Programmers Reference,
Volume 2: Functions

SOFTWARE DEVELOPMENT KIT



Microsoft. Windows™

Version 3.1

Programmer’s Reference
Volume 2: Functions

For the Microsoft Windows Operating System

Microsoft Corporation



Information in this document is subject to change without notice and does not represent a commit-
ment on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure agree-
ment and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ-
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Copyright © 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino, New
Century Schoolbook, Times, and Times Roman typefont data is the property of Linotype or its
licensors.

Arial and Times New Roman fonts. Copyright © 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, QuickC, and CodeView are registered trademarks, and Windows and
QuickBasic are trademarks of Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.

The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of
AGFA Compugraphic Division of Agfa Corporation.

Apple, Macintosh, and TrueType are registered trademarks of Apple Computer, Inc.

PANOSE is a trademark of ElseWare Corporation.

Epson and FX are registered trademarks of Epson America, Inc.

Hewlett-Packard, HP, LaserJet, and PCL are registered trademarks of Hewlett-Packard Company.

Intel is a registered trademark, and i486 is a trademark of Intel Corporation.

AT and IBM are registered trademarks of International Business Machines Corporation.

Helvetica, New Century Schoolbook, Palatino, Times, and Times Roman are registered trademarks of
Linotype AG and/or its subsidiaries.

Arial and Times New Roman are registered trademarks of the Monotype Corporation PLC.

Nokia is a registered trademark of Nokia Corporation.

Okidata is a registered trademark of Oki America, Inc.

Olivetti is a registered trademark of Ing. C. Olivetti.

Document No. PC28916-0492



Contents

INEPOAUCTION. ...t ]
How to Use ThisS Manual.........coccouvvviiiiiiiiiiiieeeeeeeeeee et eeeee e e et e eeeeennnnes v
Document CONVENTIONS ......eeveiirieiiieeeeeeiiieeeeeeeesrtereeeeeeeeseeasrsaeessseesssnrreessesensinnes vi

1

Alphabetic Reference






Introduction

The Microsoft® Windows™ 3.1 operating system is a single-user system for per-
sonal computers. Applications that run with this operating system use functions in
the Windows applications programming interface (API). This manual describes
the API functions in alphabetic order, including each function’s purpose, the ver-
sion of Windows in which it first appeared, and the function’s syntax, parameters,
and possible return values. Many function descriptions also contain additional in-
formation and simple code examples that illustrate how the function can be used to
carry out simple tasks.

How to Use This Manual

For most of the functions described in this manual, the syntax is given in C-
language format. In your C-language source files, the function name must be
spelled exactly as given in syntax and the parameters must be used in the order
given in syntax.

The Windows API uses many types, structures, and constants that are not part of
standard C language. These items, designed for Windows, are defined in the
Windows C-language header files. Although there are many Windows header
files, the majority of API functions, structures, and messages are defined in the
WINDOWS.H header file. You can use these items in your Windows application
by placing an #include directive specifying WINDOWS_ H at the beginning of
your C-language source file.

In this manual, if a function is not defined in WINDOWS.H, its appropriate header
file is included in the first line of syntax. If no header file is listed, you can assume
the function is defined in WINDOWS.H.

Note You will find a list of the appropriate module and library for each Windows
function in the Microsoft Windows Programmer’s Reference, Volume 1. A list of
the types used in the Windows API, with a brief description of each, is provided in
the Microsoft Windows Programmer’s Reference, Volume 3.



vi Microsoft Windows Programmer’s Reference

Document Conventions

The following conventions are used throughout this manual to define syntax:

Convention Meaning

Bold text Denotes a term or character to be typed literally, such as a resource-
definition statement or function name (MENU or CreateWindow),
a Microsoft MS-DOS® command, or a command-line option
(/mod). You must type these terms exactly as shown.

Italic text Denotes a placeholder or variable: You must provide the actual
value. For example, the statement SetCursorPos(X,Y) requires you
to substitute values for the X and Y parameters.

[] Enclose optional parameters.

| Separates an either/or choice.

Specifies that the preceding item may be repeated.
BEGIN Represents an omitted portion of a sample application.

END
In addition, certain text conventions are used to help you understand this material:

Convention Meaning

SMALL CAPITALS Indicate the names of keys, key sequences, and key
combinations—for example, ALT+SPACEBAR.

FULL CAPITALS Indicate filenames and paths, most type and structure names
(which are also bold), and constants.

monospace Sets off code examples and shows syntax spacing.



AbortProc 1

AbortDoc

int AbortDoc(hdc)
HDC hdc; /* handle of device context */

The AbortDoc function terminates the current print job and erases everything
drawn since the last call to the StartDoc function. This function replaces the
ABORTDOOC printer escape for Windows version 3.1.

Parameters hdc
Identifies the device context for the print job.

Return Value The return value is greater than or equal to zero if the function is successful. Other-
wise, it is less than zero.

Comments Applications should call the AbortDoc function to terminate a print job because of
an error or if the user chooses to cancel the job. To end a successful print job, an
application should use the EndDoc function.

If Print Manager was used to start the print job, calling the AbortDoc function
erases the entire spool job—the printer receives nothing. If Print Manager was not
used to start the print job, the data may have been sent to the printer before Abort-
Doc was called. In this case, the printer driver would have reset the printer (when
possible) and closed the print job.

See Also EndDoc, SetAbortProc, StartDoc

AbortProc [31]

BOOL CALLBACK AbortProc(hdc, error)
HDC hdc; /* handle of device context */
int error; /* error value */

The AbortProc function is an application-defined callback function that is called
when a print job is to be canceled during spooling.

Parameters hdc
Identifies the device context.

error
Specifies whether an error has occurred. This parameter is zero if no error has
occurred; it is SP_OUTOFDISK if Print Manager is currently out of disk space



2 AccessResource

and more disk space will become available if the application waits. If this
parameter is SP_OUTOFDISK, the application need not cancel the print job. If
it does not cancel the job, it must yield to Print Manager by calling the Peek-
Message or GetMessage function.

Return Value The callback function should return TRUE to continue the print job or FALSE to
cancel the print job.

Comments An application installs this callback function by calling the SetAbortProc func-
tion. AbortProc is a placeholder for the application-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the ap-
plication’s module-definition file.

See Also GetMessage, PeekMessage, SetAbortProc

AccessResource [2x]

int AccessResource(hinst, hrsrc)
HINSTANCE hinst; /* handle of module with resource */
HRSRC hrsrcy /* handle of resource */

The AccessResource function opens the given executable file and moves the file
pointer to the beginning of the given resource.

Parameters hinst
Identifies the instance of the module whose executable file contains the re-
source.

hrsrc
Identifies the desired resource. This handle should be created by using the
FindResource function.

Return Value The return value is the handle of the resource file if the function is successful.
Otherwise, it is —1.

Comments The AccessResource function supplies an MS-DOS file handle that can be used in
subsequent file-read calls to load the resource. The file is opened for reading only.

Applications that use this function must close the resource file by calling the
_Iclose function after reading the resource. AccessResource can exhaust available
MS-DOS file handles and cause errors if the opened file is not closed after the re-
source is accessed.



AddAtom 3

See Also

In general, the LoadResource and LockResource functions are preferred. These
functions will access the resource more quickly if several resources are being read,
because Windows maintains a file-handle cache for accessing executable files.
However, each call to AccessResource requires that a new handle be opened to
the executable file.

You should not use AccessResource to access executable files that are installed in
ROM on a ROM-based system, since there are no disk files associated with the ex-
ecutable file; in such a case, a file handle cannot be returned.

FindResource, _Iclose, LoadResource, LockResource

AddAtom

[2x]

ATOM AddAtom(IpszName)

LPCSTR IpszName;

Parameters

Return Value

Comments

Example

/* address of string to add */

The AddAtom function adds a character string to the local atom table and returns
a unique value identifying the string.

IpszName
Points to the null-terminated character string to be added to the table.

The return value specifies the newly created atom if the function is successful.
Otherwise, it is zero.

The AddAtom function stores no more than one copy of a given string in the atom
table. If the string is already in the table, the function returns the existing atom
value and increments (increases by one) the string’s reference count.

The MAKEINTATOM macro can be used to convert a word value into a string
that can be added to the atom table by using the AddAtom function.

The atom values returned by AddAtom are in the range 0xC000 through OxFFFF.

Atoms are case-insensitive.

The following example uses the AddAtom function to add the string “This is an
atom” to the local atom table:



4 AddFontResource

ATOM at;
char szMsg[801];

at = AddAtom("This is an atom");

if (at == 0)
MessageBox(hwnd, "AddAtom failed", "", MB_ICONSTOP);
else {
wsprintf(szMsg, "AddAtom returned %u", at);
MessageBox(hwnd, szMsg, "", MB_0K);
}
See Also DeleteAtom, FindAtom, GetAtomName

AddFontResource [2x]

int AddFontResource(/pszFilename)
LPCSTR IpszFilename; /* address of filename */

The AddFontResource function adds a font resource to the Windows font table.
Any application can then use the font.

Parameters IpszFilename
Points to a character string that names the font resource file or that contains a
handle of a loaded module. If this parameter points to a font resource filename,
it must be a valid MS-DOS filename, including an extension, and the string
must be null-terminated. The system passes this string to the LoadLibrary
function if the font resource must be loaded.

Return Value The return value specifies the number of fonts added if the function is successful.
Otherwise, it is zero.

Comments Any application that adds or removes fonts from the Windows font table should
send a WM_FONTCHANGE message to all top-level windows in the system by
using the SendMessage function with the ~wnd parameter set to OXFFFF.

When font resources added by using AddFontResource are no longer needed,
you should remove them by using the RemoveFontResource function.

Example The following example uses the AddFontResource function to add a font re-
source from a file, notifies other applications by using the SendMessage function,
then removes the font resource by using the RemoveFontResource function:



AdjustWindowRect 5

See Also

AddFontResource("fontres.fon");
SendMessage (HWND_BROADCAST, WM_FONTCHANGE, @, 9);

. /* Work with the font. =/

if (RemoveFontResource("fontres.fon")) {
SendMessage (HWND_BROADCAST, WM_FONTCHANGE, @, 0);
return TRUE;

}

else
return FALSE;

LoadLibrary, RemoveFontResource, SendMessage

AdjustWindowRect

void AdjustWindowRect(lprc, dwStyle, fMenu)

RECT FAR¥* Iprc;
DWORD dwStyle;
BOOL fMenu;

Parameters

/* address of client-rectangle structure */
/* window styles */
/* menu-present flag */

The AdjustWindowRect function computes the required size of the window
rectangle based on the desired client-rectangle size. The window rectangle can
then be passed to the CreateWindow function to create a window whose client
area is the desired size.

Iprc
Points to a RECT structure that contains the coordinates of the client rectangle.
The RECT structure has the following form:

typedef struct tagRECT { /% rc x/
int left; '
int top;
int right;
int bottom;
} RECT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

awStyle
Specifies the window styles of the window whose client rectangle is to be con-
verted.

fMenu

Specifies whether the window has a menu.



6 AdjustWindowRectEx

Return Value

Comments

See Also

This function does not return a value.

A client rectangle is the smallest rectangle that completely encloses a client area.
A window rectangle is the smallest rectangle that completely encloses the window.

AdjustWindowRect does not take titles and borders into account when comput-
ing the size of the client area. For window styles that include titles and borders, ap-
plications must add the title and border sizes after calling AdjustWindowRect.
This function also does not take the extra rows into account when a menu bar
wraps to two or more rows.

AdjustWindowRectEx, CreateWindowEx

AdjustWindowRectEx

void AdjustWindowRectEx(Iprc, dwStyle, fMenu, dwExStyle)

RECT FAR* [prc;
DWORD dwStyle;
BOOL fMenu;
DWORD dwExStyle;

Parameters

/* address of client-rectangle structure */
/* window styles */
/* menu-present flag */
/* extended style */

The AdjustWindowRectEx function computes the required size of the rectangle
of a window with extended style based on the desired client-rectangle size. The
window rectangle can then be passed to the CreateWindowEx function to create
a window whose client area is the desired size.

Iprc
Points to a RECT structure that contains the coordinates of the client rectangle.
The RECT structure has the following form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

dwStyle
Specifies the window styles of the window whose client rectangle is to be con-
verted.



AliocDiskSpace 7

Return Value

Comments

See Also

fMenu

Specifies whether the window has a menu.

dwExStyle
Specifies the extended style of the window being created.

This function does not return a value.

A client rectangle is the smallest rectangle that completely encloses a client area.
A window rectangle is the smallest rectangle that completely encloses the window.

AdjustWindowRectEx does not take titles and borders into account when com-
puting the size of the client area. For window styles that include titles and borders,
applications must add the title and border sizes after calling AdjustWindow-
RectEx. This function also does not take the extra rows into account when a menu
bar wraps to two or more rows.

AdjustWindowRect, CreateWindowEx

AllocDiskSpace

#include <stress.h>

int AllocDiskSpace(I/Left, uDrive)

long [Left;

UINT uDrive;

Parameters

/* number of bytes left available */
/* disk partition */

The AllocDiskSpace function creates a file that is large enough to ensure that the
specified amount of space or less is available on the specified disk partition. The
file, called STRESS.EAT, is created in the root directory of the disk partition.

If STRESS.EAT already exists when AllocDiskSpace is called, the function de-
letes it and creates a new one.

ILeft
Specifies the number of bytes to leave available on the disk.

uDrive
Specifies the disk partition on which to create the STRESS.EAT file. This
parameter must be one of the following values:



8 AllocDStoCSAlias

Value Meaning
EDS_WIN Creates the file on the Windows partition.
EDS_CUR Creates the file on the current partition.

EDS_TEMP Creates the file on the partition that contains the TEMP directory.

Return Value The return value is greater than zero if the function is successful; it is zero if the
function could not create a file; or it is —1 if at least one of the parameters is in-
valid.

Comments In two situations, the amount of free space left on the disk may be less than the

number of bytes specified in the [Left parameter: when the amount of free space
on the disk is less than the number in /Left when an application calls Alloc-
DiskSpace, or when the value of /Left is not an exact multiple of the disk cluster
size.

The UnAllocDiskSpace function deletes the file created by AllocDiskSpace.

See Also UnAllocDiskSpace

AllocDStoCSAlias

UINT AllocDStoCSAlias(uSelector)
UINT uSelector; /* data-segment selector */

The AllocDStoCSAlias function accepts a data-segment selector and returns a
code-segment selector that can be used to execute code in the data segment.

Parameters uSelector
Specifies the data-segment selector.

Return Value The return value is the code-segment selector corresponding to the data-segment
selector if the function is successful. Otherwise, it is zero.

Comments The application should not free the new selector by calling the FreeSelector func-
tion. Windows will free the selector when the application terminates.

In protected mode, attempting to execute code directly in a data segment will
cause a general-protection violation. AllocDStoCSAlias allows an application to
execute code that the application had created in its own stack segment.



AllocFileHandles 9

See Also

Windows does not track segment movements. Consequently, the data segment
must be fixed and nondiscardable; otherwise, the data segment might move, invali-
dating the code-segment selector.

The PrestoChangoSelector function provides another method of obtaining a code
selector corresponding to a data selector.

An application should not use this function unless it is absolutely necessary, since
its use violates preferred Windows programming practices.

FreeSelector, PrestoChangoSelector

AllocFileHandles

#include <stress.h>

int AllocFileHandles(Left)
int Left; /* number of file handles to leave available */

Parameters

Return Value

Comments

See Also

The AllocFileHandles function allocates file handles until only the specified num-
ber of file handles is available to the current instance of the application. If this or a
smaller number of handles is available when an application calls AllocFile-
Handles, the function returns immediately.

Before allocating new handles, this function frees any handles previously allocates
by AllocFileHandles.

Left
Specifies the number of file handles to leave available.

The return value is greater than zero if AllocFileHandles successfully allocates at

least one file handle. The return value is zero if fewer than the specified number of
file handles were available when the application called AllocFileHandles. The re-

turn value is —1 if the Left parameter is negative.

AllocFileHandles will not allocate more than 256 file handles, regardless of the
number available to the application.

The UnAllocFileHandles function frees all file handles previously allocated by
AllocFileHandles.

UnAllocFileHandles



- 10 AllocGDIMem

AllocGDIMem

#include <stress.

h>

BOOL AllocGDIMem(uLef?)

UINT ulLeft;

Parameters

Return Value

/* number of bytes to leave available */

The AllocGDIMem function allocates memory in the graphics device interface
(GDI) heap until only the specified number of bytes is available. Before making
any new memory allocations, this function frees memory previously allocated by
AllocGDIMem.

uLeft
Specifies the amount of memory, in bytes, to leave available in the GDI heap.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments The FreeAlIGDIMem function frees all memory allocated by AllocGDIMem.

See Also FreeAllGDIMem

AllocMem [3.1]
#include <stress.h>

BOOL AllocMem(dwLeft)

DWORD dwLeft; /*smallest memory allocation */

Parameters

Return Value
Comments

See Also

The AllocMem function allocates global memory until only the specified number
of bytes is available in the global heap. Before making any new memory alloca-
tions, this function frees memory previously allocated by AllocMem.

dwleft
Specifies the smallest size, in bytes, of memory allocations to make.

The return value is nonzero if the function is successful. Otherwise, it is zero.
The FreeAllMem function frees all memory allocated by AllocMem.

FreeAllMem



AllocSelector 11

AllocResource [2x]

HGLOBAL AllocResource(hinst, hrsrc, cbResource)

HINSTANCE hinst; /* handle of module containing resource */
HRSRC hrsrc; /* handle of resource */
DWORD cbResource; /* size to allocate, or zero */

The AllocResource function allocates uninitialized memory for the given resource.

Parameters hinst
Identifies the instance of the module whose executable file contains the re-

source.
hrsrc

Identifies the desired resource. This handle should have been created by using

the FindResource function.

cbResource
Specifies the size, in bytes, of the memory object to allocate for the resource. If

this parameter is zero, Windows allocates enough memory for the specified re-

source.
Return Value The return value is the handle of the global memory object if the function is
successful.
See Also FindResource, LoadResource

AllocSelector

UINT AllocSelector(uSelector)
UINT uSelector; /* selector to copy or zero */

The AllocSelector function allocates a new selector.

Do not use this function in an application unless it is absolutely necessary, since
its use violates preferred Windows programming practices.

Parameters uSelector
Specifies the selector to return. If this parameter specifies a valid selector, the
function returns a new selector that is an exact copy of the one specified here. If
this parameter is zero, the function returns a new, uninitialized sector.



12 AllocUserMem

Return Value The return value is a selector that is either a copy of an existing selector, or a new,

uninitialized selector. Otherwise, the return value is zero.

Comments The application must free the new selector by calling the FreeSelector function.

An application can call AllocSelector to allocate a selector that it can pass to the

PrestoChangoSelector function.

See Also PrestoChangoSelector

AllocUserMem

#include <stress.h>

BOOL AllocUserMem(uContig)
UINT uContig; /* smallest memory allocation */

The AllocUserMem function allocates memory in the USER heap until only the
specified number of bytes is available. Before making any new allocations, this

function frees memory previously allocated by AllocUserMem.

Parameters uContig

Specifies the smallest size, in bytes, of memory allocations to make.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.
Comments The FreeAllUserMem function frees all memory allocated by AllocUserMem.
See Also FreeAllUserMem

AnimatePalette
void AnimatePalette(hpal, iStart, cEntries, Ippe)

HPALETTE hpal; /* handle of palette */

UINT iStart; /* first palette entry to animate */

UINT cEntries; /* number of entries in palette */

const PALETTEENTRY FAR¥* [ppe; /* address of color structure */



AnimatePalette 13

Parameters

Return Value

Comments

Example

The AnimatePalette function replaces entries in the specified logical palette. An
application does not have to update the client area when it calls AnimatePalette,
because Windows maps the new entries into the system palette immediately.

hpal
Identifies the logical palette.

iStart
Specifies the first entry in the palette to be animated.

cEntries
Specifies the number of entries in the palette to be animated.

Ippe
Points to the first member of an array of PALETTEENTRY structures. These
palette entries will replace the palette entries identified by the iStart and
cEntries parameters. The PALETTEENTRY structure has the following form:

typedef struct tagPALETTEENTRY { /* pe */
BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;
} PALETTEENTRY;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

This function does not return a value.

The AnimatePalette function can change an entry in a logical palette only when
the PC_RESERVED flag is set in the corresponding palPaletteEntry member of
the LOGPALETTE structure that defines the current logical palette.

The following example initializes a LOGPALETTE structure and an array of
PALETTEENTRY structures, uses the CreatePalette function to retrieve a
handle of a logical palette, and then uses the AnimatePalette function to map the
entries into the system palette:

#define NUMENTRIES 128
HPALETTE hpal;
PALETTEENTRY ape[NUMENTRIES];

plgpl = (LOGPALETTE*) LocalAlloc(LPTR,
sizeof (LOGPALETTE) + cColors * sizeof(PALETTEENTRY));

plgpl->palNumEntries = cColors;
plgpl->palVersion = 0x300;



14 AnsiLower

for (i = @0, red = @0, green = 127, blue = 127; i < NUMENTRIES;
i++, red += 1, green += 1, blue += 1) {
apel[il.peRed =
plgpl->palPalEntry[i].peRed = LOBYTE(red);
ape[i].peGreen =
plgpl->palPalEntry[i].peGreen = LOBYTE(green);
ape[i].peBlue =
plgp1->palPalEntry[i]l.peBlue = LOBYTE(blue);
ape[i]l.peFlags =
plgpl->palPalEntry[i].peFlags = PC_RESERVED;
}
hpal = CreatePalette(pligpl);
LocalFree((HLOCAL) plgpl);
AnimatePalette(hpal, @, NUMENTRIES, (PALETTEENTRY FAR*) &ape);

See Also CreatePalette

AnsilLower [2x]

LPSTR AnsiLower(lpsz)

LPSTR Ipsz; /* address of string, or specific character */

The AnsiLower function converts a character string to lowercase.
Parameters Ipsz
Points to a null-terminated string or specifies a single character. If the high-
order word of this parameter is zero, the low-order byte of the low-order word
must contain a single character to be converted.

Return Value The return value points to a converted character string if the function is successful.
Otherwise, the return value is a 32-bit value that contains the converted character
in the low-order byte of the low-order word.

Comments The conversion is made by the language driver for the current language (the one
selected by the user at setup or by using Control Panel). If no language driver has
been selected, Windows uses an internal function.

Example The following example uses the AnsiLower function to convert two strings to

lowercase for a non—case-sensitive comparison:

/*

* Convert the target string to Towercase, and then

* convert the subject string one character at a time.
*/



AnsiLowerBuff 15

Ansilower(pszTarget);
while (*pszTarget != "\@") {
if (*pszTarget != (char) (DWORD) AnsilLower(
MAKELP (@, #*pszSubject)))
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

See Also AnsiLowerBuff, AnsiNext, AnsiUpper

AnsiLowerBuff

UINT AnsiLowerBuff(IpszString, cbString)
LPSTR IpszString; /* address of string to convert */
UINT cbString; /* length of string */

The AnsiLowerBuff function converts a character string in a buffer to lowercase.

Parameters IpszString
Points to a buffer containing one or more characters.

cbString
Specifies the number of bytes in the buffer identified by the IpszString parame-
ter. If cbString is zero, the length is 64K (65,536).

Return Value The return value specifies the length of the converted string if the function is
successful. Otherwise, it is zero.

Comments The language driver makes the conversion for the current language (the one
selected by the user at setup or by using Control Panel). If no language driver has
been selected, Windows uses an internal function.

Example The following example uses the AnsiLowerBuff function to convert two strings
to lowercase for a non—case-sensitive comparison:

AnsilowerBuff(pszSubject, (UINT) l1strlen(pszSubject));
AnsilLowerBuff(pszTarget, (UINT) Tstrlen(pszTarget));



16 AnsiNext

See Also

while (*pszTarget != '\@") {
if (*pszTarget != #pszSubject)
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

AnsiLower, AnsiUpper

AnsiNext

LPSTR AnsiNext({pchCurrentChar)
LPCSTR IpchCurrentChar; /* address of current character */

Parameters

Return Value

Comments

Example

See Also

The AnsiNext function moves to the next character in a string.

IpchCurrentChar
Points to a character in a null-terminated string.

The return value points to the next character in the string or to the null character at
the end of the string, if the function is successful.

The AnsiNext function can be used to move through strings where each character
is a single byte, or through strings where each character is two or more bytes (such
as strings that contain characters from a Japanese character set).

The following example uses the AnsiNext function to step through the characters
in a filename:

/* Find the last backslash. */

for (IpszFile = 1pszTemp; *1pszTemp != '\0@';
I1pszTemp = AnsiNext(1pszTemp)) {

if (*1pszTemp == "\\')
1pszFile = AnsiNext(1pszTemp);

AnsiPrev



AnsiPrev 17

AnsiPrev [2.x]

LPSTR AnsiPrev(lpchStart, IpchCurrentChar)
LPCSTR IpchStart; /* address of first character */
LPCSTR IpchCurrentChar; /* address of current character */

The AnsiPrev function moves to the previous character in a string.

Parameters IpchStart
Points to the beginning of the string.

IpchCurrentChar
Points to a character in a null-terminated string.

Return Value The return value points to the previous character in the string, or to the first char-
acter in the string if the IpchCurrentChar parameter is equal to the IpchStart
parameter.

Comments The AnsiPrev function can be used to move through strings where each character
is a single byte, or through strings where each character is two or more bytes (such
as strings that contain characters from a Japanese character set).

This function can be very slow, because the string must be scanned from the begin-
ning to determine the previous character. Wherever possible, the AnsiNext func-
tion should be used instead of this function.

Example The following example uses the AnsiNext and AnsiPrev functions to change
every occurrence of the characters *\&’ in a string to a single newline character:

/* Find ampersands. */
for (1psz = TpszTest; *1psz != '\@'; 1psz = AnsiNext(Ipsz)) {

/* Check the previous character. */

if (#1psz == '&' &&
*(1psz2 = AnsiPrev(lpszTest, 1psz)) == "\\') {
1strcpy(lpsz2, 1psz);
*1psz2 = '\n';
}

See Also AnsiNext



18 AnsiToOem

AnsiToOem [2.x]

void AnsiToOem(hpszWindows, hpszOem)
const char _huge* hpszWindows; /* address of string to translate */
char _huge* hpszOems; /* address of buffer for string */

The AnsiToOem function translates a string from the Windows character set into
the specified OEM character set.

Parameters hpszWindows
Points to a null-terminated string of characters from the Windows character set.

hpszOem
Points to the location where the translated string is to be copied. To translate the
string in place, this parameter can be the same as hpszWindows.

Return Value This function does not return a value.

Comments The string to be translated can be greater than 64K in length.

Windows-to-OEM mappings are defined by the keyboard driver, where this func-
tion is implemented. Some keyboard drivers may have different mappings than
others, depending on the machine environment, and some keyboard driver support
loading different OEM character sets; for example, the standard U.S. keyboard
driver for an IBM keyboard supports loadable code pages, with the default being
code page 437 and the most common alternative being code page 850. (The Win-
dows character set is sometimes referred to as code page 1007.)

The OEM character set must always be used when accessing string data created by
MS-DOS or MS-DOS applications. For example, a word processor should convert
OEM characters to Windows characters when importing documents from an
MS-DOS word processor. When an application makes an MS-DOS call, including
a C run-time function call, filenames must be in the OEM character set, whereas
they must be presented to the user in Windows characters (because the Windows
fonts use Windows characters).

Example The following example is part of a dialog box in which a user would create a
directory by typing a name in an edit control:

case IDOK:
GetWindowText (GetDIgltem(hwndDlg, ID_EDITDIRNAME), szDirName,
sizeof(szDirName));
AnsiToOem(szDirName, szDirName);
mkdir(szDirName);
EndDialog(hwndDlg, 1);
return TRUE;



AnsiUpper 19

See Also AnsiToOemBuff, OemToAnsi

AnsiToOemBuff

void AnsiToOemBuff(IpszWindowsStr, IpszOemStr, cbWindowsStr)

LPCSTR IpszWindowsStr; /* address of string to translate */
LPSTR lpszOemStr; /* address of buffer for translated string */
UINT cbWindowsStr; /* length of string to translate */

Parameters

Return Value

See Also

The AnsiToOemBuff function translates a string from the Windows character set
into the specified OEM character set.

IpszWindowsStr
Points to a buffer containing one or more characters from the Windows charac-

ter set.

IpszOemStr
Points to the location where the translated string is to be copied. To translate the

string in place, this parameter can be the same as IpszWindowsStr.

cbWindowsStr
Specifies the number of bytes in the buffer identified by the IpszWindowsStr pa-
rameter. If cbWindowsStr is zero, the length is 64K (65,536).

This function does not return a value.

AnsiToOem, OemToAnsi

AnsiUpper

LPSTR AnsiUpper(lpszString)

LPSTR IpszString;

Parameters

/* address of string, or specific character */

The AnsiUpper function converts the given character string to uppercase.

IpszString
Points to a null-terminated string or specifies a single character. If the high-
order word of this parameter is zero, the low-order byte of the low-order word
must contain a single character to be converted.



20 AnsiUpperBuff

Return Value

Comments

Example

See Also

The return value points to a converted character string if the function parameter is
a character string. Otherwise, the return value is a 32-bit value that contains the
converted character in the low-order byte of the low-order word.

The language driver makes the conversion for the current language (the one
selected by the user at setup or by using Control Panel). If no language driver is
selected, Windows uses an internal function.

The following example uses the AnsiUpper function to convert two strings to up-
percase for a non—case-sensitive comparison:

/%
* Convert the target string to uppercase, and then
* convert the subject string one character at a time.

*/
AnsilUpper(pszTarget);
while (#pszTarget != '"\@") {
if (xpszTarget != (char) (DWORD) AnsiUpper(
MAKELP(@, *pszSubject)))
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);
}

AnsiLower, AnsiUpperBuff

AnsiUpperBuff

UINT AnsiUpperBuff(lpszString, cbString)

LPSTR IpszString;
UINT cbString;

Parameters

/* address of string to convert */
/* length of string */

The AnsiUpperBuff function converts a character string in a buffer to uppercase.

IpszString
Points to a buffer containing one or more characters.
cbString

Specifies the number of bytes in the buffer identified by the IpszString parame-
ter. If cbString is zero, the length is 64K (65,536).



AnyPopup 21

Return Value The return value specifies the length of the converted string if the function is
successful.
Comments The language driver makes the conversion for the current language (the one

selected by the user at setup or by using Control Panel). If no language driver is
selected, Windows uses an internal function.

Example The following example uses the AnsiUpperBuff function to convert two strings to
lowercase for a non—case-sensitive comparison:

/%

* Convert both the subject and target strings to uppercase before
* comparing.

*/

AnsilUpperBuff(pszSubject, (UINT) 1strlen(pszSubject));
AnsiUpperBuff(pszTarget, (UINT) Tstrien(pszTarget));

while (*pszTarget != "\@"') {
if (*pszTarget != *pszSubject)
return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

See Also AnsiLower, AnsiUpper

AnyPopup [2x]
BOOL AnyPopup(void)

The AnyPopup function indicates whether an unowned, visible, top-level pop-up,
or overlapped window exists on the screen. The function searches the entire Win-
dows screen, not just the caller’s client area.

Parameters This function has no parameters.

Return Value The return value is nonzero if a pop-up window exists, even if the pop-up window
is completely covered by other windows. The return value is zero if no pop-up
window exists.



22 AppendMenu

Comments AnyPopup is a Windows 1.x function and remains for compatibility reasons. It is
generally not useful.

This function does not detect unowned pop-up windows or windows that do not
have the WS_VISIBLE style bit set.

See Also GetLastActivePopup, ShowOwnedPopups

AppendMenu

BOOL AppendMenu(hmenu, fuFlags, idNewltem, [pNewltem)
*

HMENU hmenus; /* handle of menu

UINT fuFlags; /* menu-item flags */
UINT idNewltem; /* menu-item identifier */
LPCSTR IpNewltem; /* specifies menu-item content */

The AppendMenu function appends a new item to the end of a menu. The appli-
cation can specify the state of the menu item by setting values in the fuFlags
parameter.

Parameters hmenu
Identifies the menu to be changed.
fuFlags
Specifies information about the state of the new menu item when it is added to

the menu. This parameter consists of one or more of the values listed in the fol-
lowing Comments section.

idNewltem
Specifies either the command identifier of the new menu item or, if the fuFlags
parameter is set to MF_POPUP, the menu handle of the pop-up menu.

IpNewltem
Specifies the content of the new menu item. The interpretation of the
IpNewltem parameter depends on the value of the fuFlags parameter.

Value Menu-item content

MF_STRING Contains a long pointer to a null-terminated string.
MF_BITMAP Contains a bitmap handle in its low-order word.



AppendMenu

23

Return Value

Comments

Value

Menu-item content

MF_OWNERDRAW

Contains an application-supplied 32-bit value that the ap-
plication can use to maintain additional data associated
with the menu item. An application can find this value in
the itemData member of the structure pointed to by the
[Param parameter of the WM_MEASUREITEM and
WM_DRAWITEM messages that are sent when the menu
item is changed or initially displayed.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Whenever a menu changes (whether or not the menu is in a window that is dis-
played), the application should call the DrawMenuBar function.

Each of the following groups lists flags that are mutually exclusive and cannot be

used together:

= MF DISABLED, MF_ENABLED, and MF_GRAYED
= MF_BITMAP, MF_STRING, and MF_OWNERDRAW
= MF_MENUBARBREAK and MF_MENUBREAK

s MF_CHECKED and MF_UNCHECKED

Following are the flags that can be set in the fuFlags parameter:

Value Meaning

MF_BITMAP Uses a bitmap as the item. The low-order word of the
IpNewltem parameter contains the handle of the bitmap.

MF_CHECKED Places a check mark next to the item. If the application

MF_DISABLED

MF_ENABLED

MF_GRAYED

MF_MENUBARBREAK

MF_MENUBREAK

has supplied check mark bitmaps (see the SetMenultem-
Bitmaps function), setting this flag displays the “check
mark on” bitmap next to the menu item.

Disables the menu item so that it cannot be selected, but
does not gray it.

Enables the menu item so that it can be selected, and re-
stores it from its grayed state.

Disables the menu item so that it cannot be selected, and
grays it.

Same as MF_MENUBREAK except that, for pop-up
menus, separates the new column from the old column
with a vertical line.

Places the item on a new line for static menu-bar items.

For pop-up menus, places the item in a new column,
with no dividing line between the columns.



24 AppendMenu

Example

See Also

Value Meaning

MF_OWNERDRAW Specifies that the item is an owner-drawn item. The win-
dow that owns the menu receives a
WM_MEASUREITEM message when the menu is dis-
played for the first time to retrieve the height and width
of the menu item. The WM_DRAWITEM message is
then sent whenever the owner window must update the
visual appearance of the menu item. This option is not
valid for a top-level menu item.

MF_POPUP Specifies that the menu item has a pop-up menu as-
sociated with it. The idNewltem parameter specifies a
handle to a pop-up menu to be associated with the item.
This is used for adding either a top-level pop-up menu or
adding a hierarchical pop-up menu to a pop-up menu
item.

MF_SEPARATOR Draws a horizontal dividing line. Can be used only in a
pop-up menu. This line cannot be grayed, disabled, or
highlighted. The IpNewltem and idNewltem parameters
are ignored.

MF_STRING Specifies that the menu item is a character string; the
IpNewltem parameter points to the string for the menu
item.

MF_UNCHECKED Does not place a check mark next to the item (default). If

the application has supplied check mark bitmaps (see
SetMenultemBitmaps), setting this flag displays the
“check mark off” bitmap next to the menu item.

The following example uses the AppendMenu function to append three items to a
floating pop-up menu:

POINT ptCurrent;
HMENU hmenu;

ptCurrent = MAKEPOINT(1Param);

hmenu = CreatePopupMenu();

AppendMenu(hmenu, MF_ENABLED, IDM_ELLIPSE, "Ellipse");

AppendMenu(hmenu, MF_ENABLED, IDM_SQUARE, "Square");

AppendMenu(hmenu, MF_ENABLED, IDM_TRIANGLE, "Triangle");

ClientToScreen(hwnd, &ptCurrent);

TrackPopupMenu(hmenu, TPM_LEFTALIGN, ptCurrent.x,
ptCurrent.y, @, hwnd, NULL);

CreateMenu, DeleteMenu, DrawMenuBar, InsertMenu, RemoveMenu, Set-
MenultemBitmaps



Arc

25

Arc

[2x]

BOOL Arc(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nXStartArc, nYStartArc, nXEndArc,

nYEndArc)
HDC hdc;
int nlLeftRect;
int nTopRect;
int nRightRect;
int nBottomRect;
int nXStartArc;
int nYSrartArc;
int nXEndArc;
int nYEndArc;

Parameters

/* handle of device context

/* x-coordinate upper-left corner bounding rectangle
/* y-coordinate upper-left corner bounding rectangle
/* x-coordinate lower-right corner bounding rectangle
/* y-coordinate lower-right corner bounding rectangle
/* x-coordinate arc starting point

/* y-coordinate arc starting point

/* x-coordinate arc ending point

/* y-coordinate arc ending point

The Are function draws an elliptical arc.

hdc
Identifies the device context.

nlLeftRect

Specifies the logical x-coordinate of the upper-left corner of the bounding

rectangle.
nTopRect

Specifies the logical y-coordinate of the upper-left corner of the bounding

rectangle.
nRightRect

*/
*/
*/
*/
*/
*/
*/
*/
*/

Specifies the logical x-coordinate of the lower-right corner of the bounding

rectangle.

nBottomRect

Specifies the logical y-coordinate of the lower-right corner of the bounding

rectangle.
nXStartArc

Specifies the logical x-coordinate of the point that defines the arc’s starting

point. This point need not lie exactly on the arc.
nYStartArc

Specifies the logical y-coordinate of the point that defines the arc’s starting

point. This point need not lie exactly on the arc.
nXEndArc

Specifies the logical x-coordinate of the point that defines the arc’s endpoint.

This point need not lie exactly on the arc.
nYEndArc

Specifies the logical y-coordinate of the point that defines the arc’s endpoint.

This point need not lie exactly on the arc.



26 ArrangelconicWindows

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments The arc drawn by using the Arc function is a segment of the ellipse defined by the
specified bounding rectangle. The starting point of the arc is the point at which a
ray drawn from the center of the bounding rectangle through the specified starting
point intersects the ellipse. The end point of the arc is the point at which a ray
drawn from the center of the bounding rectangle through the specified end point in-
tersects the ellipse. The arc is drawn in a counterclockwise direction. Since an arc
is not a closed figure, it is not filled.

Both the width and the height of a rectangle must be greater than 2 units and less
than 32,767 units.

Example The following example uses a RECT structure to store the points defining the
bounding rectangle and uses POINT structures to store the coordinates that
specify the beginning and end of the arc:

HDC hdc;

RECT rc = { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };

Arc(hdc, rc.left, rc.top, rc.right, rc.bottom,
ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);

See Also Chord

ArrangelconicWindows

UINT ArrangelconicWindows(hwnd)
HWND hwnd; /* handle of parent window */

The ArrangelconicWindows function arranges all the minimized (iconic) child
windows of a parent window.

Parameters hwnd
Identifies the parent window.

Return Value The return value is the height of one row of icons if the function is successful.
Otherwise, it is zero.



BeginDeferWindowPos 27

Comments An application that maintains its own minimized child windows can call Arrange-
IconicWindows to arrange icons in a client window. This function also arranges
icons on the desktop window, which covers the entire screen. The GetDesktop-
Window function retrieves the window handle of the desktop window.

An application sends the WM_MDIICONARRANGE message to the MDI client
window to prompt the client window to arrange its minimized MDI child windows.

See Also GetDesktopWindow

BeginDeferWindowPos

HDWP BeginDeferWindowPos(c Windows)
int cWindows; /* number of windows */

The BeginDefer WindowPos function returns a handle of an internal structure.
The DeferWindowPos function fills this structure with information about the tar-
get position for a window that is about to be moved. The EndDeferWindowPos
function accepts a handle of this structure and instantaneously repositions the win-
dows by using the information stored in the structure.

Parameters cWindows
Specifies the initial number of windows for which to store position information
in the structure. The Defer WindowPos function increases the size of the struc-
ture if necessary.

Return Value The return value identifies the internal structure if the function is successful. Other-
wise, it is NULL.

Comments If Windows must increase the size of the internal structure beyond the initial size
specified by the cWindows parameter but cannot allocate enough memory to do so,
Windows fails the entire begin/defer/end window-positioning sequence. By speci-
fying the maximum size needed, an application can detect and handle failure early
in the process.

See Also DeferWindowPos, EndDeferWindowPos



28 BeginPaint

BeginPaint [2x]

HDC BeginPaint(hwnd, lpps)
HWND Awnd; /* handle of window to paint */
PAINTSTRUCT FAR* Ipps; /* address of structure with paint information */

The BeginPaint function prepares the specified window for painting and fills a
PAINTSTRUCT structure with information about the painting.

Parameters hwnd
Identifies the window to be repainted.

Ipps
Points to the PAINTSTRUCT structure that will receive the painting informa-
tion. The PAINTSTRUCT structure has the following form:

typedef struct tagPAINTSTRUCT { /* ps *x/
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[16];
} PAINTSTRUCT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value The return value is the handle of the device context for the given window if the
function is successful.

Comments The BeginPaint function automatically sets the clipping region of the device con-
text to exclude any area outside the update region. The update region is set by the
InvalidateRect or InvalidateRgn function and by the system after sizing,
moving, creating, scrolling, or any other operation that affects the client
area. If the update region is marked for erasing, BeginPaint sends a
WM_ERASEBKGND message to the window.

An application should not call BeginPaint except in response to a WM_PAINT
message. Each call to the BeginPaint function must have a corresponding call to
the EndPaint function.

If the caret is in the area to be painted, BeginPaint automatically hides the caret to
prevent it from being erased.

If the window’s class has a background brush, BeginPaint will use that brush to
erase the background of the update region before returning.



BitBIt 29

Example

See Also

The following example calls an application-defined function to paint a bar graph
in a window’s client area during the WM_PAINT message:

PAINTSTRUCT ps;

case WM_PAINT:
BeginPaint(hwnd, &ps);

EndPaint (hwnd, &ps);
break;

EndPaint, InvalidateRect, InvalidateRgn, ValidateRect, ValidateRgn

BitBIt

BOOL BitBlt(hdcDest, nXDest, nYDest, nWidth, nHeight, hdcSrc, nXSrc, nYSrc, dwRop)

HDC hdcDest;
int nXDest;

int nYDest;

int nWidth;

int nHeight;
HDC hdcSrc;

int nXSrc;

int nYSrc;
DWORD dwRop;

Parameters

/* handle of destination device context */
/* upper-left corner destination rectangle */
/* upper-left corner destination rectangle */
/* bitmap width */
/* bitmap height */
/* handle of source device context */
/* upper-left corner source bitmap */
/* upper-left corner source bitmap */
/* raster operation for copy */

The BitBIt function copies a bitmap from a specified device context to a destina-
tion device context.

hdcDest
Identifies the destination device context.
nXDest

Specifies the logical x-coordinate of the upper-left corner of the destination
rectangle.

nYDest
Specifies the logical y-coordinate of the upper-left corner of the destination
rectangle.

nWidth
Specifies the width, in logical units, of the destination rectangle and source bit-
map.



30

BitBIt

nHeight
Specifies the height, in logical units, of the destination rectangle and source bit-
map.

hdcSrc
Identifies the device context from which the bitmap will be copied. This
parameter must be NULL if the dwRop parameter specifies a raster operation
that does not include a source. This parameter can specify a memory device
context.

nXSrc
Specifies the logical x-coordinate of the upper-left corner of the source bitmap.

nYSrc
Specifies the logical y-coordinate of the upper-left corner of the source bitmap.

dwRop
Specifies the raster operation to be performed. Raster operation codes define
how the graphics device interface (GDI) combines colors in output operations
that involve a current brush, a possible source bitmap, and a destination bitmap.
This parameter can be one of the following:

Code Description

BLACKNESS Turns all output black.

DSTINVERT Inverts the destination bitmap.

MERGECOPY Combines the pattern and the source bitmap by using the
Boolean AND operator.

MERGEPAINT Combines the inverted source bitmap with the destination bit-

map by using the Boolean OR operator.
NOTSRCCOPY Copies the inverted source bitmap to the destination.

NOTSRCERASE Inverts the result of combining the destination and source bit-
maps by using the Boolean OR operator.

PATCOPY Copies the pattern to the destination bitmap.

PATINVERT Combines the destination bitmap with the pattern by using the
Boolean XOR operator.

PATPAINT Combines the inverted source bitmap with the pattern by

using the Boolean OR operator. Combines the result of this
operation with the destination bitmap by using the Boolean

OR operator.
SRCAND Combines pixels of the destination and source bitmaps by
using the Boolean AND operator.
SRCCOPY Copies the source bitmap to the destination bitmap.
SRCERASE Inverts the destination bitmap and combines the result with

the source bitmap by using the Boolean AND operator.

SRCINVERT Combines pixels of the destination and source bitmaps by
using the Boolean XOR operator.



BitBIt 31

Return Value

Comments

Example

Code Description

SRCPAINT Combines pixels of the destination and source bitmaps by
using the Boolean OR operator.

WHITENESS Turns all output white.

The return value is nonzero if the function is successful. Otherwise, it is zero.

An application that uses the BitBIt function to copy pixels from one window to
another window or from a source rectangle in a window into a target rectangle in
the same window should set the CS_BYTEALIGNWINDOW or
CS_BYTEALIGNCLIENT flag when registering the window classes. By aligning
the windows or client areas on byte boundaries, the application can ensure that the
BitBlt operations occur on byte-aligned rectangles. BitBIt operations on byte-
aligned rectangles are considerably faster than BitBIt operations on rectangles that
are not byte-aligned.

GDI transforms the nWidth and nHeight parameters, once by using the destination
device context, and once by using the source device context. If the resulting ex-
tents do not match, GDI uses the StretchBIt function to compress or stretch the
source bitmap as necessary. If destination, source, and pattern bitmaps do not have
the same color format, the BitBIt function converts the source and pattern bitmaps
to match the destination. The foreground and background colors of the destination
bitmap are used in the conversion.

When the BitBIt function converts a monochrome bitmap to color, it sets white
bits (1) to the background color and black bits (0) to the foreground color. The
foreground and background colors of the destination device context are used. To
convert color to monochrome, BitBIt sets pixels that match the background color
to white and sets all other pixels to black. BitBlt uses the foreground and back-
ground colors of the source (color) device context to convert from color to mono-
chrome.

The foreground color is the current text color for the specified device context, and
the background color is the current background color for the specified device con-
text.

Not all devices support the BitBlt function. An application can determine whether
a device supports BitBlt by calling the GetDeviceCaps function and specifying
the RASTERCAPS index.

For a complete list of the raster-operation codes, see the Microsoft Windows Pro-
grammer’s Reference, Volume 4.

The following example loads a bitmap, retrieves its dimensions, and displays it in
a window:



32 BringWindowToTop

HDC hdc, hdcMemory;
HBITMAP hbmpMyBitmap, hbmp0l1d;
BITMAP bm;

hbmpMyBitmap = LoadBitmap(hinst, "MyBitmap");
GetObject(hbmpMyBitmap, sizeof(BITMAP), &bm);

hdc = GetDC(hwnd);
hdcMemory = CreateCompatibleDC(hdc);
hbmp0l1d = SelectObject(hdcMemory, hbmpMyBitmap);

BitB1t(hdc, @, @, bm.bmWidth, bm.bmHeight, hdcMemory, @, @, SRCCOPY);
SelectObject(hdcMemory, hbmp01d);

DeleteDC(hdcMemory);
ReleaseDC(hwnd, hdc);

See Also GetDeviceCaps, PatBIt, SetTextColor, StretchBlt, StretchDIBits

BringWindowToTop [2x]

BOOL BringWindowToTop(hwnd)
HWND hwnd,; /* handle of window */

The BringWindowToTop function brings the given pop-up or child window
(including an MDI child window) to the top of a stack of overlapping windows.
In addition, it activates pop-up, top-level, and MDI child windows. The Bring-
WindowToTop function should be used to uncover any window that is partially
or completely obscured by any overlapping windows.

Parameters hwnd
Identifies the pop-up or child window to bring to the top.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments Calling this function is similar to calling the SetWindowPos function to change a
window’s position in the Z-order. The BringWindowToTop function does not
make a window a top-level window.

See Also SetWindowPos



BuildCommDCB

33

BuildCommDCB

int BuildCommDCB(/pszDef, Ipdcb)

LPCSTR IpszDef;
DCB FAR* Ipdcb;

Parameters

/* address of device-control string
/* address of device-control block

IpszDef

*/
*/

[2x]

The BuildCommDCB function translates a device-definition string into appro-
priate serial device control block (DCB) codes.

Points to a null-terminated string that specifies device-control information. The
string must have the same form as the parameters used in the MS-DOS mode

command.

Ipdch

Points to a DCB structure that will receive the translated string. The structure
defines the control settings for the serial-communications device. The DCB

structure has the following form:

typedef struct tagDCB

{
BYTE
UINT
BYTE
BYTE
BYTE
UINT
UINT
UINT

Id;
BaudRate;
ByteSize;
Parity;
StopBits;
R1sTimeout;
CtsTimeout;
DsrTimeout;

UINT
UINT
UINT
UINT
UINT
UINT
UINT

fBinary
fRtsDisable
fParity
fOutxCtsFlow
fOutxDsrFlow
fDummy
fDtrDisable

L T e R g e

UINT
UINT
UINT
UINT
UINT
UINT
UINT
UINT

fOutX
fInX s
fPeChar
fNull
fChEvt
fDtrflow
fRtsflow
fDummy?2

we we we

e e e

Mo we we s we

/*

V£
/*
/*
/*
/*
/*
/*
/*

/%
/%
/*
/%
/*
/%
/%

/%
/*
/*
VES
VES
VES
VES

dcb

internal device identifier
baud rate

number of bits/byte, 4-8
@-4=none,odd,even,mark,space
0,1,2 =1, 1.5, 2

timeout for RLSD to be set
timeout for CTS to be set
timeout for DSR to be set

binary mode (skip EOF check)
don't assert RTS at init time
enable parity checking

CTS handshaking on output

DSR handshaking on output
reserved

don't assert DTR at init time

enable
enable
enable

output XON/XOFF

input XON/XOFF

parity err replacement
enable null stripping

enable Rx character event

DTR handshake on input

RTS handshake on input

*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/



34 BuildCommDCB

char XonChar; /% Tx and Rx XON character */
char XoffChar; /* Tx and Rx XOFF character */
UINT XonLim; /* transmit XON threshold */
UINT XoffLim; /* transmit XOFF threshold */
char PeChar; /* parity error replacement char */
char EofChar; /* end of Input character */
char EvtChar; /* received event character */
UINT TxDelay; /* amount of time between chars */
} DCB;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value The return value is zero if the function is successful. Otherwise, it is —1.

Comments The BuildCommDCB function only fills the buffer. To apply the settings to a
port, an application should use the SetCommState function.

By default, BuildCommDCB specifies XON/XOFF and hardware flow control as
disabled. To enable flow control, an application should set the appropriate mem-
bers in the DCB structure.

Example The following example uses the BuildCommDCB and SetCommState functions
to set up COML1 to operate at 9600 baud, with no parity, 8 data bits, and 1 stop bit:

idComDev = OpenComm("COM1", 1024, 128);
if (idComDev < @) {
ShowError(idComDev, "OpenComm");
return 0;
}

err = BuildCommDCB("COM1:9600,n,8,1", &dcbh);
if (err < 0) {

ShowError(err, "BuildCommDCB");

return 90;
}

err = SetCommState(&dcb);

if (err < 0) {
ShowError(err, "SetCommState");
return 0;

See Also SetCommState



CallMsgFilter 35

CallMsgFilter [2x]

BOOL CallMsgFilter(lpmsg, nCode)
MSG FAR¥* Ipmsg; /* address of structure with message data */
int nCode; /* processing code */

The CallMsgFilter function passes the given message and code to the current mes-
sage-filter function. The message-filter function is an application-specified func-
tion that examines and modifies all messages. An application specifies the

function by using the SetWindowsHook function.

Parameters Ipmsg
Points to an MSG structure that contains the message to be filtered. The MSG
structure has the following form:

typedef struct tagMSG { /* msg */
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM 1Param;

DWORD time;
POINT pt;
} MSG;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

nCode
Specifies a code used by the filter function to determine how to process the mes-
sage.

Return Value The return value specifies the state of message processing. It is zero if the message
should be processed or nonzero if the message should not be processed further.

Comments The CallMsgFilter function is usually called by Windows to let applications ex-
amine and control the flow of messages during internal processing in menus and
scroll bars or when moving or sizing a window.

Values given for the nCode parameter must not conflict with any of the MSGF_
and HC_ values passed by Windows to the message-filter function.

See Also SetWindowsHook



36 CallNextHookEx

CallNextHookEx [31]

LRESULT CallNextHooKkEx(hHook, nCode, wParam, [Param)

HHOOK hHook; /* handle of hook function */
int nCode; /* hook code */
WPARAM wParam; /* first message parameter */
LPARAM [Param; /* second message parameter */

The CallNextHookEx function passes the hook information to the next hook func-
tion in the hook chain.

Parameters hHook
Identifies the current hook function.

nCode
Specifies the hook code to pass to the next hook function. A hook function uses

this code to determine how to process the message sent to the hook.

wParam
Specifies 16 bits of additional message-dependent information.

[Param
Specifies 32 bits of additional message-dependent information.

Return Value The return value specifies the result of the message processing and depends on the
value of the nCode parameter.

Comments Calling the CallNextHookEx function is optional. An application can call this
function either before or after completing any processing in its own hook function.
If an application does not call CallNextHookEx, Windows will not call the hook
functions that were installed before the application’s hook function was installed.

See Also SetWindowsHookEx, UnhookWindowsHookEx

CallWindowProc [2x]

LRESULT CallWindowProc(wndprcPrev, hwnd, uMsg, wParam, [Param)

WNDPROC wndprcPrev; /* instance address of previous procedure */
HWND hwnd; /* handle of window */
UINT uMsg; /* message */
WPARAM wParam; /* first message parameter */

LPARAM [Param; /* second message parameter */



CallwWndProc 37

Parameters

Return Value

Comments

See Also

The CallWindowProc function passes message information to the specified win-
dow procedure.

wndprcPrev
Specifies the procedure-instance address of the previous window procedure.

hwnd
Identifies the window that will receive the message.

uMsg
Specifies the message.

wParam
Specifies 16 bits of additional message-dependent information.

lParam
Specifies 32 bits of additional message-dependent information.

The return value specifies the result of the message processing and depends on the
message sent.

The CallWindowProc function is used for window subclassing. Normally, all
windows with the same class share the same window procedure. A subclass is a
window or set of windows belonging to the same window class whose messages
are intercepted and processed by another window procedure (or procedures)
before being passed to the window procedure of that class.

The SetWindowLong function creates the subclass by changing the window pro-
cedure associated with a particular window, causing Windows to call the new win-
dow procedure instead of the previous one. Any messages not processed by the
new window procedure must be passed to the previous window procedure by
calling CallWindowProc. This allows you to create a chain of window proce-
dures.

SetWindowLong

CallWndProc

LRESULT CALLBACK CallWndProc(code, wParam, [Param)

int code;

WPARAM wParam;
LPARAM [Param;

/* process-message flag */
/* current-task flag */
/* address of structure with message data */

The CallWndProc function is a library-defined callback function that the system
calls whenever the SendMessage function is called. The system passes the



38 CallWndProc

Parameters

Return Value

Comments

See Also

message to the callback function before passing the message to the destination win-
dow procedure.

code
Specifies whether the callback function should process the message or call the
CallNextHookEx function. If the code parameter is less than zero, the callback
function should pass the message to CallNextHookEx without further process-
ing.

wParam
Specifies whether the message is sent by the current task. This parameter is non-
zero if the message is sent; otherwise, it is NULL.

IParam
Points to a structure that contains details about the message. The following
shows the order, type, and description of each member of the structure:

Member Description

IParam Contains the /Param parameter of the message.
wParam Contains the wParam parameter of the message.
uMsg Specifies the message.

hWnd Identifies the window that will receive the message.

The callback function should return zero.

The CallWndProc callback function can examine or modify the message as neces-
sary. Once the function returns control to the system, the message, with any modi-
fications, is passed on to the window procedure.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the
WH_CALLWNDPROC filter type and the procedure-instance address of the call-
back function in a call to the SetWindowsHookEx function.

CallWndProc is a placeholder for the library-defined function name. The actual

name must be exported by including it in an EXPORTS statement in the library’s
module-definition file.

CallNextHookEx, SendMessage, SetWindowsHook Ex



Catch 39

Catch

[2x]

int Catch(/pCatchBuf)
int FAR* [pCatchBuf; /* address of buffer for array */

Parameters

Return Value

Comments

Example

The Catch function captures the current execution environment and copies it to a
buffer. The Throw function can use this buffer later to restore the execution en-
vironment. The execution environment includes the state of all system registers
and the instruction counter.

IpCatchBuf
Points to a memory buffer large enough to contain a CATCHBUF array.

The Catch function returns immediately with a return value of zero. When the
Throw function is called, it returns again, this time with the return value specified
in the nErrorReturn parameter of the Throw function.

The Catch function is similar to the C run-time function setjmp.

The following example calls the Catch function to save the current execution
environment before calling a recursive sort function. The first return value

from Catch is zero. If the doSort function calls the Throw function, execution
will again return to the Catch function. This time, Catch will return the
STACKOVERFLOW error passed by the doSort function. The doSort function is
recursive—that is, it calls itself. It maintains a variable, wStackCheck, that is used
to check to see how much stack space has been used. If more then 3K of the stack
has been used, doSort calls Throw to drop out of all the nested function calls back
into the function that called Catch.

ffdefine STACKOVERFLOW 1

UINT uStackCheck;
CATCHBUF catchbuf;

{
int iReturn;
char szBuf[80];
if ((iReturn = Catch((int FAR*) catchbuf)) != @) {

. /* Error processing goes here. */



40 CBTProc

else {
uStackCheck = 0; /* initializes stack-usage count */
doSort(1l, 100); /* calls sorting function */
}
break;
}
void doSort(int sLeft, int sRight)
{
int slast;
/*
* Determine whether more than 3K of the stack has been
* used, and if so, call Throw to drop back into the
* original calling application.
E
# The stack is incremented by the size of the two parameters,
* the two local variables, and the return value (2 for a near
* function call).
*/
uStackCheck += (sizeof(int) * 4) + 2;
if (uStackCheck > (3 * 1024))
Throw((int FAR*) catchbuf, STACKOVERFLOW);
. /* A sorting algorithm goes here. %/
doSort(sLeft, slLast - 1); /* note recursive call */
uStackCheck -= 10; /* updates stack-check variable */
}
See Also Throw

CBTProc [3.1]

LRESULT CALLBACK CBTProc(code, wParam, [Param)

int code; /* CBT hook code */
WPARAM wParam; /* depends on the code parameter */
LPARAM [Param; /* depends on the code parameter */

The CBTProc function is a library-defined callback function that the system calls
before activating, creating, destroying, minimizing, maximizing, moving, or sizing
a window; before completing a system command; before removing a mouse or



CBTProc 4

Parameters

keyboard event from the system message queue; before setting the input focus; or
before synchronizing with the system message queue.

The value returned by the callback function determines whether to allow or pre-

vent one of these operations.

code

Specifies a computer-based-training (CBT) hook code that identifies the opera-
tion about to be carried out, or a value less than zero if the callback function
should pass the code, wParam, and [Param parameters to the CallNextHookEx
function. The code parameter can be one of the following:

Code

Meaning

HCBT_ACTIVATE

HCBT_CLICKSKIPPED

HCBT_CREATEWND

HCBT_DESTROYWND
HCBT_KEYSKIPPED

HCBT_MINMAX

Indicates that the system is about to activate a win-
dow.

Indicates that the system has removed a mouse mes-
sage from the system message queue. A CBT applica-
tion that must install a journaling playback filter in
response to the mouse message should do so when it
receives this hook code.

Indicates that a window is about to be created. The
system calls the callback function before sending the
WM_CREATE or WM_NCCREATE message to the
window. If the callback function returns TRUE, the
system destroys the window—the CreateWindow
function returns NULL, but the WM_DESTROY mes-
sage is not sent to the window. If the callback func-
tion returns FALSE, the window is created normally.

At the time of the HCBT_CREATEWND notifica-
tion, the window has been created, but its final size
and position may not have been determined, nor has
its parent window been established.

It is possible to send messages to the newly created
window, although the window has not yet received
WM_NCCREATE or WM_CREATE messages.

It is possible to change the Z-order of the newly
created window by modifying the hwndInsertAfter
member of the CBT_ CREATEWND structure.

Indicates that a window is about to be destroyed.

Indicates that the system has removed a keyboard
message from the system message queue. A CBT ap-
plication that must install a journaling playback filter
in response to the keyboard message should do so
when it receives this hook code.

Indicates that a window is about to be minimized or
maximized.



42 CBTProc

Return Value

Comments

Code Meaning

HCBT_MOVESIZE Indicates that a window is about to be moved or sized.

HCBT_QS Indicates that the system has retrieved a
WM_QUEUESYNC message from the system mes-
sage queue.

HCBT_SETFOCUS Indicates that a window is about to receive the input
focus.

HCBT_SYSCOMMAND Indicates that a system command is about to be car-
ried out. This allows a CBT application to prevent
task switching by hot keys.

wParam
This parameter depends on the code parameter. See the following Comments
section for details.

[Param
This parameter depends on the code parameter. See the following Comments
section for details.

For operations corresponding to the following CBT hook codes, the callback func-
tion should return zero to allow the operation, or 1 to prevent it:

HCBT_ACTIVATE
HCBT_CREATEWND
HCBT_DESTROYWND
HCBT_MINMAX
HCBT_MOVESIZE
HCBT_SYSCOMMAND

The return value is ignored for operations corresponding to the following CBT
hook codes:

HCBT_CLICKSKIPPED
HCBT_KEYSKIPPED
HCBT_QS

The callback function should not install a playback hook except in the situations
described in the preceding list of hook codes.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the WH_CBT filter
type and the procedure-instance address of the callback function in a call to the
SetWindowsHookEx function.



CBTProc 43

CBTProc is a placeholder for the library-defined function name. The actual name
must be exported by including it in an EXPORTS statement in the library’s
module-definition file.

The following table describes the wParam and [Param parameters for each
HCBT _ constant.

Constant

wParam

IParam

HCBT_ACTIVATE

HCBT_CLICKSKIPPED

HCBT_CREATEWND

HCBT_DESTROYWND

HCBT_KEYSKIPPED

HCBT_MINMAX

HCBT_MOVESIZE
HCBT_QS

HCBT_SETFOCUS

Specifies the handle of the win-
dow about to be activated.

Identifies the mouse message re-
moved from the system mes-
sage queue.

Specifies the handle of the new
window.

Specifies the handle of the win-
dow about to be destroyed.

Identifies the virtual key code.

Specifies the handle of the win-
dow being minimized or maxi-
mized.

Specifies the handle of the win-
dow to be moved or sized.

This parameter is undefined,; it
should be set to 0.

Specifies the handle of the win-
dow gaining the input focus.

Specifies a long pointer to a CBT-
ACTIVATESTRUCT structure that con-
tains the handle of the currently active
window and specifies whether the activation
is changing because of a mouse click.

Specifies a long pointer to a MOUSE-
HOOKSTRUCT structure that contains the
hit-test code and the handle of the window
for which the mouse message is intended.
For a list of hit-test codes, see the descrip-
tion of the WM_NCHITTEST message.

Specifies a long pointer to a
CBT_CREATEWND data structure that
contains initialization parameters for the win-
dow.

This parameter is undefined and should be
set to OL.

Specifies the repeat count, scan code, key-
transition code, previous key state, and con-
text code. For more information, see the
description of the WM_KEYUP or
WM_KEYDOWN message.

The low-order word specifies a show-
window value (SW_) that specifies the
operation. For a list of show-window values,
see the description of the ShowWindow
function. The high-order word is undefined.

Specifies a long pointer to a RECT structure
that contains the coordinates of the window.
This parameter is undefined and should be
set to OL.

The low-order word specifies the handle of

the window losing the input focus. The high-
order word is undefined.



44 ChangeClipboardChain

Constant wParam IParam

HCBT_SYSCOMMAND Specifies a system-command If wParam is SC_HOTKEY, the low-order
value (SC_) that specifies the word of [Param contains the handle of the
system command. For more window that task switching will bring to the
information about system foreground. If wParam is not SC_HOTKEY
command values, see the and a System-menu command is chosen
description of the with the mouse, the low-order word of
WM_SYSCOMMAND [Param contains the x-coordinate of the cur-
message. sor and the high-order word contains the

y-coordinate. If neither of these conditions is
true, [Param is undefined.

See Also CallNextHookEx, SetWindowsHookEx

ChangeClipboardChain [2x]

BOOL ChangeClipboard Chain(hwnd, hwndNext)
HWND hwnd, /* handle of window to remove */
HWND hwndNext; /* handle of next window */

The ChangeClipboardChain function removes the window identified by the
hwnd parameter from the chain of clipboard viewers and makes the window iden-
tified by the hwndNext parameter the descendant of the Awnd parameter’s ancestor
in the chain.

Parameters hwnd

Identifies the window that is to be removed from the chain. The handle must
have been passed to the SetClipboard Viewer function.

hwndNext
Identifies the window that follows Awnd in the clipboard-viewer chain (this is
the handle returned by the SetClipboard Viewer function, unless the sequence
was changed in response to a WM_CHANGECBCHAIN message).

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also SetClipboardViewer



CheckDIgButton

45

ChangeMenu

[2x]

The Microsoft Windows 3.1 Software Development Kit (SDK) has replaced this
function with five specialized functions, listed as follows:

Function Description

AppendMenu Appends a menu item to the end of a menu.

DeleteMenu Deletes a menu item from a menu, destroying the menu item.

InsertMenu Inserts a menu item into a menu.

ModifyMenu Modifies a menu item in a menu.

RemoveMenu Removes a menu item from a menu but does not destroy the menu
item.

Applications written for Windows versions earlier than 3.0 may continue to call
ChangeMenu as previously documented. Applications written for Windows 3.0

and 3.1 should call the new functions.

Example The following example shows a call to ChangeMenu and how it would be rewrit-
ten to call AppendMenu:
ChangeMenu(hMenu, /* handle of menu */
9, /* position parameter not used */
"&White", /* menu-item string */
IDM_PATTERNI, /* menu-item identifier */
MF_APPEND | MF_STRING | MF_CHECKED); /* flags */
AppendMenu(hMenu, /* handle of menu */
MF_STRING | MF_CHECKED, /* flags */
IDM_PATTERN1, /* menu-item identifier =/
"&White"); /* menu-item string */
See Also AppendMenu, DeleteMenu, InsertMenu, ModifyMenu, RemoveMenu

CheckDIgButton

void CheckDIgButton(hwndDlg, idButton, uCheck)

HWND hwndDlg; /* handle of dialog box */
int idButton; /* button-control identifier */
UINT uCheck; /* check state */



46 CheckMenultem

Parameters

Return Value

Comments

See Also

The CheckDIgButton function selects (places a check mark next to) or clears (re-
moves a check mark from) a button control, or it changes the state of a three-state
button.

hwndDlg
Identifies the dialog box that contains the button.

idButton
Identifies the button to be modified.

uCheck
Specifies the check state of the button. If this parameter is nonzero,
CheckDIgButton selects the button; if the parameter is zero, the function clears
the button. For a three-state check box, if uCheck is 2, the button is grayed; if
uCheck is 1, it is selected; if uCheck is 0, it is cleared.

This function does not return a value.

The CheckDIgButton function sends a BM_SETCHECK message to the
specified button control in the given dialog box.

CheckRadioButton, IsDIgButtonChecked

CheckMenultem

BOOL CheckMenultem(imenu, idCheckltem, uCheck)

HMENU hmenu;
UINT idCheckltem;
UINT uCheck;

Parameters

/* handle of menu */
/* menu-item identifier */
/* check state and position */

The CheckMenultem function selects (places a check mark next to) or clears (re-
moves a check mark from) a specified menu item in the given pop-up menu.

hmenu
Identifies the menu.

idCheckltem
Identifies the menu item to be selected or cleared.

uCheck
Specifies how to determine the position of the menu item
(MF_BYCOMMAND or MF_BYPOSITION) and whether the item
should be selected or cleared (MF_CHECKED or MF_UNCHECKED). This
parameter can be a combination of these values, which can be combined by
using the bitwise OR operator. The values are described as follows:



CheckRadioButton 47

Value Meaning

MF_BYCOMMAND Specifies that the idCheckltem parameter gives the menu-
item identifier MF_BYCOMMAND is the default).

MF_BYPOSITION Specifies that the idCheckltem parameter gives the posi-
tion of the menu item (the first item is at position zero).
MF_CHECKED Selects the item (adds check mark).

MF_UNCHECKED Clears the item (removes check mark).

Return Value The return value specifies the previous state of the item—MF_CHECKED or
MF_UNCHECKED—if the function is successful. The return value is —1 if the
menu item does not exist.

Comments The idCheckltem parameter may identify a pop-up menu item as well as a menu
item. No special steps are required to select a pop-up menu item.

Top-level menu items cannot have a check.

A pop-up menu item should be selected by position since it does not have a menu-
item identifier associated with it.

See Also GetMenuState, SetMenultemBitmaps

CheckRadioButton [2x ]

void CheckRadioButton(hwndDlg, idFirstButton, idLastButton, idCheckButton)

HWND hwndDlg; /* handle of dialog box */
int idFirstButton; /* identifier of first radio button in group */
int idLastButton; /* identifier of last radio button in group */
int idCheckButton; /* identifier of radio button to select */

The CheckRadioButton function selects (adds a check mark to) a given radio but-
ton in a group and clears (removes a check mark from) all other radio buttons in
the group.

Parameters hwndDlg
Identifies the dialog box that contains the radio button.

idFirstButton
Specifies the identifier of the first radio button in the group.

idLastButton
Specifies the identifier of the last radio button in the group.



48 ChildWindowFromPoint

idCheckButton
Specifies the identifier of the radio button to select.
Return Value This function does not return a value.
Comments The CheckRadioButton function sends a BM_SETCHECK message to the

specified radio button control in the given dialog box.

See Also CheckDlgButton, IsDigButtonChecked

ChildWindowFromPoint [2x]

HWND ChildWindowFromPoint(hwndParent, pt)
HWND hwndParent; /* handle of parent window */
POINT pr; /* structure with point coordinates */

The ChildWindowFromPoint function determines which, if any, of the child win-
dows belonging to the given parent window contains the specified point.

Parameters hwndParent
Identifies the parent window.
pt
Specifies a POINT structure that defines the client coordinates of the point to
be checked. The POINT structure has the following form:

typedef struct tagPOINT { /% pt =/
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value The return value is the handle of the child window (hidden, disabled, or trans-
parent) that contains the point, if the function is successful. If the given point lies
outside the parent window, the return value is NULL. If the point is within the
parent window but is not contained within any child window, the return value is
the handle of the parent window.

Comments More than one window may contain the given point, but Windows returns the
handle only of the first window encountered that contains the point.



ChooseColor 49

See Also WindowFromPoint

ChooseColor [31]

#include <commdlg.h>

BOOL ChooseColor(lpcc)
CHOOSECOLOR FAR¥* Ipcc; /* address of structure with initialization data */

The ChooseColor function creates a system-defined dialog box from which the
user can select a color.

Parameters Ipcc
Points to a CHOOSECOLOR structure that initially contains information nec-
essary to initialize the dialog box. When the ChooseColor function returns, this
structure contains information about the user’s color selection. The CHOOSE-
COLOR structure has the following form:

#include <commdlg.h>

typedef struct tagCHOOSECOLOR { /% cc */
DWORD 1StructSize;
HWND hwndOwner;
HWND hInstance;
COLORREF rgbResult;
COLORREF FAR#* T1pCustColors;
DWORD Flags;
LPARAM 1CustData;
UINT (CALLBACK* 1pfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR T1pTemplateName;
} CHOOSECOLOR;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Return Value The return value is nonzero if the function is successful. It is zero if an error oc-
curs, if the user chooses the Cancel button, or if the user chooses the Close com-
mand on the System menu (often called the Control menu) to close the dialog box.

Errors Use the CommDIgExtendedError function to retrieve the error value, which may
be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE



50 ChooseColor

Comments

Example

CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE

The dialog box does not support color palettes. The color choices offered by the
dialog box are limited to the system colors and dithered versions of those colors.

If the hook function (to which the IpfnHook member of the CHOOSECOLOR
structure points) processes the WM_CTLCOLOR message, this function must re-
turn a handle for the brush that should be used to paint the control background.

The following example initializes a CHOOSECOLOR structure and then creates

a color-selection dialog box:

/*.Color variables */

CHOOSECOLOR cc;

COLORREF clr;

COLORREF aclrCust[16];

int i;

/* Set the custom-color controls to white. */

for (i = 0; 1 < 165 i++)
aclrCust[i] = RGB(255, 255, 255);

/* Initialize clr to black. */
clr = RGB(@, 0, 9);
/% Set all structure fields to zero. */

memset(&cc, @, sizeof(CHOOSECOLOR));

/* Initialize the necessary CHOOSECOLOR members.

cc.1StructSize = sizeof(CHOOSECOLOR);
cc.hwndOwner = hwnd;

cc.rgbResult = clr;

cc.1pCustColors = aclrCust;

cc.Flags = CC_PREVENTFULLOPEN;

*/



ChooseFont 51

if (ChooseColor(&cc))

. /* Use cc.rgbResult to select the user-requested color. */

ChooseFont [34]

#include <commdlg.h>

BOOL ChooseFont(/pcf)
CHOOSEFONT FAR*Ipcf; /* address of structure with initialization data */

The ChooseFont function creates a system-defined dialog box from which the
user can select a font, a font style (such as bold or italic), a point size, an effect
(such as strikeout or underline), and a color.

Parameters Ipcf
Points to a CHOOSEFONT structure that initially contains information
necessary to initialize the dialog box. When the ChooseFont function returns,
this structure contains information about the user’s font selection. The
CHOOSEFONT structure has the following form:

#include <commdlg.h>

typedef struct tagCHOOSEFONT { /% cf =/

DWORD 1StructSize;
HWND hwndOwner;

HDC hDC;

LOGFONT FARx* TpLogFont;

int iPointSize;
DWORD Flags;

COLORREF rgbColors;
LPARAM 1CustData;

UINT (CALLBACK=* 1pfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR TpTemplateName;
HINSTANCE hInstance;
LPSTR TpszStyle;

UINT nFontType;

int nSizeMin;

int nSizeMax;

} CHOOSEFONT;

For a full description of this structure, see the Microsoft Windows Program-
mer’s Reference, Volume 3.



52 ChooseFont

Return Value

Errors

Example

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the CommDIgExtendedError function to retrieve the error value, which may
be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITTALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
CFERR_MAXLESSTHANMIN
CFERR_NOFONTS

The following example initializes a CHOOSEFONT structure and then displays a
font dialog box:

LOGFONT 1f;
CHOOSEFONT cf;

/% Set all structure fields to zero. */
memset(&cf, @, sizeof(CHOOSEFONT));

cf.1StructSize = sizeof (CHOOSEFONT);

cf.hwndOwner = hwnd;

cf.lpLogFont = &1f;

cf.Flags = CF_SCREENFONTS | CF_EFFECTS;
cf.rgbColors RGB(@, 255, 255); /* light blue */
cf.nFontType SCREEN_FONTTYPE;

ChooseFont(&cf);



Chord 53

Chord [2.x]

BOOL Chord(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nXStartLine, nYStartLine,
nXEndLine, nYEndLine)

HDC hdc; /* handle of device context */
int nleftRect; /* x-coordinate upper-left corner bounding rectangle */
int nTopRect; /* y-coordinate upper-left corner bounding rectangle */
int nRightRect; /* x-coordinate lower-right corner bounding rectangle */
int nBottomRect; /* y-coordinate lower-right corner bounding rectangle */
int nXStartLine; /* x-coordinate line-segment starting point */
int nYStartLine; /* y-coordinate line-segment starting point */
int nXEndLine; /* x-coordinate line-segment ending point */
int nYEndLine; /* y-coordinate line-segment ending point */

The Chord function draws a chord (a closed figure bounded by the intersection of
an ellipse and a line segment).

Parameters hdc
Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the bounding
rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the bounding
rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the bounding

rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the bounding
rectangle.

nXStartLine
Specifies the logical x-coordinate of the starting point of the line segment.

nYStartLine
Specifies the logical y-coordinate of the starting point of the line segment.

nXEndLine
Specifies the logical x-coordinate of the ending point of the line segment.

nYEndLine
Specifies the logical y-coordinate of the ending point of the line segment.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.



54 ClassFirst

Comments The (nLeftRect, nTopRect) and (nRightRect, nBottomRect) parameter combina-
tions specify the upper-left and lower-right corners, respectively, of a rectangle
bounding the ellipse that is part of the chord. The (nXStartLine, nYStartLine) and
(nXEndLine, nYEndLine) parameter combinations specify the endpoints of a line
that intersects the ellipse. The chord is drawn by using the selected pen and is
filled by using the selected brush.

The figure the Chord function draws extends up to but does not include the right
and bottom coordinates. This means that the height of the figure is determined as
follows:

nBottomRect — nTopRect
The width of the figure is determined similarly:

nRightRect — nLeftRect

Example The following example uses a RECT structure to store the points defining the
bounding rectangle and uses POINT structures to store the coordinat