Setup Toolkit for Windows

SOFTWARE DEVELOPMENT KIT

Microsofts Windows™

Version 3.1

Setup Toolkit

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commitment
on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the license or nondisclosure agreement.
No part of this manual may be reproduced in any form or by any means, electronic or mechanical,
including photocopying and recording, for any prupose without the express written permission of
Microsoft Corporation.

Copyright 1987, 1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Copyright 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Times, and Times
Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright 1991 Monotype Corporation PLC. All rights reserved.

Microsoft, MS, MS-DOS, Quick C, and Code View are registered trademarks, and Windows and
QuickBasic are trademarks of Microsoft Corporation.

U.S.Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.

The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of
AGFA Compugraphic Division of Agfa Corporation.

Apple TrueType is a registered trademark of Apple Computer, Inc.

Helvetica, Linotype, Times, and Times Roman are registered trademarks of Linotype AG and/or its
subsidiaries.

Arial and Times New Roman are registered trademarks of the Monotype Corporation, PLC.

Document Number 30213

Contents

Chapter 1

Chapter 2

Chapter 3

Introduction i
System Requirements fOr SEtUPc...coceveviririiiieniininiccc e il
Document CONVENLIONSccueeureirmieieieieieierenieetenreste st et sresre eresneeneensene ii
Creating a Setup Programcccouueminsmmssssssssessanee 1
The Basic Components 0f SEtUPcocuevuerrieriienienienieereteeeee e 1
Steps for Creating @ SetUP SCIIPLeeveeierieriiiieeieeeiee e 2
Step 1: Identify the Files That Will Be Installed for Your Product 3
Step 2: Design the Directory Structure for the Installable Files 3
Step 3: Identify All User-Defined Parametersccccceecveeveevvieencnnencennnen. 3
Step 4: Design Dialog BOXESccovevuieciiiiiinienienieneesecreeiecsee et 4
Step 5: Modify the Sample Script Files to Create Your Installation Script .. 4
Step 6: Create the Images for the Installation Disksccccevvenciivinncenene 5
Step 7: Test Your Installation SCriptceeeveeieriierieeniiinieineie e 5
Designing Dialog BOXES........ccummsesrsesssmssesssessssnns 7
Dialog BOX FUNCHONSccccoouiiiieiiiiiiiiiiiiiiicicicicicccctece s 10
Creating a Setup Script.......ccouuunnees 19
Choosing and Modifying a Sample Script Fileccccooveeniinieniinenenieneenee. 23
The Basic Components of a Sample Script Filec.ccoocerviiniiniinninncniennne. 24
DEbUZ COAE ...ttt et 24
INCIUAE FAIES ..ottt 25
Dialog BOX CONSLANLSeeveeviueiiiieiinieiecnieieeeecieieteecnereeee e 26
INItIAlZATION ..ottt e 26
Welcome and Other Dialog BOXESccc.ovveeieniiniiniiiiiiieiieneecceeieeee 26
Install SUDBTOULINEcooviiiiiiiiiiiieieeeeee ettt e 27
Modifying SETUP.LST to Match Your Script Filec..ccooceeviniienininncnnenee. 28

Using the Symbol Table........c.ccoociiiiriiirienienieteecteee et e 30

iv Microsoft Windows Version 3.1 Setup Toolkit

Creating Customized .DLL FIlesc.ccccvctevereeriiinienienenenieneseeceeeeesieniene 31

Installing Shared Files or System Filesccccceeverieriiecienienieniceieceeeenneene 31

Shared FIIES «...ccvveriieiiiiierieeicteeit ettt ettt a e 31

SYSEIM FIIES «.cvviniieiieiiriieieieeteteentes ettt ettt ene s 32

Chapter 4 Using the Disk Layout Utilities 33
Understanding the Disk Layout Processcocceevvierreineesennienreeneeneeneeeeeenee 33

Using the Disk Layout Utilities Commandsc..cccceecevvvevienerienininicneeinnneneas 35

Dsklayt Main WindOwccceceeeeeenieneninecniencnieneenieresneesesresessceeceene 35

FAIE TENU ...coviiieiiiiieieieniteeiccteteteeeete ettt s sttt snesne e 39

OPLIONS TNEIU ..c..veeueeeieeiierteeteeiteeteettesreessts et eetereessteesaeeneenseennesssesseeeneens 39

HEIP MENU ..ottt 41

Using the MS-DOS-Based Dsklayt2 Programccecceveeenveervcrncnnenncenneenne. 41

Chapter 5 Setup Script Procedures 45
Appendix A INF File Format 117
Appendix B Command Option Flags 125

Index 127

Introduction

The MicrosofteWindows' operating system is a single-user personal computer
operating system that employs a graphical user interface. Microsoft provides a
variety of tools you’ll find useful as you develop Windows applications. One of
these tools, Setup, helps you create installation kits for your Windows applica-
tions. This manual, Setup Toolkit for Windows, explains how to use the Setup
procedures and sample script files to create installation kits.

Chapter 1, “Creating a setup Program,” explains how to use the basic compo-
nents of the toolkit to create installation files for your product.

Chapter 2, “Designing Dialog Boxes,” explains how to use the Windows
Dialog Editor to modify the dialog box templates for Setup. The second part
of the chapter describes the C functions you use to modify the associated
dialog box procedures.

Chapter 3, “Creating a setup Script,” explains how to modify sample script
files to meet the specific needs of your application’s installation.

Chapter 4, “Using the Disk Layout Utilities,” explains how to use the Disk
Layout Utilities to create and update disk images.

Chapter 5, “Setup Script Procedures,” describes the Basic procedures
(functions and subroutines) that you use to create a setup script.

Appendix A, “INF File Format,” describes the structure of an .INF file and
provides a list of software default values.

Appendix B, “Command Option Flags,” describes the command option flags
that you can use as arguments for many of the Setup script procedures.

vi Microsoft Windows Version 3.1 Setup Toolkit

System Requirements for Setup

To use the Setup toolkit, you must have the Windows version 3.1 Software De-
velopment Kit (SDK), the Microsoft C compiler, and the C run-time libraries
(including MDLLCEW.LIB) installed on your computer.

Document Conventions

The following document conventions are used throughout this manual:

Convention

Meaning

Bold text

Italic text

Monospaced text

CAPITAL LETTERS

Initial Capitals

O

[]

Denotes a term or character to be typed literally, such
as language keywords or function names (AS INTE-
GER or BackupkFile); MS-DOS commands (dir); and
MS-DOS command-line options (/P).

Denotes a placeholder or variable: You must provide
the actual value. For example, the statement
BackupkFile szFullPath$ szBackup$ requires that you
substitute values for the szFullPath$ and szBackup$
arguments.

Represents code samples.

Represent filenames, directory names, drive letters, or
symbolic constants.

Represent names of programs, menus, menu com-
mands, dialog boxes and options, buttons, and named
windows.

Enclose one or more arguments that you pass to a
function.

Enclose optional parameters.

Chapter 1: Creating a Setup Program

When you install a Microsoft software program on your computer, you may be
using Setup and its supporting functions to decompress and copy the program
files onto your hard disk. Setup is a tool that you can use to create scripts that
will install a Windows application on a user’s computer. Microsoft is providing
the Setup toolkit as part of the Windows version 3.1 SDK so that you can take
advantage of its many automated procedures when you create an installation
program for your own product.

The Basic Components of Setup

The Setup toolkit includes the following basic components:

= A bootstrapper program, SETUP.EXE, which copies the Setup driver
(_MSTEST.EXE) and other supporting files to a temporary directory on the
user’s hard disk and then launches your Setup script. When your Setup script
is complete, SETUP.EXE removes the temporary files and directory.

= A run-time version of Microsoft Test, _MSTEST.EXE, which Setup uses to
interpret its scripting language. The Setup sample files also contain Test
commands that define a DEBUG flag and include the files that define Setup
procedures. Test commands give you greater flexibility for modifying the
Setup sample files. In addition, the Test development environment includes a
debugger and other useful tools. You do not have to modify the Test com-
mands for your script, but you may want to purchase and use Test in conjunc-
tion with the Setup procedures.

= Sample script files (SAMPLE1.MST, SAMPLE2.MST, and
SAMPLE3.MST), which you use as a starting point for creating your own
Setup script.

= Sample dialog box templates and procedures (DIALOGS.DLG,
DIALOGS.RES, and DLGPROCS.C), which you modify using the Windows

2 Microsoft Windows Version 3.1 Setup Toolkit

Dialog Editor to create the dialog and message boxes you need for your
installation.

Six .DLL files that contain useful routines for detecting the hardware and
software environment, managing dialog and message boxes, copying files,
modifying .INI files, and performing other program management functions.
These procedures are described in Chapter 5, “Setup Script Procedures;” you
will use them to create your Setup script.

Disk Layout Utilities, DSKLAYT.EXE and DSKLAYT2.EXE, which you
use to create the installation disks you will ship with your product.

An MS-DOS utility, _MSSETUP.EXE, which you can use to update system
files that are locked while in use by Windows.

Use these components as described in the next section to create your own Setup
script. Using Setup for your product installations will ensure that the process is
safe and efficient, and that the installation meets Windows programming
standards.

Steps for Creating a Setup Script

Use the following procedure to create a setup script for your product. The
remainder of this section discusses each step in more detail.

To create a setup installation script:

1.

2.

Identify the files that will be installed for your product.

Design the directory structure for those files.

. Identify all user-defined parameters.

. Design the dialog boxes you will need for the installation.

. Modify the sample script files so that they will install your product’s files.
. Create the images for the installation disks using the Disk Layout Utilities.

. Test your installation script.

Chapter 1 Creating a Setup Program 3

Step 1: Identify the Files That Will Be Installed for Your Product

Before you start modifying sample files and dialog box templates, it’s a good
idea to make a list of the files you will need to install. For each file that you will
install, answer the following questions:

m s this file unique for your product, is it a shared file, or is it a system file?
For example, a shared file could be a language dictionary used by more than
one product for your company. A system file could be a newer version of
COMMDLG.DLL or a TrueType font. If the file is a shared file or a system
file, you will want the installation script to check to see if it already exists
and whether it is currently in use before copying it onto the user’s hard disk.

m Can the user decide whether to install this file? For example, is the installa-
tion of tutorial files optional? If so, you’ll need to design a dialog box that
asks the user to choose the files to install.

=]f an older version of the file already exists, should you overwrite it or
rename it? Or, if you want to delete it, is the older version of the file under a
different filename? If so, you will want the installation script to remove it, as
well as install its newer version.

Beside each filename on your list, make notations indicating the answers to
these questions. These notations will help you later when you design dialog
boxes or set the properties for each file with the Disk Layout Utilities.

Step 2: Design the Directory Structure for the Installable Files

Take the time now to sketch out the directory structure for your product by
organizing the installable files into categories that make sense. For example,
you might put all computer-based training files in one subdirectory and all font
files in another. You may need to place some files in the Windows installation
directory or in one of its subdirectories. On the other hand, one directory (with
no subdirectories) may suffice for a product that has only a few files.

Step 3: Identify All User-Defined Parameters

Identify the dialog and message boxes you will need for your Setup program.
What input does the user provide during installation? For example, will you
store the user’s name, the company name, and the product serial number in a
file? Can the user decide which directory to use for installation? Can the user
decide not to install some of the product files? You should also note whether

Microsoft Windows Version 3.1 Setup Toolkit

you will allow network installations and, if so, how the installation process will
differ when installing to a network drive.

Are there any issues that you need to communicate to the user? For example, do
you need a message box to notify the user that you will be updating or deleting
existing files? If so, note these as well.

Step 4: Design Dialog Boxes

Make a rough sketch of each dialog box and identify the controls (buttons,
check boxes, and list boxes) that will be needed. This will help you choose the
most appropriate template to modify. Then use the Windows Dialog Editor to
customize the templates. You may also need to modify the dialog box proce-
dures (in DLGPROCS.C) to process the user’s responses. For more information
about this process, see Chapter 2, “Designing Dialog Boxes.”

Step 5: Modify the Sample Script Files to Create Your Installation Script
The Setup toolkit contains three sample script files (SAMPLE1.MST,
SAMPLE2.MST, and SAMPLE3.MST) and three associated sample .INF files
(SAMPLEL.INF, SAMPLE2.INF, and SAMPLE3.INF). The sample .MST files
contain variable declarations and calls to Setup procedures that you would
typically use to install your product. The sample .INF files describe for Setup
the installation media and installable files, and they show the entries that the
Disk Layout Utilities would create based on your choices for these items.

Each sample installs a slightly different type of product: One installs a set of
files with no special requirements; one uses more complicated dialog boxes and
installs several sets of files based on the user’s choices; and one installs files
that are shareable resources. Use these samples as a starting point for creating
your own installation script.

Once you’ve named and saved your version of a sample .MST file, you’ll want
to update SETUP.LST to include the new name. SETUP.EXE, the bootstrapper
program mentioned earlier, reads this file to determine which files are needed to
run the installation and copies them to a temporary directory on the user’s hard
disk.

For more information about each of these files, see Chapter 3, “Creating a Setup
Script.” For descriptions of the procedures used in these files, see Chapter 5,
“Setup Script Procedures.”

Chapter 1 Creating a Setup Program 5

Step 6: Create the Images for the Installation Disks

Gather all of your product files and installation program files into the directory
structure that you sketched out earlier. Then use the Disk Layout Utilities to
define each file’s properties (such as whether it can be put on a writable disk)
and to create the images for the installation disks. The Disk Layout Ultilities
automatically create the .INF file as part of this process.

You can use the Disk Layout Ultilities throughout your software development
project, until you create your master disks. Each time you release another
version of your product, use the Disk Layout Ultilities to update the .INF file and
disk images.

For more information about the Disk Layout Utilities, see Chapter 4, “Using the
Disk Layout Utilities.”

Step 7: Test Your Installation Script

Once you’ve created your own Setup installation script, test it thoroughly. Test
the script under a variety of situations and computer configurations. Check the
results by verifying that the files were copied to their appropriate directories and
that system files were updated correctly. When you are satisfied that the
installation is correct, create your master disks by copying the disk images onto
floppy disks.

Chapter 2: Designing Dialog Boxes

The Setup toolkit includes dialog box templates that you can customize to meet
your installation’s specific needs. You can use the Microsoft Windows Dialog
Editor (DLGEDIT.EXE) to edit the templates.

The Dialog Editor is a tool that lets you design and test a dialog box on the dis-
play screen instead of defining dialog statements in a resource script. Using the
Dialog Editor, you can add, modify, and delete controls in a dialog box. The
Dialog Editor saves the changes you make as resource script statements. You
then compile these statements into a binary resource file that is linked to your
Setup application’s executable file of dialog procedures.

The Setup toolkit provides the following files that contain sample dialog box
templates and procedures:

» DIALOGS.DLG, which contains dialog box templates. See Table 2.1 for de-
scriptions of these templates. DIALOGS.DLG is updated automatically when
you use the Dialog Editor to read its companion file, DIALOGS.RES.

m DIALOGS.RC, which contains the resource statements for the bitmaps and
the icons that are used in the DIALOGS.DLG and DIALOGS.H sample files.

= DLGPROCS.C, which contains the C code for sample dialog box procedures
associated with each template. You modify this file to update the procedures
for the dialog box templates that you edited using the Dialog Editor. You can
also add new dialog procedures to this file.

= DIALOGS.H, which contains the dialog control identification number defini-
tions. This file is updated automatically when you use the Dialog Editor.

m MSCUISTF.DLL, which is the customized user interface library created
from the preceding files.

» CULH, which is the header file for the Setup toolkit dialog box C functions.

= MAKEFILE, which you can use to compile the preceding files.

Microsoft Windows Version 3.1 Setup Toolkit

Use these files with the Dialog Editor, the C compiler, and the linker to create
your own dialog boxes.

To customize the dialog box templates for your installation program, follow
these steps:

1. Use the Dialog Editor to modify DIALOGS.RES. For each dialog box that
you need, choose a template that closely resembles the design of the dialog
box and modify it as necessary.

When you save your changes, the Dialog Editor updates the script statements
in DIALOGS.DLG and the constants in DIALOGS.H.

2. If necessary, edit DLGPROCS.C to update the dialog box procedures for the
templates that you modified.

The Setup toolkit provides a set of functions that you can use in the dialog
procedures in addition to the standard Windows functions. These Setup
functions are written in C and are described in detail in the following section.

Note: DLGPROCS.C uses the Symbol Table, a temporary storage area in
memory, to transfer information between dialog box procedures and Setup.
The comments embedded in the code for each dialog box procedure identify
the symbols the procedure uses. For more information about the Symbol
Table, see Chapter 3, “Creating a setup Script.”

Note: Two constants are defined in CULH that can directly affect dialog box
procedures: STF_REINITDIALOG and STF_ACTIVATEAPP. If your Setup
script has called the UIStartDIg function for a dialog box that is already on
top of the dialog box stack (that is, to update the contents of the dialog box),
Windows returns the STF_REINITDIALOG constant to let you know. If the
user has switched to another application during your installation, Windows
returns the STF_ACTIVATEAPP constant to let you know when the user has
switched back to Setup.

3. Compile the dialog box procedures with MAKEFILE to create the .DLL file
with your changes.

MAKEFILE compiles the dialog procedures and dialog resources into
MSCUISTE.DLL. You then use the name of the .DLL file, the resource identifica-
tion numbers of the dialog boxes, the help description resource identification
numbers, and the names of the associated dialog box procedures as parameters for
the UIStartDIg function, which is called from the .MST script file.

Chapter 2

Designing Dialog Boxes

Note: All dialog boxes must have a style of WS_CHILD in order to run properly.

The following table provides a quick guide to the dialog box procedures pro-
vided in DLGPROCS.C and their associated templates provided in
DIALOGS.DLG. Each procedure in DLGPROCS.C is preceded with comments
indicating what the procedure does and what symbols it uses. You can also pre-
view each template using the Dialog Editor to open DIALOGS.RES.

Procedure name

Used for

Associated template(s)

FCheckDlgProc

Dialog boxes with one to
ten check boxes.

CHECK

FCustInstDlgProc

Dialog boxes with one to
ten check boxes. Each
check box can have an
associated push button.
This procedure also
supports a push button that
displays the current
installation path and allows
the user to change it.

CUSTINST

FEditDIgProc

Dialog boxes that contain
one edit control.

DESTPATH

FHelpDlgProc

Dialog boxes that contain
help messages.

APPHELP

FInfoDIgProc

Dialog boxes that present
information to the user. The
user must respond.

WELCOME

FInfoODIgProc

This procedure is the same
as FInfoDlgProc but does
not support an Exit button.

BADPATH,
EXITFAILURE,
EXITQUIT,
EXITSUCCESS, TOOBIG

FListDIgProc

Dialog boxes that contain
one single-selection list
box.

SINGLELIST

FModelessDlgPro

Dialog boxes that present
information to the user
during lengthy operations.
The user does not have to
respond.

MODELESS

10

Microsoft Windows Version 3.1 Setup Toolkit

FMultiDIlgProc Dialog boxes with one EXTENDEDLIST
multiple-selection list box. | MULTILIST
FQuitDIgProc Dialog boxes that let the ASKQUIT
user either quit or resume
the installation process.
FRadioDIgProc Dialog boxes with a single | OPTIONS
group of one to ten radio
buttons.

Table 2.1 Dialog Box Procedures

For information about the UIStartDIg function, see Chapter 5, “Setup Script
Procedures.” For information about using the Dialog Editor, refer to “Designing
Dialog Boxes: The Dialog Editor” in Microsoft Windows Programming Utilities.

Dialog Box Functions

Assert

void Assert(fValue)

BOOL fValue

Argument

Return Value

Comments

/* Boolean value to assert */

The Assert function asserts whether a boolean expression
is true when the DEBUG compiler flag is defined. When
DEBUG is not defined, the function is ignored.

fValue

Specifies the Boolean value that you want to assert.

This function has no return value.

If the asserted value is true, the Assert function simply
returns. If the asserted value is false, the program dis-
plays a message box containing the source filename and
the line number of the failed assertion. You must click
OK to continue.

Chapter 2 Designing Dialog Boxes 1

CbGetListltem
unsigned CbGetListItem(szSym, n, szltem, cbltemMax)
LPSTR szSym /* symbol name */
unsigned n /* index to the item in the list */
LPSTR szltem /* buffer */

unsigned cbltemMax /* buffer size */

The CbGetListItem function copies the specified list
item into the provided buffer as a zero-terminated string.

Arguments szSym

Specifies the name of the symbol whose associated
value is the list you want.

n
Specifies the index number (one-based) for the list item
you want to copy into the buffer.

szltem
Specifies the buffer for the copy of the list item.
cbltemMax
Specifies the size of the buffer.
Return Value If the function is successful, the return value is the length

(in bytes) of the full string of the specified list item. If
szSym or n doesn’t exist, the return value is zero and the
empty string is placed in the buffer.

Comments If you specify a buffer that is smaller than the length of
the symbol value, the CbGetListItem function will copy
in as many characters as will fit (including a trailing
zero). However, the return value will be the full length of
the string.

See Also UsGetListLength, FAddListItem, FReplaceListItem.
For information about setting symbol values in the
Symbol Table, see FSetSymbolValue.

12 Microsoft Windows Version 3.1 Setup Toolkit

CbGetSymbolValue

unsigned CbGetSymbolValue(szSymbol, szValue, cbMaxLen)

LPSTR szSymbol
LPSTR szValue
unsigned cbMaxLen

Arguments

Return Value

Comments

See Also

/* symbol */

/* value */

/* buffer size */

The CbGetSymbolValue function copies the specified

value from the symbol-value pair in the Symbol Table
into a buffer.

szSymbol

Specifies the name of the symbol whose value you
want to copy into the buffer.

szValue

Specifies a buffer for the value associated with the
symbol.

cbMaxLen

Specifies the length of the buffer.

If the function is successful in copying the value into the
buffer, the return value is the length of the value string
(excluding the terminating zero). If the symbol does not
exist or is an empty string, the return value is zero.

If you specify a buffer length that is smaller than the
length of the value, the function will copy in as many
characters as will fit (including a trailing zero). However,
the return value will be the full length of the specified
value.

FSetSymbolValue, FRemoveSymbol

Chapter 2 Designing Dialog Boxes 13

DoMsgBox

int DoMsgBox(szText, szCaption, wType)

LPSTR szText
LPSTR szCaption
word wType

Arguments

Return Value

Comments

See Also

/* message text*/
/* dialog box caption */
/* message box type */

The DoMsgBox function launches a Windows message
box of the style specified by wType. The return value is
the identification for the user’s response, such as IDOK.

szText
Specifies the text you want to appear in the message
box.

szCaption

Specifies the caption for the message box.

wType

Specifies the contents of the message box. wType can
be a combination of values.

The return value is the value of the button control that the
user selected (such as IDOK). If there is not enough
memory to create the message box, the return value is
Zero.

This function is similar to the Windows MessageBox
function. The valid message box values and control
values are the same as for the MessageBox function.

For more information on the MessageBox function, see
the Microsoft Windows Programmer’s Reference.

14 Microsoft Windows Version 3.1 Setup Toolkit

FAddListitem

BOOL FAddListItem(szSym, szltem)

LPSTR szSym
LPSTR szltem

Arguments

Return Value

Comments

See Also

/* symbol name */
/* item */

The FAddListItem function adds the specified item to
the end of the list of items associated with the symbol in
the Symbol Table.

szSym

Points to a zero-terminated string that identifies the
symbol.

szltem

Points to a zero-terminated string that identifies the
item you want to add to the list associated with
szSym.

If the function is successful in adding the item, the return
value is fTrue (one). Otherwise, the return value is
fFalse (zero).

You can initialize an empty list by setting its associated
symbol value to “”’ with the FSetSymbolValue function.
You can then add values to the list using FAddListItem.

FReplaceListItem, CbGetListItem, UsGetListLength

FCloseHelp

BOOL FCloseHelp()

Return Value

See Also

The FCloseHelp function closes the currently open help
dialog box, if one exists.

The return value is fTrue (one) if the help dialog box is
successfully closed. Otherwise, it is fFalse (zero).

HdlgShowHelp

Chapter 2 Designing Dialog Boxes 15

FHandleOOM

BOOL FHandleOOM()

Return Value

The FHandleOOM function displays a message box
when an “Out Of Memory” error occurs and waits for a
user response. This function lets the user switch out of
the current application and free up some memory by
closing other applications.

If the user presses the RETRY button, the return value is
fTrue (one). If the user presses the ABORT button, the
return value is fFalse (zero).

FRemoveSymbol

BOOL FRemoveSymbol(szSym)

LPSTR szSym

Argument

Return Value

See Also

/* symbol name*/
The FRemoveSymbol function removes a symbol and its
associated value from the Symbol Table.

szSym

Specifies the mame of the symbol you want to remove.

If the function is successful, the return value is fTrue
(one). Otherwise, the return value is fFalse (zero).

FSetSymbolValue

16 Microsoft Windows Version 3.1 Setup Toolkit

FReplaceListltem

BOOL FReplaceListItem(szSym, n, szltem)

LPSTR szSym
unsigned »
LPSTR szltem

Arguments

Return Value

See Also

/* symbol name */
/* index to list item */
/* item */

The FReplaceListItem function replaces the specified
item in the list of items associated with the symbol in the
Symbol Table.

szSym

Specifies the name of the symbol. szSym must be a
zero-terminated string.

n
Specifies the index number (one-based) of the item
you want to replace.

szltem

Identifies the item you want to use to replace the
existing item. sz/tem must be a zero-terminated
string.

If the function successfully replaces the item, the return
value is fTrue (one). If the index is invalid or the appli-
cation is out of memory, the return value is fFalse (zero).

FAddListItem, CbGetListItem, UsGetListLength

Chapter 2 Designing Dialog Boxes 17

FSetSymbolValue
BOOL FSetSymbolValue(szSymbol, szValue)

LPSTR szSymbol
LPSTR szValue

Arguments

Return Value

See Also

/* symbol */

/* value */

The FSetSymbolValue function inserts a new symbol-
value pair into the Symbol Table. If the symbol already

exists, the function replaces the symbol’s associated
value.

szSymbol

Specifies the name of the symbol you want to create
or whose associated value you want to replace.

szValue

Specifies the value you want to add or replace. If
szValue is NULL, an empty string is added or used to
replace the existing value.

If the function is successful, the return value is fTrue
(one). If the application is out of memory, the return
value is fFalse (zero).

CbGetSymbolValue, FRemoveSymbol

HdlgShowHelp

HWND HdlgShowHelp ()

Return Value

See Also

The HdlgShowHelp function displays the help dialog
box for the dialog box that is currently on the top of the
dialog box stack.

The return value is the handle to the help dialog. If the
help dialog does not exist and cannot be created, the
return value is NULL.

FCloseHelp

- 18 Microsoft Windows Version 3.1 Setup Toolkit

ReactivateSetupScript

void ReactivateSetupScript()

Return Value

Comments

The ReactivateSetupScript function returns control to
the Setup script.

This function has no return value.

This function is the vehicle for returning from a dialog
box procedure to the Setup script.

UsGetListLength

unsigned UsGetListLength(szSym)

LPSTR szSym

Argument

Return Value

See Also

/* symbol name */
The UsGetListLength function determines the number
of items in the list associated with the specified symbol.

szSym

Specifies the name of the symbol. szSym must be a
zero-terminated string.

The return value is the number of items in the list associ-
ated with the symbol.

CbGetListItem, FReplaceListItem

Chapter 3: Creating a Setup Script

Once you’ve identified the list of installable files and used the Windows Dialog
Editor to design dialog boxes and message boxes, you’re ready to create your
installation script file. A script file contains the procedure calls that Setup uses
to install your product on the user’s system.

The Setup toolkit comes with three sets of sample files that you can modify to
create your own installation script. You’ll also want to modify the sample
SETUP.LST file so that the Setup driver can find the appropriate .DLLs and
other supporting files that are needed to run your installation. This chapter will
walk you through the process of creating your own script and SETUP.LST file.

Start by reviewing the files that make up the Setup toolkit. The following table
lists the name and purpose of each file in the toolkit.

Filename Description
SETUP.EXE The bootstrapper program that copies the files
(required) identified in SETUP.LST into a temporary

directory on the user's hard disk. These files run
the installation and include _MSTEST.EXE,
_MSSETUP.EXE, and any .DLL files. You
should always include SETUP.EXE on the first
installation disk. SETUP.EXE should not be

compressed.
SETUP.LST A text file that contains the list of files
(required) SETUP.EXE copies into the temporary directory

on the user's hard disk. You should always
include SETUP.LST on the first installation disk.
SETUP.LST should not be compressed.

_MSTEST.EXE A limited, run-time version of Microsoft Test
(required) that Setup uses as its driver. _MSTEST.EXE is
the interpreter of your installation script. You
should always include _MSTEST.EXE on the
first installation disk.

20

Microsoft Windows Version 3.1 Setup Toolkit

_MSSETUP.EXE
(optional)

An MS-DOS program that reads the
MSSETUP.BAT file and updates system files
(that is, files that have the SYSTEM attribute
and may be in use when Windows is running).
The Setup ExitExecRestart function shuts down
Windows, runs _MSSETUP.EXE to update files
listed in MSSETUP.BAT, and restarts Windows.
If you plan to install or update any system files,
you must include _MSSETUP.EXE on the first
installation disk.

Setup .DLL files:
(required)

MSCOMSTF.DLL

MSCUISTF.DLL

MSDETSTE.DLL

MSINSSTE.DLL

MSUILSTF.DLL

MSSHLSTF.DLL

VER.DLL

These .DLL files contain the code for the Setup
procedures that you call from your script file.
You should list them in the SETUP.LST file and
include them on the first installation disk.

The common library, which contains supporting
routines for the other .DLL files.

The customized user interface library. You
modify this .DLL file when you create dialog
boxes and message boxes. For more information
about this process, see Chapter 2, "Designing
Dialog Boxes."

The detection library, which contains procedures
that return information about the user's system,
such as the version of Windows.

The install library, which contains procedures
that install files on the user's hard disk.

The user interface library, which contains
procedures that manipulate the user interface,
such as displaying a dialog box or deleting a
dialog box from the dialog stack.

The shell library, which contains the routines
that manage the frame window.

The version checking .DLL file that is required
if the user can install the product on a Windows
version 3.0 system.

Chapter 3 Creating a Setup Script

21

Setup include files:

SETUPAPILINC
(required)

MSDETECT.INC
(optional)

MSREGDB.INC
(optional)

The .INC files define variables and declare the
subroutines and functions that you call from
your script. You include these files in your script
(.MST) file as necessary. Any files that you have
listed in the .MST file must also be included on
the first installation disk.

Note: If you include both MSSHARED.INC and
MSREGDB.INC, you must place the
'$INCLUDE statement for MSREGDB.INC
before the statement for MSSHARED.INC.

The common API include file, which contains
definitions of constants used by Setup and
declarations for the most commonly used Setup
procedures. You must include SETUPAPILINC
in your script and on the first installation disk.

The detection API include file, which contains
declarations of functions that return information
about the user's system, such as the number of
disk drives and so on. The more commonly used
detection routines, such as the ones that query
for the Windows version, are declared in
SETUPAPLINC. Include MSDETECT.INC in
your script if you intend to use any of the
functions it declares.

The Registration Database API include file,
which contains declarations for the Setup
procedures that read and write to the
Registration Database. Include MSREGDB.INC
in your script if you intend to use any of the
functions it declares.

MSSHARED.INC
(optional)

The shared files API include file, which contains
declarations for procedures that install or update
shared files. Include MSSHARED.INC in your
script if you intend to use any of the functions it
declares.

Sample script files:

The script (MST) files contain sample code that
you can modify to create your own script. You
must list both your .MST and .INF files in
SETUP.LST, and you must include them on the
first installation disk.

(continued next page)

22 Microsoft Windows Version 3.1 Setup Toolkit

Sample script files:
(continued)

SAMPLE1.MST

SAMPLE2.MST

SAMPLE3.MST

To create your script, choose the .MST file that
most closely resembles your installation and
modify it. Or, combine sample code from more
than one file. The corresponding .INF files are
provided for information only; use the Disk
Layout Utilities to create the .INF file for your
installation script. For more information, see
Chapter 4, "Using the Disk Layout Utilities."

The sample script file for a simple,
straightforward installation. This file provides
sample Microsoft Test debug code and asks the
user to choose which files will be installed.

The sample script file for a moderately complex
installation. The file asks the user to choose from
two sets of optional files for the installation, to
enter the name of the installation directory, and
so on. The script also checks the available disk
space on the user's hard disk for installing the
files.

The same script file for an installation that
contains shared files. The script checks to see if
the shared file is a newer version than the one on
the user's system and then adds it, if necessary,
to the global copy list. The script also updates
the Registration Database. For more information
about shared files, see "Installing Shared Files or
System File," later in this chapter

TESTDRVR.HLP

A Windows online help file that contains
information about Microsoft Test. Use this file to
understand the function of the Test commands
that are included in the sample script files. You
should not include this file on your installation
disks.

README.TXT

A text file that contains information about Setup
that could not be included in this manual. You
should read this file before creating an
installation script. Do not inlude this file on your
installation disks.

Table 3.1 Setup Toolkit Files

Chapter 3 Creating a Setup Script 23

To run the sample files and see them from the user’s perspective, choose the
Run command from the File menu. Type the name of the Microsoft Test inter-
preter and the sample filename in the command line, and click OK. For ex-
ample, the command line to run SAMPLE1.MST would be:

_mstest.exe samplel.mst

Note: Make sure that you have VER.DLL in your path. If not, you may want to
put a copy of it in the Setup toolkit directory. If you allow your product to be
run under Windows version 3.0, you must also include VER.DLL in
SETUP.LST and on the first installation disk.

The rest of this chapter explains the process of creating an installation script and
defining which files you need to include on the first installation disk.

Choosing and Modifying a Sample Script File

Up to this point, you have defined the list of files you will be installing and de-
signed the dialog boxes you will need. Your focus has been on identifying the
choices you will ask the user to make—for example, to determine the directory in
which you will install your product.

To create a script file, your focus must now shift slightly. When you create the
code that handles the dialog boxes and installs the product files, you must pay
attention to designing a safe and efficient installation process. Therefore, before
you start modifying one of the Setup sample script files, answer these questions:

m How much disk space will the installation use? Is it a significant amount? If so,
you will need to ensure that the user’s hard disk has enough disk space avail-
able. Also, if your product includes optional files that the user has chosen, you
may want to inform the user how much disk space each optional file will use.

= Does your product have minimum hardware and system software require-
ments? If so, you may want to check the version of MS-DOS or Windows, or
check for the existence of, for example, a math coprccessor. If the user’s sys-
tem falls below your minimum requirements, you will want to display a
warning message.

= Will you be installing shareable files? For example, does your product require a
spelling dictionary that the user already may have installed with another prod-
uct? If so, you will need to take some special steps to handle these files.

24 Microsoft Windows Version 3.1 Setup Toolkit

= Will you be installing any system files? If so, you may need to use special
Setup functions to exit Windows and update files that would be in use while
Windows is running.

= Will your installation need to update WIN.INI or AUTOEXEC.BAT? If so,
you will want to let the user decide whether to have these files updated auto-
matically.

= What other parts of your installation have associated risks? Do you need to
post warnings of any kind for the user? Do you need to check the validity of
paths and filenames the user enters?

The answers to these questions provide the information you need to design the
code for your script file. You should design the installation script just as you
would any other program: Identify the types of routines you will need, deter-
mine the logical order in which those routines should occur, and then draw a
flowchart of the installation process. The answers to the above questions will
also help you choose which sample script file to modify.

The Basic Components of a Sample Script File

Each sample file contains several basic components that, once understood, are
easy to modify to match your installation’s needs. This section describes those
components, using SAMPLE1.MST for the code illustrations.

To execute a sample file, choose the Run command from the File menu, and
type

_mtest.exe sampler.mst

where n is the number of the sample file. (You may have to copy VER.DLL into
the Setup toolkit directory for the sample files to run successfully.)

Debug Code

At the beginning of each sample, you can define a DEBUG flag that Microsoft
Test recognizes. You can then use the DEBUG flag to include debug code in
your script for testing purposes. SAMPLE1.MST defines the DEBUG flag as
follows:

Chapter 3 Creating a Setup Script 25

SDEFINE DEBUG

The following code appears later in the script:

SIFDEF DEBUG

‘SENDIF ‘DEBUG

These are Microsoft Test metacommands. You do not have to include them in
your script, but they can be very useful. For more information about these com-
mands and their uses, refer to the Windows online help file, TESTDRVR.HLP,
that comes with the Setup toolkit.

Note: You should remove the '$DEFINE DEBUG line from your script (.MST)
file before you ship your product.

Include Files

The appropriate .INC files are listed at the top of each sample file.
SAMPLE1.MST uses the following commands to include SETUPAPLINC and
MSDETECT.INC:

‘SINCLUDE ‘setupapi.inc’
'SINCLUDE ‘msdetect.inc’

These are Microsoft Test commands. Edit these lines to include the files that
your installation will need, based on the types of Setup procedures that you call
in your script.

For a description of each .INC file, see Table 3.1. For more information about
the syntax of Test commands, refer to the Windows online help file,
TESTDRVR.HLP, included in the Setup toolkit.

Note: If you have included the '$DEFINE DEBUG line in your script file, the
INC files will have argument checking enabled.

26 Microsoft Windows Version 3.1 Setup Toolkit

Dialog Box Constants

Each sample file declares constants for the dialog boxes it will use. The code for
SAMPLE1.MST looks like this:

CONST WELCOME = 100
CONST ASKQUIT = 200
CONST DESTPATH = 300
CONST EXITFAILURE = 400
CONST EXITQUIT = 600
CONST EXITSUCCESS = 700
CONST OPTIONS = 800
CONST APPHELP = 900

These constants represent the resource identification numbers for the dialog
boxes you will use in your installation. Edit this list to match the dialog boxes
you designed using the Windows Dialog Editor.

Initialization

The initialization section of each sample sets the background bitmap and title
for the Setup frame (or main) window. It also initializes variables, retrieves in-
formation from the Symbol Table, and reads the .INF file. Edit this section to in-
clude the following:

= The name of the bitmap logo file to appear in the background of the frame
window

= The title to appear in the frame window
= The name of the .DLL file that contains the procedures for your dialog boxes

= The path and name of your .INF file

Welcome and Other Dialog Boxes

The next sections of the sample files provide code that display the dialog boxes
that ask the user to make choices for the installation. For example,
SAMPLE1.MST uses the following code to display the Welcome dialog box:

Chapter 3 Creating a Setup Script 27

WELCOME :
sz$ = UIStartDlg (CUIDLLS,WELCOME, “FInfoDlgProc”,
APPHELP, HELPPROCS)
IF sz$ = “CONTINUE” THEN
UIpPop 1
ELSE
GOSUB ASKQUIT
GOTO WELCOME
ENDIF

Edit these sections of the script as necessary to include the code for your dialog
boxes.

Install Subroutine

SAMPLE1.MST declares an Install subroutine at the beginning of the file. The
purpose of this routine is to build the global copy list and perform the installa-
tion tasks. The Install subroutine for SAMPLE1.MST performs the following
tasks:

= QOpens and writes to the installation log file

= Builds the global copy list based on the files listed in the .INF file and the
choices the user has made

= Installs the files on the user’s hard disk
= Updates WIN.INI
m Creates a Program Manager group and item for the product

Edit this routine to include the code necessary to install your product.
SAMPLE2.MST and SAMPLE3.MST handle these tasks differently because
they represent more sophisticated installations. Depending on the complexity of
your installation, the Install subroutine can be the bulk of your installation
script. Therefore, you may want to break this subroutine into smaller, more
manageable chunks. For an example of a more complicated installation, see the
Install section of SAMPLE2.MST.

28 Microsoft Windows Version 3.1 Setup Toolkit

Modifying SETUP.LST to Match Your Script File

When you have modified a sample script file, you must create a version of
SETUP.LST that matches your script. SETUP.LST must contain two sections:
Params and Files. The Params section looks like this:

[Params]
WndTitle = Microsoft Setup
WndMess = Initializing Setup...
TmpDirSize = 500
TmpDirName = ms-setup.t
CmdLine = _mstest samplel.mst /C "/S %s %s"

|

DrvModName = DSHELL

To edit the Params section of SETUP.LST to match your script:

1.

If you want, change the value of WndTitle.

This text displays in the title bar of the Setup initialization window while
SETUP.EXE is copying the files into the temporary directory on the user’s
hard disk.

. If you want, change the value of WndMess.

This message displays in the center of the client area of the Setup initializa-
tion window.

. Set the value of TmpDirSize to an amount (in kilobytes) that will accommo-

date the files SETUP.EXE copies into the temporary directory.

You can calculate this value by adding the sizes of the files listed in the Files
section of SETUP.LST, dividing the result by 1024, and rounding it to a
whole number.

. If you want, change the value of TmpDirName to the desired temporary di-

rectory name.

The name you choose must accept one character and still be a valid name.

. Edit the value of CmdLine to include the name of your script (MST) file.

Chapter 3 Creating a Setup Script 29

Note: Do not change the last line that sets the value of DrvModName.
The Files section of SETUP.LST contains a list of the files that SETUP.EXE
should copy into the temporary directory. At a minimum, this list must include
the following files:
= Your script (.MST) file

Your .INF file

SETUPAPLINC

All .DLL files including MSCUISTF.DLL

_MSTEST.EXE
The list can also include:
® Any additional .INC files that you included in your script

® Any additional custom .DLL files that include procedures you called in your
script

» _MSSETUP.EXE, the MS-DOS program that you can use to update system
files

The Files section of SETUP.LST looks like this:

[Files]
samplel.mst = samplel.mst
samplel.inf = samplel.inf
setupapi.inc = setupapi.inc

msdetect.inc = msdetect.inc
mscomstf.dll = mscomstf.dll
msinsstf.dll = msinsstf.dll
msuilstf.dll = msuilstf.dll
msshlstf.dll = msshlstf.dll
mscuistf.dll = mscuistf.dll
msdetstf.dll = msdetstf.dll
_mstest.exe = _mstest.exe

_mssetup.exe = _mssetup.exe

30

Microsoft Windows Version 3.1 Setup Toolkit

The filenames on the left side of the equal sign (=) are the names of the files
that appear on the first installation disk. The filenames on the right side of the
equal sign are the names to which the files will be copied in the temporary di-
rectory on the user’s hard disk. (Typically, the filenames will differ if you have
compressed the files for distribution. Compression is recommended for all but
SETUP.EXE and SETUP.LST.)

Edit the filenames (potentially, on both sides) to match the files you need for
your installation. For more information about each of the Setup .DLL and .INC
files, see Table 3.1.

Using the Symbol Table

Whether your installation is simple or complex, you will probably use the Sym-
bol Table to store values. The Symbol Table is a temporary storage area in
memory that contains a table of text symbols and their associated text values.
Setup uses the Symbol Table to store information such as directory names and
data that is passed between the script and the .DLL files.

Setup automatically creates and sets three symbols that you can use:
m STF_SRCDIR, which is the source directory

m STF_CWDDIR, which is the current working directory or the temporary di-
rectory for Setup

s STF_SRCINFPATH, which is the path for the .INF file (usually empty, un-
less you or the user supplied it as part of the SETUP.EXE command line)

For example, before reading the .INF file, SAMPLE1.MST uses the
STF_CWDDIR symbol to create the path and filename for the .INF file:

szInfS = GetSymbolValue (“STF_CWDDIR”) +
“SAMPLE1.INF”

The procedures in MSCUISTF.DLL (the customized dialog box routines) also
use the Symbol Table to store the user’s responses. For example,
SAMPLE1.MST uses the following line of code to retrieve the value of the but-
ton the user chose in a dialog box:

Chapter 3 Creating a Setup Script 31

OPTCURS = GetSymbolValue (“ButtonChecked”)

You’ll see other uses of the Symbol Table interspersed throughout the sample
code. Use the Symbol Table to pass data between your script and the .DLL files.

Note: To conserve memory, clear all Symbol Table strings after you use them.

Creating Customized .DLL Files

Depending on the special needs of your installation, you may want to create
your own customized routines in a special .DLL file. Setup can easily accom-
modate these routines. Simply create the .DLL file as you would any other .DLL
file. Then include it in the list of .DLL files in the SETUP.LST file.

To access functions in your custom .DLL files, you must declare the functions
in your script (MST) file or in an include file. For example, to access the
MyFunc function, you must declare it as follows:

DECLARE FUNCTION MyFunc LIB “My.dll” (argl$,
arg2%) AS INTEGER

For more information about defining your own library functions, look at the
declarations in the Setup .INC files or refer to the online help file,
TESTDRVR.HLP, that comes with the Setup toolkit.

Installing Shared Files or System Files

If you are planning to install shared files or system files, you must handle that
part of the installation with extra care. This section describes some of the issues
involved with installing shared files or system files and how Setup handles
them.

Shared Files

A shared file is a file that may be used by more than one application on the
user’s system. For example, your company may have two products that use the
same spelling dictionary. If the user has already installed one of the products,

32

Microsoft Windows Version 3.1 Setup Toolkit

that dictionary file may already be installed. Furthermore, if the user has that
product running during the installation process, the dictionary file may be in use
and can’t be updated.

To handle this problem, the CopyFilesInCopyList procedure checks each file
listed in your .INF file with the SHARED attribute to see if the file is in use. If
so, Setup displays an error message. The user can fix the problem by:

= Switching out of Setup, closing the other application, switching back into
Setup, and then choosing the Retry button.

m Exiting Setup and rerunning the installation after the other application is
closed.

m Ignoring the message. If the file is marked as vital, Setup will display another
error message. If the file is not vital, Setup skips it but continues to copy
other files in the list.

System Files

A system file is a file that may be in use by Windows when Windows is run-
ning. The CopyFilesInCopyList procedure checks each file listed in your .INF
file with the SYSTEM attribute to see if the file is in use. If so, the procedure

copies the file to a temporary location (the restart directory) and adds a com-
mand to the _MSSETUP.BAT file.

Toward the end of the installation, your script should call the
RestartListEmpty function. If the function returns zero, there are system files
that need to be updated. You should inform the user about this and then use the
ExitExecRestart function to shut down Windows, update the files, and restart
Windows. The ExitExecRestart function uses the MS-DOS-based program
_MSSETUP.EXE to copy the files listed in _MSSETUP.BAT. If you use these
procedures, you must list _ MSSETUP.EXE in the SETUP.LST file and include
it on the first installation disk.

Note: Windows version 3.0 does not support the ExitExecRestart function.

For more information about the CopyFilesInCopyList, RestartListEmpty, and
ExitExecRestart procedures, see Chapter 5, “Setup Script Procedures.”

Chapter 4: Using the Disk Layout Utilities

The Disk Layout Utilities automate tedious, error-prone tasks by taking your
project files and creating efficiently organized disk images for your product
installation. As part of this process, the Disk Layout Utilities also create the
INF file.

Typically, you will use the Disk Layout Utilities in the following manner:

= As soon as you have a distributable product release, even if it is planned for
internal release within your company, use the Disk Layout Ultilities to create
the .INF file and the disk images.

= For each subsequent release, run the Disk Layout Utilities to update the
directory of disk images for any files you may have added or changed.

After the first time you use the Disk Layout Utilities to create a software
release, the programs remember which files have already been included and tell
you if you have added any new files. The Disk Layout Utilities also update disk
images and compressed files only when the files change.

This chapter describes the disk layout process and explains the use of the
Dsklayt and Dsklayt2 programs to create a layout file, disk images, and the .INF
file.

Understanding the Disk Layout Process

The Disk Layout Utilities consist of two parts:

= A Windows-based program (Dsklayt) that you use to specify the properties
for all files that will go into your product release

= An MS-DOS-based program (Dsklayt2) that creates the disk images and the
INF file for the installation

34

Microsoft Windows Version 3.1 Setup Toolkit

You use Dsklayt to create a layout file containing file specifications. Dsklayt2
then uses the directives in the layout file to create the disk images and the .INF
file. You can use Dsklayt2 as part of your product build process.

To run Dsklayt:

1. In File Manager, choose Run from the File menu.

2. In the Command Line box, type \DSKLAYT.TLS\DSKLAYT, and then click
OK.

The main window for Dsklayt appears with a dialog box open, as shown in
Figure 4.1.

File Options Help

Source Directory: Layout-Time Options

File Destination
® 1. Any Diskette [system File

O 2. whitable Diskette [Shared File
O 3. Read-Only Diskette Vital File

Setup Disk Layout Utility

‘ Hew Layout... ’7 Exit

File Attributes Compress

Check for Yersion

l Install-Time Options
Overwrite Decompress
© Always [Mark as Read Only
> Never i
) Older [} Rename Copied File: l |
O Just Show New O Unprotected [Backup Existing File: | l

Figure 4.1

3. In the Microsoft Disk Layout Ultilities dialog box, click either Open Layout to
open an existing layout file or New Layout to create a new layout file.

4. If you are opening an existing layout file, specify the name of the file and
click OK. If you are creating a new layout file, specify the directory where
your product files are stored and click OK.

Chapter 4 Using the Disk Layout Utilities 35

The files from the source directory appear in the list box on the left side of
the main window. You can then select one or more files from the list box and
specify their properties.

Using the Disk Layout Utilities Commands

Dsklayt has a main window and three menus-File, Options, and Help. This
section describes the contents of the main window and each of the commands on
the menus.

Dsklayt Main Window

You can use the options in the main window to set most of the file specifications
for your installation. To set specifications for one file or for a group of files, you
simply select the file(s) you want to affect from the list box and specify the
options you want the file(s) to have.

Figure 4.2 illustrates the Dsklayt main window. The options are divided roughly
into two types: layout time options, which affect how the files are stored on the
installation disks, and install time options, which affect how the files are copied
onto the user’s hard disk. Each option is described below.

= Setup Disk Layout Utility [~ |
File Options Help
Source Directory: " Layout-Time Options
i X [File Destination] [File Attributes —] 4
- . 4] C
c:\projectsh...\bldcui ® 1. Any Diskette O Systom Filo = LCompress

% .
O 2. Wiitable Diskette [] Shared File Check for Version

> 3. Read-Only Diskette Vital File

cmsth Ink 1 {4 Setup Diskette [#1] Set Fie Date
cuistfd.Ink (> 5. Do Not Lay Out File || @ Source Date (Dther: :l
|dialogs.dlg — _
d!alogs.h Reference Key: [:: Put in Section: L |
|dialogs.rc L
dialogs.res [Install-Time Dptions
digprocs.c [Overwrite — | Decompress
makefile @ Always -
mscomstf_lib P N_ ¥ Mark as Read Only
mscuistf_def ./ Hever . }
blsi il 3 O Older [] Rename Copied File: L
[Just Show New O Unprotected [] Backup Existing File: l |

Figure 4.2

36

Microsoft Windows Version 3.1 Setup Toolkit

Source Directory: Displays the name of the top-level directory for your
product files.

List box: Displays all the files in the source directory and its subdirectories.
Choose files from this list to set their attributes. You can choose:

= A single file, by clicking on it.

= A contiguous range of files, by clicking on the first file, holding down the
SHIFT key, and then clicking on the last file.

m A discontiguous range of files, by holding down the CTRL key and
clicking on each file.

Just Show New: Checking this box displays only the files that are new or have
been updated since you last created the layout file. Use this option when you are
doing successive product releases and only need to add specifications for the
new or changed source files.

Layout Time Options:

File Destination: Determines the type of disk on which the selected file can be
placed. Choose one of five options:

1. Any Diskette: Indicates that the selected file can go on any diskette in the
installation set. This option is the default.

2. Writable Diskette: Indicates that the selected file must go on a disk that
Setup can write to.

3. Read-Only Diskette: Indicates that the selected file must go on a write-
protected disk. For example, you may want to store uncompressed binary
files ((EXE files) that might be targets of viruses on a read-only diskette.

4. Setup Diskette (#1): Indicates that the selected file must go on the first
disk in the installation disk set. For example, you would choose this option
for your Setup script file.

Chapter 4 Using the Disk Layout Utilities 37

5. Do Not Lay Out File: Indicates that the selected file should not be placed
on an installation disk. Use this option for files that reside in your project
directories but are not part of the product installation, such as source code
management files.

File Attributes: Marks a file in the layout file as having one or more attributes.
Check one or more of the following:

m System File: The file is a system file, such as WINHELP.EXE or
GDIEXE.

= Shared File: The selected file may be shared by one or more applications,
such as a common code library that ships with all of your company
products.

m Vital File: The installation will fail unless the selected file is installed
successfully. This option is the default.

Set File Date: Specifies the date stamp used for the file when it is copied into a
disk image directory by Dsklayt2 and when Setup copies the file onto the user’s
hard disk. Choose one of the following options:

m Source Date: Uses the date of the installable file.

= Other: Uses the date you specify in the adjacent text box (in the format
YYYY-MM-DD). Use this option when you want the date on all installed
files to be a significant date, such as the product release date.

Compress: Determines whether the selected file should be compressed by
Dsklayt2.

Check For Version: Tells Dsklayt2 to use VER.DLL to check the source file
for the existence of a version resource. If the version resource exists, Dsklayt2
puts this information into the .INF file. Otherwise, Dsklayt2 issues a warning
and leaves this portion of the file description blank in the .INF file.

Reference Key: Specifies a unique reference for the selected file. Use this
option when you want the Setup script to determine whether to install the
selected file based on information available at the time of the installation. For
example, the type of monitor on the user’s system could affect the files you

38

Microsoft Windows Version 3.1 Setup Toolkit

install for your product. You can also use this option when you want to display
reference keys rather than filenames in the dialog boxes displayed by the
installation, because the keys are more descriptive than the filenames.

Put In Section: Specifies a unique .INF section name for the selected file. Use
this field when you want installation files organized by categories rather than all
listed in the default “Files” section of the .INF file.

Install-Time Options:

Overwrite: Specifies what should happen if the selected file already exists on
the user’s hard disk. Choose one of the following options:

= Always: The installed file will always overwrite any existing version of
the file.

= Never: The installed file will never overwrite an existing version of the
file.

m Older: The installed file will overwrite an existing version of the file only
if the existing version is older. Setup will look for version information; if
none exists, it will use the file dates to determine which file is older.

= Unprotected: The installed file will overwrite an existing version of the
file only if the existing version has an MS-DOS file attribute of “Write.”

Decompress: Indicates that Setup should check to see if the source file is
compressed and, if so, decompress it before copying it onto the user’s hard disk.
You should leave this option checked in most cases, even if the source file is not
compressed.

Mark as Read Only: Indicates that you want the file to have a MS-DOS file
attribute of “Read Only” when it is copied onto the user’s hard disk.

Rename Copied File: Indicates that you want to rename the file to the filename
you supply in the adjacent text box when it is copied onto the user’s hard disk.

Backup Existing File: Indicates that you want to back up an existing version of
the file to the filename you supply in the adjacent text box before copying the
source file. If you type an asterisk (*), Setup will back up the file to the same
name with a .BAK extension.

Chapter 4 Using the Disk Layout Utilities 39

File menu

New
Creates a new, untitled layout file.

Open

Displays a dialog box that you can use to open an existing layout file so that you
can update it. Dsklayt checks for new product files and notifies you if there are
any.

Save
Saves any changes you have made to the currently open layout file.

Save As
Displays a dialog box that you can use to save the current layout file under a
name you specify.

Exit
Exits Dsklayt and returns you to the most recently active window. If you have
made changes but did not save them, Dsklayt prompts you to save.

Options menu

Disk Labels
Displays a dialog box (Figure 4.3) that lets you add, delete, or modify the disk
labels for your installation disks.

40

Microsoft Windows Version 3.1 Setup Toolkit

= Disk Labels

Disk Label:

[My Disk Label 3 |

'My Disk Label 2
<end>

Delete

ik

Writable Disk is:
[My Disk Label 1 (2]

Figure 4.3

To insert a new label, select the label in the list box that you want to follow the
new label, type the new label name in the text box, and then click Add. To
delete a label, select it from the list box and then click Delete. To modify a
label, select it from the list box, click Delete, type the correct text in the text
box, and then click Add.

You can use generic labels, such as “Disk 1,” until you see how the files are
organized on the disks. You can then rename the labels to reflect the content of
the disks.

You can specify which disk label goes on the writable disk by selecting the label
in the drop-down list box at the bottom of the dialog box.

Note: The order in which you add disk labels is the order in which Dsklayt2
will apply them to the disk images.

Remove Files List

Displays a dialog box (Figure 4.4) in which you can create one or more lists of
files that you want Setup to remove from the user’s hard disk during product
installation. Use this list to remove obsolete files or older versions of files whose
names differ from the newer versions.

Chapter 4 Using the Disk Layout Utilities 4

= Remove Installed Files I

Filename:

(118
| myfiled. exe |
Add
.INF Section:
Iilher remove files |

myfile.exe remove hles
myfile2.exe remove files

msfile&exe other remove files

Figure 4.4

To add a file to a removal list, type its filename in the Filename box, type the
name of the .INF section in the .INF Section box (if necessary), and then click
Add. If you don’t type a section name in the .INF Section box, Dsklayt2 adds
the name of the file to the “Files” section in the .INF file.

To delete a file from a removal list, select it from the list box and click Delete.
To modify a filename in a removal list, select it from the list box, click Delete,
type the correct filename in the Filename box, and then click Add.

Help menu

About
Displays a dialog box that provides copyright and version information for
Dsklayt.

Using the MS-DOS-Based Dsklayt2 Program

After saving your specifications in a layout file, use the MS-DOS-based
Dsklayt2 program to generate disk images and the .INF file for your product

42

Microsoft Windows Version 3.1 Setup Toolkit

installation. Dsklayt2 reads the directives in the layout file and creates a direc-
tory of disk images that you can copy onto disks using the Diskcopy command.

The Dsklayt2 program has the following command line syntax:

Dsklayt2 [drive: [[path]layout_filename [[drive:][path]INF_filename]

[options]

Parameter

Description

drive:path for layout_filename

layout_filename

drive:path for INF_filename

INF _filename

Options:
/k{n}

£

Iw{n}

The drive letter and path of the layout file.

The name of the layout file that Dsklayt2
should read to create the disk images. This
argument is required.

The drive letter and path of the .INF file.

The name of the .INF file that you want
Dsklayt2 to create. If you do not specify a
filename, Dsklayt2 uses SETUP.INF.

Specifies the type of disk Dsklayt2 should
target when creating the disk images. For n,
you can specify:

m A standard size (360, 720, 12, or 144), N
for Network

m O n/m for Other, where n/m is the bytes per
cluster and the cluster per disk, respectively.
The default is 1.2 MB.

Specifies that Dsklayt2 should overwrite the
existing .INF file, if necessary.

Specifies the writable disk. For n, specify a
disk number. This field overrides the specifi-
cation in the layout file. If you omit this
option, Dsklayt2 makes the last disk in the
installation the writable disk. If you specify

Chapter 4

Using the Disk Layout Utilities 43

/d{destdir}

Ie{compdir}

/z2{compcmd}

the option without a disk number, Dsklayt2
assumes that all disks are read-only.

Specifies the destination directory for the disk
images. Dsklayt2 creates a directory for each
disk image, named DISK 1, DISK 2, and so
on. If your product will be installed from a
network drive (that is, if the /k option speci-
fies a network device), all files are placed at
the top-level destination directory. If you omit
this option, Dsklayt2 will not create any files
in the destination directory.

Specifies the directory where Dsklayt2 can
put compressed versions of the files. If you
specify the same directory each time you run
Dsklayt2, the program adds or updates only
those files that are new or have changed. If
you omit this option, Dsklayt2 creates a
COMP subdirectory in the parent of the
source directory. If the source directory is the
root directory, Dsklayt2 displays an error
message and aborts.

Specifies a compression utility that Dsklayt2
can use to compress files. For compcmd,
specify the MS-DOS command that will
execute the compression utility. Dsklayt2 will
call this command with two arguments: the
source directory and the destination directory.
If this option is not specified, Dsklayt2 looks
for COMPRESS.EXE in the path.

Chapter 5: Setup Script Procedures

This chapter describes the functions and subroutines that you can call in your in-
stallation script. They are listed in alphabetical order.

Note: All functions and subroutines are declared in the Setup .INC files. You sim-
ply call the functions and routines from your script (MST) file. The descriptions

in this chapter show the calling syntax for each procedure.

To_:

Use these procedures:

Manipulate what the
user sees on the screen

DoMsgBox
RestoreCursor
SetBeepingMode
SetBitmap
SetCopyGaugePosition
SetSilentMode
SetTitle
ShowWaitCursor
UIPop

UIPopAll
UIStartDIg

Manipulate a list
associated with a
symbol in the Symbol
Table

AddListItem

GetListItem

GetListLength
GetSymbolValue
MakeListFromSectionKeys
RemoveSymbol
ReplaceListItem

Modify the contents of
the global list of
installable files (the
copy list)

AddSectionFilesToCopyList
AddSectionKeyFileToCopyList
AddSpecialFileToCopyList
ClearCopyList
CopyFilesInCopyList
DumpCopyList
GetCopyListCost

Microsoft Windows Version 3.1 Setup Toolkit

Control aspects of the
copy list installation

SetCopyMode
SetDecompMode

Manipulate billboard
dialog boxes and the
global billboard list

AddBlankToBillboardList
AddToBillboardList
ClearBillboardList

Manipulate a file on
the user's system

BackupFile

CopyFile
DoesFileExist
FindFileInTree
FindFileUsingFileOpen
FindTargetOnEnvVar
GetDateOfFile
GetSizeOfFile
GetVersionNthField
GetVersionOfFile
IsFileWritable
RemoveFile
RenameFile
StampResource

Manipulate a directory
on the user's system

CreateDir
RemoveDir
DoesDirExist
GetWindowsDir

Update an .INI file

CreatelniKeyValue
CreateSysIniKeyValue
DoesIniKeyExist
DoesIniKeyExist
DoesIniKeyExist
GetIniKeyString
GetNthFieldFromIniString
RemovelniKey
RemovelniSection

Create a Program
Manager group and
item for your product

CreateProgmanGroup
CreateProgmanlitem
ShowProgmanGroup

Add information to or
get information from
the Registration
Database

CreateRegKey
CreateRegKeyValue
DeleteRegKey
DoesRegKeyEcxist
GetRegKeyValue
SetRegKeyValue

Chapter 5 Setup Script Procedures

47

Install system
resources (that may be
in use while Windows
is running)

ExitExecRestart
RestartListEmpty
SearchForLocationForSharedFile
SetRestartDir

Work with MS-DOS
help files

AddDos5Help

Create a record of what
occurred during an
installation

CloseLogFile
OpenLogFile
SetAbout
WriteToLogFile

Query the user's
environment

GetConfigLastDrive
GetConfigNumBuffers
GetConfigNumPFiles
GetConfigRamdriveSize
GetConfigSmartdrvSize
GetDOSMajorVersion
GetDOSMinorVersion
GetEnvVariableValue
GetFreeSpaceForDrive
GetLocalHardDrivesList
GetNetworkDrivesList
GetNumWinApps
GetParallelPortsList
GetProcessorType
GetRemovableDrivesList
GetScreenHeight
GetScreenWidth
GetSerialPortsList
GetTotalSpaceForDrive
GetTypeFaceNameFromTTF
GetValidDrivesList
GetWindowsMajorVersion
GetWindowsMinorVersion
GetWindowsMode
GetWindowsSysDir
Has87MathChip
HasMonochromeDisplay
HasMouselnstalled
IsDriveLocalHard
IsDriveNetwork
IsDriveRemovable
IsDriverInConfig
IsDriveValid
IsWindowsShared

43 Microsoft Windows Version 3.1 Setup Toolkit

Parse a date field GetDayFromDate
GetHourFromDate
GetMinuteFromDate
GetMonthFromDate
GetSecondFromDate

Retrieve information HinstFrame

about the topmost HwndFrame

frame window

Read or manipulate GetSectionKeyDate

information from the GetSectionKeyFilename

INF file GetSectionKeySize
GetSectionKeyVersion
MakeListFromSectionKeys
ReadInfFile
RemoveSymbol
ReplaceListItem

AddBlankToBillboardList subroutine

AddBlankToBillboardList lticks&

Argument

Comments

The AddBlankToBillboardList subroutine adds a hidden
dialog box to the global billboard list. The hidden dialog
box destroys the previous billboard dialog box and delays
the display of the next billboard dialog box.

ITicks&

Defines the amount of time you want to delay the
display of the next billboard dialog box. The unit is
arbitrary, relative to a total number of units.

Use this subroutine prior to calling
CopyFilesInCopyList.

Chapter 5 Setup Script Procedures 49

AddDos5Help subroutine

AddDos5Help szProgName$, szProgHelp$, cmo%

The AddDosSHelp subroutine adds the specified pro-
gram name and help description to the DOSHELP.HLP
file.

Arguments szProgName$

Specifies the program name for the help file. This
name cannot start with the @ character or contain
spaces or tabs. Also, the length of the name must be
greater than zero and less than nine characters.

szProgHelp$

Specifies the help text string. You must specify a
non-empty string for this argument. If you want to
specify multiple lines of text, embed CHR$(10) for
each line. This will create a line end and nine spaces
as an indent for the next line.

cmo%

Specifies the command option flag. You can use
cmoVital or cmoNone for the command option flag

See Also Appendix B, “Command Option Flags,” for a list of com-
mand option flags and advice on their use.

AddListitem subroutine

AddListItem szSymbol$, szltem$

The AddListItem subroutine adds a new item to the end
of the list associated with the specified symbol name.

Arguments szSymbol$

50 Microsoft Windows Version 3.1 Setup Toolkit

Specifies the name of the symbol in the Symbol
Table to which the list is associated.

szltem$

Specifies the item that you want to add to the list.

/ Comments If szSymbol$ is previously undefined, a new list with the
specified item is created and associated with the symbol
name. You can create a new, empty list by using the
SetSymbolValue subroutine and specifying the value as

(131}

AddSectionFilesToCopyList subroutine

AddSectionFilesToCopyList szSection$, szSrc$, szDest$

The AddSectionFilesToCopyList subroutine adds all file
descriptions from the specified section of the .INF file to
the global list of installable files (the copy list).

Arguments szSection$

Specifies the name of the section in the .INF file that
contains the files you want to add to the copy list.

szSrc$

Specifies the full path of the directory where the files
currently reside. Typically, you use the value associ-
ated with the symbol STF_SRCDIR for szSrc$.

szDest$

Specifies the full path of the directory to which the
files will be copied.

Comments You must call the ReadInfFile subroutine before using
this subroutine.

Chapter 5 Setup Script Procedures 51

AddSectionKeyFileToCopyList subroutine

AddSectionKeyFileToCopyList szSection$, szKey$, szSrc$, szDest$

Arguments

Comments

The AddSectionKeyFileToCopyList subroutine adds a
file description identified by the reference key from the
INF file to the global list of installable files (the copy
list).

szSection$

Specifies the name of the section in the .INF file that
contains the file you want to add to the copy list.

szKey$

Specifies the reference key for the file you want to
add to the copy list.

szSrc$
Specifies the full path of the directory where the file

currently resides. Typically, you use the value associ-
ated with the symbol STF_SRCDIR for szSrc$.

szDest$

Specifies the full path of the directory to which the
file will be copied.

You must call the ReadInfFile subroutine before using
this subroutine.

AddSpecialFileToCopyList subroutine

AddSpecialFileToCopyList szSection$, szKey$, szSrc$, szDest$

The AddSpecialFileToCopyList subroutine adds the file
description of a special file, such as a shared file, from

52 Microsoft Windows Version 3.1 Setup Toolkit

Arguments

Comments

the .INF file to the global list of installable files (the copy
list).

szSection$

Specifies the name of the section in the .INF file that
contains the file you want to add to the copy list.

szKey$

Specifies the reference key for the file you want to
add to the copy list.

szSrc$

Specifies the full path of the directory where the file
currently resides. Typically, you use the symbol
STF_SRCDIR for szSrc$.

szDest$

Specifies the full path of the file to be copied.

You must call the ReadInfFile subroutine before using
this subroutine.

AddToBillboardList subroutine

AddToBillboardList szDII$, idDIg%, szProc$, ITicks&

Arguments

The AddToBillboardList subroutine adds a billboard
dialog box to the end of the global billboard list. The dia-
log box will be displayed during the next
CopyFilesInCopyList subroutine call.

szDII$

Specifies the name of the .DLL file that contains the
dialog box resource and procedure.

Chapter 5 Setup Script Procedures 53

idDIg%
Specifies the dialog box resource identification num-

ber.

szProc$

Specifies the name of the dialog box procedure.
[Ticks&

Defines the amount of time you want the billboard
dialog box to display. The unit is arbitrary, relative to
the total number of units specified at the time the
files are copied onto the user’s hard disk or network
drive.

BackupFile subroutine

BackupFile szFullPath$, szBackup$
The BackupFile subroutine backs up the specified file by
renaming it.

Arguments szFullPath$

Specifies the full path and name of the file you want
to create a copy of.

szBackup$

Specifies the filename of the copy.

Comments The copy is placed in the same directory as the original
file(as specified by szFullPath$). This subroutine is iden-
tical to RenameFile.

54 Microsoft Windows Version 3.1 Setup Toolkit

ClearBillboardList subroutine

ClearBillboardList

The ClearBillboardList subroutine deletes all dialog
boxes from the global billboard list.

ClearCopyList subroutine

ClearCopyList

The ClearCopyList subroutine removes all file entries
from the global list of installable files (or copy list).

CloseLogFile subroutine

CloseLogFile

The CloseLogFile subroutine closes the currently open
log file.

CopyFile subroutine

CopyFile szFullPathSrc$, szFullPathDst$, cmo%, fAppend%

The CopyFile subroutine copies the specified file from
its source directory to its destination directory.

Chapter 5 Setup Script Procedures 55

Arguments

See Also

szFullPathSrc$

Specifies the full path of the file you want to copy.
szFullPathDst$

Specifies the full path of the destination directory for
the file.

cmo%

Specifies one or more command option flags. You
can use one or more of the following for cmo% (by
adding them together): cmoDecompress,
cmoTimeStamp, cmoReadOnly, cmoOverwrite,
cmoNone, or cmoAll .

JAppend%

Specifies whether you want any existing file to be
appended to. A value of one indicates that you want
to append to an existing file; zero indicates that you
want to remove the existing file before copying the
new file.

Appendix B, “Command Option Flags,” for a list of com-
mand option flags and advice on their use.

CopyFilesinCopyList subroutine

CopyFilesInCopyList

Comments

The CopyFilesInCopyList subroutine sor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>