
Getting Started

TM

SOFTWARE DEVEWPMENT KIT

Microsoft® Windows™
Software Development Kit
Version 3.1

Getting Started

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software, which includes information contained in
any databases, described in this document is furnished under a license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of that agreement. It is
against the law to copy the software except as specifically allowed in the license or nondisclosure
agreement. No part of this manual may be reproduced in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written per­
mission of Microsoft Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Copyright © 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Times, and
Times Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright© 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, Microsoft Press, QuickC, and Code View are registered trademarks, and
Windows, Win32, and QuickBasic are trademarks of Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.
The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of

AGFA Compugraphic Division of Agfa Corporation.
Apple and TrueType are registered trademarks of Apple Computer, Inc.
CompuServe is a registered trademark of CompuServe, Inc.
IBM is a registered trademark of International Business Machines Corporation.
Helvetica, Linotype, Times, and Times Roman are registered trademarks of Linotype AG and/or its

subsidiaries.
Arial, Monotype, and Times New Roman are registered trademarks of the Monotype Corporation

PLC.
Pioneer is a registered trademark of Pioneer Kabushiki Kaisha.

Document No. PC28914-0492

Contents

Introduction .. v

Software Development Kit Contents v
Redistributable Libraries and Files ... vi
Books in the Software Development Kit.. vii
Online Information viii

Debugging with the Software Development Kit.. viii
The Microsoft Connection ix

Chapter 1 Installing the Software Development Kit... 1
1.1 Hardware and Software Requirements ... 1
1.2 Using the Install Program 2
1.3 Updating Your System Files ... 3
1.4 Setting Up Your Windows Development Environment............................... 4
l.5 Using Online Information ... 5

Chapter 2 What's New for Windows Version 3.1? ... 7
2.1 Changes in the Software Development Kit .. 7

2.1.1 DialogEditor(DLGEDIT.EXE) ... 8
2.1.2 Dr. Watson(DRWATSON.EXE) ... 8
2.1.3 DDESpy (DDESPY.EXE) .. 8
2.1.4 Heap Walker (HEAPW ALK.EXE) ... 8
2.1.5 Hotspot Editor (SHED.EXE) .. 9
2.1.6 Image Editor (IMAGEDIT.EXE) 9
2.1.7 Multiple-Resolution Bitmap Compiler (MRBC.EXE) 9
2.1.8 Registration File Loader (REGLOAD.EXE) 9
2.1.9 System Debugging Log Application (DB WIN.EXE) 9
2.1.10 Stress-Resource Stress Application (STRESS.EXE) 10
2.1.11 Help Compiler (HC31.EXE) 10

2.2 Changes in Windows Application Programming Interface 10
2.2.1 Drag-DropFeature .. 11
2.2.2 Registration Database .. 12
2.2.3 Dynamic Data Exchange Management Library................................ 12

iv Microsoft Windows SDK Getting Started

Chapter 3

2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.2.13
2.2.14
2.2.15
2.2.16
2.2.17
2.2.18

Common Dialog Boxes... 14
Object Linking and Embedding.. 14
Data Decompression Functions.. 15
System Resources Stress-Testing Functions 16
File Installation and Version Checking Functions............................ 17
Tool Helper Functions... 18
Windows Help... 19
TrueType Fonts... 19
New Printer Functions .. 20
Device-Independent Bitmap Driver .. 21
Installable Drivers... 21
New Messages ... 21
New Control and Window Styles 23
New Graphics Device Interface (GDI) Functions 23
New KERNEL Functions .. 25

2.2.19 New USER Functions ... 25
2.3 Compatibility Issues ... 27

Creating Windows Applications .. 29
3.1 Writing Compatible Windows Applications .. 29

3.1.1 Windows 3.1 Applications .. 29
3.1.2 Windows 3.0 Applications .. 30
3.1.3 Combined Windows 3.0 and 3.1 Applications 30

3.2 Creating Robust Applications ... 32
3.2.1 Parameter Validation... 32
3.2.2 Strict Type-Checking.. 35

3.3 Testing and Debugging Your Application in Windows 37
3.3.1 UsingDifferentWindowsVersions .. 37
3.3.2 Using the System Debugging Log Application................................ 39

Introduction

The Microsoft® Windows™ 3.1 Software Development Kit (SOK) is a set of
libraries, header files, tools, books, online help, and sample source programs
designed to help you create Windows applications.

This guide introduces version 3.1 of the SOK and covers the following topics:

• Installing the SOK software

• Preparing your computer for Windows-application development

• Reviewing what is new for Windows version 3.1

• Determining how changes may affect your existing Windows applications

• Building Windows applications for both Windows 3.0 and Windows 3.1

• Creating robust Windows applications by using strict type-checking and
parameter validation

Software Development Kit Contents
The SOK contains the tools and information for using the following in applica­
tions:

• Windows application programming interface (API)

• Windows extensions, such as common dialog boxes and object linking and
embedding (OLE)

• Windows Help

• Microsoft Windows Setup Toolkit (Windows Setup)

• Microsoft® Windows TM operating system with Multimedia Extensions

• Microsoft® Windows™ for Pen Computing

The SOK is provided on both CD-ROM and 3.5-inch, 1.44-megabyte disks. (5.25-
inch, 1.2-megabyte disks are available via fulfillment.) You install the SOK by
using the SOK installation program, Install, described in Chapter 1, "Installing the
Software Development Kit."

...

vi Microsoft Windows SOK Getting Started

Redistributable Libraries and Files
Many new Windows features are included in dynamic-link libraries (DLLs) and
can be used in Windows 3.0 and Windows 3.1. If you use the new features in your
Windows 3.0 applications, you will need to redistribute the Windows DLLs and
related files that support these features. The SDK includes the following redistribu­
table files:

File

COMMDLG.DLL

DDEML.DLL

DIB.DRV

EXPAND.EXE

LZEXPAND.DLL

MCIPIONR.DRV

OEMSETUP.INF

OLECLI.DLL

OLESVR.DLL

PENWIN.DLL

REG EDIT.EXE

SHELL.DLL

SMALLX.FON

TOOLHELP.DLL

VER.DLL

VTD.386

WINHELP.EXE

WINHELP.HLP

WINMEM32.DLL

Description

Common dialog box library. The SDK also includes 10 other
DLLs with the filename COMMDLG but with different exten­
sions. These are international versions of the library.

Dynamic Data Exchange Management Library

Device-independent bitmap driver

File Expansion Utility

Data decompression library

Multimedia control interface (MCI) driver for Pioneer Videodisc

Installation file for MCIPIONR.DRV

Object linking and embedding client library

Object linking and embedding client library

Microsoft Windows for Pen Computing library

Microsoft Windows Registration Editor

Registration database and drag-drop support library

Small bitmap fonts for use in print-preview applications.
SMALLB.FON is for EGA resolution; SMALLE.FON is for
VGA resolution; SMALLF.FON is for IBM 8514/a resolution.

Tool helper library

File installation and version checking library

Virtual timer device (supports tool helper library)

Microsoft Windows Help version 3.1

Help for Windows Help version 3.1

Windows 32-bit memory-management library

Note Many files associated with Windows-based setup programs (Windows
Setup) are also redistributable but are not listed here. For more information about
the redistributable libraries and files, please see the separate SDK license agree­
ment.

Introduction vii

Books in the Software Development Kit
The SD K provides thousands of pages of information about Windows and
Windows programming. This quantity of information can be intimidating to both
the novice and the experienced programmer, but if you take a few moments to
review the following descriptions of the SDK books, you'll be able to determine
what path to take through the information.

Microsoft Windows Guide to Programming provides a step-by-step explanation
of how to create simple Windows applications that use the basic features of
Microsoft Windows. If you are new to programming for Windows, read this book
first.

Microsoft Windows User Interface Guidelines describes the recommended user
interface for Windows applications. Following these guidelines will help you
enjoy the benefits of having your application's interface be consistent with other
Windows applications.

Microsoft Windows Programmer's Reference, Volume 1: Overview explains and
illustrates the basic concepts of the Windows API and the Windows extensions.
If you want an in-depth look at programming for Windows, read this book.

Microsoft Windows Programmer's Reference, Volume 2: Functions provides
details for the functions of the Windows API and the Windows extensions.

Microsoft Windows Programmer's Reference, Volume 3: Messages, Structures,
and Macros provides details for the types, structures, messages, macros, and
printer escapes used by the Windows API and the Windows extensions.

Microsoft Windows Programmer's Reference, Volume 4: Resources provides
complete details for the format of files and resources used by Windows applica­
tions.

Microsoft Windows Programming Tools explains how to use the various SDK
tools to create resources for a Windows application.

Microsoft Windows Multimedia Programmer's Guide explains how to use the
Windows Multimedia API in your Windows applications.

Microsoft Windows Multimedia Programmer's Reference provides details for the
functions of the Windows Multimedia APL

Microsoft Windows for Pen Computing Programmer's Reference provides details
for the functions of the Microsoft Windows for Pen Computing APL

viii Microsoft Windows SOK Getting Started

Microsoft Windows Setup Toolkit explains how to create a Windows-based setup
program for your Windows application.

The Win32™ Application Programming Inteiface: An Overview describes the
Win32 application programming interface and explains how to create applications
for Windows 3.1 that can be easily ported to Win32.

Online Information
Much of the information in the SDK books is also available online in either
Microsoft QuickHelp (QH.EXE) or Microsoft Windows Help (WINHELP.EXE)
formats. The SDK includes the following online information files:

File

MCISTRQH.HLP

MCISTRWH.HLP

PENAPI_A.HLP

PENAPI_ W.HLP

WIN3 l MQH.HLP

WIN31MWH.HLP

WIN31QH.HLP

WIN31 WH.HLP

Description

Multimedia Control Interface Reference (QuickHelp)

Multimedia Control Interface Reference (Windows Help)

Microsoft Windows for Pen Computing Programmer's
Reference (QuickHelp)

Microsoft Windows for Pen Computing Programmer's
Reference (Windows Help)

Microsoft Windows Multimedia Reference (QuickHelp)

Microsoft Windows Multimedia Reference (Windows Help)

Microsoft Windows Programmer's Reference (QuickHelp)

Microsoft Windows Programmer's Reference (QuickHelp)

Debugging with the Software Development Kit
The SDK includes many new functions and tools that you can use in conjunction
with the debugging version of Windows to produce trouble-free code. Every
Windows application should be thoroughly tested on the debugging version of
Windows and should take advantage of the STRICT type-checking that is availa­
ble with the WINDOWS.H header file. Applications should compile without warn­
ings before they are released.

For more information about the many enhancements that will help you develop
robust applications for Windows version 3.1, see Chapter 3, "Creating Windows
Applications."

Introduction ix

The Microsoft Connection
The Microsoft Connection on CompuServe provides online technical information
for Microsoft products, including the SDK. With The Microsoft Connection, you
can exchange messages with Microsoft professionals and experienced Microsoft
users, and you can download free software, such as drivers, patches, tools, and
add-ons, provided by Microsoft and CompuServe members.

By using The Microsoft Connection, you can access the Microsoft Developer
Services area. You are encouraged to use this area to speak directly to Microsoft
about developer-related issues. The Microsoft Developer Services area offers the
following advantages:

• Developer Forums. These forums cover information about Windows, lan­
guages, tools, and utilities from a developer's perspective. For example, the
Windows SDK Forum provides information about programming for Windows.
The section leads for these forums are from Microsoft Product Support and can
help answer your questions about the Windows APL

• Confidential Technical Service Requests. Microsoft offers private (fee-based
per incident) technical support to help solve your more complex development
problems. For more details, see the Microsoft Developer Services area.

• Developer Knowledge Base. This up-to-date reference tool, compiled by
Microsoft Product Support, contains developer-specific technical information
about Microsoft products.

• Software Library. This collection of text and graphics files, sample code, and
utilities can be searched by keyword, and the files can be downloaded for local
use.

To connect to The Microsoft Connection, type GO MICROSOFT at the Compu­
Serve"!" prompt. For information about establishing a CompuServe account, call
(800) 848-8199, 8:00 A.M. to 10:00 P.M. EST. Ask for operator 230 and receive a
$15 connect-time usage credit.

Installing the Software Development Kit

Chapter 1

This chapter explains how to install the Microsoft Windows version 3.1 Software
Development Kit (SOK) and how to set up your computer for application develop­
ment.

1.1 Hardware and Software Requirements
You can install and use the SOK on any computer that meets the minimum qualifi­
cations for Windows version 3.1. However, for application development, the fol­
lowing hardware is recommended:

• A personal computer using an 80386 or higher microprocessor

• 4 megabytes of conventional and extended memory

• One 5.25-inch (1.2 megabyte) and one 3.5-inch (1.44 megabyte) disk drive

• One hard disk with at least 40 megabytes available space

• A graphics adapter and compatible monitor

• A Microsoft® Mouse or compatible pointing device (required for some develop­
ment tools)

In addition to a computer for application development, many developers use one
or more extra computers to test their applications under different memory and dis­
play configurations. Although extra computers are not required, they are recom­
mended.

2 Microsoft Windows SOK Getting Started

Before you install the SOK, be sure that the following software is already installed
on your system:

• Microsoft® MS-DOS® operating system version 3.1 or later

• Windows version 3.1

• Any compiler or assembler (and accompanying linker) that supports Windows
application development

1.2 Using the Install Program
You install the SOK by using Install, the SOK installation program. This program
decompresses and copies the SOK software from the SOK disks to your hard disk;
all files on the SOK disks are in compressed format. Install also adds the group
Software Development Kit 3.1 to your Program Manager window and adds infor­
mation to the initialization files in your Windows directory. Optionally, Install
copies the sample program sources, online information files, redistributable librar­
ies, Windows for Pen Computing files, and the files for Windows Setup.

Install is an MS-DOS program that you must run from the MS-DOS command
line. You cannot install the SOK while Windows is running, so make sure you exit
Windows before running Install.

To install the SOK, follow these steps:

1. Insert Disk 1 or the CD-ROM disc into the appropriate drive.

2. At the MS-DOS prompt, change to the drive containing Disk 1. For example,
type a: and press ENTER to change to drive A.

3. For 3.5-inch disks, type install and press ENTER. For CD-ROM, type cd \install,
then type install and press ENTER.

4. Follow the online instructions to complete the installation. Most developers pre­
fer to install the libraries and header files in new directories, to avoid confusing
new files with files from other development environments.

Install will ask whether you want the following optional components installed:

• Redistributable libraries and files

• Windows online information, Microsoft QuickHelp (QR.EXE) format

Chapter 1 Installing the Software Development Kit 3

• Windows online information, Microsoft Windows Help (WINHELP.EXE)
format

• Sample sources

• Windows for Pen Computing files

• Windows Setup files

To help you decide, Install displays information about the component and prompts
for a Yes or No answer. If you direct Install not to install an optional component,
you can always install that component later by reinstalling the SDK.

If you have Microsoft® C Optimizing Compiler version 6.0, you must install
special C run-time libraries and header files from a separate C installation disk
that is included in the SDK. The C libraries contain run-time functions specially
modified for use with Windows. The C run-time header files are Windows­
compatible versions of the standard C header files. These Windows header files
are identical to the standard C header files but contain ifdef directives that hide
function prototypes for functions that are not compatible with Windows.

If you have Microsoft® QuickC® for Windows™, version 7 .0 of the Microsoft C
Optimizing Compiler, or another compiler that is compatible with Windows, you
have these C libraries and header files already and need not install new ones.

You use the INST ALL.BAT batch file to install the libraries and header files.
Insert the C run-time libraries disk in drive A or B and type a command of the
following form:

install [drive:\,path\lib-directory] [drive:\path\include-directory]

1.3 Updating Your System Files
Once the installation is complete, you must update your AUTOEXEC.BAT file
and may need to update your CONFIG.SYS file.

In your AUTOEXEC.BAT file, update the PATH, LIB, and INCLUDE environ­
ment variables so that they include the directories containing the Windows tools,
libraries, and header files. For the names of the directories to include, see the
README.TXT file. Install customizes according to the directories you specified
during installation and puts it in your directory for Windows development tools.

4 Microsoft Windows SDK Getting Started

When you installed Windows version 3.1, your CONFIG.SYS file should have
been updated to contain the correct settings for files and buffers. If not, add the
following statements to your CONFIG.SYS file:

files=30
buffers=20

If you are using the SMARTDrive disk-caching utility, you may want to set
buffers to 5. With SMARTDrive in use, setting buffers to 20 uses memory
without increasing your system's speed.

After updating the CONFIG.SYS or AUTOEXEC.BAT file, you must restart your
computer for the changes to take effect.

1.4 Setting Up Your Windows Development Environment
You can use Windows as your primary application-development environment.
Windows allows you to switch quickly among applications, including non­
Windows applications. As a result, you can write the code for your application,
create its resources (such as dialog boxes), compile and link the application, and
debug and test it, all in the same Windows session.

To provide the best possible performance for creating Windows applications, you
should follow these tips:

• Configure Windows to improve the performance of your software-development
tools.

• Associate file extensions with software-development tools when you are using
File Manager.

• Compile and link in 386 enhanced mode.

• Compact your hard disk to improve disk-access times.

When you associate a filename extension with a development tool, you can run
the tool simply by choosing the appropriate filename in the File Manager directory
window. File Manager starts the application and passes the chosen filename to the
application.

To associate a filename extension with an application, choose the Associate com­
mand from the File menu in File Manager. The system records the filename exten­
sion and associated application in the WIN.IN! file and in the registration database.

Chapter 1 Installing the Software Development Kit 5

1.5 Using Online Information
After the online information files have been installed, you can view the SDK infor­
mation in Windows Help files by using Windows Program Manager. Open the
Software Development Kit 3.1 group and choose the help icon of the information
you want to view. Alternatively, you can start Windows Help and use the Open
command in the File menu to specify the help file you want to view.

To view SDK information in QuickHelp files, set the HELPFILES environment
variable to the name of the directory containing the SDK help files, and then start
QuickHelp. QuickHelp loads all help files, so to view the information from a
specific help file, select the information from the list in the Categories menu.

What's New for Windows Version 3.1?

Chapter 2

This chapter describes many of the enhancements and changes to the Microsoft
Windows 3.1 Software Development Kit (SDK). The chapter summarizes the
major differences between this SDK and the SDK for Windows version 3.0 and
provides information about how some changes may affect your existing applica­
tions.

Several major areas of new growth for Windows 3.1 are not discussed in this chap­
ter. Specifically, the chapter does not discuss the Microsoft Windows operating
system with Multimedia Extensions, Microsoft Windows for Pen Computing, or
the creation of windows-based setup programs. For information about these top­
ics, see the Microsoft Windows Multimedia Programmer's Guide, the Microsoft
Windows Multimedia Programmer's Reference, the Microsoft Windows for Pen
Computing Programmer's Reference, and the Microsoft Windows Setup Toolkit.

2 .1 Changes in the Software Development Kit
The SDK offers the following enhancements:

• New dialog box editor (DLGEDIT.EXE)

• Information about new debugging and reporting tool (DRWATSON.EXE)

• New monitoring application for dynamic data exchange (DDESPY.EXE)

• Improved heap-walk program (HEAPW ALK.EXE)

• New bitmap, icon, and cursor editor (IMAGEDIT.EXE)

• Multiple-resolution bitmap support for help files (MRBC.EXE)

8 Microsoft Windows SDK Getting Started

• Segmented hypergraphics support for help files (SHED.EXE)

• New registration database updating tool (REGLOAD.EXE)

• New system debugging tool (DBWIN.EXE)

• New system resource stress-testing application (STRESS.EXE)

• Improved Microsoft Help Compiler (HC31.EXE)

The following sections describe changes to the SDK tools.

2.1.1 Dialog Editor (DLGEDIT.EXE)
Microsoft Dialog Editor has been completely rewritten for Windows 3 .1. The new
editor contains its own online reference information in Help.

2.1.2 Dr. Watson (DRWATSON.EXE)
Microsoft Windows Dr. Watson traps and reports general protection (GP) faults.
You use Dr. Watson while testing and debugging your Windows application to
gather information about GP faults your application causes. Dr. Watson creates
a log file containing such information as the name of the faulting application or
dynamic-link library (DLL), the instruction that caused the fault, and the stack
trace leading up to the fault. If Dr. Watson finds a symbol (.SYM) file correspond­
ing to the application or DLL, it displays the names of segments, functions, and
variables in the stack trace. Dr. Watson is provided with the retail version of
Windows 3.1. For information about how to read Dr. Watson log files, see
Microsoft Windows Programming Tools.

2.1.3 DDESpy (DDESPY.EXE)
Microsoft Windows DDESpy lets you view information about dynamic data
exchange (DDE) activity in your Windows system.

2 .1.4 Heap Walker (HEAPWALK.EXE)
Microsoft Windows Heap Walker now runs only in protected mode (standard or
386 enhanced mode). Heap Walker displays segment names from symbol files for
code segments and can display resources, such as icons, cursors, and menus.

Chapter 2 What's New for Windows Version 3.1? 9

2.1.5 Hotspot Editor (SHED.EXE)
Microsoft Windows Hotspot Editor creates segmented hypergraphics. A seg­
mented hypergraphic is a graphic (bitmap or metafile) that has embedded hyper­
links that users choose to initiate some action, such as a jump to another Help
topic. You use Hotspot Editor to create graphics to add to the help files for
Windows Help. The editor contains its own online reference information in Help.

2.1.6 Image Editor (IMAGEDIT.EXE)
Microsoft Image Editor creates bitmaps, icons, and cursors that you can use as
resources in your Windows applications. The new editor contains its own online
reference information in Help.

2.1. 7 Multiple-Resolution Bitmap Compiler (MRBC.EXE)
Microsoft Multiple-Resolution Bitmap Compiler creates bitmap files that contain
several bitmaps representing the same image but having different resolutions,
aspect ratios, or color formats. You use the compiler to create bitmap resources
to add to help files for Windows Help. When a help file contains a multiple­
resolution bitmap, Windows Help displays only the bitmap that best matches the
resolution, aspect ratio, and color format of the current display device.

2.1.8 Registration File Loader (REGLOAD.EXE)
Microsoft Windows Registration File Loader adds entries to the registration
database (REG.DAT) by reading a description of the entries from a text file and
merging the information into the binary-format database. You can distribute
REGLOAD.EXE with SHELL.DLL and the text file that describes your database
entries if your application will be installed on Windows 3.0. If your application
will be installed only on Windows 3.1, you need not ship REGLOAD.EXE, be­
cause the same functionality is built into Microsoft Windows Registration Editor
(REGEDIT.EXE), which is distributed with the retail version of Windows 3 .1.

2.1.9 System Debugging Log Application (DBWIN.EXE)
System Debugging Log Application allows you to display messages produced by
the debugging version of Windows, even if you are not running a debugger and if
you do not have a debugging terminal. It even makes it possible for you to see
some errors when it is running with the retail version of Windows. DB WIN.EXE

10 Microsoft Windows SOK Getting Started

allows you to control the output of specific varieties of messages. It also includes
a feature that makes it possible for you to force memory-allocation errors, as an
aid in testing the robustness of your application.

For information about the options you can set by using System Debugging Log
Application, see Chapter 3, "Creating Windows Applications."

2.1.10 Stress-Resource Stress Application (STRESS.EXE)
Microsoft Stress-Resource Stress Application makes it possible for you to allocate
system resources to see how your application behaves under low-resource condi­
tions. You can allocate resources such as global memory, USER and graphics
device interface (GDI) heap memory, file handles, and disk space.

2 .1.11 Help Compiler (HC31.EXE)
Microsoft Help Compiler, version 3.1, supports metafiles, tables, segmented
hypergraphics, secondary help windows, macros, and many other enhancements.
The compiler creates help files that can be used with Microsoft Windows Help,
version 3.1.

To support existing applications, the SDK also includes Microsoft Help Compiler,
version 3.0 (HC30.EXE).

2.2 Changes in Windows Application Programming Interface
Windows 3.1 includes many new functions as well as enhancements to existing
Windows functions. Windows has also added many new styles and messages to
existing user controls. Following are some of the additions and enhancements:

• Drag-drop feature (SHELL.DLL)

• Registration database (SHELL.DLL)

• Dynamic Data Exchange Management Library (DDEML.DLL)

• Common dialog boxes (COMMDLG.DLL and international versions of the
library)

• Object linking and embedding (OLECLI.DLL, OLESVR.DLL, SHELL.DLL)

Chapter 2 What's New for Windows Version 3.1? 11

• Data decompression (LZEXPAND.DLL)

• System resources stress-testing (STRESS.DLL)

• File installation and version checking (VER.DLL and VER.LIB)

• Tool help (TOOLHELP.DLL)

• Windows Help (WINHELP.EXE and WINHELP.HLP)

• TrueType fonts

• New printer functions

• Device-independent bitmap driver (DIE.DRY)

• Installable drivers

• Enhanced messages, styles, and functions

Most of the new Windows 3.1 functions are included in several new DLLs. The
appropriate DLL must be present for a program to use the new functions.

For more information about any of these new features, see the Microsoft Windows
Programmer's Reference.

2.2.1 Drag-Drop Feature
When an application implements the drag-drop feature, a user can select one or
more files in Windows File Manager, drag them to an open application, and drop
them there. The application receives a message it can use to retrieve the filenames
and the coordinates of the point at which the files were dropped.

Following are the new drag-drop functions:

Function

DragAcceptFiles

DragFinish

DragQueryFile

DragQueryPoint

Description

Registers whether a window accepts dropped files.

Releases memory allocated for dropping files.

Retrieves the filename of a dropped file.

Retrieves the cursor position when a file is dropped.

The drag-drop feature depends on the dynamic-link library SHELL.DLL. This is
a redistributable library.

12 Microsoft Windows SDK Getting Started

2.2.2 Registration Database
The registration database is a systemwide source of information about applica­
tions. This information is used to support the integration of applications with File
Manager for Windows 3.1 and is used by applications that support object linking
and embedding (OLE).

Your application can add entries to the registration database by using the registra­
tion functions; you can also add entries when you install your application by using
Microsoft Windows Registration Editor (REGEDIT.EXE).

Following are the new registration database functions:

Function

RegCloseKey

RegCreateKey

RegDeleteKey

RegEnumKey

RegOpenKey

RegQueryValue

RegSetValue

Description

Closes a key.

Creates a key.

Deletes a key.

Enumerates subkeys of a specified key.

Opens a key.

Retrieves a text string for a specified key.

Associates a text string with a specified key.

The registration database feature depends on the dynamic-link library
SHELL.DLL. This is a redistributable library.

2.2.3 Dynamic Data Exchange Management Library
The Dynamic Data Exchange Management Library (DDEML) provides a set of
API elements that simplifies the task of adding DDE capability to a Windows
application. Instead of sending, posting, and processing DDE messages directly,
an application uses the functions provided by the DDEML to manage DDE con­
versations.

The DDEML also provides a facility for managing the strings and data that are
passed among DDE applications. Applications create and exchange string handles
and data handles instead of atoms and pointers to shared memory objects. A server­
name service allows a server application to register the application names that it
supports. The names are broadcast to other applications in the system, which can

Chapter 2 What's New for Windows Version 3.1? 13

then use the names to connect to the server. The DDEML also ensures compati­
bility among DDE applications by forcing them to implement the DDE protocol
in a consistent manner.

Following are the new DDE functions:

Function

DdeAbandonTransaction

DdeAccessData

DdeAddData

DdeCiientTransaction
DdeCmpStringHandles

DdeConnect

DdeConnectList

DdeCreateDataHandle
DdeCreateStringHandle

DdeDisconnect

DdeDisconnectList

DdeEnableCallback

DdeFreeDataHandle

DdeFreeStringHandle

DdeGetData

DdeGetLastError

Ddelnitialize

DdeKeepStringHandle

DdeNameService

DdePostAdvise

DdeQueryConvlnfo

DdeQueryNextServer

DdeQueryString

DdeSetUserHandle

DdeUnaccessData

Dde Uninitialize

Description

Abandons an asynchronous transaction.

Accesses a DDE global memory object.

Adds data to a DDE global memory object.

Begins a DDE data transaction.

Compares two DDE string handles.

Establishes a conversation with a server.

Establishes multiple DDE conversations.

Creates a DDE data handle.

Creates a DDE string handle.

Terminates a DDE conversation.

Destroys a DDE conversation list.

Enables or disables one or more DDE conversations.

Frees a global memory object.

Frees a DDE string handle.

Copies data from a global memory object to a buffer.

Returns an error value set by a DDEML function.

Registers an application with the DDEML.

Increments the use count for a string handle.

Registers or unregisters a server application name.

Prompts a server to send data to a client during an
advise loop.

Retrieves information about a DDE conversation.

Obtains the next handle in a conversation list.

Copies string-handle text to a buffer.

Associates a user-defined handle with a transaction.

Frees a DDE global memory object.

Frees an application's DDEML resources.

The DDEML feature depends on the dynamic-link library DDEML.DLL. This is
a redistributable library.

14 Microsoft Windows SOK Getting Started

2.2.4 Common Dialog Boxes
Common dialog boxes are dialog boxes that applications display by calling a
single function rather than by creating a dialog box procedure and a resource file
containing a dialog box template. Common dialog boxes can be used only in pro­
tected mode (standard or 386 enhanced mode).

In addition to simplifying the development of Windows applications, common
dialog boxes assist users by providing a standard set of controls for performing
certain operations (such as selecting colors). As Windows developers begin using
common dialog boxes in their applications, users will find that once they master
the use of common dialog boxes in one application, they can easily perform the
same operations in other applications.

Following are the new functions for common dialog boxes:

Function

Choose Color

ChooseFont

Find Text

GetFileTitle

GetOpenFileName

GetSaveFileName

PrintDlg

Replace Text

Description

Creates a Color dialog box.

Creates a Font dialog box.

Creates a Find dialog box.

Retrieves a filename.

Creates an Open dialog box.

Creates a Save As dialog box.

Creates a Print dialog box.

Creates a Replace dialog box.

The common dialog box feature depends on the COMMDLG.DLL dynamic-link
library. This library and international versions of it are redistributable. Common
dialog boxes can be used with Windows 3.0 but only in standard or 386 enhanced
mode.

2.2.5 Object Linking and Embedding
An application that uses OLE can cooperate with other OLE applications to
produce documents containing different kinds of data, all of which are easily
manipulated by the user. The user editing such a document is able to improve the
document by employing the best features of many different applications. An appli­
cation that implements OLE gives its users the ability to move away from an appli­
cation-centered view of computing, in which the tool used to complete a task is
often a single application, and toward a document-centered view, in which users
can employ as many tools as they choose to complete a job.

Chapter 2 What's New for Windows Version 3.1? 15

A single OLE document can contain many kinds of data in many different for­
mats; such a document is called a compound document. A compound document
uses the facilities of different OLE applications to manipulate the different kinds
of data it displays. Any kind of data format can be incorporated into a compound
document; with little or no extra code, OLE applications can even support data
formats that have not yet been invented. The user working with a compound docu­
ment does not need to know which data formats are compatible with one another
or how to find and start the applications that created the data. Whenever a user
chooses to work with part of a compound document, the application responsible
for that part of the document starts automatically.

A compound document could be a brochure that included text, charts, ranges of
cells in a spreadsheet, and illustrations. The user working with this brochure could
automatically switch between the applications that produced its components. The
information could be embedded in the document, or the document could contain
links to certain information instead of containing the information itself. If the
brochure used links, it would provide only minimal storage for the data to which
it was linked, and it could be updated automatically whenever the linked data
changed.

The OLE feature depends on the dynamic-link libraries OLECLI.DLL,
OLESVR.DLL, and SHELL.DLL. These are redistributable libraries.

2.2.6 Data Decompression Functions
The data decompression functions let applications decompress files that were com­
pressed by Microsoft File Compression Utility (COMPRESS.EXE). You can use
these functions and utility to minimize the number of disks required to distribute
and install your application.

Following are the new data decompression functions:

Function

CopyLZFile

GetExpandedN rune

LZClose

LZCopy

LZDone

LZinit

Description

Copies a source file to a destination file, expanding it if the
file was compressed.

Retrieves the original name of a compressed file.

Closes a file that was opened by using the LZOpenFile func­
tion or the OpenFile function.

Copies a source file to a destination file, expanding it if the
file was compressed (intended for single-file copy operations).

Frees memory allocated by the LZStart function.

Retrieves a file handle for a compressed file.

16 Microsoft Windows SDK Getting Started

Function

LZOpenFile

LZRead
LZSeek

LZStart

Description

Opens a file.

Reads from a compressed file.

Positions the file pointer within a compressed file.

Allocates memory for multiple-file copy operations.

The data decompression feature depends on the dynamic-link library
LZEXPAND.DLL. This is a redistributable library.

2.2.7 System Resources Stress-Testing Functions
The stress-testing functions artificially consume system resources. This makes it
possible for you to see how your application behaves in low-resource conditions.
This library was designed to make testing easier and more realistic.

Following are the new stress-testing functions:

Function

AllocDiskSpace

AllocFileHandles

AllocGDIMem

AllocMem

AllocUserMem

FreeAllGDIMem
FreeAllMem

FreeAllUserMem

UnAllocDiskSpace

U nAllocFileHandles

Description

Creates a file so that all but a specified amount of disk space
is allocated.

Creates files so that all but a specified number of file handles
are allocated.

Allocates all available memory in the graphics device inter­
face (GDI) heap, down to a specified memory-object size.

Allocates all available memory, down to a specified memory­
object size.

Allocates all available memory in the USER heap, down to
a specified memory-object size.

Frees memory allocated by the AllocGDIMem function.

Frees all memory allocated by the AllocMem function.

Frees memory allocated by the AllocUserMem function.

Deletes the file created by the AllocDiskSpace function.

Frees all file handles allocated by the AllocFileHandles
function.

The stress testing feature depends on the dynamic-link library STRESS.DLL. This
is a redistributable library.

Chapter 2 What's New for Windows Version 3.1? 17

2.2.8 File Installation and Version Checking Functions
The file installation and version checking functions enable applications to install
files based on version information and to examine currently installed files. The
functions let applications examine a new version-information resource, created
using the VERSIONINFO statement, to determine version information about a
Windows executable file. Installation programs use this resource to determine
whether existing executable files should be updated.

Following are the new file installation and version checking functions:

Function

GetFileResource

GetFileResourceSize

GetFile Versionlnfo

GetFile VersionlnfoSize

GetSystemDir

GetWindowsDir

VerFindFile

VerlnstallFile

VerLanguageName

VerQueryValue

Description

Extracts the resource located by the GetFileResource­
Size function.

Determines whether a file contains a resource of a
specified type and identifier.

Returns a structure with file version information from the
specified version information resource.

Determines whether file version information is available
and the size of a buffer to hold the information.

Returns the name of the current system directory.

Returns the name of the current Windows directory.

Determines where to install a file, based on whether it
locates another version of the file.

Installs the file (requires information from the VerFind­
File function).

Returns a text representation of a binary Microsoft lan­
guage identifier.

Returns version information from the specified version
information resource.

File installation and version checking depend on the dynamic-link library
VER.DLL. This is a redistributable library.

These functions can also be used in Microsoft MS-DOS applications by linking
with the run-time library VER.LIB. The GetWindowsDir and GetSystemDir
functions exist only in the run-time version of this library; Windows has its own
versions of these functions.

18 Microsoft Windows SOK Getting Started

2.2.9 Tool Helper Functions
The tool helper functions simplify the job of writing Windows-hosted debugging
applications.

Following are the new tool helper functions:

Function

ClassFirst

ClassNext

GlobalEntryHandle
GlobalEntryModule

GlobalFirst

GlobalHandleToSel

Globallnfo
GlobalNext

lnterruptRegister

lnterruptUnRegister

LocalFirst
Locallnfo

LocalNext

MemManlnfo

Memory Read
Memory Write
ModuleFindHandle

ModuleFindName

ModuleFirst
ModuleNext

Notify Register

Notify U nRegister

StackTraceCSIPFirst
StackTraceFirst

StackTraceNext
SystemHeaplnfo

TaskFindHandle

Description

Retrieves information about the first class in the class list.

Retrieves information about the next class in the class list.

Retrieves information about a global memory object.

Retrieves information about a specific memory object.

Retrieves information about the first global memory object.

Converts a global handle to a selector.

Retrieves information about the global heap.

Retrieves information about the next global memory object.

Installs a function to handle system interrupts.

Removes the function that processed system interrupts.

Retrieves information about the first local memory object.

Fills a structure with information about the local heap.

Retrieves information about the next local memory object.

Retrieves information about the memory manager.

Reads memory from an arbitrary global heap object.

Writes memory to an arbitrary global heap object.

Retrieves information about a module.

Retrieves information about a module.

Retrieves information about the first module.

Retrieves information about the next module.

Installs a notification callback function.

Removes a notification callback function.

Retrieves information about a stack frame.

Retrieves information about the first stack frame.

Retrieves information about the next stack frame.

Retrieves information about the USER heap.

Retrieves information about a task.

Function

TaskFirst

TaskGetCSIP
TaskNext

TaskSetCSIP
TaskSwitch

TerminateApp
TimerCount

Chapter 2 What's New for Windows Version 3.1? 19

Description

Retrieves information about the first task in the task queue.

Returns the next CS:IP value of a task.

Retrieves information about the next task in the task queue.

Sets the CS:IP of a sleeping task.

Switches to a specific address within a new task.

Terminates an application.

Retrieves execution times.

The tool helper feature depends on the dynamic-link library TOOLHELP.DLL.
The DLL requires a modified version of the virtual timer device VTD.386 to pro­
vide additional support for the TimerCount function. Applications that use this
function must install the virtual timer device by adding an appropriate device=
entry in the [386Enh] section of the SYSTEM.IN! file. Both TOOLHELP.DLL
and VTD.386 are redistributable files.

2.2.10 Windows Help
Windows Help, version 3.1, lets applications control and display online informa­
tion about the application. Users can request Help by choosing commands from
the menu or by pressing the F 1 key. Your application monitors these requests and
activates Windows Help to provide general or context-sensitive help.

The Windows Help features depend on the Windows Help application
WINHELP.EXE. This application and the corresponding help file
WINHELP.HLP are redistributable files.

2.2.11 TrueType Fonts
Windows 3.1 includes a new font technology called TrueType and at least 13 core
TrueType fonts. In addition to the TrueType fonts that are included with Windows
3.1, many additional TrueType fonts are already available that users can purchase.
TrueType fonts can be scaled and rotated; they allow the same fonts to be used
on the screen as are used on printers; and they allow documents to be portable
between printers, applications, and systems.

The TrueType font technology offers many benefits to application designers, at
little or no cost. It is not necessary to revise an application written for Windows

20 Microsoft Windows SOK Getting Started

3.0 in order for that application to use TrueType fonts. If an application needs to
take full advantage of the greater precision and versatility available with True Type
fonts, however, it can use the following new font functions:

Function Description

CreateScalableFontResource
EnumFontsFamilies
GetCharABCWidths

Creates a resource file for a specified TrueType font.

Retrieves the fonts available on a specified device.

Retrieves the ABC widths of consecutive TrueType
characters.

GetFontData

GetGlyphOutline

Retrieves font-metric data from a TrueType font file.

Retrieves data describing the curves of a character
in a TrueType font.

GetKerningPairs

GetOutlineTextMetrics

GetRasterizerCaps

Retrieves kerning pairs for the current font.

Retrieves metrics defining TrueType fonts.

Determines whether TrueType is installed.

The TrueType feature is an integral part of Windows and is available with
Windows 3.1 only.

2.2.12 New Printer Functions
The printer functions simplify printing by replacing the cumbersome printer
escapes used in Windows 3.0.

Following are the new printer functions:

Function

AbortDoc
EndDoc

EndPage

ResetDC

SetAbortProc
SpoolFile

StartDoc

StartPage

Description

Terminates a print job.

Ends a print job.

Ends a page.

Updates a device context.

Sets the abort function for a print job.

Puts a file in the spooler queue.

Starts a print job.

Prepares the printer driver to receive data.

The printer functions are an integral part of Windows and are available with
Windows 3.1 only.

Chapter 2 What's New for Windows Version 3.1? 21

2.2.13 Device-Independent Bitmap Driver
The device-independent bitmap (DIB) driver lets applications create and manipu­
late device-independent bitmaps. The driver is a redistributable file.

2.2.14 Installable Drivers
An installable driver is a Windows DLL that a Windows application (or another
Windows DLL) can open, enable, query, disable, and close. An application can
perform these operations by calling the following functions:

Function

CloseDriver

DefDriverProc

GetDriverlnfo

GetDriverModuleHandle

GetNextDriver

OpenDriver

SendDriver Message

2.2.15 New Messages

Description

Closes an installable driver.

Calls the default installable-driver procedure.

Retrieves installable-driver data.

Retrieves an installable driver's module handle.

Enumerates installed drivers.

Opens an installable driver.

Sends a message to an installable driver.

The following new messages have been added to Windows 3.1:

Message

CB_FINDSTRINGEXACT

CB_GETDROPPEDCONTROLRECT

CB_GETDROPPEDSTATE

CB_GETEXTENDEDUI

CB_GETITEMHEIGHT

CB_SETEXTENDEDUI

CB_SETITEMHEIGHT

Description

Finds a string in the list box of a combo
box.

Retrieves the rectangle of the drop-down
list box of a combo box.

Determines whether the list box of a
combo box is visible.

Determines whether a combo box has the
extended interface.

Retrieves the height of items in a combo
box.

Sets the default or extended user interface.

Sets the height of items in a combo box.

22 Microsoft Windows SDK Getting Started

Message

EM_ GETFIRSTVISIBLELINE

EM_GETPASSWORDCHAR

EM_GETWORDBREAKPROC

EM_SETREADONLY

EM_SETWORDBREAKPROC

LB_FINDSTRINGEXACT

LB_GETCARETINDEX

LB_GETITEMHEIGHT

LB_SETCARETINDEX

LB_SETITEMHEIGHT

STM_ GETICON

STM_SETICON

WM_CHOOSEFONT _GETLOGFONT

WM_COMMNOTIFY

WM_DROPFILES

WM_pALETTEISCHANGING

WM_pOWER

WM_QUEUESYNC

WM_SYSTEMERROR

WM_ WINDOWPOSCHANGED

WM_ WINDOWPOSCHANGING

Description

Retrieves the index of the top line in a
multiline edit control.

Retrieves the password character dis­
played in an edit control.

Retrieves the wordwrap function for an
edit control.

Sets the read-only state of an edit control.

Provides custom word breaks in edit
controls.

Finds a string in a list box.

Retrieves the index of the list box item
with the focus rectangle.

Retrieves the height of items in a list box.

Sets the focus rectangle in a list box.

Sets the height of items in a list box.

Retrieves the icon handle associated with
an icon control.

Associates an icon handle with an icon
control.

Retrieves a LOGFONT structure for the
Font common dialog box.

Notifies a window about the status of its
queues.

Indicates that a file has been dropped.

Informs applications that an application is
changing its palette.

Indicates that the system is entering sus­
pended mode.

Delimits computer-based training (CBT)
messages.

Indicates that a system error has occurred.

Notifies a window that its size or position
has changed.

Notifies a window that its size or position
is changing.

Chapter 2 What's New for Windows Version 3.1? 23

2.2.16 New Control and Window Styles
The following new user control and window styles have been added to
Windows 3.1:

Style

CBS_DISABLENOSCROLL

ES_READONLY

ES_ WANTRETURN

LBS_DISABLENOSCROLL

WS_EX_ACCEPTFILES

WS_EX_TOPMOST

WS_EX_ TRANSPARENT

Description

Shows a disabled vertical scroll bar in the combo
box when the box does not contain enough items to
scroll.

Prevents the user from typing or editing text in the
edit control.

Specifies that a carriage return should be inserted
when the user presses the ENTER key while entering
text into a multiline edit control in a dialog box.

Shows a disabled vertical scroll bar in the list box
when the box does not contain enough items to scroll.

Specifies that a window created with this style
processes the WM_DROPFILES message. This style
is used with the CreateWindowEx function.

Places a window above all non-topmost windows
and keeps it above them even when the window is
deactivated. This style is used with the Create­
WindowEx function.

Specifies that a window created with this style is
transparent. This style is used with the Create­
WindowEx function.

2.2.17 New Graphics Device Interface (GDI) Functions
The following new GDI functions have been added to Windows 3.1. This table
does not include the new printer and TrueType functions, which are also part of
GDI. (The new printer and TrueType functions are listed earlier in this chapter.)

Function

GetAspectRatioFilter Ex

GetBoundsRect

GetBrushOrgEx

Description

Retrieves the current aspect-ratio filter.

Retrieves the current accumulated bounding rectangle.

Retrieves the origin of the current brush.

24 Microsoft Windows SOK Getting Started

Function

GetCurrentPositionEx

GetTextExtentPoint

GetViewportExtEx

GetViewportOrgEx

GetWindowExtEx

GetWindowOrgEx

IsGDIObject

MoveToEx

OffsetViewportOrgEx

OffsetWindowOrgEx

ResetDC

Scale ViewportExtEx

Scale WindowExtEx

SetBitmapDimensionEx

SetBoundsRect

SetMetaFileBitsBetter

SetViewportExtEx

SetViewportOrgEx

SetWindowExtEx

SetWindowOrgEx

Description

Retrieves the current position, in logical units, putting
the result in a POINT structure.

Retrieves the dimensions of a string.

Retrieves the viewport extent, putting the result in a
SIZE structure.

Retrieves the viewport origin, putting the result in a
POINT structure.

Retrieves the window extent, putting the result in a
SIZE structure.

Retrieves the window origin, putting the result in a
POINT structure.

Determines if the handle is not a handle of a GDI object.

Moves the current position, putting the previous position
in a POINT structure.

Moves the viewport origin, putting the previous origin in
a POINT structure.

Moves the window origin, putting the previous origin in
a POINT structure.

Updates a device context.

Scales viewport extents, putting the previous extents in a
SIZE structure.

Scales window extents, putting the previous extents in a
SIZE structure.

Sets the width and height of a bitmap, putting the pre­
vious dimensions in a SIZE structure.

Controls bounding-rectangle accumulation.

Create a memory object from a metafile.

Sets viewport extents, putting the previous extents in a
SIZE structure.

Sets the viewport origin, putting the previous origin in a
POINT structure.

Sets window extents, putting the previous extents in a
SIZE structure.

Sets the window origin, putting the previous origin in a
POINT structure.

Chapter 2 What's New for Windows Version 3.1? 25

2. 2 .18 New KERNEL Functions
The following new KERNEL functions have been added to Windows 3.1:

Function

DebugOutput

Directed Yield

GetSelector Base

GetSelectorLimit

GetWinDebuglnfo

lnnemcpy
_bread

_hwrite

IsBadCodePtr

IsBadHugeReadPtr
IsBadHugeWritePtr

IsBadReadPtr

IsBadStringPtr

IsBadWritePtr

IsDBCSLeadByte

Is Task

LogError

LogParamError

SetSelector Base

SetSelector Limit

SetWinDebuglnfo

2.2.19 New USER Functions

Description

Sends formatted messages to the debugging terminal.

Forces execution to continue at a specified task.

Retrieves the base address of a selector.

Retrieves the limit of a selector.

Queries current system-debugging information.

Copies bytes.

Reads from a file.

Writes to a file.

Determines whether a code pointer is valid.

Determines whether a huge read pointer is valid.

Determines whether a huge write pointer is valid.

Determines whether a read pointer is valid.

Determines whether a string pointer is valid.

Determines whether a write pointer is valid.

Determines whether a character is the lead byte, the first byte
of a character in a double-byte character set (DBCS).

Determines whether a task handle is valid.

Identifies an error message.

Identifies a parameter-validation error.

Sets the base of an existing selector.

Sets the limit of a selector.

Sets current system-debugging information.

The following new USER functions have been added to Windows 3 .1:

Function

CallNextHookEx

Copy Cursor

Description

Passes hook information down the hook chain.

Copies a cursor.

26 Microsoft Windows SOK Getting Started

Function

Copy Icon

EnableCommNotification

EnableScrollBar

GetClipCursor

GetCursor

GetDCEx

GetFreeSystemResources

GetMessageExtralnfo

GetOpenClipboardWindow

GetQueueStatus

GetSystemDebugState

GetTimerResolution

GetWindowPlacement

hardware_ event

Is Menu
Locklnput

LockWindowUpdate

Map Window Points

QuerySendMessage

Redraw Window

ScrollWindowEx

Set Window Placement

SetWindowsHookEx

SubtractRect

SystemParameterslnfo

UnhookWindowsHookEx

WNetAddConnection

WNetCancelConnection

WNetGetConnection

Description

Copies an icon.

Enables or disables WM_COMMNOTIFY posting to
window.

Enables or disables scroll-bar arrows.

Retrieves cursor-confining rectangle coordinates.

Returns the current cursor handle.

Retrieves the handle of a device context.

Returns the percentage of free system resource space.

Retrieves information about a hardware message.

Returns a handle of the window that currently has
the clipboard open.

Determines the queued message type.

Returns system-state information to a debugger.

Retrieves the timer resolution.

Retrieves the show state and the normal (restored),
minimized, and maximized positions of a window.

Places a hardware message in the system queue.

Determines whether a menu handle is valid.

Locks input to all tasks except the current one.

Disables or reenables drawing in a window.

Converts points to another coordinate system.

Determines whether a message originated within a
task.

Updates a client rectangle or region.

Scrolls a window's client area.

Sets the show state and the normal (restored), min­
imized, and maximized positions of a window.

Installs a hook function into a hook chain.

Creates a rectangle from the difference between two
rectangles.

Queries or sets systemwide parameters.

Removes a function from the hook chain.

Adds network connections.

Removes network connections.

Lists network connections.

Chapter 2 What's New for Windows Version 3.1? 27

2 .3 Compatibility Issues
Although every effort has been made to ensure that the many enhancements and
improvements to Windows are compatible with Windows 3.0 applications, some
enhancements may affect application operation. This is especially true if an appli­
cation uses features in an undocumented fashion or relies on invalid assumptions
about the behavior of Windows. For a complete discussion of compatibility issues,
see the Compatibility Issues topic in either Microsoft Windows Help or Microsoft
QuickHelp (QH.EXE).

Creating Windows Applications

Chapter 3

This chapter explains what elements are needed to build applications for the
Microsoft Windows operating system versions 3.0 and 3.1. It also provides
guidelines for writing robust applications and for debugging applications.

3.1 Writing Compatible Windows Applications
The Microsoft Windows 3.1 Software Development Kit (SDK) allows you to
create applications for either Windows 3.0 or 3.1. If you write your application
carefully, you can create a single application that is compatible with Windows
3.0 but also takes advantage of newer features when running with Windows 3.1.

3.1.1 Windows3.1 Applications
The Windows 3.1 SDK tools, header files, and libraries create Windows 3.1
applications by default. No special procedures are required to create executable
files that run with Windows 3.1. If you create Windows Help files for your appli­
cations, use Microsoft Help Compiler version 3.1 (HC31.EXE) to compile your
files so that they have access to the latest features of Windows Help.

Applications that call Windows 3.1 functions depend on Windows 3.1 and cannot
be run with Windows 3.0.

30 Microsoft Windows SOK Getting Started

3.1.2 Windows 3.0 Applications
You can use the Windows 3.1 SOK to create a Windows 3.0 application by follow­
ing these steps:

1. Set the WINVER define variable to Ox300 to enable the WINDOWS.H file for
Windows 3.0 compilation. Place the following statement immediately before
the include statement for the header file:

#define WINVER 0x300

2. Link your application object files with the LIEW.LIB library provided with
the Windows 3.1 SOK. Except for the functions that are new to Windows 3.1,
all functions defined in this import library are compatible with Windows 3.0.

3. Mark your application as a Windows 3.0-only executable by using the /30
option with Windows Resource Compiler (RC). The /30 option cannot be
used with the Ir option.

4. If you create Windows Help files for your application, use Help Compiler
version 3.0 (HC30.EXE) to compile your files.

By default, Resource Compiler marks applications for 3.1, so it is important to
use the /30 option mentioned in the preceding steps.

All Windows 3.0 applications can use Windows extensions, such as common
dialog boxes and object linking and embedding. If you use these features, you
must ship the corresponding dynamic-link libraries (OLLs) and related files with
your application. They should be installed along with the application.

3.1.3 Combined Windows 3.0 and 3.1 Applications
You can create Windows applications that run with Windows 3.0 but also take
advantage of newer features when running with Windows 3.1. Such applications
consist primarily of Windows 3.0 function calls but conditionally link to and use
Windows 3.1 functions.

To build a combined application, mark your application as a Windows 3.0 only
executable by using the /30 option with Resource Compiler, but do not set the
WINVER define variable to Ox300. You must use the GetVersion function to
determine the version of Windows that is running before using any Windows 3.1
functions.

Chapter 3 Creating Windows Applications 31

The following example demonstrates how to set a flag if the current system is
Windows 3.1:

extern BDOL fWin31;

UINT version;

fWi n31 = FALSE;

version= LOWORDCGetVersion());
if CCCLDBYTECversion) << 8) I HIBYTE(version)) >= 0x030a) {

fWin31 = TRUE;

For information about interpreting the return value of the Get Version function,
see the Microsoft Windows Programmer's Reference, Volume 2.

Your application can call Windows 3.1 functions directly as long as you link
it with the 3.1 version of LIEW.LIB. (It is not necessary to call the GetProc­
Address function.) However, you must ensure that Windows 3.1 functions are
not called when your application is running with Windows 3.0. The following
example demonstrates how this can be done, using the fWin31 flag that was set
in the preceding example:

extern BOOL fWin31;

if CfWin31)
ScrollWindowExChwnd, ...); /*new for Windows 3.1 */

else {
ScrollWindowChwnd, ...); /* Windows 3.0 function */

}

If you create Windows Help files for your application, either use Help Compiler
version 3.0 (HC30.EXE) to compile your files, or create a help file for Windows
3.1 and release your help file with the redistributable Windows 3.1 versions of the
WINHELP.EXE and WINHELP.HLP files.

If you run a combined application using the debugging version of Windows 3.0,
a call to an undefined function causes a warning. The application, however, con­
tinues to load and run successfully, as long as the function is not actually called.

32 Microsoft Windows SDK Getting Started

3.2 Creating Robust Applications
Windows 3.1 includes a number of features and enhancements designed to make
running Windows applications much more reliable. Efforts to make Windows 3.1
more reliable have focused primarily on three areas:

• Improving how the system handles errors if and when they occur.

• A voiding errors in system code by ensuring the validity of all handles, pointers,
structures, indices, and flags passed to the system.

• Providing better diagnostics, tools, and header files for finding and fixing bugs
more efficiently during development.

The two key components improving reliability are the parameter validation
built into the Windows operating system and the STRICT type-checking of the
WINDOWS.H file. Also useful are the new features of WINDOWSX.H, which
include macros, message crackers, and control functions.

3.2.1 Parameter Validation
Windows 3.1 contains code to validate parameters passed to Windows functions
and messages. These features are included in both the retail and debugging ver­
sions of the system. The debugging version of the system includes some addi­
tional features and parameter checking that is not included in the retail product.

3.2.1.1 Invalid Parameter Error Messages
The system validates handles, pointers, structures, indices, and flags. In most
cases, an invalid parameter causes a function to return an error value. In other
cases, such as when a flag is invalid, the function executes as usual, but an appro­
priate warning message is displayed.

When Windows encounters an invalid parameter error, it displays the message
on your debugging terminal or window. The message has the following form:

err AppName function: address: message:parameter-value

Following are the message parameters:

Chapter 3 Creating Windows Applications 33

App Name
Identifies the application or DLL that caused the error.

function
Identifies the number of the function that was passed the invalid parameter.

address
Identifies the address of the function that was passed the invalid parameter.

message
Specifies the string identifying the error.

parameter-value
Specifies the value of the invalid parameter.

For example, a message could have the following form:

err FONTSAMP 011F:056A: Invalid local handle: 1050

If the address is not near the address of a Windows function you recognize, the
window message parameter is probably invalid. Functions that take messages,
such as SendMessage, DispatchMessage and SendDlgltemMsg, show an
address within the message validation code. Parameter values for invalid param­
eters begin with the PV prefix (for example, PV _WM_ COMMAND).

By default, invalid parameter messages display a stack trace and an "Abort, Break,
or Ignore?" prompt. You can change the default by setting options in the System
Debug Options box of the Systems Debugging Log Application (DBWIN.EXE).
This dialog box is displayed when you choose the Settings command on the
Options menu. (For more information about DB WIN.EXE, see Section 3.3.2,
"Using the System Debugging Log Application.")

You can also log invalid parameter errors by using Dr. Watson, just as you would
log general-protection (GP) faults by using Dr. Watson. By default, this feature is
turned off. For more information on invalid parameter error logging, see Microsoft
Windows Programming Tools.

3.2.1.2 Buffer Overflow Errors
A common application error is to allocate too little space for a buffer that is passed
to and filled by Windows. These errors are especially difficult to track if the buff­
ers are allocated on the stack. Windows can help you find these errors by filling

34 Microsoft Windows SOK Getting Started

buffers before information is copied into them. If the operation overflows the
buffer, Windows detects and reports the error.

By default, this feature is disabled. You can enable the feature by choosing the
Settings command on the Options menu of DBWIN.EXE and then selecting the
Fill Buffers check box. When you select this check box, Windows displays a stack
trace and an "Abort, Break, or Ignore?" prompt with some warning messages.

This feature is available in the Windows debugging version only.

3.2.1.3 Interpreting Invalid Parameters
Possible reasons for getting invalid parameter errors follow.

Invalid Handles
A handle is invalid under the following circumstances:

• Using NULL or -1 when it is not allowed

• Reusing a destroyed or deleted handle

• Using an uninitialized stack variable

• Using a device context handle created by the CreateIC or CreateMetaFile
function in a function that does not allow the handle

• Passing one type of handle in place of another, such as passing a device-context
handle in place of an window handle

Invalid Pointers
A pointer is invalid under the following circumstances:

• Using a NULL pointer when it is not allowed

• Pointing to a buffer that is too small

• Using a function pointer without properly exporting it or properly creating a
procedure-instance address

• Pointing to a string that does not have a null-terminating character

• Pointing to a structure that contains an invalid member (for example, if you
call the RegisterClass function with a invalid window procedure in the
CREATESTRUCT structure, Windows reports an invalid pointer)

• Using an uninitialized stack variable

• Passing a read-only pointer when a read-write pointer is required

Chapter 3 Creating Windows Applications 35

Invalid Flags or Value
A flag or value is invalid under the following circumstances:

• Passing meaningless flags

• Passing an out-of-range index

• Using a value that is otherwise illegal

You can use pointer-validation functions (such as IsBadCodePtr) to help you
check for and debug your application's use of pointers.

3.2.2 Strict Type-Checking
The Windows 3.1 header file (WINDOWS.H) includes various features for detect­
ing problems when compiling an application. These features, which are provided
by the STRICT option, make application development faster and easier.

You define STRICT before the include statement for the header file. STRICT
causes the various types and function prototypes in WINDOWS.H to be declared
with very strict type-checking. For example, once STRICT is defined, it is impos­
sible to pass a window handle to a function that requires a device-context handle
without generating a compiler error.

3.2.2.1 Features of the STRICT Option
Specific features provided by the STRICT option include:

• Strict handle type-checking

• Proper declaration of certain parameter and return value types

• Fully prototyped type definitions for callback function types

• Proper declaration of polymorphic parameters and return values (for example,
wParam and lParam message parameters)

• Proper use of the const keyword for pointer parameters and structure members
when the pointer is read-only

Type declarations for many of the Windows functions and callback functions
have changed. Nonetheless, unless you define STRICT, the new declarations for
Windows 3.1 are fully compatible with the old declarations for Windows 3.0.
WINDOWS.H for Windows 3.1 can, therefore, be used to compile Windows 3.0
applications without modifications.

36 Microsoft Windows SDK Getting Started

3.2.2.2 Compiling with the STRICT Option
In general, the STRICT option is most useful with newly developed code or with
code that is being maintained or changed regularly. Code that has already been
written and tested, and is not changing very much over time, will generally not
benefit as much from STRICT. If you find that stable code generates lots of
run-time parameter validation errors when run with Windows 3.1, you will find
STRICT very valuable as you go through the code to clean up those errors.

The following procedures will ensure that your application conforms to STRICT
type-checking:

• Use new handle and parameter types. In particular, replace HANDLE with
appropriate handle types and use WPARAM and LPARAM with all message
parameters.

• Use new return type and parameter types for windows and dialog box pro­
cedures and callback functions.

• Declare all your functions with full prototypes. Place these prototypes in a
include file and include it with each source file.

• Cast function pointers to the proper type rather than to F ARPROC type. This
is especially important with the MakeProclnstance function.

• Take special care with HMODULE and HINSTANCE types. There are a few
Windows functions that return or accept only HMODULE types.

• Use the MAKELPARAM macro instead of the MAKELONG macro when
building LPARAM parameters out of two words. Also, use the MAKE­
LRESUL T macro instead of MAKELONG when building LRESULT return
values.

• Cast the handle or near pointer to a WORD type in order to prevent getting the
data segment value in the high word of the value when casting a handle or near
pointer value to LRESULT or LPARAM.

• Cast a far pointer, LPARAM or LRESULT, to a DWORD type and then to
the desired type when you cast the far pointer to a handle or near pointer. This
prevents "segment lost in conversion" warnings.

• Make sure you have the following lines, in the given order, in each source file:

ffadefine STRICT
#include <windows.h>

Chapter 3 Creating Windows Applications 37

• Compile your source to use the highest level of error checking. Treat any warn­
ings as errors and correct your sources to eliminate the warning messages.

• Link and run the application to ensure that it executes without errors.

3.3 Testing and Debugging Your Application in Windows
One of the advantages of an operating system such as Windows is its ability to
run more than one application at a time. However, this advantage can also create
hazards when you are testing and debugging an application.

Windows is a robust operating system. When Windows is running in protected
(standard or 386 enhanced) mode, it can usually terminate an application that
encounters a fatal error (such as an invalid handle) without affecting other appli­
cations. A fatal error or even a GP fault in an application very rarely causes the
entire system to crash. However, it is possible to cause system failure in other
ways when you are testing and debugging an application.

Because of the risk of system failure, you should always save all file buffers to
disk before testing and debugging your application. You should also avoid run­
ning other applications while testing and debugging your application if a general
system failure would cause problems for the other applications.

3.3.1 Using Different Windows Versions
The Windows 3.1 SDK provides two environments for debugging or testing your
Windows applications: a debugging version of the retail Windows product and a
nondebugging version of the retail Windows product.

The SDK installation program creates two directories to contain the debugging
and nondebugging versions of the core DLLs. Unless you specify different
paths, Install places the debugging versions of the Windows core libraries in the
directory \WINDEV\DEBUG and the nondebugging versions in the directory
\WINDEV\NODEBUG. Install copies the nondebugging version of the Windows
core libraries from your Windows system directory to the \WINDEV\NODEBUG
directory.

You can conveniently switch between the debugging and nondebugging versions
of Windows by running one of two batch files that Install places in the Windows
development directory (named \WINDEV by default). The N2D.BAT file

38 Microsoft Windows SDK Getting Started

switches from the nondebugging to the debugging version, and D2N.BAT
switches from the debugging to the nondebugging version.

These batch files either copy files from the directories \WINDEV\DEBUG and
\WINDEV\NODEBUG or rename files in your Windows system directory. When
you install the SDK files, Install asks if you want to keep a duplicate set of the
libraries and symbol files in your Windows system directory. If you answer Yes,
N2D.BAT and D2N.BAT quickly rename the duplicate files. Otherwise, the batch
files copy the DLLs to your Windows system directory from the appropriate
directory.

If you choose to retain a duplicate set of files, the DLLs and symbol files for the
two versions of Windows appear in your Windows system directory with the same
names as the core libraries and symbol files, but with the letter N (nondebugging)
or D (debugging) appended to the name. For example, in addition to the GDI.EXE
file, your system directory will contain the GDID.EXE and GDIN.EXE files.

3.3.1.1 Debugging Version
The debugging version of Windows consists of a set of DLLs that replace the
Windows core DLLs of the retail product. The replaced DLLs are USER.EXE,
KRNL286.EXE, KRNL386.EXE, GDI.EXE, and MMSYSTEM.DLL. Accom­
panying these DLLs is a set of symbol (.SYM) files.

The debugging versions of the core DLLs provide error checking and diagnostic
messages that help you debug a Windows application. The symbol-file informa­
tion helps you track calls into Windows when using the Microsoft Windows
80386 Debugger (WDEB386.EXE). In addition, the debugging versions of these
DLLs contain Microsoft® Code View® symbol information for tracking calls into
Windows when using Microsoft® Code View® for Windows™ (CVW).

A special setting is available in the [386Enh] section of SYSTEM.IN! for the
debugging version of Windows. The form of this setting follows:

DebugPhysAddrs = {TRUEf FALSE}

By default, Windows makes the entire base physical linear memory region availa­
ble when a debugger is loaded. Setting the DebugPhysAddrs option to FALSE
overrides this default when the debugger is loaded. Although the FALSE setting
prevents you from being able to examine all memory, it creates a memory environ­
ment more like the nondebugging version of Windows, which can help you spot
problems with pointers more quickly. The default value for DebugPhysAddrs is
TRUE.

Chapter 3 Creating Windows Applications 39

3.3.1.2 Nondebugging Version
During application development, you should use the debugging version of
Windows. However, use the nondebugging version of Windows whenever you
want to do the following:

• Test the final version of your application

• Test the performance of your application without the performance disadvan­
tages of the debugging version of Windows

Use the nondebugging version of Windows with the core DLLs supplied by the
retail version of Windows. The Windows 3.1 SOK also provides symbol files for
the nondebugging version of Windows. The retail Windows core libraries do not
contain Code View symbol information, however.

3.3.2 Using the System Debugging Log Application
The System Debugging Log Application (DBWIN.EXE) allows you to display
messages produced by the debugging version of Windows even if you are not run­
ning a debugger and do not have a debugging terminal. DB WIN.EXE allows you
to control the output of specific types of messages. It also includes a feature that
forces memory-allocation errors when testing the robustness of an application.

Note DB WIN.EXE can provide useful debugging messages with the retail ver­
sion of Windows as well. When you run DB WIN.EXE with the retail version of
Windows, the Settings and Alloc Break commands are disabled in the Options
menu, and you will only see a limited subset of debugging messages.

3.3.2.1 System Debugging Output
The default system debugging output goes to AUX. DBWIN.EXE can also send
debugging messages to COMI or COM2. Sending debugging output to COMl
or COM2 improves the performance of your debugging system when you have
redirected system debugging output to NUL, or ifDBWIN.EXE is not running.

To disable AUX as the default, add the following setting to the [Debug] section
of SYSTEM.IN!:

OutputTo=NUL

40 Microsoft Windows SOK Getting Started

To disable the default kernel output and to send output to COMl or COM2, set the
MS-DOS COM port baud rates to match the baud rates of your debugging termi­
nal by using the MS-DOS mode command. To ensure that the settings are always
correct, use the mode command in your AUTOEXEC.BAT file.

You can log messages to the system debugging window, to a monochrome screen,
or to the COMI or COM2 devices. The default destination for messages is to a
window.

You can choose different destinations for debugging messages from the Options
menu. These settings stay in effect the next time you run DBWIN.EXE.

3.3.2.2 System Debug Options Dialog Box
When you choose the Settings command on the Options menu, a System Debug
Options dialog box appears. This dialog box allows you to control the output of
debugging messages produced by the debugging version of Windows.

The System Debug Options dialog box works only when you are running the de­
bugging version of Windows. There are three groups of check boxes, described as
follows:

Break Options
Control whether and how a message will cause a break and stack trace to the
debugger.

Debug Options
Control the kind of debugging features that are enabled in the system.

Trace Options
Control whether or not certain kinds of informational messages are produced.

The check boxes for Break Options and Trace Options are self-explanatory. The
following list explains the check boxes for the Debug Options:

Option

Validate Heap

Description

Checks the consistency of global and local heaps before every
call to a memory-management function. This option affects the
global heap only when it is one of the default startup settings
(that is, when it is saved by choosing the Save Settings com­
mand on the File menu). This option affects local heaps only if
it is set before the application is started.

Option

Check Free Blocks

Buffer Fill

Break with INT 3

Don't trap faults

Chapter 3 Creating Windows Applications 41

Description

Ensures that freed local blocks are not written into. The value
OxFB is written into free blocks, and when the heap is vali­
dated, a check is performed to ensure that the blocks are still
filled with this value. This option works only with local heaps.
This option must be used with the Validate Heap option.

Fills buffers that are passed to Windows functions with the
value OxF9. This option ensures that all of the supplied buffer
is writable and helps detect overwrite problems that can occur
when the buffer is too small.

Breaks to the debugger with an int 3 instruction, instead of a
fatal exit. This option does not display a stack trace.

Prevents the system from hooking GP and stack overflow faults.
(Many faults that result from choosing this option would nor­
mally be handled by the system. Choosing this option results in
faults that would not occur otherwise.)

3.3.2.3 Alloc Break Command
The Alloc Break command on the Options menu ensures that an application deals
properly with out-of-memory conditions. This command displays a dialog box
into which you can enter the module name of your application and the number of
memory allocations you want to succeed before subsequent allocations fail.

The system counts each global or local memory allocation performed by your
application. When the number of allocations reaches the allocation break count,
that allocation and all subsequent allocations fail. Because memory allocations
made by the system fail once the break count is reached, calls to certain functions
(such as Create Window, CreateBrush, and SelectObject) fail as well. Only allo­
cations made within the context of the application you specify are affected by the
allocation break count.

The module name is limited to 8 characters. In some cases the module name
may be different from the filename; the module name is specified in the module­
definition (.DEF) file for the application. You cannot specify the module name of
aDLL.

If you set the break count to zero, no allocation break is set, but the system counts
allocations made by the specified application. You can choose the Show Count
button to display the current allocation count.

42 Microsoft Windows SOK Getting Started

You can set an allocation break before an application is run. The allocation count
is then set to zero and allocations are counted as soon as the application starts. If
you run more than one instance of an application, the allocation break applies only
to the most recent instance.

The allocation count is also reset to zero when you choose the Set button or the
Inc & Set button. You can set an allocation break before performing an operation
to ensure that your application handles the problem effectively. Then you can
choose Inc & Set and repeat the operation to ensure that the next allocation failure
is also handled properly.

MiclOsolt®

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

0392 Part No. 28914

