically, the calling application uses a hook
function that checks the filename using the
FILEOKSTRING registered message. If the text in
the edit control is empty or contains nothing but
spaces, the lists of files and directories are updated.
If the text in the edit control contains anything else,
the nFileOffset and nFileExtension members are
set to values generated by parsing the text. No de-
fault extension is added to the text, nor is text
copied to the IpstrFileTitle buffer.

If the value specified by the nFileOffset mem-
ber is negative, the filename is invalid. If the
value specified by nFileOffset is not negative,
the filename is valid, and nFileOffset and
nFileExtension can be used as if the
OFN_NOVALIDATE flag had not been set.

OFN_OVERWRITEPROMPT Causes the Save As dialog box to generate a mes-
sage box if the selected file already exists. The user
must confirm whether to overwrite the file.

OFN_PATHMUSTEXIST Specifies that the user can type only valid paths. If
this flag is set and the user types an invalid path in
the File Name edit control, the dialog box proce-
dure displays a warning in a message box.

OFN_READONLY Causes the Read Only check box to be initially
checked when the dialog box is created. When the
user chooses the OK button to close the dialog box,
the state of the Read Only check box is specified by
this member. This flag can be set on input and
output.

OPENFILENAME 379

Value Meaning

OFN_SHAREAWARE Specifies that if a call to the OpenFile function has
failed because of a network sharing violation, the
error is ignored and the dialog box returns the given
filename. If this flag is not set, the registered mes-
sage for SHAREVISTRING is sent to the hook
function, with a pointer to a null-terminated string
for the path name in the /Param parameter. The
hook function responds with one of the following
values:

Value Meaning

OFN_SHAREFALLTHROUGH

Specifies that the filename is re-
turned from the dialog box.

OFN_SHARENOWARN
Specifies no further action.
OFN_SHAREWARN
Specifies that the user receives the
standard warning message for this
error. (This is the same result as if
there were no hook function.)
This flag may be set on output.
OFN_SHOWHELP Causes the dialog box to show the Help push but-

ton. The hwndOwner must not be NULL if this op-
tion is specified.

These flags may be set when the structure is initialized, except where specified.

nFileOffset
Specifies a zero-based offset from the beginning of the path to the filename
specified by the string in the buffer to which IpstrFile points. For example, if
IpstrFile points to the string, “c:\dir1\dir2\file.ext”, this member contains the
value 13.

This member is filled on output.

nFileExtension
Specifies a zero-based offset from the beginning of the path to the filename
extension specified by the string in the buffer to which IpstrFile points. For
example, if IpstrFile points to the following string, “c:\dir1\dir2 \file.ext”,
this member contains the value 18. If the user did not type an extension and
IpstrDefExt is NULL, this member specifies an offset to the terminating null
character. If the user typed a period (.) as the last character in the filename, this
member is 0.

This member is filled on output.

380

OPENFILENAME

See Also

IpstrDefExt

Points to a buffer that contains the default extension. The GetOpenFileName
or GetSaveFileName function appends this extension to the filename if the
user fails to enter an extension. If the filename with the default extension is not
found, GetOpenFileName or GetSaveFileName attempts to find the file by
using the name exactly as the user typed it. This string can be any length, but
only the first three characters are appended. The string should not contain a pe-
riod (.). If this member is NULL and the user fails to type an extension, no ex-
tension is appended. This member is filled on input.

1CustData

Specifies application-defined data that the system passes to the hook function
pointed to by the IpfnHook member. The system passes a pointer to the OPEN-
FILENAME structure in the [Param parameter of the WM_INITDIALOG
message; this pointer can be used to retrieve the ICustData member.

IpfnHook

Points to a hook function that processes messages intended for the

dialog box. To enable the hook function, an application must specify the
OFN_ENABLEHOOK flag in the Flags member; otherwise, the system
ignores this structure member. The hook function must return zero to

pass a message that it didn’t process back to the dialog box procedure in
COMMDLG.DLL. The hook function must return a nonzero value to prevent
the dialog box procedure in COMMDLG.DLL from processing a message it
has already processed.

This member is filled on input.

IpTemplateName

Points to a null-terminated string that specifies the name of the resource file for
the dialog box template that is to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags mem-
ber specifies the OFN_ENABLETEMPLATE flag; otherwise, this member is
ignored.

This member is filled on input.

GetOpenFileName, GetSaveFileName

OUTLINETEXTMETRIC 381

OUTLINETEXTMETRIC

[31]

typedef struct tagOUTLINETEXTMETRIC {

UINT
TEXTMETRIC
BYTE
PANOSE
UINT
UINT
UINT
UINT
UINT
UINT
INT
INT
UINT
UINT
UINT
RECT
INT
INT
UINT
UINT
POINT
POINT
POINT
POINT
UINT
INT
INT
UINT
PSTR
PSTR
PSTR
PSTR

otmSize;
otmTextMetrics;
otmFiller;
otmPanoseNumber;
otmfsSelection;
otmfsType;
otmsCharSlopeRise;
otmsCharSlopeRun;
otmItalicAngle;
otmEMSquare;
otmAscent;
otmDescent;
otmLineGap;
otmsXHeight;
otmsCapEmHeight;
otmrcFontBox;
otmMacAscent;
otmMacDescent;
otmMaclLineGap;
otmusMinimumPPEM;
otmptSubscriptSize;
otmptSubscriptOffset;
otmptSuperscriptSize;
otmptSuperscriptOffset;
otmsStrikeoutSize;
otmsStrikeoutPosition;
otmsUnderscorePosition;
otmsUnderscoreSize;
otmpFamilyName;
otmpFaceName;
otmpStyleName;
otmpFullName;

} OUTLINETEXTMETRIC;

The OUTLINETEXTMETRIC structure contains metrics describing a TrueType

font.

Members otmSize

Specifies the size, in bytes, of the OUTLINETEXTMETRIC structure.

otmTextMetrics

Specifies a TEXTMETRIC structure containing further information about the

font.
otmFiller

Specifies a value that causes the structure to-be byte-aligned.

382 OUTLINETEXTMETRIC

otmPanoseNumber
Specifies the Panose number for this font.

otmfsSelection
Specifies the nature of the font pattern. This member can be a combination of
the following bits:

Bit Meaning

Italic
Underscore
Negative
Outline
Strikeout
Bold

wn A W N = O

otmfsType
Specifies whether the font is licensed. Licensed fonts may not be modified or
exchanged. If bit 1 is set, the font may not be embedded in a document. If bit 1
is clear, the font can be embedded. If bit 2 is set, the embedding is read-only.

otmsCharSlopeRise
Specifies the slope of the cursor. This value is 1 if the slope is vertical. Applica-
tions can use this value and the value of the otmsCharSlopeRun member to
create an italic cursor that has the same slope as the main italic angle (specified
by the otmlItalicAngle member).

otmsCharSlopeRun
Specifies the slope of the cursor. This value is zero if the slope is vertical. Ap-
plications can use this value and the value of the otmsCharSlopeRise member
to create an italic cursor that has the same slope as the main italic angle
(specified by the otmItalicAngle member).

otmItalicAngle
Specifies the main italic angle of the font, in counterclockwise degrees from
vertical. Regular (roman) fonts have a value of zero. Italic fonts typically have a
negative italic angle (that is, they lean to the right).

otmEMSquare
Specifies the number of logical units defining the x- or y-dimension of the em
square for this font. (The number of units in the x- and y-directions are always
the same for an em square.)

otmAscent
Specifies the maximum distance characters in this font extend above the base
line. This is the typographic ascent for the font.

otmDescent
Specifies the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>