
•

•

•

Microsoft® Windows ™

Version 3.1

Setup Toolkit

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commitment
on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure .
agreement and may be used or copied only in accordance with the terms ofthat agreement. It is against
the law to copy the software except as specifically allowed in the license or nondisclosure agreement.
No part of this manual may be reproduced in any form or by any means, electronic or mechanical,
including photocopying and recording, for any prupose without the express written permission of
Microsoft Corporation.

Copyright 1987, 1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Copyright 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Times, and Times
Roman typefont data is the property of Linotype or its licensors.

Aria! and Times New Roman fonts. Copyright 1991 Monotype Corporation PLC. All rights reserved.

Microsoft, MS, MS-DOS, Quick C, and Code View are registered trademarks, and Windows and
QuickBasic are trademarks of Microsoft Corporation.

U.S.Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.
The Symbol fOllts provided with Windows version 3.1 are based on the CG Times font, a product of

AGFA Compugraphic Division of Agfa Corporation.
Apple TrueType is a registered trademark of Apple Computer, Inc.
Helvetica, Linotype, Times, and Times Roman are registered trademarks of Linotype AG and/or its

subsidiaries.
Arial and Times New Roman are registered trademarks of the Monotype Corporation, PLC.

Document Number 30213

Contents

Introduction ... i

System Requirements for Setup ... ii
Document Conventions .. ii

Chapter 1 Creating a Setup Program .. 1

The Basic Components of Setup .. 1
Steps for Creating a Setup Script '" '" ... 2

Step 1: Identify the Files That Will Be Installed for Your Product 3
Step 2: Design the Directory Structure for the Installable Files 3
Step 3: Identify All User-Defined Parameters .. 3
Step 4: Design Dialog Boxes ... 4
Step 5: Modify the Sample Script Files to Create Your Installation Script .. 4
Step 6: Create the Images for the Installation Disks 5
Step 7: Test Your Installation Script ... 5

Chapter 2 Designing Dialog Boxes .. 7

Dialog Box Functions .. 10

Chapter 3 Creating a Setup Script ... 19

Choosing and Modifying a Sample Script File .. 23
The Basic Components of a Sample Script File .. 24

Debug Code ... 24
Include Files .. 25
Dialog Box Constants .. 26
Initialization ... 26
Welcome and Other Dialog Boxes .. 26
Install Subroutine .. 27

Modifying SETUP.LST to Match Your Script File ... 28
Using the Symbol Table ... 30

iv Microsoft Windows Version 3.1 Setup Toolkit

Creating Customized .DLL Files ... 31
Installing Shared Files or System Files .. 31

Shared Files ... 31
System Files ... 32

Chapter 4 Using the Disk Layout Utilities .. 33

Understanding the Disk Layout Process .. 33
Using the Disk Layout Utilities Commands .. 35

Dsklayt Main Window ... 35
File menu ... 39
Options menu ... 39
Help menu .. 41

U sing the MS-DOS-Based Dsklayt2 Program ... 41

Chapter 5 Setup Script Procedures .. 45

Appendix A INF File Format ... 117

Appendix B Command Option Flags .. 125

Index .. 127

Introduction

The Microsoft® Windows ™ operating system is a single-user personal computer
operating system that employs a graphical user interface. Microsoft provides a
variety of tools you'll find useful as you develop Windows applications. One of
these tools, Setup, helps you create installation kits for your Windows applica­
tions. This manual, Setup Toolkitfor Windows, explains how to use the Setup
procedures and sample script files to create installation kits.

• Chapter 1, "Creating a setup Program," explains how to use the basic compo­
nents of the toolkit to create installation files for your product.

• Chapter 2, "Designing Dialog Boxes," explains how to use the Windows
Dialog Editor to modify the dialog box templates for Setup. The second part
of the chapter describes the C functions you use to modify the associated
dialog box procedures.

• Chapter 3, "Creating a setup Script," explains how to modify sample script
files to meet the specific needs of your application's installation.

• Chapter 4, "Using the Disk Layout Utilities," explains how to use the Disk
Layout Utilities to create and update disk images.

• Chapter 5, "Setup Script Procedures," describes the Basic procedures
(functions and subroutines) that you use to create a setup script.

• Appendix A, "INF File Format," describes the structure of an .INF file and
provides a list of software default values.

• Appendix B, "Command Option Flags," describes the command option flags
that you can use as arguments for many of the Setup script procedures.

vi Microsoft Windows Version 3.1 Setup Toolkit

System Requirements for Setup

To use the Setup toolkit, you must have the Windows version 3.1 Software De­
velopment Kit (SDK), the Microsoft C compiler, and the C run-time libraries
(including MDLLCEW.LIB) installed on your computer.

Document Conventions

The following document conventions are used throughout this manual:

Convention

Bold text

Italic text

Monospaced text

CAPITAL LETTERS

Initial Capitals

()

[]

Meaning

Denotes a term or character to be typed literally, such
as language keywords or function names (AS INTE­
GER or BackupFile); MS-DOS commands (dir); and
MS-DOS command-line options (/P).

Denotes a placeholder or variable: You must provide
the actual value. For example, the statement
BackupFile szFuliPath$ szBackup$ requires that you
substitute values for the szFullPath$ and szBackup$
arguments.

Represents code samples.

Represent filenames, directory names, drive letters, or
symbolic constants.

Represent names of programs, menus, menu com­
mands, dialog boxes and options, buttons, and named
windows.

Enclose one or more arguments that you pass to a
function.

Enclose optional parameters.

Chapter 1: Creating a Setup Program

When you install a Microsoft software program on your computer, you may be
using Setup and its supporting functions to decompress and copy the program
files onto your hard disk. Setup is a tool that you can use to create scripts that
will install a Windows application on a user's computer. Microsoft is providing
the Setup toolkit as part of the Windows version 3.1 SDK so that you can take
advantage of its many automated procedures when you create an installation
program for your own product.

The Basic Components of Setup

The Setup toolkit includes the following basic components:

• A bootstrapper program, SETUP.EXE, which copies the Setup driver
CMSTEST.EXE) and other supporting files to a temporary directory on the
user's hard disk and then launches your Setup script. When your Setup script
is complete, SETUP.EXE removes the temporary files and directory.

• A run-time version of Microsoft Test, _MSTEST.EXE, which Setup uses to
interpret its scripting language. The Setup sample files also contain Test
commands that define a DEBUG flag and include the files that define Setup
procedures. Test commands give you greater flexibility for modifying the
Setup sample files. In addition, the Test development environment includes a
debugger and other useful tools. You do not have to modify the Test com­
mands for your script, but you may want to purchase and use Test in conjunc­
tion with the Setup procedures.

• Sample script files (SAMPLEl.MST, SAMPLE2.MST, and
SAMPLE3.MST), which you use as a starting point for creating your own
Setup script.

• Sample dialog box templates and procedures (DIALOGS.DLG,
DIALOGS.RES, and DLGPROCS.C), which you modify using the Windows

2 Microsoft Windows Version 3.1 Setup Toolkit

Dialog Editor to create the dialog and message boxes you need for your
installation.

• Six .DLL files that contain useful routines for detecting the hardware and
software environment, managing dialog and message boxes, copying files,
modifying .INI files, and performing other program management functions.
These procedures are described in Chapter 5, "Setup Script Procedures;" you
will use them to create your Setup script.

• Disk Layout Utilities, DSKLA YT.EXE and DSKLA YT2.EXE, which you
use to create the installation disks you will ship with your product.

• An MS-DOS utility, _MSSETUP.EXE, which you can use to update system
files that are locked while in use by Windows.

Use these components as described in the next section to create your own Setup
script. Using Setup for your product installations will ensure that the process is
safe and efficient, and that the installation meets Windows programming
standards.

Steps for Creating a Setup Script

Use the following procedure to create a setup script for your product. The
remainder of this section discusses each step in more detail.

To create a setup installation script:

1. Identify the files that will be installed for your product.

2. Design the directory structure for those files.

3. Identify all user-defined parameters.

4. Design the dialog boxes you will need for the installation.

5. Modify the sample script files so that they will install your product's files.

6. Create the images for the installation disks using the Disk Layout Utilities.

7. Test your installation script.

Chapter 1 Creating a Setup Program 3

Step 1: Identify the Files That Will Be Installed for Your Product
Before you start modifying sample files and dialog box templates, it's a good
idea to make a list of the files you will need to install. For each file that you will
install, answer the following questions:

• Is this file unique for your product, is it a shared file, or is it a system file?
For example, a shared file could be a language dictionary used by more than
one product for your company. A system file could be a newer version of
COMMDLG.DLL or a TrueType font. If the file is a shared file or a system
file, you will want the installation script to check to see if it already exists
and whether it is currently in use before copying it onto the user's hard disk.

• Can the user decide whether to install this file? For example, is the installa­
tion of tutorial files optional? If so, you'll need to design a dialog box that
asks the user to choose the files to install.

• If an older version of the file already exists, should you overwrite it or
rename it? Or, if you want to delete it, is the older version of the file under a
different filename? If so, you will want the installation script to remove it, as
well as install its newer version.

Beside each filename on your list, make notations indicating the answers to
these questions. These notations will help you later when you design dialog
boxes or set the properties for each file with the Disk Layout Utilities.

Step 2: Design the Directory Structure for the Installable Files
Take the time now to sketch out the directory structure for your product by
organizing the installable files into categories that make sense. For example,
you might put all computer-based training files in one subdirectory and all font
files in another. You may need to place some files in the Windows installation
directory or in one of its subdirectories. On the other hand, one directory (with
no subdirectories) may suffice for a product that has only a few files.

Step 3: Identify All User-Defined Parameters
Identify the dialog and message boxes you will need for your Setup program.
What input does the user provide during installation? For example, will you
store the user's name, the company name, and the product serial number in a
file? Can the user decide which directory to use for installation? Can the user
decide not to install some of the product files? You should also note whether

4 Microsoft Windows Version 3.1 Setup Toolkit

you will allow network installations and, if so, how the installation process will
differ when installing to a network drive.

Are there any issues that you need to communicate to the user? For example, do
you need a message box to notify the user that you will be updating or deleting
existing files? If so, note these as well.

Step 4: Design Dialog Boxes
Make a rough sketch of each dialog box and identify the controls (buttons,
check boxes, and list boxes) that will be needed. This will help you choose the
most appropriate template to modify. Then use the Windows Dialog Editor to
customize the templates. You may also need to modify the dialog box proce­
dures (in DLGPROCS.C) to process the user's responses. For more information
about this process, see Chapter 2, "Designing Dialog Boxes."

Step 5: Modify the Sample Script Files to Create Your Installation Script
The Setup toolkit contains three sample script files (SAMPLEl.MST,
SAMPLE2.MST, and SAMPLE3.MST) and three associated sample .INF files
(SAMPLEl.INF, SAMPLE2.INF, and SAMPLE3.1NF). The sample .MST files
contain variable declarations and calls to Setup procedures that you would
typically use to install your product. The sample .INF files describe for Setup
the installation media and installable files, and they show the entries that the
Disk Layout Utilities would create based on your choices for these items.

Each sample installs a slightly different type of product: One installs a set of
files with no special requirements; one uses more complicated dialog boxes and
installs several sets of files based on the user's choices; and one installs files
that are shareable resources. Use these samples as a starting point for creating
your own installation script.

Once you've named and saved your version of a sample .MST file, you'll want
to update SETUP.LST to include the new name. SETUP.EXE, the bootstrapper
program mentioned earlier, reads this file to determine which files are needed to
run the installation and copies them to a temporary directory on the user's hard
disk.

For more information about each of these files, see Chapter 3, "Creating a Setup
Script." For descriptions of the procedures used in these files, see Chapter 5,
"Setup Script Procedures."

Chapter 1 Creating a Setup Program

Step 6: Create the Images for the Installation Disks
Gather all of your product files and installation program files into the directory
structure that you sketched out earlier. Then use the Disk Layout Utilities to
define each file's properties (such as whether it can be put on a writable disk)
and to create the images for the installation disks. The Disk Layout Utilities
automatically create the .INF file as part of this process.

5

You can use the Disk Layout Utilities throughout your software development
project, until you create your master disks. Each time you release another
version of your product, use the Disk Layout Utilities to update the .INF file and
disk images.

For more information about the Disk Layout Utilities, see Chapter 4, "Using the
Disk Layout Utilities."

Step 7: Test Your Installation Script
Once you've created your own Setup installation script, test it thoroughly. Test
the script under a variety of situations and computer configurations. Check the
results by verifying that the files were copied to their appropriate directories and
that system files were updated correctly. When you are satisfied that the
installation is correct, create your master disks by copying the disk images onto
floppy disks.

Chapter 2: Designing Dialog Boxes

The Setup toolkit includes dialog box templates that you can customize to meet
your installation's specific needs. You can use the Microsoft Windows Dialog
Editor (DLGEDIT.EXE) to edit the templates.

The Dialog Editor is a tool that lets you design and test a dialog box on the dis­
play screen instead of defining dialog statements in a resource script. Using the
Dialog Editor, you can add, modify, and delete controls in a dialog box. The
Dialog Editor saves the changes you make as resource script statements. You
then compile these statements into a binary resource file that is linked to your
Setup application's executable file of dialog procedures.

The Setup toolkit provides the following files that contain sample dialog box
templates and procedures:

• DIALOGS.DLG, which contains dialog box templates. See Table 2.1 for de­
scriptions of these templates. DIALOGS.DLG is updated automatically when
you use the Dialog Editor to read its companion file, DIALOGS.RES.

• DIALOGS.RC, which contains the resource statements for the bitmaps and
the icons that are used in the DIALOGS.DLG and DIALOGS.H sample files.

• DLGPROCS.C, which contains the C code for sample dialog box procedures
associated with each template. You modify this file to update the procedures
for the dialog box templates that you edited using the Dialog Editor. You can
also add new dialog procedures to this file.

• DIALOGS.H, which contains the dialog control identification number defini­
tions. This file is updated automatically when you use the Dialog Editor.

• MSCUISTF.DLL, which is the customized user interface library created
from the preceding files.

• CUI.H, which is the header file for the Setup toolkit dialog box C functions.

• MAKEFILE, which you can use to compile the preceding files.

8 Microsoft Windows Version 3.1 Setup Toolkit

Use these files with the Dialog Editor, the C compiler, and the linker to create
your own dialog boxes.

To customize the dialog box templates for your installation program, follow
these steps:

1. Use the Dialog Editor to modify DIALOGS.RES. For each dialog box that
you need, choose a template that closely resembles the design of the dialog
box and modify it as necessary.

When you save your changes, the Dialog Editor updates the script statements
in DIALOGS.DLG and the constants in DIALOGS.H.

2. If necessary, edit DLGPROCS.C to update the dialog box procedures for the
templates that you modified.

The Setup toolkit provides a set of functions that you can use in the dialog
procedures in addition to the standard Windows functions. These Setup
functions are written in C and are described in detail in the following section.

Note: DLGPROCS.C uses the Symbol Table, a temporary storage area in
memory, to transfer information between dialog box procedures and Setup.
The comments embedded in the code for each dialog box procedure identify
the symbols the procedure uses. For more information about the Symbol
Table, see Chapter 3, "Creating a setup Script."

Note: Two constants are defined in CUI.H that can directly affect dialog box
procedures: STF _REINITDIALOG and STF _ACTIV ATEAPP. If your Setup
script has called the UIStartDlg function for a dialog box that is already on
top of the dialog box stack (that is, to update the contents of the dialog box),
Windows returns the STF _REINITDIALOG constant to let you know. If the
user has switched to another application during your installation, Windows
returns the STF _ACTIV ATEAPP constant to let you know when the user has
switched back to Setup.

3. Compile the dialog box procedures with MAKEFILE to create the .DLL file
with your changes.

MAKEFILE compiles the dialog procedures and dialog resources into
MSCUISTFDLL. You then use the name of the DLL ftle, the resource identifica­
tion numbers of the dialog boxes, the help description resource identification
numbers, and the names of the associated dialog box procedures as parameters for
the UIStartDlg function, which is called from the .MST script file.

Chapter 2 Designing Dialog Boxes 9

Note: All dialog boxes must have a style of WS_CHILD in order to run properly.

The following table provides a quick guide to the dialog box procedures pro­
vided in DLGPROCS.C and their associated templates provided in
DIALOGS.DLG. Each procedure in DLGPROCS.C is preceded with comments
indicating what the procedure does and what symbols it uses. You can also pre­
view each template using the Dialog Editor to open DIALOGS.RES.

Procedure name Used for Associated template(s)

FCheckDlgProc Dialog boxes with one to CHECK
ten check boxes.

FCustInstDlgProc Dialog boxes with one to CUSTINST
ten check boxes. Each
check box can have an
associated push button.
This procedure also
supports a push button that
displays the current
installation path and allows
the user to change it.

FEditDlgProc Dialog boxes that contain DESTPATH
one edit control.

FHelpDlgProc Dialog boxes that contain APPHELP
help messages.

FlnfoDlgProc Dialog boxes that present WELCOME
information to the user. The
user must respond.

FlnfoODlgProc This procedure is the same BADPATH,
as FInfoDlgProc but does EXITFAILURE,
not support an Exit button. EXITQUIT,

EXITSUCCESS, TOOBIG

FListDlgProc Dialog boxes that contain SINGLELIST
one single-selection list
box.

FModelessDlgPro Dialog boxes that present MODELESS
information to the user
during lengthy operations.
The user does not have to
respond.

10 Microsoft Windows Version 3.1 Setup Toolkit

FMultiDIgProc Dialog boxes with one EXTENDED LIST
multiple-selection list box. MULTILIST

FQuitDIgProc Dialog boxes that let the ASKQUIT
user either quit or resume
the installation process.

FRadioDlgProc Dialog boxes with a single OPTIONS
group of one to ten radio
buttons.

Table 2.1 Dialog Box Procedures

For information about the UIStartDlg function, see Chapter 5, "Setup Script
Procedures." For information about using the Dialog Editor, refer to "Designing
Dialog Boxes: The Dialog Editor" in Microsoft Windows Programming Utilities.

Dialog Box Functions

Assert
void Assert(fV alue)
BOOLjValue /* Boolean value to assert */

Argument

Return Value

Comments

The Assert function asserts whether a boolean expression
is true when the DEBUG compiler flag is defined. When
DEBUG is not defined, the function is ignored.

jValue

Specifies the Boolean value that you want to assert.

This function has no return value.

If the asserted value is true, the Assert function simply
returns. If the asserted value is false, the program dis­
plays a message box containing the source filename and
the line number of the failed assertion. You must click
OK to continue.

CbGetListltem

Chapter 2 Designing Dialog Boxes 11

unsigned CbGetListItem(szSym, n, szItem, cbltemMax)
LPSTR szSym /* symbol name */
unsigned n /* index to the item in the list */
LPSTR szItem /* buffer */
unsigned cbltemMax /* buffer size */

Arguments

Return Value

Comments

See Also

The CbGetListItem function copies the specified list
item into the provided buffer as a zero-terminated string.

szSym

n

Specifies the name of the symbol whose associated
value is the list you want.

Specifies the index number (one-based) for the list item
you want to copy into the buffer.

szItem

Specifies the buffer for the copy of the list item.

cbltemMax

Specifies the size of the buffer.

If the function is successful, the return value is the length
(in bytes) of the full string of the specified list item. If
szSym or n doesn't exist, the return value is zero and the
empty string is placed in the buffer.

If you specify a buffer that is smaller than the length of
the symbol value, the CbGetListItem function will copy
in as many characters as will fit (including a trailing
zero). However, the return value will be the full length of
the string.

UsGetListLength, F AddListItem, FReplaceListltem.
For information about setting symbol values in the
Symbol Table, see FSetSymbolValue.

12 Microsoft Windows Version 3.1 Setup Toolkit

CbGetSymbolValue
unsigned CbGetSymbolValue(szSymbol, szValue, cbMaxLen)
LPSTR szSymbol /* symbol */
LPSTR szValue /* value */
unsigned cbMaxLen /* buffer size */

Arguments

Return Value

Comments

See Also

The CbGetSymbolValue function copies the specified
value from the symbol-value pair in the Symbol Table
into a buffer.

szSymbol

Specifies the name of the symbol whose value you
want to copy into the buffer.

szValue

Specifies a buffer for the value associated with the
symbol.

cbMaxLen

Specifies the length of the buffer.

If the function is successful in copying the value into the
buffer, the return value is the length of the value string
(excluding the terminating zero). If the symbol does not
exist or is an empty string, the return value is zero.

If you specify a buffer length that is smaller than the
length of the value, the function will copy in as many
characters as will fit (including a trailing zero). However,
the return value will be the full length of the specified
value.

FSetSymbolValue, FRemoveSymbol

DoMsgBox

Chapter 2 Designing Dialog Boxes 13

int DoMsgBox(szText, szCaption, wType)
LPSTR szText /* message text*/
LPSTR szCaption /* dialog box caption */
word wType /* message box type */

Arguments

Return Value

Comments

See Also

The DoMsgBox function launches a Windows message
box of the style specified by wType. The return value is
the identification for the user's response, such as IDOK.

szText
Specifies the text you want to appear in the message
box.

szCaption

Specifies the caption for the message box.

wType

Specifies the contents of the message box. wType can
be a combination of values.

The return value is the value of the button control that the
user selected (such as IDOK). If there is not enough
memory to create the message box, the return value is
zero.

This function is similar to the Windows MessageBox
function. The valid message box values and control
values are the same as for the MessageBox function.

For more information on the MessageBox function, see
the Microsoft Windows Programmer's Reference.

14 Microsoft Windows Version 3.1 Setup Toolkit

FAddListltem

FCloseHelp

BOOL FAddListItem(szSym, svtem)
LPSTR szSym /* symbol name */
LPSTR szItem /* item */

Arguments

Return Value

Comments

See Also

BOOL FCloseHelpO

Return Value

See Also

The F AddListItem function adds the specified item to
the end of the list of items associated with the symbol in
the Symbol Table.

szSym

Points to a zero-terminated string that identifies the
symbol.

svtem

Points to a zero-terminated string that identifies the
item you want to add to the list associated with
szSym.

If the function is successful in adding the item, the return
value is ITrue (one). Otherwise, the return value is
fFalse (zero).

You can initialize an empty list by setting its associated
symbol value to "" with the FSetSymbolValue function.
You can then add values to the list using F AddListItem.

FReplaceListItem, CbGetListltem, UsGetListLength

The FCloseHelp function closes the currently open help
dialog box, if one exists.

The return value is ITrue (one) if the help dialog box is
successfully closed. Otherwise, it is fFalse (zero).

HdlgShowHelp

FHandleOOM

FRemoveSymbol

Chapter 2 Designing Dialog Boxes 15

BOOL FHandleOOMO

Return Value

The FHandleOOM function displays a message box
when an "Out Of Memory" error occurs and waits for a
user response. This function lets the user switch out of
the current application and free up some memory by
closing other applications.

If the user presses the RETRY button, the return value is
ITrue (one). If the user presses the ABORT button, the
return value is fFalse (zero).

BOOL FRemoveSymbol(szSym)
LPSTR szSym /* symbol name*/

Argument

Return Value

See Also

The FRemoveSymbol function removes a symbol and its
associated value from the Symbol Table.

szSym

Specifies the name of the symbol you want to remove.

If the function is successful, the return value is ITrue
(one). Otherwise, the return value is fFalse (zero).

FSetSymbolValue

16 Microsoft Windows Version 3.1 Setup Toolkit

FReplaceListltem
BOOL FReplaceListltem(szSym, n, szItem)
LPSTR szSym /* symbol name */
unsigned n /* index to list item */
LPSTR szItem /* item */

Arguments

Return Value

See Also

The FReplaceListltem function replaces the specified
item in the list of items associated with the symbol in the
Symbol Table.

szSym

n

Specifies the name of the symbol. szSym must be a
zero-terminated string.

Specifies the index number (one-based) of the item
you want to replace.

szItem

Identifies the item you want to use to replace the
existing item. szItem must be a zero-terminated
string.

If the function successfully replaces the item, the return
value is ITrue (one). If the index is invalid or the appli­
cation is out of memory, the return value is fFalse (zero).

FAddListItem, CbGetListItem, UsGetListLength

Chapter 2 Designing Dialog Boxes 17

FSetSymbolValue

HdlgShowHelp

BOOL FSetSymboIValue(szSymbol, szValue)
LPSTR szSymbol 1* symbol *1
LPSTR sz Value 1* value *1

Arguments

Return Value

See Also

The FSetSymbolValue function inserts a new symbol­
value pair into the Symbol Table. If the symbol already
exists, the function replaces the symbol's associated
value.

szSymbol

Specifies the name of the symbol you want to create
or whose associated value yon want to replace.

szValue

Specifies the value you want to add or replace. If
sz Value is NULL, an empty string is added or used to
replace the existing value.

If the function is successful, the return value is ITrue
(one). If the application is out of memory, the return
value is fFalse (zero).

CbGetSymbolValue, FRemoveSymbol

HWND HdlgShowHelp 0

Return Value

See Also

The HdlgShowHelp function displays the help dialog
box for the dialog box that is currently on the top of the
dialog box stack.

The return value is the handle to the help dialog. If the
help dialog does not exist and cannot be created, the
return value is NULL.

FCloseHelp

· 18 Microsoft Windows Version 3.1 Setup Toolkit

ReactivateSetupScript

UsGetListLength

void ReactivateSetupScriptO

Return Value

Comments

The ReactivateSetupScript function returns control to
the Setup script.

This function has no return value.

This function is the vehicle for returning from a dialog
box procedure to the Setup script.

unsigned UsGetListLength(szSym)
LPSTR szSym 1* symbol name *1

Argument

Return Value

See Also

The UsGetListLength function determines the number
of items in the list associated with the specified symbol.

szSym

Specifies the name of the symbol. szSym must be a
zero-terminated string.

The return value is the number of items in the list associ­
ated with the symbol.

CbGetListItem, FReplaceListItem

Chapter 3: Creating a Setup Script

Once you've identified the list of installable files and used the Windows Dialog
Editor to design dialog boxes and message boxes, you're ready to create your
installation script file. A script file contains the procedure calls that Setup uses
to install your product on the user's system.

The Setup toolkit comes with three sets of sample files that you can modify to
create your own installation script. You'll also want to modify the sample
SETUP.LST file so that the Setup driver can find the appropriate .DLLs and
other supporting files that are needed to run your installation. This chapter will
walk you through the process of creating your own script and SETUP.LST file.

Start by reviewing the files that make up the Setup toolkit. The following table
lists the name and purpose of each file in the toolkit.

Filename Description

SETUP.EXE The bootstrapper program that copies the files
(required) identified in SETUP.LST into a temporary

directory on the user's hard disk. These files run
the installation and include _MSTEST.EXE,
_MSSETUP.EXE, and any .DLL files. You
should always include SETUP.EXE on the first
installation disk. SETUP.EXE should not be
compressed.

SETUP.LST A text file that contains the list of files
(required) SETUP.EXE copies into the temporary directory

on the user's hard disk. You should always
include SETUP.LST on the first installation disk.
SETUP.LST should not be compressed.

_MSTEST.EXE A limited, run-time version of Microsoft Test
(required) that Setup uses as its driver. _MSTEST.EXE is

the interpreter of your installation script. You
should always include _MSTEST.EXE on the
first installation disk.

20 Microsoft Windows Version 3.1 Setup Toolkit

_MSSETUP.EXE An MS-DOS program that reads the
(optional) MSSETUP.BAT file and updates system files

(that is, files that have the SYSTEM attribute
and may be in use when Windows is running).
The Setup ExitExecRestart function shuts down
Windows, runs _MSSETUP.EXE to update files
listed in MSSETUP.BAT, and restarts Windows.
If you plan to install or update any system files,
you must include _MSSETUP.EXE on the fIrst
installation disk.

Setup .DLL files: These .DLL files contain the code for the Setup
(required) procedures that you call from your script file.

You should list them in the SETUP.LST file and
include them on the first installation disk.

MSCOMSTF.DLL The common library, which contains supporting
routines for the other .DLL files.

MSCUISTF.DLL The customized user interface library. You
modify this .DLL file when you create dialog
boxes and message boxes. For more information
about this process, see Chapter 2, "Designing
Dialog Boxes."

MSDETSTF.DLL The detection library, which contains procedures
that return information about the user's system,
such as the version of Windows.

MSINSSTF.DLL The install library, which contains procedures
that install files on the user's hard disk.

MSUILSTF.DLL The user interface library, which contains
procedures that manipulate the user interface,
such as displaying a dialog box or deleting a
dialog box from the dialog stack.

MSSHLSTF.DLL The shell library, which contains the routines
that manage the frame window.

VER.DLL The version checking .DLL file that is required
if the user can install the product on a Windows
version 3.0 system.

Chapter 3 Creating a Setup Script 21

Setup include files: The .INC files define variables and declare the
subroutines and functions that you call from
your script. You include these files in your script
(.MST) file as necessary. Any files that you have
listed in the .MST file must also be included on
the first installation disk.
Note: If you include both MSSHARED.INC and
MSREGDB.INC, you must place the
'$INCLUDE statement for MSREGDB.INC
before the statement for MSSHARED.INC.

SETUPAPLINC The common API include file, which contains
(required) definitions of constants used by Setup and

declarations for the most commonly used Setup
procedures. You must include SETUPAPLINC
in your script and on the first installation disk.

MSDETECT.INC The detection API include file, which contains
(optional) declarations of functions that return information

about the user's system, such as the number of
disk drives and so on. The more commonly used
detection routines, such as the ones that query
for the Windows version, are declared in
SETUPAPLINC. Include MSDETECT.INC in
your script if you intend to use any of the
functions it declares.

MSREGDB.INC The Registration Database API include file,
(optional) which contains declarations for the Setup

procedures that read and write to the
Registration Database. Include MSREGDB.INC
in your script if you intend to use any of the
functions it declares.

MSSHARED.INC The shared files API include file, which contains
(optional) declarations for procedures that install or update

shared files. Include MSSHARED.INC in your
script if you intend to use any of the functions it
declares.

Sample script files: The script (.MST) files contain sample code that
you can modify to create your own script. You
must list both your .MST and .INF files in
SETUP.LST, and you must include them on the
first installation disk.
(continued next page)

22 Microsoft Windows Version 3.1 Setup Toolkit

Sample script files: To create your script, choose the .MST file that
(continued) most closely resembles your installation and

modify it. Or, combine sample code from more
than one file. The corresponding .INF files are
provided for information only; use the Disk
Layout Utilities to create the .INF file for your
installation script. For more information, see
Chapter 4, "Using the Disk Layout Utilities."

SAMPLE1.MST The sample script file for a simple,
straightforward installation. This file provides
sample Microsoft Test debug code and asks the
user to choose which files will be installed.

SAMPLE2.MST The sample script file for a moderately complex
installation. The file asks the user to choose from
two sets of optional files for the installation, to
enter the name of the installation directory, and
so on. The script also checks the available disk
space on the user's hard disk for installing the
files.

SAMPLE3.MST The same script file for an installation that
contains shared files. The script checks to see if
the shared file is a newer version than the one on
the user's system and then adds it, if necessary,
to the global copy list. The script also updates
the Registration Database. For more information
about shared files, see "Installing Shared Files or
System File," later in this chapter

TESTDRVR.HLP A Windows online help file that contains
information about Microsoft Test. Use this file to
understand the function of the Test commands
that are included in the sample script files. You
should not include this file on your installation
disks.

README.TXT A text file that contains information about Setup
that could not be included in this manual. You
should read this file before creating an
installation script. Do not inlude this file on your
installation disks.

Table 3.1 Setup Toolkit Files

Chapter 3 Creating a Setup Script

To run the sample files and see them from the user's perspective, choose the
Run command from the File menu. Type the name of the Microsoft Test inter­
preter and the sample filename in the command line, and click OK. For ex­
ample, the command line to run SAMPLEl.MST would be:

_mstest.exe sample1.mst

23

Note: Make sure that you have VER.DLL in your path. If not, you may want to
put a copy of it in the Setup toolkit directory. If you allow your product to be
run under Windows version 3.0, you must also include VER.DLL in
SETUP.LST and on the first installation disk.

The rest of this chapter explains the process of creating an installation script and
defining which files you need to include on the first installation disk.

Choosing and Modifying a Sample Script File

Up to this point, you have defined the list of files you will be installing and de­
signed the dialog boxes you will need. Your focus has been on identifying the
choices you will ask the user to make-for example, to determine the directory in
which you will install your product.

To create a script file, your focus must now shift slightly. When you create the
code that handles the dialog boxes and installs the product files, you must pay
attention to designing a safe and efficient installation process. Therefore, before
you start modifying one of the Setup sample script files, answer these questions:

• How much disk space will the installation use? Is it a significant amount? If so,
you will need to ensure that the user's hard disk has enough disk space avail­
able. Also, if your product includes optional fIles that the user has chosen, you
may want to inform the user how much disk space each optional fIle will use.

• Does your product have minimum hardware and system software require­
ments? If so, you may want to check the version of MS-DOS or Windows, or
check for the existence of, for example, a math coprocessor. If the user's sys­
tem falls below your minimum requirements, you will want to display a
warning message.

• Will you be installing shareable files? For example, does your product require a
spelling dictionary that the user already may have installed with another prod­
uct? If so, you will need to take some special steps to handle these files.

24 Microsoft Windows Version 3.1 Setup Toolkit

• Will you be installing any system files? If so, you may need to use special
Setup functions to exit Windows and update files that would be in use while
Windows is running.

• Will your installation need to update WIN.INI or AUTOEXEC.BAT? If so,
you will want to let the user decide whether to have these files updated auto­
matically.

• What other parts of your installation have associated risks? Do you need to
post warnings of any kind for the user? Do you need to check the validity of
paths and filenames the user enters?

The answers to these questions provide the information you need to design the
code for your script file. You should design the installation script just as you
would any other program: Identify the types of routines you will need, deter­
mine the logical order in which those routines should occur, and then draw a
flowchart of the installation process. The answers to the above questions will
also help you choose which sample script file to modify.

The Basic Components of a Sample Script File

Each sample file contains several basic components that, once understood, are
easy to modify to match your installation's needs. This section describes those
components, using SAMPLEl.MST for the code illustrations.

To execute a sample file, choose the Run command from the File menu, and
type

_mtest.exe samplen.mst

where n is the number of the sample file. (You may have to copy VER.DLL into
the Setup toolkit directory for the sample files to run successfully.)

Debug Code
At the beginning of each sample, you can define a DEBUG flag that Microsoft
Test recognizes. You can then use the DEBUG flag to include debug code in
your script for testing purposes. SAMPLEl.MST defines the DEBUG flag as
follows:

Chapter 3 Creating a Setup Script 25

'$DEFINE DEBUG

The following code appears later in the script:

'$IFDEF DEBUG

'$ENDIF 'DEBUG

These are Microsoft Test metacommands. You do not have to include them in
your script, but they can be very useful. For more information about these com­
mands and their uses, refer to the Windows online help file, TESTDRVR.HLP,
that comes with the Setup toolkit.

Note: You should remove the '$DEFINE DEBUG line from your script (.MST)
file before you ship your product.

Include Files
The appropriate .INC files are listed at the top of each sample file.
SAMPLE1.MST uses the following commands to include SETUPAPLINC and
MSDETECT.lNC:

'$INCLUDE 'setupapi.inc'
'$INCLUDE 'msdetect.inc'

These are Microsoft Test commands. Edit these lines to include the files that
your installation will need, based on the types of Setup procedures that you call
in your script.

For a description of each .INC file, see Table 3.1. For more information about
the syntax of Test commands, refer to the Windows online help file,
TESTDRVR.HLP, included in the Setup toolkit.

Note: If you have included the '$DEFINE DEBUG line in your script file, the
.INC files will have argument checking enabled.

26 Microsoft Windows Version 3.1 Setup Toolkit

Dialog Box Constants
Each sample file declares constants for the dialog boxes it will use. The code for
SAMPLEl.MST looks like this:

CONST WELCOME 100
CONST ASKQUIT 200
CONST DESTPATH 300
CONST EXITFAILURE 400
CONST EXITQUIT 600
CONST EXITSUCCESS 700
CONST OPTIONS 800
CONST APPHELP 900

These constants represent the resource identification numbers for the dialog
boxes you will use in your installation. Edit this list to match the dialog boxes
you designed using the Windows Dialog Editor.

Initialization
The initialization section of each sample sets the background bitmap and title
for the Setup frame (or main) window. It also initializes variables, retrieves in­
formation from the Symbol Table, and reads the .INF file. Edit this section to in­
clude the following:

• The name of the bitmap logo file to appear in the background of the frame
window

• The title to appear in the frame window

• The name of the .DLL file that contains the procedures for your dialog boxes

• The path and name of your .INF file

Welcome and Other Dialog Boxes
The next sections of the sample files provide code that display the dialog boxes
that ask the user to make choices for the installation. For example,
SAMPLEl.MST uses the following code to display the Welcome dialog box:

Chapter 3 Creating a Setup Script 27

WELCOME:
sz$ = UIStartDlg(CUIDLL$,WELCOME,"FlnfoDlgProc",

APPHELP, HELPPROC$)
IF sz$ = "CONTINUE" THEN

UIPop 1
ELSE

GOSUB ASKQUIT
GO TO WELCOME

ENDIF

Edit these sections of the script as necessary to include the code for your dialog
boxes.

Install Subroutine
SAMPLEl.MST declares an Install subroutine at the beginning of the file. The
purpose of this routine is to build the global copy list and perfonn the installa­
tion tasks. The Install subroutine for SAMPLEl.MST perfonns the following
tasks:

• Opens and writes to the installation log file

• Builds the global copy list based on the files listed in the .INF file and the
choices the user has made

• Installs the files on the user's hard disk

• Updates WIN.lNI

• Creates a Program Manager group and item for the product

Edit this routine to include the code necessary to install your product.
SAMPLE2.MST and SAMPLE3.MST handle these tasks differently because
they represent more sophisticated installations. Depending on the complexity of
your installation, the Install subroutine can be the bulk of your installation
script. Therefore, you may want to break this subroutine into smaller, more
manageable chunks. For an example of a more complicated installation, see the
Install section of SAMPLE2.MST.

28 Microsoft Windows Version 3.1 Setup Toolkit

Modifying SETUP.lST to Match Your Script File

When you have modified a sample script file, you must create a version of
SETUP.LST that matches your script. SETUP.LST must contain two sections:
Params and Files. The Params section looks like this:

[Paramsl
WndTitle
WndMess
TmpDirSize
TmpDirName
CmdLine
DrvModName

Microsoft Setup
Initializing Setup ...
500
ms-setup.t
_mstest samplel.mst /C "/S %s %s"
DSHELL

To edit the Params section of SETUP.LST to match your script:

1. If you want, change the value of WndTitle.

This text displays in the title bar of the Setup initialization window while
SETUP.EXE is copying the files into the temporary directory on the user's
hard disk.

2. If you want, change the value of WndMess.

This message displays in the center of the client area of the Setup initializa­
tion window.

3. Set the value of TmpDirSize to an amount (in kilobytes) that will accommo­
date the files SETUP.EXE copies into the temporary directory.

You can calculate this value by adding the sizes of the files listed in the Files
section of SETUP.LST, dividing the result by lO24, and rounding it to a
whole number.

4. If you want, change the value of TmpDirName to the desired temporary di­
rectory name.

The name you choose must accept one character and still be a valid name.

5. Edit the value of CmdLine to include the name of your script (.MST) file.

Chapter 3 Creating a Setup Script

Note: Do not change the last line that sets the value of DrvModName.

The Files section of SETUP.LST contains a list of the files that SETUP.EXE
should copy into the temporary directory. At a minimum, this list must include
the following files:

• Your script (.MST) file

• Your .INF file

• SETUPAPLINC

• All .DLL files including MSCUISTF.DLL

• _MSTEST.EXE

The list can also include:

• Any additional .INC files that you included in your script

29

• Any additional custom .DLL files that include procedures you called in your
script

• _MSSETUP.EXE, the MS-DOS program that you can use to update system
files

The Files section of SETUP.LST looks like this:

[Files]
samplel.mst samplel.mst
samplel.inf samplel. inf
setupapi.inc setupapi.inc
msdetect.inc msdetect.inc
mscomstf.dll mscomstf.dll
msinsstf.dll msinsstf.dll
msuilstf.dll msuilstf.dll
msshlstf.dll msshlstf.dll
mscuistf.dll mscuistf.dll
msdetstf.dll msdetstf.dll
_mstest.exe _mstest.exe
_mssetup.exe _mssetup.exe

30 Microsoft Windows Version 3.1 Setup Toolkit

The filenames on the left side of the equal sign (=) are the names of the files
that appear on the first installation disk. The filenames on the right side of the
equal sign are the names to which the files will be copied in the temporary di­
rectory on the user's hard disk. (Typically, the filenames will differ if you have
compressed the files for distribution. Compression is recommended for all but
SETUP.EXE and SETUP.LST.)

Edit the filenames (potentially, on both sides) to match the files you need for
your installation. For more information about each of the Setup .DLL and .INC
files, see Table 3.1.

Using the Symbol Table

Whether your installation is simple or complex, you will probably use the Sym­
bol Table to store values. The Symbol Table is a temporary storage area in
memory that contains a table of text symbols and their associated text values.
Setup uses the Symbol Table to store information such as directory names and
data that is passed between the script and the .DLL files.

Setup automatically creates and sets three symbols that you can use:

• STF _SRCDIR, which is the source directory

• STF _CWDDIR, which is the current working directory or the temporary di­
rectory for Setup

• STF _SRCINFPATH, which is the path for the .INF file (usually empty, un­
less you or the user supplied it as part ofthe SETUP.EXE command line)

For example, before reading the .INF file, SAMPLEl.MST uses the
STF _CWDDIR symbol to create the path and filename for the .INF file:

szInf$ = GetSymbolValue("STF_CWDDIR") +

"SAMPLE1.INF"

The procedures in MSCUISTF.DLL (the customized dialog box routines) also
use the Symbol Table to store the user's responses. For example,
SAMPLE1.MST uses the following line of code to retrieve the value of the but­
ton the user chose in a dialog box:

Chapter 3 Creating a Setup Script 31

OPTCUR$ = GetSymbolValue("ButtonChecked")

You'll see other uses of the Symbol Table interspersed throughout the sample
code. Use the Symbol Table to pass data between your script and the .DLL files.

Note: To conserve memory, clear all Symbol Table strings after you use them.

Creating Customized .DLL Files

Depending on the special needs of your installation, you may want to create
your own customized routines in a special .DLL file. Setup can easily accom­
modate these routines. Simply create the .DLL file as you would any other .DLL
file. Then include it in the list of .DLL files in the SETUP.LST file.

To access functions in your custom .DLL files, you must declare the functions
in your script (.MST) file or in an include file. For example, to access the
MyFunc function, you must declare it as follows:

DECLARE FUNCTION MyFunc LIB "My.dll" (argl%,
arg2%) AS INTEGER

For more information about defining your own library functions, look at the
declarations in the Setup .INC files or refer to the online help file,
TESTDRVR.HLP, that comes with the Setup toolkit.

Installing Shared Files or System Files

If you are planning to install shared files or system files, you must handle that
part of the installation with extra care. This section describes some of the issues
involved with installing shared files or system files and how Setup handles
them.

Shared Files
A shared file is a file that may be used by more than one application on the
user's system. For example, your company may have two products that use the
same spelling dictionary. If the user has already installed one of the products,

32 Microsoft Windows Version 3.1 Setup Toolkit

that dictionary file may already be installed. Furthermore, if the user has that
product running during the installation process, the dictionary file may be in use
and can't be updated.

To handle this problem, the CopyFilesInCopyList procedure checks each file
listed in your .INF file with the SHARED attribute to see if the file is in use. If
so, Setup displays an error message. The user can fix the problem by:

• Switching out of Setup, closing the other application, switching back into
Setup, and then choosing the Retry button.

• Exiting Setup and rerunning the installation after the other application is
closed.

• Ignoring the message. If the file is marked as vital, Setup will display another
error message. If the file is not vital, Setup skips it but continues to copy
other files in the list.

System Files
A system file is a file that may be in use by Windows when Windows is run­
ning. The CopyFileslnCopyList procedure checks each file listed in your .INF
file with the SYSTEM attribute to see if the file is in use. If so, the procedure
copies the file to a temporary location (the restart directory) and adds a com­
mand to the _MSSETUP.BAT file.

Toward the end of the installation, your script should call the
RestartListEmpty function. If the function returns zero, there are system files
that need to be updated. You should inform the user about this and then use the
ExitExecRestart function to shut down Windows, update the files, and restart
Windows. The ExitExecRestart function uses the MS-DOS-based program
_MSSETUP.EXE to copy the files listed in _MSSETUP.BAT. If you use these
procedures, you must list _MSSETUP.EXE in the SETUP.LST file and include
it on the first installation disk.

Note: Windows version 3.0 does not support the ExitExecRestart function.

For more information about the CopyFilesInCopyList, RestartListEmpty, and
ExitExecRestart procedures, see Chapter 5, "Setup Script Procedures."

Chapter 4: Using the Disk Layout Utilities

The Disk Layout Utilities automate tedious, error-prone tasks by taking your
project files and creating efficiently organized disk images for your product
installation. As part of this process, the Disk Layout Utilities also create the
.INF file.

Typically, you will use the Disk Layout Utilities in the following manner:

• As soon as you have a distributable product release, even if it is planned for
internal release within your company, use the Disk Layout Utilities to create
the .INF file and the disk images.

• For each subsequent release, run the Disk Layout Utilities to update the
directory of disk images for any files you may have added or changed.

After the first time you use the Disk Layout Utilities to create a software
release, the programs remember which files have already been included and tell
you if you have added any new files. The Disk Layout Utilities also update disk
images and compressed files only when the files change.

This chapter describes the disk layout process and explains the use of the
Dsklayt and Dsklayt2 programs to create a layout file, disk images, and the .INF
file.

Understanding the Disk Layout Process

The Disk Layout Utilities consist of two parts:

• A Windows-based program (Dsklayt) that you use to specify the properties
for all files that will go into your product release

• An MS-DOS-based program (Dsklayt2) that creates the disk images and the
.INF file for the installation

34 Microsoft Windows Version 3.1 Setup Toolkit

You use Dsklayt to create a layout file containing file specifications. Dsklayt2
then uses the directives in the layout file to create the disk images and the .INF
file. You can use Dsklayt2 as part of your product build process.

To run Dsklayt:

1. In File Manager, choose Run from the File menu.

2. In the Command Line box, type \DSKLAYT.TLS\DSKLAYT, and then click
OK.

The main window for Dsklayt appears with a dialog box open, as shown in
Figure 4.1.

D ,Lust Show New

Figure 4.1

Layout-Time Options
File Oestination -----,
@ 1- Any Diskette

o Z- Writable Diskette

0.3- Read-Only Diskette

File Attributes

D SlI.stem File

D S h;!red File

Vital File

Setup Disk Layout Utility

Install-Time Options
Overwrite

@ AI!!ays

o Hever

[2J !2ecompress

[2J Mark as Read Only

D Rename Copied File:

[2J !;.ompress

[2J Check for :o{ersion

o Older

o llnprotected D !!.ackup Existing File: <-I ________ ----'

3. In the Microsoft Disk Layout Utilities dialog box, click either Open Layout to
open an existing layout file or New Layout to create a new layout file.

4. If you are opening an existing layout file, specify the name of the file and
click OK. If you are creating a new layout file, specify the directory where
your product files are stored and click OK.

Chapter 4 Using the Disk Layout Utilities 35

The files from the source directory appear in the list box on the left side of
the main window. You can then select one or more files from the list box and
specify their properties.

Using the Disk Layout Utilities Commands

Dsklayt has a main window and three menus-File, Options, and Help. This
section describes the contents of the main window and each of the commands on
the menus.

Dsklayt Main Window
You can use the options in the main window to set most of the file specifications
for your installation. To set specifications for one file or for a group of files, you
simply select the file(s) you want to affect from the list box and specify the
options you want the file(s) to have.

Figure 4.2 illustrates the Dsklayt main window. The options are divided roughly
into two types: layout time options, which affect how the files are stored on the
installation disks, and install time options, which affect how the files are copied
onto the user's hard disk. Each option is described below.

III Setup Disk Layout Utility a
file Qptions Help

Source D irj'tclorl': Layout-Time Options

c:\projects\ ___ \bldcui
File Destination File Attributes-

[3J hompress
@ 1- Any Diskette D Sllstem File

bitmap_dib r1 o Z- Writable Diskette D S h.!!red File
[3J Check for ~ersion

bldYeLh 01- Read-Only Diskette [3J Vital File

cuistUnk 01- Setup Diskette [111)

cuistfdJnk o ~_ Do Not Lay Out File
iset File Date o O!her: I II dialogs_dig
_@ Source Date

dialogs_h
dialogs_rc

Reference ~ey: I I .Eut in Section: I I
dialogs_re. Install-Time Options
dlgprocs_c OYerwrite- [3J !2ecompress
makefile @AI!!ays
mscomstUib [3J Mark as Read Only
mscuistL def h o t!eyer

D Rename Copied File: I I m •• hl.tf lih ... o Older

D ,lust Show New o l!.nprotected D I;tackup Existing File: I I

Figure 4.2

36 Microsoft Windows Version 3.1 Setup Toolkit

Source Directory: Displays the name of the top-level directory for your
product files.

List box: Displays all the files in the source directory and its subdirectories.
Choose files from this list to set their attributes. You can choose:

• A single file, by clicking on it.

• A contiguous range of files, by clicking on the first file, holding down the
SHIFT key, and then clicking on the last file.

• A discontiguous range of files, by holding down the CTRL key and
clicking on each file.

Just Show New: Checking this box displays only the files that are new or have
been updated since you last created the layout file. Use this option when you are
doing successive product releases and only need to add specifications for the
new or changed source files.

Layout Time Options:

File Destination: Determines the type of disk on which the selected file can be
placed. Choose one of five options:

1. Any Diskette: Indicates that the selected file can go on any diskette in the
installation set. This option is the default.

2. Writable Diskette: Indicates that the selected file must go on a disk that
Setup can write to.

3. Read-Only Diskette: Indicates that the selected file must go on a write­
protected disk. For example, you may want to store uncompressed binary
files (.EXE files) that might be targets of viruses on a read-only diskette.

4. Setup Diskette (#1): Indicates that the selected file must go on the first
disk in the installation disk set. For example, you would choose this option
for your Setup script file.

Chapter 4 Using the Disk Layout Utilities 37

s. Do Not Lay Out File: Indicates that the selected file should not be placed
on an installation disk. Use this option for files that reside in your project
directories but are not part of the product installation, such as source code
management files.

File Attributes: Marks a file in the layout file as having one or more attributes.
Check one or more of the following:

• System File: The file is a system file, such as WINHELP.EXE or
GDLEXE.

• Shared File: The selected file may be shared by one or more applications,
such as a common code library that ships with all of your company
products.

• Vital File: The installation will fail unless the selected file is installed
successfully. This option is the default.

Set File Date: Specifies the date stamp used for the file when it is copied into a
disk image directory by Dsklayt2 and when Setup copies the file onto the user's
hard disk. Choose one of the following options:

• Source Date: Uses the date of the installable file.

• Other: Uses the date you specify in the adjacent text box (in the format
YYYY-MM-DD). Use this option when you want the date on all installed
files to be a significant date, such as the product release date.

Compress: Determines whether the selected file should be compressed by
Dsklayt2.

Check For Version: Tells Dsklayt2 to use VER.DLL to check the source file
for the existence of a version resource. If the version resource exists, Dsklayt2
puts this information into the .INF file. Otherwise, Dsklayt2 issues a warning
and leaves this portion of the file description blank in the .INF file.

Reference Key: Specifies a unique reference for the selected file. Use this
option when you want the Setup script to determine whether to install the
selected file based on information available at the time of the installation. For
example, the type of monitor on the user's system could affect the files you

38 Microsoft Windows Version 3.1 Setup Toolkit

install for your product. You can also use this option when you want to display
reference keys rather than filenames in the dialog boxes displayed by the
installation, because the keys are more descriptive than the filenames.

Put In Section: Specifies a unique .INF section name for the selected file. Use
this field when you want installation files organized by categories rather than all
listed in the default "Files" section of the .INF file.

Install-Time Options:

Overwrite: Specifies what should happen if the selected file already exists on
the user's hard disk. Choose one of the following options:

• Always: The installed file will always overwrite any existing version of
the file.

• Never: The installed file will never overwrite an existing version of the
file.

• Older: The installed file will overwrite an existing version of the file only
if the existing version is older. Setup will look for version information; if
none exists, it will use the file dates to determine which file is older.

• Unprotected: The installed file will overwrite an existing version of the
file only if the existing version has an MS-DOS file attribute of "Write."

Decompress: Indicates that Setup should check to see if the source file is
compressed and, if so, decompress it before copying it onto the user's hard disk.
You should leave this option checked in most cases, even if the source file is not
compressed.

Mark as Read Only: Indicates that you want the file to have a MS-DOS file
attribute of "Read Only" when it is copied onto the user's hard disk.

Rename Copied File: Indicates that you want to rename the file to the filename
you supply in the adjacent text box when it is copied onto the user's hard disk.

Backup Existing File: Indicates that you want to back up an existing version of
the file to the filename you supply in the adjacent text box before copying the
source file. If you type an asterisk (*), Setup will back up the file to the same
name with a .BAK extension.

Chapter 4 Using the Disk Layout Utilities 39

File menu

New
Creates a new, untitled layout file.

Open
Displays a dialog box that you can use to open an existing layout file so that you
can update it. Dsklayt checks for new product files and notifies you if there are
any.

Save
Saves any changes you have made to the currently open layout file.

Save As
Displays a dialog box that you can use to save the current layout file under a
name you specify.

Exit
Exits Dsklayt and returns you to the most recently active window. If you have
made changes but did not save them, Dsklayt prompts you to save.

Options menu

Disk Labels
Displays a dialog box (Figure 4.3) that lets you add, delete, or modify the disk
labels for your installation disks.

40 Microsoft Windows Version 3.1 Setup Toolkit

Disk habel:

IMy Disk Label 3

Disk Labell
My Disk Label 2
(end>

~ritable Oisk is:

IMy Disk Labell

Figure 4.3

Disk Labels

B.dd

!2elete

To insert a new label, select the label in the list box that you want to follow the
new label, type the new label name in the text box, and then click Add. To
delete a label, select it from the list box and then click Delete. To modify a
label, select it from the list box, click Delete, type the correct text in the text
box, and then click Add.

You can use generic labels, such as "Disk 1," until you see how the files are
organized on the disks. You can then rename the labels to reflect the content of
the disks.

You can specify which disk label goes on the writable disk by selecting the label
in the drop-down list box at the bottom of the dialog box.

Note: The order in which you add disk labels is the order in which Dsklayt2
will apply them to the disk images.

Remove Files List
Displays a dialog box (Figure 4.4) in which you can create one or more lists of
files that you want Setup to remove from the user's hard disk during product
installation. Use this list to remove obsolete files or older versions of files whose
names differ from the newer versions.

Chapter 4 Using the Disk Layout Utilities

Remove Installed Files

filename:

I mvfile4. eKe

.INF .:iection:

I othe •• emove files

mvfile. eKe
mvfile2.eKe
m file3.eKe

Figure 4.4

.emove files

.emove files

!2elete

othe •• emove files

To add a file to a removal list, type its filename in the Filename box, type the
name of the .INF section in the .INF Section box (if necessary), and then click
Add. If you don't type a section name in the .INF Section box, Dsklayt2 adds
the name of the file to the "Files" section in the .INF file.

To delete a file from a removal list, select it from the list box and click Delete.
To modify a filename in a removal list, select it from the list box, click Delete,
type the correct filename in the Filename box, and then click Add.

Help menu

About
Displays a dialog box that provides copyright and version information for
Dsklayt.

Using the MS-DOS-8ased Dsklayt2 Program

After saving your specifications in a layout file, use the MS-DOS-based
Dsklayt2 program to generate disk images and the .INF file for your product

41

42 Microsoft Windows Version 3.1 Setup Toolkit

installation. Dsklayt2 reads the directives in the layout file and creates a direc­
tory of disk images that you can copy onto disks using the Diskcopy command.

The Dsklayt2 program has the following command line syntax:

Dsklayt2 [drive:] [path] layoutJilename [[drive:] [path] INF Jilename]
[options]

Parameter

drive:path for layoutJilename

layout Jilename

drive:path for INF Jilename

INF Jilename

Options:
/k{n}

If

Iw{n}

Description

The drive letter and path of the layout file.

The name of the layout file that Dsklayt2
should read to create the disk images. This
argument is required.

The drive letter and path of the .INF file.

The name of the .INF file that you want
Dsklayt2 to create. If you do not specify a
filename, Dsklayt2 uses SETUP.INF.

Specifies the type of disk Dsklayt2 should
target when creating the disk images. For n,
you can specify:
• A standard size (360, 720, 12, or 144), N
for Network
• 0 nlm for Other, where nlm is the bytes per
cluster and the cluster per disk, respectively.
The default is 1.2 MB.

Specifies that Dsklayt2 should overwrite the
existing .INF file, if necessary.

Specifies the writable disk. For n, specify a
disk number. This field overrides the specifi­
cation in the layout file. If you omit this
option, Dsklayt2 makes the last disk in the
installation the writable disk. If you specify

Chapter 4

/d{ destdir}

/c{compdir}

/z{ compcmd}

Using the Disk Layout Utilities

the option without a disk number, Dsklayt2
assumes that all disks are read-only.

43

Specifies the destination directory for the disk
images. Dsklayt2 creates a directory for each
disk image, named DISK 1, DISK 2, and so
on. If your product will be installed from a
network drive (that is, if the /k option speci­
fies a network device), all files are placed at
the top-level destination directory. If you omit
this option, Dsklayt2 will not create any files
in the destination directory.

Specifies the directory where Dsklayt2 can
put compressed versions of the files. If you
specify the same directory each time you run
Dsklayt2, the program adds or updates only
those files that are new or have changed. If
you omit this option, Dsklayt2 creates a
CaMP subdirectory in the parent of the
source directory. If the source directory is the
root directory, Dsklayt2 displays an error
message and aborts.

Specifies a compression utility that Dsklayt2
can use to compress files. For compcmd,
specify the MS-DOS command that will
execute the compression utility. Dsklayt2 will
call this command with two arguments: the
source directory and the destination directory.
If this option is not specified, Dsklayt2 looks
for COMPRESS.EXE in the path.

Chapter 5: Setup Script Procedures

This chapter describes the functions and subroutines that you can call in your in­
stallation script. They are listed in alphabetical order.

Note: All functions and subroutines are declared in the Setup .INC files. You sim­
ply call the functions and routines from your script (.MST) file. The descriptions
in this chapter show the calling syntax for each procedure.

To_: Use these procedures:

Manipulate what the DoMsgBox
user sees on the screen RestoreCursor

SetBeepingMode
SetBitmap
SetCopyGaugePosition
SetSilentMode
SetTitle
ShowWaitCursor
UIPop
UIPopAll
UIStartDlg

Manipulate a list AddListltem
associated with a GetListItem
symbol in the Symbol GetListLength
Table GetSymbolValue

MakeListFromSectionKeys
RemoveSymbol
ReplaceListltem

Modify the contents of AddSectionFilesToCopyList
the global list of AddSectionKeyFileToCopyList
installable files (the AddSpecialFileToCopyList
copy list) ClearCopyList

CopyFileslnCopyList
DumpCopyList
GetCopy ListCost

46 Microsoft Windows Version 3.1 Setup Toolkit

Control aspects of the SetCopyMode
copy list installation SetDecompMode

Manipulate billboard AddBlankToBillboardList
dialog boxes and the AddToBillboardList
global billboard list Clear BillboardList

Manipulate a file on BackupFile
the user's system CopyFile

DoesFileExist
FindFilelnTree
FindFileUsingFileOpen
FindTargetOnEnvVar
GetDateOfFile
GetSizeOfFile
Get VersionNthField
Get VersionOfFile
IsFileWritable
RemoveFile
RenameFile
StampResource

Manipulate a directory CreateDir
on the user's system RemoveDir

DoesDirExist
GetWindowsDir

Update an .INI file CreatelniKeyValue
CreateSyslniKey Value
DoeslniKey Exist
DoeslniKey Exist
DoeslniKey Exist
GetIniKeyString
GetNthFieldFromlniString
RemovelniKey
RemovelniSection

Create a Program CreateProgmanGroup
Manager group and CreateProgmanltem
item for your product ShowProgmanGroup

Add information to or CreateRegKey
get information from CreateRegKeyValue
the Registration DeleteRegKey
Database DoesRegKeyExist

GetRegKeyValue
SetRegKeyValue

Chapter 5 Setup Script Procedures 47

Install system ExitExecRestart
resources (that may be RestartListEmpty
in use while Windows SearchForLocationForSharedFile
is running) SetRestartDir

Work with MS-DOS AddDos5Help
help files

Create a record of what CloseLogFile
occurred during an OpenLogFile
installation SetAbout

WriteToLogFile

Query the user's GetConfigLastDrive
environment GetConfigNumBuffers

GetConfigNumFiles
GetConfigRamdriveSize
GetConfigSmartdrvSize
GetDOSMajorVersion
GetDOSMinorVersion
GetEnvVariableValue
GetFreeSpaceForDrive
GetLocalHardDrivesList
GetNetworkDrivesList
GetNum WinApps
GetParallelPortsList
GetProcessorType
GetRemovableDrivesList
GetScreenHeight
GetScreen Width
GetSerialPortsList
GetTotalSpaceForDrive
GetTypeFaceNameFromTTF
Get ValidDrivesList
GetWindowsMajorVersion
GetWindowsMinorVersion
GetWindowsMode
GetWindowsSysDir
Has87MathChip
HasMonochromeDisplay
HasMouselnstalled
IsDriveLocalHard
IsDriveNetwork
IsDriveRemovable
IsDriverInConfig
IsDrive Valid
IsWindowsShared

48 Microsoft Windows Version 3.1 Setup Toolkit

Parse a date field GetDayFromDate
GetHourFromDate
GetMinuteFromDate
GetMonthFromDate
GetSecondFromDate

Retrieve information HinstFrame
about the topmost HwndFrame
frame window

Read or manipulate GetSectionKeyDate
information from the GetSectionKeyFilename
.INF file GetSectionKeySize

GetSectionKeyVersion
MakeListFromSectionKeys
ReadlntFile
RemoveSymbol
ReplaceListltem

AddBlankToBiliboardList subroutine

AddBlankToBillboardList lticks&

Argument

Comments

The AddBlankToBillboardList subroutine adds a hidden
dialog box to the global billboard list. The hidden dialog
box destroys the previous billboard dialog box and delays
the display of the next billboard dialog box.

lTicks&

Defines the amount of time you want to delay the
display of the next billboard dialog box. The unit is
arbitrary, relative to a total number of units.

Use this subroutine prior to calling
CopyFileslnCopyList.

Chapter 5 Setup Script Procedures 49

AddDos5Heip subroutine

AddDosSHelp szProgName$, szProgHelp$, cmo%

Arguments

See Also

AddListltem subroutine

The AddDosSHelp subroutine adds the specified pro­
gram name and help description to the DOSHELP.HLP
file.

szProgName$

Specifies the program name for the help file. This
name cannot start with the @ character or contain
spaces or tabs. Also, the length of the name must be
greater than zero and less than nine characters.

szProgHelp$

Specifies the help text string. You must specify a
non-empty string for this argument. If you want to
specify multiple lines of text, embed CHR$(lO) for
each line. This will create a line end and nine spaces
as an indent for the next line.

cmo%

Specifies the command option flag. You can use
cmo Vital or cmoNone for the command option flag

Appendix B, "Command Option Flags," for a list of com­
mand option flags and advice on their use.

AddListItem szSymbol$, szItem$

Arguments

The AddListItem subroutine adds a new item to the end
of the list associated with the specified symbol name.

szSymbol$

50 Microsoft Windows Version 3.1 Setup Toolkit

Comments

Specifies the name of the symbol in the Symbol
Table to which the list is associated.

szltem$

Specifies the item that you want to add to the list.

If szSymbol$ is previously undefined, a new list with the
specified item is created and associated with the symbol
name. You can create a new, empty list by using the
SetSymbolValue subroutine and specifying the value as

AddSectionFilesToCopyList subroutine

AddSectionFilesToCopyList szSection$, szSrc$, szDest$

Arguments

Comments

The AddSectionFilesToCopyList subroutine adds all file
descriptions from the specified section of the .INF file to
the global list of installable files (the copy list).

szSection$

Specifies the name of the section in the .INF file that
contains the files you want to add to the copy list.

szSrc$

Specifies the full path of the directory where the files
currently reside. Typically, you use the value associ­
ated with the symbol STF _SRCDIR for szSrc$.

szDest$

Specifies the full path of the directory to which the
files will be copied.

You must call the ReadlnfFile subroutine before using
this subroutine.

Chapter 5 Setup Script Procedures 51

AddSection KeyFileToCopyList subroutine

AddSectionKeyFileToCopyList szSection$, szKey$, szSrc$, szDest$

Arguments

Comments

The AddSectionKeyFileToCopyList subroutine adds a
file description identified by the reference key from the
.INF file to the global list of installable files (the copy
list).

szSection$

Specifies the name of the section in the .INF file that
contains the file you want to add to the copy list.

szKey$

Specifies the reference key for the file you want to
add to the copy list.

szSrc$

Specifies the full path of the directory where the file
currently resides. Typically, you use the value associ­
ated with the symbol STF _SRCDIR for szSrc$.

szDest$

Specifies the full path of the directory to which the
file will be copied.

You must call the ReadlnfFile subroutine before using
this subroutine.

AddSpecialFileToCopyList subroutine

AddSpecialFileToCopyList szSection$, szKey$, szSrc$, szDest$

The AddSpeciaiFileToCopyList subroutine adds the file
description of a special file, such as a shared file, from

52 Microsoft Windows Version 3.1 Setup Toolkit

Arguments

Comments

the .INF file to the global list of installable files (the copy
list).

szSection$

Specifies the name of the section in the .INF file that
contains the file you want to add to the copy list.

szKey$

Specifies the reference key for the file you want to
add to the copy list.

szSrc$

Specifies the full path of the directory where the file
currently resides. Typically, you use the symbol
STF _SRCDIR for szSrc$.

szDest$

Specifies the full path of the file to be copied.

You must call the ReadlnfFile subroutine before using
this subroutine.

AddToBiliboardList subroutine

AddToBillboardList szDll$, idDlg%, szProc$, lTicks&

Arguments

The AddToBillboardList subroutine adds a billboard
dialog box to the end of the global billboard list. The dia­
log box will be displayed during the next
CopyFileslnCopyList subroutine call.

szDll$

Specifies the name of the .DLL file that contains the
dialog box resource and procedure.

BackupFile subroutine

Chapter 5 Setup Script Procedures 53

idDlg%

Specifies the dialog box resource identification num­
ber.

szProc$

Specifies the name of the dialog box procedure.

ITicks&

Defines the amount of time you want the billboard
dialog box to display. The unit is arbitrary, relative to
the total number of units specified at the time the
files are copied onto the user's hard disk or network
drive.

BackupFile szFullPath$, szBackup$

Arguments

Comments

The BackupFile subroutine backs up the specified file by
renaming it.

szFullPath$

Specifies the full path and name of the file you want
to create a copy of.

szBackup$

Specifies the filename of the copy.

The copy is placed in the same directory as the original
file (as specified by szFullPath$). This subroutine is iden­
tical to RenameFile.

54 Microsoft Windows Version 3.1 Setup Toolkit

ClearBiliboardList subroutine

ClearBillboardList

ClearCopyList subroutine

ClearCopyList

CloseLogFile subroutine

CloseLogFile

CopyFile subroutine

The ClearBillboardList subroutine deletes all dialog
boxes from the global billboard list.

The ClearCopyList subroutine removes all file entries
from the global list of installable files (or copy list).

The CloseLogFile subroutine closes the currently open
log file.

CopyFile szFullPathSrc$, szFuliPathDst$, cmo%, JAppend%

The CopyFile subroutine copies the specified file from
its source directory to its destination directory.

Arguments

See Also

Chapter 5 Setup Script Procedures

szFuliPathSrc$

Specifies the full path of the file you want to copy.

szFuliPathDst$

55

Specifies the full path of the destination directory for
the file.

cmo%

Specifies one or more command option flags. You
can use one or more of the following for cmo% (by
adding them together): cmoDecompress,
cmoTimeStamp, cmoReadOnly, cmoOverwrite,
cmoNone, or cmoAli .

JAppend%

Specifies whether you want any existing file to be
appended to. A value of one indicates that you want
to append to an existing file; zero indicates that you
want to remove the existing file before copying the
new file.

Appendix B, "Command Option Flags," for a list of com­
mand option flags and advice on their use.

CopyFileslnCopyList subroutine

CopyFileslnCopyList

Comments

The CopyFileslnCopyList subroutine sorts the file de­
scriptions in the global list of installable files (the copy
list) and then copies them from their source directory to
their destination directory.

The files are sorted by their source disk identification
number to minimize the number of times the user has to
insert disks during the installation. The source and desti­
nation directories are specified in the functions that add
the files to the copy list.

56 Microsoft Windows Version 3.1 Setup Toolkit

CreateDir subroutine

CreateDir szDir$, cmo%

Arguments

See Also

The CreateDir subroutine creates a directory with the
specified path and name.

szDir$

Specifies the complete path and name of the direc­
tory you want to create (starting with the disk drive
letter and backslash).

cmo%

Specifies a command option flag. You can use
cmoVital or cmoNone. If the directory already exists,
the subroutine does nothing.

Appendix B, "Command Option Flags," for a list of com­
mand option flags and advice on their use.

CreatelniKeyValue subroutine

CreatelniKeyValue szFile$, szSect$, szKey$, szValue$, cmo%

Arguments

The CreateIniKeyValue subroutine creates a symbol
and an associated value in the designated section of the
.INI file.

szFile$

Specifies the name of the .IN! file in which you want
to create the symbol and value. If the file you specify
is WIN.INI, you do not have to provide the full path.
If the file you specify does not exist, it is created.

See Also

Chapter 5 Setup Script Procedures 57

szSect$

Specifies the section name in which you want to cre­
ate the symbol and value. szSect$ must be a non­
empty string.

szKey$

Defines the name of the symbol you want to create.
If szKey$ already exists, this subroutine will fail un­
less you specify cmoOverwrite for the command op­
tion flag.

szValue$

Defines the value that will be associated with the
symbol.

cmo%

Specifies the command option flag. You can use
cmoVital, cmoNone, cmoAll, or cmoOverwrite.

Appendix B, "Command Options Flags," for a list of
command option flags and advice on their use.

CreateProgmanGroup subroutine

CreateProgmanGroup szGroup$, szPath$, cmo%

Arguments

The CreateProgmanGroup subroutine creates a new
Program Manager group by the specified name and a
.GRP file with the specified file and path.

szGroup$

Specifies the name of the Program Manager group
you want to create. This name will be displayed in
the group window title bar (or below the icon when
the group window is minimized).

58 Microsoft Windows Version 3.1 Setup Toolkit

Comments

See Also

szPath$

Specifies the name and path for the .GRP file you
want to create. If you provide an empty string for
szPath$ (the suggested method), a default file is cre­
ated.

cmo%

Specifies the command option flag. You can use
cmoVital or cmoNone.

Typically, you should use an empty string for szPath$.

Appendix B, "Command Option Flags," for a list of com­
mand option flags and advice on their use.

CreateProgmanltem subroutine

CreateProgmanItem szGroup$, szItem$, szCmd$, szOther$, cmo%

Arguments

The CreateProgmanItem subroutine creates a new item
in the specified Program Manager group.

szGroup$

Specifies the name of the Program Manager group in
which you want to create the item. If szGroup$ does
not exist, this subroutine does nothing.

szItem$

Specifies the description that will be displayed below
the item.

szCmd$

Specifies the path and executable filename for the
new item.

See Also

CreateRegKey subroutine

Chapter 5 Setup Script Procedures 59

szOther$

Specifies an optional icon file, icon resource index, x
and y icon positions for the new item, and the work­
ing directory, separated by commas. If you provide
an empty string for szOther$, defaults are used. How­
ever, if you need to specify one of the latter options
in the string, you must specify the preceding ones.

cmo%

Specifies the command option flag. You can use
cmoVital or cmoOverwrite. If you use cmoOverwrite
and the user is running Windows version 3.1, Setup
will replace an existing Program Manager item.

Appendix B, "Command Option Flags," for a list of com­
mand option flags and advice on their use. For more in­
formation about creating the optional icon file, resource
index, and position, see the Guide to Programming.

CreateRegKey szKey$

Argument

Comments

The Create Reg Key subroutine creates a Registration
Database key that is a subkey of
HKEYS_CLASSES_ROOT.

szKey$

Specifies the name of the key you want to create.
This key will have no associated value.

To use this subroutine, you must include the
MSREGDB.INC file in your Setup script (.MST) file.

60 Microsoft Windows Version 3.1 Setup Toolkit

CreateRegKeyValue subroutine

CreateRegKeyValue szKey$, szValue$

Arguments

Comments

The CreateRegKeyValue subroutine creates a Registra­
tion Database key that is a subkey of
HKEYS_CLASSES_ROOT and associates a value with
the key.

szKey$

Specifies the name of the key you want to create.

szValue$

Specifies the value you want to associate with the
key.

To use this subroutine, you must include the
MSREGDB.lNC file in your Setup script (.MST) file.

CreateSyslni KeyValue subroutine

CreateSyslniKeyValue szFile$, szSect$, szKey$, szValue$, cmo%

Arguments

The CreateSyslniKeyValue subroutine adds the speci­
fied symbol and its associated value to the .INI file.

szFile$

Specifies the full path of the .INI file. This subroutine
should not be used to modify WIN.INI.

szSect$

Specifies the name of the section in which you want
to add the symbol-value pair. szSect$ must be a non­
empty string.

Comments

See Also

DeleteRegKey subroutine

Chapter 5 Setup Script Procedures

szKey$

Specifies the name of the symbol you want to add.
This string does not have to be unique.

szValue$

Defines the value you want to associate with the
symbol.

cmo%

Specifies the command option flag. You can use
cmoVital or cmoNone.

61

Use this subroutine, rather than CreatelniKeyValue, to
add symbol-value pairs with non-unique keys to the .INI
file. For example, you could add a line such as

DEV=*.VGA

where DEV = is likely to occur several times in the file.

Appendix B, "Command Option Flags," for a list of com­
mand option flags and advice on their use.

DeleteRegKey szKey$

Argument

Comments

The DeleteRegKey subroutine removes the specified
Registration Database key, its associated values, and
subkeys.

szKey$

Specifies the name of the key you want to remove.

To use this subroutine, you must include the
MSREGDB.INC file in your Setup script (.MST) file.

62 Microsoft Windows Version 3.1 Setup Toolkit

DoesDirExist function

Integer% = DoesDirExist (szDir$)

Argument

Return Value

Comments

DoesFileExist function

The DoesDirExist function determines if the specified
directory exists.

szDir$

Specifies the name of the directory.

If the directory exists, the return value is one. Otherwise,
the return value is zero.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

Integer% = DoesFileExist (szFile$, mode%)

Arguments

Return Value

Comments

The DoesFileExist function determines if the specified
file exists, can be read from, can be written to, or all of
these states.

szFile$

Specifies the name of the file you want to inquire
about.

mode%

Specifies the file exist mode (femExists, femRead,
femWrite, femReadWrite) you want to inquire about.

If the answer is yes, the return value is one. Otherwise,
the return value is zero.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

Chapter 5 Setup Script Procedures

DoeslniKeyExist function

Integer% = DoesIniKeyExist (szFile$, szSect$, szKey$)

Arguments

Return Value

Comments

The DoesIniKeyExist function determines if the speci­
fied key exists in the specified section of the .INI file.

szFile$

Specifies the name of the .INI file. If you specify
WIN.lNI, you do not have to provide the full path.

szSect$

Specifies the section of the file. szSect$ must be a
non-empty string.

szKey$

Specifies the key (or symbol) you are looking for.

If the key exists, the return value is one. Otherwise, the
return value is zero.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

DoeslniSectionExist function

Integer% = DoesIniSectionExist (sz/ile$, szSect$)

Arguments

The DoesIniSectionExist function determines if the
specified section exists in the .INI file.

szFile$

Specifies the name of the .INI file. If you specify
WIN.lNI, you do not have to provide the full path.

63

64 Microsoft Windows Version 3.1 Setup Toolkit

Return Value

Comments

szSect$

Specifies the section of the file. szSect$ must be a
non-empty string.

If the section exists, the return value is one. Otherwise,
the return value is zero.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

DoesRegKeyExist function

Integer% = DoesRegKeyExist (szKey$)

Argument

Return Value

Comments

DoMsgBox function

The DoesRegKeyExist function checks for the existence
of the specified key in the Registration Database.

szKey$

Specifies the name of the key. This key is assumed to
be a subkey of HKEYS_CLASSES_ROOT.

If the key exists, the return value is one. Otherwise, the
return value is zero.

To use this subroutine, you must include the
MSREGDB.INC file in your Setup script (.MST) file.

Integer% = DoMsgBox (szText$, szCaption$, wType%)

The DoMsgBox function launches a Windows message
box containing the specified caption and text.

Arguments

Return Value

Comments

See Also

DumpCopyList subroutine

Chapter 5 Setup Script Procedures 65

szText$

Specifies the text you want to appear in the message
box.

szCaption$

Specifies the caption for the message box.

wType%

Specifies the contents of the message box. wType%
can be a combination of values.

The return value is the value of the button control that the
user selected (such as IDOK). If there is not enough
memory to create the message box, the return value is
zero.

This function is similar to the Windows MessageBox
function. The valid message box values and control val­
ues are the same as for the MessageBox function.

For more information on the MessageBox function, mes­
sage box values, and control values, see the Program­
mer's Reference.

DumpCopyList szFile$

Argument

Comments

The DumpCopyList subroutine prints the contents of the
global list of installable files (the copy list) to the speci­
fied file.

szFile$

Specifies the path and name of the file to which you
want the list to be copied.

Use this subroutine when debugging your installation
files.

66 Microsoft Windows Version 3.1 Setup Toolkit

ExitExecRestart function

Integer% = ExitExecRestart 0

Return Value

Comments

The ExitExecRestart function installs system files that
may be in use by Windows (and therefore can't be over­
written).

If the function succeeds, it doesn't return. The return
value is true (one) if the restart list is empty or the user is
running Windows version 3.0 (see Comments below). The
return value is false (zero) if there are write errors, the re­
start fails, Windows can't exit, or the function can't find
_MSSETUP.EXE.

This function returns a value but can fail for one of three
reasons: if the restart list is empty, if the user is running
Windows version 3.0 (which does not support the func­
tion), or if an error occurs (such as Windows not exiting
because of open MS-DOS boxes or applications). There­
fore, you should use the RestartListEmpty function to
determine the contents of the restart list before calling
this function. You should also check the current version
of Windows. If the user is running Windows version 3.0,
you will need to provide a message box explaining that
the user must exit Windows and run the batch file to up­
date the shared resources. In addition, you should warn
the user to close all MS-DOS boxes and applications.

ExitExecRestart exits Windows and executes
_MSSETUP.EXE to read any commands that have been
placed in _MSSETUP.BAT. (Commands are placed in
_MSSETUP.BAT when a file in the copy list is specified
as a system file, Setup determines that it is a newer ver­
sion, and it is currently in use.) ExitExecRestart will
then delete ~SSETUP.EXE and _MSSETUP.BAT be­
fore restarting Windows. You must call the
SetRestartDir subroutine before using this function.

Chapter 5 Setup Script Procedures 67

FindFilelnTree function

String$ = FindFilelnTree (szFile$, szDir$)

Arguments

Return Value

Comments

The FindFileinTree function searches for the specified
file in a directory and its subdirectories.

szFile$

Specifies the name of the file you are trying to locate.

szDir$

Specifies the top-level directory of the tree structure
you want to search.

The return value is the full path of the first instance of the
file. If the file isn't found, the return value is an empty
string.

To use this function, you must include the file
MSDETECT.INC in your Setup script (.MST) file.

FindFileUsingFileOpen function

String$ = FindFileUsingFileOpen (szFile$)

Argument

Return Value

The FindFileUsingFileOpen function locates a file by
using the Windows FileOpen function.

szFile$

Specifies the name of the file you want to find.

The return value is the full path of the file. If the file isn't
found, the return value is an empty string.

68 Microsoft Windows Version 3.1 Setup Toolkit

FindTargetOnEnvVar function

String$ = FindTargetOnEnvVar (szFile$, szEnvVar$)

Arguments

Return Value

Comments

The FindTargetOnEnvVar function searches for the
specified file in directories based on the designated envi­
ronment variable (such as PATH).

szFile$

Specifies the name or partial path of the file you are
trying to locate.

szEnvVar$

Specifies the environment variable for the search.

The return value is the full path of the specified file. If
the file isn't found, the return value is an empty string.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

GetConfigLastDrive function

String$ = GetConfigLastDrive 0

Return Value

Comments

The GetConfigLastDrive function determines the
LASTDRIVE set in the CONFIG.SYS file.

The return value is the string for LASTDRIVE.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

Chapter 5 Setup Script Procedures

GetConfigNumBuffers function

Integer% = GetConfigNumBuffers 0

Return Value

Comments

The GetConfigNumBuffers function determines the
number of BUFFERS set in the CONFIG.SYS file.

The return value is the number of BUFFERS.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

GetConfigNumFiles function

Integer% = GetConfigNumFiles 0

Return Value

Comments

The GetConfigNumFiles function determines the num­
ber of FILES set in the CONFIG.SYS file.

The return value is the number of FILES.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

GetConfigRamdriveSize function

Integer% = GetConfigRamdriveSize 0
The GetConfigRamdriveSize function determines the
installed size of RAMDRIVE.SYS set in the
CONFIG.SYS file.

69

70 Microsoft Windows Version 3.1 Setup Toolkit

Return Value

Comments

The return value is the size of RAMDRIVE.SYS.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

GetConfigSmartdrvSize function

Integer% = GetConfigSmartdrvSize 0

Return Value

Comments

GetCopyListCost function

The GetConfigSmartdrvSize function determines the in­
stalled size of SMARTDRV.SYS set in the CONFIG.SYS
file.

The return value is the size of SMARTDRV.SYS.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

Long& = GetCopyListCost (szExtras$, szCosts$, szNeededs$)

Arguments

The GetCopyListCost function examines the files listed
in the global list of installable files (the copy list) and de­
termines the amount of disk space needed to copy, back
up, and overwrite files. The values retrieved are associ­
ated with symbols in the Symbol Table.

szExtras$

Symbol whose associated value identifies the extra,
or incidental, disk space needed on each disk drive to
update files such as .INI files. The symbol value is a
list of as many as 26 integers. Missing values are as­
sumed to be zero.

Return Value

GetDateOfFile function

Chapter 5 Setup Script Procedures 71

szCosts$

Symbol whose associated value is set to a list of 26
numbers, each of which identifies the cost per disk
drive to copy and update files. A positive number is
the amount of free space that will be used by new or
larger files. A negative number is the amount of
space that will be freed by removing files or replac­
ing existing files with smaller versions.

szNeededs$

Symbol whose associated value is set to a list of 26
numbers, each of which identifies the additional
space needed per disk drive. Each entry in szCosts$
that is not zero has a corresponding entry in this list
that is the value in szCosts$ minus the current free
space on that disk drive. A positive number indicates
that the new files will not fit (and by how much). A
negative number indicates how much free space will
be left after the new files are copied.

The return value is the total additional free disk space
needed. This value is the sum of the positive numbers in
szNeededs$. If there is enough free disk space on the ap­
propriate disk drives for the CopyFileslnCopyList sub­
routine to succeed, the return value is zero.

String$ = GetDateOtFile (szFile$)

Argument

Return Value

The GetDateOtFile function determines the file date of
the specified file.

szFile$

Specifies the full path of the file.

The return value is the date in YYYY-MM-DD-HH­
MM-SS format. If szFile$ does not exist, or if it has an

72 Microsoft Windows Version 3.1 Setup Toolkit

Comments

GetDayFromDate function

invalid date, the return value will be 1980-01-01-00-00-
00.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

Integer% = GetDayFromDate (szDate$)

Argument

Return Value

Comments

The GetDayFromDate function retrieves the day field
from the return value for the GetDateOfFile function.

szDate$

Specifies the date in YYYY-MM-DD-HH-MM-SS
format. This value is obtained from the
GetDateOfFile function.

The return value is an integer with a valid range from 1
through 31.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.1

GetDOSMajorVersion fu nction

Integer% = GetDOSMajorVersion 0

Return Value

The GetDOSMajorVersion function determines the ma­
jor version number of the currently installed MS-DOS.

The return value is the major version number of MS­
DOS.

Comments

Chapter 5 Setup Script Procedures

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

73

GetDOSMinorVersion function

Integer% = GetDOSMinorVersion 0

Return Value

Comments

The GetDOSMinorVersion function determines the mi­
nor version number of the currently installed MS-DOS.

The return value is the minor version number of MS­
DOS.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

GetEnvVariableValue function

String$ = GetEnvVariableValue (szEnvVar$)

Argument

Return Value

Comments

The GetEnvVariableValue function determines the as­
sociated value for the specified environment variable.

szEnvVa r$

Specifies the environment variable name.

The return value is the string associated with the environ­
ment variable. If there is no associated value, the string is
empty.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

74 Microsoft Windows Version 3.1 Setup Toolkit

GetFreeSpaceForDrive fu nction

Long& = GetFreeSpaceForDrive (szDrive$)

Argument

Return Value

Comments

The GetFreeSpaceForDrive function determines the
amount of free space available on the specified disk
drive.

szDrive$

Specifies a string identifying the disk drive letter (A
through Z).

The return value is the amount of free disk space. If
szDrive$ is not a valid disk drive, the return value is zero.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

GetHourFromDate function

Integer% = GetHourFromDate (szDate$)

Argument

Return Value

Comments

The GetHourFromDate function retrieves the hour field
from the return value for the GetDateOfFile function.

szDate$

Specifies the date in YYYY-MM-DD-HH-MM-SS
format. This value is obtained from the
GetDateOfFile function.

The return value is an integer with a valid range from 0
through 23.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

Chapter 5 Setup Script Procedures 75

GetiniKeyString function

StringS = GetlniKeyString (szFile$, szSect$, szKey$)

Arguments

Return Value

Comments

GetListltem function

The GetlniKeyString function searches the .INI file for
the specified key string.

szFile$

Specifies the .INI file that you want to search. If you
specify WIN.INI, you do not have to provide the full
path.

szSect$

Specifies the section of the file to be searched.
szSect$ must be a non-empty string.

szKey$

Specifies the key or symbol you want to search for.

If the key is found, the return value is the full string asso­
ciated with the key. Otherwise, the return value is an
empty string.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

StringS = GetListltem (szSymbol$, n%)

Arguments

The GetListltem function retrieves a single item from
the list associated with the specified symbol name.

szSymbol$

Specifies the name of the symbol in the Symbol
Table with which the list is associated.

76 Microsoft Windows Version 3.1 Setup Toolkit

Return Value

Comments

GetListLength function

n%

Specifies the index (one-based) of the item you want
to retrieve.

The return value is the item from the list.

If the string is empty, the symbol or item does not exist.

Integer% = GetListLength (szSymbol$)

Argument

Return Value

The GetListLength function determines the number of
items in the list associated with the specified symbol
name.

szSymbol$

Specifies the name of the symbol in the Symbol
Table with which the list is associated.

The return value is the number of items in the list.

GetLocalHardDrivesList subroutine

GetLocalHardDrivesList szSymbol$

Argument

The GetLocalHardDrivesList subroutine sets the speci­
fied symbol to a list of all local hard drives (that is, "A",
"B", and so on).

szSymbol$
Specifies the name of the symbol to associate with
the list.

Chapter 5 Setup Script Procedures

Comments To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

GetMinuteFromDate function

Integer% = GetMinuteFromDate (szDate$)

77

The GetMinuteFromDate function retrieves the minute
field from the return value for the GetDateOfFile func­
tion.

Argument

Return Value

Comments

szDate$

Specifies the date in YYYY-MM-DD-HH-MM-SS
format. This value is obtained from the
GetDateOfFile function.

The return value is an integer with a valid range from 0
through 59.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

GetMonthFromDate function

Integer% = GetMonthFromDate (szDate$)

The GetMonthFromDate function retrieves the month
field from the return value for the GetDateOfFile func­
tion.

78 Microsoft Windows Version 3.1 Setup Toolkit

Argument

Return Value

Comments

szDate$

Specifies the date in YYYY-MM-DD-HH-MM-SS
fonnat. This value is obtained from the
GetDateOfFile function.

The return value is an integer with a valid range from I
through 12.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

GetNetworkDrivesList subroutine

GetNetworkDrivesList szSymbol$

Argument

Comments

The GetNetworkDrivesList subroutine sets the specified
symbol to a list of all network drives (that is, "A", "B",
and so on).

szSymbol$
Specifies the name of the symbol to associate with
the list.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

GetNthFieldFromlniString function

String$ = GetNthFieldFromlniString (sZ£ine$, iField%)

The GetNthFieldFromlniString function extracts the
specified comma-separated field from the given string.

Arguments

Return Value

GetNumWinApps function

Chapter 5 Setup Script Procedures

szLine$

Specifies the string from which you want to extract
the field.

iField%

Specifies the index (one-based) of the field that you
want to extract.

79

The return value is the field. If the requested field doesn't
exist or is invalid, the return value is an empty string.

Integer% = GetNumWinApps 0

Return Value

Comments

The GetNum WinApps function determines the number
of unique instances of Windows applications currently
running in the system.

The return value is the number of applications.

To use this subroutine, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

GetParallelPortsList subroutine

GetParalielPortsList szSymbol$

The GetParalielPortsList subroutine sets the specified
symbol to a list of all parallel ports (that is,
"LPTI","LPT2", and so on).

80 Microsoft Windows Version 3.1 Setup Toolkit

Argument

Comments

szSymbol$
Specifies the name of the symbol to associate with
the list.

To use this subroutine, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

GetProcessorType function

Integer% = GetProcessorType 0

Return Value

Comments

GetRegKeyValue function

The GetProcessorType function determines the type of
processor being run on the user's system.

The return value is either zero (for 8086), one (for
80186), two (for 80286), three (for 80386), or four (for
80486).

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

StringS = GetRegKeyValue (szKey$)

Argument

The GetRegKeyValue function determines the value as­
sociated with the specified Registration Database key.

szKey$

Specifies the name of the key whose value you want
to retrieve. Because all keys are assumed to be
subkeys of HKEYS_CLASSES_ROOT, you only
have to specify the name of the key.

Return Value

Comments

Chapter 5 Setup Script Procedures

The return value is the value associated with szKey$ in
the Registration Database.

To use this function, you must include the
MSREGDB.INC file in your Setup script (.MST) file.

81

GetRemovableDriveslist subroutine

GetRemovableDrivesList szSymbol$

Argument

Comments

GetScreenHeight function

The GetRemovableDrivesList subroutine sets the speci­
fied symbol to a list of all removable drives (that is, "A",
"B", and so on).

szSymbol$
Specifies the name of the symbol to associate with
the list.

To use this subroutine, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

Integer% = GetScreenHeight 0

Return Value

The GetScreenHeight function determines the height of
the screen.

The return value is the height ofthe screen (in pixels).

82 Microsoft Windows Version 3.1 Setup Toolkit

GetScreen Width function

Integer% = GetScreenWidth 0

Return Value

The GetScreen Width function determines the width of
the screen.

The return value is the width of the screen (in pixels).

GetSecondFromDate function

Integer% = GetSecondFromDate (szDate$)

Argument

Return Value

Comments

The GetSecondFromDate function retrieves the seconds
field from the return value for the GetDateOfFile func­
tion.

szDate$

Specifies the date in YYYY-MM-DD-HH-MM-SS
format. This value is obtained from the
GetDateOfFile function.

The return value is an integer with a valid range from 0
through 59.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

Chapter 5 Setup Script Procedures 83

GetSection Key Date fu nction

String$ = GetSectionKeyDate (szSection$, szKey$)

Arguments

Return Value

The GetSectionKeyDate function retrieves the date from
a file description in the .INF file.

szSection$

Specifies the name of the section where the file de­
scription resides.

szKey$

Specifies the name of the key associated with the file
description.

The return value is the date. This string can be parsed by
the GetDayFromDate, GetMonthFromDate, and
GetYearFromDate functions.

GetSectionKeyFilename function

String$ = GetSectionKeyFilename (szSection$, szKey$)

Arguments

Return Value

The GetSectionKeyFilename function retrieves the
filename from a file description in the .INF file.

szSection$

Specifies the name of the section where the file de­
scription resides.

szKey$

Specifies the name of the key associated with the file
description.

The return value is the filename.

84 Microsoft Windows Version 3.1 Setup Toolkit

GetSection KeySize fu nction

Long& = GetSectionKeySize (szSection$, szKey$)

Arguments

Return Value

The GetSectionKeySize function retrieves the file size
from a file description in the .INF file.

szSection$

Specifies the name of the section where the file de­
scription resides.

szKey$

Specifies the name of the key associated with the file
description.

The return value is the file size in bytes.

GetSection KeyVersion fu nction

String$ = GetSectionKeyVersion (szSection$, szKey$)

Arguments

Return Value

The GetSectionKeyVersion function retrieves the ver­
sion number from a file description in the .INF file.

szSection$

Specifies the name of the section where the file de­
scription resides.

szKey$

Specifies the name of the key associated with the file
description.

The return value is the version number. This string can be
parsed by the GetVersionNthField function.

Chapter 5 Setup Script Procedures

GetSerialPortsList subroutine

GetSerialPortsList szSymbol$

Argument

Comments

GetSizeOfFile function

The GetSerialPortsList subroutine sets the specified
symbol to a list of all serial ports (that is,
"COMI","COM2", and so on).

szSymbol$
Specifies the name of the symbol to associate with
the list.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

Long& = GetSizeOfFile (szFile$)

Argument

The GetSizeOfFile function determines the size of the
specified file.

szFile$

Specifies the path and name of the file.

85

Return Value The return value is the size of the file in bytes. If szFile$
is invalid or does not exist, the return value is zero.

Comments To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

86 Microsoft Windows Version 3.1 Setup Toolkit

GetSymbolValue function

String$ = GetSymbolValue (szSymbol$)

Argument

Return Value

Comments

The GetSymbolValue function finds the value associated
with a symbol in the Symbol Table.

szSymbol$

Specifies the name of the symbol to be found in the
Symbol Table.

The return value is the value associated with szSymbol$
in the Symbol Table. If there is no value associated with
szSymbol$, the return value is an empty string.

Use this function to retrieve information stored in the
Symbol Table by other .DLL or .MST file procedures.

GetTotalSpaceForDrive function

Long& = GetTotalSpaceForDrive (szDrive$)

Argument

Return Value

Comments

The GetTotalSpaceForDrive function determines the to­
tal amount of disk space for the specified disk drive.

szDrive$

Specifies a string identifying the disk drive letter (A
through Z).

The return value is the total capacity in bytes of the disk
drive. If szDrive$ is not a valid disk drive, the return
value is zero.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

Chapter 5 Setup Script Procedures 87

GetTypeFaceNameFromTTF function

Integer% = GetTypeFaceNameFromTTF (szFile$, szBuff$, cbBujj%)

Arguments

Return Value

Comments

The GetTypeFaceNameFromTTF function extracts the
typeface name from a TrueType font file.

szFile$

Specifies the name of the True Type font file.

szBuff$

Specifies the buffer you are providing for the storage
of the typeface name.

cbBujj%

Specifies the size of the buffer you are providing.

If the file you specified is not a TrueType font file, the
return value is zero. Otherwise, the return value is the ac­
tuallength of the typeface name.

Check to ensure that the return value is not greater than
the size of szBujj%. If the return value is greater, the
typeface name has been truncated.

GetValidDrivesList subroutine

GetValidDrives szSymbol$

Argument

Comments

The GetValidDrivesList subroutine sets the specified
symbol to a list of all valid disk drives (that is, "A", "B",
and so on).

szSymbol$
Specifies the name of the symbol to associate with
the list.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

88 Microsoft Windows Version 3.1 Setup Toolkit

GetVersionNthField function

Long& = GetVersionNthField (szVersion$, nField%)

Arguments

Return Value

Comments

GetVersionOfFile function

The GetVersionNthField function extracts the specified
field from the return value for the GetVersionOfFile
function.

szVersion$

Specifies the string returned from the
GetVersionOfFile function.

nField%

Specifies the number of the field you want to extract
(1 through 4 from the version string).

The return value is the integer extracted from szVersion$.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

String$ = GetVersionOfFile (szFile$)

Argument

Return Value

The GetVersionOfFile function determines the version
of the specified file.

szFile$

Specifies the path and name of the file.

The return value is a string in the format N.N.N.N, where
each N is an integer with as many as digits.

Chapter 5 Setup Script Procedures 89

GetWindowsDir function

String$ = GetWindowsDir 0

Return Value

The GetWindowsDir function determines the name and
path of the Windows directory.

The return value is the path name terminated with a
backslash; for example, "C:\WINDOWS\".

GetWindowsMajorVersion function

Integer% = GetWindowsMajorVersion 0

Return Value

The GetWindowsMajorVersion function determines the
major version number for the currently installed Win­
dows software.

The return value is the Windows major version number.

GetWindowsMinorVersion function

Integer% = GetWindowsMinorVersion 0

Return Value

The GetWindowsMinorVersion function determines the
minor version number for the currently installed Win­
dows software.

The return value is the Windows minor version number.

90 Microsoft Windows Version 3.1 Setup Toolkit

GetWindowsMode function

Integer% = GetWindowsMode 0

Return Value

The GetWindowsMode function determines the current
mode of Windows.

The return value is zero for Real mode, one for Standard
mode, or two for Enhanced mode.

GetWindowsSysDir function

String$ = GetWindowsSysDir 0

Return Value

GetVearFromDate function

The GetWindowsSysDir function determines the name
and path of the Windows system directory.

The return value is the path which ends with a backslash.

Integer% = GetYearFromDate (szDate$)

Argument

Return Value

The GetYearFromDate function retrieves the year field
from the return value for the GetDateOfFile function.

szDate$

Specifies the date in YYYY-MM-DD-HH-MM-SS
format. This value is obtained from the
GetDateOfFile function.

The return value is an integer with a valid range from
1980 through 2099.

Comments

Has87MathChip function

Chapter 5 Setup Script Procedures

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

91

Integer% = Has87MathChip 0

Return Value

Comments

The Has87MathChip function checks for an 87 math
coprocessor on the user's system.

If an 87 math coprocessor exists, the return value is one.
Otherwise, the return value is zero.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

HasMonochromeDisplay function

Integer% = HasMonochromeDisplay 0

Return Value

Comments

The HasMonochromeDisplay function checks for a
monochrome display on the user's system.

If the monochrome display exists, the return value is one.
Otherwise, the return value is zero.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

92 Microsoft Windows Version 3.1 Setup Toolkit

HasMouselnstalied function

Integer% = HasMouseInstalled 0

Return Value

Comments

HinstFrame function

The HasMouselnstalled function determines if a mouse
is installed on the user's system.

If a mouse exists, the return value is one. Otherwise, the
return value is zero.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

Integer% = HinstFrame 0

Return Value

HwndFrame function

The HinstFrame function retrieves the instance handle
for the Setup program.

The return value is the instance handle.

Integer% = HwndFrame 0

Return Value

Comments

The HwndFrame function provides the handle for the
Setup application frame window (the main window).

The return value is the handle of the frame window (the
main window).

Use the return value from this function for the hwnd% ar­
gument in procedures that require it.

Chapter 5 Setup Script Procedures 93

IsDirWritable function

Integer% = IsDirWritable (szDir$)

Argument

Return Value

IsDriveLocalHard function

The IsDirWritable function determines if the specified
directory is writable (so that Setup can create a file in it).

szDir$

Specifies the name of the directory.

If the directory is writable, the return value is one. Other­
wise, the return value is zero.

Integer% = IsDriveLocalHard (szDrive$)

Argument

Return Value

Comments

The IsDriveLocalHard function determines whether the
specified disk drive is a local hard disk.

szDrive$

Specifies a string identifying the disk drive letter (A
through Z).

If the disk drive is a local hard disk, the return value is
one. Otherwise, the return value is zero.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

94 Microsoft Windows Version 3.1 Setup Toolkit

IsDriveNetwork function

Integer% = IsDriveNetwork (szDrive$)

Argument

Return Value

Comments

The IsDriveNetwork function determines if the specified
disk drive is a network drive.

szDrive$

Specifies a string identifying the disk drive letter (A
through Z).

If the disk drive is a network drive, the return value is
one. Otherwise, the return value is zero.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

IsDriveRemovable function

Integer% = IsDriveRemovable (szDrive$)

Argument

Return Value

Comments

The IsDriveRemovable function determines if the speci­
fied disk drive is a removable disk drive.

szDrive$

Specifies a string identifying the disk drive letter (A
through Z).

If the disk drive is removable, the return value is one.
Otherwise, the return value is zero.

To use this function, you must include the
MSDETECT.INC file in your Setup script (.MST) file.

Chapter 5 Setup Script Procedures 95

IsDriverlnConfig function

Integer% = IsDriverInConfig (szDevice$)

Argument

Return Value

Comments

IsDriveValid function

The IsDriverInConfig function determines if the speci­
fied device driver is in the CONFIG.SYS file.

szDevice$

Specifies the name of the device driver you want to
find.

If the device driver statement is found, the return value is
one. Otherwise, the return value is zero.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

Integer% = IsDriveValid (szDrive$)

Argument

Return Value

Comments

The IsDrive Valid function determines if the specified
disk drive exists.

szDrive$

Specifies a string identifying the disk drive letter (A
through Z).

If the specified disk drive is valid, the return value is one.
Otherwise, the return value is zero.

To use this function, you must include the
MSDETECT.lNC file in your Setup script (.MST) file.

96 Microsoft Windows Version 3.1 Setup Toolkit

IsFileWritable function

Integer% = IsFileWritable (szFile$)

Argument

Return Value

The IsFileWritable function determines whether the
specified file is writable.

szFile$

Specifies the full path and name of the file you want
to write to.

If the file is writable, the return value is one. Otherwise,
the return value is zero.

IsWindowsShared function

Integer% = IsWindowsShared 0

Return Value

The IsWindowsShared function determines if Windows
is shared by comparing the Windows and system directo­
ries.

If Windows is shared, the return value is one. Otherwise,
the return value is zero.

MakeListFromSectionKeys subroutine

MakeListFromSectionKeys szSymbol$, szSection$

The MakeListFromSectionKeys subroutine creates a list
of the reference key values found in a section of the cur­
rently open .INF file and associates the list with the
specified symbol name.

Arguments

Comments

OpenLogFile subroutine

Chapter 5 Setup Script Procedures

szSymbol$

Specifies the symbol name of the list in the Symbol
Table.

szSection$

97

Specifies the name for the section in the .INF file that
contains the reference key values.

Use this function to create a list that can be used in dialog
list boxes.

OpenLogFile szFile$, fAppend%

Argument

The OpenLogFile subroutine opens a log file that the
Setup program or your script can use for writing status in­
formation.

szFile$

Specifies the path and name of the log file. If this file
does not exist, it is created.

fAppend%

Specifies whether to add information to the log file or
overwrite the existing contents of the file. Specify
one to add information and zero to overwrite infor­
mation.

98 Microsoft W~ndows Version 3.1 Setup Toolkit

ReadlnfFile subroutine

ReadInfFile szFile$

Arguments

Comments

RemoveDir subroutine

The ReadInfFile subroutine opens and reads the contents
of the specified .INF file.

szFile$

Specifies the path and name of the .INF file.

The script (.MST) file should call this subroutine to read
an .INF file before attempting to call any of the proce­
dures that access .INF file information.

RemoveDir szDir$, cmo%

Arguments

See Also

The RemoveDir subroutine deletes the specified direc­
tory.

szDir$

Specifies the path and the name of the directory to be
deleted.

cmo%

Specifies the command option flag. You can use ei­
ther cmoVital or cmoNone for the command option
flag.

Appendix B, "Command Option Flags," for a list of com­
mand option flags and advice on their use.

Chapter 5 Setup Script Procedures 99

RemoveFile subroutine

RemoveFile szFile$, cmo%

Arguments

See Also

RemovelniKey subroutine

The RemoveFile subroutine deletes the specified file.

szFile$

Specifies the full path of the file you want to delete.

cmo%

Specifies the command option flag. You can use
cmoVital, cmoForce, or cmoNone.

Appendix B, "Command Option Flags," for a list of com­
mand option flags and advice on their use.

RemovelniKey szFile$, szSect$, szKey$, cmo%

Arguments

The RemovelniKey subroutine deletes a symbol from
the specified .INI file.

szFile$

Specifies the name of the .INI file. If the .INI file is
WIN.INI, you do not have to provide the full path.

szSect$

Specifies the name of the section where the symbol
to be deleted exists. szSect$ must be a non-empty
string.

szKey$

Specifies the name of the symbol you want to delete.

100 Microsoft Windows Version 3.1 Setup Toolkit

See Also

cmo%

Specifies the command option flag. You can use
cmoVital or cmoNone.

Appendix B, "Command Option Flags," for a list of com­
mand option flags and advice on their use.

RemovelniSection subroutine

RemovelniSection szFile$, szSect$, cmo%

Arguments

See Also

The RemovelniSection subroutine deletes the specified
section from the designated .INI file.

szFile$

Specifies the name of the .INI file. If the .INI file is
WIN.INI, you do not have to provide the full path.

szSect$

Specifies the name of the section you want to delete.
szSect$ must be a non-empty string.

cmo%

Specifies the command option flag. You can use
cmo Vital or cmoNone.

Appendix B, "Command Option Flags," for a list of com­
mand option flags and advice on their use.

Chapter 5 Setup Script Procedures 101

RemoveSymbol subroutine

RemoveSymbol szSymbol$

Argument

Comments

RenameFile subroutine

The RemoveSymbol subroutine deletes a symbol from
the Symbol Table.

szSymbol$

Specifies the name of the symbol in the Symbol
Table.

Use this subroutine to free up space occupied by unused
symbols and their associated values in the Symbol Table.

RenameFile szFullPath$, szRename$

Arguments

Comments

The RenameFile subroutine renames the specified file.

szFullPath$

Specifies the full path and name of the file you want
to rename.

szRename$

Specifies the new name for the file.

The renamed file is placed in the same directory as the
original file (as specified by szFuliPath$). This subrou­
tine is the same as the BackupFile subroutine.

102 Microsoft Windows Version 3.1 Setup Toolkit

ReplaceListitem subroutine

ReplaceListItem szSymbol$, n%, szItem%

Arguments

RestartListEmpty function

The ReplaceListItem subroutine replaces an item in the
list associated with the specified symbol.

szSymbol$

n%

Specifies the name of the symbol whose associated
value is the list.

Specifies the index (one-based) of the item to be re­
placed.

szItem%

Specifies the new item.

Integer% = RestartListEmpty 0

Return Value

Comments

See Also

The RestartListEmpty function determines if any files
have been added to _MSSETUP.BAT that need to be
copied or deleted by the ExitExecRestart function when
Windows is restarted.

If the restart list is empty, the return value is one. Other­
wise, the return value is zero.

Setup adds files to _MSSETUP.BAT as a result of read­
ing the .INF file and finding files identified as a system
resource (that is, the file description contains a SYSTEM
flag). If the file is newer than the file on the user's sys­
tem, Setup adds its name to _MSSETUP.BAT.

Appendix A, "INF File Format," for more information
about the SYSTEM flag.

Chapter 5 Setup Script Procedures 103

RestoreCursor subroutine

RestoreCursor hPrev%

Argument

The RestoreCursor subroutine restores the previous cur­
sor state.

hPrev%

Specifies the identification number of the previous
cursor state. Use the return value from the
ShowWaitCursor function for this parameter.

Search ForLocation ForShared Fi Ie function

String$ = SearchForLocationForSharedFile (szRegDbKey$, szWinlniSect$,
szWinlniKey$, iWinlniField%, szDefault$, szVersion$)

Arguments

The SearchForLocationForSharedFile function uses in­
formation from the Registration Database and WIN.INI
to determine where the specified shared file should be in­
stalled and whether the file will actually be copied.

szRegDbKey$

Specifies the Registration Database key that might
have an associated value that is the path of an exist­
ing copy ofthe file. You can tell the function to ig­
nore the Registration Database in its search by speci­
fying an empty string for this argument. If you pro­
vide a non-empty string for this argument, you must
include the MSREGDB.INC file. Otherwise, the ar­
gument will be ignored.

sz WinlniSect$

Specifies the section in the WIN.IN! fIle that might have
an entry that is the path of an existing copy of the fIle.
You can tell the function to ignore WIN.IN! in its search
by specifying an empty string for this argument.

104 Microsoft Windows Version 3.1 Setup Toolkit

Return Value

Comments

szWinlniKey$

Specifies the key for the WIN.INI file that will con­
tain a path to an existing copy of this shared file.

iWinlniField%

Specifies the index (one-based) of the field in the
WIN.INI line entry that contains a path to an existing
copy of this shared file.

s?Default$

Specifies the default path of the file if no existing
copy can be found.

szVersion$

Specifies the version for the new copy of the file as a
string of 1 to 4 integers separated by periods; for ex­
ample,3.1.0.16.

The return value is the full path for installing the shared
file. This function also sets the global variable
SharedFileNeedsCopying to one (if the file should be
copied) or zero (if the file shouldn't be copied).

To determine a location for the shared file, the function
first uses the Registration Database path. If this file
doesn't exist, the function will retrieve only the filename
from the Registration Database and perform a FileOpen
function to try to determine the path. If either of these
methods works and the file found is writable or newer,
the function returns that path. If these methods fail, the
function uses the path from the WIN.INI field. If that file
doesn't exist in the WIN.INI field, the function uses the
path from WIN.INI and searches by using a FileOpen
function. If these two methods don't succeed, s?Default$
will be used.

After determining where the file should be installed, the
function then determines if the file will be copied later
when the CopyFileslnCopyList subroutine is called.
SearchForLocationForSharedFile then sets the value of
the global variable SharedFileNeedsCopying accord­
ingly.

SetAbout subroutine

Chapter 5 Setup Script Procedures

To use this function, you must include the
MSDETECT.INC and MSSHARED.INC files in the
Setup script (.MST) file.

105

SetA bout szString 1 $, szString2$

Arguments

SetBeepingMode function

The SetAbout subroutine adds the specified strings to
Setup's About dialog box.

szStringl$

Specifies the first string you want to add to the dialog
box, typically the product name.

szString2$

Specifies the second string you want to add to the
dialog boxtypically the product version, the date, or
the copyright notice.

Integer% = SetBeepingMode (mode%)

Argument

The SetBeepingMode function allows the Setup script to
specify whether error messages, requests for diskettes,
and similar messages will be accompanied by a beep.

mode%

Specifies the beeping mode value. If mode% is one,
beeping mode is on and the message will generate
beeps. If mode% is zero, beeping mode is off.

106 Microsoft Windows Version 3.1 Setup Toolkit

Return Value

SetBitmap subroutine

The return value is the value of the previous beeping
mode.

SetBitmap szDll$, Bitmap%

Arguments

Comments

The SetBitmap function defines the logo bitmap used in
the background of the frame (or main) window.

szDll$

Specifies the name of the .DLL file that contains the
bitmap resource.

Bitmap %

Specifies the identification number of the bitmap re­
source.

It is best to use a plain, white bitmap. This subroutine au­
tomatically adds a shadow down the right side to give the
impression that the bitmap is above the plane of the back­
ground.

SetCopyGaugePosition subroutine

SetCopyGaugePosition x%,y%

The SetCopyGaugePosition subroutine specifies the dis­
play position of the Copy Gauge dialog box during subse­
quent CopyFileslnCopyList subroutine calls.

Arguments

Comments

SetCopyMode function

x%

y%

Chapter 5 Setup Script Procedures 107

Specifies the x coordinate in dialog units relative to
the upper-left corner of the client window frame. A
value of I tells the subroutine to precisely center the
dialog box horizontally.

Specifies the y coordinate in dialog units relative to
the upper-left corner of the client window frame. A
value of I tells the subroutine to center the dialog
box vertically one-third of the distance from the top
margin.

By default, the Copy Gauge dialog box is centered over
the client window frame. However, the default position
can interfere with the display of billboard dialog boxes,
depending on how the user has resized the window, the
size of the monitor, and so on. Use this subroutine to con­
trol the position of the Copy Gauge dialog box.

Integer% = SetCopyMode (wMode%)

Argument

Return Value

Comments

The SetCopyMode function specifies whether the files
from the copy list will actually be copied.

wMode%

Specifies whether copy mode is on (one) or off
(zero). If the copy mode is off, the files will not be
copied when the script calls the
CopyFilesInCopyList subroutine.

The return value is the prior value for the copy mode.

Use this function to streamline testing of your Setup
script.

108 Microsoft Windows Version 3.1 Setup Toolkit

SetDecompMode function

Integer% = SetDecompMode (wMode%)

Argument

Return Value

Comments

The SetDecompMode function specifies whether com­
pressed files will be decompressed when they are copied.

wMode%

Specifies whether decompression is on (one) or off
(zero). When decompression is off, the
CopyFilesInCopyList subroutine copies compressed
files byte for byte without decompressing them.

The return value is the prior value for decompression.

You can use this function to install compressed files on a
network drive.

SetRegKeyValue subroutine

SetRegKeyValue szKey$, szValue$

Arguments

Comments

The SetRegKeyValue subroutine replaces the value as­
sociated with the specified Registration Database key
with the specified value.

szKey$

Specifies the name of the key. All keys are assumed
to be subkeys of HKEYS_CLASSES_ROOT; there­
fore, you only have to specify the name of the key.

szValue$

Specifies the new value you want to associate with
the key.

To use this subroutine, you must include the
MSREGDB.INC file in the Setup script (.MST) file.

SetRestartDir subroutine

SetRestartDir szDir$

Argument

SetSilentMode function

Chapter 5 Setup Script Procedures 109

The SetRestartDir subroutine establishes the restart di­
rectory where _MSSETUP.EXE and _MSSETUP.BAT
(used to restart the system) will be located.

szDir$

Specifies the name of the directory. If szDir$ does
not exist, it is created.

Integer% = SetSiIentMode (mode%)

Argument

Return Value

The SetSiIentMode function allows the Setup script to
determine whether or not the copy gauge, error messages,
billboards, and so on will be displayed.

mode%

Specifies the silent mode value. If mode % is one, si­
lent mode is on and the Setup procedures cannot dis­
play message-related dialog boxes. If mode % is zero,
silent mode is off.

The return value is the value of the previous silent mode.

110 Microsoft Windows Version 3.1 Setup Toolkit

SetSymbolValue subroutine

SetSymbolValue szSymbol$, szValue$

Arguments

Comments

SetTitle subroutine

SetTitle szTitle$

Argument

The SetSymbolValue subroutine associates a value with
a symbol in the Symbol Table.

szSymbol$

Specifies the name of the symbol in the Symbol
Table.

szValue$

Specifies the value you want to associate with the
symbol.

Use this subroutine to store information that can be
shared among .DLL and .MST file procedures in the
Symbol Table.

The SetTitle subroutine defines the title used in the frame
(or main) window.

szTitle$

Defines the title used in the frame window.

Chapter 5 Setup Script Procedures 111

ShowProgmanGroup subroutine

ShowProgmanGroup szGroup$, Cmd%, cmo%

Arguments

Comments

See Also

ShowWaitCursor function

The ShowProgmanGroup subroutine minimizes, maxi­
mizes, or restores the window of the specified Program
Manager group.

szGroup$

Specifies the name of the Program Manager group.

Cmd%

Specifies the operation you want to perform on the
group window. To activate and display the group
window, use one; to activate and display the group
window icon, use two; and to activate and display the
group window maximized, use three.

cmo%

Specifies the command option flag. You can use
cmoVital or cmoNone.

Creating a new item in a Program Manager group causes
the Program Manager to become active and its window to
come to the front. You can use the ShowProgmanGroup
subroutine to determine what state the group window will
be in when it comes to the front.

Appendix B, "Command Option Flags," for a list of com­
mand option flags and advice on their use.

Integer% = ShowWaitCursor 0
The ShowWaitCursor function loads and displays the
wait cursor.

112 Microsoft Windows Version 3.1 Setup Toolkit

Return Value

Comments

The return value is the previous cursor state.

Use the return value of this function for the hPrev% pa­
rameter in the RestoreCursor subroutine.

StampResource subroutine

StampResource szSection$, szKey$, szDst$, wResType%, wResld%, szData$,
cbData%

Arguments

The StampResource subroutine modifies the first
cbData% bytes of a file resource with the specified data.

szSection$

Specifies the section of the .INF file that contains the
description line of the file to be modified.

szKey$

Specifies the reference key to the description line of
the file to be modified.

szDst$

Specifies the destination directory where the file to
be modified resides.

wResType%

Specifies the resource identification type.

wResld%

Specifies the resource identification number.

szData$

Defines the data that will be used to modify the re­
source.

UIPop subroutine

UIPopn%

Argument

Comments

UIPopAIl subroutine

UlPopAIl

Chapter 5 Setup Script Procedures

cbData%

Specifies how many bytes of data will be replaced
with szData$.

113

The UIPop subroutine destroys dialog boxes and re­
moves them from the top of the dialog stack in memory.

n%

Identifies the number of dialog boxes you want to de­
stroy and remove from the dialog stack.

If n% is greater than the number of dialog boxes in the
dialog stack, the subroutine will destroy all the dialog
boxes in the dialog stack.

The UIPopAll subroutine destroys all dialog boxes and
removes them from the dialog box stack in memory.

114 Microsoft Windows Version 3.1 Setup Toolkit

UIStartDlg function

String$ = UIStartDlg (szDll$, idDlg%, szDlgProc$, idHelpDlg%,
szHelpProc$)

Arguments

Return Value

Comments

The UIStartDlg function launches a dialog box and adds
it to the top of the dialog stack in memory.

szDll$

Specifies the name of the .DLL file that contains the
dialog box template resources and procedures.

idDlg%

Specifies the identification number of the dialog box
template resource in the .DLL file.

szDlgProc$

Specifies the name of the dialog box procedure ex­
ported in the .DLL file.

idHelpDlg%

Specifies the identification number of the associated
help dialog box template resource in the .DLL file.

szHelpProc$

Specifies the name of the associated help dialog box
procedure exported in the .DLL file.

The function returns a string that is the value associated
with the DLGEVENT symbol at the time the dialog ends.

If the dialog box is modeless, the function returns imme­
diately; if the dialog box is modal, the function returns af­
ter a user action.

Chapter 5 Setup Script Procedures 115

WriteToLogFile subroutine

WriteToLogFile szStr$

Argument

Comments

The WriteToLogFile subroutine writes the specified
string to the log file.

szStr$

Defines the information you want to write to the log
file. The string is written and terminated with a new­
line character.

If the log file is not open, this subroutine does nothing.

Appendix A: INF File Format

This appendix provides information about the format of the .INF file. You do
not need to create the .INF file yourself; the Disk Layout Utilities will do it for
you. Refer to the information below when you are using the Disk Layout Utili­
ties to define the properties of installable files.

The Setup toolkit contains three sample .INF files: SAMPLEl.INF,
SAMPLE2.INF, and SAMPLE3.INF. Look at these files for examples of typical
.INF files.

An .INF file will have at least three sections:

• Source Media Descriptions, which describes each of the disks in the installa­
tion set

• Files, which lists each of the files that will be installed by Setup

• Default File Settings, which describes the defaults Setup uses to install a file

The Files section can be split into as many sections as you want; you specify
these section names using the Disk Layout Utilities. You can also specify one or
more sections for files that you want to remove during the installation. Through­
out the .JNF file, you will see lines that begin with a semicolon at the left mar­
gin. These are comment lines.

Source Media Descriptions

This section of the .INF file contains one line for each of the disks you use to in­
stall your product. Source Media Description lines must be indented and contain
four quoted strings, separated by commas:

• The disk identification number, which is a unique integer between 1 and 999

118 Microsoft Windows Version 3.1 Setup Toolkit

Files

• The disk label, which you create using the Disk Layout Utilities

• The tag filename, which is the name of a file that resides on the disk

• The relative path for SETUP.EXE. This fourth string exists only if the
installable files reside on a network disk drive

The following is the Source Media Descriptions line for the first installation
disk. Its tag file is SETUP.EXE:

"l","My Disk Label l","SETUP.EXE,""

Each line in this section of the .INF file has one of two formats:

• The first format begins at the left margin with the identification number for
the disk on which the file resides, followed by the filename and a list of nine­
teen file properties, separated by commas (see the table below). These entries
are not enclosed in quotation marks. The following line, from
SAMPLEI.INF, is a typical example of this format:

1, bldcui\dialogs.res", ,1992-01 30"" ",ROOT",
13839, ,6",

• The second format begins at the left margin with a reference key enclosed in
quotation marks, followed by an equal sign and an unquoted disk identifica­
tion number. (A disk with that identification number must have a description
line in the Source Media Descriptions section.) The reference key and disk
identification number are. followed by the filename and the list of file proper­
ties. The following line, from SAMPLE3.INF, describes a shared file with
the reference key CustDict (for customer dictionary) :

"CustDict" = 1, custom.dic, ",1992-01-13",
OLDER" "" SHARED, 69632, '" 0.2.0.2,

Appendix A INF File Format 119

The following table lists the file properties that can be included in a file descrip­
tion line:

Property Possible values Meaning

Append <empty> Don't append to an existing file,
overwrite it instead.

valid filename Append to the specified file.
Note: You cannot append the installable
file to an existing file if you have
specified Rename, Root, or Backup.

Backup <empty> Use the default setting.

* Back up the file to the same filename
with a .BAK extension.

valid filename The filename you want to use for the
backup copy.

Copy COpy Copy the file onto the user's hard disk or
network server.

!COPY Don't copy the file.

Date <empty> Use the default setting.
YYYY-MM-DD Specify a date with a range from

1980-01-01 through 2099-12-31.

Decompress <empty> Use the default setting.
DECOMPRESS Decompress the file.
!DECOMPRESS Don't decompress the file.

Destination <empty> Use the destination directory specified
in the script (for example, in the
AddSectionFilesToCopyList

full path of a valid subroutine).
directory Override the specified destination

directory with this one.

Overwrite <empty> Use the default setting.
ALWAYS For information about these values, see
NEVER Chapter 4, "Using the Disk Layout
OLDER Utilities. "
UNPROTECTED

120 Microsoft Windows Version 3.1 Setup Toolkit

ReadOnly <empty> Use the default setting.
READONLY Set read-only attributes on the file after

it has been installed.
!READONLY Don't set read-only attributes.

Remove <empty> Copy the file using other properties.
REMOVE Remove the file from the user's hard

disk or network server.
!REMOVE Copy the file using other properties.

Rename <empty> Use the specified filename when the file
is copied.

valid filename Use the source filename when the file is
copied.
Note: You cannot specify a filename for
this property if you have also specified
Root or Append.

Root <empty> Use the default setting.
ROOT Strip any subdirectories from the filename

when the file is copied.
!ROOT Don't strip subdirectories from the

filename when the file is copied.
Note: You cannot specify Root or Append
if you have specified that the file be
renamed when it is copied.

SetTimeStamp <empty> Use the default setting.
SETTIME Use the DATE property.
!SETTIME Use the current system time.

Shared SHARED Treat the file as if it is a shared file -- that
is, an existing version of it may be in use
during installation.

<empty> or Do not treat the file as if it is a shared
!SHARED file.

Size integer Size of the file in bytes (uncompressed).

System SYSTEM This is a system file; therefore, it will be
replaced during system restart.

<empty> or Treat the file as if it is not a system file.
!SYSTEM

Appendix A INF File Format 121

TimeToCopy <empty> Use the default setting.
interger Increment the progress indicator by

integers. This is an arbitrary number of
time units relative to the other file
description lines.

Reserved <empty> This is a reserved field and must be
empty.

Version <empty> There is no version resource in source
file.

1 to 4 integers The version of the file. For information
separated by about this format, see the Microsoft
periods Windows SDK documentation.

Vital <empty> Use the default setting.
VITAL The installation will fail if this file cannot

be successfully installed.
!VITAL The installation will not fail if this file

cannot be successfully installed.

Table A.1 File Properties

Default File Settings

This section contains default values that Setup uses if a file description line in
the .INF file has no entry for the field. These lines always begin at the left mar­
gin with a symbol name enclosed in quotation marks, followed by an equal sign
and another string enclosed in quotation marks that is the value associated with
the symbol. The value is required but may be an empty string.

The following line is an example of a default setting from SAMPLEl.INF:

The following table lists the default settings.

122 Microsoft Windows Version 3.1 Setup Toolkit

Attribute/Symbol Possible values or format Default

STF_BACKUP "*" = create a .BAK file or " "
" " = don't create one

STF_COPY "YES" = copy or "YES"
" " = don't copy

STF _DECOMPRESS "YES" = decompress or " "
" " = don't copy

STF _OVERWRITE "ALWAYS" = always overwrite an "ALWAYS"
existing version of the file,
"NEVER" = never overwrite an
existing version of the file,
"OLDER" = overwrite the existing
version of the file if it is older, or
"UNPROTECTED" = overwrite the
existing version of the file if it is not
write-protected

STF _READONL Y "YES" = when the file is copied, set " "
the read-only file attribute or
" "= do not set the read-only file
attribute

STF_ROOT "YES" = when copying the file, " "
strip any subdirectories from the
path of the file in the .INF file
description or
" " = use the entire path for the file
in the .INF file decription

Appendix A INF File Format 123

STF _SETTIME "YES" = use the contents of the "YES"
Date file property in the .INF file
description to set the creation date
of the copied file or
" " = leave the creation date as is
(the time at which the file was
copied onto the users hard disk)

STF_TIME non-negative integer = use this value of Size
number to calculate the display of
the copy gauge or
"" = use the value entered for the
Size file property in the .INF file
decription

STF_VITAL "YES" = this is a vital file that must "YES"
be successfuly copied to the users
hard disk or the installation will fail;
or
" "= the file is not vital to the
success of the installation

Table A.2 Default File Settings

Appendix B: Command Option Flags

This appendix provides a list of the command option flags that you can specify
as arguments for many of the Setup script procedures. Use the list below to de­
termine which command option flag to use for a function or subroutine. You can
use combinations of command option flags with logical operators (such as AND
or OR). For more information about Setup procedures and which ones use com­
mand option flags, see Chapter 5, "Setup Script Procedures."

Name Meaning

cmoVital This function must be successfully completed or
the installation will fail and Setup will be
terminated.

cmol)ecompress The file should be decompressed as it is copied.
If this option is not specified, the file will be
copied byte by byte, whether or not it is
compressed.

cmoTimeStamp Set the timestamp on the file after it has been
copied.

cmoReadOnly Set a read-only attribute on the file after it has
been copied.

cmoBackup Back up any existing version of the file (using
the same filename with a .BAK extension)
before the source file is copied onto the user's
hard disk or network server.

cmoForce Force the removal of a file from the user's hard
disk or network server, even if it has a file
attribute ofread-only.

126 Microsoft Windows Version 3.1 Setup Toolkit

cmoOverwrite Overwrite any existing version of the file on the
user's hard disk or network server. Or, overwrite
the entry in the .INI file.

cmoAppend Append the file to the existing file on the user's
hard disk or network server rather than replacing
the existing file. Or, append the value to the
existing value in the .INI file.

cmoPrepend Prepend the value to the existing .INI value
rather than replacing the value.

cmoNone No command option flag is specified.

cmoAll All command option flags are specified.

Table B.1 Command Option Flags

Index

A
About

command, 41
dialog box for Setup, 105

AddBlankToBillboardList, 48
AddDos5Help, 49
AddListItem, 49
AddSectionFilesToCopyList, 50
AddSectionKeyFileToCopyList, 51
AddSpecialFileToCopyList, 51
AddToBillboardList, 52
Application frame window for

Setup, 92
Assert, 10
Associating a value with a sym­

bol, 110
AUTOEXEC.BAT, 24

B
Backing up a file, 53
Backup Existing File option

(Dsklayt), 38
BackupFile, 53, 101
Basic components of a script

file, 24
Billboard dialog box

adding a hidden dialog box, 48
adding to the end of the global

list, 52
deleting, 54
displaying, 109

Bitmap logo file, 26
Bootstrapper program,
BUFFERS, 69

c
C compiler, 8
C run-time libraries, ii
CbGetListltem, 11
CbGetSymbolValue, 12
Check For Version option

(Dsklayt), 37

ClearBillboardList, 54
ClearCopyList, 54
CloseLogFile, 54
Command option flags, defined/125
Compiling dialog box procedures, 7
Compress option (Dsklayt), 37
COMPRESS.EXE utility, 43
Compressed files, 30, 108
CONFlG.SYS, 68-70, 95
Conserving memory, 31
Copy gauge, 106, 109
Copy list

adding to, 50-52,
clearing, 54
copying the files listed in, 55,

107
determining the amount of disk

space for, 70
printing the contents of, 65

CopyFile, 54
CopyFilesInCopyList, 32, 48,

52, 55, 71, 104, 106-108
CreateDir,56
CreateIniKeyValue, 56
CreateProgmanGroup, 57
CreateProgmanItem, 58
CreateRegKey, 59
CreateRegKeyValue, 60
CreateSysIniKeyValue, 60
CUI.H, 7, 8

D
DEBUG flag, 1, 10, 24
Debugger, 1
Decompress option (Dsklayt), 38
Decompressing files, 108
Default Files Section, See .INF file
Default file settings, 117, 121
DeleteRegKey, 61
Designing dialog boxes, 7-18
Destination directory, 43, 54
Dialog box

creating or changing, 7
closing, 14

constants, 26
controls, adding, modifying, and

deleting, 7
destroying, 113
functions, 10-18
launching, 114
procedures, 4, 7
removing from the stack, 113
templates 7-8

DIALOGS.DLG, 1, 7-8
DIALOGSH, 7-8
DIALOGS.RC, 7
DIALOGS.RES, 1, 7-8
Directory

creating, 56
deleting, 98
structure of installab1e files, 3

Disk
identification number, 117
images, creating and updat­

ing, 33, 41
labels, 118
space, determining how much is

needed, 23, 70
space, free 71

Disk Labels command
(Dsklayt), 39

Disk Layout Utilities, 2, 4, 33-
34, 117

Diskcopy command, 42
DLGEDIT.EXE, 7
DLGEVENT symbol, 114
DLGPROCS.C, 1, 4, 7-8
.DLL files,

creating, 31
included with Setup, 2

DoesDirExist, 62
DoesFileExist, 62
DoesIniKeyExist, 63
DoeslniSectionExist, 63
DoesRegKeyExist, 64
DoMsgBox, 13,64
DOSHELP.HLP, 49
Dsklayt program, 2,33-41
Dsklayt2 program, 2,41-43
DumpCopyList, 65

128 Microsoft Windows Version 3.1 Setup Toolkit

E
Enhanced mode, 90
Environment variable, 68, 73
Exit command (Dsklayt), 39
ExitExecRestart, 32, 66, 102

F
FAddListItem, 14
FCheckDlgProc, 10
FCloseHelp, 14
FCustInstDlgProc, 10
FEditDlgProc, 10
FHandleOOM, 15
FHelpDlgProc, 10
File Attributes option (Dsklayt), 37
File Destination option

(Dsklayt), 36
File description, retrieving informa­

tion from, 83-84
File menu, 35, 39
File

deleting, 99
existence, determining, 62
locating, 67
properties, 118
renaming, 101
resource, 112
size, determining, 85
version, determining, 88

FileOpen, 67, 104
FILES, 69
Files section, See .INF file
FindFileInTree, 67
FindFileUsingFileOpen, 67
FindTargetOnEnvVar, 68
FInfoODlgProc, 10
FInfoDlgProc, 10
FListDlgProc, 10
FModelessDlgProc, 10
FMultiDlgProc, 10
FQuitDlgProc, 10
FRadioDlgProc, 10
frame window

bitmap for, 106
setting the title, 110
See also Main window

FRemoveSymbol, 15
FReplaceListltem, 16
FSetSymbolValue, 17

G
GetConfigLastDrive, 68
GetConfigNumBuffers, 69
GetConfigNumFiles, 69
GetConfigRamdriveSize, 69
GetConfigSmartdrvSize, 70
GetCopyListCost, 70
GetDateOfFile, 71
GetDayFromDate, 72
GetDOSMajorVersion, 72
GetDOSMinorVersion, 73
GetEnvVariableValue, 73
GetFreeSpaceForDrive, 74
GetHourFromDate, 74
GetIniKeyString, 75
GetListItem, 75
GetListLength, 76
GetLocalHardDrivesList, 76
GetMinuteFromDate, 77
GetMonthFromDate, 77
GetNetworkDrivesList, 78
GetNthFieldFromIniString, 78
GetNum WinApps, 79
GetParallelPortsList, 79
GetProcessorType, 80
GetRegKeyValue, 80
GetRemovableDrivesList, 81
GetScreenHeight, 81
GetScreen Width, 82
GetSecondFromDate, 82
GetSectionKeyDate, 83
GetSectionKeyFilename, 83
GetSectionKeySize, 84
GetSectionKeyVersion, 84
GetSerialPortsList, 85
GetSizeOfFile, 85
GetSymbolValue, 86
GetTotalSpaceForDrive, 86
GetTypeFaceN ameFromTTF, 87
GetValidDrivesList, 87
GetVersionNthField, 84, 88
GetVersionOfFile, 88
GetWindowsDir, 89
GetWindowsMajorVersion, 89
GetWindowsMinorVersion, 89
GetWindowsMode, 90
GetWindowsSysDir, 90
GetYearFromDate, 90
Global billboard list, 48, 52, 54
Group window, displaying, 111

H
Handle

of the frame window, 92
retrieving for Setup, 92

Has87MathChip, 91
HasMonochromeDisplay, 91
HasMouseInstalled, 92
HdlgShowHelp, 17
Help

dialog box, displaying, 17
menu (Dsklayt), 35, 41

Hidden dialog box, adding, 48
HinstFrame, 92
HKEYS_CLASSES_ROOT, 59-60,

64,80, 108
HwndFrame, 92

Icon file, 59
Identification numbers

dialog boxes, 8
help text, 8

Include files, for Setup, 25
.INF file

automatically updating, 5
creating, 34, 41
Default File Settings section,

121
Files section, 28, 118
format described, 117-123
reading its contents, 26
related proce-

dures, 83, 84, 96, 98
Source Media Descriptions

section, 117
.INI file

creating an entry for, 56
deleting an entry from, 99
deleting a section, 100
related procedures, 60, 75, 99
section, determining its

existence, 63
Ini tialization

of variables, 26
Setup script, 26

Install subroutine (Setup script), 27
Install-Time options (Dsklayt), 35,

38

Installable files
directory structure of, 3
list of, 117

Installation disks
creating images for, 5
descriptions of, 117
See also Disk

Installation script, creating, 4, 19
IsDirWritable, 93
IsDriveLocalHard, 93
IsDriveNetwork, 94
IsDriveRemovable, 94
IsDriverInConfig, 95
IsDriveValid, 95
IsFileWritable, 96
Is WindowsShared, 96

J
Just Show New option

(Dsklayt), 36

L
LASTDRIVE, 68
Layout file, creating, 34, 42
Layout-Time options (Dsklayt), 35
Lists

adding a new item to, 14,49
copying an item into a

buffer, 11
determining the number of

items, 18, 76
replacing an item, 16, 102
retrieving an item, 75

Log file
closing, 54
opening, 97
writing to, 115

Logical operators, 125
Logo bitmap, 106

M
Main window, for Setup, 92

See also Frame window
MAKEFILE, 7-8
MakeListFromSectionKeys, 96

Mark as Read Only option
(Dsklayt), 38

Math coprocessor, 91
MDLLCEW.Lm, ii
Message boxes, 2, 13,65

See also Dialog boxes
Metacommands, 25
Microsoft C compiler, ii
Microsoft Test, 1
Minimum hardware requirements,

for Setup, 23
Monochrome display, checking

for, 91
Mouse, checking for, 92
MSCOMSTF.DLL, described, 22
MSCUISTF.DLL, 7, 8, 22, 29-30
MSDETSTF.DLL, described, 22
MSINSSTF.DLL, described, 22
MSREGDB.INC

described, 22
related procedures, 59-

61, 64, 81, 103, 108
_MSSETUP.BAT

related procedures, 66, 102, 109
usage, 32

_MSSETUP.EXE
described, 2, 22
adding to SETUP.LST, 32
related procedures, 66, 109
usage, 29

MSSHARED.INC, 105
MSSHLSTF.DLL, described, 22
_MSTEST.EXE, 1, 22, 29
MSUILSTF.DLL, described, 22

N
Network drive, 94
Network installation, 42
New command (Dsklayt), 39

o
Open command (Dsklayt), 39
OpenLogFile, 97
Options menu (Dsklayt), 35, 39
Out of memory message, display-

ing, 15
Overwrite option (Dsklayt), 38

Index 129

p
Processor type, determining, 80
Program Manager group, 27, 111
Program Manager group, creat-

ing, 57
Put In Section option (Dsklayt), 38

R
RAMDRIVE.SYS, 69
ReactivateSetupScript, 18
ReadInfFile, 50-52, 98
README.TXT,22
Real mode, 90
Reference key

creating a list of, 97
determining its existence, 63
including in the .INF file

description, 118
including in the copy list file

description, 51
option (Dsklayt), 37

Registration Database
creating an entry for, 59-60
deleting an entry for, 61
determining if an entry exists, 64
retrieving the value of an entry,

80
searching for a file using the

value of an entry, 103
setting the value of an entry, 108

Removable disk, determining, 81,
94

Remove Files List command
(Dsklayt), 40

RemoveDir, 98
RemoveFile, 99
RemoveIniKey, 99
RemoveIniSection, 100
RemoveSymbol, 101
Rename Copied File option

(Dsklayt), 38
RenameFile, 53, 101
ReplaceListItem, 102
Resource index, 59
Restart directory, 109
RestartListEmpty, 32, 66, 102
RestoreCursor, 103, 112

130 Microsoft Windows Version 3.1 Setup Toolkit

Returning control to the Setup
script, 18

Returning from a dialog box
procedure, 18

s
Sample .INF files, 4

See also .INF file
Sample dialog boxes, 7

See also Dialog boxes
Sample files

described, 19
running, 23

SAMPLEl.INF, 4, ll7
SAMPLEl.MST, 1, 4, 22
SAMPLE2.INF, 4, 117
SAMPLE2.MST, 1, 4, 22
SAMPLE3.INF, 4, 117
SAMPLE3.MST, 1, 4, 22
Save As command (Dsklayt), 39
Save command (Dsklayt), 39
Screen

height, determining, 81
width, determining, 82

SearchForLocationForSharedFile, 103
Set File Date option (Dsklayt), 37
SetAbout, 105
SetBeepingMode, 105
SetBitmap, 106
SetCopyGaugePosition, 106
SetCopyMode, 107
SetDecompMode, 108
SetRegKeyValue, 108
SetRestartDir, 66, 109
SetSilentMode, 109
SetSymbolValue, 50, 110
SetTitle, 110
Setup procedures, See each

procedure name
Setup script, creating, 2, 19
SETUP.EXE, 1, 4, 22, 118
SETUP.INF, 42
SETUP.LST,

described, 4, 19, 28-30
Files section, 29
Params section, 28

SETUP APLINC, 22, 29

SHARED attribute, 32
Shared files

determining, 3
installing, 31
option (Dsklayt), 37
related procedures, 51, 103-104

SharedFileNeedsCopying global
variable, 104

ShowProgmanGroup, 111
ShowWaitCursor, 103, 111
SMARTDRV.SYS, 70
Source media descriptions, See .INF

file
Specifying file properties, 33
StampResource, 112
Standard mode, 90
STF_ACTIVATEAPP, 8
STF _CWDDIR, 30
STF _REINITDIALOG, 8
STF _SRCDIR, 30, 50, 51, 52
STF_SRCINFPATH, 30
Switching to another application, 8
Symbol Table

adding, setting the value of, or
removing symbols, 14-18

copying a symbol value into a
buffer, 11-12

described,30-31
determining the length of a list,

76
determining the value of a

symbol,86
inserting a symbol-value pair in,

17
removing a symbol from, 15,

101
setting the value of a symbol,

110
use by DLGPROCS.DLG, 8

SYSTEM attribute, 32
System files

determining, 2-3
installing, 24,31-32,37,66

SYSTEM flag, 102
System requirements

for Setup, ii
for the installed product, 23

T
Tag filename, ll8
Temporary directory, 1, 4, 28
TESTDRVR.HLP, 22, 25, 31
Testing your installation script, 5,

24
Title for frame window, 26,110
TrueType fonts, 87

u
UIPop, 113
UIPopAll, 113
UIStartDlg, 8, 114
User interface library, 7
User-defined parameters, 3
UsGetListLength function, 18

v
VER.DLL, 22, 23, 24
Version number, of Windows, 89
Version number, of MS-DOS, 72-

73
Vital files, 32, 37

w
WIN.INI

adding a symbol-value pair to,
60

determining if a key exists in, 63
removing a key from, 99
removing a section from, 100
retrieving the value associated

with a key in, 75
searching for a file with a path

from, 103
updating, 24

Windows Dialog Editor, 1, 4, 7, 8
WINDOWS directory, 89
Windows message box, launch-

ing, 13, 64
Windows system

directory, determining, 90
Writable disk, 36, 42
WriteToLogFile, 115
WS_CHILD style, 9

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

0392 Part No. 30213

