Programmers Reference,
Volume I: Overview

WINDOWS

SOFTWARE DEVELOPMENT KIT

Microsoft

Microsoft. Windows"™

Version 3.1

Programmer’s Reference
Volume 1: Overview

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure agree-
ment and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ-
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Copyright © 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Times, and
Times Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright © 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, QuickC, and CodeView are registered trademarks, and Windows
and QuickBasic are trademarks of Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.

The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product
of AGFA Compugraphic Division of Agfa Corporation.

Apple and TrueType are registered trademarks of Apple Computer, Inc.

Banyan and VINES are registered trademarks of Banyan Systems, Inc.

Hewlett-Packard is a registered trademark of Hewlett-Packard Company.

Intel is a registered trademark, and 1486 is a trademark of Intel Corporation.

Helvetica, Linotype, Times, and Times Roman are registered trademarks of Linotype AG and/or
its subsidiaries.

Arial and Times New Roman are registered trademarks of the Monotype Corporation PLC.

Novell and NetWare are registered trademarks of Novell, Inc.

Ungermann-Bass and Net/One are registered trademarks of Ungermann-Bass, Inc.

Paintbrush is a trademark of ZSoft Corporation.

Document No. PC28915-0492

Contents

INTrOUCTION. ... Xxvii
Document COMVENTIONSccevuirieeieieiietieeterieiresessessessesseessessessesseessessessesssenses XViii
Part1 Window Management, Graphics, and System Services

Chapter1 Window Management 3
L1 MISSAZES. c.eeuveureriiiietete st ettt ettt ettt et et e bttt ettt s bt eaeene 7
1.1.1 Generating and Processing Messages..........cocveereevreeenieneenenerseeseenenas 7
1.1.2 Translating MESSAZESeeuveveriiriieinieriirieeteieete ettt e 8
1.1.3 ExXamining MESSAZES ...c..coeueriirirniiiieeienieenieeieesie ettt 9
1.1.4 SENAING MESSAZES....veeveurerirrieieieeeeteterteteeresreeeetesseeeeseeaessesreens 10
1.1.5 Avoiding Message Deadlocksccceeieeieieniineniieniieieiecieie e 10
1.1.6 MesSage FUNCHONS.........ccevirieiierieieieieiese ettt eee e 11
1.2 Creating and Managing Windows...........cceceeieierienienienenieseseeeeeesieveenes 12
1.2.1 WiINAOW CIASSES.....ceerueuiiiriirieiniteieerteieerteiet ettt es 12
1.2.2 How Windows Locates @ Classco.cecevierereninieenenieienieseenenene 13
1.2.3 Class OWNEISHIPcouviiiriieiieieeer ettt e 14
1.2.4 Registering a Window Classccccoeveeenerenineneeeenineneceennenens 14
1.2.5 Shared Window CIaSSescceeruererrerieirienineriieieeenteeeie oo 14
1.2.6 Predefined Window CIasSesccoereuerenieerieieriniesiesieneeesreseeeenens 14
1.2.7 Elements of @ Window Class........cocoeeererrerieniennenesresieniee e 15
1.2.8 CLASS SEYIES ..ttt sttt sttt sttt see e 18
1.2.9 Internal Data StruCTUIEScoeerteiiiiieniineeeeee ettt 20
1.2.10 Window SUDCIaSSINGccevermierieiierieiirienieeie ettt 20
1.2.11 Redrawing the CLent Ar€accoceeveevieeeenenienineeeneneeeeeneeenens 21
1.2.12 Class and Private Display COontexts.......c.cceeervereereererneenesenrenneeneens 21
1.2.13 WiIndow Procedures..........cceceruerieneniennenieneesteniee e 22
1.2.14 WiINAOW SEYIES....ceiiiciiriiiieieieresteeetcete ettt sttt 26
1.2.15 Multiple Document Interface Windows..........cocecvevenencrnenenencns 29
12,16 THtle BT ettt 30
1.2.17 SyStemM MENUcocuieiiieiieiieiieeteee ettt ettt et et 30
1.2.18 SCIOILBArS.....coiieiieiiicieciccteiccteiecteenteiet et 30
1.2.19 MENUS.c.eiutiiiiieieieieteettsteie ettt ettt st sttt be st b e b e eseenan 31

iv

Microsoft Windows Programmer’s Reference

1.2.20 WINAOW SEALE...ccueiieiiriiieriniireeitciteientetete sttt ettt sesne s seeseen 32
1.2.21 Life Cycle of @8 WindoW........ccccceveeriiniinrinieieieeseeiesieie s seeeseeeeene 32
1.2.22 Window-Creation FUNCtiONS.......c.ccoeveeeriereeinenieeneeneeeenenieeenen 33
1.3 Display and Movement FUNCHIONS..........ccecvririenieinieereneceeneecseee e 34
1.4 INPUt FUNCLIONScoviieeiieeietiieeeteee ettt sttt 36
1.5 Hardware FUNCHONS.covueirireeirieiiieieiecrte ettt sreenene 36
1.6 Painting..cccceiiieiiieieiricceice ettt ettt 37
1.6.1 How Windows Manages the Displaycc.ccccevveneenernercnenncneene. 37
1.6.2 Display Context TYPES......cccevueerererierieiirienieneeesieeneeseeesieseeneeeenenns 38
1.6.3 Display-ConteXt Cache.........coeccvueerirreeneeninieeneeeeeenereeeeeeeeenes 41
1.6.4 Painting SEQUENCEccceveruerieieieiieierieieesie ettt sttt esnennens 42
1.6.5 WM_PAINT MESSAZEcveeriririienierieriieiteiesienreeresiesieseesseesesseeeenas 42
1.6.6 UPdate REZIONoueeiieeieiiieieeeee et 43
1.6.7 Window Backgroundceceeevierienieinieeieieeieeeseeesie e 43
1.6.8 Brush ATGNMENL.......ccoverieieieieeeieie ettt s 44
1.6.9 Painting Rectangular Areasccccocevveueceininiininiiiiiciicie 44
1.6.10 Drawing ICOMSccovirieireiriiieieiinierteeeeeteree s sttt seeveenes 45
1.6.11 Drawing Formatted TeXt.........cecererrirrerenienieieneriereseeeieseeneeseeneenes 45
1.6.12 Drawing Gray TeXtcccceverreieererinieieeneenierese oot eeeseeseeseens 46
1.6.13 Nonclient-Area Paintingccccecueeveirieiecienenenieeeeeeeieseesieneeenes 47
1.6.14 Painting FUNCHONS ...ccevvivieierieeieieseseereete ettt 47
1.7 DIAlOZ BOXES ..eeeiiiirieeiieiieietetesie st tete e eteteesee s et ebe st besanese s enseeasesaeen 48
1.7.1 Uses for Dialog BOXESccuevuieieciieieieiieeeieie et 49
1.7.2 Creating a Dialog BOXccceoteirinineieicininecncneeeeese e 50
1.7.3 Return Values from a Dialog BOXcccevveerinieninenieinieeceeee 51
1.7.4 Controls in a Dialog BOXccceeveeeirienieieieiieeeeeeceenee e 51
1.7.5 Keyboard Interface for Dialog BOXES......ccoceeveereererirrrenienieieneeneene 55
1.7.6 Functions for Dialog BOXEScccueruirieierienirenteieiesieenieeeeeeeees 57
1.8 SCTOIIIZ. «..cueeeuiteieieietetetee ettt ettt sttt e bbb e 58
1.8.1 Standard Scroll Bars and Scroll-Bar Controls..........cccceceeeineenennnene 58
1.8.2 SCIOILBOX ..ottt 59
1.8.3 Scrolling REQUESLESc.evueruierieriinieniirieterieeecetetetceeeee e e 59
1.8.4 Processing Scroll MeSSagescocvvvereenvererierienerieneseseeseeseeeiennees 60
1.8.5 Scrolling the CHENt AT€accecveeeerreeerieieinrereeresseseesesesssesressennes 60
1.8.6 Hiding a Standard Scroll Bar............ccccvevveeieniecininieeeeeeeeeeenee 61
1.8.7 SCrolling FUNCHONSc.ooveviiierieieieeeesiet et eee e seenees 61
1.9 Menu FUNCHONScoiieiriiieieiiresieste ettt eneone 61
1.10 Information FUNCHONScccoveverieiririiniriinicicircccc e 63
111 System FUNCIONS......cc.ecievirieirieierieteeetei ettt 63

112 Clipboard FUNCHONSc.eveveeieieieenieieieieceeeeeeenee st eseeeeeesseeseesseesesseene 64

Contents v

Chapter 2

1,13 Error FUNCHONSccveiiiiiiieeriiicicteccteeneeeeecsteeste et seseen e eaens 65
1,14 ThE CAIelcueeeieieeeieicteet ettt ettt ae e s ae e se s eaansenas 65
1.14.1 Creating and Displaying a Caret..........cc.ceceevueriuereineeeneneeesiennenaen 65
1.14.2 Sharing the Caretcccecvereeieieeieieieeeetee et e 66
1.143 Caret FUNCHONScc.eoveuieireirieeteieeietee ettt 66
1,15 The CUISOT vttt ettt ettt sae e ae 67
1.15.1 The Mouse and the CUrSOr...........cocecueuerieireieeneececee et 67
1.15.2 Displaying and Hiding the Cursor..........cccocevevieienienenceneeneieeenne 67
1.15.3 Positioning the CUISOTcocveeeeriieieeieniecieeieseeeee e sreeenesraeeanas 68
1.15.4 The Cursor Hot Spot and Confining the Cursor.............cccceceeveneenne. 68
1.15.5 Creating a Custom CUTISOTc.coeeverieueruenirienieenieneeneeesienreeenessessenees 68
1.15.6 Cursor FUNCLIONS.......cc.coriiiieiiieieniesiieeee e 68
L.16 HOOKS.c..oiiiiinieiietetce ettt ettt ettt ettt 69
1.16.1 Filter-Function Chain...........c.cccouiveeimeniencnienieieniecetceeesie e 69
1.16.2 Installing a Filter Functioncccoceverieineininieinceenee e 70
1.16.3 HOOK FUNCHONS...c..cotiiieiiieieieeieeieeeeeete ettt st 71
1,17 Property LIStS......coeeeiieitinieiieiieiesicei ettt sttt 71
1.17.1 USInG Property LiStScccevteveerrerieieieieieniesienieereeeevesiesve et ens 71
1.17.2 Property FUNCHONS.....cc.coceririeerenieiecrieiei ettt 73
L.18 RECLANGIES. ...couiiiiiiiiiiietee ettt ettt 73
1.18.1 Using Rectangles in a Windows Application.........c.cccceeeveerreuenennee. 73
1.18.2 Rectangle CoOrdinates..........coceveverueieuerieieeieesreieieeeresseseeeenensens 74
1.18.3 Creating and Manipulating Rectanglescccccoeeveenerieenenecennns 74
1.18.4 Rectangle FUNCLIONS..........ccocievieieieeieieeieeie et 76
L.19 Related TOPICS ...eoveueruerietenirienieieteiteterteteie sttt sttt et et sbe b s aas 76
Graphics Device Interface 17
2.1 DEVICE CONEXLS. c..eueruieriienieririaieiestereeteeeneetesteseeseseesesteseaneeseenesenseseesessenes 79
2.1.1 Accessing Output DEVICES.......c..ccevverieuerierinenieirenecnrereenie e 79
2.1.2 Device-ConteXt AIDULESc..c.eeevveuererreuererieieeneeieseeieteeeseseereeeeenes 81
2.1.3 Device-Context FUNCHONSc..ooeevirieeieiiieesieieeeiese e 82
2.2 Drawing TOOISccoivueirieieinieieieerrte ettt 83
221 USING BIushes....ccccooiiiiiiiiiiieiieee et 83
222 USINE PENS ..ttt 84
223 SPECIfYINg COLOTS ...cuvvverieeiieiriirieieeeieteerierte ettt ettt eaeas 85
224 Drawing-Tool FUNCLIONS.......cceoteriririeieieieerieieicerceiesieseeie e 86
2.3 COlOr Palettes.cceemviiieiieieieeeeiteteteee ettt ettt saaereens 86
2.3.1 Understanding Color Palettes...........coceeeeireeieieenienenieienieneneeeens 87
232 Using a Color Paletteco.ceeirinenieenienieecieieeneesieeeeeieereieeenens 89

2.3.3 Color-Palette FUNCHONScocuviiiiiiiieeieee ettt 90

Vi Microsoft Windows Programmer’s Reference

Chapter 3

24 Drawing AttriDULESccocveeeuirieieieereeeteieier et esae s sesse e saens 91
24.1 SN COLOTS....eiuirieiieieienieeterteetie et ete e et ss e saeenneenees 91
2.4.2 Controlling StretCh.. ..o 91
243 Drawing-Attribute FUNCtions.......cceceevrueuerieieerinireeeneeeceecnieceneneas 91

2.5 Mapping MOAES.....cc.coverreeueriiriiinintenieniieteteste st sae e see s eenns 92
2.5.1 Constrained Mapping MOdes.........ccoevveirerirenieieneniecseseeeneeneenenne 93
2.5.2 Other Mapping MoOdESs........cccocvvverueieieinreiereieiriecsreste et eeeeeseeves 95
2.5.3 Mapping FUNCHONScovevvervirieiiriineeieenenieieneteceeee e 96

2.6 Coordinate FUNCHONS.cccouerveririreireereieteieete ettt 96

2.7 Region FUNCHONS........covieiriinieieieiteiteicetetet ettt 98

2.8 Clipping FUNCHONScccoteeeririeiriiniinienertete ettt 99

2.9 LINE OULPUL...ccuietiiiieiiieeeeeiteie et et e e tesaeetessaesae s e esseeseaessessseensassaeesnsens 99
29.1 AATCS ottt ettt 100
292 SIMPLE LINES .ottt 100
293 Line-Output FUNCHONSc.eooviriieieieriieieeeieeeeeseeeeee e 101

2.10 Ellipses and POLyZOmnS......c..coeeeeuerieienieninierieeeneceee e 101
2.10.1 RECTANGIES ..ottt ese b 101
2.10.2 Bounding Rectanglesccceceeverenieiirinienenieneenicieeneeeseeeeenenne 101
2.10.3 Ellipse and Polygon Functionsceecceceeveeeinereeeeneevenieennecns 102

2.11 Bitmap FUNCHONS.ccueceiiiieirenietccietet ettt saens 102

2.12 Device-Independent Bitmap Functions.............cceceveveeienienneenceenenennenne 103

2,13 TeXtFUNCHONS ...cviieiiiiicieienieet ettt s 104

2.14 FONt FUNCHONSooiiviieiieieietetrie ettt eae e 105

215 MEtafiles ...cveuiiieereeieciee ettt 106
2.15.1 Creating a Metafilecccoeerreineiinicinniccinrcereeeeeeseeeeceneens 106
2.15.2 Storing @ Metafileccoeeeeieeieienieniieieieesieseeeee e 108
2.15.3 Changing How Windows Plays a Metafilec.ccccccoeuereunennene 108
2.15.4 Metafile FUNCLONScc.evveuieiiieiiriiieieeete e 109

2.16 Device-Control FUNCHONScoveeriereerientenrinieieereteieteseeeseesieeseesneenens 109

2.17 Printer FUNCHONS.evteetiieeiieieieeteesieeit ettt esve e st esreeneeseeenens 110

2.18 Related TOPICS ..eveererrirrieieieniieteienee et ettee et et aeseesaesaeesbessesasennes 111

System Services 113

3.1 Module-Management FUNCLONScccocevevienieiniiiineniniecicccnencenne 115

3.2 Memory-Management FUNCHONSccueveieerieniniinieineeieieeeeeeeenen 115

3.3 Segment FUNCLONSccceteirieririeieirieeieietete ettt escseesre e seesnenes 117

3.4 Operating-System Interrupt FUNCHiONS.........cooeecverieneeneenieeneeeieeneeenees 118

3.5 TaSK FUNCHIONSuvveiiiiiiiieiiiieeeee ettt et e e e eaaaeeeeaaae s e e e eeesaraneees 119

Contents vii
3.6 Resource-Management FUnctions.........cococcvueevnencnieiecnecnecnenecnenens 119
3.7 String-Manipulation FUNCHONSc..cceeviieieiiniinieiiinineeeeneneeeeeeeeene 120
3.8 Atom-Management FUNCHONS.......cccccervivieienienenieeierieceeseetere e 121
3.9 Initialization-File FUNCHONSc.cccoveirenieiiiiniiicenecieeeenreeeeceeeees 122
3.10 Communication FUNCHONScceveruerieirinieiiinieteiecce et 122
3.11 Utility Macros and FUNCHONSc.cccereeririenerinieieieerienieeeie e 123
3.12 File Input and Output FUNCHIONSc..coveiririiiniiinienieineireneeeeriereeeae 124
3.13 Debugging FUNCLONSccceevteeiiiieieieiese sttt ettt 125
3.14 Optimization-Tool FUNCHONSccoeeeeririeieieieriecetee e 125
3.15 Application-Execution FUNCHONS...........ccoceriiirnceienirenieieieeee e 126
3.16 Related TOPICS ...oveeverveieririeriirieieiee st cetete et ee et stesse e e sesseneesnssans 126
Part2 Extension Libraries
Chapter4 Common Dialog Box Library 129
4.1 Using Color Dialog BOXESceceirirnieirienieiniieeteieentesietenesiesierennenens 132
4.1.1 Color Models Used by the Color Dialog BoX..........cccccoeceniiienenneee. 133
4.1.2 Using the Color Dialog Box to Display Basic Colors.................... 136
4.1.3 Using the Color Dialog Box to Display Custom Colors................ 137
4.2 Using Font Dialog BOXESc.cceieirrieriiniinieieieriesceeeee e 139
4.2.1 Displaying the Font Dialog Box in Your Application 140
4.3 Using Open and Save As Dialog BOXeS........ccceevveeereereneneceneneneeenienens 142
43.1 Displaying the Open Dialog Box in Your Application.................. 142
432 Displaying the Save As Dialog Box in Your Application............. 145
433 Monitoring List Box Controls in an Open or
Save As Dialog BOX....coccvievinieiiiiniiieieiieceeieieereeeesreeeenene 146
434 Monitoring Filenames in an Open or Save As Dialog Box 147
4.4 Using Print and Print Setup Dialog BOXES....c.ccceevvevieeeenienenieiecienieienene 148
4.4.1 Device Drivers and the Print Dialog BoX........cccocovciiviinenieneninenne 148
442 Displaying a Print Dialog Box for the Default Printer................... 149
4.5 Using Find and Replace Dialog BOXEScccovevvererieneneecenieneneseeennen 150
4.5.1 Displaying the Find Dialog BOX.......cccccoceverieveninecnenencneneeene 150
452 Displaying the Replace Dialog BOXcccoccoeevireriniencnininiccnieen 152
453 Processing Dialog Box Messages for a Find or
Replace Dialog BOX......c.coeeerrevinieieincinicnteeceeeseneeeeseereseenes 153
4.6 Customizing Common Dialog BOXESccceceeevueeriereniennennncineeene 154
4.6.1 Appropriate and Inappropriate Customizationsccceceevereeneene 154
4.6.2 Hook Functions and Custom Dialog Box Templates..................... 154
4.6.3 Displaying the Custom Dialog BOX.......ccccevevuinerrenenenncreneenennen 159

viii

Microsoft Windows Programmer’s Reference

Chapter 5

Chapter 6

4.7 Supporting Help for the Common Dialog BOXeS.........ccoeuecvrurreicincuinine 160
4.8 ErrOr DELECHIONvevuieeereeeieeiieiiete ettt ettt sre et esae et e teeee s e s nesenesaeens 161
4.9 Related TOPICS ..evuveerieiirierieeitereeetet et ebe sttt e et e sae e e ebeesne s 162
Dynamic Data Exchange Management Library 163
5.1 BasiC CONCEPLS ..cueerrrrerrereriirieeriereerereeeesentesteseeressessesestsessessesessessesesesssons 166
5.1.1 Client and Server INteractionceccereereeeriereneeeesieneeeeeeneeneens 166
5.1.2 Transactions and the DDE Callback Functionccccocecervcenunen. 166
5.1.3 Service Names, Topic Names, and Item Namescccoceceenee 167
5.14 SYSLEM TOPIC «veiitiieeeieteeriee ettt 167
5.2 I0tIAlZAtION. ...eruieveieieterieieie ettt ettt eb et be e enens 168
5.3 Callback FUNCHONc..eoiiiiiiiieiecte ettt 170
5.4 String Managementeveeeierierrerienienieetestenieeneesesseeseeseessessensesnessesnens 171
5.5 NAME SEIVICE...cciiuiiieetirieieieteteteee ettt sttt sresbe e et e e e eaennens 173
5.5.1 Service-Name Registration.........cccueveeereerenenieseeseneneneneeeeeens 173
552 Service-Name Filter........coccveviriiiinenienieneneceeenenceece et 174
5.6 Conversation Management..............ccceeveeeruereteiereerenieneenesresreneerenseessenens 174
5.6.1 Single CONVEISAtIONS ...c..evvrveuiriieieieieienieneeeeneeresiesteeeseseesesnesesnnaes 175
5.6.2 Multiple CONVErSAtiONS.......cceeeererreriereeriereerenieeeeereereeererseeeresaens 178
5.7 Data Management..........cc.eevereerueeierieeneeenrieniesnseeseeseeessessesseesseesseesseses 180
5.8 Transaction Managementeceeeereerurrereeniereenienseseseensensensessensensees 183
5.8.1 Request Transaction..........cecvevereriereesteneeeenenieseeresesseseeeeeenennes 183
5.8.2 POKE TranSaction..........cecveeveruerrerienrerrterteneeetenreseeseeiessessesseereeseennes 183
5.8.3 AdVise TTanSaCtIONeveeeerrereeriireeteneeetenreeteeeeiessesseeseereeseennes 184
5.8.4 Execute Transaction..........cccveeeeriereerenienenrenieneeenensenenessenseresuens 185
5.8.5 Synchronous and Asynchronous Transactions...........ccceceeeeeeerenene. 186
5.8.6 Transaction CONtrolc..cevveiveireiereeerineiete et 187
5.8.7 Transaction Classes.........cceereiiinieniiniiiniiincirc s 188
5.8.8 Transaction SUMIMATYc.cecuerereerrereniereenerstereeseeeeseessensesesennns 189
5.9 Err0r DEtECHIONcceeuvieiieiiinieierienieeitete ettt sre e eeee 190
5.10 Monitoring APPHCALIONScccevverierierrerierierierieeteree et eeere e eseeeeeeee e enes 190
Object Linking and Embedding Libraries 195
6.1 Basics of Object Linking and Embeddingc.coocveevecncccncinniinnns 199
6.1.1 Compound DOCUMENLScccouevverieirrinririeieieneeeeeeesreeereseeeeinene 199
6.1.2 Linked and Embedded Objects........c.cocoveciiiiicnineniniinniinieiiinnns 200
6.1.3 Benefits of Object Linking and Embedding...........ccccoveevereecnnene 202

6.14 Choosing Between OLE and the DDEMLccccccovviiciinninnn. 203

Contents ix

6.2 Data Transfer in Object Linking and Embedding...........cccccovvevvecieeeneene. 206
6.2.1 Client APPHCALIONSeeveeeeeeieerenieieierieeteeeet ettt ees 206
6.2.2 Server ApPliCAtIONSccccuciruiviiiiiiiiiniicc e 206
6.2.3 Object HANAITSc..ceeuireeiieiiieiiieieeeeci et 207
6.2.4 Communication Between OLE Libraries.......cc.cccceccveneeneneennene. 207
6.2.5 Clipboard CONVENtIONSeeeeverieeirrenieniinieneeeeneeseteeeeesieneennes 207
6.2.6 REGISITAtIONoeivieeeieeeieiie ettt ettt ettt et ereas 210
6.2.7 Client User INterface..........coecevueueerinieinieirrieeceere e 213
6.2.8 Server User INterfacec.coevveevveeeeninicccniceiciereeeeerereceienne 217
6.2.9 Object Storage FOImMAtsccvverieeiniieieieiieieceeesieie e 218

6.3 Client APPLICALIONS.......cceeierireeieieiirieeeeeetereee et seesteseeseesseseeeseesensenees 220
6.3.1 Starting a Client Applicationcccecceevereeireniereeininereeeneseneens 221
6.3.2 Opening a Compound Document............ccccceevevuenenreneneneeeneennes 222
6.3.3 Document Management...........c..cccoieeecveiniiiininciniccieeccens 222
6.3.4 Saving a DOCUMENL.........ccceiririreieieiseieie e 223
6.3.5 CloSINg @ DOCUMEIILc..evevivieiieiieieiesieeitrtete et 223
6.3.6 ASynchronous OPETationsScceeereerrerrererierierereneenseneesesesseenee 223
6.3.7 Displaying and Printing ObJects..........cocceeverieieneererienreceerenienenns 225
6.3.8 Opening and Closing ODbJECtS.......cceovererirerirerieriereeereeeseeeeseeeenes 226
6.3.9 Deleting ObJECSeeuvereieieierieriiereeeeterenenr et 227
6.3.10 Client Cut and Copy Commands..........c.cecervereerererrenreneeeeeneneeneene 227
6.3.11 Creating ODJECESccevuirieirieiriiieiirenieiceeee et 228
6.3.12 Undo Command.........cocooueererreneeeinieierenieneenieeeeniesieeeseeneneenene 231
6.3.13 Class Name Object Command............cceceverereereeririenieneeneneennens 231
6.3.14 Links Command...........cccccevueererieririnieinineinineneneeeneeeesee e 231
6.3.15 Closing a Client APpPLiCationccecerveeereerierieieresrenieneeresreneeeneens 233

6.4 Server APPLICALIONScccevveiriieieieieietiieteiereseeee et stee et be e se e nees 233
6.4.1 Starting a Server APpliCationcceceeevirireerereniereseeseeeeeenes 234
6.4.2 Opening a Document or ObJECt.........ceeveiririenieeeenienieieeeieneeaens 236
6.4.3 Server Cut and Copy Commandsccceeeereereeeercnereneeerenuenenns 237
6.4.4 Update, Save As, and New Commands..........ccoeeeeverienieeeseenieneenns 238
6.4.5 Closing a Server AppliCation........occceueveerieuicreinenierenreieneeeneneees 239

6.5 ODJECt HANAIETSeveiiiiiriieiieieiteieeteee ettt 240
6.5.1 Implementing Object Handlers............ocoeveevvivieneeneeninenieenenenens 240
6.5.2 Creating Objects in an Object Handler...........ccooceveenenenncenieniennenn 243

6.6 Direct Use of Dynamic Data Exchangec.ccccceevvvivineecnincniecieene 245
6.6.1 Client Applications and Direct Use of

6.6.2

Dynamic Data EXChangec.cccoeeemeeeneccnerneieeceicenneneees 245

Server Applications and Direct Use of
Dynamic Data EXChangec.cccoeeeererinevcninenneinncneccnenenes 248

X

Microsoft Windows Programmer’s Reference

Chapter 7

Chapter 8

Chapter 9

Sh
7.1

7.2
7.3
7.4
7.5

Tool Helper Library

8.1
8.2

6.6.3 CONVEISALIONS. ...evenreeerienirreeerinteneeeeresiereeseeeesesreseesessessesessesessensenens
6.6.4 Items for the System TOPIC.....c.coeueveueerieieeeireerreereeeeenee
6.6.5 Standard Item Names and Notification Control...........cccccecerueneenne.
6.6.6 Standard Commands in DDE Execute Strings.........cocccoceeevevenene.

ell Library

Registration Databasec.ccceerveuererieenieennienecseeneeeeneeee e
7.1.1 Structure of the Database.........c.ceceeerienieieneiinenenereenerenenienens
7.1.2 Format of Registration Filesccccoeviirinenineninenninceneencnee
7.13 Class RegiStrationccceeeeerereeerueeereinieineeeeereeseseeneee s
7.1.4 Querying and Deleting Database Entriescocevvevvenccenenennenee

Drag-Drop FEAtUTE.ccc..cciveveeiriiiineicieeniesrccreeeene e saeeerenas

Using Associations to Find and Start Applicationscc.ceceeevvereecnene.

Extracting Icons from Executable Filesc.ccccoeneeeninennnnincnennnn

RElAted TOPICS ..covveveririeirieeieireteertet ettt ste e tesastesse st et s e ssenesbesaesessens

Calling Tool Helper FUNCHONSc.cocoeeereireririecinecineiinreneceeeecneenens
Accessing Internal Windows LiStS.......ccceevereeieerinenieneevenenenieneeeneneens
8.2.1 Walking the Windows Class Listccceeeeriienierieneceneseneeene

8.2.2 Walking the Windows Module List.......c..coceeerernrennncrnneneanns
8.23 Walking the Windows Task QUEUEcccoceereeuenirrerenerierrreniencaens

8.3
8.4

Obtaining Advisory Information...........cccoeceveeneeennenncrnnecrcneenenene
Walking the Global and Local Heapsc.ccccoieverueenencnecnennrencrnecnee

8.4.1 Walking the Global Heapc.cccoeceveenenneenninccneeieeeene
8.4.2 Walking the Local Heapcccvueuevirieeinenieccniccnceecneceeeeeeees

8.5
8.6
8.7
8.8

Data Decompression Library

9.1
9.2
9.3
94
9.5

Tracing the Windows Stackccccveoevieiererreninenncneiceeereeereeans
Examining and Modifying Memory CONtentsc.ceceeververurreruererrereeeene
Installing Callback FUNCHONScccoerverieeieiisiiresieieiceeeee e
Controlling Process EXECULIONcccvevviviriiereriienienrerteeseeeeieeee e

Data COMPIESSIONvevvereierrirerieieerieeiesteeteesaesstesnesssesssesssesseessesssesssens
Data DecCOmMPIESSION.......cceeiiieriieieeieecriesieenireereeteesteeeeeseesaeesseesaaesseens
Decompressing a Single File.......cocoovvviiveniiniecniiineieneenenecseteeiens
Decompressing Multiple Files...........occocvvevinerenienninninenreseneeeeeneenees
Reading Bytes from Compressed Filescocoveieiiiicnennenceeineenen

Contents Xi

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

System Resources Stress-Testing Library 285
10.1 System Resources Stress-Testing Library Functions..........cc.ccccevuereennenne. 287
File Installation Library 289
11.1 File Installation CONCEPLS.........c.coveuermrreererueninieeeeiesereeneeeneeseeseeaeneenenees 291
11.2 Creating an Installation Programc.cceceoceveneninennenenicnneceene 292
11.3 Adding Version Information to a File.........cccecovenevenccininincncnincnenee 294
32-Bit Memory Management Library 295
12.1 Segmented and Flat Memory Modelscccoeoueenennccrnenencnenenencnne. 298
12.2 Using the WINMEM32.DLL Libraryc.cccceceeeeereneneineneneneecncnnenes 299
12.3 Considerations for Using 32-Bit MEMOIYcccoereeeeeccrereneeieereeneee 300
12.3.1 Flat Memory Model Limitationscecevereeeeeerrerieneeennneennnes 301
12.3.2 The Application Stackccccceveveriecinineenenneneeeeeeeeeeeeenns 301
12.3.3 Interrupt-Time Codeccccceverueirvinenieincinienecieneeeeereseenesrennen 302
12.3.4 Programming Languages............cceeeeerieriesiesieniecenienreeeeseneeneeenees 302
12.4 Using 32-Bit Memory in a Windows Application..........ccccecevvevecnuenenncee 303
12.4.1 Using 32-Bit Data ObJects..........ccceerueririereineninenieieceienieseeeenene 303
12.42 Using 32-Bit Code and Data in a Subroutine Library.................... 303
12.4.3 Using 32-Bit Code and Data for the Main Program 304
12,5 EITOr VAIUES.....c.eiieiiiiieiciectceeitet ettt es e 304
Floating-Point-Emulation Library 305
13.1 Emulation Methodsccccoiveriiniininieiinenenencseseseeeceee et 307
13.1.1 Emulation by Exception Handlercc.cccccoveeccneicnncnncncnnnnne. 307
13.1.2 Windows 80x87 Floating-Point Emulation.........c.cccceeeevruecnunnee. 308
13.2 Windows 3.0 LImitationsccceeeeeueereeerinuceninierereneeeeeseseeeneeseseeneneeeenes 310
13.3 FUNCHONS ...ouieiiieiiiiteteiieeeetet ettt e s e 310
134 SEUCKUTESovinveiiieieiteeeeteetet ettt ettt et sae e sbesaesnesnene 315
Screen Saver Library 319
14.1 ADOUL SCIEEN SAVELScovervenieuieieniinienieieeienienteiesiesteteseesesseeeseesessesaeneeseeses 321
14.2 Creating @ SCIEEN SAVETc.couerueiereeeerreneeieieteieeeseeeseestesessessensesessassenees 322
14.2.1 Processing Screen Saver MESSagescceeveereriruerueueneennennennens 323
14.2.2 Providing a Configuration Routingcccecceeivcruececencncnnenne 323
14.2.3 Creating Module-Definition and Resource-Definition Files 324

14.3 Installing New SCIEEN SAVETS........coeruieruerrenierieieiieeeeereneesstesteseessesaeenes 324

Xii Microsoft Windows Programmer’s Reference

14.4 A Sample SCreen SAVETccciiuiiuiriiieininneicenieeercr et
14.4.1 General-Purpose Declarationscccccecvereeniiereeneeneenceesceeineennes
14.42 Message Handling.........ccceeeeeriinienennnicnencnteeetee e
14.4.3 Configuration Dialog BOXc.ccccecieeiinieniinieniniinienieeeeieneeieeeene
14.4.4 Adding Help.....oooeieineniiieinieieeeeeeeteee ettt
14.4.5 ExXporting FUNCHONS......cccoueiruirierieieinieieeneeenietcesie et seeneeeeaens

14.5 FUNCHONS. .c.veutititeiietiieiteterteteteete sttt ettt st b et et ae et e et ebesbeesesbesbenes

Part3 Application Notes

Chapter 15 Control Panel Applications

Chapter 16

Chapter 17

15.1 Starting a Control Panel Applicationccccceeeeerenieinieneenvereeeeeeennenne
15.2 Creating a Control Panel Applicationcccccceueerveeucrmnueneeeccceeennens

15.2.1
15.2.2
15.2.3
15.2.4
15.2.5

Creating the Entry-Point Function...........ccccceevveniiiiinnninnne.
Initializing the Applicationccceeieeiineenienienieeneenieceeeeeeene
Responding to USer ACHONScc.eeeeeeeeieienienenieeeeeeseeereneeaene
Exiting the Application and the DLLccccecoeveeiriineneencreenne.
Example of a Control Panel Application...........ccceceeveeveervenueneenne.

15.3 Installing a New ApPPLICAtION.....c.cecvieveeriieriierieereerieseeieeaeesreeseneesrnesseens

File Manager Extensions

16.1 Creating a File Manager EXtensionc.cecceceerueennuecneecnceenecenveneenenn
16.2 Creating the Entry-Point FUNCtionc.cocccccerueinncccnncnncneccneccnnenes

16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.2.6

Loading the EXtensionccceeeevenerereienieienteee et
Processing Menu Selectionscc.ecvevvereereerereneneeseeneeseenieseenes
Initializing the Extension MenU.........ccccoeveveeeenienenieeceenieesieesenennes
Updating the Extension Menucccceeceverieenenenenenenceeeennenns
Processing File SEIeCtionscoccceeeererieienienieneeneeneeneeenneeeenaens
Quitting the Extension DLLcccocevininininininierceeeneenceenee

16.3 Installing EXtENSIONScc.cocvevierieriieniireeieiereecetete et eeaens
16.4 EXtension MESSAZES........cceereeeereiriesnriereeeressestssessensesassessesseseesessessessenes
16.5 File Manager Extension EXampleccccoceeveririeniinenenienecnineenieneneee
16.6 Adding the Undelete Command...........ccccevvevueerenieenieninineeeneeeeeeenes

Shell Dynamic Data Exchange Interface

17.1 PROGMAN.INIFIIEcoiiiiiiiiiiiiiiccceiccccceceeees

17.1.1
17.1.2
17.1.3

SettNGS SECHOM......evireieeeiereeierteee ettt s e
GIOUPS SECHION......eeeieeieietieeeieseeet ettt et e e et ete st e sse et e s e e e e
ReStriCtioNS SECHONcouerververiiieieieiirieieinierieceeeseee e see e evesnennes

343

345
347
348
349
350
350
350
352

353

355
356
357
357
357
358
358
358
358
359
360
363

Contents xiii

17.2 Command-String Interface...........cc.cceiviviiiiiiiiiiniiiiiciiiceccs 370
17.2.1 CreateGrOUP.coievieeeiieteieteete et sre ettt ease e ese e esseeneeanes 371
17.2.2 SROWGTOUP ..ottt ettt s 371
17.2.3 Delet@GrouP..c..ceueeieiieeiieeeeie ettt ettt sae e 372
17.2.4 Reload ..ot e 372
17.2.5 AdAIEEIM oottt 373
17.2.6 Replaceltemcccocvuiiiiiieiirieicireecteceeenreeee e 374
1727 DeleteItem.....ccuveuieiieieieieeeeeieetete ettt 374
17.2.8 EXItPrOZMancccoceviirieieieiieieenieeeceteteeeee et neees 375
17.3 Requesting Group Informationc.ceceevereeieinenieeeenieneneneeeenennes 375
Chapter 18 International Applications 377
18.1 Creating an International AppliCation...........ecceeereereeriesienenerieeeeneneeene 379
18.2 Achieving Country and Language Independence...........c.ccccecerceiinncnnee 379
18.2.1 International Information in WIN.INI..........ccccccoviiininnnnnnnnnnn 379
18.2.2 International Information in Windows Functions...........ccccceueuee... 383
18.2.3 International Uses of the File Version Library.........cc.cccccceeuennenee. 388
18.3 Achieving Easy LocalizZationcocceeieviereneniineniineeicniesecneceeeiennenn 388
18.3.1 Isolation of Localizable Information.............cccceceeeeveevuenenernucnnenne 388
18.3.2 Allocating Extra Space for Stringscccceceveevercrceevenencciniennene. 389
18.3.3 Handling Foreign Languagescccccceecvernenevcnineneenineeenennens 389
Chapter 19 Network Applications 391
19.1 Sharing by Multiple USErs.........cccevereeienenirnieneneneneneeneeeenne e 393
19.1.1 Sharing DIr€CtOTIeSeoveeuieueeieriereriereneeecrieeesreeeete e e eeneenes 393
19.1.2 Sharing Temporary StOrage.......cccceververereereriereeriesrenreneneessennennes 394
19.1.3 Sharing Filesccooiruieiiieieeeeiereeeeeee e 394
19.1.4 Sharing DEVICESccueeuieririeiieeriteceeeee ettt 394
19.2 Calling Network Software in Protected Mode..........ccccoceeeeceeuercnnnnnnne. 395
19.2.1 Microsoft Networks and MS-DOS Network Functions................. 395
19.2.2 NetBIOS FUNCHONS. ...c.ieviiiieiieniie ettt 396
19.2.3 LAN Manager NetWOIKScccoeeerreemereceneieenriiecieieeceeenene 396
19.2.4 NOVEIINEIWAELEcueoviieiieiiieieieieeeie sttt 397
19.2.5 Ungermann-Bass Net/ONe..........coceevevuirienieieieeneneneneeneenieeennens 397
19.2.6 Banyan VINESccoooiiiiiietctetseecettete e 397
Chapter20 Windows Applications with MS-DOS Functions 399
20.1 Using DOS Protected-Mode Interface Functionsccccceceeveeeicnienne 401
20.1.1 WiIndows Kernel.........c.cccevieverieiiininiinieneneneneneeeiereesie e 401
20.1.2 Other Application Programming Interfacesc.cccceeeverveeruennene 402

Xiv Microsoft Windows Programmer’s Reference

Chapter 21

Chapter 22

Chapter 23

Chapter 24

20.2 Support for MS-DOS INEITUPLSc.eoveurerremirerieiineeteeeeenrerereeeneneeenene
20.2.1 Unsupported MS-DOS Interrupts and Functions..............ceceeveuenene
20.2.2 Partially Supported MS-DOS Interrupt 21h Functions...................

20.3 NetBIOS SUPPOLL.....iieiriririirieieinieieeriesieeeiertee ettt oo

Windows Prologs and Epilogs

21.1 Data-Segment InitialiZation.........cccoueeeereneeiinienieenieieceenee e seeesre e
21.1.1 Exported Far FUNCHONS........cccveveririiiiieiceesieeeereeeeeeieeeeeeenne
21.1.2 Nonexported Far FUNCHONScccovvireeienieienieneeiecenrenieseneeeeene
21.1.3 Exported Far Functions in a Dynamic-Link Library..........c...........

21.2 Prologs in Real MOdec.coeeirieieriiiieieieieee ettt

21.3 Prologs in Protected MOdeccceiuerieineneiniieieenereeeeee e

Windows Application Startup

22.1 Startup REQUITEMENTSeouerierierierieiieieeenieceeiee et
22.2 Example of a Startup ROULINEccecviiiviiiiiniiiiiiiiciccccnes
22.3 Function REfErence.......cccoveveiririenienieinieneccrieeecie e

Video Techniques

23.1 Using an Identity Paletteccoominiernineieineniceece e
23.1.1 Understanding the System Paletteccccocueverirceenennencnnenncnne.
23.1.2 Creating an Identity Palette...........ccoceverirenienenineenereeseneeeeees

23.2 Accommodating Different Video Adapters and Driversc.ccceecueeueee
23.2.1 Distinguishing Between Standard VGA and Super VGA...............
23.2.2 Adapting Identity Palettes to Different Display Adapters

23.3 Using a Device-Independent Bitmap DIiver..........cccccocviviicniniccninens
23.3.1 Creating a Driver Display COnteXxtcccovererverrerersenneenenrcnneennes
23.3.2 Moving Bitmaps to and from the Displayccccoevervevereenennene
23.3.3 Modifying Bitmapsccceceeveirirenieiinenieineneneeeeeeeeeeeeeerese s
23.3.4 Creating a Driver Device CONteXtcoecevevveriereenineereeeeceeeenennen

Self-Loading Windows Applications

24.1 Loader FUNCHONScoovvieiirieeeriectee e etreeere e et e eveeeeveessnneeeesvaeeseseeeenneas
24.2 Loader Data Tablec..coovvieiiiiiiiicricciecreeeecevee e
243 L0AdET COUE o.uveiiereieieeeeteeeeee ettt et eresesene e e rreeeraeeeenneas
24.3.1 L0Ading SEZMENLS.....ccuerveuerririerieeriinieeenisieeenereeeesreeneeseseenessesaeses
24.3.2 Reloading SEZMENtScceciruirieriiiriinictieneeenteteee e sresereeneenes
24.3.3 Resetting Hardware..........cccecvevererienieniinenenteiesee e
24.4 Function ReferencCe.........coovvievviieiiiiieceiee ettt

Contents XV

Chapter 25 Installable Drivers 439
25.1 About Installable DITVETScc.ceceeirieiienenieieienieneeeeeeeesrese et 441
25.2 Creating an Installable DITVETccccoooiirieriiiiiinieneenceeceeeereeeeeeeene 442

25.2.1 Opening an Installable Driver........cc.cccooevierenineienineneeeeee 445
25.2.2 Closing an Installable DIiver.......c.cccoceceeerenenieccnencnecncnieenenne. 445
25.2.3 Configuring an Installable DIiver.........ccccocevirieeneninieereeeecee 446
25.2.4 Enumerating Instances of an Installable Driver.............c.ccccccceeu. 446
25.3 Updating the SYSTEM.INIFileccooeoiiiniiiieeecetc e 446
25.4 Contents of the OEMSETUP.INF Files.......cccccocviiminininencinincnecnnne 448
25.5 Drivers Control Panel Application............cccccccuecevenenmiiiincnciicnieenenes 449
25.5.1 InStalling @ DIIVET ..c..coevveruiriiieiiieeenieeteteseesceeeeciesie e 450
25.5.2 Using Drivers with the Drivers Control Panel Application........... 450
25.6 Creating a Custom Configuration Applicationcceceeveeveeneereeeeneene. 451

Part4 Appendix

Appendix Module and Library Names 455

Introduction

This manual, Microsoft Windows Programmer’s Reference, Volume 1, describes
different interface functions and extension libraries supported by the Microsoft®
Windows™ operating system. It also includes application notes describing special
Windows features for applications. The appendix provides a listing of module and
library names for Windows functions.

Part 1, “Windows Management, Graphics, and Systems Services,” presents func-
tions that relate to window management, graphics output, and system services.
Window manager functions process messages; create, move, or alter a window; or
create system output. Graphics device interface (GDI) functions perform device-
independent graphics operations, such as the creation of line, text, and bitmap out-
put on different output devices. System services functions perform operations such
as accessing code and data in modules, allocating and managing memory, translat-
ing strings, and creating and opening files.

Part 2, “Extension Libraries,” describes the libraries that support many of the
features new to Windows version 3.1. These new features include common dia-
log boxes; management functions that simplify dynamic data exchange (DDE);
object linking and embedding (OLE); such shell enhancements as the registration
database and the drag-drop feature; tool helper functions that streamline the crea-
tion of Windows-hosted tools; data decompression functions; a stress-testing facil-
ity that artificially consumes system resources and can be used when debugging
applications; file installation functions; functions that allow an application to make
use of the 32-bit memory-addressing capabilities of 80386 and 80486 processors;
floating-point emulation; and the screen saver that is built into Control Panel.

Part 3, “Application Notes,” describes techniques an application should use to
implement some Windows features and enhancements. This part of the manual
explains how to create a Control Panel application, how to create and install
extensions for File Manager, how to use the dynamic-data exchange interface of
Program Manager, how to make applications country- and language-independent,
how to write network applications, how to integrate Windows applications with
Microsoft MS-DOS® functions, how to write a compiler that generates Windows
prolog and epilog code, how to initialize and start Windows applications, how

to improve the video performance of Windows applications, how to write self-
loading Windows applications, and how to interact with installable drivers.

The appendix lists the module and library for each Windows function.

Xviii Microsoft Windows Programmer’s Reference

Document Conventions

The following conventions are used throughout this manual to define syntax:

Convention Meaning

Bold text Denotes a term or character to be typed literally, such as a resource-
definition statement or function name (MENU or CreateWindow),
an MS-DOS command, or a command-line option (/nod). You must
type these terms exactly as shown.

Italic text Denotes a placeholder or variable: You must provide the actual
value. For example, the statement SetCursorPos(X, Y) requires you
to substitute values for the X and Y parameters.

[1] Enclose optional parameters.

I Separates an either/or choice.

Specifies that the preceding item may be repeated.
BEGIN Represents an omitted portion of a sample application.

END
In addition, certain text conventions are used to help you understand this material:

Convention Meaning

SMALL CAPITALS Indicate the names of keys, key sequences, and key combina-
tions—for example, ALT+SPACEBAR.

FULL CAPITALS Indicate filenames and paths, most type and structure names
(which are also bold), and constants.

monospace Sets off code examples and shows syntax spacing.

Window Management, Graphics,
and System Services

Part 1

Window Management

Chapter 1

1.1 MIBSSAZES .euveeuveriieiieiieteete ettt ettt et e e st st sttt e s en e e be et e e s e nre s 7
1.1.1 Generating and Processing Messages..........ccveeevereerenceneeneennennes 7
1.1.2 Translating MeESSAZES........cecverrerrierieeririeeteteieeeeeeiesseeeeeeneenes 8
1.1.3 EXamining MESSAZEScccvecveerirueerieieeeienieeeeeeeeeenieeeeneeneeneenes 9
1.1.4 Sending MESSAZES......cccoveuirminiiiiiiiiniiieec s 10
1.1.5 Avoiding Message Deadlockscoveeevuercnenieniineccnnennns 10
1.1.6 Message FUNCHIONS.cc.oueeiiuienirueenireeirieerecre et ee 11

1.2 Creating and Managing Windowsc.ccecceerueccniemcccnmenineenenscnennenenes 12
1.2.1 WiIndow ClLaSSES......cooveruireeiniinrinriiiieeieiteretee e 12

1.2.1.1 System Global Classescccevereerenerernreneneenens 13
1.2.1.2 Application Global Classes..........ccccccercerervecurernean. 13
1.2.1.3 Application Local Classes..........cccceveevecuererereecnnn 13
1.2.2 How Windows Locates @ Classccecevvereniereeneeseenenenennes 13
1.2.3 Class OWNEISHIPevuieveriirieieieieieriereereeie et eene 14
1.2.4 Registering a Window Class..........cceeveerierenenieneenenienenneenens 14
1.2.5 Shared Window CIaSSesceceeeeeenienienienereenieneerenseeneenenens 14
1.2.6 Predefined Window Classesccceevveeneerneerienneeeeenieesnuenseeenens 14
1.2.7 Elements of a Window Class.........coceecveruerenieneneereneeenineneenens 15
1.2.7.1 Class NAmME......c..coverveerienreieeeienneeeteeneseeeevennes 16
1.2.7.2 Window-Procedure Address.........coceeveveevercneeneeneae 16
1.2.7.3 Instance Handle.........cccoveniiviniinnniiniciniinennen, 16
1.2.7.4 C1ass CUTSOToverurrereieienrinrenieereriesee e eneenes 17
1.2.7.5 Class ICOM ..ot 17
1.2.7.6 Class Background Brush.........ccccoeoeveeiieceennnnnene 17
1.2.7.7 Class MENU......ccceeriieeiiinieentieeteeeieeeeeeseeeeenereenne 18

1.2.8 CIaSS SEYIES ..ottt 18

4

Microsoft Windows Programmer’s Reference

1.3
1.4
1.5
1.6

1.2.9 Internal Data StrUCIUIESc.coveveeieerriireneteiecnrcnee e 20
1.2.10 Window Subclassing...........cccceerereereeenierenresneineeeereseeecesineas 20
1.2.11 Redrawing the Client ATeaccccceverervererrerrcnrerseeeeneeneenenn 21
1.2.12 Class and Private Display COntexts......c..ceceeveerererverrererreennennen 21
1.2.13 Window Procedures.........ccceveveuecinireininieiniieicsiciiiiesenens 22

1.2.13.1 Window MEeSSagEScoerveuervenvecnreniivirneneiinnesisenns 23

1.2.13.2 Default Window Procedure..........c.ccoccceveevinnnnannen. 24
1.2.14 WiIndowW StYIES....cvevivierieieiccerenieneeieeteseeesaeeesteeene e 26

1.2.14.1 Overlapped Windows..........ccceuvviriviininincncnnnnn. 26

1.2.14.2 Owned Windows........coceveevineninenenenecseneesnennens 27

1.2.14.3 Pop-up Windowsccccceevuererieinenieieiieceeeeens 27

1.2.14.4 Child Windows.......cccoverueceremeinecninciiieesiinenns 28
1.2.15 Multiple Document Interface Windowscccccecciuivcciniininns 29
1.2.16 THHIE BAC oottt 30
1.2.17 SyStem MEenU ..c..oeeeiiiiiieiecieeeeeeeeeteete e 30
1.2.18 SCIOIl BarS.....cocveeviiieieiiniieieseeteeeeienie ettt ns 30
1,219 MENUS.c.oiiieiiiiiiecteit ettt ettt st ere e 31
1.2.20 WINdOW State...cc.eorevermiecriinreieieincnee et 32
1.2.21 Life Cycle of a Window........cccccociniiniiniiniiiinccininennene e 32
1.2.22 Window-Creation FUnCtions.........ccceccevenuevevineencninicninicneninns 33
Display and Movement FUNCHONSccceoeeerirrerinirieeeiniecnenicsieeenieene 34
INPUEL FUNCHONS . ..c.eeviiiiieieeiteictectetencee et 36
Hardware FUNCHONScccouiiieieiieee ettt et ns 36
PaiNting....covivieerieneniinieecerieeeeeneserer et s 37
1.6.1 How Windows Manages the Displaycc.ccvevveniiniiciiiinnnnnnn. 37
1.6.2 Display ContexXt TYPES......ccveiruemreenneiireieeecieeniseenienenens 38

1.6.2.1 Common Display CONeXt........cceevereervenreeveneennene 38

1.6.2.2 Class Display COnteXt.......ccceeveeerereneerecreeneennennns 39

1.6.2.3 Private Display Contextcccecceveverveenereeciinnnne 40

1.6.2.4 Window Display Context........ccceeeeveererreenrerseenennn 41
1.6.3 Display-ConteXt Cache.........cecevirrrrerieneeieieieneseeeere e 41
1.6.4 Painting SEQUENCE.......c.coerierieniiiinerenereecereteeeere e 42
1.6.5 WM_PAINT MESSAZEeoveeernieierienierienereereereneeseeseesseeneane 42
1.6.6 Update REZIONcceevveeieiiiiiriiniicreeee et 43
1.6.7 Window Backgroundccccceevieviinenveiniinienenineneeeneeneeiins 43
1.6.8 Brush AZNment..........cccoeeviirierieniereeinierenenreteenrenreseeee e 44
1.6.9 Painting Rectangular Areasccecceeveereneerineneeeennneesnenienees 44

Chapter 1 Window Management 5

1.7

1.8

1.9

1.10
1.11
1.12

1.6.10 Drawing ICOMS.......ccevrvrririrrieiriiieeieieteeieeste st eee e aenees 45
1.6.11 Drawing Formatted TeXtcccouevrvireruererereereeneeeneereenreerieneens 45
1.6.12 Drawing Gray TeXt......cccceererueerrirenierieerienieiesesesreeeresieseeseenes 46
1.6.13 Nonclient-Area Paintingcc.coceevevrerenineneninecieneneneenennes 47
1.6.14 Painting FUNCLIONSc.coerueiririiircierre e 47
DiAlog BOXES ...coviuieuiieieiinieriete ettt ettt sttt 48
1.7.1 Uses for Dialog BOXES.....cccovveviiienieieierereteeeeeeee e 49
1.7.1.1 Modeless Dialog BOX.......ccoocevveievieiinieeiececene, 49
1.7.1.2 Modal Dialog BOX.......cccccvrieienenienineeieceeeeienee 49
1.7.1.3 System-Modal Dialog BOXccccocevevevvininciecinnnennn. 50
1.7.2 Creating a Dialog BOXcocooeeviiniinicniinenineneenececneseeeeenee 50
1.7.2.1 Dialog Box Template.........cccccccveveenuecereceueennennne. 50
1.7.2.2 Dialog Box Measurements...........ccccoceeververreceennens 50
1.7.3 Return Values from a Dialog BOX ...c.c.oeeevvcineecnccenccnnienes 51
1.7.4 Controls in a Dialog BOXccccoviiviivienienientierceccereeneeeeieens 51
1.7.4.1 Control Identifierscoceceveveevenrecverenierineneenenenn 51

1.7.42 The WS_TABSTOP and WS_GROUP
Control StYIES...c.cocevuerieereieireiieereeeeenreeresenee 52
1.7.4.3 BULONS ..ooeveeeiiieieieceete e 52
1.7.4.4 Edit CONtrolsccoeevueieinieieencineceeeeeseeee 53
1.7.4.5 List Boxes and Directory Listingscc.coccoveeneee 54
1.7.4.6 Combo BOXEScoueeuerieieiiniiriecieceeeiereeeeceeeeeeen 54
1.7.4.7 Owner-Drawn Dialog Box Controls.........cc.cc..e.... 54
1.7.4.8 Messages for Dialog Box Controls...........cccccueunee... 55
1.7.5 Keyboard Interface for Dialog Boxes.......cccceveeveenierinrencecnnennee 55
1.7.6 Functions for Dialog BOXeSs........ccccvvrerienirreniinenienieeeseene 57
SCIOIING ..ottt ettt ettt et st st eanene 58
1.8.1 Standard Scroll Bars and Scroll-Bar Controls........cc.cccccvcvveueee. 58
1.8.2 SCIOIL BOX .ttt sttt 59
1.8.3 Scrolling REQUESLScccevrueuiriereirinieirieeeireereee s 59
1.84 Processing Scroll MeSSages........cocveveveverienienieneneenenenueneennes 60
1.8.5 Scrolling the CHent Areaccoveeeerererrcrerrenneneniecnennenes 60
1.8.6 Hiding a Standard Scroll Bar.........cccoccvivveinenieninncnicrciennn 61
1.8.7 Scrolling FUNCHONScc.eeviieiieiirieiieieeiereeee st 61
Menu FUNCHONS.c.cooiiiiiiiiieiererrettesitete ettt ne 61
Information FUNCHONS........c.cccouevinieieiniecneeec e 63
SYStem FUNCHONSc.vevireiiiiiieieeeeiesiee ettt 63

Clipboard FUNCHIONS.......covcerieuinirretereirteietercetete s ctnteeceteaeae et ieeenens 64

6

Microsoft Windows Programmer’s Reference

1.13
1.14

1.15

1.16

1.17

1.18

1.19

EIr0r FUNCHONS. c..veviiieiiiiieieceteneteeeiesteeeven ettt ere e e inens 65
THE CATCL ...cueveiieviieteiee ettt sttt ettt et ebesne bt sresbe e e besaas 65
1.14.1 Creating and Displaying a Caret.........cccceevererreeveereeneneeneeneenn 65
1.14.2 Sharing the Caret.........ccoeveevererieererieenieiereeee e seeeenes 66
1.14.3 Caret FUNCLONSoveueeveeieicirieeeteiccreeieeseeeeereaeeeese e seenenes 66
THE CULSOT ... vttt sttt s s 67
1.15.1 The Mouse and the Cursor.........ccocceeieriieienieiieee e 67
1.15.2 Displaying and Hiding the Cursor.........cccceeeeeeeeeerercreeercnnenes 67
1.15.3 Positioning the CUrsorc..ccceeveireeeueeeneereneerereneieneinnenens 68
1.154 The Cursor Hot Spot and Confining the Cursor.............ccco..... 68
1.15.5 Creating a Custom CUISOTccceouererirrerrenieieeieieeieseseeneae 68
1.15.6 Cursor FUNCHONSco.eeviiviriiiiicieneie ettt 68
HOOKS ..ottt s 69
1.16.1 Filter-Function Chain..........cccoevvrueenreicnneinrecnreeecneeerenenes 69
1.16.2 Installing a Filter FUnction...........ccccocevininininniniinicnnene b 70
1.16.3 HoOOK FUNCHONS ..ottt 71
Property LISES ..c..eoueeiicieriieieeeniereerterte ettt et s 71
1.17.1 Using Property LiStsccccoeevrrererneinneerececeeceeeseeae 71
1.17.2 Property FUNCHONScoouiiiiiiiieieeteete et esieeereeeieeane 73
RECLANGIES ...venieiiieiiteeeee et 73
1.18.1 Using Rectangles in a Windows Application..........c.ccccceeveinens 73
1.18.2 Rectangle CoOrdinatesceveeveerererereneneeneereneeienneenieneens 74
1.18.3 Creating and Manipulating Rectangles........c..cccccecuevveveenernenne. 74
1.18.4 Rectangle FUNCHIONS.......ccccoverevevcrirereneeeneseeseneceere e 76

Related TOPICS .. .cucrvrueeereuireeeeeteieneicnee ettt 76

Chapter 1 Window Management 7

This chapter describes the functions in the Microsoft Windows operating system
that process messages; create, move, or alter a window; or create system output.
These functions constitute the window manager interface.

1.1 Messages

Messages are the input to an application. They represent events that the applica-
tion may need to respond to. A message is a structure that contains a message iden-
tifier and message parameters. The content of the parameters varies with the
message type.

1.1.1 Generating and Processing Messages

Windows generates an input message for each input event, such as when the user
moves the mouse or presses a key. Windows collects input messages in a system-
wide message queue and then places the messages, as well as timer and paint mes-
sages, in an application message queue. An application message queue is a first in,
first out queue. Timer and paint messages are exceptions to the first in, first out
rule; these messages are held in an application’s message queue until the applica-
tion has processed all other messages. Windows places messages that belong to a
specific application in that application’s message queue. The application then
reads the messages by using the GetMessage function and dispatches them to the
appropriate window procedure by using the DispatchMessage function.

Windows sends some messages directly to the window procedure in the appro-
priate application instead of placing the messages in the application’s message
queue. Such messages are called unqueued messages. Typically, an unqueued mes-
sage is any message that affects the window only. The SendMessage function
sends messages directly to a window procedure. For more information about win-
dow procedures, see Section 1.2.13, “Window Procedures.”

For example, the CreateWindow function directs Windows to send a
WM_CREATE message to a window procedure of an application and to wait
until the window procedure has processed the message. Windows sends this mes-
sage directly to the window procedure and does not place it in the application’s
message queue.

Although Windows generates most messages, an application can create its own
messages and place them in its own message queue or that of another application.

An application typically uses the GetMessage function in a loop within its Win-
Main function to remove messages from the application’s message queue. This
loop is called the main message loop. The GetMessage function searches an appli-
cation’s message queue and, if any messages exist, returns the top message in the
queue. If the message queue is empty, GetMessage waits for a message to be

8

Microsoft Windows Programmer’s Reference

placed in the queue. While waiting, GetMessage relinquishes control to Windows,
allowing other applications to take control and process their own messages.

Once an application’s WinMain function has retrieved a message from the appli-
cation’s message queue, it can dispatch the message to a window procedure by
using the DispatchMessage function. This function directs Windows to call the
window procedure of the window associated with the message, and then passes the
content of the message as function arguments. The window procedure can then
process the message and carry out any requested changes to the window. When
the window procedure returns, Windows returns control to the main message loop
in the WinMain function. The main message loop can then retrieve the next mes-
sage from the queue.

Note Unless noted otherwise, Windows can send messages in any sequence. An
application should not rely on receiving messages in a particular order.

Windows generates a message each time the user presses a key. The message con-
tains a virtual-key code that defines which key was pressed, but does not define
the character value of that key. To retrieve the character value, the main message
loop in the WinMain function must translate the virtual-key message by using the
TranslateMessage function. This function puts another message with an appro-
priate character value in the application’s message queue. The message can then
be dispatched to a window procedure.

1.1.2 Translating Messages

In general, a WinMain function should use the TranslateMessage function to
translate every message, not just virtual-key messages. Although Translate-
Message has no effect on other types of messages, it guarantees that keyboard
input is translated correctly.

The following example illustrates the typical main message loop that a WinMain
function uses to retrieve messages from the application’s message queue and dis-
patch them to the application’s window procedures:

int PASCAL WinMain(hinst, hPrevInst, 1pCmdLine, ShowCmd)
HINSTANCE hinst;
HINSTANCE hPrevinst;
LPSTR 1pCmdLine;
int ShowCmd;
{
MSG msg;

Chapter 1 Window Management 9

while (GetMessage(&msg, NULL, @, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
return msg.wParam;

}

An application that uses accelerator keys must load an accelerator table from the
resource-definition file by using the LoadA ccelerators function and then trans-
late keyboard messages into accelerator-key messages by using the Translate-
Accelerator function. For more information about accelerator keys, see the
Microsoft Windows Guide to Programming.

The main message loop for an application that uses accelerator keys should have
the following form:

while (GetMessage(&msg, NULL, @, 0)) {
if (TranslateAccelerator(hwnd, haccel, &msg) == 0) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}
return msg.wParam;

The TranslateAccelerator function must appear before the standard Translate-
Message and DispatchMessage functions. Furthermore, because Translate-
Accelerator automatically dispatches the accelerator-key message to the
appropriate window procedure, the TranslateMessage and DispatchMessage
functions should not be called if TranslateAccelerator returns a nonzero value.

1.1.3 Examining Messages

An application can use the PeekMessage function to examine its message queue
for specific messages without removing them from the queue. The function returns
a nonzero value if a message exists in the queue and lets the application retrieve
the message and process it without going through the application’s main message
loop.

Typically, an application uses PeekMessage to check periodically for messages
when the application is carrying out a lengthy operation, such as processing input
and output. For example, this function can be used to check for messages that end
the operation. PeekMessage also gives the application a chance to yield control if
no messages are present, because PeekMessage can yield if no messages are in
the message queue.

10

Microsoft Windows Programmer’s Reference

1.1.4 Sending Messages

The SendMessage and PostMessage functions let applications pass messages to
their windows or to the windows of other applications. The PostAppMessage
function is a variation on PostMessage that posts a message using the applica-
tion’s module handle rather than a window handle.

The PostMessage function directs Windows to post a message—that is, place the
message in an application’s message queue. The PostMessage function immedi-
ately returns control to the calling application, and any action to be carried out as a
result of the message does not occur until the message is read from the queue.

The SendMessage function directs Windows to send a message directly to the
given window procedure, bypassing the application’s message queue. Windows
does not return control to the calling application until the window procedure that
receives the message processes the message or returns control as a result of a call
to the ReplyMessage function.

When an application transmits a message, it must do so by calling SendMessage
if the application relies on the return value of a message. The return value of Send-
Message is the same as the value returned by the window procedure that
processed the message. PostMessage returns immediately after sending the mes-
sage, so its return value is only a Boolean value indicating whether the message
was successfully placed in the queue and does not indicate how the message was
processed.

1.1.5 Avoiding Message Deadlocks

An application can create a deadlock condition in Windows if it yields control
while processing a message sent from another application (or by Windows on
behalf of another application) by using the SendMessage function.

Typically, a task that calls SendMessage to send a message to another task
does not continue running until the window procedure that receives the message
returns. When the task that receives the message yields control, the sending task
cannot continue to run and to process messages because it is waiting for Send-
Message to return, resulting in a message deadlock.

The application processing the message does not have to yield explicitly to cause
the problem. Calling any one of the following functions can result in the applica-
tion yielding control:

DialogBox

DialogBoxIndirect

DialogBoxIndirectParam

DialogBoxParam

Chapter 1 Window Management

1"

GetMessage

MessageBox

PeekMessage
Yield

Before calling any of these functions while processing a message, a window
procedure should first call the InSendMessage function to find out whether the
message was sent by the SendMessage function from another application. If
InSendMessage returns a nonzero value, the window procedure must call the
ReplyMessage function before calling any function that yields control.

1.1.6 Message Functions

Message functions read and process Windows messages in an application’s mes-

sage queue. Following are the message functions:

Function

Description

CallWindowProc
DispatchMessage
GetMessage
GetMessageExtralnfo
GetMessagePos
GetMessageTime
GetQueueStatus
hardware_event
InSendMessage
PeekMessage
PostAppMessage
PostMessage

PostQuitMessage

Passes message information to the specified window pro-
cedure.

Passes a message to the window procedure of the
specified window.

Retrieves a message from an application’s message queue.
Retrieves information about a hardware message.

Returns the position of the mouse at the time the last mes-
sage was retrieved from the calling application’s message
queue.

Returns the time at which the last message was retrieved
from the calling application’s message queue.

Returns a value that identifies the types of messages, if
any, that are in the application’s message queue.

Places a hardware message in the system queue.

Finds out whether the current window procedure is pro-
cessing a message that was sent as a result of another
application calling the SendMessage function.

Checks an application’s message queue and returns one
message from the specified range of messages, if any such
messages are in the queue.

Places a message in an application’s message queue.

Places a message in the message queue of the application
associated with a specified window.

Posts a WM_QUIT message to the calling application.

12 Microsoft Windows Programmer’s Reference

Function Description

ReplyMessage Replies to a message sent from a different task without
returning control to the task.

SendMessage Sends a message to a window or windows.

SetMessageQueue Creates a new message queue of a different size.

TranslateAccelerator Processes accelerator keys for menu commands.

TranslateMDISysAccel Processes accelerator keystrokes for a multiple document
interface (MDI) child window.

TranslateMessage Translates virtual-keystroke messages into character mes-
sages.

WaitMessage Yields control to other applications.

WinMain Serves as an entry point for execution of a Windows appli-
cation.

For detailed information about the message functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.2 Creating and Managing Windows

This section describes how to create, destroy, modify, and obtain information
about windows.

1.2.1 Window Classes

A window class is a set of attributes that defines how a window looks and be-
haves. Before an application can create and use a window, a window class must
have been created and registered for that window. An application registers a class
by filling a WNDCLASS structure and passing a pointer to the structure to the
RegisterClass function. Any number of window classes can be registered. Once
a class has been registered, Windows lets the application create any number of
windows belonging to that class. The registered class remains available until it is
deleted or the application closes.

Although a complete window class consists of many elements, Windows requires
only that an application supply a class name, the address of the window proce-
dure that will process all messages sent to windows belonging to this class, and an
instance handle identifying the application that registered the class. The other ele-
ments of the window class define default attributes for windows of the class, such
as the shape of the cursor and the content of the menu for the window.

There are three types of window classes: system global classes, application global
classes, and application local classes. These types differ in scope and in when and
how they are created and destroyed.

Chapter 1 Window Management 13

1.2.1.1 System Global Classes

Windows creates system global classes when it starts. These classes are available
for use by all applications at all times. Because Windows creates system global
classes on behalf of all applications, an application cannot create or destroy any of
these classes. System global classes include edit-control and list-box control
classes.

1.2.1.2 Application Global Classes

An application or (more likely) a dynamic-link library (DLL) creates an applica-
tion global class by specifying the CS_GLOBALCLASS style for the class. Once
created, it is globally available to all applications within the system. Typically, a
DLL creates an application global class so that applications that call the DLL can
use the class. Windows destroys an application global class when the application
that created it closes or the DLL that created it is unloaded. For this reason, it is
essential that all applications destroy all windows using that class before the appli-
cation that created the class closes or the DLL that created the class is unloaded.
Use the UnregisterClass function to remove an application global class and free
the storage associated with it.

1.2.1.3 Application Local Classes

An application local class is any window class created by an application for its
exclusive use. This is the more common type of class created by an application.
Use the UnregisterClass function to remove an application local class and free
the storage associated with it.

1.2.2 How Windows Locates a Class

When an application creates a window with a specified class, Windows uses the
following procedure to find the class:

1. Windows searches for a local class of the specified name.

2. If Windows does not find a local class with the name, it searches the applica-
tion global class list.

3. If Windows does not find the name in the application global class list, it
searches the system global class list.

This procedure is used for all windows created by the application, including win-
dows created by Windows on the application’s behalf, such as dialog boxes. It is
possible, then, to override system global classes without affecting other applica-
tions.

14 Microsoft Windows Programmer’s Reference

1.2.3 Class Ownership

Windows determines class ownership from the hInstance member of the
WNDCLASS structure passed to the RegisterClass function when the applica-
tion or DLL registers the class. For Windows DLLs, the hInstance member must
be the instance handle of the DLL. When the application that registered the class
closes or the DLL that registered the class is unloaded, the class is destroyed. For
this reason, all windows using the class must be destroyed before the application
closes or the DLL is unloaded.

1.2.4 Registering a Window Class

When Windows registers a window class, it copies the attributes into its own
memory area. Windows uses these internally stored attributes when an application
refers to the window class by name; it is not necessary for the application that orig-
inally registers the class to keep the structure available.

1.2.5 Shared Window Classes

An application must not share its registered classes with other applications. Some
information in a window class, such as the address of the window procedure, is
specific to a given application and cannot be used by other applications. However,
applications can share an application global class. For more information, see
Section 1.2.1.2, “Application Global Classes.”

Although an application must not share one of its registered classes with other
applications, different instances of the same application can share a registered
class. Once a window class has been registered by an application, it is available to
all subsequent instances of that application. This means that new instances of an
application do not need to, and should not, register window classes that have been
registered by previous instances.

1.2.6 Predefined Window Classes

Windows provides several predefined system-global window classes. These
classes define special control windows that carry out common input tasks, such
as letting the user direct scrolling, type text, and select from a list of names. The
predefined window classes are available to all applications and can be used any
number of times to create any number of control windows. See the description of
the CreateWindow function in the Microsoft Windows Programmer’s Reference,
Volume 2, for a list of the predefined window classes.

Chapter 1 Window Management 15

1.2.7 Elements of a Window Class

The elements of a window class define the default behavior of windows created
from that class. The application that registers a window class assigns elements to
the class by setting appropriate members in a WNDCLASS structure and passing
the structure to the RegisterClass function. An application can retrieve informa-
tion about a given window class with the GetClassInfo function. The window
class elements are as follows:

Element

Purpose

Class name
Window-procedure address

Instance handle
Class cursor
Class icon

Class background brush

Class menu

Class styles

Class extra

Window extra

Distinguishes the class from other registered classes.

Points to the function that processes all messages
that are sent to windows in the class, and defines the
behavior of the window.

Identifies the application or DLL that registered the
class.

Defines the shape of the cursor when the cursor is in a
window of the class.

Defines the shape of the icon Windows displays when a
window belonging to the class is minimized.

Defines the color and pattern Windows uses to fill the
client area when the window is opened or painted. If
this parameter is set to NULL, the window must paint
its own background whenever it receives the
WM_ERASEBKGND message.

Specifies the default menu used for any window
belonging to the class that does not explicitly define a
menu.

Defines how to update the window after moving or
resizing, how to process double-clicks of the mouse,
how to allocate space for the display context, and other
aspects of the window.

Specifies the amount of extra memory, in bytes, that
Windows should reserve at the end of the
WNDCLASS structure. Windows initializes this
memory to zero.

Specifies the amount of extra memory, in bytes, that
Windows should reserve at the end of any window
structure an application creates that has this class.
Windows initializes this memory to zero.

The following sections describe the elements of a window class and explain the de-
fault values for these elements if no explicit value is given when the class is regis-

tered.

16

Microsoft Windows Programmer’s Reference

1.2.7.1 Class Name

Every window class needs a class name. The class name distinguishes one class
from another. An application assigns a class name to the class by setting the
IpszClassName member of the WNDCLASS structure to the address of a null-
terminated string that specifies the name.

In the case of an application global class, the class name must be unique to distin-
guish it from other application global classes. If an application registers another
application global class with the name of an existing application global class, the
RegisterClass function returns zero, indicating failure. The conventional method
for ensuring this uniqueness is to include the application name in the name of the
application global class.

The class name must be unique among all the classes registered by an application.
An application cannot register an application local class and an application global
class with the same class name.

1.2.7.2 Window-Procedure Address

Every class needs a window-procedure address. The address defines the entry
point of the window procedure that is used to process all messages for windows in
the class. Windows passes messages to the procedure when it requires the window
to carry out tasks, such as painting its client area or responding to input from the
user. An application assigns a window-procedure to a class by copying its address
to the IpfaWndProc member of the WNDCLASS structure. The window proce-
dure must be exported in the module-definition (.DEF) file. For more information
about exporting functions, see the Microsoft Windows Guide to Programming.

1.2.7.3 Instance Handle

Every window class needs an instance handle to identify the application or DLL
that registered the class. As a multitasking system, Windows lets several applica-
tions or DLLs run at the same time, so it needs instance handles to keep track of
all applications and DLLs. Windows assigns a unique handle to each copy of a
running application or DLL.

Multiple instances of the same application or DLL all use the same code segment,
but each has its own data segment. Windows uses an instance handle to identify
the data segment that corresponds to a particular instance of an application or DLL.

Windows passes an instance handle to an application or DLL when the application
first begins operation. The application or DLL assigns this instance handle to the
class by copying it to the hInstance member of the WNDCLASS structure.

Chapter 1 Window Management 17

1.2.7.4 Class Cursor

The class cursor defines the shape of the cursor when the cursor is in the client
area of a window in the class. Windows automatically sets the cursor to the given
shape as soon as the cursor enters the window’s client area, and ensures that the
cursor keeps that shape while it remains in the client area. To assign a cursor
shape to a window class, an application typically loads a predefined cursor shape
by using the LoadCursor function, and then assigns the returned cursor handle to
the hCursor member of the WNDCLASS structure. Alternatively, you can use
Microsoft Image Editor IMAGEDIT.EXE) to create your own custom cursor, and
use Microsoft Windows Resource Compiler (RC) to add the cursor as a resource
to your application’s executable file. The application can then use the Load-
Cursor function to load the custom cursor from the application’s resources.

Windows does not require a class cursor. If an application sets the hCursor
member of the WNDCLASS structure to NULL, a class cursor is not defined.
Windows assumes that the window will set the cursor shape each time the cur-
sor moves into the window. A window can set the cursor shape by calling the
SetCursor function whenever the window receives the WM_MOUSEMOVE
message.

1.2.7.5 Class Icon

The class icon defines the shape of the icon used when the window of the given
class is minimized. To assign an icon to a window class, an application typi-
cally loads the icon from the application’s resources by using the LoadIcon
function, and then assigns the returned icon handle to the hIcon member of the
WNDCLASS structure.

Windows does not require that a window class have a class icon. If an application
sets the hIcon member of the WNDCLASS structure to NULL, a class icon is not
defined. In this case, Windows sends the WM_ICONERASEBKGND message to
a window of the class whenever the window must paint the background of the
icon. If the window does not process the WM_ICONERASEBKGND message,
Windows draws an image of the contents of the window’s client area onto the icon
when it is minimized.

1.2.7.6 Class Background Brush

A class background brush is the brush used to prepare the client area of a
window for subsequent drawing by the application. Windows uses the brush

to fill the client area with a solid color or pattern, thereby removing all pre-
vious images from that location whether they belonged to the window or not.
Windows notifies a window that its background needs to be painted by sending
the WM_ERASEBKGND message to the window.

18 Microsoft Windows Programmer’s Reference

To assign a background brush to a class, an application can create a brush by using
the appropriate functions from the graphics device interface (GDI) and then assign
the returned brush handle to the hbrBackground member of the WNDCLASS
structure.

Instead of creating a brush, an application can use a standard system color by set-
ting the hbrBackground member to one of the standard system color values. For
a list of the standard system color values, see the description of the SetSysColors
function in the Microsoft Windows Programmer’s Reference, Volume 2.

To use a standard system color, the application must increase the background-
color value by one. For example, COLOR_BACKGROUND + 1 is the system
background color.

1.2.7.7 Class Menu

A class menu defines the default menu to be used by the windows in the class if
no explicit menu is given when the windows are created. A menu is a list of com-
mands from which a user can select actions for the application to carry out. To
assign a menu to a class, an application sets the IpszMenuName member of the
WNDCLASS structure to the address of a null-terminated string that specifies the
resource name of the menu. The menu is assumed to be a resource in the given
application. Windows automatically loads the menu when it is needed. Note that
if the menu resource is identified by an integer and not by a name, the application
can set the IpszMenuName member to that integer value by applying the
MAKEINTRESOURCE macro before assigning the value.

Windows does not require a class menu. If an application sets the IpszMenuName
member of the WNDCLASS structure to NULL, Windows assumes that the win-
dows in the class have no menu bars. Even if no class menu is given, an applica-
tion can still define a menu bar for a window when it creates the window.

Windows does not allow menu bars with child windows. If a menu is given for a
class and a child window of that class is created, the menu is ignored. For more
information about menus, see Section 1.2.19, “Menus.”

1.2.8 Class Styles

The class styles define additional elements of the window class. Two or more
styles can be combined by using the bitwise OR (l) operator. The class styles are
as follows:

Chapter 1 Window Management

19

Style

Description

CS_BYTEALIGNCLIENT
CS_BYTEALIGNWINDOW

CS_CLASSDC

CS_DBLCLKS

CS_GLOBALCLASS

CS_HREDRAW

CS_NOCLOSE

CS_OWNDC

CS_PARENTDC

CS_SAVEBITS

CS_VREDRAW

Aligns the window’s client area on a byte boundary
(in the x direction).

Aligns the window on a byte boundary (in the x direc-
tion).

Allocates one display context to be shared by all win-
dows in the class. For more information about device

contexts, see Section 1.2.12

Sends double-click messages to the window proce-
dure.

Specifies that the window class is an application
global class. An application global class is created by
an application or DLL and is available to all applica-
tions. The class is destroyed when the application or
DLL that created the class closes; it is essential, there-
fore, that all windows created with the application
global class be closed before the application or DLL
closes.

Requests that the entire client area be redrawn if a
movement or size adjustment changes the width of
the client area.

Inhibits the Close command on the System menu
(sometimes referred to as the Control menu).

Allocates a unique display context for each window
in the class. For more information about device con-
texts, see Section 1.2.12

Gives the parent window’s display context to the
child windows. For more information about device
contexts, see Section 1.2.12

Saves, as a bitmap, the portion of the screen image
that is obscured by a window; Windows uses the
saved bitmap to re-create the screen image when the
window is removed. Windows displays the bitmap at
its original location and does not send WM_PAINT
messages to windows that had been obscured by the
window if the memory used by the bitmap has not
been discarded and if other screen actions have not
invalidated the stored image.

Requests that the entire client area be redrawn if a
movement or size adjustment changes the height of
the client area.

To assign a style to a window class, an application assigns the style value to the
style member of the WNDCLASS structure.

20 Microsoft Windows Programmer’s Reference

1.2.9 Internal Data Structures

Windows maintains internal data structures for each window class and window.
These structures are not directly accessible to applications but can be examined
and modified by using the following functions:

= GetClassInfo

= GetClassLong

= GetClassName

= GetClassWord

= GetWindowLong
= GetWindowWord
= SetClassLong

= SetClassWord

= SetWindowLong

= SetWindowWord

1.2.10 Window Subclassing

A subclass is a window or set of windows that belong to the same window class,
and whose messages are intercepted and processed by another window procedure
(or procedures) before being passed to the class window procedure.

To create the subclass, the SetWindowLong function is used to change which win-
dow procedure is associated with a particular window, causing Windows to call

the new window procedure instead of the previous one. An application must call
the CallWindowProc function to pass to the previous window procedure any mes-
sages not processed by the new window procedure. This allows Windows to create
a chain of window procedures. The application can retrieve the address of the pre-
vious window procedure by using the GetWindowLong function before using the
SetWindowLong function.

Similarly, the SetClassLong function changes which window procedure is asso-
ciated with a window class. Any window that is subsequently created with that
class will be associated with the replacement window procedure for that class, as
will the window whose handle is passed to SetClassLong. Other existing win-
dows that were previously created with the class are not affected, however.

When an application subclasses a window or class of windows, it must export

the replacement window procedure in its module-definition file, call the Make-
ProcInstance function to create the address of the procedure, and pass the address
to the SetWindowLong or SetClassLong function. For more information about
module-definition files, see the Microsoft Windows Guide to Programming.

Chapter 1 Window Management 21

1.2.11 Redrawing the Client Area

When a window is moved, Windows automatically copies the contents of the
client area to the new location. This saves time because a window does not have to
recalculate and redraw the contents of the client area as part of the move. If the
window moves and changes size, Windows copies only as much of the previous
client area as is needed to fill the new location. If the window increases in size,
Windows copies the entire client area and sends a WM_PAINT message to the
window to fill in the newly exposed areas.

When a window is moved, Windows assumes the contents of the client area
remain valid and can be copied without modification to the new location. For
some windows, however, the contents of the client area are not valid after a move,
especially if the move includes a change in size. For example, a clock application
whose window must always contain the complete image of the clock has to redraw
the window anytime the window changes size, and has to update the time after the
move. To redraw the entire client area instead of copying the previous contents
each time a window changes size, a window should specify the CS_VREDRAW
and CS_HREDRAW styles in the window class.

1.2.12 Class and Private Display Contexts

A display context is a special set of values that applications use for drawing in the
client area of their windows. Windows requires a display context for each window
on the system display but allows some flexibility in how that display context is
stored and treated by the system.

If no display-context style is explicitly given, Windows assumes that each win-
dow will use a display context retrieved from a pool of contexts maintained by
Windows. In such cases, each window must retrieve and initialize the display con-
text before painting, and then free it after painting.

To avoid retrieving a display context each time it needs to paint inside a window,
an application can specify the CS_OWNDC style for the window class. This class
style directs Windows to create a private display context—that is, to allocate a
unique display context for each window in the class. The application need only
retrieve the context once, and then use it for all subsequent painting. Although the
CS_OWNDOC style is convenient, it must be used carefully because each display
context uses a significant amount of system resources.

By specifying the CS_CLASSDC style, an application can have some of the con-
venience of a private display context without allocating a separate display context
for each window. The CS_CLASSDC style directs Windows to create a single
class display context—that is, one display context to be shared by all windows in
the class. An application need only retrieve the display context for a window; as
long as no other window in the class retrieves that display context, the window can
continue to use the context.

22 Microsoft Windows Programmer’s Reference

Similarly, by specifying the CS_PARENTDC style, an application can create child
windows that inherit the device context of their parent. For more information
about display contexts, see the Microsoft Windows Guide to Programming.

1.2.13 Window Procedures

A window procedure processes all messages sent to all windows in a given class.
Windows sends messages to a window procedure when it receives input from the
user that is intended for the given window, or when it needs the procedure to carry
out some action on its window, such as painting inside the client area.

A window procedure receives the following types of messages:

® Input messages from the keyboard, mouse or other pointing device, and timer
® Requests for information, such as a request for the window title

m Reports of changes made to the system by other windows, such as a change to
the WIN.INI file

= Messages that give the window procedure an opportunity to modify the stan-
dard system response to certain actions, such as an opportunity to adjust a menu
before it is displayed

= Requests to carry out some action on its window or client area, such as a
request to update the client area

= [nformation about its status in relation to other windows, such as its losing
access to the keyboard or becoming the active window

Most of the messages a window procedure receives are from Windows, but it can
also receive messages from other windows, including windows it owns. These
messages can be requests for information or notification that a given event has
occurred within another window.

A window procedure continues to receive messages from the system and possibly
other windows in the system until the window procedure, the window procedure
of a parent window, or the system destroys the window. Even while the window
is in the process of being destroyed, the window procedure receives additional
messages that give it the opportunity to carry out any cleanup tasks before
terminating. These messages include WM_CLOSE, WM_DESTROY,
WM_QUERYENDSESSION, and WM_ENDSESSION. But once the window
is destroyed, no more messages are passed to the procedure for that particular
window. If there is more than one window of the class, however, the window
procedure continues to receive messages for the other windows until they, too,
are destroyed.

A window procedure defines how all windows of a given window actually behave;
that is, it defines what response the windows make to commands from the user
or system. The window procedure must examine messages it receives from the

Chapter 1 Window Management 23

system and determine what action, if any, to take. For example, if the user clicks
the scroll bar, the window procedure may scroll the contents of the client area.
Windows passes information that affects a window and provides some tools to
carry out tasks, such as drawing and scrolling, but the window procedure must
carry out each actual task.

A window procedure can also choose not to respond to a given message. If it
does not respond, the procedure must pass the message to the DefWindowProc
function to give the system the opportunity to respond. This function carries out
default actions based on the given message and its parameters. Many messages,
especially nonclient-area messages, must be processed, so the DefWindowProc
function is required in all window procedures.

A window procedure also receives messages that are really intended to be pro-
cessed by the system. These messages, called nonclient-area messages, inform the
procedure either that the user has carried out some action in a nonclient area of
the window, such as clicking the title bar, or that some information about the win-
dow is required by the system to carry out an action, such as to move or adjust the
size of the window. Although Windows passes these messages to the window pro-
cedure, the procedure should pass them to the DefWindowProc function and not
attempt to process them. In any case, the window procedure must not ignore the
message or return without passing it to DefWindowProc.

1.2.13.1 Window Messages

A window message is a set of values that Windows sends to a window procedure
to provide input to the window or request the window to carry out some action.
Windows includes a wide variety of messages that it or applications can send to a
window procedure. Most messages are sent to a window as a result of a given func-
tion being executed or as a result of input from the user.

Every message consists of four values: a handle that identifies the window, a mes-
sage identifier, a 16-bit message-specific value, and a 32-bit message-specific
value. These values are passed as individual parameters to the window procedure.
The window procedure then examines the message identifier to determine what
response to make and how to interpret the 16- and 32-bit values.

A window procedure must use the Pascal calling convention. The following illus-
trates the window procedure syntax:

LONG FAR PASCAL WndProc(hwnd, msg, wParam, [Param)
HWND hwnd;

UINT msg;

WPARAM wParam;

LPARAM [Param;

24 Microsoft Windows Programmer’s Reference

The hwnd parameter identifies the window receiving the message; the msg
parameter is the message identifier; the wParam parameter is 16 bits of addi-
tional message-specific information; and [Param is 32 bits of additional message-
specific information. The window procedure must return a 32-bit value that
indicates the result of message processing. The possible return values depend

on the actual message sent.

Windows expects to make an intersegment call to the window procedure, so the
procedure must be declared with the FAR attribute. The window-procedure name
must be exported by including it in an EXPORTS statement in the application’s
module-definition file.

1.2.13.2 Default Window Procedure

The DefWindowProc function is the default message processor for window proce-
dures that do not or cannot process some of the messages sent to them. For most
window procedures, the DefWindowProc function carries out most, if not all, pro-
cessing of nonclient-area messages. These are the messages that signify actions to
be carried out on parts of the window other than the client area. The messages that
DefWindowProc processes and the default actions for each are as follows:

Message Default action
WM_ACTIVATE Activates or deactivates a window.
WM_CANCELMODE Cancels internal processing of standard scroll

bar input, cancels internal menu processing, and
releases mouse capture.

WM_CHARTOITEM Returns —1.

WM_CLOSE Calls the DestroyWindow function.

WM_CTLCOLOR Sets the background and text color and returns a
handle of the brush used to fill the control back-
ground.

WM_DRAWITEM Draws the focus rectangle for an owner-drawn
list box item.

WM_ERASEBKGND Fills the client area with the color and pattern
specified by the class brush, if any.

WM_GETTEXT Copies the window title into a specified buffer.

WM_GETTEXTLENGTH Returns the length, in bytes, of the window title.

WM_ICONERASEBKGND Fills the icon’s client area with the window’s

background brush.

Chapter 1 Window Management 25

Message

Default action

WM_KEYUP

WM_MOUSEACTIVATE

WM_NCACTIVATE

WM_NCCALCSIZE
WM_NCCREATE

WM_NCDESTROY
WM_NCHITTEST

WM_NCLBUTTONDBLCLK

WM_NCLBUTTONDOWN

WM_NCLBUTTONUP

WM_NCMOUSEMOVE

WM_NCPAINT
WM_PAINT

WM_QUERYENDSESSION
WM_QUERYOPEN
WM_SETCURSOR

WM_SETREDRAW

Sends a WM_SYSCOMMAND message to the
top-level window if the F10 key or the ALT key
was released. The wParam parameter of the mes-
sage is set to SC_KEYMENU.

Sends the WM_MOUSEACTIVATE response to
the parent window. The parent determines
whether to activate the child window.

Activates or deactivates the window and draws
the icon or title bar to show the new state.

Computes the size of the client area.

Initializes standard scroll bars, if any, and sets
the default title for the window.

Frees any space internally allocated for the win-
dow title.

Finds out what part of the window the mouse is
in.

Tests the given point to find out the location of
the mouse and, if necessary, generates additional
messages.

Finds out whether the left mouse button was

pressed while the mouse was in the nonclient
area of a window.

Tests the given point to find out the location of
the mouse and, if necessary, generates additional
messages.

Tests the given point to find out the location of
the mouse and, if necessary, generates additional
messages.

Paints the nonclient areas of the window.

Validates the current update region, but does not
paint the region.

Returns TRUE.

Returns TRUE.

Displays the appropriate mouse cursor, based
on the position of the cursor.

Forces an immediate update of information
about the clipping region of the complete
window.

26 Microsoft Windows Programmer’s Reference

Message Default action

WM_SETTEXT Sets and displays the window title.

WM_SHOWWINDOW Opens or closes a window.

WM_SYSCHAR Generates a WM_SYSCOMMAND message
for menu input.

WM_SYSCOMMAND Carries out the requested system command.

WM_SYSKEYDOWN Examines the given key and generates a

WM_SYSCOMMAND message if the key is
either TAB or ENTER.

WM_SYSKEYUP Sends a WM_SYSCOMMAND message to the
top-level window if the F10 key or the ALT key
was released. The wParam parameter of the mes-
sage is set to SC_KEYMENU.

WM_VKEYTOITEM Returns —1.

WM_WINDOWPOSCHANGED Sends the WM_SIZE and WM_MOVE mes-
sages to the window.

WM_WINDOWPOSCHANGING Sends the WM_GETMINMAXINFO mes-
sage to the window if the window has the
WS_OVERLAPPED or WS_THICKFRAME
style.

For detailed information on each Windows message, see the Microsoft Windows
Programmer’s Reference, Volume 3.

1.2.14 Window Styles

Windows provides several different window styles that can be combined to form
different kinds of windows. The styles are used in the CreateWindow function
when the window is created.

1.2.14.1 Overlapped Windows

An overlapped window is always a top-level window. In other words, an over-
lapped window never has a parent window. It has a client area, a border, and a title
bar. It can also have a System menu, Minimize and Maximize buttons, scroll bars,
and a menu, if these items are specified when the window is created. For a win-
dow used as a main interface, the System menu and Minimize and Maximize but-
tons are strongly recommended.

Every overlapped window can have a corresponding icon that Windows displays
when the window is minimized. A minimized window is not destroyed. It can be
restored to its previous size and position. An application minimizes a window to
save screen space when several windows are open at the same time.

Chapter 1 Window Management 27

An application creates an overlapped window by using the WS_OVERLAPPED
or WS_OVERLAPPEDWINDOW style with the CreateWindow function. An
overlapped window created with the WS_OVERLAPPED style always has a title
bar and a border. The WS_OVERLAPPEDWINDOW style creates an overlapped
window with a title bar, a thick-frame border, a System menu, and Minimize and
Maximize buttons. For a complete list of window styles, see the description of the
CreateWindow function in the Microsoft Windows Programmer’s Reference,
Volume 2.

1.2.14.2 Owned Windows

An owned window is a special type of overlapped window. Every owned window
must be owned by an overlapped window. Being owned forces several constraints
on a window:

= An owned window is always in front of its owner when the windows are in z-
order. Attempting to move the owner—that is, on an imaginary z-axis extend-
ing in front of the owned window from the screen toward the user—causes the
owned window also to change position to ensure that it will always be in front
of its owner.

= Windows automatically destroys an owned window when it destroys the win-
dow’s owner.

= An owned window is hidden when its owner is minimized.

An application creates an owned window by specifying the owner’s window
handle as the h’WndParent parameter of the CreateWindow function when cre-
ating a window that has the WS_OVERLAPPED style.

Dialog boxes are owned windows by default. The function that creates the dialog
box receives the handle of the owner window as its AWndParent parameter.

1.2.14.3 Pop-up Windows

Pop-up windows are another special type of overlapped window. The main dif-
ference between a pop-up window and other overlapped windows is that an over-
lapped window always has a title bar, whereas the title bar is optional for a pop-up
window. Like other overlapped windows, pop-up windows can be owned.

You create a pop-up window by using the WS_POPUP window style with the
CreateWindow function. An application can use the ShowWindow function to
open or close a pop-up window.

28

Microsoft Windows Programmer’s Reference

1.2.14.4 Child Windows

A child window is a window that is confined to the client area of a parent window.
Child windows are typically used to divide the client area of a parent window into
different functional areas.

You create a child window by using the WS_CHILD window style with the
CreateWindow function. An application can use the ShowWindow function to
show or hide a child window.

Every child window must have a parent window. The parent window can be an
overlapped window, a pop-up window, or even another child window. The parent
window relinquishes a portion of its client area to the child window, and the child
window receives all input from this area. The window class does not have to be

the same for each of the child windows of the parent window. This means an appli-
cation can fill a parent window with child windows that look different and carry
out different tasks.

A child window has a client area, but it does not have any other features unless
these are explicitly requested. An application can request a border, title bar,
Minimize and Maximize buttons, and scroll bars for a child window. In most
cases, the application designs its own features for the child window.

Although it is not required, every child window should have a unique integer iden-
tifier. The identifier, given in the Amenu parameter of the CreateWindow function
in place of a menu, helps identify the child window when its parent window has
other child windows. The child window should use this identifier in any messages
it sends to the parent window. This is the way a parent window with multiple child
windows can identify which child window is sending the message. Child windows
that share the same parent window are sibling windows.

Windows always positions the child window relative to the upper-left corner of
the parent window’s client area. The coordinates are always client coordinates.
(For information about mapping, see Chapter 2, “Graphics Device Interface.”) If
all or part of a child window is moved outside the visible portion of the parent win-
dow’s client area, the child window is clipped; that is, the portion outside the
parent window’s client area is not displayed.

A child window is an independent window that receives its own input and other
messages. Input intended for a child window goes directly to the child window
and is not passed through the parent window. The only exception is if input to the
child window has been disabled by the EnableWindow function. In this case,
Windows passes any input that would have gone to the child window to the parent
window instead. This gives the parent window an opportunity to examine the input
and enable the child window, if necessary.

Chapter 1 Window Management 29

Actions that affect the parent window can also affect the child window, as follows:

Parent window Child window
Shown Shown after the parent window is shown.
Hidden Hidden before the parent window is hidden. A child

window can be visible only when the parent win-
dow is visible.

Destroyed Destroyed before the parent window is destroyed.

Moved Moved with the parent window’s client area. The
child window is responsible for painting after the
move.

Increased in size or maximized Paints any portions of the parent window that have

been exposed as a result of the increased size of the
client area.

Windows does not automatically clip a child window from the parent window’s
client area. This means the parent window draws over the child window if it car-
ries out any drawing in the same location as the child window. Windows does clip
the child window from the parent window’s client area if the parent window has a
WS_CLIPCHILDREN style. If the child window is clipped, the parent window
cannot draw over it.

A child window can overlap other child windows in the same client area. Sibling
windows can draw in each other’s client area unless one child window has a
WS_CLIPSIBLINGS style. If the application specifies this style for a child win-
dow, any portion of that child’s sibling window that lies within this window is
clipped.

If a window has either the WS_CLIPCHILDREN or WS_CLIPSIBLINGS style,
a slight loss in performance occurs.

Each window takes up system resources, so an application should not use child
windows indiscriminately. For optimum performance, an application that needs to
logically divide its main window should do so in the window procedure of the
main window rather than by using child windows.

1.2.15 Multiple Document Interface Windows

Windows MDI provides applications with a standard interface for displaying mul-
tiple documents within the same instance of an application. An MDI application
creates a frame window that contains a client window in place of its client area.
An application creates an MDI client window by calling CreateWindow with the
class MDICLIENT and passing a CLIENTCREATESTRUCT structure as the

30

Microsoft Windows Programmer’s Reference

1.2.16 Title Bar

function’s [pvParam parameter. This client window in turn can own multiple child
windows, each of which displays a separate document. An MDI application con-
trols these child windows by sending messages to its client window.

For more information about MDI, see the Microsoft Windows Guide to
Programming.

The title bar, a rectangle at the top of the window, provides space for the window
title or name. An application defines the window title when it creates the window.
It can also change this name anytime by using the SetWindowText function. A
title bar makes it possible for the user to move the window by using a mouse or
other pointing device.

1.2.17 System Menu

The System menu, identified by a box at the left end of the title bar, is a pop-up
menu that contains the system commands. (The System menu is sometimes re-
ferred to as the Control menu.) The system commands are commands that can be
selected by the user to direct Windows to carry out actions that affect the window,
such as moving and closing it.

To create a window with a System menu or Close box, the application must
specify both the WS_SYSMENU and WS_CAPTION window styles when the
window is created.

1.2.18 Scroll Bars

The horizontal and vertical scroll bars are bars on the lower and right sides of a
window, respectively, making it possible for a user to scroll the contents of the
client area. Windows sends scroll requests to a window as WM_HSCROLL and
WM_VSCROLL messages. If the window permits scrolling, the window proce-
dure must process these messages.

A window can have one or both scroll bars. To create a window with a scroll

bar, the application must specify the WS_HSCROLL or WS_VSCROLL window
style when the window is created. An application can use the ShowScrollBar
function to show or hide a scroll bar of a window with the WS_HSCROLL or
WS_VSCROLL style.

Chapter 1 Window Management 3

1.2.19 Menus

A menu is a list of commands from which the user can select using the mouse or
other pointing device or the keyboard. When the user selects an item, Windows
sends a corresponding message to the window procedure to indicate which com-
mand was selected. Windows provides two types of menus: menu bars (sometimes
called static menus) and pop-up menus.

A menu bar is a horizontal menu that appears at the top of a window and below
the title bar, if one exists. Any window except a child window can have a menu
bar. If an application does not specify a menu when it creates a window, the win-
dow receives the default menu bar (if any) defined by the window class.

A pop-up menu contains a vertical list of items and is often displayed when a user
selects a menu-bar item. In turn, a pop-up menu item can display another pop-up
menu. A pop-up menu can float—that is, it can appear anywhere on the screen
designated by the application. An application creates an empty pop-up menu by
calling the CreatePopupMenu function, and then fills in the menu using the
AppendMenu and InsertMenu functions. It displays the pop-up menu by calling
TrackPopupMenu.

An application can create or modify an individual menu item with the
MF_OWNERDRAW style, indicating that the item is an owner-drawn item.

In this case, the owner of the menu is responsible for drawing all visual aspects

of the menu item, including checked, grayed, and highlighted states. When the
menu is displayed for the first time, the window that owns the menu receives a
WM_MEASUREITEM message. The [Param parameter of this message points

to a MEASUREITEMSTRUCT structure. The owner then fills in this structure
with the dimensions of the item and returns. Windows uses the information in the
structure to determine the size of the item so that Windows can appropriately
detect the user’s interaction with the item. Windows sends the WM_DRAWITEM
message whenever the owner of the menu must update the visual appearance of an
owner-drawn menu item. A top-level menu item cannot be an owner-drawn item.

An application can call the AppendMenu, InsertMenu, or ModifyMenu func-
tion to add an owner-drawn menu item to a menu or to change an existing menu
item to be an owner-drawn menu item. To maintain additional data associated with
the item, the application can supply a 32-bit value for the [pNewltem parameter of
the function. This value is available to the application as the itemData member of
the structures pointed to by the [Param parameter of the WM_MEASUREITEM
and WM_DRAWITEM messages. For example, if an application were to draw the
text in a menu item by using a specific color, the 32-bit value could contain a
pointer to a string. The application could then set the text color before drawing the
item when it received the WM_DRAWITEM message. For more information
about menus, see the Microsoft Windows Guide to Programming.

32

Microsoft Windows Programmer’s Reference

1.2.20 Window State

The window state can be open (minimized, maximized, or restored), hidden or vis-
ible, and enabled or disabled. The initial state of a window depends on whether the
following window styles are used:

WS_DISABLED
WS_MINIMIZE
WS_MAXIMIZE
WS_VISIBLE

By default, Windows creates windows that are initially enabled—that is, windows
that can start receiving input messages immediately. An application can disable
input to a new window by specifying the WS_DISABLED window style.

A new window is not displayed until an application opens it by using the Show-
Window function or specifies the WS_VISIBLE window style when it creates the
window. For overlapped windows, the WS_ICONIC window style creates a win-
dow that is minimized initially.

1.2.21 Life Cycle of a Window

Because the purpose of any window is to make it possible for the user to specify
data or for the application to display information, a window starts its life cycle
when the application has a need for input or output. A window continues its life
cycle until there is no longer a need for it or the application is closed. Some win-
dows, such as the window used for the application’s main user interface, last the
life of the application. Other windows, such as a window used as a dialog box,
may last only a few seconds.

The first step in a window’s life cycle is creation. Given a registered window class
with a corresponding window procedure, the application uses the CreateWindow
function to create the window. This function directs Windows to prepare internal
structures for the window and to return a unique integer value, called a window
handle, that the application can use to identify the window in subsequent function
calls.

The first message most windows process is WM_CREATE, the window-creation
message. The CreateWindow function sends this message to inform the window
procedure that it can now perform any initialization, such as allocating memory
and preparing data files. The wParam parameter is not used, but the [Param
parameter contains a long pointer to a CREATESTRUCT structure, whose mem-
bers correspond to the parameters passed to CreateWindow.

Chapter 1 Window Management 33

The WM_CREATE message is sent directly to the window procedure, bypassing
the application’s message queue. This means an application creates a window and
processes the WM_CREATE message before it enters the main message loop.

After a window has been created, it must be opened (displayed) before it can be
used. An application can open the window in one of two ways: It can specify the
WS_VISIBLE window style in the CreateWindow function to open the window
immediately after creation, or it can wait until later and call the ShowWindow
function to open the window. When creating a main window, an application
should not specify WS_VISIBLE, but should call ShowWindow from the Win-
Main function with the nCmdShow parameter set to specify the window state.

When the window is no longer needed or the application is terminated, the win-
dow must be destroyed. This is done by using the DestroyWindow function.
DestroyWindow removes the window from the system display and invalidates the
window handle. It also sends WM_DESTROY and WM_NCDESTROY messages
to the window procedure. The Destroy Window function also destroys all of the
window’s child and owned windows.

The window procedure also receives a WM_DESTROY message when the
WM_CLOSE message is processed by the DefWindowProc function. When a
window procedure receives a WM_DESTROY message, it should free any allo-
cated memory and close any open data files.

The window used as the application’s main user interface should always be the
last window destroyed and should always cause the application to terminate.
When this window receives a WM_DESTROY message, it should call the Post-
QuitMessage function. This function copies a WM_QUIT message to the applica-
tion’s message queue as a signal for the application to close when the message is
read from the queue.

1.2.22 Window-Creation Functions

Window-creation functions create, destroy, modify, and obtain information about
windows. Following are the window-creation functions:

Function Description

AdjustWindowRect Computes the size of a window to fit a given client area.

AdjustWindowRectEx Computes the size of a window with extended style to fit a
given client area.

CreateWindow Creates overlapped, pop-up, and child windows.

CreateWindowEx Creates overlapped, pop-up, and child windows with
extended styles.

DefDIgProc Provides default processing for messages that an applica-

tion-defined dialog box procedure does not process.

34

Microsoft Windows Programmer’s Reference

Function Description

DefFrameProc Provides default processing for messages that an applica-
tion-defined MDI frame window does not process.

DefMDIChildProc Provides default processing for messages that an applica-
tion-defined MDI child window does not process.

DefWindowProc Provides default processing for messages that an applica-
tion-defined window procedure does not process.

DestroyWindow Destroys a window.

GetClassInfo Retrieves information about a specified class.

GetClassLong Retrieves a long value from the extra class memory
associated with a window.

GetClassName Retrieves a window-class name.

GetClassWord Retrieves a word value from the extra class memory
associated with a window.

GetLastActivePopup Finds out which pop-up window owned by another win-
dow was most recently active.

GetWindowLong Retrieves a long value from the extra window memory
associated with a window.

GetWindowWord Retrieves a word value from the extra window memory
associated with a window.

RegisterClass Registers a window class.

SetClassLong Set a long value in the extra class memory associated with
a window.

SetClassWord Set a word value in the extra class memory associated with
a window.

SetWindowLong Set a long value in the extra window memory associated
with a window.

SetWindowWord Set a word value in the extra window memory associated
with a window.

UnregisterClass Removes a window class from the window-class table.

For detailed information about the window-creation functions, see the Microsoft
Windows Programmer’s Reference, Volume 2.

1.3 Display and Movement Functions

Display and movement functions show, hide, and move windows and obtain infor-

mation about the number and position of windows on the screen. Following are
display and movement functions:

Chapter 1 Window Management 35

Function

Description

ArrangelconicWindows
BeginDeferWindowPos

BringWindowToTop

CloseWindow
DeferWindowPos

EndDeferWindowPos

GetClientRect
GetWindowPlacement

GetWindowRect
GetWindowText
GetWindowTextLength

IsIconic
IsWindowVisible
IsZoomed
MoveWindow
Openlcon
SetWindowPlacement

SetWindowPos

SetWindowText
ShowOwnedPopups
ShowWindow

Arranges minimized (iconic) child windows.

Initializes memory used by the DeferWindowPos func-
tiOn. !

Brings a window to the top of a stack of overlapped win-
dows.

Minimizes the specified window.

Records positioning information for a window to be
moved or resized by the EndDeferWindowPos function.

Positions or sizes several windows simultaneously based
on information recorded by the Defer WindowPos func-
tion.

Copies the coordinates of a window’s client area.

Retrieves the show state and the normal (restored), min-
imized, and maximized positions of a window.

Copies the dimensions of an entire window.
Copies a window title into a buffer.

Returns the length, in bytes, of the given window’s title
or text.

Specifies whether a window is minimized (iconic).
Determines whether the given window is visible.
Determines whether a window is maximized.
Changes the size and position of a window.

Opens the specified window.

Sets the show state and the normal (restored), minimized,
and maximized positions of a window.

Changes the size, position, and ordering of overlapped,
pop-up, and child windows.

Sets the window title or text.
Shows or hides all pop-up windows.
Sets the visibility state of the given window.

For detailed information about the display and movement functions, see the
Microsoft Windows Programmer’s Reference, Volume 2.

36

Microsoft Windows Programmer’s Reference

1.4 Input Functions

Input functions disable input from system devices, take control of system devices,
or define special actions that Windows takes when an application receives input
from a system device. The system devices are the mouse (or other pointing de-
vice), the keyboard, and the timer. Following are input functions:

Function Description

EnableWindow Enables or disables mouse and keyboard input to a given
window.

GetActiveWindow Returns a handle of the active window.

GetCapture Returns a handle of the window with the mouse capture.

GetCurrentTime Retrieves the current Windows time.

GetDoubleClickTime Retrieves the current double-click time for the mouse.

GetFocus Retrieves the handle of the window that currently has the
input focus.

GetTickCount Returns the number of timer ticks recorded since the system
was started.

IsWindowEnabled Determines whether the specified window is enabled for
mouse and keyboard input.

KillTimer Removes the specified timer event.

ReleaseCapture Releases mouse input and restores normal input processing.

SetActiveWindow Makes a window the active window.

SetCapture Causes mouse input to be sent to a specified window.

SetDoubleClickTime Sets the double-click time for the mouse.

SetFocus Assigns the input focus to a specified window.

SetSysModalWindow Makes the specified window a system modal window.

SetTimer Creates a system timer.

SwapMouseButton Reverses the actions of the left and right mouse buttons.

For detailed information about the input functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.5 Hardware Functions

Hardware functions alter the state of input devices and obtain state information.
Windows uses the mouse and the keyboard as input devices. Following are hard-

ware functions:

Chapter 1 Window Management 37

Function Description

EnableHardwareInput Enables or disables mouse and keyboard input throughout
the application.

GetAsyncKeyState Returns interrupt-level information about the key state.

GetInputState Returns nonzero if there is mouse or keyboard input.

GetKBCodePage Determines which code-page tables are loaded.

GetKeyboardState Copies an array that contains the state of each key.

GetKeyNameText Retrieves a string specifying the name of a key from a list
maintained by the keyboard driver.

GetKeyState Retrieves the state of a virtual key.

MapVirtualKey Accepts a virtual-key code or scan code for a key and
returns the corresponding scan code, virtual-key code, or
ASCII value.

OemKeyScan Maps the ASCII values of OEM character codes O through
O0xOFF into the OEM scan codes and shift states. For
more information about the OEM character set, see the
Microsoft Windows Guide to Programming.

SetKeyboardState Sets the state of one or more keys by altering values in an
array.

VkKeyScan Translates a Windows character to the corresponding

virtual-key code and shift state for the current keyboard.

For detailed information about the hardware functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.6 Painting

This section describes the system display and the preparation of windows for paint-
ing and other general-purpose graphics operations.

1.6.1 How Windows Manages the Display

The system display is the principal display device for all applications running with
Windows. All applications are free to display some form of output on the system
display; but because many applications can run at one time, the complete system
display must be shared. Windows shares the system display by carefully managing
the access that applications have to it. Windows ensures that each application has
space to display output but does not draw in the space reserved for other applica-
tions.

Windows manages the system display by using display contexts. The display con-
text is a special device context that treats each window as a separate display sur-
face. An application that retrieves a display context for a specific window has

38

Microsoft Windows Programmer’s Reference

complete control of the system display within that window, but cannot access or
paint over any part of the display outside the window. With a display context,
an application can use GDI painting functions, as well as the painting functions
described in Section 1.6.14, “Painting Functions,” to draw in the given window.

1.6.2 Display Context Types

There are four types of display contexts: common, class, private, and window. The
common, class, and private display contexts permit drawing in the client area of a
given window. The window display context permits drawing anywhere in the win-
dow. When a window is created, Windows assigns a common, class, or private dis-
play context to it, based on the type of display context specified in that window’s
class style. A window display context can be used for painting within a window’s
nonclient area.

1.6.2.1 Common Display Context

A common display context is the default context for all windows. Windows
assigns a common display context to the window if a display-context type is not
explicitly specified in the window’s class style.

A common display context permits drawing in a window’s client area, but it is

not immediately available for use by a window. A common display context must
be retrieved from a cache of display contexts before a window can carry out any
drawing in its client area. The GetDC or BeginPaint function retrieves the display
context and returns a handle of the context. The handle can be used with GDI func-
tions to draw in the client area of the given window. After drawing is complete, an
application must use the ReleaseDC or EndPaint function to return the context to
the cache. After the context is released, drawing cannot occur until another display
context is retrieved.

When a common display context is retrieved, Windows gives it default selections
for the tools currently available to carry out the actual drawing. The default selec-
tions for a common display context are as follows:

Attribute Default

Background color Background color setting from Windows Control Panel
(typically, white).

Background mode OPAQUE.

Bitmap No default.

Brush ~ WHITE_BRUSH.

Brush origin (0,0).

Chapter 1 Window Management 39

Attribute

Default

Clipping region

Color palette
Current pen position
Device origin
Drawing mode

Font

Intercharacter spacing
Mapping mode

Pen

Polygon-filling mode
Relative-absolute flag
Stretching mode

Text color

Viewport extent
Viewport origin
Window extent
Window origin

Entire client area with the update region clipped as appro-
priate. Child and pop-up windows in the client area may also
be clipped.

DEFAULT_PALETTE.

(0,0).

Upper-left corner of client area.
R2_COPYPEN.

SYSTEM_FONT (SYSTEM_FIXED_FONT for applica-
tions written to run with Windows versions 3.0 or earlier).

0.

MM_TEXT.
BLACK_PEN.
ALTERNATE.
ABSOLUTE.
BLACKONWHITE.
Text color setting from Control Panel (typically, black).
(1,1).

(0,0).

(1,1).

0,0).

An application can modify the attributes of the display context by using the selec-
tion functions and display-context attribute functions. (For more information about
these functions, see the Microsoft Windows Programmer’s Reference, Volume 2.)
For example, applications typically change the selected pen, brush, and font.

When a common display context is released, the current selections, such as map-
ping mode and clipping region, are lost. Windows does not preserve the previous
selections of a common display context. Applications that modify the attributes of
a common display context must do so each time another context is retrieved.

1.6.2.2 Class Display Context

A window has a class display context if the window class specifies the
CS_CLASSDC style. A class display context is shared by all windows in a given
class. A class display context is not part of the display context cache. Instead,
Windows specifically allocates a class context for exclusive use by the window

class.

A class display context must be retrieved before it can be used, but it does not
have to be released after use. As long as only one window from the class uses the
context, the class display context can be kept and reused. If another window in

40

Microsoft Windows Programmer’s Reference

the class needs to use the context, that window must retrieve it before any drawing
occurs. Retrieving the context sets the correct device origin and clipping region for
the new window and ensures that the context is applied to the correct window. An
application can use the GetDC or BeginPaint function to retrieve a handle of the
class display context. The ReleaseDC and EndPaint functions have no effect on a
class display context.

A class display context is given the same default selections as a common display
context when the first window of the class is created. These selections can be mod-
ified at any time. Windows preserves all new selections made for the class display
context, except for the clipping region and device origin, which are adjusted for
the current window when the context is retrieved. This means a change made by
one window applies to all windows that subsequently use the context.

Note Changing the mapping mode of a class display context may have an un-
desirable effect on how a window’s background is erased. For more information,
see Section 1.6.7, “Window Background,” and Chapter 2, “Graphics Device
Interface.”

1.6.2.3 Private Display Context

A window has a private display context if the window class specifies the
CS_OWNDOC style. A private display context is used exclusively by a given win-
dow. A private display context is not part of the display context cache. Instead,
Windows specifically allocates the context for exclusive use by the window.
Although using private display contexts is convenient, they are expensive in terms
of system resources, so an application should use them sparingly.

A private display context needs to be retrieved only once. Thereafter, it can be

kept and used any number of times by the window. Windows automatically up-
dates the context to reflect changes to the window, such as moving or sizing. An
application can use the GetDC or BeginPaint function to retrieve a handle of a pri-
vate display context. The ReleaseDC and EndPaint functions have no effect on a
private display context.

A private display context is given the same default selections as a common display
context when the window is created. These selections can be modified at any time.
Windows preserves any new selections made for the context. New selections, such
as of a clipping region or brush, remain selected until the window specifically
makes a change.

Note Changing the mapping mode of a private display context may have an un-
desirable effect on how the window’s background is erased. For more information,
see Section 1.6.7, “Window Background,” and Chapter 2, “Graphics Device
Interface.”

Chapter 1 Window Management 41

1.6.2.4 Window Display Context

A window display context permits painting anywhere in a window, including the
title bar, menus, and scroll bars. Its origin is the upper-left corner of the window
instead of the upper-left corner of the client area.

The GetWindowDC function retrieves a window display context from the same
cache as it does common display contexts. Therefore, a window that uses a win-
dow display context must release it with the ReleaseDC function immediately
after drawing.

Windows always sets the current selections of a window display context to the
same default selections as a common display context and does not preserve any
change the window may have made to these selections. The CS_OWNDC and
CS_CLASSDC class styles have no effect on the window display context.

A window display context is intended to be used for special painting within a win-
dow’s nonclient area. Because painting in nonclient areas of overlapped windows
is not recommended, most applications reserve a display context for designing cus-
tom child windows. For example, an application can use the display context to
draw a custom border around the window. In such cases, the window usually
processes the WM_NCPAINT message instead of passing it to the DefWindow-
Proc function. For applications that do not process WM_NCPAINT messages but
still need to paint within the nonclient area, the GetSystemMetrics function can
be used to retrieve the dimensions of various parts of the nonclient area, such as
the title bar, menu bar, and scroll bars. '

1.6.3 Display-Context Cache

Windows maintains a cache of display contexts that it uses for common display
contexts and window display contexts. This cache contains five display contexts,
which means only five common display contexts can be active at any one time. To
prevent more than five from being retrieved, a window that uses a common or
window display context must release that context immediately after drawing.

If a window fails to release a common display context, all five display contexts
may eventually be active and unavailable for any other window. In such a case,
Windows ignores all subsequent requests for a common display context. In the
retail version of Windows, the system appears to be deadlocked, while the debug-
ging version of Windows undergoes a fatal exit, alerting you of a problem.

The ReleaseDC function releases a display context and returns it to the cache.
Class and private display contexts are individually allocated for each class or win-
dow; they do not belong to the cache, so they do not need to be released after use.

42

Microsoft Windows Programmer’s Reference

1.6.4 Painting Sequence

To manage the system display, Windows carries out many operations that affect
the contents of the client area. If Windows moves, sizes, or alters the appearance
of the screen, the change may affect a given window. If so, Windows marks the
area changed by the operation as ready for updating and, at the next opportunity,
sends a WM_PAINT message to the window so that it can update the window in
the update region. If a window paints in its client area, it must call the BeginPaint
function to retrieve a handle of a display context, must update the changed area as
defined by the update region, and finally, must call the EndPaint function to
complete the operation.

A window can paint within its client area at any time—that is, at times other than
in response to a WM_PAINT message. The only requirement is that it retrieve a
display context for the client area before carrying out any operations.

1.6.5 WM_PAINT Message

The WM_PAINT message is a request from Windows to a given window to up-
date its display. Windows sends a WM_PAINT message to a window whenever
it is necessary to repaint a portion of the window. When a window receives a
WM_PAINT message, it should retrieve the update region by using the Begin-
Paint function, and it should carry out whatever operations are necessary to up-
date that part of the client area.

The InvalidateRect and InvalidateRgn functions do not actually generate
WM_PAINT messages. Instead, Windows accumulates the changes made by these
functions and its own changes while a window processes other messages in its
message queue. Postponing the WM_PAINT message lets a window process all
changes at once instead of updating bits and pieces in time-consuming individual
steps.

To direct Windows to send a WM_PAINT message, an application can use the
UpdateWindow function. The UpdateWindow function sends the message
directly to the window, regardless of the number of other messages in the applica-
tion’s message queue. UpdateWindow is typically used when a window needs to
update its client area immediately, such as just after the window is created.

Once a window receives a WM_PAINT message, it must call the BeginPaint func-
tion to retrieve the display context for the client area and to retrieve other informa-
tion such as the update region and whether the background has been erased.

Windows automatically selects the update region as the clipping region of the dis-
play context. Since GDI discards (clips) drawing that extends outside the clipping
region, only drawing that is in the update region is actually visible. For more infor-
mation about the clipping region, see Chapter 2, “Graphics Device Interface.”

Chapter 1 Window Management 43

The BeginPaint function clears the update region to prevent the same region from
generating subsequent WM_PAINT messages.

After completing the painting operation, the window must call the EndPaint func-
tion to release the display context.

1.6.6 Update Region

An update region defines the part of the client area that is marked for painting on
the next WM_PAINT message. The purpose of the update region is to save appli-
cations the time it takes to paint the entire contents of the client area. If only the
part that needs painting is added to the update region, only that part is painted. For
example, if a word changes in the client area of a word-processing application,
only the word needs to be painted, not the entire line of text. This saves the time it
takes the application to draw the text, especially if there are many different sizes
and fonts.

The InvalidateRect and InvalidateRgn functions add a given rectangle or region
to the update region. The rectangle or region must be given in client coordinates.
The update region itself is defined in client coordinates. Windows adds its own
rectangles and regions to a window’s update region after operations such as
moving, sizing, and scrolling the window.

The ValidateRect and ValidateRgn functions remove a given rectangle or region
from the update region. These functions are typically used when the window has
updated a specific part of the display in the update region before receiving the
WM_PAINT message.

The GetUpdateRect function retrieves the smallest rectangle that encloses the
entire update region. The GetUpdateRgn function retrieves the update region
itself. These functions can be used to compute the current size of the update region
to determine if painting is required.

1.6.7 Window Background

The window background is the color or pattern the client area is filled with
before a window begins painting in the client area. Windows paints the back-
ground for a window or gives the window the opportunity to do so by sending a
WM_ERASEBKGND message to the window when the application calls the
BeginPaint function.

The background is important because if it is not erased, the client area will con-
tain whatever was originally on the screen before the window was moved there.
Windows erases the background by filling it with the background brush specified
by the window’s class.

44

Microsoft Windows Programmer’s Reference

Windows applications that use class or private display contexts should be careful
about erasing the background. Windows assumes the background is to be com-
puted by using the MM_TEXT mapping mode. If the display context has any
other mapping mode, the area erased may not be within the visible part of the
client area.

1.6.8 Brush Alignment

Brush alignment is particularly important on the system display where scrolling
and moving are commonplace. A brush is a pattern of bits with a minimum size of
8-by-8 bits. GDI paints with a brush by repeating the pattern again and again
within a given rectangle or region. If the region is moved by an arbitrary amount—
for example, if the window is scrolled—and the brush is used again to fill empty
areas around the original area, there is no guarantee that the original pattern and
the new pattern will be aligned. For example, if the scroll moves the original filled
area up one pixel, the intersection of the original area and any new painting will be
out of alignment by one pixel, or bit. Depending on the pattern, this may have an
undesirable visual effect. For more information about brushes, see Chapter 2,
“Graphics Device Interface.”

To ensure that a brush is aligned after a window is moved, an application must
take the following steps:

1. Call the SelectObject function to select a different brush to be the current brush.

N

Call the SetBrushOrg function to realign the current brush.

w

Call the UnrealizeObject function to realign the origin of the original brush
when it is selected next. (UnrealizeObject should not be used on stock objects,
only on brushes created by the application.)

4. Call the SelectObject function to select the original brush.

1.6.9 Painting Rectangular Areas

The FillRect, FrameRect, and InvertRect functions provide an easy way to carry
out painting operations on rectangles in the client area.

The FillRect function fills a rectangle with the color and pattern of a given brush.
This function fills all parts of the rectangle, including the edges or borders.

The FrameRect function uses a brush to draw a border around a rectangle. The
border width and height is one unit.

The InvertRect function inverts the contents of the given rectangle. On mono-
chrome displays, white pixels become black, and vice versa. On color displays, the

Chapter 1 Window Management 45

results depend on the method used by the display to generate color. In either case,
calling InvertRect twice with the same rectangle restores the screen to its original
colors.

1.6.10 Drawing Icons

The Drawlcon function draws an icon at a given location in the client area. An
icon is a bitmap that a window uses as a symbol to represent an item, such as an
application or a warning.

You can use the Image Editor to create an icon and then use Microsoft Windows
Resource Compiler (RC) to add the icon to your application’s resources. Your
application can then call the LoadIcon function to load the icon into memory.

Applications can also call the CreateIlcon function to create an icon and can mod-
ify a previously loaded or created icon at any time. An icon resource is in global
memory, and the icon’s handle is the handle of that memory. An application can
free memory used to store an icon created by Createlcon by calling the Delete-
Icon function.

1.6.11 Drawing Formatted Text

The DrawText function formats and draws text within a given rectangle in the
client area. This function provides simple text processing that most applications
can use to display text. DrawText output is similar to the output generated by a
terminal, except it uses the selected font and can clip the text if it extends outside
a given rectangle. DrawText provides many different formatting styles. For a list
of the text formatting styles, see the description of the DrawText function in the
Microsoft Windows Programmer’s Reference, Volume 2.

The DrawText function uses the currently selected font, so applications can draw
formatted text in a font other than the system font.

DrawText does not hyphenate, and although it can left align, right align, or center
text, it cannot combine alignment styles. In other words, it cannot align to both the
left and right.

DrawText recognizes a number of control characters and carries out special
actions when it encounters them. The control characters and their respective
actions are as follows:

Windows character Action

Carriage return (13) Interpreted as a line-break character. The text is immedi-
ately broken and continued on the next line down in the
rectangle.

46

Microsoft Windows Programmer’s Reference

Windows character Action

Linefeed (10) Interpreted as a line-break character. The text is immedi-
ately broken and continued on the next line down in the
rectangle.

A carriage return-linefeed character combination is inter-
preted as a single line-break character.

Space (32) Interpreted as a wordwrap character if the
DT_WORDBREAK style is given. If the text is too
long to fit on the current line in the formatting rectangle,
the line is broken at the wordwrap character that is closest
to the end of the line.

Tab (9) Expanded into a given number of spaces if the
DT_EXPANDTABS style is given. The number of
spaces depends on which tab-stop value is given with the
DT_TABSTOP style. The default value is eight.

1.6.12 Drawing Gray Text

An application can draw gray text by calling the SetTextColor function to set the
current text color to COLOR_GRAYTEXT, the solid gray system color used to
draw disabled text. However, if the current display driver does not support a solid
gray color, this value is set to zero.

The GrayString function is a multiple-purpose function that gives applications
another way to gray text or carry out other customized operations on text or bit-
maps before drawing the result in a client area. To gray text, the function creates a
memory bitmap, draws the string in the bitmap, and then grays the string by com-
bining it with a gray brush. The GrayString function finally copies the gray text
to the display. However, an application can intercept or modify each step of this
process to carry out custom effects, such as changing the gray brush to a patterned
brush or drawing an icon instead of a string.

If GrayString is used to draw gray text only, GrayString uses the selected font of
the given display context. First, GrayString sets text color to black. It then creates
a bitmap and uses the TextOut function to write a given string to the bitmap. It
then uses the PatBIlt function and a gray brush to gray the text, and uses the BitBIt
function to copy the bitmap to the client area.

GrayString assumes that the display context for the client area has MM_TEXT
mapping mode. Other mapping modes cause undesirable results.

GrayString lets an application modify this graying procedure in three ways: by
defining an additional brush to be combined with the text before the text is dis-
played, by replacing the call to the TextOut function with a call to an application-
supplied function, and by disabling the call to the PatBIt function.

Chapter 1 Window Management 47

If an additional brush is combined with text, it is defined for the 4br parameter of
GrayString. The brush is combined with the text as the text is copied to the client
area by the BitBIt function. The additional brush is intended to be used to give the
text a desired color, because the bitmap used to draw the text is a monochrome
bitmap.

If an application-supplied function replaces TextOut, it is defined for the gsprc
parameter of GrayString. When gsprc is not NULL, GrayString automatically
calls the application-supplied function instead of the TextOut function and passes
it a handle of the display context for the memory bitmap and the long pointer and
count passed to GrayString. The function can carry out any operation and inter-
pret the long pointer and count in any way. For example, a negative count could be
used to indicate that the long pointer points to an icon handle that signals the appli-
cation-supplied function to draw the icon and let GrayString gray and display it.
No matter what type of drawing the function carries out, GrayString assumes it is
successful if the application-supplied function returns a nonzero value.

GrayString suppresses graying if it receives a cch parameter equal to —1 and the
application-supplied function returns zero. This provides a way to combine custom
patterns with the text without interference from the gray brush.

1.6.13 Nonclient-Area Painting

Windows sends a WM_NCPAINT message to the window whenever a part of the
nonclient area of the window, such as the title bar, menu bar, or window frame,
needs painting. Processing this message is not recommended because a window
that does so must be able to paint all the required parts of the nonclient area for the
window. Unless the Windows application is creating a custom nonclient area for a
child window, a window should pass this message to the DefWindowProc func-
tion for default processing.

1.6.14 Painting Functions

Painting functions prepare a window for painting and catry out some useful
general-purpose graphics operations. Although all the paint functions are specifi-
cally intended for the system display, some can be used for other output devices.
Following are the painting functions:

Function Description

BeginPaint Prepares a window for painting.

DrawFocusRect Draws a rectangle in the style used to indicate focus.
Drawlcon Draws an icon.

DrawText Draws characters of a specified string.

EndPaint Marks the end of window repainting.

48

Microsoft Windows Programmer’s Reference

Function Description

ExcludeUpdateRgn Prevents drawing within invalid areas of a window.

_ FillRect Fills a given rectangle by using the specified brush.

FrameRect Draws a border for the given rectangle.

GetDC Retrieves the display context for the client area. For more
information about device contexts, see Section 1.2.12,
“Class and Private Display Contexts,” and Section 1.6.2,
“Display Context Types.”

GetDCEx Retrieves the display context for the client area (as does the
GetDC function). For more information about device con-
texts, see Section 1.2.12, “Class and Private Display Con-
texts,” and Section 1.6.2, “Display Context Types.”

GetUpdateRect Copies the dimensions of a window region’s bounding rect-
angle.

GetUpdateRgn Copies a window’s update region.

GetWindowDC Retrieves the display context for an entire window. For more
information about device contexts, see Section 1.2.12,
“Class and Private Display Contexts,” and Section 1.6.2,
“Display Context Types.”

GrayString Writes the characters of a string by using gray text.

InvalidateRect Marks a rectangle for repainting.

InvalidateRgn Marks a region for repainting.

InvertRect Inverts the display bits of the specified rectangle.

LockWindowUpdate Disables or reenables drawing in a window.

RedrawWindow Updates a rectangle or region within a window’s client area.

ReleaseDC Releases a display context. For more information about
device contexts, see Section 1.2.12, “Class and Private Dis-
play Contexts,” and Section 1.6.2, “Display Context Types.”

UpdateWindow Notifies the application when parts of a window need
redrawing.

ValidateRect Releases the specified rectangle from repainting.

ValidateRgn Releases the specified region from repainting.

For detailed information about the painting functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.7 Dialog Boxes

A dialog box is a temporary window that Windows creates for special-purpose
input and then destroys immediately after use. An application typically uses a

dialog box to prompt the user for additional information about a current command

selection.

Chapter 1 Window Management 49

1.7.1 Uses for Dialog Boxes

For convenience and to keep from introducing device-dependent values into the
application code, applications use dialog boxes instead of creating their own win-
dows. This device independence is maintained by using logical coordinates in the
dialog box template. A dialog box is convenient to use because all aspects of the
dialog box, except how to carry out its tasks, are predefined. A dialog box supplies
a window class and procedure; the window for the dialog box is created automat-
ically. The application supplies a dialog box procedure to carry out tasks and a
dialog box template that describes the dialog box style and content. For additional
information about dialog boxes, see the Microsoft Windows Guide to Program-
ming.

1.7.1.1 Modeless Dialog Box

A modeless dialog box allows the user to supply information to the dialog box and
return to the previous task without canceling or removing the dialog box. A mode-
less dialog box makes it possible for a user to supply more than one piece of infor-
mation about the current task without having to select a command from a menu
each time. For example, a modeless dialog box is often used with a text-search
command in word-processing applications. The dialog box remains displayed
while the search is carried out. The user can then return to the dialog box and
search for the same word again, or change the entry in the dialog box and search
for a new word.

An application with a modeless dialog box processes messages for that box by
using the IsDialogMessage function inside the main message loop. The dialog
box procedure of a modeless dialog box must send a message to the parent win-
dow when it has input for the parent window. The dialog box procedure must also
destroy the dialog box when it is no longer needed. An application can call the
DestroyWindow function to destroy a modeless dialog box. The application must
not call the EndDialog function to destroy a modeless dialog box.

1.7.1.2 Modal Dialog Box

A modal dialog box requires the user to respond to a request before the application
continues. Typically, a modal dialog box is used when a chosen command needs
additional information before it can proceed.

A modal dialog box disables its parent window, and it creates its own message
loop, temporarily taking control of the application’s message queue from the appli-
cation’s main message loop.

By default, a modal dialog box cannot be moved by the user. An application can
create a movable modal dialog box by specifying the WS_CAPTION window
style.

50

Microsoft Windows Programmer’s Reference

The dialog box is displayed until the dialog box procedure calls the EndDialog
function, or until Windows is closed. The parent window remains disabled unless
the dialog box enables it. Note that enabling the parent window is not recom-
mended because it defeats the purpose of the modal dialog box.

1.7.1.3 System-Modal Dialog Box

A system-modal dialog box is identical to a modal dialog box except that all win-
dows, not just the parent window, are disabled. System-modal dialog boxes must
be used with care because they effectively shut down the system until the user sup-
plies the required information.

1.7.2 Creating a Dialog Box

A dialog box is typically created by using either the CreateDialog or DialogBox
function. These functions load a dialog box template from the application’s execut-
able file and then create a pop-up window that matches the template’s specifica-
tions. The dialog box belongs to the predefined dialog box class unless another
class is explicitly defined. The DialogBox function creates a modal dialog box; the
CreateDialog function creates a modeless dialog box.

Use the WS_VISIBLE style for the dialog box template if you want the dialog box
to appear upon creation.

1.7.2.1 Dialog Box Template

The dialog box template is a description of the dialog box: its height and width,
the controls it contains, its style, the type of border it uses, and so on. A template
is an application’s resource. You use the Resource Compiler to convert the text
description of the template to the required binary form and to add that binary form
to the application’s executable file.

Because a dialog box is system-independent, you can easily modify the template
without changing the source code.

The CreateDialog or DialogBox function loads the resource into memory when it
creates the dialog box and then uses the information in the dialog box template to
create the dialog box, position it, and create and position the controls for the dialog
box.

1.7.2.2 Dialog Box Measurements

Dialog box and control dimensions and coordinates are device-independent. Be-
cause a dialog box may be displayed on system displays that have widely varying
pixel resolutions, dialog box dimensions are specified in system-character widths

Chapter 1 Window Management 51

and heights instead of pixels. This ensures the best possible appearance of charac-
ters. One unit in the x-direction is equal to one-fourth of the dialog box base width
unit. One unit in the y-direction is equal to one-eighth of the dialog box base
height unit. The dialog box base units are computed from the height and width

of the system font; the GetDialogBaseUnits function returns the dialog box base
units for the current display. Applications can convert these measurements to
pixels by using the MapDialogRect function.

Windows does not allow the height of a dialog box to exceed the height of a full-
screen window, and it does not allow the width of a dialog box to be greater than
the width of the screen.

1.7.3 Return Values from a Dialog Box

The DialogBox function that creates a modal dialog box does not return until the
dialog box procedure has called the EndDialog function to signal the destruction
of the dialog box. When control finally returns from the DialogBox function, the
return value is equal to the value specified in the EndDialog function. This means
a modal dialog box can return a value through the EndDialog function.

Modeless dialog boxes cannot return values in this way because they do not use
the EndDialog function to close and do not return control in the same way a
modal dialog box does. Instead, a modeless dialog box returns values to its parent
window by using the SendMessage function to send a notification message to the
parent window. Although Windows does not explicitly define the content of a noti-
fication message, most applications use a WM_COMMAND message with an
integer value that identifies the dialog box in the wParam parameter and the return
value in the [Param parameter. A modal dialog box can also use this technique to
return values to its parent window before closing.

1.7.4 Controls in a Dialog Box

A control is a child window that belongs to a predefined or application-defined
window class and that gives the user a method of supplying input to the applica-
tion. A dialog box can contain any number and any types of controls. Examples of
controls are push buttons and edit controls. Most dialog boxes contain one or more
controls of the predefined class. The number of controls, the order in which they
should be created, and the location of each in the dialog box are defined by the
control statements given in the dialog box template.

1.7.4.1 Control Identifiers

Every control in a dialog box needs a unique control identifier, or ID, to distin-
guish it from other controls. Because all controls send information to the dialog

52

Microsoft Windows Programmer’s Reference

box procedure through WM_COMMAND messages, the control identifiers are
essential for the dialog box to determine which control sent a given message.

Each control in the dialog box must have a unique identifier. If a dialog box has a
menu bar, there must be no conflict between menu-item identifiers and control
identifiers. Because Windows sends menu input to a dialog box procedure as
WM_COMMAND messages, conflicts with menu and control identifiers can
cause errors. Menus in dialog boxes are not recommended.

The dialog box procedure usually identifies each dialog box control by using its
control identifier. Occasionally the dialog box procedure requires the window
handle that was given to the control when it was created. The dialog box proce-
dure can retrieve this window handle by using the GetDIgItem function.

1.7.4.2 The WS_TABSTOP and WS_ GROUP Control Styles

The WS_TABSTOP style specifies that the user can move the input focus to the
given control by pressing the TAB key or SHIFT+TAB keys. Typically, every control
in the dialog box has this style, so the user can move the input focus from one con-
trol to the other. If two or more controls are in the dialog box, the TAB key moves
the input focus to the controls in the order in which they have been created. The
SHIFT+TAB keys move the input focus in reverse order. For modal dialog boxes, the
TAB and SHIFT+TAB keys are automatically enabled for moving the input focus. For
modeless dialog boxes, the IsDialogMessage function must be used to filter mes-
sages for the dialog box and to process these keystrokes. Otherwise, the keys have
no special meaning and the WS_TABSTOP style is ignored.

The WS_GROUP style specifies that the user can move the input focus within a
group of controls by using the arrow keys. The first control in a group of controls
must have the WS_GROUP style. The next control that has the WS_GROUP style
marks the bottom boundary of the group; the input focus cannot be moved to this
control by using the arrow keys. The DOWN ARROW and RIGHT ARROW keys move
the input focus to controls in the order in which they have been created. The up
ARROW and LEFT ARROW keys move the input focus in reverse order. For modal
dialog boxes, the arrow keys are automatically enabled for moving the input focus.
For modeless dialog boxes, the IsDialogMessage function must be used to filter
messages for the dialog box and to process these keystrokes. Otherwise, the keys
have no special meaning and the WS_GROUP style is ignored.

1.7.4.3 Buttons

Buttons are the principal interface of a dialog box. Almost all dialog boxes have
at least one push button, and most have one default push button (a push button
having the BS_DEFPUSHBUTTON style) and one or more other push buttons.
Many dialog boxes have collections of radio buttons enclosed in group boxes or
have lists of check boxes.

Chapter 1 Window Management 53

Most modal or modeless dialog boxes that use the special keyboard interface

have a default push button whose control identifier is set to IDOK so that the
action the dialog box procedure takes when the button is chosen is identical to the
action taken when the ENTER key is pressed. There can be only one button with the
default style; however, an application can assign the default style to any button at
any time. Most dialog boxes that use the special keyboard interface can also set
the control identifier of another push button to IDCANCEL so that the action of
the EsC key is duplicated by choosing that button.

When a dialog box first starts, the dialog box procedure can set the initial state of
each button by using the CheckDIgButton function, which sets or clears the but-
ton state. This function is most useful when used to set the state of radio buttons or
check boxes. If the dialog box contains a group of radio buttons in which only one
button should be set at any given time, the dialog box procedure can use the
CheckRadioButton function to set the appropriate radio button and automatically
clear any other radio button.

Before a dialog box terminates, the dialog box procedure can check the state of
each button control by using the IsDIgButtonChecked function, which returns the
current state of the button. A dialog box typically saves this information to initial-
ize the buttons the next time the dialog box is created.

1.7.4.4 Edit Controls

Many dialog boxes have edit controls that let the user supply text as input. Most
dialog box procedures initialize an edit control when the dialog box first starts. For
example, the dialog box procedure may place a proposed filename in the control
that the user can select, modify, or replace. The dialog box procedure can set the
text in an edit control by using the SetDIgItemText function, which copies text
from a given buffer to the edit control. When the edit control receives the input
focus, the complete text is automatically selected for editing.

Because edit controls do not automatically return their text to the dialog box, the
dialog box procedure must retrieve the text before terminating. It can retrieve the
text by using the GetDlgltemText function, which copies the edit-control text to a
buffer. The dialog box procedure typically saves this text to initialize the edit con-
trol later or passes it on to the parent window for processing.

Some dialog boxes use edit controls that let the user enter numbers. The dialog
box procedure can retrieve a number from an edit control by using the GetDIg-
ItemInt function, which retrieves the text from the edit control and converts the
text to a decimal value. The user enters the number in decimal digits. It can be
either signed or unsigned. The dialog box procedure can display an integer by
using the SetDIgIltemInt function. SetDIgItemInt converts a signed or unsigned
integer to a string of decimal digits.

%4

Microsoft Windows Programmer’s Reference

1.7.4.5 List Boxes and Directory Listings

Some dialog boxes display lists, such as a list of filenames, from which the user
can select one or more items. To display a list of filenames, a dialog box typically
uses a list box and the DIgDirList and DlgDirSelect functions. The DIgDirList
function automatically fills a list box with the filenames in the current directory.
The DlgDirSelect function retrieves the selected filename from the list box. To-
gether, these two functions provide a convenient way for a dialog box to display a
directory listing that makes it possible for the user to select a file without having to
type the location and name of the file.

1.7.4.6 Combo Boxes

Another method for providing a list of items to a user is by using a combo box. A
combo box consists of either a static control or edit control combined with a list
box. The list box can be displayed at all times or pulled down by the user. If the
combo box contains a static control, that control always displays the current selec-
tion (if any) from the list box portion of the combo box. If the combo box uses an
edit control, the user can type a selection; the list box highlights the first item (if
any) that matches what the user has entered in the edit control. The user can
choose the OK button or press ENTER to complete the choice.

1.7.4.7 Owner-Drawn Dialog Box Controls

List boxes, combo boxes, and buttons can be designated as owner-drawn controls
by creating them with the appropriate style. Following are available styles:

Style Meaning

LBS_OWNERDRAWFIXED Creates an owner-drawn list box with items
that have the same, fixed height.

LBS_OWNERDRAWVARIABLE Creates an owner-drawn list box with items
that have different heights.

CBS_OWNERDRAWFIXED Creates an owner-drawn combo box with items
that have the same, fixed height.

CBS_OWNERDRAWVARIABLE Creates an owner-drawn combo box with items
that have different heights.

BS_OWNERDRAW Creates an owner-drawn button.

When a control has the owner-drawn style, Windows handles the user’s interac-
tion with the control as usual, performing such tasks as detecting when a user has
chosen a button and notifying the button’s owner of the event. However, because
the control is owner-drawn, the owner of the control is completely responsible for
the visual appearance of the control. Owner-drawn list boxes and combo boxes
can control the display of only the individual elements within a list box or combo
box, not the entire list box or combo box.

Chapter 1 Window Management 55

When Windows first creates a dialog box containing owner-drawn controls, it
sends the owner a WM_MEASUREITEM message for each owner-drawn control.
The [Param parameter of this message contains a pointer to a MEASUREITEM-
STRUCT structure. When the owner receives the message for a control, the
owner fills in the appropriate members of the structure and returns. This informs
Windows of the dimensions of the control or of its items so that Windows can
appropriately detect the user’s interaction with the control. If a list box or

combo box is created with the LBS_ OWNERDRAWYVARIABLE or
CBS_OWNERDRAWYVARIABLE style, the WM_MEASUREITEM message

is sent to the owner for each item in the control, because each item can differ in
height. Otherwise, this message is sent once for the entire owner-drawn control.

Whenever an owner-drawn control needs to be redrawn, Windows sends the
WM_DRAWITEM message to the owner of the control. The [Param parameter of
this message contains a pointer to a DRAWITEMSTRUCT structure that con-
tains information about the drawing required for the control. Similarly, if an item
is deleted from a list box or combo box, Windows sends the WM_DELETEITEM
message containing a pointer to a DELETEITEMSTRUCT structure that de-
scribes the deleted item.

1.7.4.8 Messages for Dialog Box Controls

Many controls recognize predefined messages that, when sent to the control, cause
it to carry out some action. A dialog box procedure can send a message to a con-
trol by supplying the control identifier and using the SendDIgItemMessage func-
tion, which is identical to the SendMessage function except that it uses a control
identifier instead of a window handle to identify the control that is to receive the
message.

1.7.5 Keyhoard Interface for Dialog Boxes

Windows provides a special keyboard interface for modal dialog boxes and mode-
less dialog boxes that use the IsDialogMessage function to filter messages. This
keyboard interface carries out special processing for several keys and generates
messages that correspond to certain buttons in the dialog box or change the input
focus from one control to another. The keys used in this interface and the respec-
tive actions are as follows:

Key Action

DOWN ARROW Moves the input focus to the next control in the group.

ENTER Sends a WM_COMMAND message to the dialog box procedure.
The wParam parameter is set to 1 or the default button.

ESC Sends a WM_COMMAND message to the dialog box procedure.

The wParam parameter is set to 2.

56

Microsoft Windows Programmer’s Reference

Key Action

LEFT ARROW Moves the input focus to the previous control in the group.

RIGHT ARROW Moves the input focus to the next control in the group.

SHIFT+TAB Moves the input focus to the previous control that has the
WS_TABSTOP style.

TAB Moves the input focus to the next control that has the
WS_TABSTOP style.

UP ARROW Moves the input focus to the previous control in the group.

The TAB key and the arrow keys have no effect if the controls in the dialog box do
not have the WS_TABSTOP or WS_GROUP style. The keys have no effect in a
modeless dialog box if the IsDialogMessage function is not used to filter mes-
sages for the dialog box.

Note For applications that use accelerator keys and have modeless dialog boxes,
the IsDialogMessage function must be called before the TranslateAccelerator
function. Otherwise, the keyboard interface for the dialog box may not be
processed correctly.

Applications that have modeless dialog boxes and need those boxes to have the
special keyboard interface must filter all messages retrieved from the applica-
tion’s message queue through the IsDialogMessage function before carrying out
any other processing. This means that the application must pass the message to
IsDialogMessage immediately after retrieving the message by using the Get-
Message or PeekMessage function. Most applications that have modeless dialog
boxes incorporate the IsDialogMessage function as part of the main message loop
in the WinMain function. The IsDialogMessage function automatically processes
any messages for the dialog box. This means that if the function returns a nonzero
value, the message does not require additional processing and must not be passed
to the TranslateMessage or DispatchMessage function.

The IsDialogMessage function also processes ALT+application-defined mnemonic
key sequences.

In modal dialog boxes, the arrow keys have specific functions that depend on the
controls in the box. For example, the keys move the input focus from control to
control in group boxes, move the cursor in edit controls, and scroll the contents of
list boxes. The arrow keys cannot be used to scroll the contents of any dialog box
that has its own scroll bars. If a dialog box has scroll bars, the application must
provide an appropriate keyboard interface for the scroll bars. Note that the mouse
interface for scrolling is available if the system has a mouse.

Chapter 1 Window Management 57

1.7.6 Functions for Dialog Boxes

The functions listed in this section create, alter, test, and destroy dialog boxes and
controls within dialog boxes. Following are the functions for dialog boxes:

Function Description

CheckDIgButton Places or removes a check mark, or changes the state
of a three-state button or check box.

CheckRadioButton Selects a specified radio button and clears all others.

CreateDialog Creates a modeless dialog box.

CreateDialogIndirect Creates a modeless dialog box from a template.

CreateDialogIndirectParam

CreateDialogParam
DefDlgProc
DialogBox

DialogBoxIndirect
DialogBoxIndirectParam

DialogBoxParam
DlgDirList
DigDirListComboBox
DigDirSelect
DigDirSelectComboBox
EndDialog

GetDialogBaseUnits

GetDIgCtrlID
GetDlgltem

GetDlgltemInt

GetDlgltemText
GetNextDIlgGroupItem

Creates a modeless dialog box from a template and
then passes data to it.

Creates a modeless dialog box and then passes data
to it.

Provides default processing for any Windows mes-
sages that a dialog box with a private window class
does not process.

Creates a modal dialog box.
Creates a modal dialog box from a template.

Creates a modal dialog box from a template and then
passes data to it.

Creates a modal dialog box and then passes data to it.
Fills a list box with names of files matching a path.

Fills a combo box with names of files matching a
specified path and filename.

Copies the current selection from a list box to a
string.

Copies the current selection from a combo box to a
string.

Frees resources and destroys windows associated
with a modal dialog box.

Retrieves the base dialog units used by Windows
when creating a dialog box.

Returns the identifier of a control window.

Retrieves the handle of a dialog box control in the
given dialog box.

Translates the control text of a control into an integer
value.

Copies a control’s text into a string.
Returns the window handle of the next item in a
group.

58 Microsoft Windows Programmer’s Reference

Function Description

GetNextDlgTabltem Returns the window handle of the next or previous
item.

IsDialogMessage Determines whether a message is intended for the
given modeless dialog box.

IsDigButtonChecked Tests whether a button is selected.

MapDialogRect Converts the dialog box coordinates to client coordi-
nates.

SendDlgltemMessage Sends a message to a control within a dialog box.

SetDlgltemInt Sets the title or text of a control to a string that repre-
sents an integer.

SetDlgltemText Sets the title or text of a control to a string.

For detailed information about the functions for dialog boxes, see the Microsoft
Windows Programmer’s Reference, Volume 2.

1.8 Scrolling

Scrolling is the movement of data in and out of the client area at the request of the
user. It is a way for the user to see a document or graphic in parts if Windows can-
not fit the entire document or graphic inside the client area. A scroll bar allows the
user to control scrolling.

1.8.1 Standard Scroll Bars and Scroll-Bar Controls

A standard scroll bar is a part of the nonclient area of a window. It is created
with the window and displayed when the window is displayed. The sole purpose
of a standard scroll bar is to let users generate scrolling requests for the win-
dow’s client area. A window has standard scroll bars if it is created with the
WS_VSCROLL or WS_HSCROLL style. A standard scroll bar is either vertical
or horizontal. A vertical scroll bar, if used, always appears at the right of the client
area; a horizontal scroll bar, if used, always appears at the bottom. A standard
scroll bar always has the standard scroll-bar height and width as defined by the
SM_CXVSCROLL and SM_CYHSCROLL system metric values. (For more
information, see the description of the GetSystemMetrics function in the
Microsoft Windows Programmer’s Reference, Volume 2.)

A scroll-bar control is a control window that looks and acts like a standard scroll
bar. But unlike a standard scroll bar, a scroll-bar control is not part of any window.
As a separate window, a scroll-bar control can receive the input focus and indi-
cates that it has the focus by displaying a flashing caret in the scroll box (also
called the thumb). When a scroll-bar control has the input focus, the user can

use the keyboard to direct the scrolling. Unlike standard scroll bars, a scroll-bar

Chapter 1 Window Management 59

control provides a built-in keyboard interface. Scroll-bar controls also can be used
for other purposes. For example, a scroll-bar control can be used to select values
from a range of values, such as a color from a spectrum of colors.

1.8.2 Scroll Box

The scroll box is the small rectangle in a scroll bar. It shows the approximate loca-
tion within the current document or file of the data currently displayed in the client
area. For example, the scroll box is in the middle of the scroll bar when page three
of a five-page document is in the client area.

The SetScrollPos function sets the scroll box position in a scroll bar. Because
Windows does not automatically update the scroll box position when an applica-
tion scrolls, SetScrollPos must be used to update the position. The GetScrollPos
function retrieves the current position.

A scroll box position is represented as an integer. The position is relative to the
left or upper end of the scroll bar, depending on whether the scroll bar is horizon-
tal or vertical. The position must be within the scroll-bar range, which is defined
by minimum and maximum values. The positions are distributed equally along the
scroll bar. For example, if the range is 0 through 100, there are 101 positions along
the scroll bar, each equally spaced so that position 50 is in the middle of the scroll
bar. The initial range depends on the scroll bar. Standard scroll bars have an initial
range of O through 100; scroll-bar controls have an empty range (both minimum
and maximum values are 0) if no explicit range is given when the control is
created. An application can change the range by using the SetScrollRange func-
tion to set new minimum and maximum values so that applications can change the
range at any time. The GetScrollRange function retrieves the current minimum
and maximum values. The minimum and maximum values can be any integers.
For example, a spreadsheet program with 255 rows can set the vertical scroll range
to 1 through 255.

If SetScrollPos specifies a position value that is less than the minimum or more
than the maximum, the minimum or maximum value is used instead. SetScrollPos
moves the scroll box along the scroll bar.

1.8.3 Scrolling Requests

A user makes a scrolling request by clicking in a scroll bar. Windows sends the re-
quest to the given window in the form of WM_HSCROLL and WM_VSCROLL
messages. The messages’ [Param parameter contains a position value and the
handle of the scroll-bar control that generated the message (/Param is zero if a
standard scroll bar generated the message). The wParam parameter specifies the
type of scrolling; for example, the user may scroll up one line, scroll down a page,
or scroll to the bottom. The type of scrolling is determined by which area of the
scroll bar the user clicks.

60 Microsoft Windows Programmer’s Reference

The user can also make a scrolling request by using the scroll box, the small
rectangle inside the scroll bar. The user moves the scroll box by moving the
mouse while holding the left mouse button down when the cursor is positioned
on the scroll box. The scroll bar sends SB_ THUMBTRACK and
SB_THUMBPOSITION flags with a WM_HSCROLL or WM_VSCROLL
message to an application as the user moves the scroll box. Each message speci-
fies the current position of the scroll box.

1.8.4 Processing Scroll Messages

A window that permits scrolling needs a standard scroll bar or a scroll-bar control
to let the user generate scrolling requests, and it needs a window procedure to
process the WM_HSCROLL and WM_VSCROLL messages that represent the
scrolling requests. Although the result of a scrolling request depends entirely on
how the window processes it, a window typically carries out a scroll operation by
moving through the application’s displayed information in some direction from
the current location or to a known beginning or end and by displaying the data at
the new location. For example, a word-processing application can scroll to the
next line, the next page, or to the end of the document.

1.8.5 Scrolling the Client Area

The simplest way to scroll is to erase the current contents of the client area, and
then paint the new information. This is the method an application is likely to use
with SB_PAGEUP, SB_PAGEDOWN, SB_TOP, and SB_END requests, which
require completely new contents.

For some requests, such as SB_LINEUP and SB_LINEDOWN, not all the con-
tents need to be erased, since some are still visible after the scroll. The Scroll-
Window function preserves a portion of the client area’s contents, moves the
preserved portion the specified amount, and prepares the rest of the client area

for painting new information. ScrollWindow uses the BitBlt function to move a
specific part of the client area to a new location within the client area. Any part of
the client area that is uncovered (not in the part to be preserved) is invalidated and
is erased and painted over at the next WM_PAINT message.

ScrollWindow also lets an application clip a part of the client area from the scroll.
This keeps items that have fixed positions in the client area, such as child win-
dows, from moving. This action automatically invalidates the part of the client
area that is to receive the new information so that the application does not have to
compute its own clipping regions.

Chapter 1 Window Management 61

1.8.6 Hiding a Standard Scroll Bar

For standard scroll bars, if the minimum and maximum values are equal, the scroll
bar is hidden and, in effect, disabled. Using this technique, you can temporarily
hide a scroll bar when it is not needed for the current contents of the client area.

The SetScrollRange function hides and disables a standard scroll bar when equal
minimum and maximum values are specified. No scrolling requests can be made
through the scroll bar when it is hidden. SetScrollRange enables the scroll bar and
shows it again when it sets the minimum and maximum values to unequal values.
The ShowScrollBar function can also be used to hide or show a scroll bar. It does
not affect the scroll bar’s range or scroll box’s position.

1.8.7 Scrolling Functions

Scrolling functions control the scrolling of a window’s contents and control the
window’s scroll bars. Following are the scrolling functions:

Function Description

EnableScrollBar Enables or disables one or both arrows of a scroll bar.

GetScrollPos Retrieves the current position of the scroll box.

GetScrollRange Copies the minimum and maximum scroll-bar positions for
given the scroll bars for a specified scroll operation.

ScrollDC Scrolls a rectangle of bits horizontally and vertically.

ScrollWindow Moves the contents of the client area.

ScrollWindowEx Moves the contents of the client area (as does the ScrollWindow
function) but with extended capabilities.

SetScrollPos Sets the scroll box.
SetScrollRange Sets the minimum and maximum scroll-bar positions.
ShowScrollBar Displays or hides a scroll bar and its controls.

For detailed information about the scrolling functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.9 Menu Functions

A menu is an input tool in a Windows application that offers users one or more
items, which they can select with the mouse or keyboard. An item in a menu bar
can display a pop-up menu, and any item in a pop-up menu can display another
pop-up menu. In addition, a pop-up menu can appear anywhere on the screen.

62

Microsoft Windows Programmer’s Reference

Menu functions create, modify, and destroy menus. Following are the menu func-

tions:

Function Description

AppendMenu Appends a menu item to a menu.

CheckMenultem Places or removes check marks next to pop-up
menu items.

CreateMenu Creates an empty menu.

CreatePopupMenu Creates an empty pop-up menu.

DeleteMenu Removes a menu item and destroys any
associated pop-up menus.

DestroyMenu Destroys the specified menu.

DrawMenuBar Redraws a menu bar.

EnableMenultem Enables, disables, or grays a menu item.

GetMenu Retrieves a handle of the menu of a specified

GetMenuCheckMarkDimensions

GetMenultemCount
GetMenultemID
GetMenuState
GetMenuString
GetSubMenu
GetSystemMenu

HiliteMenultem

InsertMenu
IsMenu
LoadMenulndirect
ModifyMenu
RemoveMenu

SetMenu
SetMenultemBitmaps

TrackPopupMenu

window.

Retrieves the dimensions of the default menu
check-mark bitmap.

Returns the count of items in a menu.
Returns the item’s identification.

Obtains the status of a menu item.

Copies a menu label into a string.

Retrieves the menu handle of a pop-up menu.

Accesses the System menu for copying and
modification.

Highlights or removes the highlighting from a
top-level (menu-bar) menu item.

Inserts a menu item in a menu.

Determines if a menu handle is valid.

Loads a menu resource.

Changes a menu item.

Removes an item from a menu but does not
destroy it.

Specifies a new menu for a window.
Associates bitmaps with a menu item for dis-
play whether an item is or is not checked.

Displays a pop-up menu at a specified screen
location and tracks user interaction with the
menu.

For detailed information about the menu functions, see the Microsoft Windows

Programmer’s Reference, Volume 2.

Chapter 1 Window Management 63

1.10 Information Functions

Information functions obtain information about the number and position of win-
dows on the screen. Following are the information functions:

Function Description

AnyPopup Indicates whether any pop-up window exists.

ChildWindowFromPoint Determines which child window contains a specific
point.

EnumChildWindows Enumerates the child windows that belong to a specific
parent window.

EnumTaskWindows Enumerates all windows associated with a given task.

EnumWindows Enumerates windows on the display.

FindWindow Returns the handle of a window with the given class and
title.

GetNextWindow Returns a handle of the next or previous window.

GetParent Retrieves the handle of the specified window’s parent
window.

GetTopWindow Returns a handle of the top-level child window.

GetWindow Returns a handle of a window that has the specified rela-
tionship to the given window.

GetWindowTask Returns the handle of a task associated with a window.

IsChild Determines whether a window is the descendent of a
specified window.

IsWindow Determines whether a window is a valid, existing
window.

SetParent Changes the parent window of a child window.

SystemParametersInfo Retrieves or sets systemwide values.

WindowFromPoint Identifies the window containing a specified point.

For detailed information about information functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.11 System Functions

System functions return information about the system metrics, color, and time.
Following are the system functions:

Function Description

GetCurrentTime Returns the time elapsed since the system was started.
GetSysColor Retrieves the system color.

64 Microsoft Windows Programmer’s Reference

Function Description

GetSystemMetrics Retrieves information about the system metrics.
GetTimerResolution Retrieves the timer resolution.

SetSysColors Changes one or more system colors.
SystemParametersInfo Queries or sets systemwide parameters.

For detailed information about system functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.12 Clipboard Functions

The clipboard provides a mechanism that makes it possible for applications to pass
data handles to other applications. For more information about the clipboard, see
the Microsoft Windows Guide to Programming.

Clipboard functions carry out data interchange between Windows applications.
Following are the clipboard functions:

Function Description

ChangeClipboardChain Removes a window from the chain of clipboard
viewers.

CloseClipboard Closes the clipboard.

EmptyClipboard Empties the clipboard and reassigns clipboard
ownership.

EnumClipboardFormats Enumerates the available clipboard formats.

GetClipboardData Retrieves data from the clipboard.

GetClipboardFormatName Retrieves the clipboard format.

GetClipboardOwner Retrieves the window handle associated with the
current clipboard owner.

GetClipboardViewer Retrieves the handle of the first window in the

GetOpenClipboardWindow
GetPriorityClipboardFormat

IsClipboardFormatAvailable

clipboard-viewer chain.

Retrieves the handle of the window that currently
has the clipboard open.

Retrieves data from the clipboard in the first format
in a prioritized format list.

Returns nonzero if the data in the given format is
available.

Chapter 1 Window Management 65

Function Description

OpenClipboard Opens the clipboard.

Register ClipboardFormat Registers a new clipboard format.
SetClipboardData Copies a handle of data for the clipboard.
SetClipboard Viewer Adds a handle to the clipboard-viewer chain.

For detailed information about clipboard functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.13 Error Functions

Error functions display error messages and prompt the user for a response. Follow-
ing are the error functions:

Function Description

FlashWindow Flashes the window by inverting its active or inactive state.
MessageBeep Generates a beep on the system speaker.
MessageBox Creates a window with the given text and title.

For detailed information about error functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.14 The Caret

The Windows caret is a flashing line, block, or bitmap that marks a location in a
window’s client area. The caret is especially useful in word-processing applica-
tions to mark a location in text for keyboard editing.

1.14.1 Creating and Displaying a Caret

Windows forms a caret by inverting the pixel color within the rectangle given by
the caret’s position, width, and height. Windows flashes the caret by alternately
inverting the display and restoring it to its previous appearance. The caret’s flash
rate, in milliseconds, defines the elapsed time between inverting and restoring the
display. A complete flash (on-off-on) takes twice the blink time.

66

Microsoft Windows Programmer’s Reference

The CreateCaret function creates the caret shape and assigns ownership of the
caret to the given window. The caret can vary in color and shape; a bitmap caret
can be given any pattern. The following illustration shows some typical variations
in the appearance of the caret.

Underling

Vertical line|
Solid blodd
Gray bloc
Bitmap@®

Windows displays a solid caret by inverting everything in the rectangle defined by
the caret’s width and height. For a gray caret, Windows inverts every other pixel.
For a pattern, Windows inverts only the white bits of the bitmap that defines the
pattern. The width and height of a caret are given in logical units, which means
they are subject to the window’s mapping mode.

1.14.2 Sharing the Caret

There is only one caret, so only one caret shape can be active at a time. All appli-
cations must cooperatively share the caret. Because Windows does not inform an
application when a caret is created or destroyed, each window should create,
move, show, or hide a caret only when it has the input focus or is active. A win-
dow should destroy the caret before losing the input focus or becoming inactive.

Your application can use the CreateBitmap function to create a bitmap for the
caret; or, after you have used the Image Editor to create a bitmap and have used
the Resource Compiler to add it to your application’s resources, your applica-
tion can use the LoadBitmap function to load the bitmap from the application’s
resources.

1.14.3 Caret Functions

Caret functions create, destroy, display, and hide the caret and alter its blink time.
Following are the caret functions:

Function Description

CreateCaret Creates a caret.
DestroyCaret Destroys the current caret.

Chapter 1 Window Management 67

Function Description

GetCaretBlinkTime Returns the caret’s flash rate.

GetCaretPos Returns the current caret position.

HideCaret Removes a caret from a given window.

SetCaretBlinkTime Establishes the caret’s flash rate.

SetCaretPos Moves a caret to the specified position.

ShowCaret Displays the newly created caret or redisplays a hidden caret.

For detailed information about the caret functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.15 The Cursor

The cursor is a bitmap, displayed on the screen. The user can use a mouse or other
pointing device to move this bitmap to an item on the screen, such as a window or
an icon. (In the remainder of section, the term mouse is used for any pointing de-
vice.)

1.15.1 The Mouse and the Cursor

When a system has a mouse, the cursor shows the current location of the mouse.
Windows automatically displays and moves the cursor when the mouse is moved.
If a system does not have a mouse, Windows does not automatically display or
move the cursor. Applications can use the cursor functions to display or move the
cursor when a system does not have a mouse. For an introduction to the cursor
functions, see Section 1.15.6, “Cursor Functions.”

1.15.2 Displaying and Hiding the Cursor

In a system without a mouse, Windows does not display or move the cursor unless
the user chooses certain system commands, such as commands for sizing and
moving. This means that after a call to the SetCursor function, the cursor remains
on the screen until a subsequent call to SetCursor with the parameter set to NULL
removes the cursor, or until a system command is carried out. Applications that
need to use the cursor without a mouse usually simulate mouse input by using
keys, such as the arrow keys, and display and move the cursor by using the cursor
functions.

68

Microsoft Windows Programmer’s Reference

The ShowCursor function shows or hides the cursor. It is used to temporarily
hide the cursor, and then restore it without changing the current cursor shape. This
function actually sets an internal counter that determines whether the cursor
should be drawn. Showing the cursor increments the counter; hiding the cursor
decrements the counter. The cursor is only visible when the count is not a negative
value.

1.15.3 Positioning the Cursor

The SetCursorPos and GetCursorPos functions set and retrieve the current
screen coordinates of the cursor. Although the cursor can be set at a location other
than the current mouse location, if the system has a mouse any mouse movement
causes the cursor to be redrawn at the mouse location. The SetCursorPos and Get-
CursorPos functions are most often used in applications that use the keyboard

and specified keystrokes to move the cursor. Note that screen coordinates are not
affected by the mapping mode in a window’s client area.

1.15.4 The Cursor Hot Spot and Confining the Cursor

The hot spot of the cursor is the location in the cursor bitmap that is tracked and
recognized as the position of the mouse or keyboard arrow key. For example, the
hot spot on the pointer is the point at the tip of the arrow.

The ClipCursor function confines the cursor to a given rectangle on the screen.
The cursor can move to the edge of the rectangle but cannot move out of it. Clip-
Cursor is typically used to restrict the cursor to a given window, such as a dialog
box that contains a warning about a serious error. The rectangle is always given in
screen coordinates and does not have to be within the window of the active appli-
cation.

1.15.5 Creating a Custom Cursor

The SetCursor function sets the cursor shape and draws the cursor. When a sys-
tem has a mouse, Windows automatically changes the shape of the cursor when it
crosses a window border or enters a different part of a window, such as a title or
menu bar. Windows uses standard cursor shapes for the different parts of the
screen, such as a pointer in a title bar. The SetCursor function lets an application
delete the standard cursor and draw its own custom cursor. The cursor keeps its
new shape until the mouse moves or a system command is carried out.

1.15.6 Cursor Functions

Cursor functions set, move, show, hide, and confine the cursor. Following are the
cursor functions:

Chapter 1 Window Management 69

1.16 Hooks

Function Description

ClipCursor Restricts the cursor to a given rectangle.

CopyCursor Copies a cursor.

CreateCursor Creates a cursor from two bit masks.

DestroyCursor Destroys a cursor created by the CreateCursor function.

GetClipCursor Retrieves the screen coordinates of the rectangle to which the cur-
sor has been restricted.

GetCursor Retrieves the handle of the current cursor.

GetCursorPos Stores the cursor position (in screen coordinates).

LoadCursor Loads a cursor from the resource file.

SetCursor Sets the cursor shape.

SetCursorPos Sets the position of the cursor.

ShowCursor Increases or decreases the cursor display count.

For detailed information about the cursor functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

A hook is a point in the Windows message-handling mechanism that an applica-
tion can use to gain access to the message stream. Windows provides many types
of hooks; each type provides access to a particular type or range of messages. To
take advantage of a particular hook, an application can install a filter function that
processes the messages associated with the hook. A filter function processes the
messages before they reach the destination window procedure.

1.16.1 Filter-Function Chain

A filter-function chain is a series of connected filter functions for a particular
system hook. For example, all keyboard filter functions are installed by
WH_KEYBOARD and all journaling-record filter functions are installed by
WH_JOURNALRECORD. An application passes a filter function to a system
hook with a call to the SetWindowsHook function. Each call adds a new filter
function to the beginning of the chain. Whenever an application passes the address
of a filter function to a system hook, it must reserve space for the address of the
next filter function in the chain. SetWindowsHook installs a hook function into a
hook chain and returns a handle of the hook.

Once each filter function completes its task, it must call the DefHookProc func-
tion. DefHookProc uses the address stored in the location reserved by the applica-
tion to access the next filter function in the chain.

70 Microsoft Windows Programmer’s Reference

To remove a filter function from a filter chain, an application must call the
UnhookWindowsHook function with the type of hook and a pointer to the func-
tion.

The standard window hooks and debugging hooks are as follows:

Type Purpose

WH_CALLWNDPROC Installs a window filter.

WH_CBT Installs a computer-based training (CBT) filter.

WH_DEBUG Installs a debugging filter.

WH_GETMESSAGE Installs a message filter (on debugging versions
only).

WH_HARDWARE Installs a nonstandard hardware-message filter.

WH_JOURNALPLAYBACK Installs a journaling playback filter.

WH_JOURNALRECORD Installs a journaling record filter.

WH_KEYBOARD Installs a keyboard filter.

WH_MOUSE Installs a mouse-message filter.

WH_MSGFILTER Installs a message filter.

WH_SYSMSGFILTER Installs a systemwide message filter.

Note The WH_CALLWNDPROC and WH_GETMESSAGE hooks will affect
system performance. They are supplied for debugging purposes only.

1.16.2 Installing a Filter Function

To install a filter function, an application must do the following:

1. Export the function in its module-definition (.DEF) file.

2. Obtain the function’s address by using the GetProcAddress function. (The
MakeProcInstance function is used only when the filter function is not in a
DLL.)

3. Call the SetWindowsHook function, specifying the type of hook function and
the address of the function (returned by GetProcAddress).

4. Store the return value from SetWindowsHook in a reserved location. This
value is the handle of the previous filter function.

“Chapter 1 Window Management 71

Note Filter functions must reside in fixed library code and data. This allows hooks
to operate in a large-frame Expanded Memory Specification (EMS) environment.

1.16.3 Hook Functions

Following are the hook functions:

Function Description

CallMsgFilter Passes a message and other data to the filter function
for the current message.

CallNextHookEx Passes hook information down the hook chain.

DefHookProc Calls the next filter function in a filter-function chain.

SetWindowsHookEx Installs a system filter function, an application filter

function, or both.

UnhookWindowsHook Ex Removes a Windows filter function from a filter-
function chain.

For detailed information about the hook functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.17 Property Lists

A property list is a storage area that contains handles for data that the application
needs to associate with a window.

1.17.1 Using Property Lists

Once a data handle is in a window’s property list, any application that can access
the window can also access the handle. Using the property list is a convenient way
to make data (for example, an alternate title or menu for a window) available when
the application needs to modify a window.

Every window has its own property list. When a window is created, the list is
empty. The SetProp function adds entries to the list. Each entry contains a unique

72 Microsoft Windows Programmer’s Reference

Windows character string and a data handle. The Windows character string identi-
fies the handle; the handle identifies the data associated with the window, as
shown in the following illustration.

Windows string Handle
‘binary data" hMemory
“icon" hicon
"screen text" hText

The data handle can identify any object that the application needs to associate with
the window. The GetProp function retrieves the data handle of an entry from the
list without removing the entry. The handle can then be used to retrieve or use the
data. The RemoveProp function removes an entry from the list when it is no
longer needed.

Although the purpose of the property list is to associate data with a window for
use by the application that owns the window, the handles in a property list are
accessible to any application that has access to the window. This means an applica-
tion can retrieve and use a data handle from the property list of a window created
by another application. But using another application’s data handles must be done
with care. Only shared, global memory objects, such as GDI drawing objects, can
be used by other applications. If a property list contains local or global memory
handles or resource handles, only the application that has created the window can
use them. An application can use the Windows clipboard to share global memory
handles with other applications. (For more information about the clipboard, see the
Microsoft Windows Guide to Programming.) Local memory handles cannot be
shared.

The contents of a property list can be enumerated by using the EnumProps func-
tion. The function passes the string and data handle of each entry in the list to an
application-supplied function. The application-supplied function can then carry
out the necessary task.

The data handles in a property list always belong to the application that created
them. The property list itself, like other window-related data, belongs to Windows.
A window’s property list is allocated in the USER heap, the local heap of the
USER library. Although there is no defined limit to the number of entries in a
property list, the number of entries depends on how much space is available in the
USER heap. The available space depends on how many windows, window classes,
and other window-related objects have been created.

Chapter 1 Window Management 73

The application creates the entries in a property list. Before a window is destroyed
or the application that owns the window closes, all entries in the property list must
be removed by using the RemoveProp function. Failure to remove the entries
leaves the property list in the USER heap and makes the space it occupies un-
usable for subsequent applications. This can ultimately cause an overflow of the
USER heap.

An application can use the RemoveProp function at any time to remove

entries from the property list. If there are entries in the property list when the
WM_DESTROY message is received for the window, the entries must be re-
moved at that time. To ensure that all entries are removed, use the EnumProps
function to enumerate all entries in the property list. An application should remove
only those properties that it added to the property list. Windows adds properties
for its own use and disposes of them automatically. An application must not re-
move properties that Windows has added to the list.

1.17.2 Property Functions

Property functions create and access a window’s property list. Following are the
property functions:

Function Description

EnumProps Passes the properties of a window to an enumeration function.

GetProp Retrieves a handle associated with a string from the window’s prop-
erty list.

RemoveProp Removes a string from the property list.
SetProp Copies a string and a data handle into a window’s property list.

For detailed information about the property functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.18 Rectangles

In Windows, a rectangle is defined by a RECT structure. The structure specifies
two points: the upper-left and lower-right corners of the rectangle. The sides of a
rectangle extend from these two points and are parallel to the x- and y-axes.

1.18.1 Using Rectangles in a Windows Application

Rectangles are used to specify rectangular areas on the screen or in a window,
such as the cursor clipping region, the client repaint area, a formatting area for for-
matted text, and the scroll area. Rectangles are also used to fill, frame, or invert an

74 Microsoft Windows Programmer’s Reference

area in the client area with a given brush, and to retrieve the coordinates of a win-
dow or a window’s client area.

Because rectangles are used for many different purposes, the rectangle functions
do not use an explicit unit of measure. Instead, all rectangle coordinates and dimen-
sions are given in signed, logical values. The units of measure are determined by
the function in which the rectangle is used.

1.18.2 Rectangle Coordinates

Valid coordinate values for a rectangle are in the range —32,768 through 32,767.
Valid widths and heights, which must be positive, are in the range 0 through
32,767. This means that a rectangle whose left and right sides or whose top and
bottom are further apart than 32,768 units is not valid. Following is a rectangle
whose upper-left corner is left of the origin and whose width is less than 32,767.

v (16000, 2000)
®
< X>
@-
(16000, -2000) v
\ /

A

Width = 16000-(-16000) = 32000 <= 32767

1.18.3 Creating and Manipulating Rectangles

The SetRect function creates a rectangle, the CopyRect function makes a copy of
a given rectangle, and the SetRectEmpty function creates an empty rectangle. An
empty rectangle is any rectangle that has zero width, zero height, or both.

The InflateRect function increases or decreases the width or height of a rectangle,
or both. It can add or remove width from both ends of the rectangle; it can add or
remove height from both the top and bottom of the rectangle.

The OffsetRect function moves the rectangle by a given amount. It moves the rect-
angle by adding the given x-amount, y-amount, or x- and y-amounts to the corner
coordinates.

Chapter 1 Window Management 75

The PtInRect function finds out whether a given point lies within a given rect-
angle. The point is in the rectangle if it lies on the left or top side or is completely
within the rectangle.

The IsRectEmpty function finds out whether the given rectangle is empty.

The IntersectRect function creates a new rectangle that is the intersection of
two existing rectangles. The intersection is the largest rectangle contained in

both existing rectangles. The intersection of two rectangles can be illustrated
as follows.

/— Rectangle 1
/

Intersection

Rectangle 2

The UnionRect function creates a new rectangle that is the union of two existing
rectangles. The union is the smallest rectangle that contains both existing rectan-
gles. The union of two rectangles can be illustrated as follows.

K Union

Union

Rectangle 2 Rectangle 1

For information about functions that draw ellipses and polygons, see Chapter 2,
“Graphics Device Interface.”

76 Microsoft Windows Programmer’s Reference

1.18.4 Rectangle Functions

Rectangle functions alter and obtain information about rectangles in a window’s
client area. Following are the rectangle functions:

Function 7 Description

CopyRect Makes a copy of an existing rectangle.

EqualRect Finds out whether two rectangles are equal.

GetBoundsRect Returns current accumulated bounding rectangle.

InflateRect Expands or shrinks the specified rectangle.

IntersectRect Finds the intersection of two rectangles.

OffsetRect Moves a given rectangle.

PtInRect Indicates whether a specified point lies within a given rectangle.
SetBoundsRect Controls bounding-rectangle accumulation.

SetRectEmpty Sets a rectangle to an empty rectangle.

SubtractRect Creates a rectangle from the difference between two rectangles.
UnionRect Stores the union of two rectangles.

For detailed information about the rectangle functions, see the Microsoft Windows
Programmer’s Reference, Volume 2.

1.19 Related Topics

For more information about window management functions, see the Microsoft
Windows Programmer’s Reference, Volume 2.

For more information about Windows data types, messages, structures, and
macros, see the Microsoft Windows Programmer’s Reference, Volume 3.

For general information about developing Windows applications, see the
Microsoft Windows Guide to Programming.

For information about creating, editing, and compiling resources for Windows
applications, see Microsoft Windows Programming Tools.

Graphics Device Interface

2.1

22

2.3

24

2.5

Chapter 2

DeVICe CONLEXLS ...cveuieeiiieireieieeiiriietete ettt 79
2.1.1 Accessing Output DEVICES......cc.ceeevveieriiriinenieriereeeieseeeieerenees 79

2.1.1.1 Saving and Restoring a Device Context.................. 79

2.1.1.2 Deleting a Device CONteXt........ccocereererveruerveruereenenn 80

2.1.1.3 Creating a Compatible Device Context 80

2.1.14 Creating an Information Contextc..c.cccuuuene. 80
2.1.2 Device-ConteXxt AtIbDULEScoceevverererieieiercreeeseteseeeeieene 81
2.1.3 Device-Context FUNCHONSccoevvereeinieieiienenieceeeeeeen 82
Drawing TOOIS.ccuiiruiriierieiierteeteee ettt 83
2.2.1 USINg BruShesocvieeviieiiiieieeeeeeeee e 83
222 USING PENS ..ottt 84
2.2.3 SPecifying COLOTScc.eeveeierrienieienieeieetetetete e eieeeens 85
224 Drawing-Tool FUNCHONS......ccccovirvieeniiniinieneeiecieeeenneeieeeneens 86
COlOr Palettescoveueeuiieiriiiiiniiriceceere et 86
2.3.1 Understanding Color Palettescocuevvevieveenieneneneenienenennens 87
232 Using a Color Palettecceeeerererieienieieeeieneceeeeeseeeeeeees 89
233 Color-Palette FUNCLIONScccueevuierieerieiiiiieieteseeeeeseeeeeeee 90
Drawing AtIDULES.cvocuireeeeieiieieiesceeeieee ettt 91
24.1 Setting COLOTScvevverieeieiertieeeiereriet et 91
242 Controlling StretCh........ooeeiiviiiniciccnececrceesene 91
243 Drawing-Attribute FUNCtions.........cccueveverenencecenieniieieniennene 91
Mapping MOEScceriiiiirieriiriecec ettt 92
251 Constrained Mapping Modescccccovevviniiinininiiiiicnnin. 93

2.5.1.1 MM_TEXT Mapping Modecccceeveeererueneenncn 93

2.5.12 MM_LOENGLISH Mapping Mode........................ 94

78

Microsoft Windows Programmer’s Reference

2.6
2.7
2.8
29

2.10

2.11
2.12
2.13
2.14
2.15

2.16
2.17
2.18

2.5.2 Other Mapping MOdes..........coceeveerierienerenerieenieneeeeseseeeeenenes 95

2.5.2.1 Partially Constrained Mapping Mode...................... 95

2.5.22 Unconstrained Mapping Mode..........ccccoceevverrenrennen. 95
253 Mapping FUNCLONSc.eeveverieerieinereeeireeerteieeneeeereeneeeeeaeens 96
Coordinate FUNCHONScccoveveririiiereiiiniereinteeecntee sttt 96
Region FUNCHONScoueviiieieiieiiieieieteeeeee ettt eans 98
CLipping FUNCHONS ..ottt 99
NG OULPUL ..oeeeiiiieiieieie ettt ettt s st e et st 99
2.9.1 AATCS ottt ettt ettt sttt 100
292 SIMPIE LINES ..veviveieieeiirienieerieeete e 100
2.9.3 Line-Output FUNCHONSceevivieirieieiirerieieereseseseeeeee e 101
Ellipses and POLYZONSccccoveiririerieiiieieieieeeiesteieeieie sttt 101
2.10.1 RECLANGIES ...ueenviriieiieieiieieieeteee ettt ettt 101
2.10.2 Bounding Rectanglesccoevieirerieinreniecieeeeeeeenieieeenens 101
2.10.3 Ellipse and Polygon Functionsc.cccceceevevveuenieneennencniencns 102
Bitmap FUNCHONSoveuiieiiiiiiceiecceec et 102
Device-Independent Bitmap Functionscoeceeeverenecncncnccnenrcennee 103
TeXt FUNCHONScoviiiiiiiiiiiiicctcecccecece e 104
FOnt FUNCHONScvoiiiriiieieiiinciectec e 105
MELATIIES ...ttt 106
2.15.1 Creating a Metafileccccoevrerenineninincceeecceees 106
2.15.2 Storing a Metafilecccecvevievienieneneneeeieeeeeeeee e 108
2.15.3 Changing How Windows Plays a Metafilec.ccccccceune. 108
2.15.4 Metafile FUNCHONSc.eevevieieeirieieirieeeceiesieeeteeee e eeaens 109
Device-Control FUNCHONScccoveieieueririnieinieeeeriieeeeicereeceeeeneeeeneneene 109
Printer FUNCHIONSc.cooviiiiniiiiiiniiieiceiceecece et 110

RELAtEd TOPICS ..euveuveuieiiererieieieicetetetee ettt sttt eeas 111

Chapter 2 Graphics Device Interface 79

This chapter describes the functions that perform device-independent graphics
operations in an application for the Microsoft Windows operating system. These
operations include the creation of line, text, and bitmap output on different output
devices. The functions performing those operations constitute the Windows
graphics device interface (GDI).

Some Windows functions in the USER application programming interface (API)
are closely related to these GDI function groups. For a full description of these
functions, see Chapter 1, “Window Management.”

2.1 Device Contexts

A device context (DC) is a link between a Windows application, a device driver,
and an output device, such as a printer or plotter. Windows maintains a cache of
five special device contexts for the system display. Applications must release
these device contexts after using them.

The following illustration shows the flow of information from a Windows applica-
tion through a device context and a device driver to an output device.

GDI

! Out

. . . put
| Application Device > Device > device
! pp context driver

[&) h

| S

2.1.1 Accessing Output Devices

Any Windows application can use GDI functions to access an output device. GDI
passes calls, which are device independent, from the application to the device
driver. The device driver then translates the calls into device-dependent opera-
tions.

2.1.1.1 Saving and Restoring a Device Context

The SaveDC and RestoreDC functions save and restore device contexts. The
former saves the original attributes, and the latter makes them available at a later
time. For example, a Windows application may need to save its original clipping
region so that it can restore the original state of the client area after a series of
alterations occur.

80

Microsoft Windows Programmer’s Reference

2.1.1.2 Deleting a Device Context

The DeleteDC function deletes a device context and ensures that shared resources
are not removed until the last context is deleted. The device driver is a shared re-
source. DeleteDC should be used to delete device contexts created by the applica-
tion. If the application uses the GetDC function to retrieve a device context, it
should use the ReleaseDC function, not DeleteDC.

2.1.1.3 Creating a Compatible Device Context

The CreateCompatibleDC function causes Windows to treat a portion of
memory as a virtual device. Then Windows prepares a device context that has the
same attributes as the device for which the virtual device was created, but the de-
vice context has no connected output device.

To use the compatible device context, the application creates a compatible bit-
map and selects it into the device context. Any output the application sends to the
device is drawn in the selected bitmap. Because the device context is compatible
with an actual device, the context of the bitmap can be copied directly to the actual
device, or vice versa. This also means that the application can send output to mem-
ory (prior to sending it to the device).

Note The CreateCompatibleDC function works only for devices that support
raster operations. To discover whether a device supports raster operations, an
application can call the GetDeviceCaps function with the RC_BITBLT index.

2.1.1.4 Creating an Information Context

The CreatelC function creates an information context for a device. An informa-
tion context is a device context with limited capabilities; it cannot be used to write
to the device. An application uses an information context to gather information
about the selected device. Information contexts are useful in large applications that
require memory conservation.

By using an information context and the GetDeviceCaps function, you can obtain
the following device information:

= Device technology

Physical display size

Color capabilities of the device

Color-palette capabilities of the device

Chapter 2 Graphics Device Interface 81

= Drawing objects available on the device

= Clipping capabilities of the device

= Raster capabilities of the device

= Curve-drawing capabilities of the device

® [ine-drawing capabilities of the device

= Polygon-drawing capabilities of the device
= Text capabilities of the device

2.1.2 Device-Context Attributes

Device-context attributes describe selected drawing objects (pens and brushes),
the selected font and its color, the way in which objects are drawn (or mapped) to
the device, the area on the device available for output (clipping region), and other
important information. The structure that contains the device-context attributes is
called the device-context data block. The default attributes and the GDI functions
that affect or use them are as follows.

Attribute

Default

GDI functions

Background color
Background mode
Bitmap

Brush

Brush origin

Clipping region

White
OPAQUE
No default

WHITE_BRUSH

0,0)

Display surface

SetBkColor
SetBkMode

CreateBitmap
CreateBitmapIndirect
CreateCompatibleBitmap
SelectObject

CreateBrushIndirect
CreateDIBPatternBrush
CreateHatchBrush
CreatePatternBrush
CreateSolidBrush
SelectObject

SetBrushOrg
UnrealizeObject

CreateEllipticRgn
CreateEllipticRgnIndirect
CreatePolygonRgn
CreatePolyPolygonRgn
CreateRectRgn
CreateRoundRectRgn
ExcludeClipRect
IntersectClipRect
OffsetClipRgn
SelectClipRgn

Microsoft Windows Programmer’s Reference

Attribute Default GDI functions
Color palette DEFAULT_PALETTE CreatePalette
RealizePalette
SelectPalette
UnrealizeObject
Current pen position (0,0 LineTo
MoveTo
Drawing mode R2_COPYPEN SetROP2
Font SYSTEM_FONT CreateFont
CreateFontIndirect
SelectObject
Intercharacter spacing 0 SetTextCharacter Extra
Mapping mode MM_TEXT SetMapMode
Pen BLACK_PEN CreatePen
CreatePenIndirect
SelectObject
Polygon-filling mode ALTERNATE SetPolyFillMode
Stretching mode BLACKONWHITE SetStretchBltMode
Text color Black SetTextColor
Viewport extent (1,1 SetViewportExt
Viewport origin (0,0) SetViewportOrg
Window extent (1,1 SetWindowExt
Window origin 0,0 SetWindowOrg

2.1.3 Device-Context Functions

Device-context functions create, delete, and restore device contexts. Following are

the GDI device-context functions:

Function Description
CreateCompatibleDC Creates a memory device context.
CreateDC Creates a device context.
CreatelC Creates an information context.
DeleteDC Deletes a device context.

Chapter 2 Graphics Device Interface

83

Function

Description

GetDCOrg
ResetDC
RestoreDC
SaveDC

Retrieves the origin of a specified device context.
Updates a device context.

Restores a device context.

Saves the current state of the device context.

In addition, applications can use the following functions in the USER API to
retrieve and release device contexts:

Function

Description

BeginPaint
GetDC
GetWindowDC

ReleaseDC

Prepares a window for painting, fills a buffer with information
about the painting, and retrieves a handle of a device context.

Retrieves the handle of a device context for the client area of the
given window.

Retrieves a device context for an entire window, including title
bar, menus, and scroll bars.

Releases a device context, freeing it for use by other applications.

For more information about these USER functions, see Chapter 1, “Window

Management.”

2.2 Drawing Tools

A Windows application can use drawing tools when it creates output: a bitmap,
a brush, or a pen. An application can use the pen and brush together, outlining a

region or object with the pen and filling the interior of the region or object with the

brush. GDI allows the application to create pens with solid colors, bitmaps with
solid or combination colors, and brushes with solid or combination colors. (The

available colors and color combinations depend on the capabilities of the intended

output device.)

2.2.1 Using Brushes

There are six predefined brushes available in GDI: black, dark-gray, gray, hollow,
light-gray, null, and white. (Hollow and null brushes are identical.) An application
selects any one of them by using the GetStockObject function.

84

Microsoft Windows Programmer’s Reference

There are six hatched brush patterns: backward diagonal, cross, diagonal cross, for-
ward diagonal, horizontal, and vertical. (A hatch line is a thin line that appears at
regular intervals on a solid background.) An application can select any one of the
six patterns by using the CreateHatchBrush function. The following illustration
shows the different hatched brush patterns.

HS_HORIZONTAL HS_BDIAGONAL HS_FDIAGONAL
\\
HS_VERTICAL HS_CROSS HS_DIAGCROSS

2.2.2 Using Pens

There are three predefined pens available in GDI: black, null, or white. An applica-
tion selects any one of them by using the GetStockObject function.

An application can create an original pen by using the CreatePen function. This
function allows the application to select one of six pen styles, a pen width, and a
pen color (if the device has color capabilities). The pen style can be solid, dashed,
or dotted; it can combine an alternating dot and dash or two dots and a dash; or it
can be null. The pen width is the number of logical units GDI maps to a specific
number of pixels (this number is dependent on the current mapping mode if the
pen is selected into a device context). The pen color is an RGB (red, green, blue)
color value. The following figure shows a variety of pen patterns obtained from
calls to CreatePen:

Solid Line width of 1
Dash Line width of 4
Dot Line width of 7
Dash and dot Line width of 10

Dash and two dots Line width of 13

Chapter 2 Graphics Device Interface 85

2.2.3 Specifying Colors

Many of the GDI functions that create pens and brushes require that the calling
application specify a color in the form of a doubleword. The color can be speci-
fied as:

= Anexplicit RGB value
= An index to a logical-palette entry
® A palette-relative RGB value

The second and third methods of specifying color require the application to create
a logical palette. Section 2.3, “Color Palettes,” describes Windows color palettes
and the functions used by an application to exploit their capabilities.

An explicit RGB doubleword value is a long integer that contains a red, a green,
and a blue color field. The first (low-order) byte contains the red field, the second
byte contains the green field, the third byte contains the blue field, and the fourth
(high-order) byte must be zero. Each field specifies the intensity of the color;
zero indicates the lowest intensity, and 255 indicates the highest. For example,
0x00FF0000 specifies pure blue, and 0x0000FF0O0 specifies pure green. The RGB
macro accepts values for the relative intensities of the three colors and returns an
explicit RGB doubleword value.

When GDI receives the RGB value as a function parameter, it passes the RGB
color value directly to the output device driver, which selects the closest available
color on the device. The GetNearestColor function returns the logical color
closest to a specified logical color that a given device can represent.

If the device is a plotter, the driver converts the RGB value to a single color that
matches one of the pens on the device.

If the device uses color raster technology and the RGB value specifies a color for a
pen, the driver selects a solid color. If the device uses color raster technology and
the RGB value specifies a color for a brush, the driver selects from a variety of
available color combinations. Because many color devices can display only a few
colors, the actual color is simulated by dithering (that is, mixing pixels of colors
that the device can actually render).

If the device is monochrome (black-and-white), the driver selects black, white, or
a shade of gray, depending on the RGB value. If the sum of the RGB values is
zero, the driver selects a black brush. If the sum of the RGB values is 765, the
driver selects a white brush. If the sum of the RGB values is between zero and
765, the driver selects one of the gray patterns available.

The GetRValue, GetGValue, and GetBValue macros extract the values for red,
green, and blue from an explicit RGB doubleword value.

86 Microsoft Windows Programmer’s Reference

2.2.4 Drawing-Tool Functions

Drawing-tool functions create and delete the drawing tools that GDI uses when
it creates output on a device or display surface. Following are the drawing-tool

functions:
Function Description
CreateBrushIndirect Creates a logical brush.

CreateDIBPatternBrush Creates a logical brush that has a pattern defined by a
device-independent bitmap (DIB).

CreateHatchBrush Creates a logical brush that has a hatched pattern.

CreatePatternBrush Creates a logical brush that has a pattern defined by a
memory bitmap.

CreatePen Creates a logical pen.

CreatePenIndirect Creates a logical pen.

CreateSolidBrush Creates a logical brush.

DeleteObject Deletes a logical pen, brush, font, bitmap, or region.

EnumObjects Enumerates the available pens or brushes.

GetBrushOrg Retrieves the current brush origin for a device context.

GetBrushOrgEx Retrieves the origin of the current brush.

GetObject Copies the bytes of logical data that define an object.

GetStockObject Retrieves a handle of one of the predefined stock pens,
brushes, fonts, or color palettes.

IsGDIObject Determines if handle is not GDI object.

SelectObject Selects an object as the current object.

SetBrushOrg Sets the origin of all brushes selected into a given device
context.

UnrealizeObject Directs GDI to reset the origin of the given brush.

2.3 Color Palettes

Many color graphics displays are capable of displaying a wide range of colors. In
most cases, however, the actual number of colors that the display can render at any
given time is more limited. For example, a display that is potentially able to pro-
duce over 262,000 different colors may be able to show only 256 of those colors at
a time because of hardware limitations.

To render colors, a display device often maintains a palette of colors. When an
application requests a color that is not currently displayed, the display device adds
the requested color to the palette. However, when the number of requested colors
exceeds the maximum number for the device, it must replace an existing color

Chapter 2 Graphics Device Interface 87

with the requested color. As a result, if the total number of colors requested by
one or more windows exceeds the number available on the display, many of the
actual colors displayed will be incorrect.

Windows color palettes act as a buffer between color-intensive applications and
the system. When a window has the input focus, Windows ensures that the win-
dow displays all the colors it requests, up to the maximum number simultaneously
available on the display, and displays additional colors by matching them to avail-
able colors. In addition, Windows matches the colors requested by inactive win-
dows as closely as possible to the available colors. This process significantly
reduces undesirable changes in the colors displayed in inactive windows.

2.3.1 Understanding Color Palettes

Color palettes provide a device-independent method for accessing the color capa-
bilities of a display device by managing the physical, or system, palette of the de-
vice, if one is available. Typically, devices that can display at least 256 colors use
a system palette.

An application employs the system palette by creating and using one or more
logical palettes. Each entry in the system palette contains a specific color. Then,
instead of specifying an explicit value for a color when performing graphics oper-
ations, the application indicates which color is to be displayed by supplying an
index into the logical palette.

Because more than one application can use logical palettes, it is possible that the
total number of colors requested for display can exceed the capacity of the display
device. Windows acts as a mediator among the applications.

When a window requests that its logical palette be given its requested colors (a
process known as realizing its palette), Windows first matches entries in the logi-
cal palette to current entries in the system palette. If an exact match for a given
logical palette entry is not possible, Windows sets the entry in the logical palette
into an unused entry in the system palette.

When all entries in the system palette have been used, Windows takes the logical
palette entries that do not exactly match and matches them as closely as possible to
entries already in the system palette. To further aid color matching, Windows sets
aside 20 static colors in the system palette (the default palette) to which it can
match entries in a background palette.

Windows always satisfies the color requests of the foreground window first; this
procedure ensures that the active window has the best color display possible. For
the remaining windows, Windows satisfies the color requests of the window that
most recently received the input focus, the window that was active before that one,
and so on.

88 Microsoft Windows Programmer’s Reference

The following illustration shows this process. In this illustration, a hypothetical
display has a system palette capable of containing 12 colors. The application that
created Logical Palette 1 owns the active window and was the first to realize its
logical palette, which consists of 8 colors. Because the active window was active
when it realized its palette, Windows mapped all of the colors in Logical Palette 1
directly to the system palette.

Logical Palette 2 is owned by a window that realized its logical palette while it
was inactive. Three of the colors (1, 3, and 5) in Logical Palette 2 were identical
to colors in the system palette. To save space in the palette, Windows simply
matched those colors to existing system colors when the second application
realized its palette. Colors 0, 2, 4, and 6 were not already in the system palette,
however, so Windows mapped those colors into the system palette. Because the
system palette became full, Windows was not able to map the remaining two
colors (which did not exactly match existing colors in the system palette) into the
system palette. Instead, it matched them to the closest colors in the system palette.

System palette Logical palette 1
(active window)

~NoOhhwWN—=O

Logical palette 2

W > © 00 N OO o1 A W N =2 O

oONOoOOTRRWN—=-O

Palette Manager Color-Mapping Algorithm

Chapter 2 Graphics Device Interface 89

2.3.2 Using a Color Palette

Before drawing to the display device with a color palette, an application must first
create a logical palette by calling the CreatePalette function and then use the
SelectPalette function to select the palette for the device context of the output de-
vice for which it will be used. An application cannot select a palette into a device
context by using the SelectObject function.

All functions with a color parameter accept an index to an entry in the logical
palette. The palette index specifier is a long integer value with the first bit in
its high-order byte set to 1 and the palette index in the two low-order bytes.
For example, 0x01000005 specifies the palette entry with an index of 5. The
PALETTEINDEX macro accepts an integer value representing the index of a
logical palette entry and returns a palette index value, which an application can
use as a parameter for GDI functions that require a color.

An application can also specify a palette index indirectly by using a palette-
relative RGB value. If the target display device supports logical palettes,
Win-dows matches the palette-relative RGB value to the closest palette entry.

If the target device does not support palettes, the RGB value is used as though it
were an explicit RGB value. The palette-relative RGB value is identical to an
explicit RGB value except that the second bit of the high-order byte is set to 1. For
example, 0x02FF0000 specifies a palette-relative RGB value for pure blue. The
PALETTERGB macro accepts values for red, green, and blue and returns a
palette-relative RGB value, which an application can use as a parameter for GDI
functions that require a color.

If an application specifies an RGB value instead of a palette entry, Windows uses
the closest matching color in the default palette of 20 static colors.

If the source and destination device contexts have selected and realized different
palettes, the BitBlt function does not properly move bitmap bits to or from a
memory device context. In this case, you must call the GetDIBits function with
the DIB_RGB_COLORS flag to retrieve the bitmap bits from the source bitmap
in a device-independent format. Then you use the SetDIBits function to set the
retrieved bits in the destination bitmap. This ensures that Windows properly
matches colors between the two device contexts.

Note The BitBIt function successfully moves bitmap bits between two screen
display contexts, even if they have selected and realized different palettes. The
StretchBIt function properly moves bitmap bits between device contexts whether
or not they use different palettes.

Microsoft Windows Programmer’s Reference

2.3.3 Color-Palette Functions

Windows color palettes allow an application to use as many colors as needed
without interfering with its own color display or colors displayed by other win-
dows. Following are the functions an application calls to use color palettes:

Function Description

AnimatePalette Replaces entries in a logical palette; Windows maps the
new entries into the system palette immediately.

CreatePalette Creates a logical palette.

GetNearestColor Retrieves the solid color closest to a specified logical

GetNearestPaletteIndex

GetPaletteEntries
GetSystemPaletteEntries

GetSystemPaletteUse
ResizePalette

SetPaletteEntries

SetSystemPaletteUse
UpdateColors

color that a given device can represent.

Retrieves the index of a logical palette entry most
nearly matching a specified RGB value.

Retrieves entries from a logical palette.

Retrieves a range of palette entries from the system
palette.

Determines whether an application has access to the full
system palette.

Changes the size of the specified logical palette.

Sets new palette entries in a logical palette; Windows
does not map the new entries to the system palette until
the application realizes the logical palette.

Allows an application to use the full system palette.

Performs a pixel-by-pixel translation of each pixel’s cur-
rent color to the system palette. This process allows an
inactive window to correct its colors without redrawing
its client area.

The USER API also provides two palette-management functions:

Function Description

RealizePalette Maps entries in a logical palette to the system palette.

SelectPalette

Selects a logical palette into a device context.

For more information about these USER functions, see Chapter 1, “Window

Management.”

Chapter 2 Graphics Device Interface 91

2.4 Drawing Attributes

A drawing attribute can take one of the following forms: line, brush, text, or bit-
map output.

2.4.1 Setting Colors

Line output can be solid or broken (dashed, dotted, or a combination of the two).
If it is broken, the space between the breaks can be filled by setting the back-
ground mode to OPAQUE and selecting a color. By setting the background mode
to TRANSPARENT, the space between breaks is left in its original state. The Set-
BkMode and SetBkColor functions set the background mode and color.

Brush output is solid, patterned, or hatched. The space between hatch marks can
be filled by setting the background mode to OPAQUE and selecting a color. When
Windows creates brush output on a display, it combines the existing color on the
display surface with the brush color to yield a new and final color; this is a binary
raster operation. If the default raster operation is not appropriate, a new one is
chosen by using the SetROP2 function.

The appearance of text output is limited only by the number of available fonts and
the color capabilities of the output device. The SetBkColor function sets the color
of the text background (the unused portion of each character cell), and the SetText-
Color function sets the color of the character itself.

2.4.2 Controlling Stretch

The appearance of bitmap output can be affected by the stretch mode, which deter-
mines how lines eliminated from the bitmap are combined. If an application copies
a bitmap to a device and it is necessary to shrink or expand the bitmap before
drawing, the effects of the StretchBIt and StretchDIBits functions can be con-
trolled by calling the SetStretchBltMode function to set the current stretch mode
for a device context.

2.4.3 Drawing-Attribute Functions

Drawing-attribute functions affect the appearance of Windows output. Following
are the drawing-attribute functions:

Function Description
GetBkColor Returns the current background color.
GetBkMode Returns the current background mode.

GetPolyFillMode Retrieves the current polygon-filling mode.

92 Microsoft Windows Programmer’s Reference

Function Description

GetROP2 Retrieves the current drawing mode.
GetStretchBltMode Retrieves the current stretching mode.
GetTextColor Retrieves the current text color.
SetBkColor Sets the background color.
SetBkMode Sets the background mode.
SetPolyFillMode Sets the polygon-filling mode.
SetROP2 Sets the current drawing mode.
SetStretchBltMode Sets the stretching mode.
SetTextColor Sets the text color.

2.5 Mapping Modes

To maintain device independence, GDI creates output in a logical space and maps
it to the display. The mapping mode defines the relationship between units in the
logical space and pixels on a device.

There are eight different GDI mapping modes, each of which has a specific use in
a Windows application. Following are these mapping modes:

Mapping mode Description

MM_ANISOTROPIC Maps one logical unit to an arbitrary physical unit. The
x-axis and y-axis are arbitrarily scaled.

MM_HIENGLISH Maps one logical unit to 0.001 inch. The positive y-axis
extends upward.

MM_HIMETRIC Maps one logical unit to 0.01 millimeter. The positive y-axis
extends upward.

MM_ISOTROPIC Maps one logical unit to an arbitrary physical unit. One unit
along the x-axis is always equal to one unit along the y-axis.

MM_LOENGLISH Maps one logical unit to 0.01 inch. The positive y-axis
extends upward.

MM_LOMETRIC Maps one logical unit to 0.1 millimeter. The positive y-axis
extends upward.

MM_TEXT Maps one logical unit to one pixel. The positive y-axis
extends downward.

MM_TWIPS Maps one logical unit to 1/1440 inch (1/20 of a point; a

point is 1/72 inch). The positive y-axis extends upward.

Chapter 2 Graphics Device Interface 93

2.5.1 Constrained Mapping Modes

GDI classifies six of the mapping modes as constrained mapping modes. These
mapping modes are constrained because the scaling factor is fixed, so an applica-
tion cannot change the number of logical units that Windows maps to a physical
unit. The relationship of logical units to physical units for each constrained map-
ping mode follows:

Mapping mode Logical units Physical unit
MM_HIENGLISH 1000 1 inch
MM_HIMETRIC 100 1 millimeter
MM_LOENGLISH 100 1 inch
MM_LOMETRIC 10 1 millimeter
MM_TEXT 1 Device pixel
MM_TWIPS 1440 1 inch

Note The MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH,
MM_LOMETRIC, and MM_TWIPS mapping modes sometimes map logical
units to device units in ways that do not correspond exactly to the preceding
table. This typically occurs on displays; for example, on an VGA display there
is a 33 percent increase in the dimensions of the device units.

The increase in the dimensions of device units occurs so that the same output
looks equally crisp and readable whatever the device resolution and the display
technology for the device. An application can use the GetDeviceCaps function
with the LOGPIXELSX and LOGPIXELSY indices to discover the scaling factor.

In each of the six constrained modes, one logical unit is mapped to a predefined
physical unit. For instance, the MM_TEXT mapping mode maps one logical unit
to one device pixel, and the MM_LOENGLISH mapping mode maps one logical
unit to 0.01 inch on the device. Examples for these two modes follow.

2.5.1.1 MM_TEXT Mapping Mode

The default mapping mode is MM_TEXT. In this mapping mode, one logical unit
is mapped to one pixel on the device or display.

The following illustration shows three rectangles created by a Windows applica-
tion by using the MM_TEXT mapping mode. The drawing on the left illustrates
the logical coordinate space, and the one on the right illustrates the device, or

94 Microsoft Windows Programmer’s Reference

physical, coordinate space. The rectangles appear vertically elongated in the physi-
cal space because pixels on the chosen display are longer than they are wide. The
rectangles appear to be upside-down because the positive y-axis extends

downward in the physical-coordinate system.

Logical coordinate system Physical coordinate system
y-axis Origin .
R R » x-axis
() +)

1
1
1
[
1
1
]
1

Origin A)V

y-axis

2.5.1.2 MM_LOENGLISH Mapping Mode

The following illustration shows three rectangles created by a Windows appli-
cation by using the MM_LOENGLISH mapping mode. The drawing on the left
illustrates how the rectangles appear in relation to the x-axis and y-axis in the
logical coordinate system. The one on the right illustrates how the rectangles
appear in relation to the x-axis and y-axis in the physical coordinate system.

Logical coordinate system Physical coordinate system
y-axis y-axis
A
(+) ()

- - - > Xx-axis

A Origin (+) L) XS

Chapter 2 Graphics Device Interface 95

2.5.2 Other Mapping Modes

The MM_ISOTROPIC and MM_ANISOTROPIC mapping modes, which are not
constrained, use two rectangular regions to derive a scaling factor and an orienta-

tion: the window and the viewport. The window lies within the logical-coordinate
space, and the viewport lies within the physical-coordinate space. Both possess an
origin, an x-extent, and a y-extent. The origin may be any one of the four corners.
The x-extent is the horizontal distance from the origin to its opposing corner. The
y-extent is the vertical distance from the origin to its opposing corner.

Windows creates a horizontal scaling factor by dividing the viewport’s x-extent by
the window’s x-extent and creates a vertical scaling factor by dividing the view-
port’s y-extent by the window’s y-extent. These scaling factors determine the num-
ber of logical units that Windows maps to a number of pixels. In addition to
determining scaling factors, the window and viewport determine the orientation of
an object. Windows always maps the window origin to the viewport origin, the
window x-extent to the viewport x-extent, and the window y-extent to the view-
port y-extent.

2.5.2.1 Partially Constrained Mapping Mode

An application creates output with equally scaled axes by using the
MM_ISOTROPIC mapping mode. As the term isotropic implies, Windows

maps a symmetrical object (for example, a square or a circle) in the logical space
as a symmetrical object in the physical space. In order to maintain this symmetry,
GDI shrinks one of the viewport extents. The amount of shrinkage depends on the
requested extents and the aspect ratio of the device. This mapping mode is called
partially constrained because the application does not have complete control in
altering the scaling factor.

2.5.2.2 Unconstrained Mapping Mode

An application can completely alter the horizontal and vertical scaling factors by
using the MM_ANISOTROPIC mapping mode and setting the window and view-
port extents to any value after selecting this mapping mode. Windows does not
alter either scaling factor in this mode.

96 Microsoft Windows Programmer’s Reference

2.5.3 Mapping Functions

Mapping functions alter and retrieve information about the GDI mapping modes.
Following are the mapping functions:

Function Description

GetMapMode Retrieves the current mapping mode.
GetViewportExt Retrieves the viewport extents of a device context.
GetViewportExtEx Retrieves viewport extents.

GetViewportOrg Retrieves the viewport origin of a device context.
GetViewportOrgEx Retrieves viewport origin.

GetWindowExt Retrieves the window extents of a device context.
GetWindowExtEx Retrieves window extents.

GetWindowOrg Retrieves the window origin of a device context.
GetWindowOrgEx Retrieves window origin.

OffsetViewportOrg Modifies a viewport origin.
OffsetViewportOrgEx Moves viewport origin.

OffsetWindowOrg Modifies a window origin.
OffsetWindowOrgEx Moves window origin.

ScaleViewportExt Modifies the viewport extents.
ScaleViewportExtEx Scales viewport extents.

ScaleWindowExt Modifies the window extents.
ScaleWindowExtEx Scales window extents.

SetMapMode Sets the mapping mode of a specified device context.
SetViewportExt Sets the viewport extents for a device context.
SetViewportExtEx Sets viewport extents.

SetViewportOrg Sets the viewport origin for a device context.
SetViewportOrgEx Sets viewport origin.

SetWindowExt Sets the window extents for a device context.
SetWindowExtEx Sets window extents.

SetWindowOrg Sets the window origin for a device context.
SetWindowOrgEx Sets the window origin.

2.6 Coordinate Functions

Coordinate functions convert client coordinates to screen coordinates (or vice
versa). These functions are useful in graphics-intensive applications. Following
are the coordinate functions:

Chapter 2 Graphics Device Interface 97

Function Description

DPtoLP Converts device points (that is, points relative to the win-
dow origin) into logical points.

GetCurrentPosition Retrieves the current position, in logical coordinates.

GetCurrentPositionEx Retrieves position in logical units.
LPtoDP Converts logical points into device points.

GDI uses the following equations to transform logical points to device points and
device points to logical points:

® Transforming logical points to device points:

Dx = (Lx - xWO) * xVE/XWE + xVO
Dy = (Ly - yWO) * yVE/yWE + yVO

® Transforming device points to logical points:

Lx = (Dx -xVO) * xWE/xVE + xWO
Ly =Dy -yVO) * yWE/yVE + yWO

Following are descriptions of the variables used in these transformation equations:

Variable Description

xWO Window origin x-coordinate

YWO Window origin y-coordinate

XWE Window extent x-coordinate

YWE Window extent y-coordinate

xVO Viewport origin x-coordinate

yVO Viewport origin y-coordinate

xVE Viewport extent x-coordinate

YVE Viewport extent y-coordinate

Lx Logical-coordinate system x-coordinate
Ly Logical-coordinate system y-coordinate
Dx Device x-coordinate

Dy Device y-coordinate

The following four ratios are scaling factors used to determine the necessary
stretching or compressing of logical units: x\VE/XWE, yVE/yWE, xWE/xVE, and
YWE/yVE.

The subtraction and addition of viewport and window origins is referred to as the
translational component of the equation.

98 Microsoft Windows Programmer’s Reference

In addition, applications can use the following functions from the USER API to
convert coordinates from one system to another:

Function

Description

ChildWindowFromPoint

ClientToScreen

ScreenToClient

WindowFromPoint

Determines which, if any, of the child windows belong-
ing to a given parent window contains a specified point.
Converts the client coordinates of a given point on the
display to screen coordinates.

Converts the screen coordinates of a given point on the
display to client coordinates.

Retrieves the handle of the window that contains a
given point.

For more information about these USER functions, see Chapter 1, “Window

Management.”

2.7 Region Functions

Region functions create, alter, and retrieve information about regions. A region is
an elliptical or polygonal area within a window that can be filled with graphics out-
put. An application uses these functions in conjunction with the clipping functions
to create clipping regions. (For more information about clipping functions, see the
next section, “Clipping Functions.”) Following are the region functions:

Function Description

CombineRgn Combines two existing regions into a new region.

CreateEllipticRgn Creates an elliptical region.

CreateEllipticRgnIndirect Creates an elliptical region.

CreatePolygonRgn Creates a polygonal region.

CreatePolyPolygonRgn Creates a region consisting of a series of closed
polygons that are filled as though they were a single
polygon.

CreateRectRgn Creates a rectangular region.

CreateRectRgnIndirect Creates a rectangular region.

CreateRoundRectRgn Creates a rounded rectangular region.

EqualRgn Determines whether two regions are identical.

FillRgn Fills the given region with a brush pattern.

FrameRgn Draws a border for a given region.

GetRgnBox Retrieves the coordinates of the bounding rectangle of
aregion.

InvertRgn Inverts the colors in a region.

Chapter 2 Graphics Device Interface 99

Function Description

OffsetRgn Moves the given region.

PaintRgn Fills the region with the selected brush pattern.
PtInRegion Tests whether a point is within a region.

RectInRegion Tests whether any part of a rectangle is within a region.
SetRectRgn Changes a region into a specified rectangular region.

2.8 Clipping Functions

Clipping functions create, test, and alter clipping regions. A clipping region is the
portion of a window’s client area where GDI creates output. Any output sent to a
portion of the client area that is outside the clipping region will not be visible. Clip-
ping regions are useful in Windows applications that need to save one part of the
client area and simultaneously send output to another. Following are the clipping
functions:

Function Description

ExcludeClipRect Excludes a rectangle from the clipping region.

GetBoundsRect Returns the current accumulated bounding rectangle for the
specified device context.

GetClipBox Copies the dimensions of a bounding rectangle.

IntersectClipRect Forms the intersection of a clipping region and a rectangle.

OffsetClipRgn Moves a clipping region.

PtVisible Tests whether a point lies in a region.

RectVisible Determines whether part of a rectangle lies in a region.

SelectClipRgn Selects a clipping region.

SetBoundsRect Controls the accumulation of bounding-rectangle information

for the specified device context.

2.9 Line Output

Line output functions require coordinates in logical units, which GDI uses to draw
a line in logical space. (The use of logical units ensures device independence in
Windows.) GDI maps this line from the logical space to pixels on the device. The
number of logical units that GDI maps to a pixel depends on the current mapping
mode. When GDI draws a line, it excludes the last specified point.

If an application draws lines and does not create a new pen, GDI uses the default
pen. This pen is black and is one pixel wide when the mapping mode is
MM_TEXT. An application can create a new pen of a different width, style, and

100 Microsoft Windows Programmer’s Reference

color by using the CreatePen function. The new color is dependent on the color
capabilities of the output device. The new style can be solid, dotted, dashed, or
combined (dotted and dashed). Once an application creates a new pen, it can select
the pen into a display context by using the SelectObject function.

2.9.1 Arcs

The Arc function uses a bounding rectangle to define the size of an arc. The
bounding rectangle is hidden; GDI uses it only to describe the location and size of
the arc.

The upper portion of the following illustration shows an arc as it would appear on
a display. The lower portion shows the arc suspended in the bounding rectangle
used by GDI to determine the size and shape of the arc.

2.9.2 Simple Lines

Simple line output can be created by using the LineTo and MoveTo functions.
The application created the rectangle on the left by using a styled pen and the rect-
angle on the right by using a solid pen.

Styled pen Solid pen
L [

-

—

Chapter 2 Graphics Device Interface 101

2.9.3 Line-Output Functions

Line-output functions create simple and complex line output with the selected pen.
Following are the line-output functions:

Function Description

Arc Draws an arc.

LineDDA Computes successive points on a line.

LineTo Draws a line with the selected pen.

MoveTo Moves the current position to the specified point.
MoveToEx Moves the current position.

Polyline Draws a set of line segments.

2.10 Ellipses and Polygons

Ellipse and polygon functions require coordinates in logical units, which GDI uses
to determine the location and size of an object in logical space. (The use of logical
units ensures device independence in Windows.) GDI maps the object from logi-
cal space to pixels on the device. The number of logical units that Windows maps
to a pixel depends on the current mapping mode. The default mapping mode,
MM_TEXT, maps one logical unit to one pixel.

2.10.1 Rectangles

The Rectangle function draws a rectangle, using the current pen. The RoundRect
function also draws a rectangle, but with rounded rather than square corners.

When GDI draws a rectangle, it uses four arguments. The first two arguments
specify the upper-left corner of the rectangle. The last two arguments do not actu-
ally specify part of the rectangle; they specify the point adjacent to the lower-right
corner. For example, if the first point is specified by (x,, y,) and the second point is
specified by (x,, y,), the rectangle’s upper-left corner will be (x,, y,) and the lower-
right corner will be (x,— 1, y,—1).

2.10.2 Bounding Rectangles

The Chord, Ellipse, and Pie functions use a bounding rectangle, instead of a
radius or circumference measurement, to define the size of the object they create.
The bounding rectangle is hidden; GDI uses it only to describe the location and
size of the object.

102 Microsoft Windows Programmer’s Reference

2.10.3 Ellipse and Polygon Functions

Ellipse and polygon functions, which draw ellipses and polygons, are particularly
useful in drawing and charting applications. GDI draws the perimeter of each ob-
ject with the selected pen and fills the interior by using the selected brush. Follow-
ing are the ellipse and polygon functions:

Function Description

Chord Draws a chord.

Ellipse Draws an ellipse.

Pie Draws a pie.

Polygon Draws a polygon.

PolyPolygon Draws a series of closed polygons that are filled as though they were
a single polygon.

Rectangle Draws a rectangle.

RoundRect Draws a rounded rectangle.

2.11 Bitmap Functions

A bitmap is a matrix of memory bits that, when copied to a device, defines the
color and pattern of a corresponding matrix of pixels on the display surface of the
device. Bitmaps are useful in drawing, charting, and word-processing applications
because they prepare images in memory and then quickly copy them to the display.

The relationship between bitmap bits in memory and pixels on a device is device-
dependent. On a monochrome device, the correspondence is usually one-to-one,
where one bit in memory corresponds to one pixel on the device.

Bitmap functions display bitmaps. Following are the bitmap functions:

Function Description

BitBIt Copies a bitmap from a source to a destination device.

CreateBitmap Creates a bitmap.

CreateBitmapIndirect Creates a bitmap described in a structure.

CreateCompatibleBitmap Creates a bitmap that is compatible with a specified
device.

CreateDiscardableBitmap Creates a discardable bitmap that is compatible with a
specified device.

ExtFloodFill Fills the display surface within a border or over an area

of a given color.

Chapter 2 Graphics Device Interface 103

Function Description

FloodFill Fills the display surface within a border.
GetBitmapBits Retrieves the bits in memory for a specific bitmap.
GetBitmapDimension Retrieves the height and width of a bitmap.
GetBitmapDimensionEx Retrieves the height and width of a bitmap.
GetPixel Retrieves the RGB value for a pixel.

LoadBitmap Loads a bitmap from a resource file.

PatBIt Creates a bit pattern.

SetBitmapBits Sets the bits of a bitmap.

SetBitmapDimension Sets the height and width of a bitmap.

SetBitmapDimensionEx
SetPixel
StretchBIt

Sets the height and width of a bitmap.
Sets the RGB value for a pixel.

Copies a bitmap from a source to a destination device
(compressing or stretching the bitmap, if necessary).

In addition, applications can use the LoadBitmap function from the USER API to
load a bitmap from a resource file. For more information about this USER func-
tion, see Chapter 1, “Window Management.”

2.12 Device-Independent Bitmap Functions

Microsoft Windows provides a set of functions that define and manipulate color

bitmaps so that they can be appropriately displayed on a device with a given reso-
lution, regardless of the method used by the device to represent color in memory.
These functions translate a device-independent bitmap (DIB) specification into a
device-specific format.

A DIB specification consists of two parts:

= A BITMAPINFO structure that defines the format of the bitmap and, option-
ally, supplies a table of colors used by the bitmap

® An array of bytes that contain the bitmap bit values

Depending on the values contained in the bitmap information structure, the bitmap
bit values can specify explicit RGB color values or indices into the color table. In
addition, the color table can consist of indices into the currently realized logical
palette instead of explicit RGB color values. Note that the coordinate-system
origin for DIBs is the lower-left corner, not the Windows default upper-left corner.

104

Microsoft Windows Programmer’s Reference

Following are the DIB functions:

Function Description

CreateDIBitmap Creates a device-specific memory bitmap from a DIB specifi-
cation and, optionally, initializes bits in the bitmap. This func-
tion is similar to the CreateBitmap function.

GetDIBits Retrieves the bits in memory for a specific bitmap in device-
independent form. This function is similar to the GetBitmap-
Bits function.

SetDIBits Sets bits of a memory bitmap from a DIB. This function is sim-
ilar to the SetBitmapBits function.

SetDIBitsToDevice Sets bits on a device surface directly from a DIB.

StretchDIBits Moves a DIB from a source rectangle into a destination rect-

2.13 Text Functions

Text functions retrieve text information, alter text alignment, alter text justifica-
tion, and write text on a device or display surface. GDI uses the current font for
text output. Following are the GDI text functions:

angle, stretching or compressing the bitmap as required.

Function Description

ExtTextOut Writes a character string, within a rectangular region,
using the currently selected font. The rectangular region
can be opaque (filled with the current background color).
It can also be a clipping region.

GetTextAlign Returns a mask of the text alignment flags.

GetTextCharacterExtra Retrieves the current setting for the amount of inter-
character spacing.

GetTextExtent Uses the current font to compute the width and height of
text.

GetTextExtentPoint Retrieves dimensions of string.

SetTextAlign Positions a string of text on a display or device.

SetTextCharacterExtra Sets the amount of intercharacter spacing.

SetTextJustification

TextOut

Justifies a text line.
‘Writes a character string using the current font.

Chapter 2 Graphics Device Interface 105

The USER API also includes the following text functions:

Function Description

DrawText Draws formatted text into a rectangle.

GetTabbedTextExtent Computes the width and height of a line of text containing
tab characters.

GrayString Draws gray text by writing the text in a memory bitmap
and graying the bitmap. Then it copies the bitmap to the
display.

TabbedTextOut Writes a character string with expanded tabs, using the

current font.

For more information about these USER functions, see Chapter 1, “Window

Management.”

2.14 Font Functions

Font functions select, create, remove, and retrieve information about fonts. A font
is a subset of a particular typeface, which is a set of characters that share a similar
fundamental design. Following are the font functions:

Function Description

AddFontResource Adds a font resource in the specified file to the
system font table.

CreateFont Creates a logical font that has the specified charac-
teristics.

CreateFontIndirect Creates a logical font that has the specified charac-

CreateScalableFontResource

EnumFontFamilies

EnumFonts
GetAspectRatioFilter

GetAspectRatioFilterEx

teristics.

Creates a font resource file containing the font
directory information and the font module name for
a specified scalable font file.

Enumerates the fonts in a specified font family that
are available on a given device. (Supersedes the
EnumFonts function.)

Enumerates the fonts available on a given device.
Superseded by the EnumFontFamilies function.
Retrieves the setting for the current aspect-ratio
filter.

Retrieves current aspect-ratio filter.

106

Microsoft Windows Programmer’s Reference

Function Description

GetCharABCWidths Retrieves the widths of consecutive characters in a
specified range from the current TrueType font.

GetCharWidth Retrieves the widths of individual characters in a
range of consecutive characters from the current
font.

GetFontData Retrieves font metric data from a TrueType font file.

GetGlyphOutline Retrieves the outline curve or bitmap for an outline

GetOutlineTextMetrics

character in the current font.

Fills a buffer with metrics for the selected TrueType
font.

GetRasterizerCaps Retrieves flags indicating whether TrueType fonts
are installed in the system.

GetTextFace Copies the current font name to a buffer.

GetTextMetrics Fills a buffer with metrics for the selected font.

RemoveFontResource Removes a font resource from the font table.

SetMapperFlags Alters the algorithm the font mapper uses.

For information about using font functions in an application, see the Microsoft
Windows Guide to Programming.

2.15 Metafiles

A metafile is a collection of GDI commands that creates desired text or images.
Metafiles provide a convenient method of storing graphics commands that create
text or images. Metafiles are especially useful in applications that use specific text
or a particular image repeatedly. They are also device-independent; by creating
text or images with GDI commands and then placing the commands in a metafile,
an application can re-create the text or images repeatedly on a variety of devices.
Metafiles are also useful in applications that need to pass graphics information to
other applications.

2.15.1 Creating a Metafile

A Windows application must create a metafile in a special device context. It can-
not use the device contexts that the CreateDC or GetDC function returns; instead,
it must use the device context that the CreateMetaFile function returns.

Windows allows an application to use a subset of the GDI functions to create a
metafile. This subset consists of all GDI functions that create output (rather than
functions that provide state information, such as the GetDeviceCaps function).
The following list shows GDI functions that an application can use in a metafile:

Chapter 2 Graphics Device Interface 107

AnimatePalette OffsetViewportOrg SetBkMode

Arc OffsetWindowOrg SetDIBitsToDevice
BitBIt PatBIt SetMapMode
Chord Pie SetMapperFlags
CreateBrushIndirect Polygon SetPixel
CreateDIBPatternBrush Polyline SetPolyFillMode
CreateFontlIndirect PolyPolygon SetROP2
CreatePatternBrush RealizePalette SetStretchBltMode
Ellipse RestoreDC SetTextColor
Escape RoundRect SetText]Justification
ExcludeClipRect SaveDC SetViewportExt
ExtTextOut ScaleViewportExt SetViewportOrg
FloodFill ScaleWindowExt SetWindowExt
IntersectClipRect SelectClipRgn SetWindowOrg
LineTo SelectObject StretchBIt

MoveTo SelectPalette StretchDIBits
OffsetClipRgn SetBkColor TextOut

To create output in a metafile, an application must follow four steps:

1. Create a special device context by using the CreateMetaFile function.
2. Send GDI commands to the metafile by using the special device context.

3. Close the metafile by calling the CloseMetaFile function. This function returns
a metafile handle.

4. Display the image or text on a device by using the PlayMetaFile function and
passing to the function the metafile handle obtained from CloseMetaFile and a
device-context handle for the device on which the metafile is to be played.

The device context that the CreateMetaFile function creates does not have default
attributes of its own. Whatever device-context attributes are in effect for the output
device when an application plays a metafile will be the defaults for the metafile.
The metafile can change these attributes while it is playing. If the application
needs to retain the same device-context attributes after the metafile has finished
playing, it should save the output device context by calling the SaveDC function
before calling the PlayMetaFile function. Then, when PlayMetaFile returns, the
application can call the RestoreDC function to restore the original device-context
attributes.

Although the maximum size of a metafile is 232 bytes or records, the actual size of
a metafile is limited by the amount of memory or disk space available. For infor-
mation about the format of metafile records and descriptions of their contents, see
the Microsoft Windows Programmer’s Reference, Volume 4.

108 Microsoft Windows Programmer’s Reference

2.15.2 Storing a Metafile

An application can store a metafile in system memory or in a disk file.

To store the metafile in memory, an application calls the CreateMetaFile function
and passes NULL as the function parameter. The application can free the memory
that Windows uses to store the metafile by calling the DeleteMetaFile function.
This function removes a metafile from memory and invalidates its handle.
DeleteMetaFile has no effect on disk files.

There are two ways of storing a metafile in a disk file:

= When the application calls the CreateMetaFile function to open a metafile, it
passes a filename as the function parameter; the metafile is then recorded in a
disk file.

= After the application has created a metafile in memory, it calls the Copy-
MetaFile function. This function accepts the handle of a memory metafile
and the name of the disk file to which the metafile will be saved.

The GetMetaFile function opens a metafile stored in a disk file and makes it avail-
able for replay or modification. This function accepts the filename of a metafile
stored on disk and returns a metafile handle.

2.15.3 Changing How Windows Plays a Metafile

A metafile does not have to be played back in its entirety or exactly in the form
in which it was recorded. An application can use the EnumMetaFile function to
locate a specific metafile record. EnumMetaFile calls a callback function sup-
plied by the application and passes it the following information:

® The metafile device context

® A pointer to the metafile handle table

= A pointer to a metafile record

= The number of associated objects with handles in the handle table
= A pointer to application-supplied data

The callback function can then use this information to play a single record, to
query the record, to copy it, or to modify it.

The PlayMetaFileRecord function plays a metafile record by executing the GDI
function contained in the record.

Chapter 2 Graphics Device Interface 109

When Windows plays or enumerates the records in a metafile, it identifies each
object with an index into a handle table. Functions that select objects (such as
SelectObject and SelectPalette) identify the object by means of the object handle
that the application passes to the function.

Objects are added to the table in the order in which they are created. For example,
if a brush is the first object created in a metafile, the brush is given index 0. If the
second object is a pen, it is given index 1, and so on. For information about the for-
mat of the handle table, see the description of the HANDLETABLE structure in
the Microsoft Windows Programmer’s Reference, Volume 3.

2.15.4 Metafile Functions

Metafile functions close, copy, create, delete, retrieve, play, and return information
about metafiles. Following are the metafile functions:

Function Description

CloseMetaFile Closes a metafile and creates a metafile handle.

CopyMetaFile Copies a source metafile to a file.

CreateMetaFile Creates a metafile display context.

DeleteMetaFile Deletes a metafile from memory.

EnumMetaFile Enumerates the GDI calls within a metafile.

GetMetaFile Creates a handle of a metafile.

GetMetaFileBits Stores a metafile as a collection of bits in a global memory
object.

PlayMetaFile Plays the contents of a specified metafile.

PlayMetaFileRecord Plays a metafile record.
SetMetaFileBits Creates a memory metafile.
SetMetaFileBitsBetter ~ Creates a memory block from a metafile.

2.16 Device-Control Functions

Device-control functions retrieve information about a device and modity its initial-
ization state. Following are the device-control functions:

Function Description

DeviceCapabilities Retrieves capabilities of a printer driver.

DeviceMode Sets the current printing modes for a device by prompting the
user with a dialog box.

110 Microsoft Windows Programmer’s Reference

Function Description

ExtDeviceMode Retrieves or modifies device initialization information for a
given printer driver or displays a driver-supplied dialog box for
configuring the driver.

GetDeviceCaps Retrieves device-specific information about a given display
device.

ResetDC Updates the specified device context, based on the information
in a DEVMODE structure.

The printer driver, rather than GDI, provides the DeviceCapabilities, Device-
Mode, and ExtDeviceMode functions.

2.17 Printer Functions

The Escape function allows an application to access some facilities of a particular
device that are not directly available through GDI. When an application calls
Escape for a printer device context, the printer functions regulate the flow of
printer output from Windows applications, retrieve information about a printer,
and alter the settings of a printer.

Following are the eight printer functions in Windows 3.1, which supersede many
of the printer escapes:

Function Description

AbortDoc Ends the current print job and erases everything drawn since the last
call to the StartDoc function.

EndDoc Ends a print job.

EndPage Informs the printer that the application has finished writing to a
page.

QueryAbort Informs the abort procedure for a printing application that a print
job should be stopped.

SetAbortProc Sets the application-supplied abort procedure that allows a print job
to be canceled during spooling.

SpoolFile Places a file into the spooler queue.
StartDoc Starts a print job.
StartPage Prepares the printer driver to begin accepting data.

For information about printing from Windows applications, see the Microsoft
Windows Guide to Programming.

Chapter 2 Graphics Device Interface 11

2.18 Related Topics

For more information about USER API functions, see Chapter 1, “Window
Management.”

For an introduction to using font functions in an application and to printing from
Windows applications, see the Microsoft Windows Guide to Programming.

For more information about the HANDLETABLE structure and the format of
metafile records, see the Microsoft Windows Programmer’s Reference, Volumes 3
and 4, respectively.

System Services

3.1
32
33
34
35
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16

Chapter 3

Module-Management FUNCHONSc.cocevvieiinereenieneenreneenreneneseesenenne 115
Memory-Management FUNCHONS.ccccevverereentenenencneneneeeeeeeenene 115
Segment FUNCLIONS......c..coviririiieieeieecetcreete e 117
Operating-System Interrupt FUNCtionScocceveeveevenenencnenenieenennenes 118
TaSK FUNCLIONS «...veeveeieeeieececee ettt 119
Resource-Management FUNCHONScccoceriirieiiiinnieniciecneeeieeee e 119
String-Manipulation FUNCiONScceeeevierierirntenieneninenieeceenieceeene 120
Atom-Management FUNCLIONScccceoenerniinenieninicnnccceeenee 121
Initialization-File FUNCLions..........c..cocoiiiiiiiiiiniiniiic e 122
Communication FUNCHONSc..ccceeieeiirereeie e 122
Utility Macros and FUNCHONScceeeeierieeineeieiecneneenenieeeeee e 123
File Input and Output FUNCHONScoevereerrevrenieerirreieiieieencencnieene 124
Debugging FUNCHONScc.coveeieiiiieeeeereeee ettt 125
Optimization-Tool FUNCHONS.......c.ccocerervieniirininieeeieneceeeneeeneeeeee 125
Application-Execution FUNConScocceveeerernenienenenenenenceenenne 126

REIated TOPICS. c.veeverueeuieieieieieieiee ettt ettt ettt et ne e eneenenne s 126

Chapter 3 System Services 115

This chapter describes the system services interface functions for the Microsoft
Windows operating system. These functions access code and data in modules,
allocate and manage both local and global memory, manage tasks, load program
resources, translate strings from one character set to another, alter the Windows
initialization file, assist in system debugging, carry out communications through
the system’s input and output (I/O) ports, create and open files, and create sounds
using the system’s sound generator.

3.1 Module-Management Functions

Module-management functions alter and retrieve information about Windows
modules, which are loadable, executable units of code and data. Following are the
module-management functions:

Function Description

FreeLibrary Decreases the reference count of a library by one, and
removes it from memory if the reference count is zero.

FreeModule Decreases the reference count of a module by one, and
removes it from memory if the reference count is zero.

FreeProcInstance Removes a function-instance entry at an address.

GetCodeHandle Determines which code segment contains a specified func-
tion.

GetlnstanceData Copies data from an offset in one instance to an offset in
another instance.

GetModuleFileName Copies a module filename.

GetModuleHandle Returns the handle of a specified module.

GetModuleUsage Returns the reference count of a module.

GetProcAddress Returns the address of a function in a module.

GetVersion Returns the current version number of Windows.

LoadLibrary Loads a library module.

MakeProcInstance Returns a function-instance address.

3.2 Memory-Management Functions

Memory-management functions manage system memory. There are two catego-
ries of memory-management functions: those that manage global memory and
those that manage local memory. Global memory is all memory in the system that

Microsoft Windows Programmer’s Reference

has not been allocated by an application or reserved by the system. Local memory
is the memory in the data segment of a Windows application. Following are the
memory-management functions:

Function

Description

GetFreeSpace

GetFreeSystemResources

GetWinFlags

GlobalAlloc
GlobalCompact
GlobalDosAlloc

GlobalDosFree
GlobalFlags
GlobalFree

GlobalHandle
GlobalLock

GlobalLRUNewest
GlobalLRUOIldest

GlobalNotify
GlobalReAlloc
GlobalSize
GlobalUnlock

GlobalUnWire
GlobalWire

LimitEmsPages

Retrieves the number of bytes available in the global
heap.

Returns the percentage of free system-resource space.

Retrieves information about the system-memory con-
figuration.

Allocates memory from the global heap.
Compacts global memory to generate free bytes.

Allocates global memory that can be accessed by
MS-DOS.

Frees global memory previously allocated by the
GlobalDosAlloc function.

Returns the flags and lock count of a global memory
object.

Removes a global memory object and invalidates the
handle of the memory object.

Retrieves the handle of a global memory object.

Retrieves a pointer to a global memory object speci-
fied by a handle. Except in the case of nondiscardable
objects in protected (standard or 386-enhanced) mode,
the object is locked in memory at the given address and
its lock count is increased by one.

Moves a global memory object to the newest least
recently used (LRU) position.

Moves a global memory object to the oldest LRU posi-
tion.

Installs a notification procedure for the current task.
Reallocates a global memory object.
Returns the size, in bytes, of a global memory object.

Invalidates the pointer to a global memory object pre-
viously retrieved by the GlobalLock function. If the
object is discardable, GlobalUnlock decreases the lock
count of the object by one.

Decreases the lock count set by the GlobalWire func-
tion, and unlocks the memory object if the count is zero.
Moves an object to low memory and increases the lock
count.

Limits the amount of expanded memory that Windows
assigns to an application.

Chapter 3 System Services 117

Function Description

LocalAlloc Allocates memory from the local heap.

LocalCompact Compacts local memory.

LocalFlags Returns the memory type of a local memory object.

LocalFree Frees a local memory object from memory if the lock
count is zero and invalidates the handle of the memory
object.

LocalHandle Retrieves the handle of a local memory object.

Locallnit Initializes a local heap in the specified segment.

LocalLock Locks the local memory object by increasing its lock
count.

LocalReAlloc Reallocates a local memory object.

LocalShrink Shrinks the local heap.

LocalSize Returns the size, in bytes, of a local memory object.

LocalUnlock Unlocks a local memory object.

LockSegment Locks a specified data segment in memory.

SetSwapAreaSize Increases the amount of memory that an application
reserves for code segments.

SwitchStackBack Returns the stack of the current task to the task’s data
segment after it had been previously redirected by the
SwitchTasksBack function.

SwitchStackTo Changes the stack of the current task to the specified
data segment, such as the data segment of a dynamic-
link library (DLL).

UnlockSegment Unlocks a specified data segment.

3.3 Segment Functions

Segment functions allocate, free, and convert selectors; lock and unlock memory
objects referenced by selectors; and retrieve information about segments. Follow-
ing are the selector functions:

Function Description

AllocDStoCSAlias Accepts a data-segment (DS) selector and returns a code-
segment (CS) selector that can be used to execute code in a
data segment.

AllocSelector Allocates a new selector.

FreeSelector Frees a selector originally allocated by the Alloc-
DStoCSAlias or AllocSelector function.

GetCodelnfo Retrieves information about a code segment.

GetSelectorBase

Returns the base of a selector.

118

Microsoft Windows Programmer’s Reference

Function Description

GetSelectorLimit Returns the limit of a selector.

GlobalFix Prevents a global memory object from moving in linear
memory.

GlobalPageL ock Page-locks the memory associated with the specified

global selector and increments its page-lock count.
Memory that is page-locked cannot be moved or paged out
to disk.

GlobalPageUnlock Decrements the page-lock count for the memory associated
with the specified global selector. If the page-lock count
reaches zero, the memory can be moved and paged out to

disk.

GlobalUnfix Unlocks a global memory object previously fixed by the
GlobalFix function.

LockSegment Locks a segment in memory.

PrestoChangoSelector Generates a temporary code selector that corresponds to a
given data selector or a temporary data selector that corre-
sponds to a given code selector.

SetSelectorBase Sets the base of a selector.

SetSelectorLimit Sets the limit of a selector.

UnlockSegment Unlocks a segment previously locked by the Lock-
Segment function.

Note An application should not use these functions unless it is absolutely neces-
sary. Use of these functions violates preferred Windows programming practices.

3.4 Operating-System Interrupt Functions

Operating-system interrupt functions make it possible for an assembly-language
application to perform certain MS-DOS and NetBIOS interrupts without directly
coding the interrupt. This ensures compatibility with future Microsoft products.
Following are the operating-system interrupt functions:

Function Description

DOS3Call Issues an MS-DOS 21h (function-request) interrupt.
NetBIOSCall Issues a NetBIOS 5Ch interrupt.

Chapter 3 System Services 119

3.5 Task Functions

Task functions alter the execution status of tasks, return information associated
with a task, and retrieve information about the environment in which the task is
being executed. A task is a single Windows application call. Following are the

task functions:

Function Description

Catch Copies the current execution environment to a buffer.

ExitWindows Initiates the standard Windows shutdown procedure.

GetCurrentPDB Returns the current MS-DOS program database (PDB), also
known as the program segment prefix (PSP).

GetCurrentTask Returns the handle of the current task.

GetDOSEnvironment Retrieves the environment string of the currently running
task.

GetNumTasks Returns the number of tasks currently being executed in the
system.

IsTask Determines whether a task handle is valid.

SetErrorMode Controls whether Windows handles MS-DOS Function 24h
errors or allows the calling application to handle them.

Throw Restores the execution environment to the specified values.

Yield Stops the current task and starts any waiting task.

3.6 Resource-Management Functions

Resource-management functions find and load application resources from a
Windows executable file. A resource can be a cursor, icon, bitmap, string, or font.
Following are the resource-management functions:

Function Description

AccessResource Opens the specified resource.

AllocResource Allocates uninitialized memory for a resource.
FindResource Determines the location of a resource.
FreeResource Removes a loaded resource from memory.
LoadAccelerators Loads an accelerator table.

LoadBitmap Loads a bitmap resource.

LoadCursor Loads a cursor resource.

LoadIcon

Loads an icon resource.

120 Microsoft Windows Programmer’s Reference

Function Description

LoadMenu Loads a menu resource.

LoadResource Loads a resource.

LoadString Loads a string resource.

LockResource Retrieves the absolute memory address of a resource.

SetResourceHandler Sets up a function to load resources.

SizeofResource Supplies the size, in bytes, of a resource.

3.7 String-Manipulation Functions

String-manipulation functions translate strings from one character set to another,
determine and convert the case of strings, determine whether a character is alpha-
betic or alphanumeric, find adjacent characters in a string, and perform other string

manipulations. Following are the string-manipulation functions:

Function Description

AnsiLower Converts a character string to lowercase.

AnsiLowerBuff Converts a character string in a buffer to lowercase.

AnsiNext Returns a long pointer to the next character in a string.

AnsiPrev Returns a long pointer to the previous character in a string.

AnsiToOem Converts a Windows character string to an OEM character
string.

AnsiToOemBuff Converts a Windows character string in a buffer to an OEM
character string.

AnsiUpper Converts a character string to uppercase.

AnsiUpperBuff Converts a character string in a buffer to uppercase.

IsCharAlpha Determines whether a character is alphabetic.

IsCharAlphaNumeric Determines whether a character is alphanumeric.

IsCharLower Determines whether a character is lowercase.

IsCharUpper Determines whether a character is uppercase.

IsDBCSLeadByte Determines whether a character is a double-byte character
set (DBCS) lead byte.

Istrcat Concatenates two strings identified by long pointers.

Istremp Performs a case-sensitive comparison of two strings iden-
tified by long pointers.

Istrempi Performs a case-insensitive comparison of two strings iden-
tified by long pointers.

Istrcpy Copies one string to another. Both strings are identified by

long pointers.

Chapter 3 System Services 121

Function

Description

Istrlen
OemToAnsi
OemToAnsiBuff
ToAscii
wsprintf

wvsprintf

Determines the length of a string identified by a long
pointer.

Converts an OEM character string to a Windows character
string.

Converts an OEM character string in a buffer to a Windows
character string.

Translates a virtual-key code to the corresponding
Windows character or characters.

Formats and stores a series of characters and values in a
buffer. Format arguments are passed separately.

Formats and stores a series of characters and values in a
buffer. Format arguments are passed through an array.

3.8 Atom-Management Functions

Atom-management functions create and manipulate atoms. Atoms are integers that
uniquely identify character strings. They are useful in applications that use many
character strings and in applications that need to conserve memory. Windows
stores atoms in atom tables. A local atom table is allocated in an application’s

data segment; it cannot be accessed by other applications. The global atom table
can be shared and is useful in applications that use dynamic data exchange (DDE).
Following are the atom-management functions:

Function

Description

AddAtom
DeleteAtom
FindAtom
GetAtomHandle

GetAtomName
GlobalAddAtom
GlobalDeleteAtom
GlobalFindAtom
GlobalGetAtomName
InitAtomTable

Creates an atom for a character string.
Deletes an atom if the reference count is zero.
Retrieves an atom associated with a character string.

Retrieves a handle (relative to the local heap) of the string
that corresponds to a specified atom.

Copies the character string associated with an atom.
Creates a global atom for a character string.

Deletes a global atom if the reference count is zero.
Retrieves a global atom associated with a character string.
Copies the character string associated with a global atom.
Initializes an atom hash table.

The MAKEINTATOM macro can also be used to cast an integer for use as a

function argument.

122 Microsoft Windows Programmer’s Reference

3.9 Initialization-File Functions

Initialization-file functions obtain information from and copy information to a
Windows or private (application-specific) initialization file. The Windows initiali-
zation file (WIN.INI) is a special ASCII file that contains entry-value pairs repre-
senting run-time options for applications. Following are the initialization-file

functions:

Function Description

GetPrivateProfileInt Returns an integer value in a section from a private
initialization file.

GetPrivateProfileString Returns a character string in a section from a private
initialization file.

GetProfileInt Returns an integer value in a section from the WIN.INI
file.

GetProfileString Returns a character string in a section from the
WINLINI file.

WritePrivateProfileString Copies a character string to a private initialization file
or deletes one or more lines from a private initializa-
tion file.

WriteProfileString Copies a character string to the WIN.INI file or deletes
one or more lines from WIN.INIL

An application should use a private initialization file to record information that
affects it alone. This improves the performance of the application and Windows by
reducing the amount of information that Windows must read when it accesses the
initialization file. An application should record information in WIN.INI only if the
information affects the Windows environment or other applications and should
send the WM_WININICHANGE message to all top-level windows.

The WININL.WRI and SYSINIL.WRI files supplied with the retail version of
Windows describe the contents of the WIN.INI and SYSTEM.INI files.

3.10 Communication Functions

Communication functions carry out communications through the serial and par-
allel I/O ports of the system. Following are the communication functions:

Function Description

BuildCommDCB Fills a device control block with control codes.
ClearCommBreak Clears the break state from a communications device.
CloseComm Closes a communications device after transmitting the

current buffer.

Chapte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>