Microsoft. Windows
Device Development Kit

development tools for providing Microsofte Windows device support

Virtual Device Adaptation Guide

VERSION 3.0

for the MS-DOS < Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this docu-
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the license
or nondisclosure agreement. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying and record-
ing, for any purpose without the express written permission of Microsoft.

©Copyright Microsoft Corporation, 1989. All rights reserved.
Simultaneously published in the U.S. and Canada.

Printed and bound in the United States of America.

Microsoft, MS, MS-DOS, GW-BASIC, QuickC, CodeView, and XENIX are registered
trademarks of Microsoft Corporation.

Paintbrush is a registered trademark of Zsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.

Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.
Tandy is a registered trademark of Tandy Corporation.

Aldus is a registered trademark of Aldus Corporation.

COMPAQ is a registered trademark of Compaq Computer Corporation.

Document No. xxxx
Part No. yyyy
10 9 87 6 5 43 21

April 1, 1990 Microsoft Confidential

Beta Release

Table of Contents
Virtual Device Adaptation Guide

Introduction to Virtual Devicescovivriiiireriennneeneaa.dX

What You Should Know Before YouStartcccivevvennennn. ix
Organization of This Documentccciiiiiiiiineiinnnnnnns ix
Notational Conventionsc.ovvvvineeneneonreeneeeeeenanans xi

PART 3 Writing Virtual Devices

Chapter 16 Overview of Windows in 386 Enhanced Mode 16-1

16.1 The Operating Environmentcoeveeerinninnnnnn. 16-1
162 Virtnal Machinesvvvvviiiernneeennnarsooseonanas 16-3
16.2.1 ThePrivilege RingsofaVM 16-3
1622 VMHandles........coovvnieiieienrenninnnnnn. 16-6
16.2.3 The Client Register Structurecovuuun. 16-6
16.3 The Virtual Machine Managerc.cvvveennnnnnnn. 16-7
164 Virtual Devicescovvvivirinrenererenorssevnceenas 16-7
164.1 VD Components AP 16-8
164.2 The Device Control Procedure 16-8
164.3 The Device Descriptor Block 16-8
165 HowVxDsWorkcciiiiiiiiiiiiinnnnnnnnnn. 16-10
16.5.1 Enhanced Windows Execution Scheduling 16-10
16.5.2 Memory Models [P N 16-14
16.5.3 SeIVICES . ivvvveiiiirieneeenaneinnseeennnas 16-15
16.54 CallbackProcedurescovevvevennnnn. 16-16
165.5 T/OPortTrapscovvvveeneenenenannanannn. 16-17
1656 LoadingSequencec..viiiiiininnn.. 16-17
165.7 VxDExamples.........coevvivriiinnnnnnncnn. 16-20
Beta Release Microsoft Confidential

April 1, 1990

iv Contents

Chapter 17 Virtual Device Programming Topics

171 WHtNg VDS ...t iiiiiii it i et ieennenanneeanns 17-1
17.1.1 Understanding the Ring 0 Memory Model 172
1712 VxDSegmentationcceoveeunnnneennnn 17-3
17.13 VxDDeclarationvvevevennnneeeennnnn. 17-3
17.14 VXD SEIVICES ...vvvrrirrernnnennneeneanaeanan 17-5
1715 VXDAPISitiiiiiiniiinnnnineeeanannnn. 17-7
172 AddingaVxDtoWindowscoovevniniiinnnnnnnnn 17-8
1721 MASMS ..ttt it 17-9
1722 LINK386cvvvereeererenennnnneneesannns 179
1723 ADDHDRcvitiiiieiinennnnnncecanennns 17-11
1724 MAPSYM32 ...ttt iiiiiiiiiiininnenenannns 17-11
173 Initializinga VXD ... ciuiiiiiiiiinnnnannnnnnnnenn 17-11
17.3.1 Real-Mode Initialization 17-11
1732 Protected-Mode Initialization 17-14
174 TrackingThe VM Statescevuiiinininennnnnnns 17-15
174.1 VM Creation and Initialization 17-15
1742 VMStateChangescovvvvnnneeennnnn. 17-15
1743 VMTerminationccovvivveeennnannnn 17-17
17.5 ExitingWindowsciiiiiiiiiiiiennncneannn 17-18
Chapter 18 The VDD and Grabber DLL............... cers
18.1 Introductionto VDDSvtiiiiii i ieiereinnnnnnenns 18-1
18.1.1 VDD MeSSageS o ovveeeeenenrnnaneennanaeannns 18-2
18.1.2 VDD I/O Trapping and Hooked Pages 18-2
18.13 VDDESficiencycviiiiiiiiinenniannnn. 18-2
18.14 VDD Development SEqUENCeovvveeneennnn. 18-3
182 Converting Your2.Xx VDDiiiiiinniinnnnnnnnnnnn 18-3
182.1 INCLUDEFIlEScvvvivviniinnnnnennnnnn, 18-3
18.2.2 Changes to the System, Grabber DLL, and Shell

Interfaces . ..ooviner ittt i e 184
18.3 The VDD Device Control Procedureccovennn.. 184
183.1 Initializationcoeeiierneennn.. 184

18.3.2 VM Creation, Initialization, Destruction, and State
Changes . .. cvii ittt i i i i i, 18-5
184 VDD SerIviCes.....uvvvvininiienrereeeerinnenninnnnnns 18-6
184.1 GrabberAPIcoiiiiiiiiiiiiiiiiieannn, 18-6

April 1, 1990

Microsoft Confidential

R VA |

Beta Release ‘

Contents v

185 TheGrabber DLLciitiiiiiiiiiiiiiieerinnennn. 18-8
18.5.1 On-Screen Selection Interfaces 18-8
18.5.2 Selection Interface Procedures 18-10
18.5.3 Non-Windows Application Painting Interfaces 18-13
18.54 Miscellaneous Interfacescconnt.. 18-15

PART 4 Virtual Device Services

Chapter 19 Memory Management Services 19-1

19.1 System Data Object Managementcceeevenn... 19-2

19.2 Device V86 Page Managementccccvvennn... 19-8

193 GDT/LDTManagementc.cvveeveeneenennnennennnns 19-11

194 SystemHeap ALlOCAtOrvvvvveereeneeeeaneeannnnnn. 19-16

19.5 SystemPage AlOCAtOrcvvivererinnneeraannneanns 19-19

19.6 Looking At Physical Device Memory in Protected Mode 19-37

19.7 Data AccessSeIvicescvieeennncneercnrannnns 19-38

19.8 Special Services For Protected Mode APIs 19-39

199 Instance DataManagementc.ocvveeeeenannnnns 19-47

19.10 Looking At V86 AddressSpacecvvvevnennnnnn. 19-51
Chapter 20 I/O Services and Macros........... Ceeeeaens ceees 20-1

20.1 Handling Different I/OTypescovvveveennennnnnnnn. 20-1

202 T/OMACIOS . iuiuuernnnneennnneennenonessnseseaannenns 20-3

203 IO SeIVICES . i ieeie e eee ittt 204

Beta Relegase

Microsoft Confidential

April 1, 1990

vi Contenls

Chapter 21 VM Interrupt and Call Services 21-1
Chapter 22 Nested Execution Services 22-1
Chapter 23 Break Point and Callback Services............... 23-1
Chapter 24 Primary Scheduler Servicesc..oovue. 24-1
Chapter 25 Time-Slice Scheduler Services 25-1
Chapter 26 Event Servicesccecvviiieserenceneocnnons 26-1
Chapter 27 Timing Servicescccvviiuiirencinrennnons 27-1
Chapter 28 Processor Fault and Interrupt Services........... 28-1
Chapter 29 Information Servicesccovviveiiannn 29-1
Chapter 30 Initialization Information Services 30-1
Chapter 31 Linked List Servicesccocvviiiiieiinenannn. 31-1
Chapter 32 Error Condition Servicescccceveenn.n. 32-1
Chapter 33 Miscellaneous Servicescoveuee. 33-1
Chapter 34 Shell Services ettt 34-1
Chapter 35 Virtual Display Device (VDD) Display Services ... 35-1

35.1 Displaying a VM’s Video Memory in a Window 35-1

352 Miscellaneous VDD SEIVICESeeuverreennennennnnns 353
Chapter 36 Virtual Keyboard Device (VKD) Services 36-1

April 1, 1990 Microsoft Confidential Beta Release

Contents vil
|

Chapter 37 Virtual PIC Device (VPICD) Services 37-1

37.1 DefaultInterruptHandlingccocvveiieennnnnn. 37-1

372 ViralizinganIRQoviiiiiiiiii ittt 37-2

37.3 Virtualized IRQ Callback Procedurescccou.... 372

374 VPICD SEIVICES . 'vevvetveereneeenesonenneensasaannens 37-5
Chapter 38 Virtual Sound Device (VSD) Services e 38-1

Chapter 39 Virtual Timer Device (VTD) Services 39-1
Chapter 40 V86 Mode Memory Manager Device Services 40-1

40.1 Initialization SErvicesccoeiiiiiiiiienninannnnn. 40-2
40.2 APITranslation and Mappingcvvveeenneenennnnn. 404
402.1 BasicAPITranslationccoevviinnnn 404
40.22 Complex APITranslationc0vunn.. 404
40.2.3 HookingTheInterruptovvveeennnennnnnn 40-5
40.24 Mapping vs. Copyingeovvvvneernnnennnnns 40-6
40.2.5 Writing Your Own Translation Procedures 40-6
4026 Sample APITranslation................ccovvunnn. 40-7

Chapter 41 Virtual DMA Device (VDMAD) Services 41-1

Appendixes

A Termsand ACronymSc.ccceeieeeeeeeeercecenceeess A-1

B Understanding Modesccouvenee. R : 1 |
B.l WindowsModesciiiiiii ittt B-1
B2 Microprocessor Modesvveiiniennnieeenetntannnann, B-1

C Creating Distribution Disks for Drivers C-1

Beta Release Microsoft Confidential April 1, 1990

vili Contents

D Enhanced Windows INT 2FH API

April 1, 1990

D.1

D2

D3

Call-InInterfaces . . oo ovv vt et iii it i i tieiaereaannnn D-1

D.1.1

Enhanced Windows Installation Check (AX=1600H) . D-1

D.1.2 Releasing Current Virtual Machine’s Time-Slice

(AX=1680h)cvvevinininnrnnneneenenennnnns D-2
D.1.3 Begin Critical Section (AX=1681h) D-3
D.14 End Critical Section (AX=1682h) D-3
D.1.5 Get Current Virtual Machine ID (AX=1683h) D-3
D.1.6 Get Device API Entry Point (AX=1684h) D-3
D.1.7 Switch VMs and CallBack (AX=1685h) D4
D.1.8 Detect Presence of INT 31H Services (AX=1686h) ...D-5
CallOut Interfaces .. .vovvveerereeeneerennennennennnnens D-5
D.2.1 Enhanced Windows and 286 DOS Extender

Initialization (AX=1605h)ccitiiiernnnn D-5
D.22 Enhanced Windows and 286 DOS Extender Exit

(AX=1606h)covvviiiiiiiiiiiiinnnennnnnn. D-8
D.23 Device Call Out API(AX=1607h) D-8
D.24 Enhanced Windows Initialization Complete

(AX=1608h)ovvvviererrnennnnnnennnennnnns D-8
D.2.5 Enhanced Windows Begin Exit (AX=1609H) D9
‘Windows/386 Version 2.xx API Compatibility D9
D.J3.1 InstallaionCheckccvvinvnnnnnennnnn. D-9
D32 Determining the Current Virtual Machine (Get VM ID) D-9
D.3.3 Critical Section Handling D-10

Microsoft Confidential

Beta Release

Introduction to Virtual Devices

This document explains how to modify existing device drivers or create new virtual dev-
ices that will work with Microsoft Windows 3.0 when running in 386 enhanced mode.

This introduction provides some background information that you should review before
using this documentation. The topics are presented in the following order:

m What you should know before you start
® Organization of this document

m Notational conventions

What You Should Know Before You Start

To program virtual devices for Windows when running in 386 enhanced mode, you should
be familiar with Part 1, “Writing Windows Device Drivers,” in the Microsoft Windows
Device Driver Adaptation Guide and the following topics. Suggested reference materials

are shown by topic:
Topics Reference
MS-DOS Duncan, Ray. Advanced MS-DOS.

Microsoft Press, P.O. Box 97017, Red-
mond WA. 98073-9717. ISBN Number:
0-914845-77-2

MS-DOS Encyclopedia. Microsoft Press,
P.O. Box 97017, Redmond WA. 98073-
9717. ISBN Number: 1-5565-174-8

Microsoft Windows 3.0, (especially the Microsoft Windows 3.0 Software
Memory Management topics) Development Kit, “Programming Topics”

Assembly-language programming for the Ahem-Wahlstrom. Intel 80386

Intel 80386 microprocessor Programmer's Reference. Intel Literature
Sales, P.O. Box 58130, Santa Clara, CA.
95052-8130. Order Number: 230985-
8130

Organization of This Document

This document is divided into the following parts and chapters:

Beta Release Microsoft Confidential April 1, 1990

x Virlual Device Adaptation Guide

April 1, 1990

Part 3, “Writing Virtual Devices,” describes the requirements of a virtual device, and the
environment of Windows when running in 386 enhanced mode. Part 3 contains the follow-
ing chapters:

Chapter 16, “Overview of Windows in 386 Enhanced Mode,” which provides the concep-
tual foundation of the Windows virtual machine environment.

Chapter 17, “Virtual Device Programming Topics,” which provides a more in-depth look
at various programming topics.

Chapter 18, “The VDD and Grabber DLL,” which describes the development of a Virtual
Display Driver (VDD) and the dynamic-link library (DLL) needed to support a video
adapter.

Part 4, “Virtual Device Services,” provides detailed descriptions of all the available serv-
ices. It consists of the following 23 chapters:

= Chapter 19, “Memory Management Services”

m Chapter 20, “I/O Services and Macros”

m Chapter 21, “VM Interrupt and Call Services”

m Chapter 22, “Nested Execution Services”

= Chapter 23, “Break Point and Callback Services”

m Chapter 24, “Primary Scheduler Services”

® Chapter 25, “Time-Slice Scheduler Services”

m Chapter 26, “Event Services”

® Chapter 27, “Timing Services”

a Chapter 28, “Processor Fault and Interrupt Services”
= Chapter 29, “Information Services”

= Chapter 30, “Initialization Information Services”

® Chapter 31, “Linked List Services”

m Chapter 32, “Error Condition Services”

= Chapter 33, “Miscellaneous Services”

® Chapter 34, “Shell Services”

» Chapter 35, “Virtual Display Device (VDD) Services”
m Chapter 36, “Virtual Keyboard Device (VKD) Services”
= Chapter 37, “Virtual PIC Device (VPICD) Services”
m Chapter 38, “Virtual Sound Device (VSD) Services”

Microsoft Confidential Beta Release

Introduction fo Virtual Devices xi

m Chapter 39, “Virtual Timer Device (VTD) Services”
= Chapter 40, “V86 Mode Memory Manager Device Services”
m Chapter 41, “Virtual DMA Device (VDMAD) Services”

Part 5, “Appendixes,” provides the following supplemental reference materials:

® Appendix A, “Terms and Acronyms”

® Appendix B, “Understanding Modes”

® Appendix C, “Creating Distribution Disks for Drivers”
® Appendix D, “Windows INT 2FH API”

Notational Conventions

The following notational conventions are used throughout the DDK documentation set.

Convention

Meaning

bold

italics

(Parentheses)

Monospace

Beta Release

Bold is used for keywords, such as function, register, macro, and
data structure field names. These names are spelled exactly as they
should appear in source programs. Notice the bold in the following
example:

Disable (/[pDestDev)
Here, Disable is bold to indicate that it is the name of a function.

Italics are used to indicate a placeholder thét should be replaced by
an actual argument. In the preceding example, IpDestDev is italic
to indicate that it should be replaced by an argument.

Parentheses enclose the parameter or parameters that are to be
passed to a function. In the preceding example, IpDestDev is the
parameter.

Monospace type is used for program code fragments and to il-
lustrate the syntax of data structures.

Microsoft Confidential April 1, 1990

Xii Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Part | Writing Virtual
Devices

Microsoft Windows 3.0, while running in 386 enhanced mode, allows single-
threaded multitasking by creating a virtual machine environment. While this
may be a new type of environment for many programmers, the advantages of
freeing existing programs from the limitations of older hardware architectures
should make the effort of learning it worthwhile.

To run in the enhanced Windows environment, existing device drivers will need
to be modified into virtual devices. In Part 1, “Writing Windows Device
Drivers,” of the Microsoft Windows Device Driver Adaptation Guide the ques-
tion of how long will it take to convert an existing device driver is examined.

Part 3 provides the overall concepts and functional descriptions of the environ-
ment components that are necessary to write virtual devices.

Beta Release Microsoft Confidential April 1, 1990

April 1, 1990 Microsoft Confidential Beta Release

CHAPTERS

16 Overview of Windows in 386 Enhanced Mode
17 Virtual Device Programming Topics

18 The VDD and Grabber DLL

Beta Release Microsoft Confidential April 1. 1990

Chaﬂter Overview of Windows in
386 Enhanced Mode

When Microsoft Windows 3.0 is loaded and invoked on an appropriately configured sys-
tem, it runs in an “enhanced” mode designed to capitalize on the power of the Intel 80386
microprocessor. The 386 chip, in addition to an accelerated clock, a wider data path, and
an expanded command set, has a mode that supports multiple, independent memory re-
gions. Enhanced Windows uses this microprocessor mode, the virtual 8086 mode, to build
multiple, independent virtual machines, each capable of running an application program.

Enhanced Windows supports this multitasking virtual machine environment with a sophis-
ticated set of services, many provided by the virtual devices. Virtual devices (VxDs) pro-
vide access to all the system resources, including memory management and scheduling,
and to all the hardware devices. VxDs are analogous to, and often modifications of, device
drivers used in other Windows modes.

By writing a VxD for a particular hardware device, the author integrates that device into
the powerful enhanced Windows environment. For instance, a properly implemented vir-
tual printer device will, by serializing access to the hardware port, enable two active appli-
cations to share a single printer.

This chapter provides a general description of the virtual machine environment and intro-
duces the components of a virtual device. However, detailed programming instructions for
the 80386 are not provided. Before proceeding, a VxD programmer should already be fa-
miliar with the topics described in the “What You Should Know Before You Start” section
in the “Introduction to Virtual Devices” at the beginning of this document.

In the September, 1987, issue of the Microsoft Systems Journal, the article entitled
“Microsoft Windows/386: Creating a Virtual Machine Environment,” discusses the struc-
ture of Windows/386 version 2.x. It also contains an excellent description of the four
modes of the Intel 80386 microprocessor. A portion of that discussion is included in Appen-
dix B, “Understanding Modes,” to help you understand the current version of Windows
when running in 386 enhanced mode.

16.1 The Operating Environment

Windows in 386 enhanced mode has a virtual machine (VM) architecture that provides pre-
emptive multitasking for DOS applications on the 80386 processor.

The following are its three major components, which are also graphically represented in
Figure 16.1:

® Virtual machines

Beta Release Microsoft Confidential April 1, 1990

16-2 Virlual Device Adaptation Guide

April 1, 1990

I

= Virtual Machine Manager
® Virtual devices

Windows 3.0 virtual machines (VMs) consist of a virtual 8086 (V86) mode portion and,
optionally, a protected-mode (PM) portion. The first VM created is called the System VM.
This is the virtual machine in which the Windows graphic user interface runs. Non-
Windows applications run in VMs of their own.

The Virtual Machine Manager (VMM) functions as a multitasking operating environment.
The VMM provides services that control the main memory, the CPU execution time, and
the peripheral devices. It runs, along with all the VxDs, in one, flat-model, 32-bit memory
segment.

The virtual devices (VxDs) either virtualize a peripheral device, provide services for the
VMM and VxDs, or both. The “x” in VxD stands for an arbitrary device. In an actual
device name, the “x” is replaced with the name of the virtualized device, e.g., VDD for Vir-
tual Display Device and VDMAD for Virtual DMA Device.

Devices, such as the programmable interrupt controller and printers, are shown outside of
the enhanced Windows virtualized environment.

Notice that the hardware device may consist of software, e.g., routine (BIOS) as well as
hardware.

Enhanced Windows Environment

Systern VM VM VM

VMM I— Interrupt I— Interrupt I—- Interrupt

$ — Services
wh ¢ D § vxD |

t t

Hardware device Peripheral device

Figure 16.1 An OverAll Block Diagram INTVD_01.EPS

Microsoft Confidential Beta Release

Overview of Windows in 386 Enhanced Mode 16-3

16.2 Virtual Machines

When Windows is runninlg in 386 enhanced mode, it creates memory partitions that have a
remarkable characteristic: programs that run within these partitions execute as though they
were running on an 80386 in real mode. Each of these partitions is called a virtual 8086
machine and has its own address space, I/O port space, and interrupt vector table. Multiple
virtual machines can be running simultaneously, with each under the illusion that it is in
complete control of the computer.

A virtual machine (VM) is a complete description of the state of an application. Each VM
includes the following:

®» The memory associated with the application
® The processor registers
® The data structures associated with virtualization

Data is used by the VMM and VxDs to virtualize the hardware and to provide services. It
is maintained in a data structure called the Control Block. The processor registers are main-
tained on the VMM stack and can be accessed via the Client Register Structure. The
memory can be accessed and manipulated by means of a number of VMM memory
manager services.

To optimize the use of memory and minimize the enhanced Windows environment over-
head, most of MS-DOS and all the MS-DOS device drivers are not duplicated for each
VM, but rather are shared (global) among the VMs.

16.2.1 The Privilege Rings of a VM

Beta Release

A VM can have more than one privilege ring. Code executing in one privilege ring can
only have access to memory in the same privilege ring or one with a higher number (i.e.,
lower privilege level).

The 8086 (V86) mode portion, shown in Figure 16.2, runs in privilege ring 3. This is the
code and data most typically associated with MS-DOS applications. ‘

The second part is a protected mode (PM) portion that runs at privilege ring 1, 2, or 3. This
portion can be used by applications running under enhanced Windows. In the System VM
(SYS VM), this portion is used to run Windows 3.0 code.

The third part is data utilized by the VMM and the VxDs running at privilege ring 0.
The Ring O data has three subparts:

1. The stack, which contains the Client Registér Structure (CRS). The ring 0 stack is used
by the VMM and VxDs when a VM is running.

Microsoft Confidential April 1, 1990

16-4 Virtual Device Adaptation Guide

2. The control block, which contains other data (i.e., values associated with the virtualiza-
tion of hardware for a VM) local to a VM.

3. Data owned by a VxD, which contains information that maintains the state, such as the
state of the physical hardware, across all VMs.

April 1, 1990 Microsoft Confidential Beta Release

Overview of Windows in 386 Enhanced Mode 16-5

Virtual Machine
Privilege Ring 3 (Virtual mode)

/ ROM 1 meg

(Global)

Display memory
640k

Application code and data
(Local)

V86 mode < Windows/386 (portion)
(Global)

Network and TSR code
(Global)

MS-DOS
DOS device drivers
(Global)

Interrupt vectors
(Local)

Privilege Ring 1,2, or 3

Windows 3.0 Applications
Protected mode (Code for Windows 3.0
(optional) it VM is the system VM)

Privilege Ring 0 -

VM handle . Control block
CB_VM_Status
CB_High_Linear

CB_Client_Pointer
I Stack

CB_VMID =
ient registers
+VxD1 offset | VMM data

| | vxDo data
VxD1 data

+VxDO0 offset

VxDn data

Figure 16.2 The Conceptual Detail of VMs INTVD_02.EPS

Beta Release Microsoft Confidential April 1, 1990

16-6 Virtual Device Adaptation Guide

16.2.2 VM Handles

Enhanced Windows virtual devices refer to specific VMs by VM handles. By convention,
VM handles are usually stored in the EBX register. A VM handle is actually a 32-bit linear
address of the virtual machine’s control block data structure.

16.2.3 The Client Register Structure

The Client Register Structure (CRS), as shown in Figure 16.3, contains the virtual machine
processor state including all the virtual machine’s registers and flags. When a device wants
to look at or modify a virtual machine’s registers, it must modify the CRS.

Alternate GS Note: Alternate registers
hold values of mode not
Alternate FS in use, i.e., when in V86
Alternate DS mode, alternate registers
Alternate ES hold protected mode values.

Alternate SS
Alternate ESP
Alternate EFlags
Alternate CS
Alternate EIP
GS
FS
DS
ES
SS
ESP
EFlags
CS
EIP
Error code
EAX
ECX
EDX
EBX
Misc
EBP
ESI

- EDI
[Client pointer ; >

Figure 16.3 The Client Register Structure INTVD_03.EPS

April 1, 1990 Microsoft Confidential Beta Release

Overview of Windows in 386 Enhanced Mode 16-7

16.3 The Virtual Machine Manager

The Virtual Machine Manager (VMM) is a device-independent layer of code that provides
a framework upon which the virtual devices build virtualizations of physical devices or
provide services for each of the VMs. In this sense, the VMM lies between the VMs and
the VxDs. All interaction between the software running in the VMs and the VxDs occurs
via the interface provided by the VMM. The VMM also provides a set of services that al-
lows for creating, destroying, running, synchronizing, and altering the state of the VMs.
The VMM, as shown in Figure 16.4, handles all the transitions of VMs to privilege ring 0,
provides scheduling services, manages memory, and provides services for such activities
as trapping 1/O and hooking software interrupts.

To VMs

'/

MM
L I/0 emulation

I—- Interrupts

General purpose

Memory management Interrupt Handier |
- Schedulers

Other services . Event services

| Primary || Time slice|

I—- Services

i
«
. ¥
i b
i b
b
@
&
o

To VxDs
Figure 16.4 The VMM Functions INTVD_04.EPS

16.4 Virtual Devices

Beta Release

Enhanced Windows virtual devices (VxDs) are the interfaces between application software
and the hardware. Most VxDs correspond to a hardware device, though not all do. For ex-
ample, the VxDs for printers and displays simulate actual hardware interfaces, but the VXD
called Shell provides access to the Windows graphic user interface. VxDs use services pro-
vided by the VMM and other VxDs.

VxDs can provide control functions, service functions, API functions, and callback pro-
cedures that are used to virtualize, synchronize, and maintain the state of the hardware for
the VMs. A callback procedure is a request for notification when a specified event occurs
in the normal execution of the application code.

There must be a VxD for each piece of hardware that can have a different state in each of
the VMs.

Microsoft Confidential April 1, 1990

16-8 Virtual Device Adaptation Guide

16.4.1 VxD Components

Installable virtual devices have the following five, distinct parts, which are shown graphi-
cally in Figure 16.5:

1. Real mode initialization code and data, which is discarded after loading parts 2 - 5

2. Protected mode (PM) initialization code, which is discarded after initialization

3. Protected mode (PM) initialization data, which is discarded after initialization

4. PM code, which contains the Device Control Procedure, API and callback procedures,

and services.
5. PM data, which contains the Device Descriptor Block, Service Table, and Global Data

16.4.2 The Device Control Procedure

The Device Control Procedure (DCP) is the dispatch point for most of the VMM interac-
tion with the VxD. Besides the initialization of the system, there are device control calls
for creating, initializing, and destroying VMs; for setting the device focus to a VM; and for
indicating a change in the state of the VM.

The VMM broadcasts messages to all VxD DCPs indicating changes in the state of the sys-
tem or of a VM. The DCP can then modify the device’s data structure or the VM'’s state.
The address of the DCP is specified in a special data structure called a Device Descriptor
Block that all virtual devices must have. See Chapter 17, “Virtual Device Programming
Topics,” for details on messages passed to the DCP.

16.4.3 The Device Descriptor Block

April 1, 1990

The Device Descriptor Block (DDB) is a VxD-unique data structure containing the VxD’s
name, version IDs, and entry points for the three code areas: the Device Control Pro-
cedure, V86-mode API procedure, and the PM API procedure. In addition, the DDB can
contain a pointer to a table of services provided by the VxD. See Chapter 17, “Virtual
Device Programming Topics, ” for a detailed description of a DDB.

Microsoft Confidential Beta Release

Overview of Windows in 386 Enhanced Mode 16-9

VxD
PITTI Real mode
Initialization code and data Discarded }-
Initialization code o .af.ter .
VS initialization
Initialization data
VD code N Device Control Procedure
Code
V86 API procedures
——
Code
PM API procedures
e
Code
L Protected
VxD data mode
Device Descriptor Block
Device name
Version IDs
DCP
V86 APl procedures
PM AP!| procedures o .
- Service table
Service table >
List of services
Global data
State of hardware
e.g., Who owns display
Misc.
BMusc. VM Handi Control block
e ————————————————— =
CB offset + andle State of VM
/

Figure 16.5 The Conceptual Detail of VxDs INTVD_05.EPS

Beta Release Microsoft Confidential April 1, 1990

16-10 Virtual Device Adaptation Guide

16.5 How VxDs Work

The following sections contain general explanations of how VxDs work and provide infor-
mation on the following topics:

8 Scheduling

= Memory use

® Services

= Callback procedures
® [/O port traps

® Loading

16.5.1 Enhanced Windows Execution Scheduling

April 1, 1990

The following is a brief description of how events are scheduled and processed. The con-
cepts are also graphically described in Fibure 16.6.

Events

The enhanced Windows VMM is a single-threaded, non-reentrant operating system. Be-
cause it is non-reentrant, virtual devices that hook interrupts must have some method of
synchronizing their calls to the VMM. For this reason, enhanced Windows uses the con-
cept of event processing.

Event procedures are registered asynchronously and, then, called back just before the
VMM returns to the application. At this point, the event procedure can use all the VMM
services.

VxDs can also use event procedures to perform some action on a VM that is not the cur-

rent VM. Examples of this include restoring the display to a VM when the display focus
changes or simulating an interrupt into a VM the next time the VM is scheduled.

There are two types of events: global and VM specific. Global events are processed before
returning to a virtual machine regardless of which VM is about to run. VM specific events
are only processed when the specified virtual machine is about to run.

Scheduler

When Windows is running in 386 enhanced mode, each application runs in it own virtual
machine (VM). Each VM can be given a share of the CPU time. To assign priority among
the VM, the Virtual Machine Manager (VMM) has a Scheduler.

The Scheduler is the part of the VMM that determines which VM gets CPU time. It is
divided into two parts. At the lowest level, the Primary Scheduler maintains execution pri-
orities, and the VM with the highest priority is allowed to run. VxDs will raise and lower

Microsoft Confidential Beta Release

" Overview of Windows in 386 Enhanced Mode 16-11

Beta Release

the execution priorities to affect task switching among the VMs. The second level of sched-
uling is handled by the Time Slicer, which boosts a VM’s execution priority for a given
time slice.

With the Primary Scheduler, there are specific values assigned to execution priorities to ac-
complish task switching without violating the need for some sections of code to execute ex-
clusively until completion. Additionally, high-priority device events, such as interrupts that
must be serviced in a timely manner, will boost execution priorities of VMs that need to be
serviced. The VMM provides services and defines execution priorities to handle these
cases.

The enhanced Windows Time Slicer is the preemptive multitasking portion of the Sched-
uler. It relies on time-slice priorities and flags to determine how much CPU time should be
allocated to various virtual machines.

Every VM has a foreground and a background time-slice priority. These should be distin-
guished from a VM'’s execution priority. The VM with the largest execution priority will
run, preventing other VMs from executing. The VM with the largest time-slice priority
will run more often than other VMs but it will not necessarily prevent other VMs from ex-
ecuting.

Transitions Into and Out of the VMM and VxDs

The enhanced Windows VMM uses the protection mechanism of the 80386 to force privi-
lege ring transitions, as shown in Fibure 16.6 whenever an application program issues a
software interrupt or causes a protection fault. One example is when a VM performs I/O to
a hooked port. The exact mechanisms used to make the transition into the VMM are not
important to a virtual device developer. It is almost never necessary to directly intercept a
processor fault or hardware interrupt. The only device that handles hardware interrupts
directly is the Virtual PIC (Programmable Interrupt Controller) Device. Callback pro-
cedures have been provided to signal a calling routine when a specific event occurs. (See
Section 16.5.4, “Callback Procedures,” for more information.)

Programmers familiar with the 80386 architecture may assume that, to hook an interrupt, a
virtual device will hook the protected-mode Interrupt Descriptor Table (IDT) directly.
However, this is not true for Windows in 386 enhanced mode. Services to hook interrupts
at this level are provided by the VMM.

WARNING VxDs must never modify the actual IDT. To do so will cause enhanced Windows to crash.

The sequence of events for entering the VMM from a virtual machine because of an inter-
rupt is as follows:

1. The VM performs an operation that generates a fault.
2. Aring transition occurs, and the appropriate IDT interrupt handler is called.
3. The VMM dispatches the interrupt to the appropriate handler by a CALL.

Microsoft Confidential April 1, 1990

16-12 Virtual Device Adaptation Guide
L __]

4. The protected-mode handler processes the fault and executes a near RET.
5. The VMM processes any outstanding events.
6. An IRET is executed that causes a ring transition back to the VM.

Notice that the VMM looks at the interrupt before any virtual devices and immediately
before returning to the virtual machine.

April 1, 1990 Microsoft Confidential Beta Release

Overview of Windows in 386 Enhanced Mode 16-13

V86 -
Application in VM VM t
Ve (Mot i o W o
(Privilege {
Ring 3) 386 checks
IOPM
Ring 386 pushes
transition | Gs, Fs, DS, ES, N/ Does IOPM
SS, ESP, - grant Perform 1/O
EFLAGS, CS, EIP permission?,
onto stack
1]
m’c‘,‘;"‘ed VMM general
purpose interrupt \
handler pushes s VPICD generates
(Privilege ECX, EDX, EBX, | address of the
Ring 0) »Lisgaleap, ESl,k ég:gg: grgcsk
to st
= i’" = T > Call to VXD
Decode VM VPICD returns
instruction > VMM virtual mask register | |
Increment 1/0 instruction
Client_IP past is simulated by
1/0 instruction placing AL returned VMM
by VPICD into AL
* 1 in the CRS
Move 1/O port >
address intopg.DX Y 1
v
. Any global
Register contents or V gevems Process events
at this stage pending?
EBX VM handle
EDX 1/O port
ECX 1/O type
EBP__CRS Pop registers
pushed in
; ¥
Ring
: Pop registers
transition pushed in ()
.
i
Continue VM
execution
Figure 16.6
Beta Release Microsoft Confidential

April 1, 1990

16-14 Virtual Device Adaptation Guide

16.5.2 Memory Models

April 1, 1990

Windows in 386 enhanced mode makes use of the 80386’s ability to run different memory
models. Some devices may have initialization code that is run in real mode. See Section
16.5.6, “Loading Sequence,” for the loading sequence description. After that code is
successfully run, a transition is made to protected mode (using selector:offset addressing)
in which the VMM is installed and begins executing. The VMM creates a separate VM
that consists of a V86-mode portion and an optional, protected-mode (PM) portion for
each application.

The VMM and all the enhanced Windows VxDs run in 32-bit, flat-model protected mode.
This means that every VxD has complete access to 4 gigabytes of linear address space. A
VxD can access any VM’s memory at any time.

Because enhanced Windows is flat model, virtual devices cannot change the CS, DS, ES,
or SS segment registers. These segment registers always contain a selector that has a base
of 0 and a limit of 4 gigabytes. Devices can use the FS and GS segment registers, but there
usually is no reason to do so. VMM services will not modify the FS or GS segment
registers. Pointers are always 32-bit linear addresses unless otherwise specified.

NOTE Since the VMM (privilege ring 0 code) resides in a single, flat memory segment, the selector of
the selector:offset PM addressing for the VMM and VxDs never changes.

Modes

Apphcanon programs typically run in a V86-mode portion of the enhanced Windows oper-
ating environment. An example of an exception is the Windows graphic user interface,
which also uses a protected-mode portion.

As described in Appendix B, “Understanding Modes,” V86 mode is similar to real mode.
The crucial difference between the two is that memory protection, virtual memory, and
privilege-checking mechanisms are in effect when code runs in V86 mode. Therefore, a
program executing in V86 mode cannot interfere with the operating environment or dam-
age other processes. If the program reads or writes memory addresses that have not been
mapped into its VM or manipulates I/O ports to which it has not been allowed access, an
exception (fault) is generated, and the operating environment regains control.

Privilege Rings

The VMM and the VxDs are at the highest (0) privilege level. Protected-mode applications
such as Windows run at privilege level 1, and V86 applications run at privilege level 3, as
shown in Figure 16.7.

Since all virtual devices run at protection ring 0, they have the ability to execute any 80386
instruction without producing a protection violation. However, devices should not execute
protected instructions as they will usually cause Windows to crash immediately. The only
exception to this is the Virtual Math Coprocessor Device, which is allowed to change the
80387 bits in the CRO register.

Microsoft Confidential Beta Release

Overview of Windows in 386 Enhanced Mode 16-15

L R
VM
V86 Mode oty

Protected Mode

PM
memory

Privilege
level O CRS

I cB | STACK

VMM
Vo

Figure 16.7 Enhanced Windows 3.0 Privilege Rings INTVD_07.EPS

16.5.3 Services

Beta Release

Services are the shared routines of the VMM and VxDs. VxDs use services to handle inter-
rupts, to initiate callback procedures, and to process exceptions/faults.

Notice that there are some VxD services that the VMM requires. Most notable of these are
the services provided by the Virtual Programmable Interrupt Controller Device (VPICD),
which virtualizes the PIC for the VxDs (for requesting interrupts) and the VMs.

Detailed descriptions of each service are provided in Part 4, “Virtual Device Services.”
The services are also categorized there as follows:

® Memory Management Services

® /O Services and Macros

® VM Interrupt and Call Services

m Nested Execution Services

= Break Point and Callback Services
B Primary Scheduler Services

Microsoft Confidential April 1, 1990

16-16 Virtual Device Adaptation Guide
F___]

= Time-Slice Scheduler Services

= Event Services

m Timing Services

® Processor Fault and Interrupt Services

= Information Services

® Initialization Information Services

® Linked List Services

m Error Condition Services

= Miscellaneous Services

m Shell Services

® Virtual Display Device (VDD) Services

= Virtaul Keyboard Device (VKD) Services
® Virtual PIC Device (VPICD) Services

= Virtual Sound Device (VSD) Services

® Virtual Timer Device (VTD) Services

= V86 Mode Memory Manager Device Services
® Virtual DMA Device (VDMAD) Services

16.5.4 Callback Procedures

Some services allow a calling routine to register a procedure that will be called back when
a particular event occurs. Callback procedures are used for maintaining the VM state via
/O and interrupt trapping and synchronizing with the VMM via the event services.

The VMM includes services that allow virtual devices to install callback procedures to do
the following:

® Trap interrupts from virtual machines

m Trap I/O to specific ports

m Trap access to memory

® Schedule per-VM or global time-outs

m Schedule per-VM or global events

® Detect when a VM returns from an interrupt or FAR call

April 1, 1990 Microsoft Confidential Beta Release

Overview of Windows in 386 Enhanced Mode 16-17

= Detect when a VM executes a particular piece of V86 code
® Detect the release of the critical section

& Detect changes to the VM’s interrupt enable flag

® Detect task switches

16.5.5 1/0 Port Traps

The VMM provides a service called Hook_IO_Port. The service takes two parameters:
the port to be hooked, and the address of the procedure to be called whenever the port is
accessed.

When a VxD calls Hook_IO_Port, the VMM sets the appropriate bit in the I/O permission
map (IOPM) and registers the procedure. When a virtual machine executes an instruction
that reads or writes data from an I/O port, the 80386 looks up the port number in the I/O
permission map. If the corresponding bit in the IOPM is set, then the instruction will cause
a protection fault that results in calling the registered procedures.

Hardware Interrupt Hooks

The Virtual Programmable Interrupt Controller Device (VPICD) routes hardware inter-
rupts to other virtual devices, provides services that enable virtual devices to request inter-
rupts, and simulates hardware interrupts into virtual machines.

When a virtual device needs to hook a specific IRQ, it must ask VPICD for permission. If
another device has already virtualized the IRQ, then VPICD will refuse.

Software Interrupt Hooks

The software interrupt hooks that are unique to the enhanced Windows environment are de-
scribed in Chapter 20, “I/O Services and Macros,” and Chapter 21, “VM Interrupt and Call
Services.”

16.5.6 Loading Sequence

Beta Release

The following is a generalized description of the loading sequence. Figures 16.8 and 16.9
are an example of a specific loading sequence.

When Windows in 386 enhanced mode is first started, the following happens:

1. The loader loads the VMM and all the specified virtual devices into extended memory.
2. The loader passes control to the VMM initialization routine.

3. The initialization routine completes the initialization of the VMM and calls all the VxD
initialization routines.

4. The System VM is created and initialized.

Microsoft Confidential ' April 1, 1990

16-18 Virtual Device Adapiation Guide

April 1, 1990

5. The Shell VxD executes Windows.

Each enhanced Windows device can have different sections of code that are executed
during various phases of initialization and normal program execution, as shown in Figure
16.8.

The first phase of initialization is load time. During load time, the virtual device can abort
the loading of the device, abort the loading of enhanced Windows, specify instance data,
and exclude pages of memory from utilization by enhanced Windows. This load time code
is in its own segment and run in real mode and, then, discarded. See Chapter 17, “Virtual
Device Programming Topics,” for details on real mode initialization.

The rest of the virtual device is run in 32-bit, flat-model protected mode and is divided into
four parts: v

m [Initialization code

» Initialization data

u Code

8 Data

The initialization code and data are purged from memory after initialization, as shown in
Figure 16.9. These segments contain routines and data that are accessed only during the
three phases of enhanced Windows system initialization: Sys_Critical_Init, Device_Init,
and Init_Complete. Some of the enhanced Windows VMM services are available only
during initialization.

The sections of code and data that are not specifically for initialization perform the device
virtualization and can provide services for other devices.

Microsoft Confidential Beta Release

Overview of Windows in 386 Enhanced Mode 16-19

Real Mode

Begin
initialization:

Get
VxD file

Is there a Execute Real

Mode init

Abort
WIN386?

Load Protected Mode
code and data

_ Loop is done for
each specified device

All VxDs
attempted?

To Protected Mode

Figure 16.8 The Loading Sequence Flow Chart INTVD_08.EPS

Beta Release Microsoft Confidential April 1, 1990

16-20 Virtual Device Adaptation Guide

Protected Mode

From VMM broadcasts
Real Mode o Device_Init
VD services
WINlag's VMM ' enabled
initializes
VMM broadcasts
‘ Init_Complete
Sort VxDs by Interru -
initializati — pts ___Init code and
mmahzation order enabled {' e e
i idi VMM broadcasts
Begin building :
SYS VM Sys_VM_lInit

VMM broadcasts
Sys_Critical_|Init Execute
control message Windows. 3.0

Figure 16.9 The Loading Sequence Flow Chart (cont.) INTVD_08a.EPS

16.5.7 VxD Examples

April 1, 1990

Often, new VxDs are actually modifications of existing ones. To help with your VxD
development, Microsoft includes with the DDK the code for the following fully oper-
ational VxDs. We encourage you to use them as examples whenever convenient.

Virtual GOM Device (VCD)

The VCD does the following:

= Raises a contention if two VMs access the same port.

Virtual Mouse Device (VMD)

The VMD does the following:

u Reflects mouse interrupts to the VM currently using the mouse.

® Tracks the cursor state at the INT 33H level.

Virtual Printer Device (VPD)
The VPD does the following:

m Raises a contention if two VMs attempt to use the same LPT port.

Microsoft Confidential Beta Release

Overview of Windows In 386 Enhanced Mode 16-21

Beta Release

Virtual Programmable Interrupt Controller Device (VPICD)
The VPICD does the following:

® Virtualizes the PIC I/O for each VM.
® Provides interrupt handling.

® Provides services for other devices to do interrupt handling.

Virtual Sound Device (VSD)
The VSD does the following:

m Tracks the state of the speaker enable bit.

® Times out sound for non-exclusive VMs.

Virtual Timer Device (VTD)
The VTD does the following:

® Queues timer interrupts for each VM.

® Determines which VMs will receive timer interrupts.

® Tracks VMs changing the timer characteristics and may crash them.
Informs the VMM about elapsed time.

Microsaft Confidential April 1, 1990

16-22 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Chapter | Vjrtual Device
17 Programming Topics

This chapter presents details on writing and installing VxDs. You should be familiar with
Chapter 16, “Overview of Windows in 386 Enhanced Mode,” before proceeding with the
material. For explanations on specific types of services provided by the Virtual Machine
Manager (VMM), refer to the chapters in Part 4, “Virtual Device Services.” This chapter is
divided into the following general topics:

& Writing VxDs

Adding a VxD to Windows

m Initializing a VxD

Tracking the VM states

m Exiting Windows

We recommend that you scan all the topics before beginning a VxD project. You should
also review the sample VxDs supplied on the Microsoft Windows Device Development Kit
(DDK) disks for examples of how to accomplish specific tasks. The following table sug-
gests some VxDs to study when investigating specific service topics.

Service topic Sample VxD
Memory management VDD
Hardware interrupts VKD
I/0 VPD
Scheduler VKD
Events VKD
Timeouts VKD

17.1 Writing VxDs

Enhanced Windows virtual devices are not “Windows” programs. You do not need to
know anything about Windows programming to write a VxD.

Beta Release Microsoft Confidential April 1, 1990

17-2 Virtual Device Adapiation Guide

Often, new VxDs are simply modifications of existing ones. To help with your VxD
development, Microsoft includes the code for many, fully operational VxDs in the
Microsoft Windows Device Development Kit. We encourage you to use them as examples
whenever convenient.

However, some VxDs will require a significant effort to develop. The following can be
used as a guideline when writing a complex VxD.

1. Build a skeleton. Using the supplied sources as a guide, build a skeleton of the VxD
with the device control procedure, the services, and the API procedures defined but not
functional.

2. Add the initialization functionality, including the control block and global memory allo-
cation, physical page hooking, I/O hooking, and interrupt hooking.

3. Fill out the procedures that handle the various hooks.
4. Test the procedures.

5. Implement the APIs and services, if there are any.

6. Test the APIs and services.

17.1.1 Understanding the Ring 0 Memory Model

The part of the enhanced Windows environment containing the VMM and all the VxDs
(ring 0), is one, flat-model, 32-bit segment. This means that all the code and data belong to
the same group. Two selectors are created: one for code and one for data. Both have a base
of zero and a limit of four gigabytes, so all the segment registers point to the same address
space (the entire virtual address space provided by the 80386 processor).

When a VxD is loaded, all the offsets are fixed according to the the VxD’s actual position.
This is different from MS-DOS’s loading of .EXE files, in which segments are fixed up
and offisets are left untouched.

All procedures are NEAR, and data pointers are 32-bit offsets.

VxDs do not externalize routines or data. To access VMM or VxD services, a dynamic-
link mechanism is employed using macros contained in VMM.INC. The VMM services
are available with the VMMecall macro, and the VxD services with the VxDcall macro.
Data is shared via declared services only.

You must use the OFFSET32 macro in your flat model 32 bit segments anywhere you
would normally use the OFFSET assembler directive. That is, in all segments except for
the real-mode initialization segment. This macro correctly defines all the offsets so that
LINK386 will do the correct offset fixups. For example:

mov esi, OFFSET32 My_Data

April 1, 1990 Microsoft Confidential Beta Release

Virtual Device Programming Topics 17-3

17.1.2 VxD Segmentation

As discussed in Chapter 16, “Overview of Windows in 386 Enhanced Mode,” VxDs have
five functional parts. Each of these parts exists as a separate segment. Macros have been
created to define segments for each of the parts.

Each macro name consists of a segment descriptor followed by “_SEG,” which means that
this macro begins the segment. A segment descriptor terminated by “_ENDS,” is used for
macros that end the segment. For example, macros used for defining a segment for real-
mode load-time initialization would appear as VxD_REAL_INIT_SEG and
VxD_REAL_INIT_ENDS.

In some enhanced Windows installations, it will be possible to demand page portions of
VxDs. These installations require a dedicated swap device or a fully virtualized hard disk
with a dedicated swap partition. This way, paging can be done without concer for reenter-
ing portions of DOS, device drivers, or BIOS. To support paging, a VxD must place the fol-
lowing in locked memory:

a Device Control Procedure (DCP)
® Device Descriptor Block (DDB)
m Hardware interrupt procedures (and the data accessed by them)

®m Asynchronous services that can be called from hardware interrup procedures

Some of the macros supplied in VMM.INC (e.g., Declare_Virtual_Device) correctly
place code and data objects in locked segments. The following are the different segment
descriptor types:

VxD_REAL_INIT
VxD_ICODE
VxD_IDATA
VxD_LOCKED_CODE
VxD_LOCKED_DATA
VxD_CODE
VxD_DATA

Real-mode load-time initialization
Protected mode initialization code
Protected mode initialization data
Code that cannot be paged

Data that cannot be paged

Pageable code

Pageable data

1 i i 1 1 1 '

17.1.3 VxD Declaration

Beta Release

A VxD’s first few lines of code must always be the assembler directive, the INCLUDE
files, and the declaration parameters.

Assembler Directive

Every VxD must inform the assembler that the code is 80386 protected-mode code. This is
done by including the following directive:

.386p

Microsoft Confidential April 1, 1990

17-4 Virtual Device Adaptation Guide

April 1, 1990

INCLUDE Files

INCLUBDE files enable VxDs to use code located in other parts of enhanced Windows. The
following INCLUDE files should always be included:

Filename
VMM.INC

DEBUG.INC

VPICD.INC

SHELL.INC

Descrigtion

Contains definitions of all the enhanced Window services, as
well as required macros and equates.

Contains useful macros for dumping messages to a debugging
terminal and performing checks on various data. The macros pro-
vided by this file produce code only when the VxD is assembled
with the DEBUG switch. See the Microsoft Windows Software
Development Kit (SDK) for information on the Windows debug-
ging services.

Contains equates and service declarations for the Virtual
Programmable Interrupt Controller Device (VPICD). All en-
hanced Windows interrupts are handled by the VPICD. The VPD
uses the VPICD services to hook all the printer port’s hardware
interrupts.

Contains definitions of the public services provided by the Shell
VxD. The Shell device provides the VxDs with access to the
Windows graphics user interface, thus giving the VxDs the abil-
ity to display dialog boxes to the user. For example, if two VMs
attempted simultaneously to use the same printer, the VxD could
call Resolve_Contention, which would display a dialog box
asking the user to choose between the two VM applications.

Declaration Parameters

The declaration of the VxD is accomplished by its Device Descriptor Block (DDB). The
DDB is generated automatically by the Declare_Virtual_Device macro. The following ex-
ample is from the VPD sample provided with the DDK.

DECLARE_VIRTUAL_DEVICE vPD,3,0,VPD_Control, VPD_Device_ID, VPD_Init_Order,,,,

The table in Figure 17.1 describes each of the parameters:

Microsoft Confidential Beta Release

Virtual Device Programming Topics 17-5

Parameter VPD Example
Name up to 10 characters VPD g
Major Version byte number 2 4 §.
D
Minor Version byte number 0 2
DCP Name VPD_Control]
Device ID declared in VMM if VxD)
provides services VPD_Device_lO
Initialization Order determines the order Since VPD does
of VxD initialization require initializing
relative to other VxDs before any particular
VxD, the number in =
VMM.INC is large S
> .Q
Service Table Name VPD does not a
provide services S)
V86 AP! Procedure Name VPD does not
provide services
PM API Procedure Name VPD does not
i provide services J

Figure 17.1 The VxD Declaration Parameters PRTGO_01.EPS

17.1.4 VxD Services

Beta Release

The functionality a VxD provides, either to the VMM and other VxDs or through them to
applications, is always by means of exported services. After defining the service calling
conventions, this section then describes how to declare a service, and verify that a VxD is
available to provide a service, and provides a comparison of standard vs. asynchronous
services.

Service Calling Conventions

All the enhanced Windows services use either a register-based calling convention or a 32-
bit C-type calling convention. In general, all the VMM calls use C calling conventions,
and all VxD services are register based.

The C convention services all begin with an underscore (_) in front of the service name.
They are similar to the standard C conventions: all parameters are passed on the stack, and
results are returned in the EAX and EDX registers.

Unlike the standard C conventions, the EBX, ES, FS, and GS registers are preserved as
well as the ESI and EDI registers. Only the flags and the EAX, ECX, and EDX registers
are modified.

The VMMecall and VxDcall macros support stack parameter passing like the standard C
macro package. For example:

Microsoft Confidential April 1, 1990

17-6 Virtual Device Adaptation Guide

VMMcall _HeapAllocate, <SIZE Data_Node, ©>

will generate the following code:

push /]

push SIZE Data_Node
int 20h

dd _HeapAllocate

add esp, 2*4

Notice that the parameters are pushed on the stack from right to left as in the standard con-
vention.

All the Windows services for running in 386 enhanced mode that do not begin with an un-
derscore (_) are register-based services. All the parameters to the services are passed in
registers and all the results are returned in registers. If a service does not explicitly return a
result in a register, than that register will be preserved.

Declaring Services

Virtual devices use two macros, Begm Service_Table and End_Service_Table, that are
declared in VMML.INC to export services. The service table is normally declared in an IN-
CLUDE file that other VxDs can include to import the services. For example, a typical
service table declaration would look something like this for the Virtual “FOQO” Device:

Begin_Service_Table VFooD

VFooD_Service vFooD_Get_Version, LOCAL
VFooD_Service vFooD_Do_Something

VFooD_Service vFooD_Do_Somthing_Else

VFooD_Service vFooD_Do_Yet_Another_Thing, VxD_INIT

End_Service_Table VFooD

The Begin_Service_Table macro uses a single argument to generate the macro used to de-
clare individual services. Begin_Service_Table names the macro by taking the name of
the device and appending *“_Service” to it. In the preceding example, VFooD_Service is
the name of the macro.

The Device_Service macro can take one or two parameters. The first parameter is the
name of the service (e.g., Get_Version). This must match the name of a procedure that
was declared with the BeginProc macro using the “Service” or “Async_Service” options.
The second parameter is optional. If it is omitted, then the service procedure is declared as
an external reference in the VxD_CODE segment.

If the special value “LOCAL?” is ased as the second parameter (as in the VFooD_Get_Ver-
sion declaration), then the procedure is not declared as external. This option is used when
the service is declared in the same file in which the service table will be created. If, in this
case, it were to be declared external, then MASM would generate an error.

If the service procedure is not in the same file as the one used to create the service table,
and not in the VxD_CODE segment, then you must supply the name of the segment it res-

April 1, 1990 Microsoft Confidential Beta Release

Virtval Device Programming Topics 17-7

ides in so that the proper external declaration can be made. In the above example, the
VFooD_Service VFooD_Do_Yet_Another_Thing service is declared to be in the
VxD_INIT code segment.

The first service for every device must be a Get_Version service. This service must return
with AX != 0 and the Carry flag clear. See the following section, “VxD Presence Verifica-
tion,” for more details.

Once the table of services has been created, you must force the table to be generated in one
of the VxD source files by defining a special equate (EQU) called “Create_xxx_Serv-
ice_Table,” where xxx is the name of the device before including the service declaration
INCLUBDE file. For example, the main source file of the VFooD service table would con-
tain the following INCLUDE statements:

INCLUDE VMM.INC

INCLUDE Debug.INC
Create_VFooD_Service_Table EQU true
INCLUDE VFooD.INC

This must be done in the same source file that contains the device declaration. This table is
automatically generated and the pointer to the table is stored in the device’s DDB.

Notice that, since the macros generate equates, you will now want to add service declara-
tions to the end of the INCLUDE file. However, never change the order of the declara-
tions. Adding, removing, or changing the order of services changes the service numbering
and all the devices that call these services will need to be rebuilt.

VxD Presence Verification

Many devices, such as the EBIOS device, will not load under certain circumstances (for ex-
ample, when the machine does not have an extended BIOS data area). Before calling
device services for devices other than VPICD, Shell, VKD, or other standard devices, you
should make sure the device is loaded by calling the device’s Get_Version service.
Get_Version for a device will return with AX = 0 and the Carry flag set if the device is not
installed.

Standard Vs. Asynchronous Services

Most services are not reentrant. This means they cannot be called from hardware interrupt
procedures. However, a select group of services is declared as “Async” services and can be
called from hardware interrupt procedures. You may declare services that can be called
from interrupt handlers by using the “Async_Service” option for the BeginProc macro.

17.1.5 VxD APIs

Beta Release

While device services are used to communicate with other enhanced Windows virtual dev-
ices, APIs are used to communicate with software running in a virtual machine. For ex-
ample, the Shell device supports an API that is used to communicate with the Windows
support program for non-Windows applications that runs in the System VM.

Microsoft Confidential April 1, 1990

17-8 Virtual Device Adapiation Guide

A device can support an API for V86-mode code, protected-mode code, or both. The pro-
cedure entry point(s) for the API is specified in the device declaration macro (see Section
17.1.3, “VxD Declaration” for more details on Declare_Virtual_Device). The VM
software issues an Int 2FH with AX = 1684H and BX = Device_ID to get the address to
call to access the APL. See Appendix D, “Windows INT 2FH API,” for more information.

‘When the device API procedure is called with the following parameters:

EBX = Current VM handle
EBP = Client register structure
Client_CS:IP = Instruction following API call

API procedures must examine the client registers (through the client register structure) to
determine which API call was made. The normal calling convention uses AH = Major
function number and AL = Minor function number. Other registers are used for parameters
to the functions. However, a device can use any calling convention that is appropriate. If
you wish to return a value to the caller, then the API procedure should modify the client
registers.

API procedures may modify the EAX, EBX, ECX, EDX, ESI, and EDI registers.

17.2 Adding a VxD to Windows

This section describes in general the steps necessary to install a newly written and de-
bugged VxD into the enhanced Windows environment. These steps are specified and ex-
ecuted from the MAKE file. Detailed instructions are also included in the MAKE file
located on the supplied DDK disks.

There are three required steps for installation, with each requiring a specific software tool:
1. Assemble the VxD code with MASMS5.10B, which is the special version of the assem-
bler used to handle a new pseudo group, FLAT.

2. Link the .DEF files with LINK386, which is the linker used to create the special 32-bit
EXEs.

3. Declare the code to be a VxD with ADDHDR, which adds special VxD information
into the .EXE produced with Link386.

An optional fourth step, is available for debugging:

4. Generate symbol files with MAPSYM32, which is available to generate 32-bit symbol
(.SYM) files for debugging.

These four tools are included in this version of the DDK.

See the following sections for detailed invocation instructions.

The following MAKE file sample is from the Virtual Printer Device (VPD). The complete
source for building the VPD is included on the DDK disks.

April 1, 1990 Microsoft Confidential Beta Release

Virtual Device Programming Topics 17-9

vpd.obj: vpd.asm
masmb5 -p -w2 vpd;

vpd.386: vpd.obj vpd.def
1ink386 spd, spd.386/NOI /NOD /NOP,/MAP,,vpd.def
addhdr vpd.386
mapsym32 vpd

The MAKE file assumes that the four tools are located under the MS-DOS PATH com-
mand. If they are not, then you must modify the MAKE file to specify their exact locations.

17.2.1 MASM5

This is a special version of MASM that supports 32-bit flat-model code. It has been named
MASMS to differentiate it from other versions of MASM you may already have. It has the
same command-line options and format as MASM 5.1, so you can refer to version 5.1
documentation for information on this program.

It is recommended that the -p and -w2 options be used when assembling virtual devices.
The -p option specifies that impure code segment references should generate warning mes-
sages. This is desirable, because it is illegal to write data with a CS override. The -w2 op-
tion sets the warning level to 2, so that warning messages are generated for such things as
jumps that are within SHORT range and for data size mismatches.

MASMS will look for INCLUDE files in the current directory and the INCLUDE path
specified by the environment variable INCLUDE. Therefore, the DDK INCLUDE files
(e.g., VMML.INC, VPICD.INC, and VDD.INC) should be either in the current directory or
located along the INCLUDE path.

17.2.2 LINK386

Beta Release

The LINK386 command line is as follows:

1ink386 <object> {<object>}, <device name>.386 {/<option>}, [<map file
name>][/MAP], ,<device name>.def

For example:
1ink386 vpd, vpd.386/NOI /NOD /NOP, /MAP,,vpd.def

LINK386 links into one device file the individual object (OBJ) files that make up a virtual
device. By convention, Windows devices have the extension .386. The command line
specifies the object files(s), the desired output file, option switches, and definition file. The
following is a list describing the option switches in the preceding examples.

Option Full Name Description
/NOI NOIGNORECASE Specifies that case should not be
ignored.

Microsoft Confidential April 1, 1990

17-10 Virtual Device Adaptation Guide
e]

April 1, 1990

Option Full Name Description

/NOD NODEFAULTLIBRARYSEARCH Specifies that LINK386 should not
search for default libraries.

/NOP NOPACKEDCODE Specifies that code segments
should not be packed into one
code segment in the .EXE file.

/MAP Specifies that all public symbols
should be included in the MAP
file.

Definition (DEF) files are used with LINK386 to identify the device descriptor block
within the device and the types of segments. DEF files for virtual devices all look similar
to the following example:

LIBRARY VPD
DESCRIPTION 'Win386 VPD Device (Version 2.0)'
EXETYPE DEV386

SEGMENTS
_LTEXT PRELOAD NONDISCARDABLE
_LDATA PRELOAD NONDISCARDABLE
_ITEXT CLASS 'ICODE' DISCARDABLE
_IDATA CLASS "ICODE' DISCARDABLE
_TEXT CLASS 'PCODE' NONDISCARDABLE
_DATA CLASS ‘PCODE' NONDISCARDABLE

EXPORTS
VPD_DDB @1

The LIBRARY line is required to identify the device as a module that is part of a system
rather than an executable application. The DESCRIPTION line is optional and simply re-
cords the text string into the .386 file. The EXETYPE line is required to identify the .386
file as an enhanced Windows device file.

The SEGMENTS section is identical for all devices, because it identifies the six possible
types of protected-mode segments that can be part of a device. (If a device has a real-mode
initialization section, then it can have seven types of segments. However, the real-mode
section does not need any special identification in the DEF file.)

The EXPORTS section is also required; it identifies the name and location of the device
descriptor block for the virtual device. It must match the name used in the Declare_Vir-
tual_Device statement in the device source, with _DDB appended to the end. It must also
be identified as ordinal number 1 with the @.

Microsoft Confidential Beta Release

Virtual Device Programming Topics 17-11

17.2.3 ADDHDR

The ADDHDR command line is as follows:
addhdr <device name>.386

For example:

addhdr vpd.386

ADDHDR simply reads the specified 32-bit .EXE file, performs some validation checks,
and writes some additional header information needed by the enhanced Windows loader
into the file’s .EXE header.

17.2.4 MAPSYM32

The MAPSYM?32 command line is as follows:
mapsym32 <device name>

For example:

mapsym32 vpd

MAPSYM32 reads a MAP file and creates a 32-bit .SYM file for use with the Windows de-
bugger, WDEB386. The /MAP option must be specified for LINK386 to generate the nec-
essary MAP file.

17.3 Initializing a VxD

As described in Chapter 16, “Overview of Windows in 386 Enhanced Mode,” VxDs are
initialized along with the enhanced Windows environment. Both real mode and protected-
mode code may be used and are described in the following subsections.

17.3.1 Real-Mode Initialization

Beta Release

Each VxD can have a portion that is run in real mode at load time. This capability is pro-
vided to enable a VxD to determine whether or not it can operate in the current environ-
ment and to provide information to the loader about how it should vary the environment.
This portion is only executed at load time and, then, is discarded.

A real-mode portion is declared as a NEAR procedure in a special 16-bit segment with the
rest of the VxD code. At load time, if the loader determines that a real-mode portion is pre-
sent, it loads it and jumps to its entry point as specified by the END statement at the end of
the file (CS:0 if no entry point is found). Upon entry CS = DS = ES, so code and data must
be mixed in the same segment. The code can then perform the checks that are necessary
and return an exit code back to the loader.

Microsoft Confidential April 1, 1990

17-12 Virtual Device Adaptation Guide

Entry

April 1, 1990

Valid exit codes are as follows:

® (- Everything is fine, and the loader should continue loading the protected-mode por-
tion and the rest of the VxDs.

® 1 - This device is not compatible with the current environment and will not be loaded,
but the loader can continue to load other VxDs.

® 2 - Something is wrong and the loader should abort the Windows load completely.

If 1 or 2 is returned, then the loader will normally print an appropriate error message
naming the VxD that failed. If the real-mode portion has already handled the message re-
porting or does not want any default error message, then it should set the high bit of the re-
turn code in AX (i.e., 8001H or 8002H.)

The real-mode portion can also inform the loader to do the following:

® Pass a DWORD of reference data to the protected-mode portion of the device.

® Pass a table of pages in low memory (0-1Mb) that should be excluded from general use
by the enhanced Windows memory manager.

® Pass a table of pointers to data that should be instanced for each virtual machine.

It is possible for a VxD to exclude pages and/or declare instance data without actually
having a protected-mode portion; it should return 8001H as the return code, so that the
loader will attempt no further loading of the device and will not display the default error
message.

The real-mode portion can perform most BIOS or DOS interrupts and examine memory to
check the environment of the machine. It cannot attempt to perform any type of DOS exit
calls because these will halt the loader in an unclean state, and it will be necessary to re-
boot the machine. Also, any open files should be closed before returning since they will
not be closed by the loader.

The following is the actual definition of the real mode initialization interface:

Cs = DS = ES = segment of loaded code and data

IP = specified entry point or 8.

SI = environment segment, passed to the loader from DOS
AX = VMM version number

BX = flags

bit B: duplicate device ID already loaded

bit 1: duplicate ID was from the INT 2F device list

bit 2: this device is from the INT 2F device list
EDX = reference data from INT 2F response, or 0

SS:SP point to loader's stack.

Microsoft Confidential Beta Release

Virtual Device Programming Topics 17-13

Exit

Beta Release

Must return with a NEAR return
AX = return code (see above)

BX = ptr to list of pages to exclude (@, if none), where:
list
= one or more words in the range 1 to 9FH (terminated) by a word of zero
SI = ptr to list of Instance data items (@, if none), where:

list

one or more instance data items followed by three words
of zero (note that 0-3FF, the interrupt vectors are
always instanced). instance data item = pointer to

data (word segment, word offset),word length of data

]

EDX = DWORD of reference data to be passed to the protected-mode portion.
(This can be a linear pointer to ROM data, a constant, etc. that will
affect the way the protected portion might operate. For example, an EBIOS
device can pass the EBIOS page number, so that the protected-mode portion
does not have to look for the page again.)

A1l the other registers except SS:SP can be modified.

The macros VxD_REAL_INIT_SEG and VxD_REAL_INIT_ENDS are defined in
VMML.INC to facilitate creating a real-mode portion of a device driver. The real-mode por-
tion cannot access code or data outside of its segment. If this is attempted, the linker will
generate warnings and a corrupt .386 file. Fixed segments such as the BIOS (40H)
segments are an exception to this. It is possible to have declared in multiple source files
real-mode portions that will all be linked together (e.g., separating message text from the
code.)

The following is an example of real-mode initialization code:

VxD_REAL_INIT_SEG
BeginProc ebios_init

mov ah, 8C0h

int 15h

test es:[bx.SD_featurel], EBIOS_allocated

jz short no_ebios_fnd

mov ah, 8Clh ; get segment adr of EBIQS
int 15h

jc short no_ebios_fnd

mov ax, es get EBIOS segment address
shr ax, 8 convert to a page #

return EBIOS pg as ref
data

movzx edx, ax

mov bx, OFFSET exc_ebios_page ; ptr to exclusion table
mov [bx], ax ; exclude EBIOS page
- ; from memory manager use

xor si, si ; no instance data to

; declare
mov ax, Device_Load_0k ; go ahead and load the

; device
jmp short init_exit ; return to loader

Microsoft Confidential April 1, 1990

17-14 Virtual Device Adaptation Guide
N

no_ebios_fnd:

mov ah, 9
mov dx, OFFSET no_ebios_msg ; print message thru DOS
int 21h
xor bx, bx s no exclusion table
xor si, si s no instance data table
xor edx, edx s no reference data
mov ax, Abort_Device_Load + No_Fail_Message
; don't load pmode portion
; and don't display a
i error msg
init_exit:

ret
exc_ebios_page dw 0, 0
no_ebios_msg db 'PS/2 type EBIOS not detected', 13, 1@, '$'
EndProc ebios_init
VxD_REAL_INIT_ENDS
END ebios_init ; specify real mode
; initialization entry point

17.3.2 Protected-Mode Initialization

April 1, 1990

The enhanced Windows environment has a three-phase, protected-mode initialization. Re-
turning a carry during any of the phases will abort the VxD load.

Phase 1. Sys_Critical_Init

During the first phase of initialization, interrupts are not yet enabled. Therefore, this phase
should accomplish the following tasks as quickly as possible.

® Initialization of critical functions necessary when interrupts are enabled.

® Claiming a particular range of V86 pages if necessary (such as the video memory for
the VDD).

® Registering device services needed by other devices in later initialization phases.

m Initialization of data needed by the services. During this phase, the System VM Simu-
late_Int and Exec_Int commands must not be used.

Phase 2. Device_Init

This is where most devices do the bulk of their initialization. The System VM has been
created so interaction with the System VM via such commands as Simulate_Int and
Exec_Int is allowed. Notice that this is the phase where the equivalent functions to
Create_VM for the System VM. Most VxDs will allocate their control block area or other
pieces of memory needed, hook interrupts, hook I/O ports, specify instance data, and ini-
tialize themselves and the System VM control block.

Microsoft Confidential Beta Release

Virtual Device Programming Toplcs 17-15

Phase 3. Init_Complete

This is the final phase of Device_Init that is called just before the WIN386 INIT pages are
released and the instance snapshot is taken. VxDs that want to search for a region of V86
pages = AOH to use should do so during this phase. Most devices, though, will not need to
do anything here.

17.4 Tracking The VM States

Most likely, the VxD that you are writing needs to keep track of the status of the different
VMs that may need your VxD. This includes VM creation, initialization, and termination.
The following subsections describe these and other possible VM states.

17.4.1 VM Creation and Initialization

Like the initialization of the enhanced Windows environment, a VM’s go through a multi-
phase process.

Phase 1. Create_VM

This call creates a new VM. EBX = VM handle of the new VM. Returning Carry will fail
the Create_ VM. VxDs should initialize data associated with the VM, especially the con-
trol block.

Phase 2. VM_Critical_Init

EBX = VM handle of the new VM. Returning Carry will cause the VM to VM_Not_Ex-
ecuteable, then be destroyed. VM Simulate_Int or Exec_Int activity is allowed. The VxD
interacts with the VM to initialize the state of the sofware in the VM (e. g., the VDD does
INT 10H to set the initial display mode).

Sys_VM_Init

Same as VM _Init, except is initializes the System VM. If Carry is returned, all of en-
hanced Windows will exit.

17.4.2 VM State Changes

Beta Release

During the normal execution of enhanced Windows, VMs will go through state changes.
Most state changes may be ignored by VxDs. However, depending on the purpose of the
VxD, some may require VxD response. The following calls describe the possible VM state
changes.

Microsoft Confidential April 1, 1990

17-16 Virtual Device Adaptation Guide

April 1, 1990

VM_Suspend

The VM is not runnable until a resume. EBX = VM handle. The call cannot be failed. The
VxD should unlock any resources associated with the VM.

VM_Resume

The VM is leaving a suspended state. EBX = VM handle. Returning a carry fails and
backs out of the resume. Unlock any resources and otherwise prepare internal data struc-
tures for the VM to start running again.

Set_Device_Focus

This sets the focus of the specified VxD to the specified VM. EBX = VM handle of
desired VM. EDX = Device ID. If VxD specific set focus, = 0 if device critical set focus
(all devices).

This call cannot be failed. Restore the hardware associated with the device to the state of
the specified VM. As much as possible, remove VxD interaction with VM (such as disa-
bling I/O trapping) so that VM can run as fast as possible.

Begin_Message_Mode

This call prepares the device for message processing. This is only of interest to the key-
board, mouse, and display. When in message mode, special services provided by the dis-
play and keyboard are used to interact with the user. Message mode is used for the Alt+Tab
screen and for message boxes when Windows is not available to process a message box.
EBX = VM handle going into message mode. This call cannot be failed.

End_Message_Mode

EBX = VM handle leaving message mode. This call cannot be failed.

Reboot_Processor

This call requests a machine reboot. The device (usually the keyboard device) that knows
how to reboot the machine does the necessary operations.

Query_Destroy

This call asks if it can destroy the running VM. Query_Destroy is an information call
made by the Shell device before an attempt is made to initiate a destroy VM sequence on a
running VM that has not exited normally. EBX = VM handle. Returning carry indicates
that a device “has a problem” with allowing this. It is recommended that the VxD return-
ing the Carry indicating a problem call SHELL_Message to post an informational dialog
about the reason for the problem.

Microsoft Confidential Beta Release

Virtual Device Programming Topics 17-17

Debug_Query

Debug_Query is a special call for device-specific DEBUG information display and activ-
ity. This call is made in response to the user typing <VxD name> at the debug prompt,
where <device name> is the name specified in the Declare_Virtual_Device macro (i.e., in
the DDB).

17.4.3 VM Termination

Beta Release

Graceful termination of a VM occurs in the following three steps:

Phase 1. VM_Terminate

During this phase of normal VM termination. EBX = VM handle. Call cannot be failed.
VM Simulate_Int and Exec_Int activity is allowed.

Sys_VM_Terminate

Same as VM_Terminate, except terminates the System VM (Normal enhanced Windows
exit only. On a crash exit, this call is not made). System VM Simulate_Int, Exec_Int ac-
tivity is allowed.

Phase 2. VM_Not_Executeable

During the second phase of VM termination. EBX = VM handle, EDX = Flags (see
VMM.INC). Notice that in the case of destroying a running VM, this is the first call made
(i.e., the VM_Terminate call does not occur). Call cannot be failed. VM Simulate_Int
and Exec_ Int activity is not allowed. Flags for VM _Not_Executeable control call (passed
in EDX) are as follows:

Flag Meaning

VNE_Crashed VM has crashed.

VNE;Nuked VM was destroyed while active.
VNE_CreateFail Some device failed Create_VM.
VNE_CrInitFail Some device failed VM_Critical_Init.
VNE_InitFail Some device failed VM_Init.

Phase 3. Destroy_VM

During this final phase of normal VM termination. EBX = VM handle. Notice that con-
siderable time can elapse between the VM_Not_Executeable call and this call. Call can-
not be failed. VM Simulate_Int and Exec_Int activity is not allowed.

Microsoft Confidential April 1, 1990

17-18 Virlual Device Adaptation Guide

17.5 Exiting Windows

April 1, 1990

There are two calls that can alert a VXD that enhanced Windows is exiting: System_Exit
and Sys_Critical_Exit.

System_Exit

This call is made when Windows is exiting either normally or via a crash. Interrupts are
enabled. The instance snapshot has been restored. System VM Simulate_Int and Exec_Int
activity is not allowed. However, the VxD may modify the System VM memory to restore
the system state to allow a graceful exiting of Windows.

Syst_Critical_Exit

This call is made when enhanced Windows is exiting either normally or via a crash. Inter-
rupts are disabled. System VM Simulate_Int and Exec_int activity is not allowed. VxDs
should reset their associated hardware to a quiescent state to allow a graceful return to real
mode.

Microsoft Confidential Beta Release

Cl:;néer The VDD and Grabber DLL

This chapter describes the Virtual Display Device (VDD) and the Grabber DLL, a
Windows dynamic-link library. Software writers should be familiar with the terms and con-
cepts covered in Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chap-
ter 17, “Virtual Device Programming Topics,” before continuing with this chapter.

The topics in this chapter are presented in the following order:

® Introduction to VDDs

® Converting your 2.x VDD

® VDD device control procedure

® VDD services

® The Grabber DLL and its procedures

18.1 Introduction to VDDs

There are two parts that are necessary to support a video adapter running in 386 enhanced
mode.

a The Virtual Display Device (VDD) is the part of Windows in 386 enhanced mode that
supports saving, restoring, and emulating the hardware for an application running in a
Virtual Machine (VM).

® The Grabber DLL is a Windows dynamic-link library that the WINOLDAP Windows
application uses to look at and obtain the state of a VM’s video adapter. The Grabber’s
primary responsibility is rendering the video display into a format that Windows can
use.

The general structure of the virtual devices under Windows 3.0 is quite different from the
version 2.x structure. While the low-level save, restore, and trapping routines that were
written for version 2.x VDDs should work, the interface with the rest of the enhanced
Windows environment will be quite different.

The Grabber DLL’s interface with WINOLDAP and the VDD is also different. The biggest
difference is that in version 2.x the Grabber was WINOLDAP.GRB and not a DLL..

Beta Release Microsoft Confidential April 1, 1990

18-2 Virtual Device Adaplation Guide

18.1.1 VDD Messages

The sample VDD makes use of Shell event services to keep WINOLDAP informed of
changes in a windowed VM’s display. When the VDD detects a change in the video state,
it sends a message to WINOLDAP, which then queries the state change and modifies the
windowed display appropriately.

When the VDD encounters a situation that requires a user’s choice or interaction, it uses
the Shell message services to print messages and get responses. For example, when there is
not enough memory to save and restore a VM’s video state, the user is informed of the
problem and that a portion of the display may be lost.

18.1.2 VDD I/0 Trapping and Hooked Pages

‘When an application is running in the background, the VDD traps all the video I/O, saving
the output port values and emulating the input port values. In some cases, the detection of
a mode change can result. In this case, the memory should be disabled and hooked to
enable the page fault routine to remap the memory.

A VDD should detect mode changes and illegal memory accesses. This is done by disa-
bling and hooking page faults that occur when the video memory is accessed by the VM.
The page fault routine determines how to map the accessed memory by both determining
whether the VM has the display focus and by examining the state of the controller. The
page fault routine can also be used to demand page the video memory. It will restore and
map the video pages needed to create the physical display and to satisfy the application’s
video memory accesses.

18.1.3 VDD Efficiency

April 1, 1990

To maximize the efficiency of Windows, a VDD is, in many cases, tightly coupled with the
Windows 3.0 display driver. For instance, the EGA display would normally have to be
trapped at all times to maintain the controller state properly. Instead, an API has been de-
fined for communications between the Windows display driver and a VDD. Additionally,
the EGA Windows display driver uses a special portion of video memory and a special al-
gorithm that allows for a subset of the video controller state to be saved and restored
without explicitly saving away the current register values. When adapting a VDD to new
displays, it is a good idea to look at alternatives to trapping all the display adapter access to
maintain the video state. Notice also that the Grabber is usually tightly coupled to the
Windows display driver, specifically to the display-dependent bitmap format.

There are also three PIF bits that the user can specify to disable trapping in VMs where the
applications running in the VMs only modify registers that can be read. The VDD designer
should use these PIF bits, if possible.

Another good area to consider optimizing API emulation , especially the INT 10H Write
TTY function. The user can specify this emulation with a PIF bit.

Microsoft Confidential Beta Release

The VDD and Grabber DLL 18-3

18.1.4 VDD Development Sequence

Chapter 17, “Virtual Device Programming Topics,” discusses the general requirements for
writing a VxD. This chapter focuses on the specific example of how to develop a Virtual
Display Device. To develop a VDD, follow these steps:

1. Build a skeleton. Using the supplied sources as a guide, build a skeleton of the VDD
with all the services and API procedures defined but not functional.

2. Add the initialization functionality, including the control block allocation, global
memory needed, physical page hooking, I/O hooking, and interrupt hooking.

3. Fill out the routines that handle the various hooks.
4. Test it while running Windows and other VMs, full screen.

5. Implement the Grabber API, including the procedures that report controller state, return
video memory structures, and report video state modifications.

6. Test it while running VM:s in a window. Do a thorough test, running many different
applications in all the different states (i.e., exclusive, background, and windowed).

18.2 Converting Your 2.x VDD

The core of your Windows 2.x VDD should work with little change. You only need to
change some of the way that you access memory. For example, use the _MapPhysTo-
Linear function rather than adding PhysToLinr to physical addresses, and use the control
block value CB_High_Linear to add to BIOS memory address for accessing those
memory locations.

However, you need to do quite a bit of work to change the initialization and system func-
tion interface. Additionally, you no longer link VDD with the rest of Windows in 386 en-
hanced mode, but rather create a separate .386 file that is linked dynamically with the
Windows function. It will probably work best if you pull out your Windows 2.x routines
and insert them in the Windows 3.0 VDD model sources.

Notice that the definition of exclusive is different for Windows 3.0 and that the SetFocus
routine takes into account whether or not the VM is running in a window (i.e., VDD will

get a SetFocus call for the System VM on a VM that is running in a window, instead of a
SetFocus to the VM itself).

18.2.1 INCLUDE Files

Beta Release

Most of the modules will only need VMM.INC, VDD.INC, DEBUG.INC, and a device
specific INCLUDE file (e.g., EGA.INC). Some modules will also require a file describing
the interface between them and some external user of their functions (e.g.,
VMDAEGA.INC for the Grabber). By changing over to the new INCLUDE files, you will

Microsoft Confidential April 1, 1990

18-4 Virtual Device Adaptation Guide

generate several undefined references. Modifying the references to use the equivalent
Windows 3.0 functionality is a first step in creating your Windows 3.0 VDD.

18.2.2 Changes to the System, Grabber DLL, and Shell Interfaces

Examine the parts of the supplied Windows 3.0 VDD to understand the new system inter-
face. You will need the VDD _Init, VDD_New, VDD_Exit, VDD_Destroy, VDD_Set-
Type, and VDD_SetFocus routines to use the new device control interface. The
functionality of VDD_Install should be handled by scheduling VM events. The
VDD_Mem_Check routine is replaced by the VDD specifically calling the Shell to give
the user a message. VDD_CHK _Device is also replaced by sending WINOLDAP a
message when the display needs to be updated and by scheduling time outs to do the detec-
tion. The register values and what you can and cannot do in an I/O trap, page fault, and in-
terrupt trap are also changed. Mostly, there is much more flexibility allowed, and there are
changes in register save/restore and parameter passing conventions.

Previously, VDD provided a single VDD_Control with various subfunctions. Most of the
VDD_Control calls are replaced by the device API mechanism. Notice that the way that
the routines retrieve the Grabber DLL’s registers is different (i.e., by using EBP and the
Client_Reg definitions). Also notice the increased number of functions and other changes
in the functionality of the Grabber DLL interface.

The Shell device requires a number of new functions that are implemented as device serv-
ices. Additionally, the old ID call is device service 0. Please see the source examples and
other sections of this document for more information.

18.3 The VDD Device Gontrol Procedure

The Device Control Procedure is the dispatch point for most of the Virtual Machine
Manager’s (VMM) interaction with the VDD. Some modifications in the following areas
will be necessary.

18.3.1 Initialization

April 1, 1990

The following are the areas in the initialization process where some modifications might
be needed.

Real Mode Initialization

Most video adapters will not need any real-mode code to be functional. However, a few
developers will want to add some real-mode code to query device state or to reserve por-
tions of memory that may not be touched during the initialization of other devices or used
for general system purposes. For example, you may have a memory-mapped interface that
will be harmed by other code reading and writing at those addresses (Windows in 386 en-
hanced mode searches the area between CO000H and EFFFFH for the existence of RAM
or ROM). Since all real-mode code is executed during system load, it is recommended that

Microsoft Confidential Beta Release

The VDD and Grabber DLL 18-5

you use it only if the same functionality cannot be accomplished during one of the initiali-
zation phases of the protected-mode driver.

Sys_Critical_Init

During Sys_Critical_Init, a VDD should allocate its control block data area, register serv-
ices, allocate address space, allocate memory needed globally, and define any pointers or
other data that are required for the VDD functionality. Remember that interrupts are dis-
abled during this call, so keep it as short as possible. .

Device_Init

During Device_Init, a VDD should initialize its global state (such as which VM is cur-
rently attached to the physical display), set up the I/O and interrupt trapping needed,
specify instance data and, then, initialize the System VM’s control block. As noted in Chap-
ter 16, “Overview of Windows in 386 Enhanced Mode,” this initialization call is equiv-
alent to VMCreate for the System VM, along with the global device initialization.

Init_Complete

During Init_Complete, a VDD should do any consistency checks that have to be done
after all the other devices have completed their initialization. Normally, a VDD will not
need to do anything with this control call.

Sys_VM_init

During Sys_VM_Init, a VDD should set the initial display-mode System VM, initialize
the rest of the control block data for the system VM, and set the display focus to the sys-
tem VM.

18.3.2 VM Creation, Initialization, Destruction, and State Changes

Beta Release

The following areas will also need some modifications:

= During creation, initialize the control block and allocate any VM specific memory. If
the allocation fails, return the Carry flag set to abort the VM creation.

® During initialization, set the video state of the VM, typically by making calls to the
Video BIOS and trapping the I/O to set up the video state structure.

® During destruction, deallocate any memory allocated for the VM and make sure there
are no pointers left that refer to the destroyed VM.

u The SetFocus routine is responsible for giving the specified VM the physical display.
Notice that there is display SetFocus and critical SetFocus. Both should give the physi-
cal display to the indicated VM. Also notice that the actual restoring of the physical dis-
play should occur by executing the VDD_Restore routine as an event.

Microsoft Confidential April 1, 1990

18-6 Virtual Device Adaptation Guide

18.4 VDD Services

When a Begin_Message_Mode control call is made, the VDD goes into a special mode
that allows the Shell device to use the VDD message services to output text to the screen
without changing the VM’s video state. When the message is complete, an
End_Message_Mode control call is made that restores the focus VM to the hardware.

As described in Chapter 17, “Virtual Device Programming Topics,” a VxD’s services are
available to the VMM and other VxDs. The following is a list of the general VDD serv-
ices.

18.4.1 Grabber API

April 1, 1990

The Grabber uses Get_Version to verify that it is matched with the correct VDD. When-
ever the Grabber needs access to the video memory or the video controller state it queries
the VDD. The VDD returns a data structure describing the requested memory or controller
state.

Get_Mem is used to get current contents of the video memory while updating the win-
dowed display. Get_GrbMem is used to get a snapshot of the entire screen in response to a
ALT + PRTSCN from the user in a full screen VM. Free_Mem and Free_Grab are used to tell
the VDD that the grabber is no longer using this memory. Get_State and Get_GrbState re-
turn current and grabbed controller states respectively. Get_Mod is used to incrementally
update the windowed display. Get_Mod returns a data structure which indicates modifica-
tions to the current display. The Grabber DLL will modify only those parts of the window
that have changed and then issue a Clear_Mod to inform the VDD that the modifications
have been carried out.

In order to make sure that the video memory or state will not change when the Grabber is
accessing the memory, the VM should not be running after a Get_Mem or Get_Mod call.
The VM can continue to run only after a Free_Mem call or an explicit Unlock_App call
from the Grabber.

Service Description

Get_Version Currently not used, but if implemented, it should return the ver-
sion.

Get_Grab_Rtn Called by the shell to determine which routine to call when the
user types the garb screen key.

PIF_State Called by the Shell after VM creation to indicate the VDD PIF

bits for the VM. See the definitions for the bits in VDD.INC. The
interaction with the VM should be adjusted (i.e., memory alloca-
tion and trapping) according to the PIF bits.

Microsoft Confidential Beta Release

The VDD and Grabber DLL 18-7

Service Description

Hide_Cursor Allows the Shell or other device to inhibit the display of the
cursor in a window. It has no effect when the VM is full screen
and on the VM’s video state.

Set_VMType Called by the Shell each time the VM’s execution state or win-

dowed state is changed. VDD should adjust its internal state,
such as initializing the structure needed to maintain the display

changes when the VM is windowed.
Get_ModTime Used by the POLL device to determine if the video state is idle.
Set_HCurTrk Called by the keyboard device when a user is typing keys. It indi-

cates to pass to the Grabber a flag indicating that the cursor
position should always remain on the screen for windowed VMs.
Otherwise, the cursor will only be tracked as it moves vertically.
This prevents excessive horizontal scrolling of the window.

Query_Access Called by the muse device when it wants to touch the video
memory to touch the video memory to update the cursor. If the
access canot be handled by the VDD, it will return false.

Each of the following VDD message services is only functional during Message Mode.

Service Description

Msg_CIrScrn Clears the screen to an initial background color.
Msg_ForColor Sets the foreground color.

Msg_BakColor Sets the background color.

Msg_TextOut Outputs a string of characters.

Msg_SetCursPos Sets the hardware cursor position.

The Grabber uses the VDD Get_Version service to verify that it is matched with the cor-
rect VDD. The API described below enables the Grabber DLL to operate. The Grabber
APIs, Get_Mem and Get_GrbMem, return a data structure that indicates to the Grabber
how to look at the VM’s video memory. Get_GrbMem is caled after the user has typed
ALT + PRTSCN when running a full screen application. It returns a shapshot of the video
memory at the time the user typed ALT + PRTSCN. Get_Mem prevents the VM from run-
ning until Free_Mem is called so that the video memory and video state will not change
while this memory is being accessed.

Free_Mem and Free_Grab indicate that the Grabber DLL is done using the memory data
structure and, therefore, the data structure can change as necessary. For a screen grab, this
indicates to release the memory allocated. For a normal Get_Mem, this indicates to allow
the VM to run again.

Beta Release Microsoft Confidential April 1, 1990

18-8 Virtual Device Adaptation Guide

Get_State and Get_GrbState return a data structure indicating the controller state of the
VM. The controller state coupled with the memory state allow the Grabber to render the
VM'’s video state into a window or into the Clipboard (grab).

Get_Mod and Clear_Mod assist the Grabber DLL in rendering a VM’s video state into a
window. Get_Mod returns a data structure that indicates all the changes made to the video
state since the last Get_Mod call. The Grabber DLL will then modify only those partrs of
the window that have changed. Clear_Mod indicates to the VDD that the modification
state should be initialized to no modifications.

18.5 The Grabber DLL

The Grabber is a dynamic-link library (DLL) primarily responsible for representing the
VM’s display state to the Windows display driver. It is the library of procedures used by
WINOLDAP, the Windows application responsible for creating, destroying, and changing
the state of VMs. WINOLDAP makes private calls to the Shell device, which in turn calls
the necessary VMM services. Therefore, it is WINOLDAP, using the Grabber (and through
it the Windows display driver), that is actually responsible for windowing the display state
of a VM.

Each of the Grabber procedures is a cProc and has to be exported. The procedure code can
be shared by several instances of WINOLDAP, and therefore, the placement of VM-
specific data must be deliberate. The Grabber DLL procedures provide support for the fol-
lowing:

® Screen grabbing

m Marking and selecting

® Painting non-Windows applications in a window

= Doing other miscellaneous functions
The Grabber generates data in the following situations:
s When an Extended Paint structure (EXTPAINTSTRUC) is passe& from WINOLDAP.

= When a procedure requires local data. (Local data is maintained on the stack.)

18.5.1 On-Screen Selection Interfaces

The user can make on-screen selections with the keyboard, mouse, or through a hot key.
The keyboard or mouse are used only while in a window; a hot key (ALT+PRTSCRN) is used
while in full-screen or windowed mode.

The procedures that handle on-screen selections are as follows:

= BeginSelection

April 1, 1990 Microsoft Confidential . Beta Release

The VDD and Grabber DLL 18-9

Beta Release

a EndSelection

u KeySelection

8 AdjustInitEndPt
» MakeSelctRect

To perform a selection by using the keyboard, the user performs the following steps:

1. Choose the Mark command.
2. Move the cursor to the start point of the selection.
3. Sweep through a selection using SHIFT + DIRECTION keys.
4. Press ENTER to end a selection and copy it to the Clipboard (or ESC to end the selection
without a copy).
On choosing Mark from the menu, BeginSelection gets called with argument <0,0>.

During the first phase, the cursor is moved to the actual start point. KeySelection handles
the cursor movement. It returns the new start point every time a DIRECTION key is pressed.
Notice that the selection could potentially begin at each cursor position. Therefore, every
time the start point is changed, EndSelection is called to cancel the previous selection, and
BeginSelection is called with the new start point.

Once the cursor is positioned at the actual start point, the user sweeps through a selection
area using SHIFT+DIRECTION keys. KeySelection handles the cursor movement. It returns

- the new end point of the selection. Now each call to KeySelection is followed by a call to

MakeSelctRect to record the current selection rectangle. On pressing ENTER, the actual
end point and the final selection rectangle are established.

Therefore, the last call to BeginSelection establishes the actual start point, the last call to
KeySelection returns the actual end point, and the final call to MakeSelctRect records the
actual selection rectangle. If only DIRECTION keys are pressed, the user is shifting the start
point. If SHIFT+DIRECTION keys are pressed, the user is changing the active end point.

NOTE The start point and the end point of a selection have to be aligned on character boundaries in
text mode. In graphics mode, the Grabber chooses some granularity for cursor movement (e.g.,
DWORD of pixels).

The coordinates of the start point and the end point are given in screen coordinates — a window client
area position corrected by the scroll bar position. Client area coorindate = <0,0> corresponds to the
screen coordinate <ColOrg,RowOrg>. (ColOrg and RowOrg are available in the extended paint struc-
ture.)

Microsoft Confidential April 1, 1990

18-10 Virtual Device Adaptation Guide

18.5.2 Selection Interface Procedures

This section presents descriptions of the Selection Interface Procedures in alphabetical
order.

AdjustinitEndPt

Description This procedure adjusts the initial selection end point. To start off, the start point and the
end point are the same. (This is how BeginSelection records them). On the first SHIFT +
DIRECTION key call to KeySelection, notice that KeySelection returns the wrong end
point. This routine returns the correct end point. It returns (X+DELTAx, Y+DELTAy)
where <X.,Y > is the given end point. DELTAx and DELTAy are as defined in KeySelec-
tion.

Entry IpPatStruct = EXTPAINTSTRUC
YCoOrd,XCoOrd = (Y,X) point to be adjusted

Exit DX,AX = (Y,X) end point adjust down and to right for initial sélection.

BeginSelection
Description This procedure starts the selection at the indicated point.

Entry IpPntStruc = EXTPAINTSTRUC
YCo0Ord, XCoOrd = (Y,X) screen coord of start pt

Exit (IpPntStruc.SelStruc.SelctSRect] Display rectangle in the EXTPAINTSTRUC selection
structure set

ConsSelecRec

Description This procedure makes the display rectangle consistent with the selection.

Entry IpPntStruc = EXTPAINTSTRUC

Exit [IpPntStruc.SelStruc.SelctSRect] Display rectangle in the EXTPAINTSTRUC selection
structure set.

April 1, 1990 Microsoft Confidential Beta Release

EndSelection
Description

Entry

Exit

The VDD and Grabber DLL 18-11

This procedure stops the selection.
IpPntStruc = EXTPAINTSTRUC

None

InvertSelection
Description

Entry

Exit

This procedure inverts the selection.
IpPntStruc = EXTPAINTSTRUC

DX,AX = (Y,X) screen CoOrd of “active” selection endpoint

KeySelection
Description

Entry

Exit

Beta Release

This procedure is for keyboard selection.

IpPntStruc = EXTPAINTSTRUC

StartType = 0 if SHIFT key UP
!= 0 if SHIFT key DOWN

MFunc =0 To Right
=1To Left
=2 Down
=3Up

MFunc = (0 To Right
=1To Left
=2 Down
=3Up

DX,AY = (Y,X) screen CoOrd of new select end pt

KeySelection responds to DIRECTION keys and SHIFT+DIRECTION keys.

DIRECTION key response: (SHIFT key UP)

if (LEFT Key)
return (X-DELTAx, Y)

Microsoft Confidential

April 1, 1990

18-12 Virtual Device Adaptation Guide
. ___}

;else it (RIGHI Key)
return (X+DELTAx, Y)

;else if (DOWN Key)
return (X, Y+DELTAy)

;else if (UP Key)
return (X, Y-DELTAy);

where <X,Y> is current end point.

DELTAx DELTAy are the font width and height in text mode and some appropriate value
in graphics mode.

SHIFT+DIRECTION key response:
Similar to above except <X,Y> is current end point.

MakeSelctRect

Description This procedure sets a new selection. It is called after every call to KeySelection in re-
sponse to SHIFT+DIRECTION key. Given a new end point, it adjusts the new end point to be
character-aligned in text mode (and on -a convenient boundary in the video memory in
graphics mode). It also adjusts for screen maxima. It sets the Selection rectangle based on
the current start point and end point.

Entry IpPntStruc = EXTPAINTSTRUC
YCoOrd, XCoOrd = (Y,X) screen CoOrd of new end point

Exit [lpPntStruc.SelStruc.SelctSRect], Display rect in extended paint

selection structure set

AX == 0, if no change was made to selection parameters

NOTE [lpPntStruc.SelStruc.SelctSRect] must still be setin this case

RenderSelection

Description This procedure renders the selection into the Clipboard format.
Entry IpPntStruc = EXTPAINTSTRUC
wParam Parameter from VDD message (= -1 if VMDOSAPP origin
[Param Parameter from VDD message (=0 if VMDOSAPP origin) Event ID

April 1, 1990 Microsoft Confidential Beta Release

The VDD and Grabber DLL 18-13

Exit if (DX < @)
Error
else if (DX = @)
No ~ Selection
else if (DX > B)
DX = format, (CF_OEMTEXT or CF_BITMAP)
AX = Handle, (Memory Handle or Bitmap Handle)

n

18.5.3 Non-Windows Application Painting Interfaces

This section presents descriptions of Non-Windows Application Painting Interfaces in al-

phabetical order.

GetDisplayUpd

Description This procedure calls the VDD to get a display update (if any) and stores it in the Paint
structure.

It prevents any further changes from occurring in the application. The application restarts
after a call to one of the following; UpdateScreen, PaintScreen, or GrbUnLockApp.

Entry IpPntStruc = EXTPAINTSTRUC

wParam Parameter from VDD message (= -1 if VMDOSAPP origin)

IParam Parameter from VDD message (=0 if VMDOSAPP origin) Event ID
Exit AX = Display update flags (see grabpnt.inc for fDisp_ flags)

PaintScreen
Description This procedure paints the indicated region of the screen.
This procedure paints the non-Windows application screen into a window. The origin of

this is a Windows paint as opposed to a display update (that is handled at UpdateScreen).
When a non_Windows application receives a Windows Paint message, Paint Screen gets

called,
Entry IpPntStruc = EXTPAINTSTRUC
Exit AX !=0 Screen Painted

AX == (Screen not painted, probably low Windows memory problem

Beta Release Microsoft Confidential April 1, 1990

18-14 Virlual Device Adaptation Guide

SetPaintFnt
Description This procedure sets the font for painting in the extended paint structure so that WINOL-
DAP can compute the paint rectangle for use on PaintScreen calls. This is called right
before a call to PaintScreen. It is also called right before a call to UpdateScreen.
Entry IpPntStruc = EXTPAINTSTRUC
IpWidFullScr Word pointer for width return
IpHeightFullScr ‘Word pointer for height return
Exit FntHgt and FntWid values in EXTPAINTSTRUC set
NOTE Values are setto 0 if it is a graphics screen.
[lpWidFullScr] = Width of full screen in pix (Text or Graphics)
[lpHeightFullScr] = Height of full screen in pix (Text or Graphics)
DX is height of full screen in scan lines if Graphics, in text lines if Text.
AX is width of full screen in pix if Graphics, in chars if Text.
UpdateScreen
Description This procedure updates changed portions of the screen. When a non-Windows application
modifies the display on its own, UpdateScreen is called.
Entry IpPntStruc = EXTPAINTSTRUC
Exit AX == 1 if Screen Paint, unless fGrbProb bit set in EPStatusFlags
AX == 0 if Screen not painted, probably low Windows memory problem
GrbUnLockApp
Descripton This procedure undoes the implied application lock of GetDisplayUpd
Entry IpPntStruc = EXTPAINTSTRUC

April 1, 1990 Microsoft Confidential Beta Release

The VDD and Grabber DLL 18-15

Exit None

18.5.4 Miscellaneous Interfaces

This section presents descriptions of Miscellaneous interfaces in alphabetical order.

CheckGRBVersion
Description This procedure checks out the VDD version.
Entry IpPntStruc = EXTPAINTSTRUC
Exit If (AX == 0)
0K
AX =0
Bad version
AX =1
Version # error
A = 2
Display type mismatch (VDD and Grabber are not compatible)
DX = Grabber Version number
CursorOft
Description This procedure destroys the cursor for an application.
Entry IpPntStruc = EXTPAINTSTRUC
Exit Caret destroyed
CursorOn
Description This procedure creates the cursor for an application if it has one.
Entry IpPntStruc = EXTPAINTSTRUC
Exit Caret created

Beta Release Microsoft Confidential April 1, 1990

18-16 Virtual Device Adaptation Guide

CursorPosit
Description This procedure returns the position of the cursor on the display.
Entry IpPntStruc = EXTPAINTSTRUC
Exit DX,AX = (Y,X) screen CoOrd of upper left of cursor
= (-1,-1) if no cursor
GetFontList
Description This procedure returns a pointer to the list of extra fonts you want loaded.
Entry IpFontBuf -> Buffer for font info
Exit Font Buffer filled in
GrabComplete
Description Signals that we are finished with the grab. This is called after the grab is complete. It is
time to call the VDD and have it free the grab memory.
Entry IpPntStruc = EXTPAINTSTRUC
wParam Parameter from VDD message (= -1 if VMDOSAPP origin)
IParam Parameter from VDD message EVENT ID
Exit None
GrabEvent ,
Description Private Grabber messages. This procedure provides a private channel of event communica-
tion between the VDD and the Grabber to perform a hot key screen grab.
Entry IpPntStruc Extended paint structure

April 1, 1990

wParam Parameter from VDD message

Microsoft Confidential Beta Release

The VDD and Grabber DLL 18-17

[Param Parameter from VDD message EVENT ID
Exit None
InitGrabber
Description This is the library initialization procedure.
Entry DI = Module handle of the library
CX = Size of local heap (should be 0)
DS = Seg addr of library data segment (isn’t one)
Exit AX = 0
Init Error
AX 1=0
0K
ScreenFree
Description This procedure frees anything associated with this application.
Entry IpPntStruc = EXTPAINTSTRUC
Exit Any allocated stuff associated with the application is freed.

Beta Release Microsoft Confidential April 1, 1990

18-18 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Part |\ Virtual Device
Services

This part documents all the enhanced Windows virtual machine environment
services. They are grouped by service type and presented in the order shown on
the following page.

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter
17, “Virtual Device Programming Topics,” for general environment discussions.

Beta Release Microsoft Confidential April 1, 1990

April 1, 1990 Microsoft Confidential Beta Release

Beta Release

CHAPTERS

19 Memory Management Services

20 /0 Services and Macros

21 VM Interrupt and Call Services

22 Nested Execution Services

23 Break Point and Callback Services

24 Primary Scheduler Services

25 Time-Slice Scheduler Services

26 Event Services

27 Timing Services

28 Processor Fault and Interrupt Services
29 Information Services

30 Initialization Information Services

31 Linked List Services

32 Error Condition Services

33 Miscellaneous Services

34 Shell Services

35 Virtual Display Device (VDD) Services
36 Virtual Keyboard Device (VKD) Services
37 Virtual PIC Device (VPICD) Services
38 Virtual Sound Device (VSD) Services
39 Virtual Timer Device (VTD) Services
40 V86 Mode Memory Manager Device Services
41 Virtual DMA Device (VDMAD) Services

Microsoft Confidential

April 1, 1990

April 1, 1990 Microsoft Confidential Beta Release

Chapter || Memory Management
19 | services

Note to Readers: The introduction for this chapter should be considered potentially inac-
curate as it has not been proofed for technical accuracy. However, the individual services
documentation may be considered authoritative, though it has not been edited for grammer.

Enhanced Windows supplies a rich set of memory management services. Since many of
the services are unnecessary for most VxD development, only a commonly used subset is
listed in this introduction. However, all the memory management services are documented
in either this chapter or in Chapter 40, “V86 Mode Memory Manager Device Services.”

See also Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17,
“Virtual Device Programming Topics,” for general environment discussions. Memory man-
agement is also discussed in the Microsoft Windows Software Development Kit,
Programming Tools and in Chapter 6, “Network Support,” in the Microsoft Windows
Device Driver Adaptation Guide”.

The Enhanced Windows environment uses a virtual memory scheme capable of overcom-
ing the limits of actual physical memory. Though it may not be physically present, a virtual
memory of 4 gigabytes is theoretically addressable. This is done by swapping (paging)
code and data to and from RAM and a secondary storage device. Since VxDs reside within
the 32-bit protected-mode portion of the environment, they may make use of the scheme’s
advantages by using the memory management services.

Windows determines the amount of virtual memory actually available based on the total
amount of physical memory on the system and the amount of disk space available. This
can be changed (downward) by modifying the swap file size specified in the SYSTEM.INI
file.

Windows will continue to allocate physical memory until it has been used up. Then, it will
begin moving 4-kilobyte pages of code and data from physical memory to disk to make ad-
ditional physical memory available. Windows pages in 4-kilobyte blocks, rather than un-
equal-sized code and data segments. The swapped 4-kilobyte block may be only part of a
given code or data segment, or it may cross over two or more code or data segments.

This memory paging is transparent to a program. If an attempt is made to access a code or
data segment of which some part has been paged out to disk, the 80386 issues a page fault
interrupt to Windows. Windows then swaps other pages out of memory and restores the
pages that the program needs.

The Windows memory management services are presented in the following categories.
The services specified under some of the categories comprise the commonly used subset.

Beta Release Microsoft Confidential - April 1, 1990

19-2 Virtual Device Adaptation Guide
L]

m System Data Object Management
Allocate_Device_CB_Area
® Device V86 Page Management
Assign_Device_V86_Pages
® GDT/LDT Management
m System Heap Allocator
HeapAllocate
HeapFree
= System Page Allocator
CopyPageTable
MaplIntoV86
MaodifyPageBits
PageAllocate
PageFree
PageLock
PageUnlock
PageGetAllocInfo
PhysIntoV86
® Looking at Physical Device Memory in Protected Mode
MapPhysToLinear
m Data Access Services
GetFirstV86Page
m Special Services for Protected Mode APIs
® Instance Data Management
®m Looking at V86 Address Space

(Are we missing GetNullPageHandle, AddInstanceItem & LookingatV86Address-
Space?)

19.1 System Data Object Management

These services provide support for allocating special system areas. The three areas man-
aged are the Control Block (i.e., the data structure passed to VxDs indicating which VM is
involved), the Global V86 Addressable Area, and the GDT and LDT.

April 1, 1990 Microsoft Confidential Beta Release

Memory Management Services 19-3

NOTE Al of these calls use the USE32 C calling convention. The true name of the procedure has an
underscore in front (i.e., Allocate_Device_CB_Area is actually _Allocate_Device_CB_Area), and the
arguments are pushed right to left (unlike the PL/M calling convention used by Windows, which is left
to right). The return value(s) is returned in C standard EDX:EAX. It is the responsibility of the caller to
clear the arguments off the stack. Registers EAX, ECX, and EDX are changed by calls. Registers DS,
ES, FS, GS, EBP, EDI, ESI, and EBX are preserved.

Allocate_Device_CB_Area

Beta Release

unsigned Allocate_Device_CB_Area(nBytes,flags)
unsigned nBytes;
unsigned flags;

This call is used to allocate a region of the Per VM Control Block data structure to a partic-
ular device. Devices typically want some data that is “per VM”. For example, a device
which is virtualizing a particular set of I/O ports for the VM needs a place to store each
VMs “instance” of the I/O port state. This is done by allocating a region of the VM Con-
trol Block large enough to hold a device specific data structure which contains the state.
For example, if the device specific data structure looks like this:

FooDeviceCB Struc
FooDevRegl db ? ; Dev I/0 register 1
FooDevReg2 db ? ; Dev I/0 register 2
FooDevReg3 db ? ; Dev 1/0 register 3
FooDevReg4 db ? ; Dev I/0 register 4
FooDevState dd ? ; State flags for device
FooDeviceCB Ends

Space in the VM Control Block wduld be allocated like this:

VxD_DATA_SEG :

FooDevCBOffset dd ?

VxD_DATA_ENDS

VxD_ICODE_SEG

; Allocate the Control Block space. This is in Foo's INIT routine

VMMCall _Allocate_Device_CB_Area,<<SIZE FooDeviceCB>,2>

or eax,eax
jz short No_CB_Space_Error ; Probably FATAL error
mov [FooDevCBOffset],eax

VxD_ICODE_ENDS

VxD_CODE_SEG

; In VxD procedures the Control Block pointer is passed
H in EBX the control block may be pointed to like this.

mov edx,ebx

Microsoft Confidential April 1, 1990

19-4 Virtual Device Adaptation Guide
L __J

Return Value

Comments

add edx, LFoobevCBUttset]
mov al,[edx.FooDevRegl]

VxD_CODE_ENDS

The nBytes parameter specifies the number of bytes of space to be allocated. There are cur-
rently no bits defined in the flags, this parameter must be set to 0.

Returns nonzero Control Block Offset of the block allocated if successful, returns zero if
the space could not be allocated (This is probably a fatal error, it is up to the caller to de-
cide what is to be done in this case).

Control block Offsets returned from this call will be DWORD aligned. The nBytes parame-
ter does not have to be a multiple of 4, but if it isn’t, it will currently be rounded up to a
multiple of 4. This may change in a later releases, so do no depending one rounding.

The above code sample is not the only way to do things. There are many other ways the
Control Block Offset value can be used to access your devices specific region of the con-
trol block.

NOTE This routine itself is in the init segment of WIN386. It can therefore only be called during sys-
tem initialization. Trying to call it after system initialization and the system INIT segment space has
been reclaimed will result in a fatal page fault.

‘When Control Block regions are allocated they are initialized with value 0 in all bytes.
When new VMs are created, all bytes of the Control Block are set to 0.

Allocate_Global_V86_Data_Area

April 1, 1990

unsigned Allocate_Global_V86_Data_Area(nBytes,flags)
unsigned nBytes;
unsigned flags;

This call is used to allocate a region of the Global V86 Addressable Area to a particular
device. This area is used for device specific objects which must also be addressable by the
Virtual mode code running in the Virtual Machine.

An example is a Virtual mode software interrupt which is trapped by the device and causes
the return of a Virtual mode pointer to some data associated with the device. The data must
be in the VM’s V86 address space since a Virtual mode pointer to it is returned. In this
case there is no reason for the interrupt hook code to also be in the Global V86 Address-
able Area, that can all be in the protected mode device.

The nBytes parameter specifies the number of bytes of space to be allocated. Current flags
bits:

Microsoft Confidential Beta Release

Memory Management Services 19-5

Return Value

Comments

Beta Release

GVUDAWordAlign tQU VVVYVVVVBVBYVYVVYVIVYVVVIVVVVVLVL1E
GVDADWordAlign EQU 000000000000000000000000000000108
GVDAParaAlign EQU 000000000000000000000000000001008
GVDAPageAlign EQU 000000000000000000000000000010008
GVDAInstance EQu 000000000000000000000001000000008
GVDAZerolnit EQu 000000000000000000000010000000008
GVDAReclaim EQU 000000000000000000000100000000008

All unused bits must be zero. GVDAxxxxAlign bits specify the indicated alignment
(WORD, DWORD, PARAGRAPH, PAGE) for the start of the block. If none are set,
BYTE alignment is assumed. GVDAInstance, if set, indicates that the block is an item of
VM instance data for which each different VM has its own private values. If GVDAIn-
stance is clear, the block is global data and all VMs share the same value setting. GVDAZ-
erolnit, if set, indicates that the block is to initialized with value 0 in all bytes of the block.
If GVDAZerolnit is clear, the block will have random values in it.

GVDAReclaim is only valid if GVDAPageAlign is set. IF GVDAReclaim is set, then the
physical pages of the region should be “reclaimed” by the MMGR and placed on the free
list, and the NUL page should be mapped in the region.

Returns nonzero linear address of the block allocated if successful, returns zero if the
space could not be allocated. This is probably a fatal error, it is up to the caller to decide
what is to be done in this case.

The Flag bit equates are defined by including VMM.INC. The equates should be used.

For blocks allocated with GVDAInstance set, the AddInstanceltem call is made by this
routine for you.

Note the interaction with Allocate_Temp_V86_Data_Area.

Specifying multiple GVDAxxxxAlign bits will result in random behavior. At most ONE of
these bits must be set.

The returned linear address is a ring 0 linear address. It is up to the caller to convert this
into a Virtual mode SEG:OFFSET form if that is needed.

The linear addresses returned by this call will be <100000h the limit of virtual mode ad-
dressability.

Generally only data needs to be placed in these blocks, but code can be placed if desired.

WARNING You must be very careful if allocating two blocks, one for code which is not instanced,
and one for data which /s Instanced because you cannotassume that the two blocks will be within 64K
of each other and thus addressable with the same segment register in virtual mode.

If the VxD desires the values of Instance fields allocated with this call to have a set initial
value whenever a new VM is created, the field must be initialized with the desired values

Microsoft Confidential April 1, 1990

19-6 Virtual Device Adaptation Guide
|

Special notes for
GVDAPageAlign

April 1, 1990

immediately after making this call. The contents of the instance blocks at the time VxD in-
itialization is completed is what each new VM is created with.

NOTE This routine itself is in the init segment of WIN386. It can therefore only be called during sys-
tem initialization. Trying to call it after system initialization and the system INIT segment space has
been reclaimed will result in a fatal page fault.

This type of allocation is intended to support Vxds which need a global page aligned piece
of V86 address space where they can MapIntoV86 data. The best example of such a VxD
is the PageSwap device.

The nBytes parameter should be a multiple of 4096 (page size).

Note that this page is global but that MapIntoV86, PhysIntoV86, and LinMapIntoV86
are calls which are local to a specific VM. This means that a VxD which wishes to
globally change the mapping of this region must traverse the VM list with
Get_Next_VM_Handle and perform the map in each VM individually.

WARNING Do not issue any of the map calls on this region before SYS_VM_lnit device call time.
Failure to follow this rule can cause the page type bits in the page table to get set improperly.

VxDs using this should set the correct initial VM state in their Create_VM device call
code. The initial state of the region is actually a copy of the current state of
SYS_VM_Handle, but you should not rely on this. Set the initial state you want explicitly
by making a MapIntoV86, or PhysIntoV86 call.

The physical page(s) which are mapped into this region at the time you allocate it are not
pages that the MMGR worries about. It is up to the VxD to put the physical pages to good
use. The addresses of these physical pages(s) is found by doing a CopyPageTable call on
the SYS_VM_Handle and looking at the physical address in the page table entries.

Do not assume that the physical addresses of these pages equals the linear address re-
turned. This will be true on most machines, but not on some. These pages by using are
mapped with PhysIntoV86.

If GVDAReclaim is set, then the physical pages that currently are mapped in the region
will be reclaimed by the MMGR and placed on the free list. The NUL page will then be

mapped in the region.

If GVDAReclaim is clear, the physical page(s) which are mapped into this region at the
time you allocate it are not pages that the MMGR worries about. It is up to the VxD to use
these physical pages for something useful. Try to avoid just wasting them. The addresses
of these physical pages(s) is found by doing a CopyPageTable call on the
SYS_VM_Handle and looking at the physical address in the page table entries.

It is invalid to assume that the physical addresses of these pages = the linear address re-
turned. This will be true on most machines, but on some it will not. These pages are
mapped using PhysIntoV86.

Microsoft Confidential Beta Release

Memory Management Services 19-7

You will not be able to Assign_Device_V86_Pages the pages of this region. They are al-
ready marked as globally owned because they are below FirstV86Page.

You cannot set both GVDAReclaim and GVDAInstance. Attempting to do so will result
in an error.

Allocate_Temp_V86_Data_Area

Return Value

Comments

Beta Release

unsigned Allocate_Temp_V86_Data_Area(nBytes,flags)
unsigned nBytes;
unsigned flags;

This call is used to allocate a region of the Global V86 Addressable Area to a particular
device during system initialization.

The primary reason for allocating this area is to create a buffer into which data associated
with some Simulate_Int activity (like an INT 21H DOS system call) can be placed. The
area allocated with this call only exists for a short period of time during initialization. The
nBytes parameter specifies the number of bytes of space to be allocated. There are cur-
rently no bits defined in the flags, this parameter must be set to 0.

Returns nonzero linear address of the block allocated if successful, returns zero if the
space could not be allocated (insufficient memory, or temp area already allocated).

There is only one Temp area, therefore only one allocation will be allowed to be outstand-
ing at a time. Attempts to allocate the Temp area when it is already allocated will result in
an error.

The Allocate_Global_V86_Data_Area call does not function while the Temp Area is allo-
cated. The Temp Area must be released with Free_Temp_V86_Data_Area before the
Allocate_Global_V86_Data_Area call can be made again.

Make sure you Free_Temp_V86_Data_Area the temp area as soon as possible.

The returned linear address is a ring O linear address. It is up to the caller to convert this
into a Virtual mode SEG:OFFSET form if that is needed.

The linear address returned by this call will be <100000h the limit of virtual mode address-
ability.

Since this area exists only temporarily, it doesn’t make sense to Instance any of it.
The linear address returned from this call is paragraph aligned.
The contents of the block will always be Zero Initialized by this call.

Microsoft Confidential April 1, 1990

19-8 Virtual Device Adaptation Guide
- ___]

NOTE This routine itself is in the init segment of WIN386. It can therefore only be called during sys-
tem initialization. Trying to call it after system initialization and the system INIT segment space has
been reclaimed will result in a fatal page fault.

Free_Temp_V86_Data_Area

Return Value

Comments

unsigned Free_Temp_V86_Data_Area()

This call is used to free the Temp_V86_Data_Area allocated with Allo-
cate_Temp_V86_Data_Area.

Returns nonzero if successful, returns zero if unsuccessful (Temp Area not allocated).

The Allocate_Global_V86_Data_Area call does not function while the Temp Area is allo-
cated. The Temp Area must be released with Free Temp V86_Data_Area before the Al-
locate_Global_V86_Data_Area call can be made again.

Once this call is issued, the Linear Address that was returned from Allo-
cate_Temp_V86_Data_Area can no longer be used for anything. The system will prob-
ably crash if this is attempted.

NOTE This routine itself is in the init segment of WIN386. It can therefore only be called during sys-
tem initialization. Trying to call it after system initialization and the system INIT segment space has
been reclaimed will result in a fatal page fault.

19.2 Device V86 Page Management

April 1, 1990

Certain types of VxDs may want to “take over control” of certain regions of VM V86
address space for use by the VxD. The best examples of this are as follows:

® The display device (VDD), which wants to reserve those areas of the AOH to BFH page
address range that are used by the display device.

®» The EMM device (part of VE6MMGR), which wants to use a region of VM V86
address space between pages AOH and 100H for the high memory EMM 3.20 Mapping
Window.

m The device responsible for management of the EBIOS page, page 9FH, on machines
like the IBM PS/2 Model 80.

The folowing calls enable VxDs to allocate VM V86 address ranges for such purposes

and cooperate with other VxDs that also might want to use them. There are two types of as-
signment that can be used: global, which applies to all VMs in the system, and local,

which applies to only one VM. The VDD video and EBIOS page assignments are ex-
amples of global assignment (although these could be local depending on the specifics of

Microsoft Confidential Beta Release

Memory Management Services 19-9

the implementation). The EMM assignments are an example of local assignments. The
EMM driver does not want to take over VM V86 page assignment in VMs that are not
using EMM because then all those pages cannot be used by any other device. Thus, it
waits until a specific VM makes an EMM call of a certain type at which point the EMM
driver may do a local page assignment in that particular VM to assign the EMM pages of
the V86 address space to the EMM device. The global versus local assignment is specified
via the VMHandle parameter on the calls. If the handle is nonzero, it is local; if the handle
is zero, it is global.

No protection is provided with this mechanism; all that is provided is information so that
devices can cooperate. There is nothing to prevent a VxD from mapping pages that it does
not own or a page owned by some other VxD. A device that does these things is simply un-
cooperative and not correctly implemented.

NOTE All of these calls use the USE32 C calling convention. The true name of the procedure has an
underscore in front (i.e., Assign_Device _V86_Pages is actually _Assign_Device_V86_Pages), and
the arguments are pushed right to left (unlike the PL/M calling convention used by Windows, which is
left to right). The return value(s) is returned in C standard EDX:EAX. It is the responsibility of the caller
to clear the arguments off the stack. Registers EAX, ECX, and EDX are changed by calls. Registers DS,
ES, FS, GS, EBP, EDI, ESI, and EBX are preserved.

Assign_Device_V86_Pages Assign_Device_V86_Pages service

Return Value

Comments

Beta Release

unsigned Assign_Device_V86_Pages(VMLinrPage,nPages,VMHandle,flags)
unsigned VMLinrPage;

unsigned nPages;

unsigned VMHandle;

unsigned flags;

This call is used to assign a region of VM V86 address space to a device. VMLinrPage
specifies the linear page number (>=0, <=10Fh) of the first page of V86 address space to
be assigned. nPages specifies the number of pages to be assigned starting at VMLinrPage.
The entire specified range must be >=0, <=10Fh, an error will occur if it is not. All of the
specified pages must be un-assigned, or an error will occur. VMHandle specifies the VM to
Local assign the pages in, if this parameter is 0, it means the pages are to be Global as-
signed. There are currently no bits defined in the flags, this parameter must be set to 0.,

Returns nonzero if the assignment was successful, returns zero if the assignment failed (at
least one page in the specified range is already assigned, or invalid page range).

During device initialization only Global Assignments are allowed, and there are restric-
tions on the pages which can be assigned. Pages between FirstV86Page and page 0AOh
can only be top down, in order assigned during device initialization. Local Assignments,
and General assignment between FirstV86Page and page 0AOh must wait until device in-
itialization is complete.

Microsoft Confidential April 1, 1990

19-10 Virtual Device Adaptation Guide
]

Note that Global Assignment of a page that is already assigned, either Local to any VM, or
Global assigned will fail. Global assignment can only work on pages which are not cur-
rently assigned in any VM.

DeAssign_Device_V86_Pages

Return Value

Comments

unsigned DeAssign_Device_V86_Pages(VMLinrPage,nPages,VMHandle,flags)
unsigned VMLinrPage;

unsigned nPages;

unsigned VMHandle;

unsigned flags;

This call is used to deassign a region of VM V86 address which was previously assigned
with Assign_Device_V86_Pages. VMLinrPage specifies the linear page number (>=0,
<=10Fh) of the first page to be deassigned. nPages specifies the number of pages to be
deassigned starting at VMLinrPage. The entire specified range must be >=0, <=10Fh, an
error will occur if it is not. All of the specified pages must be assigned, or an error will
occur. VMHandle specifies the VM to Local deassign the pages in, if this parameter is 0, it
means the pages are to be Global deassigned. There are currently no bits defined in the
flags, this parameter must be set to 0.

Returns nonzero if the deassignment was successful, returns zero if the deassignment
failed (at least one page in the specified range is already deassigned, or invalid page range).

During device initialization this call will always fail. This call only works after device in-
itialization is complete.

An extreme amount of chaos will occur if someone Global DeAssigns a range which is ac-
tually Local Assigned, or DeAssigns a region which was not obtained via a successful As-
sign_Device_V86_Pages.

Get_Device_V86_Pages_Array

April 1, 1990

unsigned Get_Device_V86_Pages_Array(VMHandle,ArrayBufPTR,flags)
unsigned VMHandle;

unsigned ArrayBufPTR;

unsigned flags;

This call is used to obtain a copy of the assignment bit map array for Device_V86_Pages.
This allows the caller to determine which regions of the VM V86 address space are cur-
rently assigned, and which are available. VMHandle specifies the VM to get the assign-
ment bit map of, if this parameter is 0, it means to get the Global assignment array.
ArrayBufPTR points to a buffer large enough to contain the array. The assignment array is
an array of 110h bits, one bit for each page in the range 0-10Fh. Thus the size of the array
is ((110h/8)+3)/4 = 9 DWORDS.

Microsoft Confidential Beta Release

Memory Management Services 19-11

Return Value

Comments

Bits in the array which are set (=1) indicate pages which are assigned, bits which are clear
(=0) indicate pages which are not assigned. Thus to test the bit for page number N (0 N
10Fh) you could use code like this:,

mov ebx, N MOD 32 ; Bit number in DWORD
mov eax, N/ 32 ; DWORD index into array
bt dword ptr ArrayBufPTR[eax*4],ebx; Test bit for page N
jnc short PageUnAssigned PageAssigned:

Note that this code is mearly intended to illustrate how the bit array works. This code is
not the most efficient, or the only way to implement this test. There are currently no bits
defined in the flags, this parameter must be set to 0.

Returns nonzero if successful, returns zero if the bit array could not be returned (Invalid
VMHandle).

The Global Bit Array only indicates those pages which are currently Globally owned. Bits
with 0 in them do not necessarily indicate pages which can be Global As-
sign_Device_V86_Paged. The reason is that one of the VMs in the system may have that
page Local Assign_Device_V86_Paged. In order to determine if a page can be globally as-
signed, the Global array must be examined, AND all of the VM Local arrays must be ex-
amined.

19.3 GDT/LDT Management

These services provide a way for VxDs to allocate Global Descriptor Table (GDT) selec-
tors and set up a Local Descriptor Table (LDT) for protected-mode execution. Notice that
the intent of these services is to support segmented environments in protected mode. In
general, VxDs should never need to allocate GDT selectors or set up an LDT. The only rea-
son these services are needed is to support protected-mode applications. Notice that the
LDT is a per-VM object; each VM can (may) have its own LDT. Since enhanced Windows
is a flat model system, do not create multiple segments.

Allocate_GDT_Selector

Beta Release

unsigned Allocate_GDT_Selector(DescDWORD1,DescDWORD2,flags)
unsigned DescDWORD1;

unsigned DescDWORD2;

unsigned flags;

This call is used to create a new GDT selector. DescDWORDI and DescDWORD?2 form
the 8 bytes of information to be placed in the new descriptor. DescDWORD! is the high
order 4 bytes of the descriptor containing the high 16 bits of the base, the high 4 bits of the
limit and the status and type bits. DescDWORD?2 is the low order 4 bytes for the descriptor
containing the low 16 bits of the base and limit. Use BuildDescDWORD:s to help you set

Microsoft Confidential April 1, 1990

19-12 Virtvai Device Adaptation Guide
L}

Return Value

Comments

up these arguments. There are currently no bits defined in the flags, this parameter must be
setto 0.

Returns a 64 bit long which is actually two 32 bit DWORD:s. The low DWORD (EAX) is
the non-zero selector if succesfull. The high DWORD (EDX) is split into two 16 bit word
returns. The low 16 bits of EDX is the GDT descriptor which describes the GDT itself. Un-
like the LDT, it is strongly recommended that this selector not be used to edit the GDT. If
you mess up editing the LDT, you will probably just crash one app, but if you mess up
editing the GDT, you will crash the whole system. The high 16 bits of EDX is the number
of selectors currently in the GDT (the “limit” of the GDT expressed as a number of selec-
tors, (LIMIT+1)/8). Both DWORDS have value 0 if the allocation failed (Bad De-
scDWORD arguments, GDT is full, insufficient memory to grow GDT).

The RPL of the selector returned from this call will be set to the DPL of the selector set in
DescDWORDI.

The low 16 bits of the EDX return does not change, but it is safest to save the value of the
GDT selector after each Allocate_GDT _Selector call. This selector will have DPL. = RPL
=0, and the TI bit (bit 2) will be clear.

The high 16 bits of the EDX return must be saved after each call, if its value is important,
because the size of the GDT may change on each call.

The prefered method of changing a GDT descriptor is to use SetDescriptor, rather than
using the GDT selector which is returned by this call.

Allocate_LDT_Selector

April 1, 1990

unsigned long
Allocate_LDT_Selector(VMHandle,DescDWORD1,DescDWORD2,Count, flags)
unsigned VMHandle;

unsigned DescDWORD1;

unsigned DescDWORD2;

unsigned Count;

unsigned flags;

This call is used to create new LDT selector(s) in the specified VM context. VMHandle is
avalid VM handle and indicates the VM context for which the selector(s) will be valid. De-
scDWORDI and DescDWORD? form the 8 bytes of information to be placed in the new
descriptor(s). DescDWORDI] is the high order 4 bytes of the descriptor containing the high
16 bits of the base, the high 4 bits of the limit and the status and type bits. DescDWORD?2
is the low order 4 bytes for the descriptor containing the low 16 bits of the base and limit.
Use BuildDescDWORDs to help you set up these arguments. The Count parameter speci-
fies the number of contiguous LDT selectors to allocate. This parameter supports Block
Selector Assignment strategies. USE16 segmented applications cannot address objects
larger than 64K Bytes in size without having multiple selectors that describe the sequential
64K Byte blocks of the object. For an object <=64K bytes in size, or instances where it is

Microsoft Confidential Beta Release

Memory Management Services 19-13

Return Value

Comments

inappropriate, Count = 1. For an object >64K bytes in size, Count = (Size + (64K -
1))/64K. Notice that the selectors allocated for count >1 all have the same descriptor
DWORD:s in them. It is up to the caller to edit the base and limits of the individual selec-
tors in a Block Selector Assignment using the LDT selector returned in the low 16 bits of
EDX. There are currently no bits defined in the flags, this parameter must be set to 0.

Returns a 64 bit long which is actually two 32 bit DWORDs. The low DWORD (EAX) is
the nonzero selector if successful, if Count was >1, this is the FIRST selector, the second is
EAX+8, the third EAX+16, etc. The high DWORD (EDX) is split into two 16 bit word re-
turns. The low 16 bits of EDX is the LDT descriptor which describes the LDT itself. The
allows the caller to do things such as change the present bit of LDT selectors and change
the base and limit. The high 16 bits of EDX is the number of selectors currently in the
LDT (the “limit” of the LDT expressed as a number of selectors, (LIMIT+1)/8). Both
DWORDS have value 0 if the allocation failed (Bad DescDWORD arguments, LDT is
full, invalid VMHandle insufficient memory to grow LDT).

The RPL of the selector returned from this call will be set to the DPL of the selector set in
DescDWORD1 and the TI bit (bit 2) will be set.

The high 16 bits of the EAX return are zero since selectors are 16 bit quantities.

Note that LDT selectors are PER VM and only valid in that VM context (VM must be cur-
rent VM for selector to be valid). Use SelectorMapFlat to look at regions described by
LDT selectors in VMs which are not the current VM.

The low 16 bits of the EDX return does not change once the LDT of a particular
VM is created, but it is safest to save the value of the LDT selector after each
Allocate_LDT_Selector call. This selector will have DPL = RPL = Protected Mode
Application Privilege, and the TI bit (bit 2) will be set.

The high 16 bits of the EDX return must be saved after each call, if its value is important,
because the size of the LDT may change on each call.

The multiple selectors allocated with Count >1 must be individually freed.
_Free_LDT _Selector does not have a count.

The prefered method of changing an LDT descriptor is to use SetDescriptor.

Use of ALDTSpecSel is not advised. Reliance on specific “hard coded” LDT selectors is
contrary to good system design principals. Note that a bit like this does not exist for Allo-
cate_GDT_Selector, this is intentional. A call with this bit set may always fail for some
values of the Count parameter, and it may start failing for all values of the Count parame-
ter in a later release of the product.

BuildDescDWORDs

Beta Release

unsigned long BuildDescDWORDs(DESCBase,DESCLimit,DESCType,DESCSize,flags)
unsigned DESCBase;

Microsoft Confidential April 1, 1990

19-14 Virtual Device Adaplation Guide
L __|]

Return Value

Comments

unsigned UESCLimit;
unsigned DESCType;
unsigned DESCSize;
unsigned Flags

This call is used to help you build the DescDWORD1 and DescDWORD2 arguments for
calls to Allocate_LDT/GDT_Selector. DESCBase is the 32 bit BASE for the descriptor.
DESCLimit is the 20 bit LIMIT for the descriptor. DESCType specifies the type BYTE
(Only low 8 bits of the parameter are valid, other bits must be 0) for the descriptor. This is
the byte that occupies bits 8-15 of the high DWORD of the descriptor (Present bit, DPL
and TYPE fields). DESCSize specifies bits 20-23 of the high DWORD of the descriptor
(Granularity, Big/Default). Notice that these bits occupy bits 4-7 of the DESCSize parame-
ter, other bits must be 0. In other words DESCSize specifies a byte just like DESCType
where only the high 4 bits of the byte are specified.

Current flags bits:
BDDExplicitDPL EQU 000000000000000000000000000000018

All unused bits must be zero. BDDEXxplicitDPL, if set, indicates that the DPL value
specified in the DESCType field is to be used. If this bit is clear, then the DPL specified in
the DESCType field is ignored and the DPL returned will be set to the protected mode
application RPL. Since most selectors are built for the use by protected mode applications,
this provides a convienient way to build descriptors without having to actually know

which ring protected mode applications run in.

Returns the low DWORD of the descriptor (DescDWORD2) in EAX, and the high
DWORD of the descriptor (DescDWORD1) in EDX.

If you are building selectors for use by Protected Mode applications use the built-in capa-
bility provided by not setting the BDDExplicitDPL bit. Do not make assumptions about
which ring protected mode applications run in. The selection of a ring for PM applications
will be changed in future revs of Windows.

Free_GDT_Selector

Return Value

April 1, 1990

unsigned Free_GDT_Selector(Selector,flags)
unsigned Selector;
unsigned flags;

This call is used to free a GDT selector allocated with a previous Allocate_ GDT_Selector
call. Selector is the return from a previous Allocate_GDT_Selector call. There are cur-
rently no bits defined in the flags, this parameter must be set to 0.

Returns nonzero value if successful, returns zero if the free failed (invalid Selector).

Microsoft Confidential Beta Release

Memory Management Services 19-15

Comments

Certain system selectors cannot be treed since they are required tor operation of WIN386.

Free_LDT_Selector

Return Value

Commoents

unsigned Free_LDT_Selector(VMHandle,Selector,flags)
unsigned VMHandle;

unsigned Selector;

unsigned flags;

This call is used to free a LDT selector allocated with a previous Allocate_LDT_Selector
call. VMHandle indicates the VM context of the selector. Selector is the return from a pre-
vious Allocate_LDT_Selector call. There are currently no bits defined in the flags, this
parameter must be set to 0.

Returns nonzero value if successful, returns zero if the free failed (invalid Selector, invalid
VMHandle).

The RPL bits of the passed Selector are ignored by this call.

GetDescriptor

Return Value

Comments

Beta Release

unsigned long GetDescriptor(Selector,VMHandle,flags) unsigned Selector;
unsigned VMHandle;
unsigned flags;

This call is used to get a copy of the two descriptor DWORDs associated with the given
LDT or GDT Selector. Selector is a GDT or LDT selector value to get the descriptor of.
The VMHandle parameter is ignored if Selector is a GDT selector. If Selector is an LDT
selector, then VMHandle indicates the appropriate VM context for the Selector. There are
currently no bits defined in the flags, this parameter must be set to 0.

Returns the low DWORD of the descriptor (DescDWORD?2) in EAX, and the high
DWORD of the descriptor (DescDWORD1) in EDX. Returns zero in both DWORDs if
there was an error (invalid selector, invalid VM handle).

The high 16 bits of the Selector argument are ignored (this is because the 80386 CPU often
sets them to somewhat random values when DWORD operations are performed on seg-
ment registers).

The RPL bits of Selector are ignored.
The VMHandle parameter must be valid for LDT selectors.

Microsoft Confidential April 1, 1990

19-16 Virtual Device Adaptation Guide
. ___]

SetDescriptor

Return Value

Comments

unsigned SetDescriptor(Selector,VMHandle,DescDWORD1,DescDWORDZ,flags)
unsigned Selector;

unsigned VMHandle;

unsigned DescDWORDI1;

unsigned DescDWORD2;

unsigned flags;

This call is used to set (change) the descriptor of the given Selector. Selector is a GDT or
LDT selector value to set the descriptor of. The VM Handle parameter is ignored if Selector
is a GDT selector. If Selector is an LDT selector, then VMHandle indicates the appropriate
VM context for the Selector. DescDWORDI and DescDWORD?2 form the 8 bytes of infor-
mation to be placed in the descriptor. DescDWORDI is the high ORDER 4 bytes of the
descriptor containing the high 16 bits of the base, the high 4 bits of the limit and the status
and type bits. DescDWORD?2 is the low ORDER 4 bytes for the descriptor containing the
low 16 bits of the base and limit. Use BuildDescriptorDWORDs to help you set up these
arguments. There are currently no bits defined in the flags, this parameter must be set to 0.

Returns non-zero value if succesfull, returns zero if it failed (invalid Selector, invalid
VMHandle).

The high 16 bits of the Selector argument are ignored (this is because the 80386 CPU often
sets them to somewhat random values when DWORD operations are performed on seg-
ment registers).

The RPL bits of Selector are ignored.
The VMHandle parameter must be valid for LDT selectors.

19.4 System Heap Allocator

April 1, 1990

The purpose of the heap allocator is to provide a memory manager service to system com-
ponents to allocate small (i.e., less than a page size) blocks of memory for long term or
short term use.

NOTE All of these calls use the USE32 C calling convention. The true name of the procedure has an
underscore in front (i.e., HeapAllocate is actually _HeapAllocate), and the arguments are pushed right
to left (unlike the PL/M calling convention used by Windows, which is left to right). The retum value(s)
is returned in C standard EDX:EAX. It is the responsibility of the caller to clear the arguments off the
stack. Registers EAX, ECX, and EDX are changed by calls. Registers DS, ES, FS, GS, EBP, EDI, ESI, and
EBX are preserved.

The heap uses a boundary tag allocation scheme similar to the one used by the MS-DOS
operating system. This has the benefit of not placing some fixed limit on the total number
of heap blocks. It has the disadvantage of having a fixed overhead of extra space per block.

Microsoft Confidential Beta Release

Memory Management Services 19-17

The heap overhead is about 16 bytes per block. Users should keep this in mind when allo-
cating lots of objects of small size. Try to combine such needs into larger heap blocks to
cut down on the overhead.

WARNING You are strongly warned against making assumptions about the placement and size of
the heap boundary tag structures. Future versions of WIN386 may change this behavior of the heap.

NOTE 4 byte (DWORD) alignment is maintained on heap blocks. This could be increased in a later
version, but at least DWORD alignment is guaranteed.

HeapAllocate

Return Value

Comments

Beta Release

unsigned HeapAllocate(nbytes,flags)
unsigned nbytes;
unsigned flags;

This is the call to allocate a block from the heap. nbytes is a 32 bit unsigned integer which
is the size, in bytes, of the block. Current flags bits:

HeapZerolnit EQu 000000000000000000000000000000018

All unused bits must be zero. HeapZerolnit, if set, indicates that if the allocation is succes-
ful, the memory is to be initialized with value 0 in all bytes of the block. If HeapZerolnit is
clear, the block will have completely random values in it.

The return value is the 32 bit RING 0 address (offset relative to standard WIN386 RING 0
DS) of the block. Value is 0 if the allocation failed (insufficient memory).

Blocks are DWORD aligned as noted, but sizes do not have to be a multiple of 4.

There is no “protection” of the heap. Care must be taken not to overrun the size of your
block. Failure to do this will result in odd behavior and crashes.

There is no “motion” of blocks in the heap (heap blocks are all fixed), except via
HeapReAllocate, and therefore no compaction. You are advised not to use the heap in
such a way as to severely fragment it. You will end up wasting lots of memory by doing
this.

The Flag bit equates are defined by including VMM.INC, please use the equates.
Allocation of 0 length heap blocks is not allowed.

Microsoft Confidential Apni 1, 1990

19-18 Virtual Device Adaptation Guide

HeapFree

Return Value

Comments

unsigned HeapFree(hAddress,flags)
unsigned hAddress;
unsigned flags;

This call is used to free an existing block of heap. hAddress is the value returned from a
previous call to HeapAllocate or HeapReAllocate and indicates the block to be freed.
There are currently no bits defined in the flags, this parameter must be set to 0.

Returns nonzero value if the block was succesfully freed, zero if the free was unsuccesful
(invalid hAddress).

None

HeapGetSize

Return Value

Comments

unsigned HeapGetSize(hAddress,flags)
unsigned hAddress;
unsigned flags;

This call is used to get the size of an existing block of heap. hAddress is the value returned
from a previous call to HeapAllocate or HeapReAllocate and indicates the block to get
the size of. There are currently no bits defined in the flags, this parameter must be set to 0.

Returns the size, in bytes, of the block. Returns zero if there was an error (invalid
hAddress).

None

HeapReAllocate

April 1, 1990

unsigned HeapReAllocate(hAddress,nbytes,flags)
unsigned hAddress;
unsigned nbytes;
unsigned flags;

This call is used to grow or shrink or reinitialize an existing block of heap. hAddress is the
value returned from a previous HeapAllocate or HeapReAllocate call and indicates the
block to be reallocated. nbytes is a 32 bit unsigned integer which is the new size in bytes of
the block. Current flags bits:

HeapZerolnit EQU 000000000000000000000000000000018
HeapZeroRelnit EQU 000000000000000000000000000000108
HeapNoCopy EQU 000000000000000000000000000001008

Microsoft Confidential Beta Release

Memory Management Services 19-19

All unused bits must be zero. HeapZerolnit, if set, indicates that if the reallocation is
succesful, and the reallocation is growing the size of the block, the “grow area” of the
block is to be initialized with value 0 in all bytes. This bit is ignored on a reallocation
which is not growing the size of the block. HeapZeroRelnit, if set, indicates that the EN-
TIRE block is to be reinitialized with value zero in all bytes of the block. HeapNoCopy, if
set, indicates that the previous contents of the block are irrelevant, and don’t need to be
copied into the newly sized block. There is no reason that more than one of these bits
should be set. If none of the bits are set, the previous contents of the block are copied into
the new block, up to the lesser of the size of the new block, and the size of the old block,
and the “grow area”, if any, is not initialized with anything.

Return Value The return value is the 32 bit RING 0 address (offset relative to standard WIN386 RING 0
DS) of the new block. Value is 0 if the reallocation failed (insufficient memory, or invalid
hAddress).

Comments Do not make assumptions about the relationship between the passed in hAddress and the
hAddress returned. Assume that the returned hAddress is always different than the passed
in hAddress.

In the case where this call fails, the passed in hAddress block remains valid. In the case
where this call works and returns a new hAddress, the passed in hAddress is no longer
valid (old block has been HeapFreed).

There is no “protection” of the heap. Care must be taken not to overrun the size of your
block. Failure to do this will result in odd behavior and crashes.

There is no “motion” of blocks in the heap (heap blocks are all fixed), and therefore no
compaction. You are advised not to use the heap in such a way as to severely fragment it.
You will end up wasting lots of memory by doing this.

Note that this call can be used to reset the contents of an existing heap block to O by setting
nbytes to the current size of the block and scetting HeapZeroRelnit.

You cannot HeapReAllocate a block to size 0, use HeapFree.

The Flag bit equates are defined by including VMM.INC, please use the equates.

19.5 System Page Allocator

The purpose of the page allocator is to provide the main allocation of 80386 4K pages to
particular VM or VxDs.

Beta Release Microsoft Confidential April 1, 1990

19-20 Virtual Device Adaptation Guide

NOTE All of these calls use the USE32 C calling convention. The true name of the procedure has an
underscore in front (i.e., PageAllocate is actually _PageAllocate), and the arguments are pushed right
to left (unlike the PL/M calling convention used by Windows, which is left to right). The retum value(s)
is returned in C standard EDX:EAX. It is the responsibility of the caller to clear the arguments off the
stack. Registers EAX, ECX, and EDX are changed by calls. Registers DS, ES, EBP, EDI, ESI, and EBX
are preserved.

CopyPageTable

Return Value

Comments

April 1, 1990

unsigned CopyPageTable(LinPgNum,nPages,PageBufPTR,flags)
unsigned LinPgNum;
unsigned nPages;
unsigned *PageBufPTR;
unsigned flags;

This call is used to obtain a copy of a WIN386 page table. This call is intended as an assist
to WIN386 system components that need to analyze the linear to physical mapping (such
as DMA devices). LinPgNum is the page number of the first page of the range. This can be
anything in the range 0 - OFFFFFh. Thus addresses in the range 0-3FFh refer to addresses
in the 1M V86 address space of the current VM. To compute the page number of any re-
gion simply take the address relative to the standard RING 0 WIN386 DS and shift it right
by 12 bits. For example, the linear address 60001 ABG6h is in page number 60001h. Align-
ment considerations of this address (beyond 4K alignment) are the responsibility of the cal-
ler. nPages is the number of page table entries to copy. PageBufPIR is a 32 bit RING 0
offset relative to the standard WIN386 RING 0 DS which is the address of a buffer where
the page table will be copied. Caller must insure that this buffer is large enough. Each page
table entry is a DWORD, so the buffer must be at least nPages*4 bytes long. There are cur-
rently no bits defined in the flags, this parameter must be set to O.

Returns a nonzero value if the copy is succesful, returns O value if the copy was succesful,
but at least a part of the range overlapped a region where the corresponding Page Directory
Entry is not present.

You get a copy of the Page Table; writing to your buffer has no effect.
Note that V86 page tables stop at page 10Fh.

To look at the page table of a VM that is not the current VM simply use the high linear
address of the VM. For instance to look at the page table starting at V86 address 0A000:0
of a VM which is not the current VM go:

mov eax,fAB000h ; V86 linear adress of QAQG:0
add eax,[ebx.CB_High_Linear] ; High linear address
shr eax,12 ; Convert to page number
Microsoft Confidential Beta Releass

Memory Management Services 19-21

Note that the above sequence always works correctly (works if the VM is the current VM
as well). So simply doing this in all cases avoids the complication of worrying about
whether the VM is the current VM.

The intent of this call is for you to look at the physical addresses in the high 20 bits of the
entries. The low 12 bits of system information may be examined however.

You are warned to be careful about keeping this buffer for any length of time. The actual
page table entries can change while the copy you got won’t. The information in the copy
should be analysed quickly.

GetDemandPagelnfo

void GetDemandPagelnfo(BufPtr,flags)
DemandInfoStruc *BufPtr;
unsigned flags;

This call is for use by the demand paging device. It provides information for the demand
pager.

DemandInfoStruc struc

DILin_Total_Count dd ? ; Size of linear address space in pages
DIPhys_Count dd ? ; Count of phys pages

DIFree_Count dd ? ; Count of free phys pages
DIUnlock_Count dd ? ; Count of unlocked phys Pages
DILinear_Base_Addr dd ? ; Base of pageable address space
DILin_Total_Free dd ? ; Total free linear pages

DIReserved dd 1 ; Reserved

DemandInfoStruc ends

Return Value

Comments

Beta Release

2 DUP(?)

DILin_Total_Count is the size in pages of the linear address space subject to demand
paging. DILinear_Base_Addr is the linear address of the start of the demand pageable re-
gion. Thus there are DILin_Total_Count pages starting at address DILinear_Base_Addr
which are subject to demand paging. DILin_Total_Free is the number of the
DILin_Total_Count pages which are currently free. Notice that this space may not be allo-
catable in a single block, it is the total free, not the size of the largest free block. Note that
if DILinear_Base_Addr == 0, this means that the demand pageable region of the system is
not contiguous. DIPhys_Count is the total number of physical pages under the control of
the memory manager. DIFree_Count is the number of pages currently on the free list. DI-
Unlock_Count is the count of pages which are currently unlocked, notice that free pages
are unlocked. There are currently no bits defined in the flags, this parameter must be set to
0.

This call does not have a return value. It simply fills in the structure pointed to by BufPtr.
The reserved field is exactly that, reserved. Do not make any assumptions about what is in

this region. Behavior will change in later releases.

Microsoft Confidential April 1, 1990

19-22 Virtual Device Adaptation Guide
L___]

GetFreePageCount

Return Value

Comments

unsigned long (flags)
unsigned flags;

This call is used to obtain the count of free 4K pages. And the count of pages that can be al-
located as PageLocked. There are currently no bits defined in the flags, this parameter
must be set to 0.

The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is the 32 bit count of free 4K pages in the system which could be allo-
cated with the PageAllocate call. The High DWORD (EDX) is the 32 bit count of pages
available for allocation as PageLocked pages at the current time.

You should be careful about making assumptions about being able to turn around and issue
acall to allocate all of the pages returned by this call. Besides any alignment considera-
tions, it is possible someone could get in and allocate some or all of the pages before you.
This call is intended to be advisory in nature.

Note that in a demand paged virtual memory system such as WIN386 the free pages count
is usually very close to 0. It is more relevant to use the EDX return to make judgements
about allocation possibility. EDX contains the count of pages currently available for alloca-
tion as PageLocked pages. Note that many assumptions are not valid. EAX<=EDX is not
a valid assumption for instance.

Note that in a virtual memory environment it is not a good idea to go soaking up tons of
virtual address space. Start with some, then PageReAllocate it to make it bigger if needed.

GetSetPageOutCount

Return Value

April 1, 1990

unsigned GetSetPageOutCount(NewCount,flags)
unsigned NewCount;
unsigned flags;

This call is for use by the demand paging device. It allows the paging device to manipulate
a memory manager parameter associated with demand paging. This parameter is the “page
out ahead” count. Whenever a page is paged out to satisfy a page in, an additional
PageOutCount-1 pages are also paged out and put on the free list (if possible).There is one
bit in the flags:

GSPOC_F_Get equ 000000000000000000000000000000018

All other bits must be zero. If GSPOC_F_Get is set, the call returns the current value of
the page out count in EAX, and the NewCount parameter is ignored. If GSPOC_F_Get is
not set, the call sets the value of the page out count to NewCount.

Returns the page out count if GSPOC_F_Get is set, else it has no return.

Microsoft Confidential Beta Release

Memory Management Services 19-23
L ..___]

WARNING This call is intended for use by the PageSwap device, others should not be calling it!
Others making this call can disturb the operation of the PageSwap device.

Comments There is an equate for the flag bit in VMM.INC, use the equate.

GetSysPageCount

unsigned GetSysPageCount(flags)
unsigned flags;

This call is used to obtain the current count of system (PG_SYS) 4K pages. There are cur-
rently no bits defined in the flags, and this parameter must be set to 0.

Return Value The return value is the 32 bit count of 4K pages allocated as PG_SYS pages in the system.

Comments It is generally true that this number is the size of WIN386. However, this is the general
case only.

GetVMPgCount

unsigned long GetVMPgCount(VMHandle,flags)
unsigned VMHandle;
unsigned flags;

This call is used to get the current count of 4K pages allocated to a particular VM. The
VMHandle parameter must be a valid VM handle and indicates the VM to get the allocated
page count of. There are currently no bits defined in the flags, this parameter must be set to
0.

Return Value The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is the total count of pages (of all types but PG_SYS) in the system allo-
cated for this VM. The High DWORD (EDX) is the count of pages which are allocated to
this VM, but which are not mapped into the VM’s 1Meg address space at the current time,
Value (both dwords) is 0 if the call failed (invalid VMHandle).

Comments You should be careful about assuming that EAX-EDX is the size of the VM. It is in one
sense, but not in the standard DOS senses.

Beta Release Microsoft Confidential April 1, 1990

19-24 Virtual Device Adaptation Guide

MapintoV86

unsigned MapIntoV86(hMem,VMHandle,VMLinPgNum,nPages,Page0ff,flags)
unsigned hMem;
unsigned VMHandle;
unsigned VMLinPgNum;
unsigned nPages;
unsigned PageOff;
unsigned flags;

This call is used to map some or all of the pages of a memory block into a specific VM’s
Virtual 8086 address space. AMem is the value returned from a previous call to PageAllo-
cate or PageReAllocate and indicates the block to be mapped. VMHandle parameter must
be a valid VM handle and indicates the VM into which the map is to occur. VMLinPgNum
is the address in the 1M V86 address space where the map will start (this is a page number,
thus linear address 60000h = page 60h). Alignment considerations of this address (beyond
4K alignment) are the responsibility of the caller. Map addresses below page 10h, or above
10Fh will cause an error. nPages is the number of pages to map. PageOff is the number of
pages into the AtMem block to the first page of the block which is to be mapped at
VMLinPgNum (thus PageOff is 0 to map the first page of ”Mem at VMLinPgNum).
nPages and PageOff allow one hMem block to be scatter mapped into different VM loca-
tions. An error will occur if PageOff + nPages is greater than the size of AMem.

Current flags bits:
PageDEBUGNulFault EQU 000000000000000000000000000100008

All unused bits must be zero. PageDEBUGNulFault, if set, indicates that if hMem is the
handle of the NUL system page, and this is the DEBUG version of WIN386, access to
these pages should cause a page fault DEBUG exception. This bit is ignored if htMem is
not the system NUL page handle, or this is not DEBUG WIN386.

It is generally true that AMem blocks mapped with this call should not be composed of
PG_SYS pages. This is not disallowed, but is not advised.

There is a special AMem handle that can be used with this call. The value of this handle is
obtained by calling the routine GetNulPageHandle (actual name _GetNulPageHandle)
which will return you this special AMem handle in EAX. This is the htMem of the system
NUL page. This page is used to occupy regions of the address space which are “unused”
but for which it is not desirable to cause a page fault if they are accessed. The NUL page is
multiply mapped at many locations in the system, so its contents are always random.
Under DEBUG WIN386, a fault occurs if the NUL page is touched and the PageDEBUG-
NulFault bit was set on the call which mapped the page.

If the PageSwap device is type one (not direct to hardware), there is an implied PageLock
on the pages mapped with this call, and an implied PageUnlock on the pages which this
call is mapping over. This is consistent with the fact that pages mapped into V86 address
space must be locked (V86 memory cannot be demand paged). If the PageSwap device is
type two (direct to hardware) than the implied lock and unlock done by this call are dis-
abled because in the case of a type two PageSwap device V86 memory CAN be demand

Apnil 1, 1990 Microsoft Confidential Beta Release

Memory Management Services 19-25

Return Value

Comments

paged. See the PageAllocate documentation for a description of the different PageSwap
device types and their relevance.

Retumns a nonzero value if the map is succesful, returns O value if the map was unsuccesful
(invalid hAMem, invalid VMHandle, map range illegal, size discrepancy, insufficient
memory on implied PageLock).

The implied PageLock, which is performed on all of the pages mapped if the PageSwap
device is type oneAg, is consistent with the fact that V86 memory cannot be Demand
Paged while the VM is in a runable state. Whenever the V86 memory mapping is changed
via MapIntoV86, the previous memory that was mapped in that region of the VM is un-
locked. The correct way to think of this is that there is an implied PageLock whenever
memory is mapped into a V86 context, and an implied PageUnlock whenever it is “un-
mapped” from the V86 context. This “unmapping” can occur when: A different handle (in-
cluding the NulPageHandle) is MapIntoV86ed or LinMapIntoV86ed to the region, or a
PhysIntoV86 is performed to the region.

There is nothing to prevent you from mapping the same block, or piece of a block, into
multiple places in a VM, or into multiple VMs. Such operations are not particularly advis-
able though. For one thing, the reporting of memory owned by a VM will be disturbed. For
this reason it is also not generally a good idea to map pages that were allocated as belong-
ing to one VM into a different VM. The one exception to this general rule is the request for
amap by one VM to look at the memory of a different VM. Such maps should be of a rela-
tively short duration.

The page attributes for these pages will be P_USER+P_PRES+P_WRITE. P_DIRTY and
P_ACC will be cleared by the call. PG_TYPE will be set to whatever the type of the
hMem pages are.

The Flag bit equates are defined by including VMM.INC, please use the equates.

The intent of MapIntoV86 support for pages between page 10h and FirstV86Page is to
support WIN386 devices which have Allocate_Global_V86_Data_Area a
GVDAPageAlign region. Use of mapping in this region to other addresses can easily
crash the system and should be avoided.

Regions which span across FirstV86Page are not allowed.

The reason for the page 10h limitation is that on most versions of the Intel 80386 CPU
there is an errata which prevents you from setting up a Linear != Physical address mapping
in the first 64K of the address space.

ModifyPageBits

Beta Release

unsigned ModifyPageBits(VMHandle,VMLinPgNum,nPages,bitAND,bitOR,pType,flags)
unsigned VMHandle;
unsigned YMLinPgNum;
unsigned nPages;

Microsoft Confidential April 1, 1990

19-26 Virtual Device Adapiation Guide

Return Value

Comments

April 1, 1990

unsigned bitAND;
unsigned bitOR;
unsigned pType;
unsigned flags;

This call is used to modify the page protection bits associated with PG_HOOKED pages in
the V86 address space of a VM. It allows the P_PRES, P_WRITE, and P_USER bits of the
pages to be modified along with PG_TYPE if appropriate. The VMHandle parameter must
be a valid VM Handle and indicates the VM whose page bits are to be modified. VMLinPg-
Num is the page number in the 1M V86 VM address space where the modification will
start (this is a page number, thus linear address AO00OOh = page AOh). When clearing the
P_PRES bit (making pages not present), all of the pages specified (nPages starting at
VMLinP gNum) must be PG_HOOKED pages for which a HOOK Page Fault handler has
been registered, and pType must be PG_HOOKED. nPages is the number of pages to mod-
ify the bits of. Addresses below the start of VM specific memory, or above 10Fh will cause
an error. bitAND is an AND mask for the bits, bitOR is an OR mask. Thus to clear
P_PRES, P_WRITE, and P_USER, bitAND would be (not

P_PRES+P_WRITE+P_USER), and bitOR would be zero. To set P_USER, and clear
P_WRITE, leaving P_PRES unchanged, bitAND would be (NOT P_WRITE), and bitOR
would be P_USER. Having bits other than P_WRITE, and P_USER set in bitOR will
cause an error. Having bits other than P_PRES, P_WRITE, and P_USER clear in bitAND
will cause an error.

This call always has the side effect of clearing P_DIRTY and P_ACC. Thus to just clear
these two bits, give a bitAND of OFFFFFFFFh, and a bitOR of 0. pType indicates a value to
be placed in the PG_TYPE field. The allowed values are:

PG_HOOKED EQU 7
PG_IGNORE EQU -1 (DFFFFFFFFR)

Any other value will cause an error. PG_IGNORE indicates that the PG_TYPE field is not
to be modified by the call. This is the value that must be set if P_PRES bit is being set (or
being left set). PG_HOOKED must be specified if the P_PRES bit is being cleared by the
call. Recall that making a PhysIntoVM call sets the type field for the physical pages to
PG_SYS. This parameter is provided so that the page types can be reset to PG_HOOKED
when the mapping is changed to not present. Recall that MapIntoVM also resets the
PG_TYPE field to the type of the pages of hMem. There are currently no bits defined in
the flags, this parameter must be set to 0.

Returns a nonzero value if successful, returns 0 value if unsuccessful (invalid VMHandle,
invalid bits in bitAND or bitOR, invalid pType, page range bad).

You cannot use this call to set the Present bit. You may either clear the present bit, or leave
it unaffected. Use MapIntoV86 or PhysIntoV86 to make pages present.

Microsoft Confidential Beta Release

Memory Management Services 19-27

PageAllocate

Beta Release

unsigned PageAllocate(nPages,pType,VMHandle,AlignMask,minPhys,
maxPhys,PhysAddrPTR, flags)
unsigned nPages;
unsigned pType;
unsigned VMHandle;
unsigned AlignMask;
unsigned minPhys;
unsigned maxPhys;
unsigned *PhysAddrPTR;
unsigned flags;

This is the call to allocate a block of memory. The memory allocated is actually just linear
address space, whether there is actually physical memory mapped for this block as part of
the allocation is specified by the flags. nPages is a 32 bit unsigned integer which is the size
in 4K pages of the block. pType indicates the type of page(s) being allocated:

PG_VM EQU 0
PG_SYS EQU 1
PG_HOOKED EQU 7

PG_VM pages are pages which are specific to a particular VM context. The handle of
PG_VM memory blocks will typically be placed in the VM Control Block someplace.
PG_HOOKED pages are pages which will be mapped into the VM at locations where the
component has registered a HookPageFault handler. Like PG_VM pages, PG_HOOKED
pages are specific to a particular VM context. The VMHandle parameter must be a valid
VM Handle for all page types except PG_SYS. PG_SYS pages are global system pages
which are valid in all VM contexts (pages are specific to the WIN386 system component
which allocates them, rather than to a VM). The VMHandle parameter is not relevant to
PG_SYS pages and it must be set to 0 when allocating PG_SYS pages.

Current flags bits:

PageZerolnit EQU 000000000000000000000000000000018
PageUseAlign EQU P00000000000000000000000000000108
PageContig EQU 000000000000000000000000000001008B
PageFixed EQU 000000000000000000000000000010008
Pagelocked EQU 000000000000000000000000100000008
PagelockedIfDP EQU 000000000000000000000001000000008

All unused bits must be zero. PageLocked, if set, indicates that a PageLock is implied as
part of the PageAllocate operation. This forces the allocate to make all pages of the handle
present when the handle is allocated consistent with the implied PageLock. PageLock-
edIfDP, if set, indicates that a PageLock is implied as part of the PageAllocate only if the
PageSwap device is not direct to hardware. There are two basic behavior types for the
PageSwap device. Type one pages through DOS and/or the ROM BIOS. This type of
PageSwap device places restrictions on the ability to demand page certain types of system
memory because of the fact that it runs partly in V86 mode as part of its operation.
PageSwap type two pages by talking directly to the disk hardware. This second type of
PageSwap device removes some of the restrictions because it runs completely in protected

Microsoft Confidential April 1, 1990

19-28 Virtual Device Adaptation Guide

April 1, 1990

mode when accessing the paging device. PageLocked indicates that the memory should be
locked regardless of which type of PageSwap device is present. PageLockedIfDP indi-
cates that this memory only needs to be locked if the PageSwap device is type one. Page-
Fixed, if set, indicates behavior similar to PageLocked as far as the implied PageLock is
concemed, and in addition a Fixed handle can never be unlocked, and its linear address
will never change (via PageReAllocate). Note that ReAllocation of a Fixed handle will
generally not succeed due to the Fixed restriction on the ability to change the linear
address of the handle. Note that an allocation without an implied PageLock via
PageLocked, PageLockedIfDP, or PageFixed will simply allocate linear address space.
The pages of such a handle will be made present “on demand” when the address space is
touched. If it is desired to make part of the handle present to perform some function, use
PageLock to force the contents to be loaded. PageUseAlign, if set, indicates that the Align-
Mask, minPhys, maxP hys, and PhysAddrPTR parameters are specified. If PageUseAlign is
clear, the AlignMask, minPhys, maxPhys, and PhysAddrPTR parameters are set to 0 and ig-
nored. Note that if PageUseAlign is set, PageFixed must also be specified. It makes no
sense to have an aligned memory handle which is not fixed. PageZerolnit, if set, indicates
that if the allocation is succesful, the memory is to be initialized with value 0 in all bytes
of the block. If PageZerolnit is clear, the block will have completely random values in it.
PageContig, if set, indicates that the Physical memory pages of the block are to occupy
sequential Physical memory addresses (memory is “physically contiguous™). PageContig
is ignored if PageUseAlign is not set.

PageUseAlign is provided to assist device drivers that wish to allocate buffers for use by
the device which have additional alignment restrictions enforced by the hardware (such as
64K and 128K alignment for DMA). If the PageUseAlign bit is set, AlignMask specifies
an alignment (power of 2> 4k) requirement for the first physical page of the block. Physi-
cal page numbers are the physical address of the page shifted right by 12. Correct align-
ment is tested for by ANDing AlignMask with the first physical page number and testing
for zero. If the AND is zero, the page has the correct alignment. Thus:

000000008h = 4K alignment (ignore AlignMask)
00000001h = 8K alignment
00000003h = 16K alignment
00000087h = 32K alignment
0000A0AFh = 64K alignment
0000081 Fh = 128K alignment

Remember that you will probably also want to set the PageContig bit. minPhys and max-
Phys place additional physical address restrictions on the physical pages of the memoary
block. These specify the minimum and maximum allowed physical page numbers. All
physical page numbers of the block must be >=minPhys, and <maxPhys. For instance, for
setting up a DMA buffer for an 80386 accelerator card in a PC XT, the buffer needs to be
physically restricted to pages less than 1 MB since the XT DMA controller cannot DMA
into pages above 1 MB. In this case, minPhys would be 0, and maxPhys would be 100h. If
you don’t want to specify this (i.e. you just want AlignMask), set minPhys to 0, and max-
Phys to OFFFFFFFFh. Note that when PageUseAlign is set, the physical page address
(physical page number shifted left by 12) of the start of the block will be retuned via the
PhysAddrPTR pointer parameter.

Microsoft Confidential Beta Release

Memory Management Services 19-29

Return Value

Comments

NOTE PageUseAlign PageAllocations can only be performed during device initialization. Aligned
PageAllocations will fail if done after device initialization.

The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is the memory handle of the block. The High DWORD (EDX) is the 32
bit RING 0 address (offset relative to standard WIN386 Ring 0 DS) of the block. If
PageUseAlign was specified, the physical address of the start of the block is placed in the
DWORD pointed to by PhysAddrPTR. Value (both DWORD:) is 0 if the allocation failed
(insufficient memory).

You should be careful about making assumptions about any apparent relationship between
the memory handle and the blocks RING 0 or physical address. Any such apparent relation-
ship is subject to change in a later release.

PhysAddrPTR had better point somewhere reasonable when PageUseAlign is specified.
There is no way to check its validity, if it’s garbage you’ll either cause a page fault or
stomp on something you shouldn’t.

PageAllocation of 0 length blocks is not allowed.

PageLocked and PageLockedIfDP should not both be set. Only one, or the other, or
neither are valid settings. Note also that PageLockedIfDP cannot be set on calls made
before the init complete system control call is made. This is because it is not possible to ask
the PageSwap device what type it is before it has been initialized.

The Flag bit equates are defined by including VMM.INC, please use the equates.

PageFree

Return Value

Comments

Beta Release

unsigned PagefFree(hMem,flags)
unsigned hMem;
unsigned flags;

This call is used to free an existing block of pages. hMem is the value returned from a pre-
vious call to PageAllocate or PageReAllocate and indicates the block to be freed. There
are currently no bits defined in the flags, this parameter must be set to 0.

Returns nonzero value if the block was succesfully freed, zero if the free was unsuccesful
(invalid hMem).

It is the responsibility of the WIN386 system components which allocate non-PG_SYS
pages to free them when the VM they are associated with is destroyed. There is no “auto-
matic” freeing of such memory done by the memory manager. PG_SYS pages do not need
to be freed before WIN386 exits.

It is not an error to PageFree a handle which is all or partially locked.

Microsoft Confidential April 1, 1990

19-30 Virtual Device Adaptation Guide

WARNING Be very careful about PageFreeing blocks which are currently MapintoV86ed to some VM
context. Doing this can result in a crash.

PageGetAllocinfo

Return Value

Comments

unsigned long PageGetAllocinfo(flags)
unsigned flags;

This call is used to obtain information prior to a PageAllocate or PageReallocate call. It
returns the largest block of linear address space that could be allocated, together with infor-
mation relating to allocation of Locked or Fixed memory. There are currently no bits de-
fined in the flags, this parameter must be set to 0.

The return value is a 64 bit long which is actually two 32 bit DWORD:s. The Low
DWORD (EAX) is the 32 bit count of free 4K pages in the system which could be allo-
cated with the PageAllocate as not PageLocked or PageFixed memory. The High
DWORD (EDX) is the 32 bit count of pages available for allocation as PageLocked pages
at the current time.

You should be careful about making assumptions about being able to turn around and issue
acall to allocate all of the pages returned by this call. Besides any alignment considera-
tions, it is possible someone could get in and allocate some or all of the pages before you.
This call is intended to be advisory in nature.

EAX contains the size of the largest available region of linear address space. EDX con-
tains the count of pages currently available for allocation as PageLocked pages. Notice
that many assumptions are not valid. EAX >= EDX is not a valid assumption for instance.

You should be very careful about turning around and doing a PageAllocate with the EAX
return from this call. You can cause all sorts of odd behavior if you take up all of the linear
address space. You should allocate memory on an as needed basis instead of allocating
huge blocks of memory most of which you do not use.

PageGetSizeAddr

April 1, 1990

unsigned long PageGetSizeAddr(hMem,flags)
unsigned hMem;
unsigned flags;

This call is used to get the size and linear address of an existing block of pages. hMem is
the value returned from a previous call to PageAllocate or PageReAllocate and indicates
the block to get the size and address of. There are currently no bits defined in the flags, this
parameter must be set to 0.

Microsoft Confidential Beta Release

Memory Management Services 19-31

Return Value

Comments

The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is the size in 4K pages of the block. The High DWORD (EDX) is the 32
bit RING 0 address (offset relative to standard WIN386 Ring 0 DS) of the block. Value
(both DWORDs) is 0 if the call failed (invalid AMem).

Note that the size of a handle is the total size of the handle and has nothing to do with what
pieces of the handle may or may not be present.

PageLock

Return Value

Comments

Beta Release

unsigned Pagelock(hMem,nPages,Page0ff,flags)
unsigned hMem;
unsigned nPages;
unsigned Page(Qff;
unsigned flags;

This call is used to lock (make present) all or part of an existing memory handle. AMem is
the value returned from a previous call to PageAllocate or PageReAllocate and indicates
the block to be locked. nPages specifies the count of pages to be locked. PageOff specifies
the page offset from the start of the block of the first page to be locked. nPages together
with PageOff allow all or only part of the ”tMem block to be locked. An error will occur if
PageOff+nPages is greater than the size of hMem. There are currently no bits defined in
the flags, this parameter must be set to 0.

Current flags bits:
PagelLockedIfDP EQU 000000000000000000000001000000008

All unused bits must be zero. PageLockedIfDP, if set, indicates that the lock only needs to
be done if the PageSwap device is not direct to hardware. In the case where the
PageSwap device is of type two (direct to hardware), calls to this routine with PageLock-
edIfDP set are effectively NOPs. See the PageAllocate documentation for a description of
the different PageSwap device types and their relevance.

Returns nonzero value if the block was succesfully locked, zero if the lock was unsucces-
ful (invalid hMem, insufficient memory).

This call may be issued on hMem blocks which are PageFixed, but this is a wasted call
since PageFixed blocks are always locked (present).

Because of the overcommit associated with demand paging, callers must be prepared for
this call to fail due to unavailability of sufficient memory to make the region present.

Note that PageLockedIfDP cannot be set on calls made before the init complete system
control call is made. This is because it is not possible to ask the PageSwap device what
type it is before it has been initialized.

Microsoft Confidential April 1, 1990

19-32 Virtual Device Adaptation Guide

Each Page of a handle has an individual lock count. Each lock increments the counter. The
counter must go to O for the page to be unlocked. This means that if the handle is locked 5
times, it has to be unlocked 5 times.

Do not leave handles locked when they don’t need to be, unlock handles as soon as
possible to make the physical memory associated available for use by demand paging.

The Flag bit equates are defined by including VMM.INC, please use the equates.

PageOutDirtyPages

Return Value

April 1, 1990

unsigned PageOutDirtyPages(nPages,flags)
unsigned nPages;
unsigned flags;

This call is for use by the demand paging device. It allows the paging device to periodi-
cally “flush” out dirty pages to prevent a large number of dirty pages from accumulating in
the system. nPages is the maximum number of dirty pages to flush at this time.

Current flags bits:

PagePDPSetBase EQU 000000000000000001000000000000008
PagePDPClearBase EQU 200000000000000010000000000000008
PagePDPQueryDirty EQU ¥00000000000001000000000000000008

All unused bits must be zero. The PageSwap device may wish to flush out all dirty pages
in the system as part of a “background” activity (“write out ahaead™). These two bits allow
this to be done, it allows the caller to manipulate a variable associated with the page out
scan which will cause the scan to stop. This “base” page number that is set allows the
PageSwap device to tell when the PageOutDirtyPages call has completed a scan of the
entire address space looking for dirty pages. PagePDPSetBase tells PageOutDirtyPages
to set the base page number to the current scan start point. PagePDPClearBase tells
PageOutDirtyPages to clear the base page number, setting it to NONE. A return value of
0 is used to detect when a PageOutDirtyPages call has stoped because it has hit the base
page. This is not totally reliable, but is a reasonable approximation, since PageOutDirty-
Pages can return 0 because there are no dirty pages (this is rather unlikely though).
PagePDPQueryDirty, if set, indicates that the call is to return the current count of DIRTY
demand pageable pages, the nPages argument and all other flags are ignored if thls bit is
set (call returns the count of dirty pages as its sole function).

Returns the actual count of dirty pages flushed by the call (0 is valid).

Microsoft Confidential Beta Release

Memory Management Services 19-33

Notes

WARNING This call is intended for use by the PageSwap device, others should not be calling it!
Others making this call can disturb the operation of the PageSwap device.

This call functions something like a partial “commit” of the dirty pages in the system. Note
that ALL of the dirty demand pages can be flushed by specifying a large value for nPages
(like OFFFFFFFFh).

This call operates only on current page out candidates.
The Flag bit equates are defined by including VMM.INC, please use the equates.

PageReAllocate

Beta Release

unsigned PageReAllocate(hMem,nPages,flags)
unsigned hMem;
unsigned nPages;
unsigned flags;

This call is used to grow or shrink or reinitialize an existing block of memory. hMem is the
value returned from a previous PageAllocate or PageReAllocate call and indicates the
block to be reallocated. Note that handles allocated with PageUseAlign set cannot be
PageReAllocated. nPages is a 32 bit unsigned integer which is the new size in 4K pages
of the block.

Current flags bits:

PageZerolnit EQU 000000000000000000000000000000018
PageZeroRelnit EQU 000000000000000000000000001000008
PageNoCopy EQU 000000000000000000000000010000008
PagelLocked EQU 000000000000000000000000100000008
PagelLockedIfDP EQU 000000000000000000000001000000008

All unused bits must be zero. PageLocked and PageLockedIfDP, if set, indicates that if
this PageReAllocation is growing the size of the handle, the pages added to the handle are
to be PageLocked or PageLockedIfDP (see PageAllocate for explanation). If the
PageReAllocation is not growing the handle these bits are ignored. Note that PageFixed
is not specified, PageReAllocation of a PageFixed handle is implied as PageFixed by the
handle itself. PageZerolnit, if set, indicates that if the reallocation is succesful, and the re-
allocation is growing the size of the block, the “grow area” of the block is to be initialized
with value 0 in all bytes. This bit is ignored on a re-allocation which is not growing the
size of the block. PageZeroRelnit , if set, indicates that the entire block is to be reinitial-
ized with value zero in all bytes of the block. PageNoCopy, if set, indicates that the pre-
vious contents of the block are irrelevant, and don’t need to be copied into the newly sized
block. There is no reason that more than one of these three bits should be set. If none of the
bits are set, the previous contents of the block are copied into the new block, up to the
lesser of the size of the new block, and the size of the old block, and the “grow area”, if
any, is not initialized with anything.

Microsoft Confidential April 1, 1990

19-34 Virtval Device Adaptation Guide

Return Value

Comments

The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is the memory handle of the new block. The High DWORD (EDX) is the
32 bit RING 0 address (offset relative to standard WIN386 Ring 0 DS) of the block. Value
(both DWORD:) is 0 if the reallocation failed (insufficient memory, handle wrong type, in-
valid handle).

‘Do not make assumptions about the relationship between the passed in AMem and the

Address returned, if specified. Assume that the returned hiMem and address are always
different than the passed in AMem and previous address.

In the case where this call fails, the passed in AMem and previous address of the block re-
main valid. In the case where this call works and returns a new hMem and address, the
passed in hiMem and previous address are no longer valid (old block has been PageFreed).

WARNING Be very careful about PageReAllocating blocks which are currently MaplntoV86ed to
some VM context. Doing this can result in a crash.

PageLocked and PageL.ockedIfDP should not both be set. Only one, or the other, or
neither are valid settings. Note also that PageLockedIfDP cannot be set on calls made
before the init complete system control call is made. This is because it is not possible to ask
the PageSwap device what type it is before it has been initialized.

Note that this call can be used to reset the contents of an existing block to 0 by setting
nPages to the current size of the block and setting PageZeroRelnit.

You cannot PageReAllocate a block to size 0, use PageFree.
The Flag bit equates are defined by including VMM.INC, please use the equates.

PageUnLock

April 1, 1990

unsigned PageUnLock(hMem,nPages,Page0ff,flags)
unsigned hMem;
unsigned nPages;
unsigned Page(Qff;
unsigned flags;

This call is used to unlock all or part of an existing memory handle that was previously
locked. hMem is the value returned from a previous call to PageAllocate or PageReAllo-
cate and indicates the block to be unlocked. nPages specifies the count of pages to be un-
locked. PageOff specifies the page offset from the start of the block of the first page to be
unlocked. nPages together with PageOff allow all or only part of the hMem block to be un-
locked. An error will occur if PageOff+nPages is greater than the size of hMem.

Current flags bits:
PagelockedIfDP EQU 000000000000000000000001000000008
PageMarkPageQut EQU 000000000000000000100000000000008

Microsoft Confidential Beta Release

Memory Management Services 19-35

Return Value

Comments

All unused bits must be zero. PageLockedIfDP, if set, indicates that the unlock only needs
to be done if the PageSwap device is not direct to hardware. In the case where the
PageSwap device is of type two (direct to hardware), calls to this routine with PageLock-
edIfDP set are effectively NOPs. See the PageAllocate documentation for a description of
the different PageSwap device types and their relevance. PageMarkPageOut, if set, indi-
cates that if this unlock actually does unlock the pages (lock count goes to 0) the pages are
to be made prime candidates for page out. This flag should only be set if it is unlikely that
these pages are going to be touched for a while. Effectively what this does is clear the
P_ACC bits of the pages which causes them to be first level page out candidates.

Returns nonzero value if the block was succesfully unlocked, zero if the lock was un-
succesful (invalid ”Mem, no part of range is locked).

This call may be issued on hMem blocks which are PageFixed, but this is a wasted call
since PageFixed blocks cannot be unlocked.

Note that PageLockedIfDP cannot be set on calls made before the init complete system
control call is made. This is because it is not possible to ask the PageSwap device what
type it is before it has been initialized.

Each page of a handle has an individual lock count. Each lock increments the counter. The

counter must go to O for the page to be unlocked. This means that if the handle is locked 5
times, it has to be unlocked § times.

The Flag bit equates are defined by including VMM.INC, please use the equates.

PhysintoVa6

Beta Release

unsigned PhysIntoV86(PhysPage,VMHandle,VMLinPgNum,nPages,flags)
unsigned PhysPage;
unsigned VMHandle;
unsigned VMLinPgNum;
unsigned nPages;
unsigned flags;

This call is very similar to the MapIntoV86 call only instead of taking a memory handle
argument, it takes a Physical address (page number). The intent of this call is to “hook up”
a particular VM to the actual Physical device memory of a device (such as the video
memory of a display adaptor). PhysPage is the physical page number of the start of the re-
gion to be mapped, and indicates the block of physical memory to be mapped. For in-
stance, to hook up to the 64K of video memory at A000:000, PhysPage would be ACh and
nPages would be 10h, The VMHandle parameter must be a valid VM handle and indicates
the VM into which the map is to occur. VMLinPgNum is the address in the 1Meg V86
address space of the VM where the map will start (this is a page number, thus linear
address AOOOOh = page ACOh). Alignment considerations of this address (beyond 4K align-
ment) are the responsibility of the caller. Map addresses below page 10h, or above 10Fh
will cause an error. nPages is the number of pages to map. The physical region is assumed

Microsoft Confidential April 1, 1990

19-36 Virtual Device Adaptation Guide

Return Value

Comments

to be contiguous (thus if mapping three pages, they will be PhysPage, PhysPage+1 and
PhysPage+2 in that order). If the physical region is not contiguous, you will have to issue
multiple calls in succession. There are currently no bits defined in the flags, this parameter
must be set to 0.

Returns a nonzero value if the map is succesful, returns 0 value if the map was unsuccesful
(invalid VMHandle, map range illegal).

You are warned to be careful with this call. Very strange things will happen if you specify
a physical region which is unoccupied, or belongs to some other device.

The page attributes for these pages will be P_USER+P_PRES+P_WRITE. P_DIRTY and
P_ACC will be cleared by the call. PG_TYPE will be set to PG_SYS.

The intent of PhysIntoV86 support for pages between page 10h and FirstV86Page is to
support WIN386 devices which have Allocate_Global_V86_Data_Area a
GVDAPageAlign region. Use of mapping in this region to other addresses can easily
crash the system and should be avoided.

Regions which span across FirstV86Page are not allowed.

The reason for the page 10h limitation is that on most versions of the Intel 80386 CPU
there is an errata which prevents you from setting up a Linear != Physical address mapping
in the first 64k of the address space.

TestGlobalv86Mem

April 1, 1990

unsigned TestGlobalV86Mem(VMLinAddr,nBytes,flags)
unsigned VMLinAddr;
unsigned nBytes;
unsigned flags;

Some WIN386 devices wish to test whether a given piece of V86 address space is LOCAL
to a particular VM, or GLOBAL. The reason for this test is that GLOBAL V86 address
ranges are valid and identical in ALL VM contexts, while LOCAL V86 address ranges are
valid in only one VM context. This difference can yield optimizations. For instance, opera-
tions involving GLOBAL address ranges will typically not need to be “virtualized” in any
way since the range is valid and addressable in ALL VM contexts. LOCAL address range
operations may have to be “virtualized” though since it is possible for a piece of Virtual
Mode code to try and use the address in the “wrong” VM context where the address range
is invalid, or points to the wrong memory. This call can be used to test whether a V86
address range is GLOBAL or LOCAL. VMLinAddr is the linear address of the first byte of
the V86 address range. This address is relative to the standard WIN386 RING 0 DS (ie. the
linear address of 02C1:0FC5 would be 02C10 + OFCS = 3BD5). nBytes is the length of the
V86 address range in bytes. There are currently no bits defined in the flags, this parameter
must be set to 0.

Microsofit Confidential : Beta Release

Memory Management Services 19-37

Return Value Returns 0 it the address is not a valid V&6 address range, or the address range is LOCAL.
Returns 1 if the address range is GLOBAL. Returns 2 if the address range is partly
LOCAL and partly GLOBAL (range overlaps a GLOBAL/LOCAL boundary). Returns 3 if
the address range is GLOBAL but overlaps with an Instance data region.

Comments The distinction between GLOBAL and INSTANCE is rather subtle because INSTANCE
pages are “physically global” even though their content is LOCAL. The physical address
of instance data pages never changes, thus instance pages are GLOBAL in the physical
address sense. The content of instance data regions is per VM though which means they
are LOCAL in the sense of “what is in them”.

The MMGR does not know any of the specifics about what is going on in the regions
above FirstV86Page. This routine will return LOCAL for all regions above FirstV86Page,
INCLUDING the AQ-FF adapter/ROM BIOS area. Some pieces of this region may actu-
ally be GLOBAL in terms of how they are used, but this service doesn’t know any of the
details so it cannot determine this.

19.6 ;.V;Ja:ing At Physical Device Memory in Protected
ode

VxDs, such as virtual display drivers, that have a certain region of physical address space
associated with them, such as Video Memory, need a way to look at the device-specific
memory when the device is running. The method by which this is done is by using a serv-
ice that returns the correct linear address (relative to the standard Ring O DS).

MapPhysToLinear

unsigned MapPhysTolLinear(PhysAddr,nBytes,flags)
unsigned PhysAddr;
unsigned nBytes;
unsigned flags;

PhysAddr is the physical address of the start of the region to be looked at. This is simply
the 32 bit physical address, there are no alignment considerations. Physical addresses start
at 0, thus the address of physical page 0AOh is 0A0000h. nBytes is the length of the physi-
cal region in bytes starting from PhysAddr. This parameter is used to verify that the entire
range is addressable. There are currently no bits defined in the flags, this parameter must
be setto 0.

Return Value Returns the RING 0 DS offset of the first byte of the physical region. Will return
OFFFFFFFFh if the specified range is not addressable.

Beta Release Microsoft Confidential April 1, 1990

19-38 Virtual Device Adaptation Guide
-}

WARNING You are warned to be careful with this method. Use of this for purposes beyond looking
at device specific physical memory is extremely dangerous and is not approved.

Comments Physical addresses do not move. It is perfectly fine to get the linear address of a physical
region at Device_Init device call time and then use it later. You do not have to keep recal-
ling MapPhysToLinear every time you want to look at the region.

For instance to look at physical page AOh you would do this:
VMMCall _MapPhysTolLinear,<0A0000h,10000h,0>

DS:[EAX] now addresses this physical page. Physical memory is mapped contiguously at
this selector so Page 0A1h would be 4096 bytes beyond the above address.

19.7 Data Access Services

These services are used to get the contents of public memory manager variables. Access to
these variables is done via calls to support the DynaLink architecture of WIN386. All of
these services return the value of the associated variable in EAX.

GetFirstva6Page

unsigned GetFirstV86Page()

This call returns the page number of the first page of VM specific V86 memory.

Commenis FirstV86Page MOVES during device initialization. Do not get the value at device init
time, and then use it later, as the value is invalid.

GetNulPageHandle

unsigned GetNulPageHandle()

This call returns the memory handle of the system NUL page.

GetAppFlatDSAlias()

unsigned GetAppFlatDSAlias()
This call returns a selector which can be used by protected mode applications to look at the
same data that the standard WIN386 RING 0 DS looks at. This is useful when a WIN386

devide driver wishes to provide a protected mode service to applications and wants the
application to be able to address the same memory that the WIN386 device driver does.

April 1, 1990 Microsoft Confidential Beta Release

Memory Management Services 19-39

Comments This selector is read only. This is so that the WIN386 address space is protected from a
misbehaved application. IT is not recommended that you build a read/write version of this
selector. If the application needs to WRITE you should build a descriptor with a much
more restricted Base and Limit so that the application can only modify those things which
it is allowed to modify.

This selector is RPL = DPL = Protected Mode Application Privilege. NOTE that a
WIN386 device driver can also use this selector if desired even though the devices run at a
different privilege level. Its type is “USE 16", this doesn’t mean much since it is a data
selector.

This is a GDT selector.

WARNING You must not do a Free_GDT_Selector on this selector. It is not protected, and so it will
get freed. Then anyone using it will fault and crash the system. This selector is provided to prevent
multiple devices from creating multiple versions of the same selector and wasting GDT entries unneces-
sarily.

Notice that enhanced Windows is “USE 327, therefore a protected application, which is
“USE 16", will have to use the DB 67h addressing mode override on its instructions to get
32 bit addressing (MASM will do this for you automatically if you set things up correctly).

This service can be used to discover what protection ring Protected Mode applications run
at by doing a LAR on the returned selector. Be very careful about what you do with this bit
of information.

19.8 Special Services For Protected Mode APls

These services are provided to support VxDs that need to manipulate protected-mode
address space. For example, applications running in protected mode need a way to map re-
gions of protected-mode, segmented address space into the virtual machine’s virtual 8086
context. A specific example is the MS-DOS INT 21 API. The data pointed to on the INT
21 calls needs to be mapped into the VM's V86 address space so that MS-DOS can access
it and perform the requested operation.

WARNING Do not use these services for purposes other than their intended use. These calls can be
quite dangerous and can result in strange behavior or crashes if misused.

LinMapintoV86

unsigned long LinMapIntoV86(HLinPgNum,VMHandle,VMLinPgNum,nPages,flags)
unsigned HLinPgNum;
unsigned VMHandle;
unsigned VMLinPgNum;

Beta Release Microsoft Confidential April 1, 1990

19-40 Virtual Device Adaptation Guide
.}

Return Value

Comments

April 1, 1990

unsigned nPages;
unsigned flags;

NOTE Please be advised that the following description has been identified as out of date in some re-
spects though updated information was unavailable at time of printing.

This call is provided to assist the interface address mapper functions. Its purpose is to pro-
vide a way for the address mapper to map regions of protected mode address space into a
VM V86 address space so that API calls can be performed. This calls operation is very sim-
ilar to MapInto V86, the difference being that instead of taking a memory handle, it takes
a linear address. The call duplicates the memory map down into the indicated VM’s V86
address range. HLinPgNum, together with nPages, indicates the region of protected mode
address space, or V86 address space that is to be mapped. This is a page number, linear
address 60610000h would be passed in as 60610h. As with MapIntoV86 there are implied
PageLock and PageUnlocks. Note that the linear address is relative to the standard
WIN386 Ring O DS selector. The VMHandle parameter must be a valid VM handle and in-
dicates the V86 space into which the map is to occur. VMLinPgNum is the address in the
1Meg VM V86 address space where the map will start (this is a page number, thus linear
address 60000h = page 60h). Alignment considerations of this address (beyond 4K align-
ment) are the responsibility of the caller. Map addresses below page 10h, or above 10Fh
will cause an error. nPages is the number of pages to map. Note that if HLinPgNum is a
V86 page number (at the LOW V86 address (at the LOW V86 address <= page 100h) the
call does nothing except return the HLinP gNum parameter in EDX. There are currently no
bits defined in the flags. This parameter must be 0.

The return value is a 64 bit long which is actually two 32 bit DWORDS. The Low
DWORD (EAX) is a nonzero value if the map is succesful, returns 0 in eax if the map was
unsuccesful (invalid address range, invalid VMHandle, map range illegal, size discrepancy,
insufficient memory for implied PageLock). The High DWORD (EDX) is only valid if
EAX is nonzero. It is set to the VMLinPgNum parameter if the HLinP gNum parameter was
not a LOW V86 space address, otherwise it is set to the HLinP gNum parameter. In short,
EDX is the V86 address where the memory is mapped.

As with MapIntoV86 there is an implied PageLock which is performed on all of the
pages mapped. This is consistent with the fact that V86 memory cannot be Demand Paged
while the VM is in a runable state. Whenever the V86 memory mapping is changed via
LinMapIntoV86, the previous memory that was mapped in the VM is unlocked. The cor-
rect way to think of this is that there is an implied Pagel.ock whenever memory is mapped
into a V86 context, and an implied PageUnlock whenever it is “unmapped” from the V86
context. This “unmapping” can occur when: A different handle (including the NulPage-
Handle) is MapIntoV86ed to the region, or a PhysIntoV86 is performed to the region.

The V86 region mappped into by this call should be MapIntoV86ed with the NulPage-
Handle when the V86 mapping region is no longer needed. There is nothing to prevent you
from mapping the same protected mode linear address into multiple places ina VM, or

Microsoft Confidential Beta Release

Memory Management Services 19-41

into multiple VM. Such operations are not particularly advisable though. For one thing,
the reporting of memory owned by a VM will be disturbed.

The reason this call exists is because a protected mode API mapper does not have access to
the memory handles associated with the various regions of protected mode address space.
VxDs which do have access to the memory handles of the memory to be mapped should
be using MapIntoV86 to map the memory, not this routine.

For regions in the Physical addressing region this call will convert into a PhysIntoV86 call.

For regions in the HIGH VM Linear addressing region this call will perform a map of the
memory from one VM into another VM (or into a different location in the same VM).
NOTE CAREFULLY: The intent of this support is to provide a way for the V6MMGR
device to map a region of V86 address space which is currently LOCAL to one VM into a
GLOBAL region that is addressable by all VMs. This type of API is needed by network
API mappers. Do not use this capability in your VxD, use the VE6MMGR service. The
details of this aspect of operation will change in a later release and code using the old
method will not function properly.

The page attributes for these pages will be P_USER+P_PRES+P_WRITE. P_DIRTY and
P_ACC will be cleared by the call. PG_TYPE will be set to whatever the type of the pages
are at its protected mode linear address.

The intent of LinMapIntoV86 support for pages between page 10h and FirstV86Page is
to support WIN386 devices which have Allocate_Global_V86_Data_Area a
GVDAPageAlign region. Use of mapping in this region to other addresses can easily crash
the system and should be avoided.

Regions which span across FirstV86Page are not allowed.

The reason for the page 10h limitation is that on most versions of the Intel 80386 CPU
there is an errata which prevents you from setting up a Linear != Physical address mapping
in the first 64k of the address space.

LinPagelock

Beta Release

unsigned LinPagelLock(HLinPgNum,nPages,flags)
unsigned HLinPgNum;
unsigned nPages;
unsigned flags;

This call is provided to assist the interface address mapper functions. Its purpose is to pro-
vide a way for the address mapper to lock regions of protected mode address space so that
API calls can be performed. This calls operation is very similar to PageLock, the differ-
ence being that instead of taking a memory handle, it takes a linear address. HLinP gNum,
together with nPages, indicates the region of protected mode address space that is to be
locked. This is a page number, linear address 60610000h would be passed in as 60610h.
Note that the linear address is relative to the standard WIN386 Ring 0 DS selector.

Current flags bits:

Microsoft Confidential April 1, 1990

19-42 Virtual Device Adaptation Gulde

Return Value

Comments

Pagelocked1tOP tqu UL U R P

All unused bits must be zero. PageLockedIfDP, if set, indicates that the lock only needs to
be done if the PageSwap device is not direct to hardware. In the case where the

PageSwap device is of type two (direct to hardware), calls to this routine with PageLock-
edIfDP set are effectively NOPs. See the PageAllocate documentation for a description of
the different PageSwap device types and their relevance.

Returns a nonzero value if the lock is succesful, returns O value if the lock was unsuccesful
(invalid address range, insufficient memory for lock).

SEE PageLock.

LinPageUnLock

Return Value

April 1, 1990

unsigned LinPageUnLock(HLinPgNum,nPages,flags)
unsigned HLinPgNum;
unsigned nPages;
unsigned flags;

This call is provided to assist the interface address mapper functions. Its purpose is to pro-
vide a way for the address mapper to unlock regions of protected mode address space after
API calls are performed. This calls operation is very similar to PageUnLock, the differ-
ence being that instead of taking a memory handle, it takes a linear address. HLinPgNum,
together with nPages, indicates the region of protected mode address space that is to be un-
locked. This is a page number, linear address 60610000h would be passed in as 60610h.
Note that the linear address is relative to the standard WIN386 Ring 0 DS selector.

Current flags bits:

PagelockedI fDP EQu 000000000000000000000001000000008
PageMarkPageQut EQu 000000000000000000100000000000008

All unused bits must be zero. PageLockedIfDP, if set, indicates that the unlock only needs
to be done if the PageSwap device is not direct to hardware. In the case where the
PageSwap device is of type two (direct to hardware), calls to this routine with PageLock-
edIfDP set are effectively NOPs. See the PageAllocate documentation for a description of
the different PageSwap device types and their relevance. PageMarkPageOut, if set, indi-
cates that if this unlock actually does unlock the pages (lock count goes to 0) the pages are
to be made prime candidates for page out. This flag should only be set if it is unlikely that
these pages are going to be touched for a while. Effectively what this does is clear the
P_ACC bits of the pages which causes them to be first level page out candidates.

Returns a nonzero value if the unlock is succesful, returns O value if the unlock was un-
succesful (invalid address range).

Microsoft Confidential Beta Release

Memory Management Services 19-43

Comments

SEE PageUnLock.

PageCheckLinRange

Return Value

Comments

unsigned PageCheckLinRange(HLinPgNum,nPages, flags)
unsigned HLinPgNum;
unsigned nPages;
unsigned flags;

This call is provided to assist the interface address mapper functions. Its purpose is to pro-
vide a way for the address mapper to validate an intended range for LinPageLock or Lin-
MaplIntoV86. Sometimes a MAXIMUM length range is specified because the true range
is unknown. This call will return an adjusted nPages argument which will be adjusted
down in size if the specified range crosses an unreasonable boundary. HLinPgNum, to-
gether with nPages, indicates the region of protected mode address space that is to be
checked. This is a page number, linear address 60610000h would be passed in as 60610h.
Note that the linear address is relative to the standard WIN386 Ring 0 DS selector. There
are currently no bits defined in the flags, this parameter must be 0.

Returns an adjusted nPages agrument. This will be zero if the range is totally unrea-
sonable, and will return nPages if no adjustment was needed.

The end of a handle is a boundary that will result in an adjustment.

SelectorMapFiat

Return Valve

Beta Release

unsigned SelectorMapFlat(VMHandle,Selector,flags)
unsigned VMHandle;
unsigned Selector;
unsigned flags;

This call is provided to assist the interface address mapper functions. Its purpose is to pro-
vide a way for the address mapper to get the RING 0 DS offset of the base of a particular
GDT or LDT selector. This call assists the address mapper in converting a Selector:Off-
set16 or Selector:Offset32 pointer into its “flat model” linear address which can then be
passed to LinMapIntoVM. Selector is a GDT or LDT selector (note that the argument is a
DWORD not a WORD) value to get the base address of. The VMHandle parameter is ig-
nored if Selector is a GDT selector. If Selector is an LDT selector, then VMHandle indi-
cates the appropriate VM context for the Selector. There are currently no bits defined in
the flags, this parameter must be 0.

Returns the linear address of the base of the selector if succesful, returns FFFFFFFFh if it
is unsuccesful (invalid selector).

Microsoft Confidential April 1, 1990

19-44 Virtual Device Adaptation Guide
L

Comments You can pass this routine the standard WIN386 RING 0 DS selector, and it will return O as
the base. This is a silly thing to do, but it does work.
The VMHandle parameter must be valid for LDT selectors.

SetResetV86Pageahle

April 1, 1990

unsigned SetResetV86Pageable(VMHandle,VMLinPgNum,nPages,flags)
unsigned VMHandle;

unsigned VMLinPgNum;

unsigned nPages;

unsigned flags;

This call allows the normal locking/unlocking behavior associated with a specific range of
V86 memory to be modified. VMHandle is the VM in which the behavior is being mod-
ified. VMLinPgNum is the address in the 1Meg V86 address space where the behavior
modification will start (this is a page number, thus linear address 60000h = page 60h).
Alignment considerations of this address (beyond 4K alignment) are the responsibility of
the caller. Map addresses below FirstV86Page, or above 100h will cause an error. nPages
is the number of pages to modify the behavior of. Normally a MapIntoV86 causes the
memory that is mapped to be locked. In the case where this particular VM is currently run-
ning a Protected Mode application, it is desirable to undo the lock, and change this normal
lock/unlock behavior. This allows those unused pieces of the V86 address space to be
paged out and the memory they are using to be used by someone else. Note that we can
only undo this normal behavior because the behavior of the protected mode application is
well known. In particular, we know that none of the V86 memory that is being unlocked
contains code that is executed, or data that is touched, at interrupt time (including software
interrupt time). The typical use of this call is by the WIN386 device which loads a pro-
tected mode application. When the PM app is loaded, the device calls SetRestV86Pagea-
ble with the PageSetV86Pageable bit set on those pieces of the V86 address space above
FirstV86Page which can be unlocked; this is typically all of the V86 memory above
FirstV86Page which is currently DOS Free. NOTE that DOS data areas such as the 100h
byte Program Header Prefix must not be included in the ranges because they are accessed
by DOS. Similarly, when the Protected Mode application Exits, the application loader calls
SetResetV86Pageable with PageClearV86Pageable set, on the V86 memory it had ini-
tially modified during the load.

The other aspect of the behavior that can be modified has to do with the “other memory”
(the memory that is not V86Pageable) in the VM. Normally this memory is locked, except
when the pager is type 2 (direct to hardware). Not locking the V86 memory allows VM’s
V86 pages to also be Demand Paged. This has the benefit of allowing DOS applications to
also run in a Demand Paged environment. Sometimes though, this is an undesired behavior
because of the paging latency which it introduces in the VM. The V86IntsLocked bit of a
VM allows this aspect to be controled. Setting the V86IntsLocked behavior causes the
“other memory” to always be locked, even if the pager is type 2. Setting this behavior has
two important effects:

Microsoft Confidential Beta Release

Memory Management Services 19-45

Return Value

Comments

Beta Release

m There is never any “paging latency” while the virtual mode code in this VM is running.
This prevents time critical V86 code from having its timing severly disturbed due to the
paging overhead.

®» The paging device can enable interrupts in this VM when it is performing paging opera-
tions because it knows that a nested page fault will not occur from this VM since all of
its interrupt time code is always locked.

Current flags bits:

PageSetV86Pageable EQU 000000000000000000000010000000008
PageClearV86Pageable EQU 200000000000000000000100000000008
PageSetV86IntsLocked EQU 000000000000000000001000000000008
PageClearV86IntsLocked EQU 000000000000000000010000000000008

All unused bits must be zero. PageSetV86Pageable, if set, indicates that the normal lock-
ing behavior of MapIntoV86 is to be disabled (V86 memory can be paged) for the indi-
cated region. PageClear V86Pageable, if set, indicates that the normal locking behavior is
to be enabled on the indicated region. PageSetV86IntsLocked, if set, indicates that the
“lock all V86 memory that is not V86Pageable regardless of pager type” behavior is to be
enabled. PageClearV86IntsLocked, if set, indicates that the “lock all V86 memory that is
not V86Pageable regardless of pager type” behavior is to be disabled. Note that only one
of these bits can be set on a call. Setting more than one bit will result in an error. There are
two bits in CB_VM_Status that indicate the current state of these behaviors:

VMStat_PageableV86 EQU 000000000000000000001000000000008
VMStat_VB86IntsLocked EQU 000000000000000000010000000000008

The VMStat_Pageable V86 bit is set if any regions behavior has been modified (there is at
least one non zero bit in the array returned by GetV86PageableArray). The
VMStat_V86IntsLocked bit is set if the “lock regardless of pager type” behavior has
been enabled in this VM.

Returns non-zero value if the set or clear worked, zero if the current state of the VM was
not consistent with the call (invalid VMHandle, VMStat_PageableV86 or
VMStat_V86IntsLocked state inconsistent with setting of PageSet/Clear V86Pageable
or PageSet/Clear V86IntsLocked bit in flags, range invalid) or the lock of the memory as-
sociated with PageClearV86Pageable or PageSetV86IntsLocked failed.

The intent of this call is to better support Protected mode applications running in a VM,
not to allow you to randomly make v86 parts of VMs pageable! Do not issue this call on a
VM unless you are loading a Protected mode app into it.

The VB6MMGR device makes a PageSetV86IntsLocked call on VMs which are created
with their base memory specified as locked.

Extreme care must be used when manipulating the PageableV86 behavior of regions above
A000:0. This should not be done unless the region is GLOBAL or LOCAL As-
sign_Device_V86_Pages owned by the caller.

Microsoft Confidential April 1, 1990

19-46 Virtual Device Adaptation Guide
]

There is no REGION associated with PageSetV86IntsLocked and PageClear V86Int-
sLocked calls. The IMPLIED region is always “everything thatisn’t V86Pageable”. For
this reason the HLinPgNum and nPages arguments should be set to O on these calls.

VMML.INC contains equates for all of the flag bits described, use the equates.

GetV86PageableArray

unsigned GetV86PageableArray(VMHandle,ArrayBufPTR,flags)
unsigned VMHandle;

unsigned ArrayBufPTR;

unsigned flags;

This call is used to obtain a copy of the bit array of pages whose behavior has been mod-
ified via SetResetV86Pageable. This allows the caller to determine which regions of the
VM V86 address space have had the normal lock/unlock behavior modified. VMHandle
specifies the VM to get the bit map of. ArrayBufPTR points to a buffer large enough to
contain the array. The assignment array is an array of 100h bits, one bit for each page in
the range 0-100h. Thus the size of the array is ((100h/8)+3)/4 = 8 DWORDS. Bits in the
array which are set (=1) indicate pages whose normal lock/unlock behavior is disabled,
bits which are clear (=0) indicate pages whose behavior is normal. Thus to test the bit for
page number N (0 <= N <= 0FFh) you could use code like this:

mov ebx, N MOD 32 s Bit number in DWORD
mov eax, N / 32 ; DWORD index into array
bt dword ptr ArrayBufPTR[eax*4],ebx; Test bit for page N
jnc short PageNormal ’

PageModified:

Note that this code is mearly intended to illustrate how the bit array works. This code is
not the most efficient, or the only way to implement this test. There are currently no bits
defined in the flags, this parameter must be set to 0.

Return Value Returns non-zero if succesfull, returns zero if the bit array could not be returned (Invalid
VMHandle).
Comments Making this call on a VM whose VMStat_Pageable V86 bit is clear is not an error, it

simply returns a bit array whose bits are all 0.

PageDiscardPages

unsigned PageDiscardPages(LinPgNum,VMHandle,nPages,flags)
unsigned LinPgNum;

unsigned VMHandle;

unsigned nPages;

unsigned flags;

April 1, 1990 Microsoft Confidential Beta Release

Memory Management Services 19-47

Return Value

Comments

This call is provided to assist management of PM applications by providing a way to mark
pages as “‘no longer in use”. What this does is allow regions which were previously “in
use” to be “discarded”. This means that the page does not have to be “paged in” to make it
present, thus eliminating the disk access required for the page in. LinPgNum and nPages
together specify the range to be discarded. LinPgNum is a page NUMBER. If LinPgNum
is < 110h, or at a VM high linear address, then the range lies in a VM and the VMHandle
parameter specifies the VM. In this case, all pages of the range must be marked V86Pagea-
ble or the call will fail. Pages in the range which are not present or are locked are ignored,
this call effects only demand pageable pages.

Current flags bits:
PageZerolnit EQU 000000000000000000000000000000018
PageDiscard EQU P00000000000000100000000000000008

Setting PageDiscard indicates that a full discard is to take place, the P_ACC and P_DIRTY
bits in the page table entrys for the pages are both cleared. If PageDiscard is clear, all the
call does is clear the P_ACC bit in the page table entrys for the pages making them pri-
mary page out candidates (the DIRT Yness and content of the pages is preserved in this
case). Setting PageZerolnit is relevant only if PageDiscard is also set, and it indicates that
the pages are to be marked “zero the contents of this page the next time it is paged in”. In
this case this subsequent page in is a NOP since the pages have been discarded, this simply
causes the pages to come back in with a known value (0) in them instead of random gar-
bage.

Returns a non-zero value if successful, otherwise it returns zero (invalid range or VM
handle).

The Flag bit equates are defined by including VMM.INC, please use the equates.

19.9 Instance Data Management

Beta Release

The purpose of these services is to provide a means of identifying to the system those areas
of virtual 8086 mode memory (V86 memory) that contain per Virtual Machine or “In-
stance” data. Each of the VMs in the system has its own, private instance of this data and
anything the VM does to the values in these locations has no effect on other VMs since the
values are different in each VM.

Microsoft Confidential April 1, 1990

19-48 Virtual Device Adaptation Guide
. __]

NOTE Al of these calls use the USE32 C calling convention. The true name of the procedure has an
underscore in front (i.e., Addinstanceltem is actually _Addinstanceltem), and the arguments are
pushed right to left (unlike the PL/M calling convention used by Windows, which is left to right). The re-
turn value(s) is returned in C standard EDX:EAX. It is the responsibility of the caller to clear the argu-
ments off the stack. Registers EAX, ECX, and EDX are changed by calls. Registers DS, ES, EBP, EDI,
ESI, and EBX are preserved.

Addinstanceltem

INDOS_Field
ALWAYS_Field

Return Value

April 1, 1990

unsigned AddInstanceltem(InstStrucPTR,flags)
unsigned InstStrucPTR;
unsigned flags;

This call is used to identify a region of instance data in the V86 address space. In-
stStrucPTR is a pointer to an instance data identification structure which has this form:

InstDataStruc struc

InstLinkF dd ? s RESERVED SET T0 @

InstLinkB dd ? s RESERVED SET TO @

InstLinAddr dd ? ; Linear address of start of block
InstSize dd ? ; Size of block in bytes

InstType dd ? ;s Type of the block

InstDataStruc ends

The InstLinkF and InstLinkB fields are filled in by the Instance data manager and cannot
be used by the caller. InstLinAddr defines the start of the block of instance data, NOTE
THAT THIS IS NOT IN SEG:OFFSET FORM,, it is a linear address. Thus the correct
value for 40:2F would be 42F. InstSize is the size of the instance data block in bytes
starting at InstLinAddr. InstType defines one of two types of instance data:

equ 100h ; Bit indicating INDOS switch requirements
equ 200h ; Bit indicating ALWAYS switch requirements

ALWAYS_Field type indicates that the field must always be switched when a VM is
switched. All instance data sepcified by VxDs should be of this type. INDOS_Field type is
reserved for special types of DOS internal data which only need to be switched with the
VM if the VM is currently INDOS.

There are currently no bits defined in the flags, this parameter must be set to 0.

Returns nonzero value if the instance data block was succesfully added to the instance list,
zero if the block was unsuccesful added (This is probably a FATAL error).

Microsoft Confidential Beta Release

Memory Management Services 19-49

NOTE There are two basic ways to allocate the space for the InstDataStrucs pointed to with In-
stStrucPTR. The first is to simply staticly allocate them in the INIT data segment. The space they oc-
cupy will then be reclaimed when the INIT space is reclaimed. The other way is to allocate them on the
System heap using HeapAllocate. The space can then be freed by HeapFreeing all of the heap handles
in the device Sys_VM_Init code which is called after all of the system initialization (including the in-
stance data initialization) is done.

WARNING 1 you allocate space for InstDataStrucs on the heap you must be sure NOT to HeapReAl-
locate the heap blocks after passing the address to AddInstanceltem because this will invalidate the In-
stStrucPTR value you previously passed to Addinstanceltem.

NOTE This routine is in the init segment of WIN386. It can therefore only be called during system in-
itialization. Trying to call it after system initialization and the system INIT segment space has been re-
claimed will result in a fatal page fault.

Once this call is made, the caller must not ever touch the InstDataStruc pointed to again.
The caller has passed control of this data block to the instrance data manager and tamper-
ing with it will result in the instance data manager failing to identify the instance data cor-
rectly.

Note that only one, contiguous region of instance data can be identified with each struc-
ture. It is a good idea for the caller to coalesce adjacent blocks of instance data it is identi-
fying in order to cut down the call overhead and data space requirements, but this is not

There is a declaration of the InstDataStruc data structure in VMM.INC.

MMGR_Toggle_HMA

Beta Release

unsigned MMGR_Toggle_HMA(VMHandle,flags)
unsigned VMHandle;
unsigned flags;

This call is an interface to the Instance data manager which allows devices such as the
V86MMGR XMS device to control the behavior of the “highmem” memory area, or
“HMA”, of a VM (V86 linear pages 100h through 10Fh). Any device which wishes to
modify the “1Meg Address Wrap” behavior of a VM MUST use this call to inform the In-
stance data manager what is going on. This is because the Instance manager must know
whether IMeg Address Wrap is on or off to manage the instance data correctly fora VM.
VMHandle is a valid WIN386 VM handle which indicates the VM to which the call is to
be applied. Current flags bits:

MMGRHMAPhysical EQU 000000000000000000000000000000018
MMGRHMAEnable EQU 000000000000000000000000000000108
MMGRHMADisable EQU 000000000000000000000000000001008
MMGRHMAQuerry EQU 000000000000000000000000000010008

Microsoft Confidential April 1, 1990

19-50 Virtual Device Adaptation Guide
. ___]

Return Value

Comments

April 1, 1990

All unused bits must be zero. ONe, and only one of MMGRHMAEnable,
MMGRHMADisable, MMGRHMAQuerry BITS must be specified, the call will have ran-
dom results if this is not true. MMGRHMAPhysical bit is a modifier which modifies the
operation of the MMGRHMAEnable bit: See discussion of MMGRHMAEnable.
MMGRHMADisable, if set, causes the Instance manager to restore the normal Wrap map-
ping for pages 100 through 10F thus Disabling the HMA. This is a REMAP of pages 00h
through OFh of the VM and causes the VMs address space to “wrap” back to address zero
for addresses >1Meg as it does on an 8086 processor. MMGRHMAEnable, if set, disables
1Meg address wrap in the VM, thus Enabling the HMA. Exactly what this does is control-
led by the MMGRHMAPhysical bit. If MMGRHMAPhysical is set, MMGRHMAEnable
causes PHYSICAL pages 100h through 10Fh to be mapped in Linear pages 100h through
10Fh of the VM consistent with the operation of a Global HMA which is shared by all
VMs. If MMGRHMAPhysical is not set, Linear pages 100h through 10Fh will be marked
as not present System Pages in the VM. It is then up to the CALLER to map some other
memory handle into this region of the VM after this call. This is consistent with the opera-
tion of a per VM HMA. Note that if the VM accesses these pages before this mapping is
set up, an erroneaous page fault will occur which will crash the VM, or the system.
MMGRHMAQuerry, if set, returns the current state of the HMA in the VM.

This call has no return value unless MMGRHMAQuerry was specified in the flags. In this
case the call will return value 0 if the HMA is Disabled (1Meg address wrap is enabled),
and it will return a nonzero value if the HMA is Enabled (1Meg address wrap is disabled).

This call is reserved for the VSGMMGR XMS device. Other devices should not be using
this call. Modifying the Wrap state of a VM without the V86MMGR XMS device knowing
about it will probably result in a state error and a crash. ‘

The device issuing this call must be a device which has succesfully Globally or Locally As-
sign_Device_VM_Paged pages 100h through 10Fh in the indicated VM. This is not a call
which multiple devices should make for a VM as doing so will cause confusion between
the devices.

‘When VMs are created, they are created with the HMA Disabled (1Meg Address Wrap
enabled) consistent with normal operation on an 8086 processor. The device responsible
for the HMA in a VM must adjust this in its Create_VM device call if needed.

Note that no distinction is drawn on the MMGRHMAQuerry return between
MMGRHMAPhysical being specified, or not specified on a previous MMGRHMADisable
call.

NOTE Instance data is not allowed in the hma.

The flag bit equates are in VMM.INC, please use the equates.

Microsoft Confidential Beta Release

Memory Management Services 19-51

19.10 Looking At V86 Address Space

From time to time, VxDs may wish to look at or modify some piece of the virtual 8086
mode address space of a VM that is not the current VM. The documented way to do this is
as follows.

CB_High_Linear

Beta Release

There is a Control Block variable which is a linear address of the start of the VM’s address
space. Thus to look at VM linear adress 40:17 with EBX being the VM Handle of the VM
you’re interested in you would do this:

mov esi,(40h SHL 4) + 17h
add esi,[ebx.CB_High_Linear]

ESI now points to this location in the V86 address space. This can be used to look at, mod-
ify any V86 address including instance data addresses.

NOTE No code should EVER touch a part of V86 address space at its “low™ address
(>=0,<=400000h) EVEN FOR THE CURRENT VM. There is NO REASON to do this, use GB_High_Linear
in ALL cases to look at V86 addresses.

Microsoft Confidential April 1, 1990

19-52 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

"”a”"” 1/0 Services and Macros

This chapter documents the services available for I/O. Also included are two macros and a
discussion explaining their usefulness.

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

‘When a virtual machine executes an instruction that reads or writes data from an I/O port,
the 80386 looks up the port number in the I/O Permission Map (IOPM). If the correspond-
ing bit in the IOPM is set, then the instruction will cause a protection fault.

Enhanced Windows provides services that virtual devices use to trap I/O. The first thing a
virtual device must do is hook the port while the device is being initialized. This is done by
calling a service called Hook_IO_Port. It takes two parameters: the number of the I/O
port to hook and the address of a callback procedure.

When Hook_IO_Port is called, enhanced Windows sets the appropriate bit in the I/O per-
mission map and registers the callback procedure. Whenever a VM accesses the port, the
VMM will call the procedure with the following parameters:

EBX = Handle of VM that accessed the port
EDX = Port number

ECX = Type of /O

If VM is outputing data to the port then
EAX/AX/AL = Output value

20.1 Handling Different I/0 Typés

The value passed in ECX determines the type of input or output as specified by Table 20.1.

Table 20.1 I/O Register Values

Value Type of input/output
00H Byte input

04H Byte output

08H WORD input

O0CH WORD output

10H DWORD input

Beta Release Microsoft Confidential April 1, 1990

20-2 Virtual Device Adaptation Guide

14H DWORD output

Masks that apply only to string I/O are shown in Table 20.2.

Table 20.2 String I/O Register Values

Value) Type of input/output

20H String I/O

40H Repeated string I/O

80H 32-bit addressing mode string I/O

100H Reverse string I/O (VM’s direction flag is set)

For all string I/O operations, the high WORD of ECX contains the segment for the string
I/0. This allows VxDs to ignore the issues of segment overrides on these instructions;
VMM has already determined the correct segment value. Thus, a value of 3247016CH
would specify that the VM is doing word reverse repeated string output to 3247:DI.

For example:

High word = segment 3247
0Ch = Word output

20h = String I/O

40h = Repeated string I/O
100h = Reverse I/O

It would be unreasonable to expect every VxD to support 48 different types of I/O. There-
fore, the VxD environment only requires VxDs to support byte input and output, even
though a VxD can directly support any type of I/O that is appropriate. For example, there
is no reason for the Virtual Printer Device (VPD) to support WORD input and output since
printer ports are only 8-bits wide.

However, there are 16-bit VxDs for 16-bit ports that must directly support WORD I/O as
well as byte I/O.

Furthermore, devices such as disk drives might need to directly emulate string I/O for
some ports to achieve acceptable performance. A device can emulate some types of /O
and ignore others.

But what happens if someone does WORD string output to a printer port? You canot just
throw the I/O away! For this reason, enhanced Windows has a catch-all routine called
Simulate_IO that converts I/O into something the virtual device can understand. Notice in
the port trap code of the VPD example that entry points start with the Emu-
late_Non_Byte IO macro. This macro generates the following code:

cmp ecx, 4
jbe SHORT Foo

April 1, 1990 Microsoft Confidential Beta Release

1/0 Services and Macros 20-3

VMMjmp Simulate_I0
Foo:

So, if a VM attempted to do non-repeated forward word siring I/O, the following sequence
of calls to the VPD trap code would be issued:

Call VPD trap with:

EBX = VM handle

EDX = 358h (Port #)

ECX =23A8002Ch (String I/O from segment 23A8h)
EBP = Client register structure

VPD jumps to Simulate_I/O which calls VPD again with:

EBX = VM handle

EDX =358h (Port #)

ECX = (0Ch (0Ch = Word output)
AX = Word output

EBP = Client register structure

VPD jumps to Simulate_I/O which calls VPD again with:

EBX = VM handle

EDX = 358h (Port #)

ECX = 04h (04h = Byte output)
AL = Byte output

EBP = Client register structure

VPD then simulates the byte output and returns.

Notice that the high-order byte of the word output would be sent to the trap routine for
VPD trap port # +1. So, if VPD is trapping port 358H, then word output to this port will be
converted into byte output to ports 358H and 359H (exactly the way the hardware works).

20.2 1/0 Macros

Beta Release

There are two useful macros for I/O trap routines. The first macro, Emu-
late_Non_Byte_IO, generates the following code:

cmp ecx, Byte_Output

jbe SHORT Is_Byte_IO

VMMjmp Simulate_I0
Is_Byte_I0:

Dispatch_Byte IO, the second useful macro, takes two arguments. The first is the destina-
tion for byte input, and the second is the destination for byte output. This macro passes
back all non-byte I/O to Simulate_IO. A typical I/O trap routine looks like the following
example:

Microsoft Confidential April 1, 1990

20-4 Virtual Device Adaptation Guide

BeginProc VfooD_Trap_Data
Dispatch_Byte_I0 Fall_Through, VFood_Out_Data

(éé&e for byte input)
ret

VfooD_Out_Data:

iééde for byte output)
ret

EndProc VfooD_Trap_Data

Notice the special value Fall Through that instructs the Dispatch_Byte_IO macro that
byte input should fall through to the following code. You can substitute Fall_Through for
either the input or output parameter (but not both) or specify two labels.

20.3 1/0 Services

This section presents detailed information on each of the following I/O services in the fol-
lowing order:

8 Enable_Global_Trapping
= Disable_Global_Trapping
= Enable_Local Trapping
= Disable_Local_Trapping
= Install JO_Handler

= Install Mult I0_Handlers
® Simulate_IO

Enable_Global_Trapping, Disable_Global_Trapping

Description These services enable and disable I/O port trapping in every VM. A callback hook must
have been installed during initialization before either of these services is used.

The global trapping state is by default enabled. When a VM is created, it will be created
with the current global trapping state.
Entry EDX = I/O port number

Exit None

April 1, 1990 Microsoft Confidential Beta Release

1/0 Services and Macros 20-5

Uses

Flags

Enable_Local_Trapping, Disable_Local_Trapping

Description

Entry

Exit

Uses

These services enable and disable I/O port trapping in a specific VM. A callback hook
must have been installed during initialization before either of these services is used.

EBX = VM handle
EDX = I/O port number

None

Flags

Install_I0_Handler (Initialization only)

Description

Entry

Exit

Uses

Callback

Beta Release

This service installs a callback procedure for I/O port trapping and enables trapping for the
specified port in all VM'’s. Only one procedure may be installed for each port.

When an I/O callback is installed, the default global trapping state is enabled. You can dis-
able trapping of a port for every or specific VMs using the Enable/Disable_Global_Trap-
ping and Enable/Disable_Local_Trapping services.

ESI = Address of procedure to call
EDX =1/O port

If carry set then
ERROR: Port already hooked by another device or
unable to hook any more ports (out of hooks)
else
Port hooked successfully

Flags

EBX = Current VM handle
ECX = Type of /O

EDX = Port number

EBP -> Client register structure

If output then
EAX/AX/AL = Data output to port
else (input)

Microsoft Confidential April 1, 1990

20-6 Virtual Device Adapiation Guide

Callback procedure must return EAX/AX/AL for data input from
port

Install_Mult_I0_Handlers (Initialization only)

Description

Entry

Exit

Uses

Callback

This service makes repeated calls to the Install IO_Handler service with the entries in a
iabie buiii using macros as foliows:

Begin_Vxd_I0_Table Table_Name

Vxd_I0 <port#>, <procedure name>
9;&_10 <port #>, <procedure name>
Vxd_I0 <port #>, <procedure name>

End_Vxd_I0_Table Table_Name,
EDI = Address of VxD_IO_Table

If carry set then
ERROR: One or more ports already hooked by another device
or unable to hook any more ports (out of hooks)
EDX = Number of port that could not be hooked
else
Ports hooked successfully

Flags

EBX = Current VM handle
ECX = Type of I/O
EDX = Port number

EBP -> Client register structure

If output then
EAX/AX/AL = Data output to port

else (input)
Callback procedure must return EAX/AX/AL for data input from
port

Simulate_IO
Description

April 1, 1990

This service is used to break complex I/O instructions into simpler types of I/O. An /O
handler should jump to this service using VMMjmp Simulate_IO whenever the handler is
called with a type of 1/O that it does not directly support. A typical I/O trap handler would
start with code similar to the following:

Microsoft Confidential Beta Release

1/0 Services and Macros 20-7

Beta Release

Sample_I0_Handler:

cmp ecx, Byte_Output
je SHORT SIH_Simulate_Qutput
jb SHORT SIH_Simulate_Input

VMMjmp Simulate_I0

Since byte input is 0 and byte output is 4, a single compare can be used to determine if the
I/O is byte input, output, or not supported. When Simulate_IO is invoked, it will break the
1/O into simpler I/O types and recursively call Sample_IO_Handler.

For example, assume Sample_IO_Handler is the I/O trap handler for port 534H. If it was
called with ECX = Word Output then it would 1mmed1ately jump to the Simulate_IO
service. Simulate_IO would then break the I/O instruction into byte output to ports 534H
and 535H. When Sample_IO_Handler was called again, it would be able to virtualize the
byte output to port 534H. The output to port 535H would be handled by another port trap
routine, or, if there was not one installed, the output would be reflected directly to hard-
ware port 535H.

Two macros, Emulate_Non_Byte_IO and Dispatch_Byte_IO, are provided as con-
venient ways to invoke this service.

Emulate_Non_Byte_IO is usually the first line of an I/O trap handler. It simply compares
ECX to Byte_Output and, if it is greater, it jumps to the Simulate_IO service. For ex-
ample:

Sampie_I0_Handler:
Emulate_Non_Byte_I0
(Here ECX will be @ for byte input or 4 for byte output)

Dispatch_Byte_IO is usually more convenient since it will also jump to the appropriate
code for byte input or output. The macro takes two parameters. The first parameter speci-
fies the label to jump to for byte input, and the second specifies the label to jump to for
byte output. Either parameter (but not both) can have the special value Fall_Through,
which specifies that the code to handle that I/O type immediately follows the macro. For
example:

Sample_I0_Handler:
Dispatch_Byte_I0 Fall_Through, <SHORT SIH_Qutput>
(...Code here for handling byte input...)

ret

SIH_Output:
(...Code here for handling byte output...)
ret

If, for efficiency reasons, you want to provide code to virtualize I/O other than byte input
and output, test for the types that you can handle and then jump to this service to emulate
other types of I/O.

Notice that the entry parameters to this service are identical to the parameters passed to
your IO trap routine. You should jump to this service using the VMMjmp macro with all

Microsoft Confidential April 1, 1990

20-8 Virtual Device Adaptation Guide

of the registers in the same state as when your I/O trap routine was called (although you
may modify ESI and EDI since they are not parameters).

Entry EAX = Data for output instructions
EBX = Current VM handle
ECX = Type of I/O (same as passed to I/O trap routine)
EDX =1/O port
EBP -> Client Register Structure

Exit All registers modified. If input, then AX or EAX will contain virtualized input value.

Uses EAX, EBX, ECX, EDX, ESI, EDI, Flags

April 1, 1990 Microsoft Confidential Beta Release

Chapter

Beta Release

VM Interrupt and Gall
Services

The VM Interrupt and Call Services supported by enhanced Windows are described in this
chapter in the following order:

= Build_Int_Stack_Frame
s Call_ When_VM_Ints_Enabled

Disable_VM_Ints
Enable_VM_Ints
Get_PM_Int_Type
Get_V86_Int_Vector
Get_PM_Int_Vector
Hook_V86_Int_Chain
Hook_PM_Int_Chain
Set PM_Int_Type
Set_V86_Int_Vector
Set_PM_Int_Vector
Simulate_Far_Call
Simulate_Far_Jmp
Simulate_Far_Ret
Simulate_Far_Ret N
Simulate_Int
Simulate_Iret

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device (VxD) Programming Topics,” for general discussions on VM Interrupts and Call
Services.

Microsoft Confidential

April 1, 1990

21-2 Virtual Device Adaptation Guide

Build_Int_Stack_Frame

Description This service will save the current CS:IP and flags on the VM’s stack and, then, set the
CS:IP to the value passed to the routine. The next time the VM is entered, the effect will
be that an interrupt occurred, directing control to the procedure provided.

The procedure that is called must do an IRET to return.

Sampie code:

VMMcall Begin_Nest_Exec
mov cx, [My_Private_VM_Proc_Segment]
mov edx, [My_Private_VM_Proc_0Offset]

VMMcall Build_Int_Stack_Frame
VMMcall Resume_exec
VMMcall End_Nest_Exec

Entry CX = Code segment of procedure to call

EDX = Offset of procedure to call (high word must be O for 16-bit apps)
Exit None
Uses Client_CS, Client_EIP, Client_Flags, Flags

Call_When_VM_Ints_Enahled

Description If a VxD needs to be called when interrupts are enabled, it can use this service to be
notified when the VM enables interrupts. If the current VM’s interrupts are already
enabled when this service is called, your callback procedure will be called immediately.

It is usually more convenient to use the Call_Priority_VM_event service instead of cal-
ling this service directly. However, this service is faster.

Entry EDX = Reference data
ESI = Offset of procedure to call
Exit None
Uses Client_Flags, Flags
Callback EBX = Handle of current VM

EDX = Reference data passed to this service
EBP -> Client register structure
Called procedure may destroy EAX, EBX, ECX, EDX, ESI, EDI, and Flags

April 1, 1990 Microsoft Confidential Beta Release

VM Interrupt and Call Services 21-3
|

Disahle_Vm_ints

Description This service will disable interrupts during VM execution for the current virtual machine.
This has the same effect as the VM executing a CLI instruction.

Entry None
Exit None
Uses Flags

Enable_VM_lints

Description This service will enable interrupts during VM execution for the current virtual machine.
This has the same effect as the VM executing an STI instruction.

If any VxDs have scheduled callback events using the Call_ When_Ints_Enabled or
Call_Priority_VM_Event services, then the callback procedure(s) will be called before
this service returns.

Entry None
Exit None
Uses Flags

Get_PM_lInt_Type

NOTE The description for this service has been identified as out of date and the updated information
was unavailable for this printing.

Get_V86_Int_Vector, Get_PM_Int_Vector

Description These services return the current VM'’s interrupt vector for the mode specified. For V86
mode, this is the DWORD located in the real mode interrupt vector. A PM interrupt vector
table is maintained by the VMM for every virtual machine.

Beta Release Microsoft Confidential April 1, 1990

21-4 Virtual Device Adaptation Guide

Entry

Exit

Uses

Notice that for PM interrupts, a return value of zero indicates that the interrupt vector has
not been hooked. This is an optimization so that unhooked interrupts can be immediately
reflected to V86 mode without any processing in protected mode. If a protected mode
application or VxD calls the DOS Get_Vector service, then the DOS API mapper will allo-
cate a PM callback break point and set the appropriate interrupt vector if the vector is cur-
rently zero. The break point will invoke code that reflects the interrupt to V86 mode.
Therefore, VxDs should use this service instead of the DOS Get_vector interface to get
ihe current PM interrupt vector.

EAX = Interrupt number

If interrupt vector points to 0:8 then
Zero flag set
ECX =190
EDX =
else
Zero flag clear .
CX = CS of vector (high word zero)
EDX = EIP of interrupt vector (for V86 mode and 16-bit
protected mode programs the high word will be zero)

ECX, EDX, Flags

Hook_V86_Int_Chain (Initialization only)

Description

Example

April 1, 1990

These services are used to monitor software interrupts and simulated hardware interrupts
in Virtual 8086. More than one VxD is allowed to hook an interrupt. The last interrupt
hook will be the first one called. Every interrupt hook can either service the interrupt or
allow the interrupt to be reflected to the next handler in the chain. If no interrupt hook pro-
cedure consumes the interrupt, then it will be reflected to the virtual machine.

To consume an interrupt, a hook procedure must return with the Carry flag clear. If the
Carry flag is set when an interrupt hook retums, then the interrupt will be passed on to the
next handler in the chain or, if the end of the chain is reached, reflected to the current vir-
tual machine.

If a VxD calls the Simulate_Int service, then all interrupt chain hooks will be called
before the interrupt is reflected into the virtual machine. Simulated hardware interrupts
will also be routed through the interrupt hooks. Therefore, your code should not assume
that the VM has just executed a software interrupt instruction.

‘Windows running in enhanced mode supports an API using software interrupt 2FH, The
code to handle the Release Time-Slice API looks like this:

Microsoft Confidential Beta Release

VM Interrupt and Call Services 21-5

Entry

Exit

Uses

Callback

Beta Release

Win386_Partial_APl_initialization:

mov eax, 2fh

mov esi, OFFSET32 Win386_Partial_API_Hook
VMMcall Hook_V86_Int_Chain

clc

ret

Win386_Partial_API_Hook

cmp [epb.Client_AX]1, 16808h
je SHORT Win386_PA_Our_Call
stc

ret

Win386_PA_Our_Call:
VMMcall Release_Time_Slice
clc
ret

When Win386_Partial API_Hook is called, it checks for 1680H in the VM’s AX
register. If Client_AX !=1680H, then it reutrns with Carry set, and the interrupt will be re-
flected to the next handler in the interrupt chain. However, if Client_AX = 1680H, then it
releases the current virtual machine’s time-slice and consumes the interrupt by returning
with Carry clear.

EAX = Interrupt #
ESI Procedure to call

If carry set then

ERROR: Invalid interrupt number
else

Interrupt hook installed

Flags

EAX = Interrupt #
EBX = Current VM handle
EBP -> Client register structure

If the callback procedure returns with carry clear then

The interrupt is NOT passed to the next interrupt hook
else (if carry set)

The interrupt IS passed to the next interrupt hook

Microsoft Confidential April 1, 1990

21-6 Virtual Device Adaptation Guide
.]

Set_PM_int_Type

NOTE The description for this service has been identified as out of date and the updated information
was unavailable for this printing.

Set_V86_Int_Vector, Set_PM_Int_Vector

Description This service sets the current interrupt vector for the mode specified. If a VxD calls
Set_xxx_Int_Vector before the Sys_VM_Int control call is made, then the installed han-
dler will become part of the default interrupt vector table. In other words, every VM will
be created with interrupt vectors set during enhanced Windows environment initialization.
If this service is called after Sys_VM_Init, then the handler will only be installed in the
current virtual machine.

Entry EAX = Interrupt number
CX =CS to set into vector
EDX = EIP to set interrupt vector (for V86 mode and 16-bit protected mode programs the

high word should be zero)
Exit None
Uses Flags

Simulate_Far_Call

Description This service places the current VM’s CS:IP on the VM’s stack and puts the CS:IP
specified in CX:EDX in the Client_CS:EIP. The next time the VM is executed, it will be
as if a FAR call had been inserted in the VM’s instruction stream.

<— Client’s current SS:(E)SP
CS
(E)IP . . .
<— Client’'s SS:(E)SP after simulation
Client_CS = CX

Client_EIP = EDX

Figure 21.1 Simulate_Far_Call (?) SERV_02.EPS

April 1, 1990 Microsoft Confidential Beta Release

VM Interrupt and Call Services 21-7
L __]

Entry CX = Segment of procedure to call
EDX = Offset of procedure to call (high word 0 if 16-bit application)

Exit Old Client_CS, Client_EIP, Client_ESP, Flags

Simulate_Far_Jdmp

Description This service places the specified CS:IP into the VM’s CS:IP to simulate a FAR jmp in-
struction.

Entry CX =CS to jump to
EDX = EIP to jump to (High word should be zero for 16-bit or V86 apps)

Exit None

Uses Client_EIP, Client_ESP, Flags

Simulate_Far_Ret

Decsription This procedure pops the top two WORDs orDWORD:s on the current VM’s stack into the
client’s CS:(E)IP.
-<— Client’s SS:(E)SP after simulation
Client_CS <
Client_(E)IP <« .
-« Client’s current SS:(E)SP

Figure 21.2 Simulate_Far_Ret (?) SERV_03.EPS

Entry None
Exit None
Uses Flags

Simulate_Far_Ret_N

Description This procedure pops the top two WORDs or DWORD:s on the current VM’s stack into the
client’s CS:(E)IP and, then, subtracts EAX from the VM’s stack pointer.

Beta Release Microsoft Confidential April 1, 1990

21-8 Virtual Device Adaptation Guide

Entry

Exit

Uses

EAX = Number of bytes to pop atter tar ret
None

Client_CS, Client_EIP, Client_ESP, Flags

-<— Client's SS:(E)SP after simulation
N bytes

Client_CS -
Client_(E)IP <

<«— Client’s current SS:(E)SP
Figure 21.3 Simulate_Far_Ret_N (?) SERV_04.EPS

Simulate_Int
Description

Exit

Uses

April 1, 1990

This service is used mainly by the Virtual Programmable Interrupt Controller Device to
simulate hardware interrupts. Most VxD writers will want to use the Exec_Int service to
simulate interrupts.

This service has exactly the same effect as a VM executing an Int nn instruction. All VxD
interrupt chain hooks are called and, if the interrupt is not consumed by one of these
hooks, an IRET frame is built on the VM’s stack. Notice, however, that the VM interrupt
code will not be executed until the enhanced Windows environment returns to the virtual
machine. If you want to execute an interrupt, then you should use the nested execution
services (Exec_Int).

This service is mode sensitive. Therefore, if the VM is currently in V86 mode, then a V86
interrupt will be simulated. Otherwise, a PM interrupt will be simulated. Since reflecting a
PM interrupt may force a mode change to V86 mode, VxD writers must be very careful
when calling this service while running a protected-mode application.

EAX = Interrupt number

If Simulate_Int is called while running a PM application and the PM interrupt vector is 0,
then the mode is chnaged to V86.

Client_CS, Client_EIP, Client_Flags, Flags

Microsoft Confidential Beta Release

VM Interrupt and Call Services 21-9
L]

Simulate_Iret

Description This service pops the values at the top of the current VM’s stack into the current VM’s
CS:IP and flags. If the current VM is a 32-bit protected-mode application, then this serv-
ice will pop three DWORD:s instead of WORDs (simulate an IRETD).

<— Client’s SS:(E)SP after simulation

Client_Flags <
Client_CS
Client_(E)IP <—

-«— Client’s current SS:(E)SP

Figure 21.4 Simulate_lret (?) SERV_01.EPS

Entry None
Exit None
Uses Client_CS, Client_EIP, Client_ESP, Client_Flags, Flags

Beta Release Microsoft Confidential April 1, 1990

21-10 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Chapter | Nested Execution Services

These services provide a way for VxDs to call routines in a VM. Notice that the VxD must
make sure that the service being called is in a callable state (i.e., you must not reenter serv-
ices that do not expect to be reentered).

Begin_Nest_Exec

Description This service is used by devices that need to call software in a virtual machine. For ex-
ample: :
VMMcall Begin_Nest_Exec ; Start nested execution
mov [ebp.Client_AH], 30h 30h = Get MS-DOS Version #

Execute an Int 21h in the
current VM to call DOS
End of nested exec calls

mov eax, 21h
VMMcall Exec_Int
VMMcall End_Nest_Exec

will make the DOS Get Version call. The version will be in the Client_AH and Client_AL
registers.

This service only works for the current VM. The VM registers changed by the call WILL
BE CHANGED IN THE VM. If you want to save and restore a VM’s registers you should
use the “Save_Client_ State” and “Restore_Client_State” services or the
“Push_Client_State” and “Pop_Client_State macros.”

You may execute any number of interrupts between a Begin/End_Nest_Exec pair. For ex-
ample the following is valid:

VMMcall Begin_Nest_Exec
Qﬁﬁca]] Exec_Int
VMMcall Exec_Int

Vﬁﬁca]] Simulate_Far_Call
VMMcall Resume_Exec

Vﬁﬁcall Exec_Int
VMMcall End_Nest_Exec

This service will force the VM into protected mode execution if there is a protected mode

application running in the current VM. If there is no protected mode application, then the
VM will remain in V86 mode. When End_Nest_Exec is called the VM will be returned to

Beta Release Microsoft Confidential April 1, 1990

22-2 Virtual Device Adaptation Guide

Entry

Exit

Uses

whatever mode it was in when Begin_Nest_Exec was called. For more information on
what is entailed in a mode switch refer to the documentation for “Set_PM_Exec_Mode”
and “Set_V86_Exec_Mode”.

If the execution mode changes from V86 to PM then this service will automatically switch
the VM to the locked PM stack (and End_Nest_Exec will switch it back). This allows
most devices to change execution modes without worrying about demand paging issues.

None

Client_CS:IP contains a break point (used by nested exec services) If a protected mode
application is running then
VM execution mode is protected mode
else
VM execution mode is Virtual 8086 mode
Exec_Int and Resume_Exec services may be called.

Client_CS, Client_IP, Flags

Begin_Nest_V86_Exec

Description

Entry

Exit

USES

April 1, 1990

This service will set the the current VM in Virtual 8086 mode and prepare the VM for
nested execution. This service is normally used by devices that want to convert protected
mode calls into V86 calls. For example, the DOSMGR device uses this call to map INT
21H DOS calls issued from protected mode programs into Virtual 8086 mode DOS calls.

This call, like Begin_Nest_Exec, saves the current execution mode of the virtual machine
(either V86 or PM) and End_Nest_Exec will restore the mode.

None

Client_CS:IP contains a break point (used by nested exec services)
VM is in Virtual 8086 mode.
Exec_Int and Resume_Exec services may be called.

Client_CS, Client_IP, Flags

Microsoft Confidential Beta Release

Nested Execution Services 22-3

Begin_PM_Exec

Description

Entry

Exit

Beta Release

ED. NOTE Please be advised that this service may no longer be supported or may have changed.
Presented here is the most current documentation available at time of printing.

This service is used by devices that load protected mode applications to set the execution
mode to protected mode. It will set the VMStat_ PM_App and VMStat PM_Exec status
flags in the current VM’s control block status field and set the current execution mode to
protected mode. If the 32-bit option is selected it will also set the VMStat_PM_Use32
flag.

It is up to the caller to save the current client registers and restore them after calling
End_PM_Exec. None of the protected mode registers will be initialized by this call. There-
fore it is up to the caller to initialize DS, ES, FS, GS, CS, EIP, SS, and ESP. Also note

that the loader must allocate any memory and selectors the protected mode program will
use. The loader must supply a stack segment for the application.

Typically, loaders have the following logic:

Start_Load:
mov edi, (Per-VM buffer to save state)
VMMcall Save_Client_State
mov eax, (B or 1)
VMMcall Begin_PM_Exec
jc Error

(Load application code and data)

(Set Client_CS:EIP to application entry point)

(Set Client_SS:ESP to application stack stack segment)
(Set initial values for Client_DS, ES, FS and GS)

ret (This will jump to programs entry CS:EIP.)

End_Program: (Normally catch Int 21h, AH=4Ch)
VMMcall End_PM_Exec
mov esi, (Per-VM buffer of saved client state)
VMMcall Restore_Client_State
ret (Returns to previous program in this VM)

Since more than one protected mode program may be loaded in a VM this service main-
tains a count. The first time it is called it sets the VMStat_PM_App flag and sets the ex-
ecution mode to proteced mode. Subsequent calls to this will increment the counter (unless
the service fails) and set the execution mode to protected mode. You must call
End_PM_Exec once for every call to Begin_PM_Exec.

EAX = Flags
Bit 0 = 1 if application is 32-bit, (0 if 16-bit)
all other flags reserved and must be 0

If carry flag clear then
Successful — VM is in PM execution mode.

Microsoft Confidential April 1, 1990

22-4 Virtual Device Adaplation Guide
. ___]

Uses

VMStat_PM_App tlag set in current VM's control block status tlags
else
ERROR: Could not begin PM execution because out of memory or
another PM application is different mode (16-bit requested

while 32-bit running or 32-bit requested while 16-bit
running)

Flags

Begin_Use_Locked_PM_Stack

Description

Entry

Exit

Uses

This service is used by devices that need to ensure that a protected mode program is run-
ning on a stack that will not be demand paged. Most devices can rely on
Begin_Nest_Exec to switch stacks automatically and so this service is only important for
devices such as the Virtual Programmable Interrupt Controller Device (VPICD) which ex-
plicitly change the execution mode of a VM.

A call to this service must be followed by a call to End_Use_Locked_PM_Stack. Note
that this service may be called repeatedly, but only the first call will switch stacks. Sub-
sequent calls will increment a counter but remain on the current locked stack.

Current execution mode of VM must be protected mode (VMStat_PM_Exec status bit
must be set).

If locked stack not already in use then

Client's SS:SP will be changed to locked protected mode stack
else

Client's SS:SP will be unchanged

Flags

End_Nest_Exec

Description

Entry

April 1, 1990

This must be called after a call to Begin_Nest_Exec. A device must never return to the
VMM while still in nested execution. If Begin_Nest_Exec changed the execution mode of
the VM then this service will restore it to the previous mode. Note that this service WILL
NOT restore the client’s registers (except CS:IP) to the values they were when
Begin_Nest_Exec was called. If you need to preserve the VM’s registers you must use the
Push/Pop_Client_State macros.

None

Microsoft Confidential Beta Release

Nested Execution Services 22-5
y__]

Exit VM execution mode restored to previous execution mode (betore
Begin_Nest_Exec was called)
Client’s original CS:IP restored

Uses Client_CS, Client_IP, Flags

End_PM_ExeckED

NOTE Please be advised that this service may no longer be supported or may have changed. Pre-
sented here is the most current documentation available at time of printing.

Description This service must be called once for every call to Begin_ PM_Exec. If the internal count
maintined by Begin/End_PM_Exec is decremented to zero then the VMStat_PM_App
flag in the control block is cleared and and the VM will be placed in V86 execution mode.
Otherwise, if the count remains greater than zero then the VM execution mode is not
changed and none of the client registers will be altered.

Entry None
Exit VM may be in V86 execution mode if final End_PM_Exec
Uses Flags

End_Use_Locked_PM_Stack

Description This service must be called once for every call made to Begin_Use_Locked_PM_Stack.
It will decrement the locked stack use counter and if it is decremented to zero then it will
switch the VM back to it’s original SS:SP.

Entry None

Exit If locked stack count decremented to @ then
Client's SS:SP will be restored to original values before
Begin_Use_Locked_PM_Stack was called.
else
Client's SS:SP will be unchanged

Uses Flags.

Beta Release - Microsoft Confidential April 1, 1990

22-6 Virtual Device Adaptation Guide
]

Exec_Int
Description

Entry

Uses

YOU MUST CALL BEGIN_NEST_EXEC OR BEGIN_NEST_V86_EXEC BEFORE
CALLING THIS SERVICE. IT MAY BE CALLED ANY NUMBER OF TIMES BE-
TWEEN A BEGIN/ END NEST EXEC PAIR.

This service simulates an interrupt and then resumes VM execution. It has exactly the
same effect as calling:

mov eax, (Int #)
VMMcall Simulate_Int
VMMcall Resume_Exec
Since most nested execution calls simulate interrupts, this service is provided for con-
vienence. Sec Resume_Exec for more details on how this service is used.
EAX = # of interrupt to execute
Interrupt has been executed

Flags

Exec_VxD_Int

Description

April 1, 1990

This service is used by virtual devices to call DOS or BIOS services as though they were
an application program. For example, the following code gets the current DOS version:

mov ax, 3000h

push DWORD PTR 21h

VMMcall Exec_VxD_Int

(AL = Major DOS version, AL = Minor DOS version)

All DOS and BIOS calls that are supported in protected mode programs will be supported
by this service. The VM’s registers and flags will not be changed by this serivce so there is
no need for the caller to save and restore the client register structure. The interrupt number
on the stack will be removed by this serivce so the caller should NOT add four to ESP
after calling this serivce.

To make calling this service easier, a macro called VxDint is defined in VMM.INC as fol-
lows:

VxDint MACRO Int_Number
push Int_Number
VMMcall Exec_VxD_Int
ENDM

Microsoft Confidential Beta Release

Nested Execution Services 22-7

Beta Release

This service makes it possible to write code in a virtual device that is very similar to real
mode code. For example, below is the code that opens a file named “FOO.TXT” and reads
the first 100 bytes:

VxD_DATA_SEG
Foo_File_Name db "FO0.TXT", @
Read_Buffer db 100 dup (?)
VxD_DATA_ENDS

VxD_CODE_SEG
BeginProc Sample_File_Read

mov ax, 3D00h ; Open file with handle
mov edx, OFFSET32 Foo_File_Name s DS:EDX - File name
VxDint 21h ; Call DOS
jc Error ; If carry then error
; else AX = File handle
mov bx, ax ;s BX = File handle
mov ecx, 100 ; Read 100 bytes
mov edx, OFFSET32 Read_Buffer ; Into this buffer
mov ah, 3Fh ; DOS Read
VxDint 21h s Call DOS
jc Error s Error if carry else

EAX = # bytes read
(Do stuff with the data here)

EndProc Sample_File_Read
VxD_CODE_ENDS

WARNING Interrupts will only be routed through virtual device interrupt hooks. THEY WILL BYPASS
ANY HOOK THE APPLICATION HAS INSTALLED IN PROTECTED MODE. This may be a problem, for ex-
ample, if an application hooks Int 21h to watch file opens and then a VxD uses this service to open a
file (the application would not see the file open).

Do not change DS or ES before calling this service. You should always use the ring 0
linear address of the data instead of changing the selector value. This may require using
the _SelectorMapFlat service to determine the base of a selector.

Do not call services that will change DS or ES. Mappers should return valid pointers
without changing the segment register value, but calls that explicitly change the DS or ES
selectors should never be called. For example, if a call returns a pointer in DS:(E)DX then
this would be OK to call since the mapper would convert the ponter to use the ring O linear
address in EDX without modifying DS. However, if a service returns a selector only then
you should not use Exec_VxD_Int to call it. This can normally be made to work by using
code similar to the following:

Push_Client_State
VMMcall Begin_Nest_(V86_)Exec

(Fiddle with client registers)

Microsoft Confidential April 1, 1990

22-8 Virtual Device Adaptation Guide

VMMcall Exec_Int
(Get segments/selectors)

\)Ml@cél 1 End_Nest_Exec
Pop_Client_State

Entry DWORD at [ESP+4] is number of interrupt to execute

Exit All registers and flags modified by interrupt will be changed. The interrupt number on the
stack will have been removed.

Uses All registers and flags modified by interrupt will be changed.

Restore_Client_State

Description This service restores a VM execution state that was saved using the Save_Client_State
service. If the client state was saved using the Push_Client_State macro then you should
use Pop_Client_State to restore the VM’s execution state. The Pop_Client_State macro

looks like:
Pop_Client_State MACRO

push esi
lea esi, [esp+4]
VMMcall Restore_Client_State
pop esi
add esp, SIZE Client_Reg_Struc
ENDM

Note that this service can have interesting side effects if it is not used carefully. For one
thing, it will change modes from V86 to protected mode or from protected to V86 mode if
the state being restored is in a different execution mode from the current one. Also, it may
change the state of the current virtual machine’s interrupt flag and so it may cause call-
backs to events scheduled through the “Call_When_VM_Ints_Enabled” or “Call_Prior-
ity_VM_Event” services.

Entry ESI -> Buffer
Exit VM execution state is restored
Uses Flags

April 1, 1990 Microsoft Confidential Beta Release

Nested Execution Services 22-9

Resume_Exec
Description

Beta Release

YOU MUST CALL BEGIN_NEST_EXEC OR BEGIN_NEST_V86_EXEC BEFORE
CALLING THIS SERVICE.TT MAY BE CALLED ANY NUMBER OF TIMES BE-
TWEEN A BEGIN/ END NEST EXEC PAIR.

This service immediately executes the current virtual machine. When the virtual machine
returns to the same point it was at when Begin_ Nest_Exec was called, this service will re-
turn. For example:

Push_Client_State
VMMcall Begin_Nest_Exec

mov cx, [Target_CS]

mov eax, [Target_CS_EIP]

VMMcall Simulate_Far_Call

VMMcall Resume_Exec

(Examine results returnd in Client registers)

VMMcall End_Nest_Exec
Pop_Client_State

will return when the called procedure returns. The following code will process any out-
standing events and immediately return:

VMMcall Begin_Nest_Exec
VMMcall Resume_Exec
VMMcall End_Nest_Exec

Since the Resume_Exec resumes execution at the same point that Begin_Nest_Exec was
called it will return immediately.

This service is also useful for devices that must wait for an external event (such as a hard-
ware interrupt) to occur before returning to the virtual machine. Since Resume_Exec al-
lows outstanding events to be processed, simulated harware interrupts can be sent to the
virtual machine while waiting:

(Push_Client_State is not needed)
VMMcall Begin_Nest_Exec
My_Wait_Loop:

test [My_Status], Done

je Exit_My_Wait_Loop
VMMcall Resume_Exec

VMMcall Release_Time_Slice

jmp My_Wait_Loop
Exit_My_Wait_Loop:

VMMcall End_Nest_Exec
(Pop_Client_State is not needed)

Note that you do not need to save and restore the client registers in this loop since simu-
lated hardware interrupts and events will not modify the client registers. You should only
use the Push/ Pop_Client_State macros when your VxD code explicitly calls code in a
virtual machine or directly modifies any client register.

Microsoft Confidential April 1, 1990

22-10 Virtual Device Adaptation Guide

Entry

Exit

Uses

This service and Exec_Int may be called multiple times in between calls to Begin/End
nest exec. For example the following code is valid:

Push_Client_State
VMMcall Begin_Nest_Exec

mov eax, (Int #)

VMMcall Exec_Int

mov cx, [Target_CS]

mov eax, [Target_CS_EIP]

VMMcall Simulate_Far_Call

VMMcall Resume_Exec
VMMcall End_Nest_Exec
Pop_Client_State

Since events are processed when Resume_Exec (or Exec_Int) is called, a task switch may
occur.

None
None

Flags

Save_Client_State

Description

April 1, 1990

This service will copy the contents of the current VM’s Client Register Structure to the
specified buffer.The buffer must be the size of the structure named “Client_Reg_Struc”
which is defined in VMM.INC. The saved state can later be restored by calling Re-
store_Client_State.

Most of the time it is easier to use the Push_Client_State macro than to call this service
directly. Push_Client_State copies the client’s state onto the protected mode stack. The
macro code is as follows:

Push_Client_State MACRO
sub esp, SIZE Client_Reg_Struc

push edi

lea edi, [esp+4]
VMMcall Save_Client_State
pop edi

ENDM

As you can see this macro will reserve space on the caller’s stack for the buffer. You must
use the Pop_Client_State macro to get rid of the contents saved on your stack. The macro
will not change any registers.

Microsoft Confidential Beta Release

Nested Execution Services 22-11

Entry

Exit

Uses

This service is typically used by devices that need to make calls to code in a virtual ma-
chine that are unrelated to the current VM’s thread of execution. For example, the demand
paging device (PageSwap) does the following:

Push_Client_State
VMMcall Begin_Nest_Exec

iPér%orm disk 1/0)

\.IMt;Ic;H End_Nest_Exec
Pop_Client_State

Note that the Push_Client_State macro is placed BEFORE the call to Begin_Nest_Exec
and the Pop_Client_State macro is AFTER the call to End_Nest_Exec. Any other combi-
nation would probably crash Win386.

WARNING Always use this service to save the client state. Don’t just copy the VM’s client register
structure and later copy it back as this will almost certianly cause Win386 to hang or crash.

EDI -> Buffer
Buffer contains a copy of the current VM’s client register structure

Flags

Set_PM_Exec_Mode

Description

Entry

Exit

Uses

Beta Release

This service forces the current virtual machine into protected mode. Most devices will
want to use Begin_Nest_Exec instead of this service.

Changing the execution mode of a VM will not change the VM’s EAX, EBX, ECX, EDX,
ESI, EDI, and EBP registers or MOST flags. The VM flag and IOPL flags will change.
DS, ES, FS, GS, SS, ESP, CS, and EIP will be restored to the previous values for pro-
tected mode.

If the current VM is already in protected mode then this service has no effect.

None

VM is in PM execution mode

Flags

Microsoft Confidential April 1, 1990

22-12 Virtual Device Adaptation Guide

Set_V86_Exec_Mode

Description This service forces the current virtual machine into V86 mode. Most devices will want to
use Begin_Nest_V86_Exec instead of this service.

Changing the execution mode of a VM will not change the VM’s EAX, EBX, ECX, EDX,
ESI, EDI, and EBP registers or MOST flags. The VM flag and IOPL flags will change.
DS, ES, FS, GS, SS, ESP, CS, and EIP will be restored to the previous values for V86
mode. VM execution mode will be restored to previous execution mode (before
Begin_Nest_Exec was called). Client’s original CS:IP will be restored.

If the current VM is already in V86 mode then this service has no effect.

Entry None
Exit VM is in V86 execution mode
Uses Flags

April 1, 1990 Microsoft Confidential Beta Release

chapter Break Point and Callback
Services

The services described in this chapter are used to handle breakpoint and callback pro-
cedures.

The discussion of these services is presented in the following order:

8 Allocate_V86_Call_Back

® Allocate PM_Call_Back

s Call When_VM_Returns
8 Install_V86_Break_Point

= Remove_V86_Break Point

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

Allocate_V86_Call_Back, Allocate_PM_Call_Back

Description A V86 callback is used to transition from V86 mode into a protected mode VxD. The call-
back is a SEGMENT:OFFSET that, when executed by a V86 machine, will cause a pro-
cedure in a virtual device to be called.

A PM callback is used to transition from a protected-mode application to a VxD. The call-
back is a SELECTOR:OFFSET that, when executed, will cause a procedure in a virtual
device to be called.

These services are typically used by devices that need to be called by software running in a
virtual machine. When the VM software calls the callback address, the VxD gets control
and can service the VM’s request.

Initialization:
mov edx, My_Ref_Data
mov esi, OFFSET33 My_API_Procedure
VMMcall Allocate_V86_Call_Back

mov [My_v86_Call_Back], eax
mov [ebp.Client_DI1, ax
shr eax, 16

mov [ebp.Client_ES], ax
ret

Beta Release Microsoft Confidential April 1, 1990

23-2 Virtual Device Adaptation Guide

Entry

Exit

Uses

Callback

My_API_Procedure:
. . (Do something here) . . .
VMMcaH Simulate_Far_Ret
ret

EDX = Reference data (any DWORD)
ESI = Procedure to call

EAX = CS:IP of V86 callback address
EAX, Flags

EBX = Current VM handle
EDX = Reference data
EBP -> Current VM’’s client register structure

Call_When_VM_Returns

Description

Entry

April 1, 1990

This service is normally used to watch the “back end” of a software interrupt. For ex-
ample, assume that the procedure 116_Hook has been placed in the V86 interrupt chain
(using the Hook_V86_Int_Chain service). If the procedure wants to look at the return
value from INT 16H, it would use the following code:

[16_Hook:
xor eax, eax ; No time-out
mov esi, OFFSET32 I16_Return ; Call this when iret executed
VMMcall Call_When_VM_Returns ; Hook the return
stc ; Reflect to next int handler
ret
[16_Return:
(Examine results of Int 16h)
ret

This service actually replaces the client’s CS:IP with a callback. Since at the point
I16_Hook is executed the interrupt IRET frame has not yet been built on the client’s stack,
the callback will be pushed on the client’s IRET frame. When the VM executes an IRET to
return from the interrupt, the callback break point will be executed and control will be
transferred to I16_Return. This service will take care of restoring the client’s CS:IP
registers to their original value.

EAX = Milliseconds until time-out (0 if no time-out)
If negative value then callback will be called for both time-
out AND return (unless return before time-out).

Microsoft Confidential Beta Release

Break Point and Callback Services 23-3

Exit

Uses

Callback

EDX = Reference data
ESI = Address of procedure to call

Client_CS:EIP replaced with callback address
Client_CS, Client_EIP, Flags

EBX = Current VM handle
EDX = Reference data
EBP -> Client register structure

If carry set then
Time-out occurred before VM returned
else
Client_CS:IP restored to original value
VM returned and executed break point
[f time-out value specified was negative then
If Zero flag set then
Time-out DID occur. Second call to this callback
else
Time-out did not and will not occur.

Install_V86_Break_Paoint

Description

Beta Release

This service is used to patch V86 code in a VM. It is primarily used by the DOSMGR
device to place patches in the DOS BIOS. Most VxD will have no use for this service. A
good example of a “typical” use for this service is the Windows/386 XMS virtual device.
Since there is already a real mode XMS driver when the VxD environment starts, the vir-
tual XMS device must place a V86 break point at the real XMS driver entry point so that it
can intercept all XMS calls.

This service places a Windows/386 V86 break point instruction at the specified SEG-
MENT:OFFSET in the current virtual machine. V86 break points will normally be placed
in global VM memory during device initialization. V86 break points must be placed only
in RAM that will have a constant linear address (they cannot move or be placed in ROM).

When a VM executes the break point, control will be passed to the VxD that installed it.
The client’s (VM’s) CS:IP will still point to the break point that caused the fault. There-
fore, the virtual device must change the CS:IP or else the break point will be executed
again when the VxD environment returns to the VM. In the case of the virtual XMS
device, it would call Simulate_Far_Ret to return to the code that called the XMS driver.
Other devices may want to simulate the instruction that was patched out and increment the
IP past the patch, jump to another CS:IP using Simulate_Far_Jmp, or return from an in-
terrupt handler using Simulate_Iret.

Microsoft Confidential April 1, 1990

23-4 Virtual Device Adaptation Guide
e

If a particular V86 break point is no longer needed, then the VxD should call Re-
move_V86_Break_Point. Also, any break points that are placed in global V86 code (code
loaded before Windows/386 was loaded) must be removed at System_Exit time.

NOTE The segment used to install a V86 break point must be the code segment the virtual machine
will use when it executes the code that is being patched. For example, if you place a patch at
0100:0010 and the virtual machine hits the break point at 00FF:0000h (which is the same linear
address as 0100:0010), then an error will occur even though the VM executed a valid break point.

Entry EAX =CS:IP
EDX = Reference data (any DWORD)
ESI = Offset of procedure to call

Exit: If carry set then
Could not install break point
else
V86 break point successfully installed

Uses Flags

Callback EAX = Client CS:IP that faulted
EBX = Handle of current VM
EDX = Reference data
ESI = Linear address of break point (CS <<4 + IP)
EBP -> Client register structure

Remove_V86_Break_Point

Description This service is used to remove a V86 break point that was installed using the In-
stall_V86_Break_Point service. It will restore the original contents of the memory auto-
maucally

Entry EAX = CS:IP of break point to remove

Exit If carry set then

ERROR: Not a valid V86 break point
else

Previous value restored at break point SEG:O0FFSET

Uses Flags

April 1, 1990 Microsoft Confidential Beta Release

Chapter | Primary Scheduler Services

Each virtual machine is a separate task in the enhanced Windows environment. There are
several services that are used to control the scheduling of virtual machines.

Every VM has an execution priority. The VM with the highest execution priority is al-
lowed to run unless the VM is suspended or is blocked waiting for a critical section to be
freed. A VM’s execution priority can be raised or lowered using the Adjust_Execu-
tion_Priority service.

A VxD can force a particular virtual machine to run by boosting its execution priority.
However, VxD authors should take care when changing the priority of a VM since doing
so can radically effect the behavior of the Windows time-slicer.

To allow the mutual exclusion of non-reentrant code, the scheduler supports a single criti-
cal section. The current VM can claim the critical section at any time by calling
Begin_Critical_Section. If another VM owns the critical section, then the current VM will
block until the critical section is released. Once the critical section is claimed, the VM’s ex-
ecution priority is boosted. However, VMs with higher priorities will still be allowed to ex-
ecute. Normally, VMs are only boosted higher than the critical section priority when a
hardware interrupt is simulated.

A VM may be suspended if it is not in a critical section. However, the system VM can
never be suspended. A suspended VM will never be scheduled, regardless of its execution
priority, until it is resumed.

An important thing to keep in mind is that since the enhanced Windows environment is a
single-threaded operating system, you do not have to be concerned with a task switch from
within a procedure. For example, another VM will not be scheduled while in a virtual
device I/O trap handler. Task switches take place when a VxD makes an explicit call to the
scheduler (i.e., End_Critical_Section) or at event processing time. Notice that since
events are processed when Resume_Exec or Exec_Int are called, a task switch may occur
while performing nested VM execution. Also, touching or locking unlocked demand-
paged memory may cause a task-switch. In summary, the times when a task switch may
occur are as follows:

s Explicit calls to the scheduler
® Performing nested execution (Resume_Exec or Exec_Int)

® Touching or locking demand-paged memory

Beta Release Microsoft Confidential April 1, 1990

24-2 Virtual Device Adaptation Guide

The discussion of services providing support for the Primary Scheduler is presented in the
following order:

& Adjust_Exec_Priority

® Begin_Critical_Section

= Call When_Not_Critical

s Call When_Task_Switched
8 (Claim_Critical_Section

s End_Crit_And_Suspend

8 End_Critical_Section

® Get_Crit_Section_Status

& No_Fail Resume_VM

2 Nuke_VM

® Release_Critical Section

® Resume_VM

® Suspend_VM

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

Adjust_Exec_Priority

Description

April 1, 1990

This service is used to raise or lower the execution priority of the specified VM. Since the
non-suspended VM with the highest execution priority is always the current VM, this serv-
ice will cause a task switch under two circumstances:

1. The execution priority of the current VM is lowered (EAX is negative), and there is
another VM with a higher priority that is not suspended.

2. The execution priority of a non-suspended VM which is not the current VM is raised
(EAX is positive) higher than the current VM’s execution priority.

Note that even if the current VM is in a critical section, a task switch will still occur if the
priority of another non-suspended VM is raised higher than the current VM’s priority.
However, this will only happen when a VM is given a time-critical boost, for example, to
simulate a hardware interrupt. There are equates defined in VMML.INC that should be used
when adjusting a VM’s priority. They are listed below in order from lowest to highest.

Microsoft Confidential Beta Release

Primary Scheduler Services 24-3
]}

Entry

Exit

Uses

Equate Name Description
Reserved_Low_Boost Reserved for use by system.
Cur_Run_VM_Boost Time-slice scheduler boosts each VM in turn by this

value to force them to run for their alloted time-slice.

Low_Pri_Device_Boost Used by VxDs that need an event to be processed in a
timely fashion but that are not extremely time critical.

High Pri_Device_Boost Time critical operations that should not circumvent the
critical section boost should use this boost.

Critical_Section_Boost VM priority is boosted by this value when
Begin_Critical_Section is called.

Time_Critical_Boost Events that must be processed even when another VM is

in a critical section should use this boost. For example,
VPICD uses this when simulating hardware interrupts.

Reserved_High_Boost Reserved for use by system.

It is often more convienient to call Call_Priority_VM_Event than to call this service
directly.

EAX =+or- priority boost (signed long integer)
EBX = VM handle

None

Flags

Begin_Critical_Section

Description

Beta Release

Use of this service causes the current VM to enter a global critical section. Only one VM
can own the critical section at a time. If a VM calls this service while another VM owns
the critical section, then the current VM will block until the critical section is released.

The critical section is maintained as a count and so n calls to Begin_Critical_Section
must be followed by r calls to End_Critical_Section before the VM will leave the critical
section.

When the critical section is first claimed, the execution priority of the current VM is
boosted by the Critical_Section_Boost value defined in VMM.INC. This means that task
switches to other VMs will only occur for time-critical operations such as simulating hard-
ware interrupts.

Microsoft Confidential April 1, 1990

24-4 Virtual Device Adaptation Guide
S

Entry

Exit

Uses

Critical sections are used for code that must not be entered in more than one VM. For ex-
ample, while in DOS, the DOSMGR VxD places the VM in a critical section. If another
VM makes a DOS call, then it will block until the critical section owner’s DOS call
completes. However, this scenario is unlikely since a VM has an extremely high execution
priority while it owns the critical section, and, therefore, other VMs will not run until the
critical section is released. A scenario that would cause a VM to block is as follows:

VM X calls DOS to read a file.
VM X's priority by the Critical_Section_Boost.
The Virtual Keyboard Device simulates an interrupt to VM Y.
VM Y is sceduled since it has a higher execution priority
(simulated interrupts use the Time_Critical_Boost).
A T&SR program “"wakes up" on the keyboard interrupt and calls DOS.
The DOSMGR calls Begin_Critical_Section for VM Y.
VM Y blocks since another VM owns the critical section.
VM X is scheduled since it has the highest exectution priority.
The DOS read for VM X completes.
DOSMGR calls End_Critical_Section for VM X. This lowers
VM X's priority by the Critical_Section_Boost.
VM Y is un-blocked and scheduled since it has the highest priority.
VM Y continues execution at the instruction immediately after the
call to Begin_Critical_Section and executes the DOS call.

Sometimes it is preferable to boost the current VM by the Time_Critical_Boost value in-
stead of entering a critical section. This prevents the main thread of execution from run-
ning in all but the current VM but avoids blocking a VM when it is not really necessary.

None
None

Flags

Call_When_Not_Critical

Description

April 1, 1990

This service will call a VxD when the critical section is released. Notice that it will not ex-
ecute the callback until the current VM’s execution priority is less than the Critical_Sec-
tion_Boost even when the current VM is not in a critical section. This is done because
most VxDs that use this service will want to wait until the critical section is free and no
hardware interrupts are being simulated.

Normally it is more convenient to use the Call_Priority_VM_Event service than to call
this service directly.

Microsoft Confidential Beta Release

Primary Scheduler Services 24-5

Entry

Exit

Uses

Callback

ESI = Address of call-back procedure
EDX = Reference data to pass to callback procedure

None
Flags

EBX = Current VM handle
EDX = Reference data
EBP -> Client register structure

Procedure can corrupt EAX, EBX, ECX, EDX, ESI, EDI, and Flags

Call_When_Task_Switched

Description

Entry

Exit

Uses

Callback

This service provides a way to be informed each time a different VM is to be executed.
The specified procedure will be called every time a task switch occurs. Since this is a
frequent operation in most environments, this service should be used sparingly, and the
callback procedure should be optimized for speed.

VxDs must sometimes save the state of a hardware device every time a task switch occurs
and restore the hardware state for the VM that is about to be run. However, VM events can
often be used in place of using this service.

ESI =-Pointer to procedure to call at task switch time

None

Flags

EAX = Handle of VM switching away from (old Cur_VM Handle)

EBX = Current VM (just switched to)
Procedure can destroy EAX, EBX, ECX, EDX, ESI, EDI and Flags

Claim_Critical_Section

Description

Beta Release

This service will increment the critical section count by the specified value. It has the same
effect as calling Begin_Critical_Section repeatedly but is faster. Refer to the documenta-
tion for Begin_Critical_Section for more information on the various side effects of enter-
ing a critical section.

Microéoft Confidential April 1, 1950

24-6 Virtual Device Adaptation Guide

Entry

Exit

Uses

ECX =# of times to claim the critical section (0 is valid & ignored)

None

Flags

End_Crit_And_Suspend

Description

Entry

April 1, 1990

This service will release the critical section and immediately suspend the current VM. It is
used to block a VM until another event can be processed. This service is used by the Shell
VxD to display Windows dialog boxes using code similar to this:

Show_Dialog_Box:

VMMcall Get_Crit_Section_Status

jc Cant_Do_It!

VMMcall Begin_Critical_Section

mov eax, Low_Pri_Device_Boost
VMMcall Get_Sys_VM_Handle

mov ecx, 11b

mov edx, OFFSET32 (Dialog_Box_Data_Structure)
mov esi, OFFSET32 Show_Dialog_Event
VMMcall Call_Priority_VM_Event

VMMcall End_Crit_And_Suspend

jc Did_Not_Work!

; (When End_Crit_And_Suspend returns the dialog box
s will have been displayed)

Show_Dialog_Event:
(Call Windows to display the dialog box)
mov ebx, [Handle_Of_VM_That_Called_Show_Dialog_Box]
VMMcall Resume_VM
jc Error!
ret

The Show_Dialog_Box procedure enters a critical section to prevent the Call_Prior-
ity_VM_Event service from switching to the system VM immediately. It then calls
End_Crit_And_Suspend, which blocks the current VM. The Show_Dialog_Event pro-
cedure runs in the system (Windows) VM and actually displays the dialog box. When it is
finished, it resumes the VM that called Show_Dialog_Box.

This service must only be called when the critical section has been claimed once. That is
the reason for the initial test of the critical section state in the Show_Dialog_Box pro-
cedure in the sample code.

None

Microsoft Confidential Beta Release

Primary Scheduler Services 24-7

Exit

Uses

If carry set then
ERROR: Could not suspend VM or could not release critical
section (crit claim count != 1)

else
Call worked. VM execution restarted by another VM calling
"Resume_VM" .

Flags

End_Critical_Section

Description

Entry

Exit

Uses

This service is used to release the global critical section after a call to Begin_Critical_Sec-
tion has been issued. If the critical section ownership count is decremented to 0, then
ownership of the critical section is released. Since releasing the critical section lowers the
execution priority of the current VM, this service will cause a task switch if a non-sus-
pended VM has a higher priority.

None
None

Flags

Get_Crit_Section_Status

Description

Entry

Exit

Uses

Beta Release

This service returns the critical section claim count in ECX and the owner of the critical
section in EBX. If ECX is 0, then the current VM handle will be returned in EBX.

If this service returns with the Carry flag set, then the VM is in a time-critical operation
such as a hardware interrupt simulation. (It has an execution priority = Critical_Sec-
tion_Boost.)

None

EBX = VM handle of current owner (Current VM if ECX = ()
ECX = # of times critical section claimed
If carry set then VM is in a time-critical operation or critical section.

Flags

Microsoft Confidential ’ April 1, 1990

24-8 Virtual Device Adaptation Guide
L]

No_Fail_Resume_VM

NOTE The description for this service has been identified as out of date and the updated information
was unavailable for this release.

Nuke_VM

Description

Entry

Exit

Uses

This service is used to close a VM that has not yet terminated normally. It is usually called
by the Shell VxD to close VMs that the user has selected to terminate using the Window
Close option on the VM’s system menu.

Needless to say, this service should be used very cautiously.
EBX = Handle of VM to destroy

If entry EBX = Current VM handle then
This service will never return (same as Crash_Cur_VM)
else
If EBX = System VM handle then
This service will never return (fatal error—crash to D0S)
else
VM has been nuked

Flags

Release_Critical_Section

Description

Entry
Exit

Uses

April 1, 1990

This service will decrement the critical section count by the specified value. It has the
same effect as calling End_Critical_Section repeatedly but is faster.

ECX =# of times to release ownership of critical section (0 valid)
None

Flags

Microsoft Confidential Beta Release

Primary Scheduler Services 24-9

Resume_VM
Description

Entry

Exit

Uses

This service is used to resume the execution of a VM that was previously suspended by a
call to Suspend_VM. If the suspend count is decremented to 0, the VM will be placed on
the queue of ready processes. A task switch will occur to the resumed VM if it has a higher
priority than the current VM.

It is sometimes not possible to resume a VM. Normally, this is because a VxD is unable to
lock the VM’s memory handles. Every VxD is notified when a VM is resumed and can fail
the call. In this case, this service will return with Carry set, and the VM will remain sus-
pended with a suspend count of 1.

EBX = VM handle

If carry clear then

If suspend count decremented to @ then VM is runnable
else

Error could not resume (Suspend count remains 1)

Flags

Suspend_VM

Description

Entry

Beta Release

This service will suspend the execution of a specified Virtual Machine. Any VM, except
the system VM, that is not in a critical section can be suspended. This service will fail if
the specified VM is the critical section owner or the system VM. The system VM can
never be suspended.

This service maintains a count that is incremented each time a VM is suspended. There-
fore, if this service is called » times for a given VM, Resume_VM must be called » times
before the VM will be executed.

When a VM is being suspended for the first time (its suspend count is incremented from 0
to 1), all devices will receive a control call with EAX = VM_Suspend. Devices may not
refuse to suspend a VM. However, VxDs are allowed to fail the VM_Resume control call.
Subsequent calls to Suspend_VM will not result in a VM_Suspend control call until the
VM has been resumed.

When a VM is suspended, the CB_VM_Status field in the control block will have the
VMStat_Suspended bit set. When a VM is suspended, VxDs should not touch any
memory owned by that VM unless the VxD has previously locked the memory. You may,
however, examine or modify the contents of a suspended VM’s control block.

EBX = VM handle

Microsoft Confidential April 1, 1990

24-10 Virtual Device Adaptation Guide

Exit If carry flag clear then
VM suspended
else
Error: Could not suspend VM (VM is in a critical section or
is the system VM)

Uses Flags

April 1, 1990 Microsoft Confidential Beta Release

chapter Time-Slice Scheduler
Services

The enhanced Windows time-slice scheduler is the preemptive multitasking portion of the
scheduler. It relies on time-slice priorities and flags to determine how much CPU time
should be allocated to various virtual machines.

Every VM has a foreground (focus) and a background time-slice priority. These should be
distinguished from a VM’s Execution Priority. A VM with the largest Execution Priority
will run, preventing other VMs from executing. The VM with the largest time-slice prior-
ity will run more often than other VMs but it will not necessarily prevent other VMs from
executing.

There are three flags that affect the way the time-slicer schedules virtual machines:
VMStat_Exclusive, VMStat_Background, and VMStat_High_Pri_Background. These
flags are saved in the CB_VM_Status field of each VM’s control block. You may examine
these flags but you must never modify them directly. To change any of the flags, you must
call the Set_Time_Slice_Priority service.

If a VM that has the VMStat_Exclusive bit set is assigned the execution focus, then it will
become the only VM that is allowed to run. In this case, foreground and background priori-
ties are meaningless since the VM is using 100 percent of the CPU time. The Re-
lease_Time_Slice service has no effect on an exclusive virtual machine. High-priority
background VMs will not run when an exclusive VM has the execution focus.

If the VM with the focus is not exclusive, then any VM that has the VMStat_Background
flag set will be allowed to run based on their background time-slice priority. The VM with
the focus will be scheduled based on its foreground time-slice priority.

For this scheduler, a higher priority indicates that the VM should get more CPU time. The
larger the priority, the faster the VM will run.

The algorithm used to allocate time determines the percentage of CPU time each VM
should get based on their percentage of the total of all the time-slice priorities. For ex-
ample, assume the following VMs exist:

VM Foreground Background Flags
Priority Priority
1 100 50 Exclusive, Background
2 100 50 Background
3 50 25 (none — foreground, non-exclusive)
4 250 75 Background

Beta Release Microsoft Confidential April 1, 1990

25-2 Virtual Device Adaptation Guide

April 1, 1990

If the execution focus is set to VM 1, then it will use 100 percent of the CPU time since it
has the exclusive flag set. If the execution focus is set to VM 2, then VMs 1, 2, and 4 will
run.VM 3 would not be scheduled since it does not have the background flag set.

To determine how much time each VM should be allocated, the time-slicer first sums all
the VM priorities and, then, calculates the percentage of CPU time each VM should re-
ceive as follows:

VM 2 foreground pri = 180 / 225 * 108 = 45% of CPU
VM 1 background pri = 50 / 225 * 100 = 22% of CPU
VM 4 background pri = 75 / 225 * 160 = 33% of CPU

Total 225

Notice that a foreground priority of 10,000 (the maximum allowed) is special. Whena VM
with priority 10,000 is the execution focus VM, only high-priority background VMs will
run unless the focus VM explicitly releases its time slice. This is different from an exclu-
sive VM since other VMs can run if the focus gives up its time.

High-priority background VMs execute when a priority 10,000 VM has the focus even if
the focus VM is not releasing its time.

The discussion of services providing support for the Time-Slice Scheduler is presented in
the following order:

8 Adjust_Execution_Time

= Get_Execution_Focus

u Get_Time_Slice_Granularity

®m Get_Time_Slice_Priority

B Release_Time_Slice

s Set_Execution_Focus

m Set_Time_Slice_Granularity

® Set_Time_Slice_Priority

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

Microsoft Confidential Beta Release

Time-Slice Scheduler Services 25-3

Adjust_Execution_Time

Description

Entry

Exit

Uses

This service allows a device to change the amount of time a VM will be allowed to ex-
ecute regardless of the VM’s time-slice priority. Usually this service is used by devices
such as the Virtual COM Device to boost temporarily the priority of a VM that is receiving
lots of interrupts. This service can also be used to reduce the amount of time a VM will be
allowed to run by passing a negative value in EAX. However, this is likely to cause execu-
tion starvation and is discouraged.

The value specified in EAX is the number of additional (or fewer) milliseconds the VM
will be allowed to run. It has the same effect on all VMs regardless of their time-slice prior-
ity. This means that if a VxD calls this service with EAX = 1000, then the specified VM
will be allowed to run an additional second regardless of its time-slice priority.

Notice that if the specified VM is not on the time-slice execution list, then this service will
do nothing. It will not force a non-runnable VM to execute. In other words, a non-back-
ground VM cannot be forced to run in the background by boosting its execution time.

Be careful not to abuse this service! It can result in starvation for other processes.

EAX =+ or - milliseconds to adjust execution time by
EBX = VM handle

None

Flags

Get_Execution_Focus

Description

Entry

Exit

Uses

This service returns the handle of the VM that is the focus or foreground VM. This service
can be called from an interrupt handler.

None
EBX = Handle of VM with execution focus

EBX, Flags

Get_Time_Slice_Granularity

Description

Beta Release

This service retumns the current time-slice granularity in EAX. The value returned is the
minimum number of milliseconds a VM will be allowed to run before being rescheduled.

Microsoft Confidential , April 1, 1990

25-4 Virtual Device Adaptation Guide

Entry

Exit

Uses

None

EAX = Minimum time-slice size in milliseconds

EAX, Flags

Get_Time_Slice_Priority

Description

Entry

Exit

Uses

This service returns the time-slice execution flags, the foreground and background priori-
ties, and the percent of CPU usage for a specified VM. Notice that the percent of CPU
time returned indicates the amount of time the VM is allowed to run, but this number will
not reflect the actual amount of CPU time if any VM releases its time slice since other
VMs will be allowed to execute during that VM’s time slice.

EBX = VM handle

EAX =Flags (Appropriate flags from CB_VM_Status control block
field)

VMMStat_Exclusive
VMStat_Background
VMStat_High_Pri_Background

ECX = Foreground time-slice priority (high word 0)

EDX = Background time-slice priority (high word 0)

ESI = % of total CPU time used by VM

Flags

Release_Time_Slice

Description

Entry
Exit

Uses

April 1, 1990

This service causes the current VM to give up any time remaining in its current time slice
and allows the next VM in the time-slice queue to run. This service should be called when-
ever a VM is idle to allow other VMs to execute faster. If there is only one VM in the time-
slice queue, this service will do nothing.

None

None

Microsoft Confidential Beta Release

Time-Slice Scheduler Services 25-5

Set_Execution_Focus

Description

Entry

Exit

Uses

This service changes the time-slice exection focus to the specified virtual machine. The
VM with the focus executes with its foreground priority. If the VMStat_Exclusive flag is
set, then it will be the only VM scheduled. Otherwise, background VMs will be allowed to
run. All VMs except the focus VM, background VMs, and the system VM will be sus-
pended.

EBX = VM handle
None

Flags

Set_Time_Slice_Granularity

Description

Entry
Exit

Uses

This service is used to change the minimum amount of time the time-slice scheduler will
allocate to a VM. Smaller values will make multitasking appear smoother but will increase
overhead due to the large number of task switches required. Larger values will allow more
time for the VMs to execute but may make execution appear sporadic to the user.

EAX = Minimum time-slice size in milliseconds
None

Flags

Set_Time_Slice_Priority

Description

Beta Release

This service sets the time-slice execution flags (background, high-priority background, and
exclusive status flags) and the foreground and background priorities for a specified VM.

To change part of a VM'’s time-slice priority status, first call Get_Time_Slice_Priority,
then change only the values you are interested in and call this service. For example, to set
a VM into background mode, you would do the following:

mov ebx, [Handle_0f_VM_To_Change]
VMMcall Get_Time_Slice_Priority
or eax, VMStat_Background
VMMcall Set_Time_Slice_Priority

Microsoft Confidential April 1, 1990

25-6 Virtual Device Adaptation Guide

Entry EAX = Flags
VMStat_Exclusive
VMStat_Background
VMStat_High_Pri_Background
EBX = VM handle
ECX = Foreground priority (high word must be 0)
EDX = Background priority (high word must be 0)

Exit If carry set then
ERROR: Could not change priority / flags for VM
else
Priority and flags changed

Uses Flags

April 1, 1990 Microsoft Confidential Beta Release

Chapter | Fyent Services

Enhanced Windows is a single-threaded, non-reentrant operating environment. Because it
is non-reentrant, virtual devices that hook hardware interrupts must have some method of
synchronizing their calls to VMM. For this reason, enhanced Windows has the concept of
“event” processing.

When a VxD is entered due to an asynchronous interrupt, such as a hardware interrupt, the
device is limited to a very specific subset of functions. It is allowed to do only the follow-
ing:

s Call any Virtual PIC Device (VPICD) service

® Call any asynchronous VMM service (see individual services for details)

® Schedule events

Obviously, devices that service hardware interrupts will often need to use services other
than the ones listed above. When this is the case, the VxD will need to schedule an event.
When an event is scheduled, the caller defines a procedure to call when it is OK to make
any VMM call. When VMM calls this procedure, the VxD can finish processing the asyn-
chronous event.

VM events are often useful for devices that do not service hardware interrupts and can be
scheduled at any time except during a Non-Maskable Interrupt (NMI).

‘When an event service routine is called, it is entered with the following:

® EBX = Current VM handle
® EDX = Reference data passed when the routine was set up
= EBP -> Client register structure

The event callback procedure can modify EAX, EBX, ECX, EDX, ESI, and EDI.

The discussion of services providing support for events is presented in the following order:

= Call_Global_Event
s Call_Priority VM_Event
= Call_VM_Event

Beta Release Microsoft Confidential April 1, 1990

26-2 Virtual Device Adaptation Guide
. ___|]

® Cancel_Global_Event

8 Cancel_Priority_VM_Event
= Cancel_VM_Event

8 Schedule_Global_Event

® Schedule_VM_Event

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual\
Device Programming Topics,” for general environment discussions.

Call_Global_Event

Description

Entry

Exit

Uses

Callback

This procedure is a faster method of servicing asynchronous events. If the current thread of
execution begins in a virtual machine (it was not an interrupt from within the VMM), then
the event procedure will be called immediately. Otherwise, the event will be scheduled.

ESI = Offset of procedure to call
EDX = Reference data (will be passed back to procedure)

If ESI = @ then
Event procedure was called
else
ESI = Event handle (can be used to cancel events)

ESI, Flags

EBX = Current VM handle
EDX = Reference data
EBP -> Client register structure

Call_Priority_VM_Event

Description

April 1, 1990

This service combines the functionality of Call VM _Event,

Call When_VM_Ints_Enabled, Call When Not Critical, and Adjust_Exec_Priority
into one, easy to use service. As with all event services, this service can be called from an
interrupt handler.

Call_Priority_VM_Event is used by VxDs for several purposes. The most common uses
are as follows:

a1 To wait until a VM enables interrupts and the critical section is free so the VxD can call
DOS or some other non-reentrant code.

Microsoft Confidential Beta Release

Event Services 26-3

Example

Beta Release

m To boost a VM’s priority and wait until the VM enables interrupts to simulate an inter-
rupt type event. For example, the VNETBIOS uses this service for asynchronous net-
work request POST callbacks.

= To force an event to be processed in another VM by boosting the VM’s Execution Prior-
ity.

Assume a VxD implements a print spooler that will call a VM back when a buffer has been
sent to the printer. It could use this service to notify the appropriate VM that its buffer has
been printed as follows:

VxD_Code_SEG

BeginProc Print_Buff_Empty
mov eax, Low_pri_Device_boost
mov ebx, [Cali_Back_VM_Handle]
mov ecx, PEF_Wait_ForSTI or PEF_Wait_Not_Crit
mov edx, [Call_back_CS_IP]
mov esi, Buff_Empty_Call_Back_Event
VMMCal1l Call_Priority_VM_Event
ret

EndProc Print_Buff_Empty

BeginProc Buff_Empty_Call_Back_Event

VMMcall Begin_Next_Exec ;Get ready to call VM
mov ecx, edx

shr edx, 16 ;ECX = Segment to call
movzx edx, dx ;EDX = Offset to call
VMMcall Build_Int_Stack_Frame

VMMcall Resume_Exec ;call the VMM's

scallback ret
EndProc Buff_Empty_Call_Back_Event

VxD_CODE_ENDS

The Print_Buff_Empty procedure could be called from a hardware interrupt handler in
any virtual machine. It uses Call_Priority_VM_Event to force the correct VM to be
scheduled. The priority boost specified in EAX will force the event to be processed
quickly although not as fast as a hardware interrupt. The options specified in the ECX
register will force the event to be delayed until the critical section is free and the VM’s in-
terrupts are enabled. The reference data in EDX contains the CS:IP of the procedure to
call in the VM.

When Buff_Empty_Call_Back_Event is called it can make several assumptions: it is run-
ning in the desired VM, the critical section is not owned, and the VM has enabled inter-
rupts. It uses the CS:IP value passed in EDX to simulate a pseudo-interrupt in the VM.
The procedure called in the VM would have to execute an IRET to return from the call-
back. When Buff_Empty_Call_Back_Event returns, the execution priority boost is auto-
matically deducted.

THIS EXAMPLE IS INCOMPLETE! — An actual VxD handler would need to do
more work. It does not address several problems. For example
“Buff_Empty_Call_Back_Event” does not take into account whether the call should

Microsoft Confidential April 1, 1990

26-4 Virtual Device Adapiation Guide

be made to a V86 CS:IP or protected mode CS:IP. It also would not work for 32-bit
protected mode programs since it would need to pass a 32-bit offset (EIP) to Simu-
late_Far_Call.

Entry EAX = Priority boost (can be 0)
EBX = VM handle
ECX = Option flags (defined in VMM.INC)
PEF_Wait_For_STI - Event will not be called until
VM enables interrupts
PEF_Wait_Not_Crit - Event will not be called until
VM is not in a critical section
or time-critical operation.
PEF_Dont_Unboost - Priority of VM will not be reduced
after return from event procedure.
All other bits are reserved and must be 0.
EDX = Reference data (will be passed back to procedure)
ESI = Offset of procedure to call

Exit If ESI = @ then
Event procedure already called
else
Event procedure will be called later
ESI = Event handle (can cancel using Cancel_Priority_VM_fvent)

Uses Flags

Callback EBX = Current VM handle
EDX = Reference data
EBP -> Client register structure

Procedure can modify EAX, EBX, ECX, EDX, ESI, EDI, and Flags

Call_VM_Event

Description This procedure is a faster method of servicing asynchronous events. If the current thread of
execution begins in a virtual machine (it was not an interrupt from within the VMM) and
the event is for the current VM, then the event procedure will be called immediately. Other-
wise, the event will be scheduled.

Entry EBX = VM handle
ESI = Offset of procedure to call
EDX = Reference data (will be passed back to procedure)

April 1, 1990) Microsoft Confidential Beta Release

. Event Services 26-5
.]

Exit If ESI = @ then
Event procedure was called
else
ESI = Event handle (can be used to cancel events)

Uses Flags

Callback EBX = Current VM handle
EDX = Reference data
EBP -> Client register structure

Cancel_Global_Event

Description This service is used to cancel an event that was previously scheduled by
Schedule_Global_Event or Call_Global_Event. Notice that, once a scheduled event is
serviced, you must not attempt to cancel that event.

NOTE It is valid to pass ESI = 0 to this service (it will do nothing). This is provided so that code that
uses this service can use 0 to indicate no event scheduled and not have to perform a test every time it
wants to cancel an event. For example:

xor esi, esi
xchg esi, [My_Event_Handle]
VMMcall Cancel_Global_Event

will always work even if no event was scheduled. You will also need to set [My_Event_Handle] to 0 in

your event procedure.
Entry ESI = Event handle (0 is acceptable)
Exit Global event has been canceled
Uses Flags

Cancel_Priority_VM_Event

Description This service is used to cancel an event that was previously scheduled by Call_Prior-
ity_VM_Event. Notice that once a scheduled event is serviced, you must not attempt to
cancel that event.

Beta Release Microsoft Confidential April 1, 1990

26-6 Virtual Device Adaptation Guide
. ___}

Entry

Exit

Uses

NOTE 1t is valid to pass ESI = Oto this service (it will do nothing). This is provided so that code that
uses this service can use 0 to indicate no event scheduled and not have to perform a test every time it
wants to cancel an event. For example:

xor esi, esi
xchg esi, [My_Event_Handle]
VMMcall Cancel_VM_Event

will always work even if no event was scheduled. You will also need to set [My_Event_Handle] to 0 in
your event procedure.

Do not use this service to cancel events scheduled using the Call_VM_Event or
Schedule_VM_Event services. You must cancel normal VM events using the Can-
cel_VM_Event service.

ESI = Priority event handle (0 is valid)
Event canceled, ESI contains garbage

Flags, ESI

Cancel_VM_Event

Description

April 1, 1990

This service is used to cancel an event that was previously scheduled by
Schedule_VM_Event or Call_VM_Event. Notice that, once a scheduled event is serv-
iced, you must not attempt to cancel that event.

NOTE It is valid to pass ESI = 0 to this service (it will do nothing). This is provided so that code that
uses this service can use 0 to indicate no event scheduled and not have to perform a test every time it
wants to cancel an event. For example:

xor esi, esi
xchg esi, [My_Event_Handle]
VMMcall Cancel_VM_Event

will always work even if no event was scheduled. You will also need to set [My_Event_Handle] to 0 in
your event procedure.

Do not use this service to cancel events scheduled using the Call_Priority VM_Event
service. You must cancel priority events using the Cancel_Priority_ VM Event service.

Microsoft Confidential Beta Release

Event Services 26-7

Entry EBX = VM handle
ESI = Event handle (0 is acceptable)

Exit None

Uses Flags

Schedule_Global_Event

Description This procedure is used to schedule asynchronous events that are not VM specific. The
events will be processed immediately before the VMM IRETs to any VM.

Entry ESI = Offset of procedure to call
EDX = Reference data (will be passed back to procedure)
Exit ESI = Event handle (can be used to cancel event)
Uses ESI, Flags
Callback EBX = Current VM handle

EDX = Reference data
EBP -> Client register structure

Schedule_VM_Event

Description This procedure is used to schedule asynchronous events that are VM specific. The events
will be processed immediately before the VMM IRETs: to the specified VM.

VM events will only be executed in the VM for which they were scheduled for. Therefore,
if a VM event is scheduled for a VM other than the current virtual machine, it will not be
processed until a task switch occurs to that VM.

Entry EBX = VM handle
ESI = Offset of procedure to call
EDX = Reference data (will be passed back to procedure)

Exit ESI = Event handle (can be used to cancel event)

Uses ESI, Flags

Beta Release Microsoft Confidential April 1, 1990

26-8 Virtual Device Adaptation Guide

Callback EBX = Current VM handle (VM event was scheduled for)
EDX = Reference data
EBP -> Client register structure

April 1, 1990 Microsoft Confidential Beta Release

Chapter | Timing Services

Timing services are provided for use by VxDs that need to perform periodic operations or
need to establish the amount of time elapsed since a particular event. They are described
here in the following order:

= Cancel_Time_Out

m Get_Last_Updated_System_Time

8 Get_Last_Updated_VM_Exec_Time

8 Get_System_Time

& Get_VM_Exec_Time

m Set_Global_Time_Out

® Set_VM_Time_Out

s Update_System_Clock

See Chapter 16, “Overview of Windows in Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

Cancel_Time_0Out

Description This service is used to cancel a time-out that was scheduled through either
Set_VM_Time_Out or Set_Global_Time_Out.

NOTE 1t is valid to pass ESI = 0 to this service (it will do nothing). This is provided so that code that
uses this service can use 0 to indicate no time-out scheduled and not have to perform a test every time
it wants to cancel a time-out. For example:

xor esi, esi
xchg esi, [Local_Time_Out_Handle]
call Cancel_Time_Qut

will always work even if no time-out was scheduled.

Entry ESI = Time-out handle to cancel OR 0 if no time-out to be canceled

Beta Release Microsoft Confidential April 1, 1990

27-2 Virtual Device Adaptation Guide

Exit Time-out is canceled, old time-out handle now invalid

Uses Flags

Get_Last_Updated_System_Time

NOTE The description for this service has been identified as out of date and the updated information
was unavailable for this release.

Get_Last_Updated_VM_Exec_Time

NOTE The description for this service has been identified as out of date and the updated information
was unavailable for this release.

Get_System_Time

Description This service will return the time in milliseconds since the enhanced Windows environment
was started. There is no way to detect rollover of the clock through this function but the
clock will take 49.5 days to roll over.

If you are concerned about rollover, you should schedule a time-out every 30 days.

Entry None
Exit EAX = Elapsed time in milliseconds since enhanced Windows was started
Uses EAX, Flags

Get_VM_Exec_Time

Description This service returns the amount of time that a particular VM has executed. Every VM
starts with an Exec_Time of 0 when it is created, and the Exec_Time is only increased
when the VM is actually executed. Therefore, the value returned does not reflect the length
of time the VM has existed. Instead, it indicates the amount of time that task has actually
been the currently running VM.

April 1, 1990 Microsoft Confidential Beta Release

Timing Services 27-3

Entry None
Exit EAX = Amount of time in milliseconds that VM has executed
Uses EAX, Flags

Set_Global_Time_Out
Description Schedules a time-out that will occur after EAX milliseconds have elapsed.

The callback procedure will be called with ECX equal to the number of milliseconds that
have elapsed since the actual time-out occurred. Time-outs are often delayed by 10 milli-
seconds or more since the normal system timer runs at 20 milliseconds or slower. If you
need more accurate time-outs, then you must increase the timer interrupt frequency. See
the VTD documentation for more details on setting the timer interrupt period.

Entry EAX = Number of milliseconds to wait until time-out
EDX = Reference data to return to procedure
ESI = Address of procedure to call when time-out occurs

Exit If time-out was NOT scheduled then
ESI = @ (This is useful since @ = NO TIME-QOUT SCHEDULED)
else

ESI = Time-out handle (used to cancel time-out)
Uses ESI, Flags

Callback EBX = Current VM handle
ECX = Number of EXTRA milliseconds that have elapsed
EDX = Reference data
EBP -> Client register structure
Procedure may corrupt EAX, EBX, ECX, EDX, ESI, EDI, and Flags

Set_VM_Time_Out

Description Schedules a time-out that will occur after a VM has executed for the specified length of
time. Notice that the time-out will occur after the VM has run for EAX milliseconds.
Therefore, if there is more that one VM executing, it may take more than EAX millisec-
onds to occur.

The callback procedure will be called with ECX equal to the number of milliseconds that
have elapsed since the actual time-out occurred. Time-outs are often delayed by 10 milli-
seconds or more since the normal system timer runs at 20 milliseconds or slower. If you

Beta Release Microsoft Confidential April 1, 1990

27-4 Virtual Device Adaptation Guide
e ——

Entry

Exit

Usss

Callback

need more accurate time-outs, then you must increase the timer interrupt frequency. See
the VTD documentation for more details on setting the timer interrupt period.

EAX = Number of milliseconds to wait until time-out
EBX = VM handle

EDX = Reference data to return to procedure
ESI = Address of procedure to call when time-ot

nocure
ULy

UV WU vaas uluv‘uﬂ{ wio

If time-out was NOT scheduled then

ESI = @ (This is useful since @ = NO TIME-OUT SCHEDULED)
else

ESI = Time-out handle (used to cancel time-out)

ESI, Flags

EBX = Current VM handle (VM time-out was scheduled for)

ECX = Number of EXTRA milliseconds that have elapsed

EDX = Reference data

EBP -> Client register structure

Procedure may corrupt EAX, EBX, ECX, EDX, ESI, EDI, and Flags.

Update_System_Clock

Description

Entry

Uses

April 1, 1990

This service must be called only by the Virtual Timer Device. If more than one device calls
this service, then the VMM timing services will not behave correctly. The timer calls this
procedure to update the current system time and the current VM’s execution time. The
value passed in ECX is the number of milliseconds that have elapsed since the last call to
this service. In other words, if the current system time is n, then, after a call to Up-
date_System_Clock, the current system time would be n+ECX.

This service assumes interrupts are disabled!

ECX = Elapsed time in milliseconds

Flags

Microsoft Confidential Beta Release

Chaﬂfef Processor Fault and
Interrupt Services

The discussion of services providing general support for processor faults and interrupts are
presented in the following order:

8 Get_Fault Hook_Addrs -
® Get NMI_Handler_Addr
8 Hook_NMI_Event

= Hook_V86_Page

m Set NMI_Handler_Addr

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

Get_Fault_Hook_Addrs

Description Returns the address of the V86 mode, PM application, and VMM reenter fault handlers for
a specified fault. If the fault does not have a handler, then this procedure will return 0. You
cannot get the hook address for interrupt 2 (NMI). You must use the Get/Set NMI_Han-
dler_Addr services to hook interrupt 2.

Entry EAX = Interrupt number
Exit If carry clear then
EDX = Address of V86 Mode App fault handler (@ if none installed)
ESI = Address of Prot Mode App fault handler (8 if none installed)
EDI = Address of VMM Re-enter fault handler (8 if none installed)
else

ERROR: Invalid fault number

Uses Flags

Beta Release Microsoft Confidential April 1, 1990

28-2 Virtual Device Adgaptation Guide

Get_NMI_Handler_Addr

Description

Entry

Exit

April 1, 1990

If a VxD needs to hook the Non-Maskable Interrupt (NMI), it must first call this service to
get the current NMI handler address, save the address so the current handler can be
chained to it, and then set the new address.

Notice that your NMI interrupt handler can only touch local data in the device’s
VxD_LOCKED_DATA_SEG. It cannot touch memory in a VM handle, V86 memory, or
any other memory. It aiso cannot caii any services, inciuding services that can be calied
during normal hardware interrupts. Because an NMI can occur at any time, it is difficult to
do much of anything during interrupt time that is guaranteed not to reenter a non-reentrant
procedure or affect a data structure.

Most NMI handlers will want to have an NMI event handler. This handler is similar to a
normal event handler except that you only need to hook the NMI event chain once instead
of scheduling an event every time. Every NMI event handler will be called every time an
NMI occurs. Thus, most NMI interrupt routines simply detect that the NMI is for them and
set a variable that their NMI event handler uses to perform some function. For example:

Initialization:
VMMcall Get_NMI_Handler_Addr
mov [NMI_Chain_Addr], esi

mov esi, OFFSET32 My_NMI_Handler
VMMcall Set_NMI_Handler_Addr
mov esi, OFFSET32 My_NMI_Event
VMMcall Hook_NMI_Event

clc

ret

My_NMI_Handler:
in al, My_Stat_Port
test al, My_Int_Mask
Jz SHORT MNH_Exit
inc [NMI_From_Me]
MNH_Chain:
jmp [NMI_Chain_Addr]

My_NMI_Event:
xor al, al
xchg al, [NMI_From_Me]
test al, al
jz SHORT NME_Exit
(Do something here — NMI from my device)
MNE_Exit:
ret

None

ESI = Offset of current NMI handler

Microsoft Confidential Beta Release

Processor Fault and Interrupt Services 28-3

Uses

ESI, Flags

Hook_NMI_Event

Description

Entry

Exit

Uses

Callback

See the documentation mentioned earlier in this chapter on Get_NMI_Handler_Addr for
information on this service.

ESI = Address of NMI event procedure
None

Flags

EBX = Current VM handle

EBP -> Client register structure
Procedure may corrupt EAX, EBX, ECX, EDX

Hook_V86_Fault, Hook_PM_Fault, Hook_VMM_Fault

Description

Beta Release

These services replace the fault handler procedure address with the procedure supplied.
They will return the old fault handler’s address or O to indicate that there was no previous
fault handler. If the value returned in ESI is non-zero, then you may chain to the next han-
dler with ALL REGISTERS PRESERVED. Your handler can “eat” a fault without chain-
ing by executing a near return (not an iret) and can modify EAX, EBX, ECX, EDX, ESI,
and EDL

If you hook a fault during the Sys_Critical_Init phase of device initialization, your fault
handler will be “behind” any VMM fault handler. If the VMM cannot properly handle a
fault (for example, a General Protection fault), then it will chain to the next handler. By
hooking GP faults during Sys_Critical_Init your VxD can intercept any GP fault that
would otherwise crash the current VM. Any hooks installed after Sys_ Critical_Init will be
placed “in front of” the default VMM fault handlers. This allows devices to examine faults
before they are processed by the VMM.

Note that the processor Non-Maskable Interrupt (NMI) must be hooked using the
Get/Set_NMI_Addr services (do not call Hook_xxx_Fault with EAX = 2). Also, hard-
ware interrupts should be hooked using the Virtual Programmable Interrupt Controller
Device (VPICD). A VxD should NOT attempt to circumvent the VPICD using these serv-
ices.

For version 3.0 of enhanced Windows, the largest interrupt number available is 4FH. Inter-
rupts 00H-1FH are reserved by Intel for processor faults. Interrupts 20H-2FH are reserved

Microsoft Confidential April 1, 1990

28-4 Virtual Device Adqaptation Guide

Entry

Exit

Uses

Callback

by enhanced Windows. Interrupts SOH-SFH are used by the VPICD. Interrupts 40H and
41H are used by the debugger. Interrupts 42H-4FH are free for use by VxDs.

EAX = Interrupt number
ESI = Procedure offset

ERROR: Invalid fault number in EAX
ESI, Flags

Interrupts disabled

EBX = Current VM handle

If fault from V86 or PM app then
EBP -> Client_Register_Strucuture

else
VMM reentered — Only asynchronous services may be called.
EBP -> VMM re-entrant fault stack frame

If your handler chains, then it must preserve all registers (even registers not documented as
entry conditions to this callback).

Hook_V86_Page

Description

April 1, 1990

This service allows VxDs to intercept page faults in portions of the V86 address space of
every virtual machine. It is used by devices such as the Virtual Display Device to detect
when particular address ranges are accessed.

You must specify a page number and address of a callback routine to this service. If it is in-
stalled successfully, your hook will be called every time a page fault occurs in any VM on
that page. See the memory manager _Modify _Pages documentation in Chapter 19,
“Memory Management Services,” for making hooked pages not present and for registering
the ownership of pages.

The callback routine is responsible for mapping memory at the location of the page fault or
crashing the VM. In unusual circumstances, it may be appropriate to map a NULL page at
the faulting address page. See the memory manager documentation for details on mapping
memory and mapping NULL pages.

Microsoft Confidential Beta Release

Processor Fault and Interrupt Services 28-5

Entry

Exit

Uses

Callback

NOTE Do not rely on the contents of the CR2 (page fault) register. Use the value passed to your call-
back in EAX.

EAX = Page number (AOh - FFh)
ESI = Address of trap routine

If carry flag set then

ERROR: Invalid page number or page already hooked
else

Page hooked

Flags

EAX = Faulting page number
EBX = Current VM handle
EBP does NOT point to the client register structure.

Procedure may corrupt EAX, EBX, ECX, EDX, ESI, EDI, and Flags

Set_NMI_Handler_Addr

Descriplian

Entry
Exit

Uses

Beta Release

See the documentation mentioned earlier in this chapter on Get_NMI_Handler_Addr for
information on this service.

ESI = Offset of new NMI handler
None

Flags

Microsoft Confidential April 1, 1990

28-6 Virtual Device Adgaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Chapter | Information Services

These services return the requested information without instigating any other action.

They provide information on the following:

% VM handles

u The VMM reenter count

= HMA XMS

= Installation status of the debugger

They are described here in the following order:

= Get_Cur_VM_Handle

= Get_Next_VM_Handle

= Get_Sys VM_Handle

® Get_VMM_Reenter_Count
= Get_VMM_Version

8 GetSet_ HMA_Info

® Test_Cur_VM_Handle

u Test_Debug_Installed

® Test_Sys_VM_Handle

= Validate_ VM_Handle

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

Beta Release Microsoft Confidential April 1, 1990

29-2 Virtual Device Adaptation Guide

Get_Cur_VM_Handle

Description Th_is service retums the handle to the currently running VM. It is valid to call this service
at interrupt time.

Entry None

Exit EBX = Current VM handle

Uses EBX, Flags

Get_Next_VM_Handle

Description VMM maintains a list of all valid VM handles. This service provides a means of scanning
the list easily. Normally, code that uses this service looks something like this:

VMMcall Get_Cur_VM_Handle
Scan_Loop:

(Do something to VM state)

VMMcall Get_Next_VM_Handle
VMMcall Test_Cur_VM_Handle
jne Scan_Loop

This allows the state of every VM to be modified. However, there are also other uses for
this service. There is no guaranteed ordering of the list other than the fact that each VM
will appear in the list only once. Notice also that the list is circular so you will need to test
for the end case (Next VM = First VM). It is valid to call this service at interrupt time.

Entry EBX = VM handle
Exit EBX = Next VM handle in VM list
Uses EBX, Flags

Get_Sys_VM_Handle
Description This service returns the System VM handle. It is valid to call this service at interrupt time.

Entry None

April 1, 1990 Microsoft Confidential Beta Release

Information Services 29-3

Exit

Uses

EBX = System VM handle

EBX, Flags

Get_VMM_Reenter_Count

Description

Entry

Exit

Uses

This service is used to determine if the VMM has been reentered from an interrupt. The
normal situation for reentering VMM is from a hardware interrupt, page fault, or other pro-
cessor exception. Since most VMM services are non-reentrant, this test should be used to
determine if other VMM services can be called or if a global event should be scheduled.
Notice that the Call_Global_Event service tests this condition automatically and will
schedule an event if VMM has been reentered.

None

ECX =0 indicates VMM has NOT been re-entered. If != 0 then
ECX = # of times re-entered

Flags

Get_VMM_Version

Description

Entry

Exit

Uses

This service returns the Windows/386 VMM version.
None

AH = Major version number (3)
AL = Minor version number (0)
Carry flag clear

EAX , Flags

GetSet_HMA_Info

Description

Beta Release

This service retumns and sets information related to the HMA XMS region.

This service is intended to assist the XMS driver that is part of the VS6MMGR device. It
allows the protected-mode XMS code to find out if there was a global HMA user in before
Windows/386 was started and allows access to the Enable count variable (Get and Set).
This service is always valid (i.e., not restricted to initialization).

Microsoft Confidential April 1, 1990

29-4 Virtual Device Adaptation Guide
L]

Entry

Exit

Uses

ECX = 0Get

ECX !=0 Set
DX = A20 enable count to set for Win386 loader
NOTE THAT THE GLOBAL HMA FLAG CANNOT BE SET. It is not
appropriate or valid to set this.

If Get
EAX == 0 if WIN386 DID NOT allocate the HMA (GLOBAL HMA User)
EAX !=0 if WIN386 allocated the HMA (NO GLOBAL HMA User)
EDX = A20 enable count before Win386 came in

If Set

EAX, EDX, Flags

Test_Cur_VM_Handle

Description

Entry

Exit

Uses

This routine tests to see if the given VM handle is the handle of the currently running VM.
It is valid to call this service at interrupt time.

EBX = VM handle to test

Zero flag is set if VM handle passed in
is currently running VM’s handle. (je Is_Cur_VM)

Flags

Test_Debug_Installed

Description

Entry
Exit

Uses

April 1, 1990

Tests internal flag that indicates whether a debugger exists or not. It is valid to call this
service at interrupt time.

None
Zero flag = Debugger NOT installed (i.e., jz No_Debug_Installed)

Flags

Microsoft Confidential Beta Release

Information Services 29-5

Test_Sys_VM_Handle

Description This routine tests to see if the given VM handle is the handle of the system VM. It is valid
to call this service at interrupt time.

Entry EBX = VM handle to test
Exit Zero flag is set if VM handle passed in is system VM’s handle. (je Is_Sys_VM)
Uses Flags

Validate_VM_Handle

Description This service is used to test the validity of a VM handle. This service can be called at inter-
rupt time.
Entry EBX = VM handle to test
Exit If carry flag set then
ERROR:VM handle is invalid
else

Value in EBX is a valid VM handle

Uses Flags

Beta Release Microsoft Confidential April 1, 1990

29-6 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Chapter

Beta Release

Initialization Information

Services

These services provide access to the SYSTEM.INI file and the environment variables. Con-
figurable VxDs will use these services to get their configuration parameters. They are de-

scribed here in the following order:

Convert_Boolean_String
Convert_Decimal_String

Convert_Fixed_Point_String

Convert_Hex_String
Get_Config_Directory
Get_Environment_String
Get_Exec_Path
Get_Machine_Info
Get_Next_Profile_String
Get_Profile_Boolean
Get_Profile_Decimal_Int
Get_Profile_Fixed_Point
Get_Profile_Hex_Int
Get_Profile_String
Get_PSP_Segment

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual

Device Programming Topics,” for general environment discussions.

Microsoft Confidential

April 1, 1990

30-2 Virtual Device Adaptation Guide

Convert_Boolean_String (Initialization only)

Description This service attempts to determine if the string pointed to by EDX is TRUE or FALSE.
There are many valid values for TRUE and FALSE. A short list of valid values for TRUE
are:

True, Yes, On, 1

Tne Falon ¢hac 3maliada.
rOr 1a1S¢ icy inciiiac:

False, No, Off, 0
This list may grow to include other words such as *““oui” and “ja.”
This service is only valid during initialization.
Entry EDX = Pointer to ASCIIZ string to convert to boolean

Exit If carry clear then
EAX = @ if FALSE, -1 if TRUE, zero flag NOT set
else
String was not a valid boolean (EAX not changed)

Uses Flags, EAX

Convert_Decimal_String (Initialization only)

Description This service converts a string that contains a decimal value and returns the value in EAX.
It also returns a pointer to the character that terminated the decimal integer value. This is
useful for parsing entries such as:

FOO0=100,300

since the 100 would be returned with EDX pointing to the “,”. The pointer could be incre-
mented one byte and, then, this service called again to evaluate the second number.

Notice that a NULL string or a string that does not contain a valid decimal integer will re-
turn 0 and EDX will not be advanced since the first character of the string terminated the
analysis. This service is only valid during initialization.

Entry EDX = Pointer to ASCIIZ string to convert to integer

Exit EAX = Value of decimal string
EDX = Pointer to terminating character (non-valid decimal char)

Uses EAX, EDX, Flags

April 1, 1990 Microsoft Confidential Beta Release

Initialization Information Services 30-3.
..}

Convert_Fixed_Point_String (Initialization only)

Description This service returns the value of a fixed point decimal number string pointed to by EDX.
Use Get_Profile_String to initialize EDX to point to the string to be parsed. Fixed Point
is zero or more decimal digits followed by a terminator or a decimal point followed by
zero or more decimal digits. The value reurned is ECX*10*<value of string>. Note that
decimal digits beyond the accuracy specified by ECX are ignored in the value returned in
EAX, but EDX points to the byte following the last valid ASCII decimal digit. Values that
begin with a minus will evaluate to negative numbers. Positive values may optionally
begin with a plus sign.

This service is only valid during initialization.

Entry ECX = Number of decimal places
EDX = Pointer to ASCIIZ string to convert to integer

Exit EAX = Value of fixed point string
EDX = Pointer to terminating character (non-valid character)

Uses EAX, EDX, Flags

Convert_Hex_String (Initialization only)

Description This service converts the string pointed to by EDX to Hexadecimal. Hexadecimal is zero
or more hexadecimal digits (0-9, A-F) followed by a terminating character or a small or
capital letter “h”. The “h” has no effect on the value. EDX is left pointing to the next byte
after the “h” or, if the “h” is not present, after the last valid hexadecimal digit. Use
Get_Profile_String to set up EDX to point to the string to be parsed. This service is only

valid during initialization.
Entry EDX -> ASCIIZ string to convert to integer
Exit EAX = Value of hexadecimal string

EDX advanced to terminating character (non-valid hex char)

Uses Flags

Get_Config_Directory (Initialization only)

Description This service returns a pointer to the directory that contains the configuration files for the
enhanced Windows environment (such as SYSTEM.INI). The string returned is guaranteed

Beta Release Microsoft Confidential April 1, 1990

30-4 Virtual Device Adaptation Guide

to be a valid, fully qualified pathname that ends with a terminating ‘\” followed by a

NULL (0) byte.
Entry None
Exit EDX = Pointer to ASCIIZ directory name
Uses EDX, Flags

Get_Environment_String (Initialization only)

Description This service takes a pointer to an ASCIIZ string that is the name of an environment varia-
ble and returns a pointer to an ASCIIZ string that is the value of that environment variable.
Environment variables are set using the DOS SET command and should be of the format
“SET <variable name>=<variable value>" with no intervening spaces between the varia-
ble name, the equal sign, and the variable value. Environment strings are an alternative
way of setting parameters for virtual device drivers. In general, these should be used spar-
ingly, as the environment is of limited size. Use environment strings only when the value
is a global entity, used by more than one program or device driver. This service is only

valid during initialization,
Entry ESI = pointer to ASCIIZ string environment variable name
Exit If carry is set then
Environment string was not found
else

EDX = pointer to ASCIIZ string value of environment variable

Uses EDX, Flags

Get_Exec_Path (Initialization only)

Description This service returns a pointer to an ASCIIZ string that gives the full path by which
WIN386.EXE was executed. It is used to locate files associated with the enhanced
Windows environment or the virtual device drivers that are not in subdirectories indicated
by the PATH environment variable. This service is only valid during initialization.

Entry None

April 1, 1990 Microsoft Confidential Beta Release

Initialization Information Services 30-5

Exit EDX = Pointer to ASCIZ string of full path name + program name (program name is
“WIN386.EXE")
ECX = Number of characters in string up to and including the last “\”

Get_Machine_Info (Initialization only)

Description This service returns information about the computer system running enhanced Windows.
Entry None
Exit AH =DOS Major Version

AL = DOS Minor Version

BH =DOS OEM serial number

BL = Machine Model Byte (at FOO0:FFFE in system ROM)

HIGH 16 bits of EBX are other flags
GMIF_80486 EQU 10000h 80486 processor
GMIF_PCXT EQU 20000h PCXT accelerator
GMIF_MCA EQU 40000h Micro Channel
GMIF_EISA EQU 80000h EISA

EDX = Equipment flags (as returned from Int 11h)

ECX =0 if not PS/2 or extended BIOS, else ECX contains a
ring O linear address to System Configuration Parameters
returned from BIOS service Int 15h, AH=COh. See the PS/2
BIOS documentation for details on this structure.

Uses EAX, EBX, ECX, EDX, Flags

Get_Next_Profile_String (Initialization only)

Description This service, given a pointer to a profile string, will return a pointer to the next profile
string with the key name provided. It is used by devices that have multiple entries with the
same key name. First, use Get_Profile_String to get the first entry with a given key name
and, then, use this service to get subsequent entries. Do not modify the string returned.
This service is only valid during initialization.

Entry EDX = Pointer returned from previous Get_(Next)_Profile_String
EDI = Pointer to key name string

Exit If carry clear then
EDX = NEXT string from SYSTEM.INI
else
No more matching entries found

Beta Release Microsoft Confidential April 1, 1990

30-6 Virtual Device Adaptation Guide
-]

Uses

EDX, Flags

Get_Profile_Boolean (Initialization only)

Description

Entry

Exit

Uses

This service returns the value of a Boolean profile entry from the SYSTEM.INI file in
EAX. If the profile string is not found, then EAX will not be modified. Profile entries are
of the form:

[SectionName]
KeyName=<value>

That is, Section Name is delineated by square brackets and KeyName is followed by an
equal sign. Neither name should have any spaces or nonprintable characters. The value fol-
lowing the equal sign can be in a number of formats. Boolean is “Yes,” “No,” “Y,” “N,”
“True,” “False,” “On,” “Off,” “1,” or “0”(foreign versions of Windows may add other lan-
guage equivalents to the above). Logical TRUE returns -1 and logical FALSE returns 0.

This service is only valid during initialization.

EAX = Default value
ESI = Pointer to section name string or 0 for [386enh]
EDI = Pointer to key name string

If carry set
Entry not found or invalid boolean value
EAX = Default value
else
If value string was null,
zero flag is set and
EAX = Default value
else

EAX = @ if FALSE, -1 if TRUE SYSTEM.INI entry value

Flags

Get_Profile_Decimal_Int (Initialization only)

Description

April 1, 1990

This service returns the value of a decimal profile entry from the SYSTEM.INI file in
EAX. If the profile string is not found, then EAX will not be modified. Profile entries are
of the form:

[SectionName]
KeyName=<value>

That is, SectionName is delineated by square brackets and KeyName is followed by an
equal sign. Neither name should have any spaces or non-printable characters. The value

Microsoft Confidential Beta Release

Initialization Information Services 30-7

Entry

Exit

Uses

following the equal sign must be a decimal value. It can begin optionally with a plus (+) or
minus (-) and must contain all decimal digits with no embedded spaces or decimal points.

This service is only valid during initialization.

EAX = Default value (optional)
ESI = Pointer to section name string or 0 for [386enh]
EDI = Pointer to key name string

If carry is set

Entry was NOT found

EAX = Default value (value passed to this procedure)
else

If value string was null, zero flag is set and

EAX = Default value
else
EAX = Value of SYSTEM.INI entry

Flags

Get_Profile_Fixed_Point (Initialization only)

. Description

Entry

Exit

Beta Release

This service returns the value of a fixed point decimal number profile entry from the SYS-
TEM.INI file in EAX. If the profile string is not found, then EAX will not be modified.
Profile entries are of the form:

[SectionName]
KeyName=<value>

That is, SectionName is delineated by square brackets and KeyName is followed by an
equal sign. Neither name should have any spaces or nonprintable characters. The value fol-
lowing the equal sign can be in a number of formats. Fixed Point values may begin with an
optional plus (+) or minus (-) followed by zero or more decimal digits followed by a termi-
nating character or by a decimal point followed by zero or more decimal digits. The value
returned is 100 ECX*<value of string>.

This service is only valid during initialization.

EAX = Default value

ECX = Number of decimal places

ESI = Pointer to section name string or 0 for [386enh]
EDI = Pointer to key name string

If carry is set
Entry was NOT found
EAX = Default value (value passed to this procedure)

Microsoft Confidential April 1, 1990

30-8 Virtual Device Adaplation Guide

else
If value string was null, zero flag is set and
EAX = Default value

else
EAX = Value of SYSTEM.INI entry

Get_Profile_Hex_Int (Initialization only)

Description This service returns the value of a hexadecimal number profile entry from the SYS-
TEMLINI file in EAX. If the profile string is not found, then EAX will not be modified.
Profile entries are of the form:

[SectionName]
KeyName=<value>

That is, SectionName is delineated by square brackets and KeyName is followed by an
equal sign. Neither name should have any spaces or nonprintable characters. The value fol-
lowing the equal sign can be in a number of formats. Hexadecimal is zero or more hex-
adecimal digits (0-9, A-F) followed by a terminating character or a small or capital letter
“h.” The “h” has no effect on the value. If the value following the equal sign is not a valid
hexadecimal number, EAX is unchanged.

This service is only valid during initialization.

Entry EAX = Default value (optional)
ESI = Pointer to section name string or 0 for [386enh]
EDI = Pointer to key name string

Exit - If carry is set
Entry was NOT found
EAX = Default value (value passed to this procedure)
else
If value string was null

zero flag is set
EAX = Default value

else
EAX = Value of SYSTEM.INI entry

Uses Flags

Get_Profile_String (Initialization only)

Description This service searches the initialization file for a specified entry and returns a pointer to a
string. Do not modify the string in place. The pointer returned points into the initialization
file data area. If you need to modify the string, you must first copy it and, then, modify it.
This service is only valid during initialization.

April 1, 1990 Microsoft Confidential Beta Release

Initialization Information Services 30-9

Entry

Exit

Uses

EDX = Pointer to default string (optional)
ESI = Pointer to program name string or O for [386enh]
EDI = Pointer to key name string

If carry clear

EDX = Pointer to ASCIIZ string from SYSTEM.INI
else

EDX is unchanged

Flags, may change EDX

Get_PSP_Segment (Initialization only)

Description

Entry

Exit

Uses

Beta Release

This service returns the segment of the WIN386.EXE PSP. Use it to locate PSP values
other than the EXEC path and environment variables since separate services are available
for retrieving those ASCIIZ strings. Notice that a segment value is returned. To convert the
segment to an address, shift the value left by 4 bits. This service is only valid during
initialization.

None
EAX = Segment of WIN386.EXE PSP (high word always = 0)

EAX, Flags

Microsoft Confidential April 1, 1990

30-10 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Chapter

Linked List Services

These services provide a convenient set of routines for managing a linked-list data struc-
ture. They are described here in the following order:

List_Allocate
List_Attach
List_Attach_Tail
List_Create
List_Deallocate
List_Destroy
List_Get_First
List_Get_Next
List_Insert
List_Remove

List_Remove_First

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

List_Allocate

Description

This service allocates a new node for the list specified by ESI. The contents of the node

are undefined (probably nonzero). Normally, a node is immediately attached to the list
through the List_Attach or List_Insert services after it has been allocated.

Entry

Exit

Beta Release

ESI = List handle

If 1ist was created with LF_Alloc_Error flag then

If carry clear then
EAX -> New node
else
Error:Could not allocate node

Microsoft Confidential April 1, 1990

31-2 Virtual Device Adaptation Guide

else
EAX -> New node
(Current VM crashed if node can not be allocated — Service
never returns to caller)

Uses EAX, Flags

List_Attach

Description This service attaches a list node to the head (i.e., front) of a list. Notice that EAX must
point to a node that was allocated using List_Allocate.

Nodes can be attached to any list that has the same size node. This can be used, for ex-
ample, to move a node from one list to another.

Example Assume we have the following list:
X[+ Tet—+[z]°]

List_Attach with EAX ——[Q[|

Produces the following list:

[eTet—[xTet——+[YTo+—+[z]7]

Figure 31.1 SERV_05.EPS

Entry ESI = List handle
EAX -> Node

Exit Node attached to list

Uses Flags

List_Attach_Tail

Description This service attaches a list node to the tail (i.e., end) of a list. EAX must point to a node
that was allocated using List_Allocate.

Nodes can be attached to any list that has the same size node. This can be used, for ex-
ample, to move a node from one list to another.

April 1, 1990 Microsoft Confidential Beta Release

Linked List Services 31-3

Example

Assume we have the following list:
XTe—[Te——[zT7]

List_Attach_Tail with EAX —[Q] |

Produces the following list:

Te—[Te—[zTe+—[c]]

Figure 31.2 SERV_11.EPS

Entry

Exit

Uses

ESI = List handle
EAX -> Node to insert

Node inserted at tail (end) of list

Flags

LisLCreate

Description

Beta Release

This service is used to create a new list structure. This service returns a list handle that is
used when calling all subsequent list services.

Lists normally allocate nodes from a *“pool” of free nodes. This prevents the overhead that
would be incurred by calling _HeapAlloc and _HeapFree for every list allocation and
deallocation. Once a node is created, it is never destroyed. Instead, List_Deallocate places
the node back in the free pool. The node can then be reclaimed quickly when List_Allo-
cate is called.

If the size of the list nodes are large, you should force them to be allocated from the system
heap by setting the LF_Use_Heap flag. All allocate/deallocate calls for lists created in this
way will use _HeapAlloc and _HeapFree to create and destroy nodes.

If you want to be able to access a list during hardware interrupts, you should set the
LF_Async flag. This forces list operations to be atomic operations (they cannot be re-
entered). If you select this option, you must call list services with INTERRUPTS DIS-
ABLED or an error will occur. You must disable interrupts even if you are not calling the
list service from an interrupt. Remember, always use pushf/CLI/popf to disable interrupts.
Never explicitly use STI unless other documentation states that this is permissable. Notice
that since _HeapAllocate and _HeapFree cannot be called from a hardware interrupt, you
cannot select this option and LF_Use_Heap.

The LF_Alloc_Error flag should be used if you would like to recover from an allocation
error (i.e., out of memory). The default behavior for a failed allocation is to crash the cur-

Microsoft Confidential April 1, 1990

31-4 Virtual Device Adaptation Guide

rent VM. However, if your VxD would like to have the allocation return an error, set this
flag. If this option is selected, then List_Allocate will return with the Carry flag set when
an allocation fails. Otherwise, it will crash the current virtual machine whenever it cannot
allocate a new node.

Entry EAX =Flags
LF_Use_Heap - All data on system heap (Can’t use with LF_Async)
LF_Async - List services can be called at interrupt time
LF_Alloc_Error - Return from alloc with carry set if can’t allocate
ECX = Node size

Exit If Carry Flag is clear then
ESI = List handle
else
Error: Unable to create list

Uses ESI, Flags

List_Deallocate

Description This service places a list node in the free memory pool. Once a node has been deallocated,
it should not be referenced again. You must remove the node from any list to which it is at-
tached before deallocating it.

Entry ESI =List handle
EAX -> List node

Exit EAX is undefined

Uses EAX, Flags

List_Destroy
Description This service deallocates all nodes on a list and destroys the list handle. Once a list has been
destroyed, its handle is no longer valid.

Entry ESI = List handle

Exit ESI is undefined
List is destroyed, all nodes deallocated.

April 1, 1990 Microsoft Confidential Beta Release

Linked List Services 31-5

ESI, Flags

List_Get_First
Description

Entry

Exit

Uses

This service returns a pointer to the first node in a list. If the list is empty, it will return 0
and the Zero Flag will be set.

ESI = List handle

If ZF is clear then

EAX -> First node in list
else

List is empty. EAX = @.

EAX, Flags

List_Get_Next
Description

Entry

Beta Releasa

This service retums the next node in a list. It is used to traverse the list when searching for
a specific element. If the end of the list is reached, it will return 0 and the Zero Flag will be
set,
Typically, this service is used in conjunction with List_Get_First to scan an entire list.
EXAMPLE:
BeginProc Scan_My_List
mov esi, [My_List_Handle]
VMMcall List_Get_First
Jjz SHORT Scan_Done
Scan_Loop:
(Do something with EAX here)
VMMcall List_Get_Next
Jnz Scan_Loop
Scan_0one:

ret
EndProc Scan_My_List

ESI =List handle
EAX -> Node

If ZF is clear then

EAX -> Next node in list
else

End of list reached. EAX =0.

Microsoft Confidential April 1, 1990

31-6 Virtual Device Adaptation Guide

Uses EAX, Flags

List_Insert

Description This service inserts a node at a specified point in a list. The caller must specify two nodes:
the node to be inserted in EAX, and a position to insert the node after in ECX. This means
that node EAX will occupy the position in the list immediately after node ECX. If ECX is
zero, then node EAX will be inserted at the head of the list.
Nodes can be inserted in any list that has the same size node. This can be used, for ex-
ample, to move a node from one list to another.

Example Assume we have the following list:

XD Tet——{z7]

List_Insert with ECX pointing to Y-node and EAX pointing to Q-node
produces the following list:

o[z [¢]

Figure 31.3 SERV_08.EPS

Entry ESI =List handle
EAX -> Node to insert
ECX -> Node to insert after (0 to attach to head)
Exit Node inserted in list
Uses Flags
List_Remove
Description This service removes a specified node from a list. The node will not be deallocated by this

April 1, 1990

service. It is up to the caller to deallocate the node or attach it to another list (it can only be
attached to a list with node size equal to the original list).

Microsoft Confidential Beta Release

Linked List Services 31-7

Example Assume we have the following list:
X[e——Y[oe5—=[2]0]
List_Remove with EAX pointing to Y-node produces the following list:
[x]e—[2]°]

Figure 31.4 SERV_14.EPS

Entry ESI = List handle

EAX -> Node to remove from list
Exit Node removed from list
Uses Flags

List_Remove_First

Description This service removes the first node from a list. Notice that the node is not deallocated by
this service. It is up to the caller to deallocate the node or attach it to another list (it can
only be attached to a list with node size equal to the original list).

Example Assume we have the following list:
XTet——[Te+—[z10]
List_Remove_First produces the following list:

[Y[ef——=[z]0]
andEAX——>

Figure 31.5 SERV_16.EPS

Entry ESI = List handle
Exit If Zero Flag is clear then
EAX -> Node that has been removed from 1list
else

List is empty and EAX = 0

Beta Release Microsoft Confidential April 1, 1990

31-8 Virtual Device Adaptation Guide

Uses EAX, Flags

April 1, 1990 Microsoft Confidential Beta Release

Chapter

Error Gondition Services

These error services are used by VxDs when they have detected the VM to be in an unre-
coverable state. Examples of situations that might lead to such a state include an attempted
VM execution of a protected instruction or an operation which might fail due to lack of
memory. The services are described here in the following order:

s Crash_Cur_VM

8 Fatal _Error_Handler

= Fatal Memory_Error

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

Crash_Cur_VM

Description

Entry

Exit

This service will crash the current VM. It is to be called when a catastrophic error has oc-
cured in the VM, such as executing an illegal instruction or attempting to program a piece
of hardware in a way incompatible with the device virtualization.

If the system VM is the current VM, enhanced Windows will exit with a fatal error without
explicitly crashing the other VMs.

None

None

Fatal_Error_Handler

Description

Beta Release

This service is called (or jumped to) when a fatal error is detected. It returns to real mode
and, optionally, prints out an error message. You can hang the computer by selecting the
EF_Hang_On_Exit flag (defined in VMM.INC).

All the devices are informed about the exit before returning to real mode.
The Fatal_Error macro supplied in VMM.INC is a convenient way of calling this service.

Examples:

Microsoft Confidential April 1, 1990

32-2 Virtuat Device Adaptation Guide

Fatal_Error ; This exits with no error message
Fatal_Error <OFFSET32 My_Err_Msg> ; Exits and prints error message
Entry ESI =Pt ASCIIZ string to display (0 if none)

EAX = Exit flags to send to the loader (real mode exit code)
Bit 0 = 1 - Hang system on exit to real mode

Others undefined and must be 0
Exit None
Uses All registers

Fatal_Memory_Error

Description This routine calls the Fatal_Error_Handler with exit flags equal to zero and the message
“Not Enough Memory to Run Windows/386". It should be called during Device_Init,
Init_Complete, or Sys_VM_Init if there is not enough memory to initialize.

Entry None
Exit None
Uses All registers

April 1, 1990 Microsoft Confidential Beta Release

Chapter

Miscellaneous Services

The services discussed in this chapter provide functions not easily categorized such as
hooking another VxDs API and sending system control messages. They are provided here
in the following order:

® Begin_Reentrant_Execution

® End_Reentrant_Execution

®» Hook_Device_Service

= Hook_Device_V86_API

= Hook_PM_Device_API

= Map_Flat

8 MMGR_SetNULPageAddr

u Simulate_Pop

= Simulate_Push

s System_Control

See Chapter 16. “Overview of Windows in 386 enhanced mode” and Chapter 17, “Virtual
Device Programming Topics” for general environment discussions.

Begin_Reentrant_Execution

Description

Beta Release

THIS IS A VERY DANGEROUS SERVICE. BE VERY CAREFUL WHEN CALLING
IT. Most virtual devices have no reason to use this service. Do NOT use this service to
avoid scheduling events on hardware interrupts.

It is intended to be used by devices that hook VMM Faults (re-entrant processor exeptions)
that must call non-asynchronous VMM or VxD services or execute a VM. This would be
valid to use, for example, if a VxD provided a ring 0 software interrupt interface (although
this is NOT RECOMMENDED — You should provide device services through the
Win386 dynamic-linking mechanism). It would be INVALID to use this service during a
hardware interrupt (such as a timer or disk interrupt).

Microsoft Confidential April 1, 1990

33-2 Virtual Device Adaptation Guide

Entry None
Exit ECX = Old reentrancy count (must be passed to End_Reentrant_Execution)
Uses ECX, Flags

End_Reentrant_Execution

Description A VxD that calls Begin_Reentrant_Execution must call this service before returning.
Entry ECX = Reentrancy count returned from Begin_Reentrant_Execution

Exit None

Uses Flags

Hook_Device_Service

Description This service allows one device to monitor or replace a device service. extreme care must
be taken here not to destroy the functionality of the device whose routine is being moni-
tored or replaced. This service also allows VMM services to be hooked (the VMM is
device 1).

Hooking a service is often useful for monitoring the activities of other devices. For ex-
ample, if a device needed to know whenever a VM was set into background mode, it could

use the following code:

(Initialization code)
mov eax, Set_Time_Slice_Priority
mov esi, OFFSET32 My_Hook_Proc
VMMcall Hook_Device_Service
jc Error!
mov [Real_Procl, esi

BeginProc My_Hook_Proc
test eax, VMStat_Background
jz SHORT MHP_Chain
pushad
(Do something here)
popad
MHP_Chain:
jmp [Real_Proc]
EndProc My_Hook_Proc

April 1, 1990 Microsoft Confidential Beta Release

Miscellaneous Services 33-3

Entry

Exit

Uses

Every time a VxD calls Set_Time_Slice_Priority, the My_Hook_Proc procedure will be
called. The hook procedure should normally chain to the actual device or VMM service al-
though this is not required. Also, be sure to save and restore any registers in your hook pro-
cedure.

You will notice that the sample initialization code moves Set_Time_Slice_Priority into
EAX. Remember, services are defined as EQUATES, not external procedure references.
Thus, Set_Time_Slice_Priority is just a number. (VMM device ID< < 16 + Service num-
ber).

Your hook must preserve all registers that are not modified by the service you have
hooked. Also, if flags are passed as an entry or exit parameter, your hook procedure must
also preserve the flags.

Be careful about hooking C calling convention (stack-based) services. If you want to ex-
amine the “back end” of a C calling convention service, you will need to copy the entire
parameter stack frame before calling the actual service.

More than one VxD can hook a device service. The last hook installed will be the first one
called.

EAX = Device ID << 16 + Service number (use service equate)
ESI = New procedure

If carry clear then
ESI = 01d dynalink procedure
else
ERROR. Invalid Device or Service number

ESI, Flags

Hook_Device_V86_API, Hook_PM_Device_API

Description

Entry

Beta Release

These services allow a VxD to hook another virtual device’s V86 or protected mode API
interface.You are responsible for chaining to the real API handler. Be careful to preserve
the EBX and EBP registers when calling the next handler in the chain.

Most VxDs will never need to hook another virtual device’s API procedure. These services
are provided mainly as a mechanism for devices that may be developed in the future to in-
tercept API calls to other virtual devices. For example, a new version of the Virtual Mouse
Device may need to intercept calls to the Virtual Display Device so that it can save and re-
store the mouse cursor. In such a case, these services could be used.

EAX = Device ID
ESI = Offset of new API handler

Microsoft Confidential April 1, 1990

33-4 Virtual Device Adaptation Guide
s

Exit If carry clear then ;
ESI = Offset of previous API handler (used to chain to next
handler)
else
ERROR: Device does not support API interface
Uses ESI, Flags
Callback * EBX = Current VM handle
EBP -> Client register structure
(Same parameters as standard API entry point)
Map_Flat
NOTE Please be advised that the following description has been indentified as out of date in some re-
pects though updated information was unavailable at the time of this printing.
Description This service provides a convenient way of converting a SEGMENT: OFFSET or SELEC-

April 1, 1990

TOR:OFFSET pair into a linear address. Map_Flat works only for the current VM. It de-
termines whether the value passed to it is a V86 segment or a PM selector by the execution
mode of the current VM. This allows VxDs to use identical code for PM and V86 handlers.
For example, assume a VxD wanted to simulate DOS reads in both V86 and protected -
mode. It would hook both the V86 and PM int chains with the same procedure:

VxD_DOS_Read_Hook:
cmp [ebp.Client_AH], 3Fh ; Q: Is it a read
jne SHORT VxD_DRH_Reflect : N: Reflect it
: Y: DS:DX -> Read buffer
mov ax, (Client_DS SHL 8) + Client_DX
VMMcall Map_Flat ; EAX = Lin addr of DS:DX

(Do something useful here)

clc ; Eat this int 21h
ret VxD_DRH_Reflect:

stc

ret

Notice that the above procedure does not need to examine the VM’s execution state. By
calling Map_Flat, it converts the DS:DX pointer into a valid linear address regardless of
the VM’s execution mode.

The Client_Ptr_Flat macro will generate this code automatically. For the proceding ex-
ample, you would use:

Microsoft Confidential Beta Release

Miscellaneous Services 33-5

Entry

Exit

Uses

Client_Ptr_tlat eax, US, DX

The first parameter specifies the 32-bit register to contain the linear address. The second
parameter specifies the client’s segment. The third parameter is optional and specifies the
offset register (if blank, then an offset of 0 is assumed).

EAX =

EAX = Ring 0 linear address

Flags, EAX

MMGR_SetNULPageAddr

DESCRIPTION This call is used to set the physical address of the system nul page.
It can be called at device INIT time to set the address of a KNOWN non-existant page in
the system. This is usually called by the VS6MMGR device because he does memory
scans and therefore has a good idea about what a good page will be.

ENTRY EAX is PHYSICAL address for NUL Page (Page number << 12)

EXIT None

USES Flags

Simulate_Pop .

Description Returns the WORD or DWORD at the top of the current VM'’s client stack and adds 2 or 4
to the client’s SP.

Entry None

Exit EAX = Word popped from application’s stack (high word 0 if use 16 app)

Uses EAX, Client_ESP, Flags

Beta Release Microsoft Confidential April 1, 1990

33-6 Virtual Device Adaptation Guide
]

Simulate_Push

Description Pushes a WORD or DWORD onto the current VM’s client stack and decrements the VM’s
SPby2or4.
Entry If in V86 mode or 16 bit PM application then
AX = WORD to push
else

EAX = DWORD to push
Exit (D)WORD pushed on application program’s stack

Uses Client_ESP, Flags

System_Control

Description This service sends system control messages to all the VxD’s and for some messages, to
parts of VMM as well. Notice that incorrect usage of the system control messages can
cause emratic behavior by the system. For example, only the Shell device should initiate
Create_VM and Destroy_VM messages. Also notice that when a Set_Device_Focus
message is done with a device ID of zero, all devices with a settable focus must set their
focus to the VM indicated.

The valid System_Control messages are as follows:

April 1, 1990 Microsoft Confidential Beta Release

Miscellaneous Services 33-7
|

Initialization Sys_Critical_Init
Device_Init
Init_Complete

System VM creation Sys_VM_Init
Sys_VM_Terminate

System VM destruction System_Exit

(WIN386 exit) Sys_Critical_Exit

Other VM creation Create_VM
VM_Critical_Init
VM_Init

Other VM destruction VM_Terminate
VM_Not_Executable
Destroy_VM

VM state changes VM_Suspend
VM_Resume
Set_Device_Focus

Special messages Reboot_Processor

Debug_Query

The control calls that are valid for devices to issue areas follows:

Create_VM
Destroy_VM
Set_Device_Focus

(used by SHELL)
(used by SHELL)

Entry

Beta Release

EAX = System control message
EBX = VM handle (if needed by message)
ESLEDIEDX = message specific parameter, such as Device ID (for
Set_Device_Focus message)
ECX register is used by this service and cannot contain any parameter that
will be passed through to the devices.

Microsoft Confidential

April 1, 1990

33-8 Vintual Device Adaptation Guide

Exit Carry Set
Call failed
Carry Clear
Call Succeeded
If Entry EAX = Create_VM
EBX = New VM handle created

Uses Flags, EBX if Create_VM

April 1, 1990 Microsoft Confidential ~ Beta Release

””a”"” Shell Services

The Shell services provide a way for VxDs to communicate with the user. This chapter pre-
sents descriptions of the Shell services in the following order:

= SHELL_ Event

® SHELL_Get_Version

» SHELL Message

a SHELL_Resolve_Contention

® SHELL _SYSMODAL_Message

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

SHELL_Event

Description This procedure posts an event in the windows shell to VMIDOSAPP. This service is pri-
marily for SHELL to WINOLDAPP COMMUNICATION. The VDD also sends a couple
messages to WINOLDAPP other devices should have no use for this service.

Entry EBX is VM Handle for Event
ECX isevent #
AX = wParam for event
High 16 bits EAX special boost flags
ESI is callback procedure for event (==0 if none)
EDX is reference data for event callback

Exit Carry Clear
Event placed in queue
EAX is “Event Handle” of event ONLY VALID IF ENTRY ESI !=0
Carry Set
Event not placed
VMDOSAPP not present
Insufficient memory for placement

Beta Release Microsoft Confidential April 1, 1990

34-2 Virtual Device Adaptation Guide

Callback

Uses

Carry Set
Event could not be placed in VMDOSAPP queue

EDX =reference data
NOTE THAT EBX != VM Handle of event!

Carry Clear
Called when VMDOSAPP signals event processing complete
EBP -> VMDOSAPP Client frame so registers can be accessed
EDX =reference data
NOTE THAT EBX != VM Handle of event!

Flags, EAX

SHELL_Get_Version

Description

Entry

Exit

Uses

This procedure returns the version of the Shell VxD.
None

AH = Major version
AL = Minor version
Carry Flag set

EAX, Flags

SHELL_Message

Description

Entry

Exit

April 1, 1990

This procedure is called to put up messages. Refer to SHELL.INC and the Microsoft
Windows Software Development Kit for information on message box parameters.

EBX = VM Handle of VM responsible for message

EAX = Message box flags (SEE MB_xxxx in SHELL.INC)

ECX -> NUL terminated Message Text

EDI -> NUL terminated caption Text = 0 for standard caption
-> NUL for No caption

ESI -> Callback procedure to call with response when dialog is

finished == 0 if no call back desired

EDX = Reference data for callback

Carry Clear
EAX is “Event Handle” of message

Carry Set

Message cannot be displayed (insufficient memory)

Microsoft Confidential Beta Release

Shell Services 34-3

Callback

Uses

CALLER MAY WISH TO CALL SHELL_SYSMODAL_MESSAGE IN THIS CASE.
SHELL_Sysmodal_Message will not fail.

Called when message box is complete
EAX = Response code from dialog box (SEE IDxx in SHELL.INC)
EDX = reference data

Flags, EAX

SHELL_Resolve_Contention

Description

Entry

Exit

Uses

This procedure is called to resolve contention. It displays a dialog box in which the user
chooses which VM should get ownership of the device.

EAX = VM handle of current device owner
EBX = VM handle of contending VM (Must be Cur_VM_Handle)
ESI -> 8 byte device name SPACE PADDED!!!

EBX = VM handle of contention winner
If carry is set then contention could not be resolved

EBX, Flags

SHELL_SYSMODAL _Message

Description

Entry

Exit

Uses

Beta Release

This procedure is called to put up SYSMODAL messages. Refer to SHELL.INC and the
Windows SDK for information on message box parameters.

EBX = VM Handle of VM responsible for message
EAX = Message box flags (SEE MB_xxxx in SHELL.INC)
NOTE THAT MB_SYSTEMMODAL MUST BE SET.
ECX -> NUL terminated Message Text
EDI -> NUL terminated Caption Text == 0 for standard caption
-> NUL for No caption

EAX = Response code from dialog box (SEE IDxx in SHELL.INC)

Flags, EAX

Microsoft Confidential April 1, 1990

34-4 Virtual Device Adaptation Guide

April 1, 1990 Micrasoft Confidential Beta Release

Chapter

Virtual Display Device
(VDD) Services

These are the Virtual Display Device (VDD) services. See Chapter 18, “The VDD and
Grabber DLL,” for a more detailed explanation.

35.1 Displaying a VM’s Video Memory in a Window

There are several API services supplied to efficiently render a VM’s video memory into a
window. These routines are called by the Grabber. Since the Grabber runs in a virtual ma-
chine, parameters are passed in the Client Registers and in VM memory pointed to by the
Client Registers.

The first step in updating windowed VM is for the Shell to call Set_VMState with a para-
meter indicating that the VM is to be windowed. This will enable the VDD controller and
memory state tracking and reporting of changes. When the VM is no longer windowed,
Set_VMState is called again. When the VMState is not windowed, the Get_Mod call will
always return no changes, and the video update message will never be generated.

The Grabber has to be assured that the call to get the video memory is consistent with the
call to get the video state; for example, displaying a mode 3 VM in mode 10 is incon-
sistent. To support this, the VM will not run after a Get_Mod or Get_Mem call. The VM re-
sumes only after a Free_Mem or UnLock_App call. This way the VM’s state will not
change during the process of window updating.

Notice that when a VM’s video state changes, including controller state changes such as
cursor movement and memory modification, the VDD will send WINOLDAPP a display
update message. All the changes made to the video state will accumulate and be reported
by Get_Mod until a Clear_Mod call is made. There will only be one display update
message per Clear_Mod call.

VDD_Msg_BakColor

Description

Entry

Exit

Beta Release

After calling Begin_Message_Maode, this service sets up the background attribute.

EAX = Color (for EGA/VGA driver, a text mode attribute)
EBX = VM handle

None

Microsoft Confidential April 1, 1990

35-2 Virtual Device Adaptation Guide

Uses

Flags

VDD_Msg_ClrScrn

Description

Entry

Exit

Uses

This routine is called by the Shell to initialize the screen for putting up messages. If the
focus VM is the current VM, it will clear the screen immediately. Otherwise, the screen
will be initialized when the focus changes. A Begin_Message_Mode device control must
be issued before this service is used.

EBX = VM handle
EAX = background attribute

EAX = width in columns
EDX = height in rows

Flags, EAX, EDX

VDD_Msg_ForColor

Description

Entry

Exit

Uses

After calling Begin_Message_Mode, this service sets up the foreground attribute.

EAX = Color (for EGA/VGA driver, a text mode attribute)
EBX = VM handle

None

Flags

VDD_Msg_SetCursPos

Description

Entry

Exit

April 1, 1990

After calling Begin_Message_Maode, this routine sets the cursor position.

EAX =row
EDX = column
EBX = VM handle -

None

Microsoft Confidential " Beta Release

Virtual Display Device (VDD) Services 35-3
R

Uses Flags

VDD_Msg_TextOut

Description After calling Begin_Message_Mode and setting up the foreground and background colors,
this service puts characters on the screen.

Entry ESI = address of string
ECX = length of string
EAX =row start
EDX = column start
EBX = VM handle

Exit None

Uses Flags

35.2 Miscellaneous VDD Services

The services discussed in this section provide other VDD functions not easily catagorized,
such as hiding the cursor. They are provided here in alphabetical order.

VDD_Get_GrabRtn

Description This service returns the address of video grab routine. The grab routine is called by the
Shell device when the appropriate hot key is pressed by the user. It makes a copy of the vis-
ible screen and controller state of the current VM. That copy is then accessible via the
GRB_Get_GrbState and GRB_Get_GrbMem services.

Entry None
Exit ESI = address of grab routine
Uses Flags, ESI

VDD_Get_ModTime

Description This routine is used to determine if any video activity has occurred. The poll device uses it
to determine if the VM is idle.

Beta Release Microsoft Confidential April 1, 1990

35-4 Virtual Device Adaptation Guide
]

Entry EBX = VM handle
Exit EAX = System Timer at last video modification
Uses Flags, EAX

VDD_Get_Version

Description This service returns the version number and device ID.
Entry None
Exit ESI = ptr to 8 byte ID string

AH = major version
AL = minor version
Carry Flag clear

Uses Flags, AX, ESI

VDD_Hide_Cursor

Description This service hides/shows the cursor in a window. If EAX is nonzero, then this service sets
a hide cursor flag or else clears the flag. This is so that, if the mouse is using a hardware
cursor, it can turn off that cursor while the VM is windowed (since the VM will no longer
own the mouse).

Entry EAX =0 if cursor SHOULD be displayed in a window
1= 0 if cursor SHOULD NOT be displayed in a window
EBX = control block pointer

Exit None

Uses Flags

VDD_PIF_State
Description This service informs the VDD about PIF bits for the VM just created.

April 1, 1990 Microsoft Confidential Beta Release

Virtual Display Device (VDD) Services 35-5

————————————————— si— ———————
Entry EBX = VM handle
AX =PIF bits
Exit None
Uses Flags

VDD_Set_HCurTrk

Description

Entry

Exit

Uses

This service sets flag passed to VMDOSAPP indicating that VMDOSAPP should maintain
the cursor position within the display window for this application. This is called by the
Keyboard driver when a keyboard interrupt is simulated into a VM.

EBX = VM handle
None

Flags

VDD_Set_VMType

Description

Entry

Exit

Uses

This service is used to inform the VDD of a VM’s type. The parameter explicitly passed is
the windowed flag. The VM status flags, Exclusive and Background, are implicity passed.
This should be called prior to running the VM and each time thereafter that any of the VM

- parameters are modified. Notice that, for a system critical Set_Focus, this routine may not

be called before the Set_Focus. In that case, the VDD is responsible for doing an implied
Set_VMType (not windowed).

EAX = state flag (= nonzero if changing to windowed VM)
EBX = VM handle whose state is to change :

None

Flags

VDD_Query_Access

Description

Beta Release

This service is used by the other virtual devices when they want to access video memory.
The VxD should not access video memory unless this routine says it is OK.

Microsoft Confidential April 1, 1990

35-6 Virtual Device Adaptation Guide

Entry EBX = VM handle

Exit if access is OK, carry flag =0
else carry flag=1

Uses Flags

April 1, 1990 Microsoft Confidential Beta Release

chapter Virtual Keyboard Device
(VKD) Services

The Virtual Keyboard Device (VKD) provides services that support hot keys, Message
Mode key handling, and keyed input to VMs. The services are presented in the following
order:

B VKD_API Force_Key

8 VKD_API_Get_Version

= VKD_Cancel Hot Key_State

m VKD_Cancel_Paste

= VKD_Define_Hot_Key

® VKD_Define_Paste_Mode

® VKD_Flush_Msg Key Queue

= VKD _Force_Keys

® VKD_Get Kbd_Owner

® VKD_Get_Msg_Key

= VKD_Get_Version

® VKD_Local_Disable_Hot Key

= VKD_Local_Enable_Hot_Key

u VKD_Peek_Msg_Key N
= VKD_Reflect_Hot_Key

= VKD_Remove_Hot Key

= VKD_Start_Paste

zhﬁse are protected-mode API services used by WINOLDAP to send keys to a windowed

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

Beta Release Microsoft Confidential April 1, 1990

36-2 Virtual Device Adaptation Guide

VKD_API_Force_Key

Description This service forces a key into a VM as if it were typed on the keyboard. Because VKD will
scan these forced keys for hot keys, forcing VKD hot keys is allowed.

Entry EBX = VM handle (0 for current focus)
CH =scancode
CL =repeat count (1 or more)
EDX = shift state (-1 means no change)

Exit Carry Set, if error
Uses None

NOTE Currently limited to focus VM, so service will fail if EBX # 0 or EBX # focus VM handle.

VKD_API_Get_Version

Description This service gets the version number of the VKD device.
Entry None
Exit AH = major, AL = minor
Carry clear
Uses None

VKD_Cancel_Hot_Key_State

Description This service causes the VKD to exit the hot key state.
Entry None
Exit Keys will start being passed into the focus VM again
Uses None

April 1, 1990 Microsoft Confidential Beta Release

Virtual Keyboard Device (VKD) Services 36-3

VKD_Cancel_Paste

Description

Entry

Exit

Uses

This service cancels the paste that was started in the VM with VKD_Start_Paste.
EBX is VM handle
None

Flags

VKD_Define_Hot_Key

Description

Entry

Beta Release

This service defines a hot key notification routine. Hot keys are detected by ANDing the
shift state mask with the global shift state, then comparing the resulting state with the shift
state compare value. If this matches, and the key code matches, then the callback routine is
called with the specified reference data in EDX.

AL = scan code of the main key
AH =0, if normal code
AH =1, if extended code (ExtendedKey_B)
AH = OFFh, if either (AllowExtended_B)
EBX = shift state
high word is mask that is ANDed with the global shift state
when checking for this hot key; low word is masked shift state
compare value.
Equates for common shift mask and compare values are
defined in VKD.INC:
HKSS_Shift for either shift key
HKSS_Ctrl for either control key
HKSS_ALt for either ALT key
The macro ShiftState is also defined to load EBX with the mask
and compare value. e.g.,
ShiftState <SS_ALT + SS_Toggle_mask>, SS_RAIlt
loads EBX so that the hot key will only be recognized when the
Right ALT key is held down.
VKD>INC also defines “SS_" equates for the different shift state
bits and common combinations of bits.
CL =flags
CallOnPress - Call callback when key press is detected
CallOnRelease - Call callback when key release is
detected
(keyboard may still be in hot-key hold
state)
CallOnRepeat - Call callback when repeated press is

Microsoft Confidential April 1, 1990

36-4 Virtual Device Adaptation Guide
L___]

Exit

Uses

Callback

April 1, 1990

detected

CallOnComplete - Call callback when the hot key state is
ended(all shift modifier keys are
released) or when a different hot key is
entered (i.e. pressing ALT 1 2, if both
ALT+1 and ALT+2 are defined hot keys,
then ALT+1’s callback will be called
before ALT+2’s to indicate that the ALT+1
is complete even though the ALT key is
still down)

CallOnUpDwn - Call on both press and release

CallOnAll - Call on press, release and repeats

PriorityNotify - Used with one of the call options to
specify that the callback can only be
called when interrupts are enabled and the
critical section is un-owned

Local_Key - Key can be locally enabled/disabled

ESI = offset of callback routine

EDX = reference data

EDI = maximum notification delay if PriorityNotify is set,
0, means always notify (milliseconds)

If Carry clear then
EAX = definition handle
else the definition failed (no more room)

Flags

Called when hot key is detected, and detection meets mask
requirements. (CallOnPress, CallOnRelease, CallOnRepeat,
CallOnUpDwn, or CallOnAll)

AL = scan code of key

AH = 0, if key just pressed (Hot_Key_Pressed)
= 1, if key just released (Hot_Key_Released)
=2, if key is an auto-repeat press (Hot_Key_Repeated)
= 3, hot key state ended (Hot_Key_Completed)

EBX is hot key handle

ECX = global shift state

EDX is reference data

EDI = elapsed time for delayed notification (milliseconds)
(normally O, but if PriorityNotify is specified then this value
could be larger)
This procedure can modify EAX, EBX, ECX, EDX, ESI, EDJ, and Flags

Microsoft Confidential Beta Release

Virtual Keyboard Device (VKD) Services 36-5

VKD_Define_Paste_Mode

Description

Entry

Exit

Uses

This service selects the VM’s paste mode, whether INT 16 pasting can be attempted or not.
Some applications hook INT 9 and do things that will not allow pasting to be done through
INT 16H. Normally, VKD can detect this by setting a timeout to see if any INT 16s are
being done by the application, and if not, then switching to INT 9 paste. But, some appli-
cations may do some INT 16s, in which case the paste would be broken. Therefore, this

‘service is provided to allow the Shell device to force a VM into INT 9 paste, based only on

a PIF bit.

AL =0 allow INT 16 paste attempts
AL =1 force INT 9 pasting
EBX = VM handle

None

Flags

VKD_Flush_Msg_Key_Queue

Description

Entry

Exit

Uses

This service flushes any available keys from the special message mode input buffer.
EBX = VM handle
Input buffer has been cleared

Flags

VKD_Force_Keys

Description

Entry

Exit

Beta Release

This service forces scan codes into the keyboard buffer that look exactly like they had
been typed on the physical keyboard. These keys will be processed in the context of the
focus VM.

ESI points to a buffer of scan codes

" ECX is # of scan codes in the buffer

If the keyboard buffer was overfldwed. then
Carry set
ECX is # of remaining scan codes that did not fit

Microsoft Confidential April 1, 1990

36-6 Virtual Device Adaptation Guide

Uses ECX,Flags

VKD_Get_Kbd_Owner

Description This service gets the VM Handle of the keyboard focus VM.
Entry None

Exit EBX = VM Handle of keyboard owner

Uses Flags, EBX

VKD_Get_Msg_Key

removes it from the buffer. If no key is available, then it returns with the Z flag set. (This is

Description This service returns the next available key from the special message mode input buffer and
not a blocking read!)
Entry EBX = VM handle
Exit Z flag clear, if key was read
AL = scan code

AH = modifier flags

MK _Shift - a SHIFT key is down

MK_Cul -acCTRL key is down

MK_Alt -an ALT key is down
MK_Extended - the key is an extended key
Z flag set, if no key available

Uses EAX, Flags

VKD_Get_Version

Description This service gets the VKD version number.
Entry None
Exit AH = major, AL = minor

Carry Flag clear

April 1, 1990 Microsoft Confidential

Beta Release

Virtual Keyboard Device (VKD) Services 36-7

Uses

EAX, Flags

VKD_Local_Disable_Hot_Key

Description

Entry

Exit

Uses

This service disables a hot key in the specified VM. It is only allowed on hot keys which
were declared with the Local_Key bit set in CL.

EAX is hot key handle
EBX is VM handle

None

Flags

VKD_Local_Enable_Hot_Key

Description

Entry

Exit

Uses

This service enables a hot key in the specified VM.

EAX is hot key handle
EBX is VM handle

None

Flags

VKD_Peek_Msg_Key

Description

Entry

Exit

Beta Release

This service returns the next available key from the special message mode input buffer
without removing it from the buffer. If no key is available, then it returns with the Z flag
set.

EBX = VM handle

Z flag clear, if key available
AL =scan code
AH = modifier flags
MK_Shift - a shift key is down
MK_Cul - acontrol key is down
MK_Alt - an alt key is down

Microsoft Confidential April 1, 1990

36-8 Virtual Device Adaptation Guide
. ___]

Uses

MK_Extended - the key is an extended key
Z flag set, if no key available

EAX, Flags

VKD_Reflect_Hot_Key

Description

Entry

Exit

Uses

This service reflects a hot key into a specified VM and exits the hot key state. This service
is normally called by a hot key notification callback routine. It enables the callback to send
the hot key into a VM and pretend that it wasn’t really recognized as a hot key. VKD will
simulate the required key strokes to get the VM into the state of this specified shift state,
then it will simulate the key strokes for the hot key itself, and finally simulate key strokes
to get the VM to match the current global shift state.

EAX is hot key handle
EBX is VM handle
CX is required shift state

Hot key has been reflected, and VKD is no longer in hot key state

Flags

VKD_Remove_Hot_Key

Description

Entry

Exit

Uses

This service removes a defined hot key.
EAX is hot key definition handle to be removed
None

Flags

VKD_Start_Paste

Description

April 1, 1990

This service puts a VM into paste mode by simulating keyboard activity with keysl:rokes
taken from the specified paste buffer. Depending on the mode set with the service
VKD_Define_Paste_Mode (default is to try INT 16 pasting), VKD waits for the VM to
poll the keyboard BIOS through its INT 16 interface. If the VM does keyboard input
through the BIOS, then VKD will simulate the keyboard input at this high level (plugging
in ASCII codes.) If the VM fails to perform any INT 16s within in a timeout period, or the

Microsoft Confidential Beta Release

Virtual Keyboard Device (VKD) Services 36-9

Entry

Uses

Callback

Beta Release

mode has been set 1o avoid INT 16 pasting, then VKD will simulate the necessary hard-
ware interrupts to perform the pasting. Physically typed hot keys are still processed while
pasting is in progress.

EAX is linear address of paste buffer
the paste buffer contains an array of key structures:
OEM_ASCI_value db ?

scan_code db ?
shift_state dw ?
shift state bits are:

0000000000000010b shift key depressed

0000000000000100b ctrl key depressed
The scan code should be FFh and the shift state FFFFh, if VKD should convert the key to a
ALT+numpad sequence. (this information is identical to what is given by the Window’s
keyboard routine OEMKeyScan)

EBX is VM handle

ECX is number of paste entries in the paste buffer
ESI is call back address (can be 0)

EDX is reference data

Carry clear
paste is started
Carry set
paste failed, unable to allocate memory for buffer copy

Flags

Called when paste is completed or cancelled
EAX is completion flags
Paste_Complete - paste completed successfully
Paste_Aborted - paste cancelled by user
Paste VM _Term - paste aborted because VM terminated
EBX is VM handle of VM that was receiving the paste
EDX is reference data
Procedure can modify EAX, EBX, ECX, EDX, ESI, EDI, and Flags

Microsoft Confidential April 1, 1990

36-10 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Chapter Virtual PIC Device (VPICD)
Services

The Virtual Programmable Interrupt Controller Device (VPICD) routes hardware inter-
rupts to other virtual devices, provides services that allow virtual devices to request inter-
rupts, and simulates hardware interrupts into virtual machines. See Chapter 16, “Overview
of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual Device Programming Top-
ics,” for general discussions of the VPICD.

Peripherals, such as disk drives and COM ports, use hardware (physical) interrupts to
notify software of changes in their status.

The topics in this chapter are presented in the following order:

8 Default Interrupt Handling

B Virtualizing an IRQ

= Virtualized IRQ Callback Procedures
= VPICD Services

8 Grabber

37. 1 Default Interrupt Handling

The most basic function of VPICD is to emulate the functions of the physical interrupt con-
troller (PIC). This entails reflecting interrupts into virtual machines and simulating I/O
such as recognizing when a VM issues an EOI (End Of Interrupt), reading the mask
register, etc. When VPICD is initialized, it sets up a default interrupt handler for every In-
terrupt ReQuest (IRQ). These handlers determine which VM an interrupt should be re-
flected into, and they arbitrate conflicts between virtual machines that attempt to unmask
the same interrupt.

An interrupt that is unmasked when enhanced Windows is initialized is considered a global
interrupt. A global interrupt will always be reflected into the currently executing virtual ma-
chine, and any VM can mask or unmask the IRQ. If a virtual machine unmasks an IRQ

that was masked when the enhanced Windows environment was initialized, it will own

that IRQ. All interrupts for an owned IRQ will be reflected only to the IRQ’s owner. If
another virtual machine attempts to unmask the interrupt, the second VM will be termi-
nated and the user will see a dialog box that tells him to reboot his computer.

It is important to remember that this is only the default behavior of VPICD. If another vir-
tual device virtualizes an IRQ it is up to the device that virtualized the interrupt to deter-

Beta Release Microsoft Confidential April 1, 1990

37-2 Virtual Device Adapiation Guide

mine which VMs receive interrupts and arbitrate conflicts. Once an IRQ is virtualized,
VPICD’s default handling for that IRQ stops.

37.2 Virtualizing an IRQ

When a virtual device needs to hook a specific IRQ (Interrupt ReQuest), it must ask
VPICD for permission. If another device has already virtualized the IRQ, then the call will
fail if either of the VxDs is unable to share the IRQ (both must have the Can_Share option
set for two VxDs to use the same IRQ).

When a VxD calls VPICD _Virtualize_IRQ, it passes a pointer to a structure called an
IRQ Descriptor that contains the number of the IRQ and the address of several callback
procedures. This structure is included in the file VPICD.INC:

VPICD_IRQ_ Descriptor STRUC

VID_IRQ_Number dw ?
VID_Options dw 0
VID_Hw_Int_Proc dd ?
VID_Virt_Int_Proc dd @
VID_EOI_Proc dd 0
VID_Mask_Change_Proc dd 0
VID_IRET_Proc dd @
VID_IRET_Time_Out dd 500

VPICD_IRQ_Descriptor ENDS

The VID_IRQ_Number contains the number of the IRQ the VxD wishes to virtualize.
VID_Options is a bit field that is used to specify special options. The next five fields
specify the address of various callback procedures. The final field determines the maxi-
mum amount of time in milliseconds that VPICD will allow before the interrupt is timed-
out. Time-outs are very important to prevent the enhanced Windows environment from
hanging while simulating a hardware interrupt.

37.3 Virtualized IRQ Callback Procedures

A virtual device may specify up to five callback procedures in its IRQ_Descriptor struc-
ture. One of these, Hw_Int_Proc, is required. The other callback procedures are optional
and are simply used to inform a virtual device whenever the state of the virtualized IRQ
changes. For example, the Virt_Int_Proc procedure will be called whenever an interrupt
is simulated into a VM; the Mask_Change_Proc is called whenever a virtual machine
masks or unmasks the interrupt, etc. Each of the callback procedures is described in this
section in detail and in alphabetical order. Callback procedures may modify EAX, EBX,
ECX, EDX, ESI, and Flags. Although they will be called with interrupts disabled, they are
allowed to enable them. If the procedures perform a lot of processing, interrupts should be
executed.

April 1, 1990 Microsoft Confidential Beta Release

Virtual PIC Device (VPICD) Services 37-3

VID_Hw_Int_Proc

Description

Entry

Exit

The VID_Hw_Int_Proc procedure is called whenever a hardware interrupt occurs. Notice
that the procedure is just that, a procedure that returns using a near return — not an IRET.
Since the the VxD environment kernel is single-threaded, the services that this procedure
is allowed to call are limited because it is possible for an interrupt to occur while executing
in the VMM. Therefore, many interrupt procedures will need to use the
Schedule_Call_Global_Event services to perform additional processing of an interrupt. A
typical VID_ Hw Int_Proc will service the physical device, call VPICD_Phys_EOI to
end the physical interrupt, and set the virtual IRQ request for a specific virtual machine.
Some devices may never request an interrupt for a virtual machine and others may request
more than one interrupt per physical interrupt. In any case, every physical interrupt does
not need to be reflected 1-1 into a virtual machine.

Interrupts Disabled
= IRQ handle
EBX = Current VM handle

None

VID_EOI_Proc

Description

Entry

Exit

The VID_EOI_Proc callback is normally used for devices that are partially virtualized.
For example, the Virtual Mouse Device (VMD) lets the MS-DOS mouse driver handle all
1/O with the mouse hardware. The VMD ‘just reflects the interrupt to the VM that owns the
mouse. Since it doesn’t service the device during the VMD_Hw_Int procedure, it can’t
call VPICD_Phys_EOI at this point (since it’s not the end of the interrupt). Once a virtual
machine has serviced the interrupt, it will issue an EQI and, at this point, the VMD calls
VPICD_Clear_Int_Request followed by VPICD_Phys_EOI. The default interrupt
routines need the VID EOI_Proc callback for the same reason — they have to wait for
the VM to service the interrupting device before they physically signal an EOI to the IRQ.

Interrupts Disabled
= IRQ handle
EBX = Current VM handle

None

VID_Virt_Int_Proc

Description

Beta Release

The VID_Virt_Int_Proc callback can be useful for implementing critical sections around
a simulated hardware interrupt. A VxD will request an interrupt, and that interrupt may be
simulated at a later point in time. This callback is issued at the point when the interrupt is

Microsoft Confidential April 1, 1990

37-4 Virtual Device Adaptation Guide
. ___|]

Entry

Exit

actually being simulated into the virtual machine. This call is made after the “point of no
return” has been passed. Therefore, it is impossible for a virtual device to stop the interrupt
once this call has been issued. A VxD that uses this callback will usually also use the
VID_Virt_IRET_Proc callback to detect the end of the simulated interrupt.

Interrupts Disabled
EAX = IRQ handle
EBX = Current VM handle

None

VID_IRET_Proc

Description

April 1, 1990

This callback is useful for devices that must simulate large numbers of interrupts in a short
period of time. For example, the Virtual COM Device will simulate an interrupt, allow one
character to be read from the COM port, and wait for the virtual machine to IRET before
putting more data into the virtual COM receive buffer. This is because many programs
would crash if too many bytes of data were queued and shovelled into the virtual machine
too quickly. The crash would occur because the program’s stack would overflow. For ex-
ample, assume that a terminal program has an interrupt routine that looks like this:

push ax ; (Push AX, DX is the
push dx ; minimum possible)
(Read a byte from the COM port)

mov al, 26h ; Non-Specific EOI
out 20h, al ; EOI the PIC

sti ; Enable interrupts
(Do other stuff)

pop dx

pop ax

iret

This is a perfectly valid interrupt procedure and, in fact, it is very common in actual termi-
nal programs. Now consider what would happen if the Virtual COM Device (VCD) had
500 bytes of data queued, and it did not use the VID_IRET _Proc callback. When the VM
reads a byte of data, VCD puts the next byte of data into the receive buffer and request
another interrupt. When the terminal program executes the STI instruction, VPICD imme-
diately simulates another COM interrupt. This sequence of events is repeated 499 times,
each time nesting an interrupt while in the terminal program’s interrupt routine. The prob-
lem is that the IRET frame on the stack requires 6 bytes per interrupt, and the 2 pushed
registers take up 4 more bytes for a total of 10 bytes per interrupt. Since we would nest
500 interrupts, 5K bytes of stack space would be required.

Since this is obviously unacceptable, VCD waits for the terminal program to IRET before
simulating another interrupt. The Virtual Timer uses similar logic to prevent shoving too
many timer interrupts into a virtual machine.

Microsoft Confidential Beta Release

Virtual PIC Device (VPICD) Services 37-5

Entry

Exit

Interrupts Disabled

EAX = IRQ handle

EBX = Current VM handle

If carry is set then interrupt timed-out

None

VID_Mask_Change_Proc

Description

Entry

Exit

The VID_Mask_Change_Proc is often used to detect contention for a device. The default
interrupt routines use this callback to detect conflicts with nonglobal interrupts.

Interrupts Disabled

EAX = IRQ handle

EBX = Current VM handle

ECX =@ if VM is unmasking IRQ, != 0 if masking IRQ
None

37.4 VPICD Services

This section presents descriptions of VPICD services in alphabetical order.

VPICD_Call_When_Hw_Int

Description

Beta Release.

You must call this procedure with interrupts disabled. This service enables other VxDs to
be notified when every hardware interrupt occurs. It is intended to be used by the Virtual
DMA Device (VDMAD) to detect when a DMA transfer is complete. However, any VxD
can use this service. It should be noted though, that since your callback will be called for
every hardware interrupt, it could have a major performance impact on systems with dev-
ices that interrupt frequently. Therefore, you should avoid using this service.

A callback installed by this service is responsible for chaining to the next handler in the in-
terrupt filter chain, and it must preserve the EBX register for the next handler.

Sample_Hook_Init:
pushfd
cli
mov esi, OFFSET32 My_Int_Hook
VxDcall VPICD_Call_When_Hw_Int
popfd
mov [Next_Int_Hook_Addr], esi
clc
ret

Microsoft Confidential April 1, 1990

37-6 Virtual Device Adaplation Guide

Entry

Exit

Uses

Callback

My_Int_Hook:
push ebx
(Do something useful here)
pop ebx

Jjmp [Next_Int_Hook_Addr]
ESI -> Procedure to call
ESI -> Procedure to chain to
ESI, Flags

EBX = Cur_VM_Handle

VPICD_Clear_Int_Request

Description

Entry

Exit

Uses

This service resets an IRQ request that was previously set by a call to
VPICD_Set_Int_Request. If the IRQ is being shared with another device, then this serv-
ice may not reset the virtual request if another device has also set the virtual IRQ.
However, the request will be cleared when all devices that have called Set_Int_Request
call this service.

EAX =IRQ handle
EBX = VM handle

Virtual IRQ request is cleared

Flags

VPICD_Convert_Handle_To_IRQ

Description
Entry
Exit

Uses

April 1, 1990

This service returns the number of the IRQ for the IRQ handle in EAX.
EAX =IRQ Handle
ESI = IRQ Number

ESI, Flags

Microsoft Confidential Beta Release

Virtual PIC Device (VPICD) Services 37-7

VPICD_Convert_Int_To_IRQ

Description This service takes an interrupt vector number and returns the number of the IRQ that is
mapped to that interrupt. For example, INT 8 will typically be converted to IRQ 0.
However, VMs are allowed to remap the virtual PIC to any interrupt vector they wish.
Therefore, devices should never make assumptions about to which interrupt vector a partic-

ular IRQ is mapped.
Entry EAX = Interrupt vector number
Exit If carry is clear then
EAX = IRQ number
else

Interrupt vector not mapped to any IRQ

Uses None

VPICD_Convert_IRQ_To_lInt

Description This service accepts an IRQ number and returns an interrupt vector number for a specified
VM. For example, typically IRQ 0 will be converted to INT 8 on an IBM PC. However,
VMs are allowed to remap the virtual PIC to any interrupt vector they wish. Therefore,
devices should never make assumptions about to which interrupt vector a particular IRQ is
mapped.

Entry EAX = IRQ number — NOT HANDLE!
EBX = VM handle

Exit EAX = Interrupt vector

Uses EAX, Flags

VPICD_Get_Complete_Status
Refer to VPICD_Get_Status for description.

VPICD_Get_IRQ_Complete_Status

Description This service is similar to VPICD_Get_Complete_Status except that it takes an IRQ num-
ber as a parameter instead of an IRQ handle. This is useful for devices to inspect an IRQ
before attempting to virtualize it or for inspecting the state of another device’s interrupt.

Beta Release Microsoft Confidential April 1, 1990

37-8 Virlual Device Adaptation Guide

Entry

Exit

Uses

Also, since it indicates whether or not an IRQ has been virtualized already, it can be used
by devices to prevent conflicts when more than one device may want to use an IRQ.

EAX =IRQ number

ECX = Status as described for VPICD_Get_Complete_Status

If the carry flag is set then

The IRQ has been virtualized
else

The IRQ has not been virtualized

ECX, Flags

VPICD_Get_Status

Description

Entry

Exit

April 1, 1990

These services return the status of a virtual IRQ for a specified VM. The status returned in
ECX is defined by equates in the VPICD.INC file. VPICD_Get_Status will only return
the Virtual In_Service and IRET_Pending status bits. VPICD_Get_Complete_Status
will return with all status bits defined. The shorter version is supplied because it is much
faster, and the status returned contains the most commonly used information.

EAX =IRQ handle
EBX = VM handle

ECX = Status flags (see equates VPICD.INI)

&
-

Description

A Virtual IRET ié pending

The IRQ is virtually in service

The IRQ is physically masked

The IRQ is physically in service
VM has masked the IRQ

The Virtual IRQ is set (by any VxD)
The physical IRQ is set

Tha calling VxD’s Virtual IRQ is set

noon o nn
N T . T T U = =

N 0N WD = O
]

Microsoft Confidential Beta Release

Uses

Virtual PIC Device (VPICD) Services 37-9
_

ECX, Flags

VPICD_Get_Version

Description

Entry

Exit

Uses

This service retumns the VPICD major and minor version numbers.
None

AH =Major version
AL = Minor version
EBX = Flags
Bit 0 = 1 - Master/Slave PC/AT type configuration
0 - PC/XT type single PIC configuration
Other bits reserved for future versions.
ECX = Maximum IRQ supported (07H or OFH)
Carry flag clear

EAX, EBX, ECX, Flags

VPICD_Phys_EOI

Description

Entry

Exit

Uses

Calling this procedure will end a physical interrupt and will allow further hardware inter-
rupts from the specified IRQ. Notice that an interrupt that is physically in service will not
suppress interrupts to “lower priority” IRQs, since VPICD does not prioritize hardware in-
terrupts. Therefore, it is acceptable for an interrupt to be physically in service for an arbi-
trary length of time.

EAX =IRQ handle
None

Flags

VPICD_Physically_Mask

Description

Entry

Beta Release

This service will mask the specified IRQ on the hardware PIC. This will suppress all hard-
ware interrupts on the IRQ until VPICD_Physically_Unmask or
VPICD_Set_Auto_Masking is called.

EAX =IRQ handle

Microsoft Confidential , April 1, 1990

37-10 Virtual Device Adaptation Guide
m

Exit

Uses

IRQ is masked

Flags

VPICD_Physically_Unmask

Description

Entry

Exit

Uses

This service will unmask the specified IRQ on the hardware PIC regardless of the mask
state of virtual machines. This means that even if every VM has masked the virtual IRQ,
the physical IRQ will remain unmasked.

EAX =1IRQ handle
IRQ is masked

Flags

VPICD_Set_Auto_Masking

Description

Entry

Exit

Uses

Automatic masking is the default state for every IRQ. It can be overridden by
VPICD_Physically Mask/Unmask. When automatic masking is used, the state of the
physical mask is determined by the state of every virtual machine’s virtual mask. If at least
one VM has the IRQ unmasked, then the physical IRQ will remain unmasked. Otherwise,
the IRQ will be masked on the hardware PIC.

EAX =IRQ handle
IRQ will be physically unmasked if at least one VM has unmasked the IRQ.

Flags

VPICD_Set_int_Request

Description

April 1, 1990

This service sets the virtual interrupt request for the specified IRQ and VM. It may cause
an interrupt to be simulated immediately. However, in many cases, the interrupt will not be
simulated until a later point in time. The interrupt will not be simulated immediately if:

m The virtual machine has interrupts disabled.
m The virtual machine has masked the IRQ.

Microsoft Confidential Beta Release

Virtval PIC Device (VPICD) Services 37-11

Entry

Exit

Uses

® A higher priority virtual IRQ is in service.

® Itis not possible to run the specified VM (it is suspended, etc).

® There are other reasons the interrupt may be postponed.

However, since the interrupt may be simulated immediately, virtual devices that have a vir-

tual interrupt handler must be able to handle the case when their virtual interrupt procedure
is called before this service returns.

Setting an interrupt request is not a guarantee that the interrupt will ever be simulated. For
example, if the VM has masked the interrupt and never unmasks it, the interrupt will never
be simulated. Also, a call to VPICD_Clear_Int_Request that is made before the virtual in-
terrupt is simulated will prevent the interrupt simulation.

It is important to keep in mind that VPICD simulates a level triggered PIC. This means
that once a virtual EOI occurs, another interrupt will be simulated immediately unless the
virtual interrupt request is cleared.

EAX =IRQ handle
EBX = VM handle

Virtual IRQ request is set

Flags

VPICD_Test_Phys_Request

Description

Entry

Exit

Uses

This service will return with Carry set if the physical (hardware PIC) interrupt request is
set for the specified IRQ.

EAX =IRQ handle
Carry flag = Physical Interrupt Request state

Flags

VPICD_Virtualize_IRQ

Description

Beta Release

This is not an async service; it cannot be called during an interrupt. This service is used to
gain access to a specified virtual interrupt request. The caller passes this procedure a
pointer to the IRQ descriptor (the structure declared in VPICD.INC) which specifies:

Microsoft Confidential April 1, 1990

37-12 Virtual Device Adaptation Guide

Entry

Exit

Uses

April 1, 1990

® TRQ number (required)

= Options

® Hardware interrupt handler (required)

® Virtual interrupt handler

® Virtual EOI handler

m Virtual mask change handler

& Virtual IRET handler

8 Virtual IRET time-out (0 for no time-out)

For more information on the various options and parameters to this service see Section
37.3 “Virtualizing an IRQ,” earlier in this chapter. When this service returns, if Carry is

set, then the IRQ cannot be virtualized. Otherwise, EAX contains an IRQ handle. This
handle is used for all subsequent communication with VPICD.

If every device that virtualizes the IRQ has the Can_Share option set then the IRQ can be
shared by up to 32 devices.

EDI -> VPICD_IRQ_Descriptor

If carry clear then
EAX = IRQ Handle
else
Error — Handle already allocated or invalid IRQ #

EAX , Flags

Microsoft Confidential Beta Release

chapter Virtual Sound Device (VSD)
Services

These two services enable VxDs to generate a warning beep or return the VSD version
number:

= VSD_Bell
8 VSD_Get_Version

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

VSD_Bell

Description This service is provided so that devices can generate a warning beep. This is normally used
when the user presses an invalid key or when an error occurs. Notice that this service will
produce a 1/2-second tone, but it will then return immediately (it does not busy wait).

Entry None

Exit None

Uses Flags

VSD_Get_Version

Description This service returns the version number of the Virtual Sound Device.
Entry None
Exit AH = Major version number
AL = Minor version number
Carry flag clear
Uses EAX, Flags

Beta Release Microsoft Confidential April 1, 1990

38-2 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential , Beta Release

Chapter

39

Virtual Timer Device (VTD)
Services

This chapter presents descriptions of the following VTD services:

= VTD_Begin_Min_Int_Period
® VTD_Disable_Trapping

= VTD_Enable_Trapping

® VTD_End_Min_Int_Period
s VTD_Get_Interrupt_Rate
B VTD_Get_Version

= VTD_Update_System_Clock

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions.

VTD_Begin_Min_Int_Period

Description

Beia Release

This service is used by VxDs to ensure a minimum accuracy for system timing. When this
service is called, if the interrupt period specified is lower than the current timer interrupt
period, the interrupt period will be set to the new frequency.

Until a matching VID_End_Min_Int_Period call is made, the timer interrupt period is
guaranteed never to be slower than the value specified.

A VxD should call this service only once before calling VTD_End_Min_Int_Period.

Typically the Begin/End_Min_Int_Period services are used by devices such as execution
profilers that need extremely accurate timing. VMM system time-out services rely on the
VTD to keep time. Therefore, more frequent timer interrupts will allow the time out serv-
ices to be more accurate.

Microsoft Confidential April 1, 1990

39-2 Virtual Device Adaptation Guide
...~~~ " """]

Entry

Exit

Uses

WARNING Fast timer interrupt periods can be very, very expensive in terms of total system perform-
ance. For example, on some machines a timer interrupt of 1 millisecond will degrade total machine
throughput by 10 percent and disk /O by up to 50 percent.

EAX = Desired interrupt period

If carry clear then
Interrupt period set
else
Specified interrupt period is not valid

Flags

VTD_Disahle_Trapping

Description

Entry
Exit

Uses

April 1, 1990

This service will force VTD to stop I/O trapping on the timer ports for a specified virtual
machine. VTD_Enable_Trapping must be called once for every call made to this service.
By default, timer port trapping is enabled when a VM is created.

It is sometimes necessary to disable temporarily I/O trapping for virtual machine code that
reads the timer in extremely tight timing loops. A good example is the hard disk BIOS
code that reads the ports hundreds of times per disk transfer. The overhead for servicing
the I/O traps would cause disk performance to slow to a crawl.

WARNING This service must be used very carefully. If a VM reprograms the timer while port trap-
ping is disabled, system timing will behave randomly. Only “trusted” code should be executed when
timer port trapping is disabled.

If this service is called N times, then VITD_Enable_Trapping must also be called N times
before trapping is reenabled. This allows nested calls to this service by more than one VxD.

EBX = VM handle
None

Flags

Microsoft Confidential Beta Release

Virtual Timer Device (VTD) Services 39-3

VTD_Enable_Trapping

Description

Entry

Exit

Uses

This service must be called to re-enable timer I/O port trapping after calling VTD_Dis-
able_Trapping. Notice that this call must be made once for every call to VID_Dis-
able_Trapping. Only when every disable call has been matched by a call to this service
will port trapping be reenabled.

EBX = VM handle
None

Flags

VTD_End_Min_int_Period

Description

Entry

Exit

Uses

This service allows a device to “unrequest” a timer interrupt period that it set earlier
through the VTD_Begin_Min_Int_Period service. See the documentation for
VTD_Begin_Min_Int_Period earlier in this chapter for more information on the proper
use of this service.

EAX = Value passed earlier to Begin_Begin_Min_Int_Period

If carry clear then

Interrupt period request removed successfully
else

Specified interrupt period is not valid

Flags

VTD_Get_Interrupt_Period

Desc(iptian
Entry
Exit

Uses

Beta Release

This service returns the current timer interrupt period.
None
EAX = Length of time between ticks in milliseconds

Flags

Microsoft Confidential . April 1, 1990

39-4 Virtual Device Adaptation Guide

VTD_Get_Version

Description This service retums the version number and the range of interrupt periods allowable by
this device.

Entry None

Exit EAX = Version number (AH = Major, AL = Minor)

EBX = Fastest possible interrupt period in milliseconds
ECX = Slowest possible interrupt period in milliseconds
Carry flag clear

Uses EAX, EBX, ECX, Flags

VTD_Update_System_Clock

Description This service should only be called by the VMM. Devices should call the Get_Sys-
tem_Time VMM service. The VMM will then call this service to update the system clock.

Entry None
Exit None
Uses Flags

April 1, 1990 Microsoft Confidential Beta Release

Chapter

Beta Release

V86 Mode Memory
Manager Device Services

The V86MMGR is responsible for managing memory in the Virtual 8086 portion of each
VM. It supports EMS and XMS, is responsible for allocating the base memory for VMs
when they are created, and translates APIs from protected-mode applications into V86
calls for other VxDs.

See Chapter 16, “Overview of Windows in 386 Enhanced Mode,” and Chapter 17, “Virtual
Device Programming Topics,” for general environment discussions. Other chapters that dis-
cuss memory management are Chapter 19, “Memory Management Services,” and Chapter
6, “Network Support,” in the Microsoft Windows Device Driver Adaptation Guide.

Memory management is also discussed in the Microsoft Software Development Kit, Pro-
gramming Tools.

The V86MMGR services are presented as follows:

® Initialization Services
V886MMGR _Get_Version
V86MMGR_Allocate_V86_Pages
V86MMGR_Set_ EMS_XMS_Limits
V86MMGR_Get_EMS_XMS_Limits

® API Translation and Mapping Services
V886MMGR_Set_Mapping_Info
V86MMGR _Xlat_API
V86MMGR _Load_Client_Ptr
V86MMGR_Allocate_Buffer
V886MMGR _Free_Buffer
V86MMGR_Get_Xlat_Buff_State
V86MMGR_Set_Xlat_Buff State
V86MMGR_Get_VM_Flat_Sel
V86MMGR_Get_Mapping_Info
V86MMGR_Map_Pages
V86MMGR_Free_Page_Map_Region

Microsoft Confidential April 1, 1990

40-2 Virtual Device Adaptation Guide

40.1 Initialization Services

These services are used when a VM is created except for the V86MMGR_Get_Version,
which may be used anytime.

V86MMGR_Get_Version

Description

Entry

Exit

Uses

Returns the version of the VE6MMGR VxD.
None

AH = Major version number
AL = Minor version number

Carry flag clear

EAX, Flags

V86MMGR_Allocate_V86_Pages

Description

Entry

Exit

Uses

April 1, 1990

This service is used by the SHELL VxD to set up the initial base memory of a VM when it
is created. It allocates the memory, maps it into the virtual machine, and does a local As-
sign_Device_V86_Pages for the region allocated.

EBX = VM handle

ESI = Desired size of VM address space in K bytes
EDI = Minimum size of VM address space in K bytes
ECX = Flags, see bit definitions in VS6MMGR.INC

NOTE The ESl and EDI sizes include the 0-First_VM_Page region of V86 address space.

If carry set then
ERROR: Could not allocate memory
else
Memory allocated and mapped into VM
EAX = ACTUAL number of pages allocated and mapped (size of VM). Notice that this
size does not include the space from 0-First VM_Page

EAX Flags .

Microsoft Confidential Beta Release

V86 Mode Memory Manager Device Services 40-3

V86MMGR_Set_EMS_XMS_Limits

Description

Entry

Notes

Exit

Uses

This service is used by the SHELL VxD to set the EMS and XMS limit parameters for a
VM.

EBX = VM handle to set limits of
EAX = Min EMS kilobytes

EDX = Max EMS kilobytes

ESI = Min XMS kilobytes

EDI = Max XMS kilobytes

ECX = Flag bits, see VS6MMGR.INC

To disable access to XMS or EMS memory, set Max = Min = 0
To set only one of the two limits, set the OTHER Max = Min = -1
The XMS Limit does not include the HMA.

If carry set then could not set limits

Insufficient memory for Min allocation request

note that some of the limits may have been set. To Find

out what happened, use V86MMGR_Get_EMS_XMS_Limits
else limits set

Flags

V86MMGR_Get_EMS_XMS_Limits

Description

Entry

Exit

Uses

Beta Release

This service is used by the SHELL VxD to get the EMS and XMS limit parameters for a
VM.

EBX = VM handle to get limits of

EAX = Min EMS kilobytes (always a multiple of 4)
EDX = Max EMS kilobytes (always a multiple of 4)
ESI = Min XMS kilobytes (always a mulitiple of 4)
EDI = Max XMS kilobytes (always a multiple of 4)
ECX = 0 if access to the HMA is disabled

ECX =1 if access to the HMA is enabled

EAX, ECX, EDX, ESI, EDI, Flags

Microsoft Confidential April 1, 1990

40-4 Virtual Device Adaptation Guide

40.2 API Translation and Mapping

One of the major roles of the VS6MMGR is to provide a mechanism for other VxDs to
translate API calls made from application software running in protected mode into the V86
portion of the virtual machine. The term “API translation” is used in this document to de-
scribe the conversion of an API call in protected mode into a corresponding V86 mode
call. Because enhanced Windows runs under a standard DOS, DOS and BIOS calls must
be reflected to V86 mode code to handle the call. There is a layer of code in the DOSMGR
device that converts protected mode DOS calls into V86 calls. :

The main translation service, V86MMGR _Xlat_AP], is a simple interpreter that copies
data into a buffer in the V86 address space and converts pomters to point to the copied
data. Note that the data is copied. The memory is not mapped into V86 memory by chang-
ing page tables.

Other services are provided to allocate buffer space, map memory into global V86 address
space, and perform other functions necessary for API translation.

Note that the translation services only work for the current VM and most must be called

_ when running in the protected mode portion of the VM.

40.2.1 Basic API Translation

Many APIs require little or no translation. Others are extremely complex and require a
great deal of coding. The simplest API is one that has no pointers. A software interrupt
based API, in which all parameters are passed in the EAX, EBX, ECX, EDX, ESI, EDI,
and EBP registers and flags, requires no special translation software. By default, enhanced
Windows will reflect an interrupt that is executed in protected mode into V86 mode. For
example, the BIOS printer interface (Int 17h) requires no translation code since all APIs
are register-based with no pointers.

However, most APIs have at least some calls that take pointers as parameters. For ex-
ample, to open a file through DOS, you must point at the name of the file to open with the
DS:DX registers. Since the address that a protected mode program will pass in DS:DX is
not usually addressable in the V86 poruon of the VM, there must be code that copies the
filename into a buffer that is addressable in V86 mode so that DOS can access the
filename.

40.2.2 Complex API Translation

April 1, 1990

Some APISs are too complex or their buffers are too large to be handled by the
V86MMGR_Xlat_API service. The DOS Exec function takes a pointer to a data structure
that contains more pointers. This API requires special code to translate the pointers in the
data structure and to copy the data that those pointers point to into V86 mode memory.

The DOS read and write file functions can have buffers as large as 64K. The typical
V86MMGR translation copy buffer is 4K. Therefore, these calls require code to d1v1de the
call into several smaller reads or writes in V86 mode.

Microsoft Confidential Beta Release

V86 Mode Memory Manager Device Servifes 40-5

40.2.3 Hooking The Interrupt

Beta Release

Since the translation code should be the last protected mode handler you will need to hook
the PM interrupt vector (using the Hook_PM_Int_Vector service) during the Sys_Criti-
cal_Init or Device_Init phases of initialization. All translation code should be initialized
before the Init_Complete phase of initialization so that the Exec_VxD_Int service (pro-
vided by the VMM) can be used during this phase. Note that the VSGMMGR translation
services (except for Set_Mapping_Info) should not be called during Sys_Critical_Init or
Device_Init.

By hooking the interrupt vector instead of using the Hook_PM_Int_Chain service you
will allow protected mode applications to hook software interrupts “in front” of your trans-
lation code. This is very important for the Windows kernel since it needs to monitor the ac-
tivity of Windows applications’ API calls.

Sample Code

The code for a typical translation VxD looks like this:

VxD_ICODE_SEG
BeginProc My_Xlat_Init

mov eax, My_Translation_Int_Number
VMMcall Get_PM_Int_Vector

mov [Chain_Segment], cx

mov [Chain_0ffset], edx

mov esi, OFFSET32 My_Xlat_Procedure
VMMcall Allocate_PM_Call_Back

mov ecx, eax

movzx . edx, Cx

shr ecx, 16

mov eax, My_Translation_Int_Number
VMMcall Set_PM_Int_Vector

clc

ret

EndProc My_Xlat_Init
VxD_ICODE_ENDS

VxD_CODE_SEG
BeginProc My_Xlat_Procedure
movzx eax, [ebp.Client_AH]

cmp eax, My_Max_API_Number

ja Chain_To_Next_Handler

VMMcall Simulate_Iret

mov edx, My_Trans_Script_Table[eax*4]
— VxDcall VB6MMGR_X1at_API

ret

Chain_To_Next_Handler:
movzx ecx, [Chain_Segment]
jecxz Reflect_To_V86_Now
mov edx, [Chain_0Offset]
VMMcall Simulate_Far_dJdmp

Microsoft Confidential April 1, 1990

40-6 Virlual Device Adapiation Guide
L]

ret

Reflect_To_V86_Now:
VMMcall Begin_Nest_V86_Exec
mov eax, My_Translation_Int_Number
VMMcall Exec_Int
VMMcall End_Nest_Exec

. ret
EndProc My_Xlat_Procedure
VxD_CODE_ENDS

If the value in AH is not translated by this handler then it will be reflected to the next pro-
tected mode interrupt handler. If there is not another PM interrupt handler (code segment is
zero) then the interrupt is immediately reflected to V86 mode.

You will note that My_Xlat Procedure calls the Simulate_Iret service before it calls
V86MMGR_Xlat_APL If you plan to “eat” an interrupt it is usually best to call this serv-
ice first. If the iret was simulated after the call to VS6MMGR_Xlat_API then any flags re-
turned by the V86 interrupt handler would be destroyed (an iret pops flags from the
interrupt stack frame).

40.2.4 Mapping vs. Copying

Some VxDs need to use the paging mechanism of the 386 to map pages from extended
address space into the 1MB V86 address space of every virtual machine. The Virtual Net-
BIOS Device uses the mapping services when an asynchronous receive is issued so that
the proper physical memory will be npdated regardless of which VM is currently running.
‘When memory is mapped using V86MMGR_Map_Pages it will be mapped to the same
linear address in every virtual machine. Thus it is best to avoid using these services.

Do not use mapping as an alternative to copying just because you think mapping seems
easier. It is faster to copy memory than to map it since the memory manager does not need
to perform any page table mapping and locking. Mapping also uses a lot of address space
(although it requires no memory). The mapping services should only be used for APIs that
require memory mapped to the same address in every VM.

Note that the mapping services allow memory from one VM’s V86 address space to be
mapped into all VMs at a common address. Don'’t use this for interprocess communication.
It will eat mapping space that may be required by other devices. If you want to design an
IPC interface, either make it work for PM applications (which can share memory) or copy
the data.

40.2.5 Writing Your Own Translation Procedures

April 1, 1990

Often, it is impossible to translate part or all of an API using the supplied macro interpre-
ter. Therefore you may need to write procedures that do all or part of the translation. Ex-
amples of calls that require extra code are the DOS read and write commands and the get
and set interrupt vector commands. The DOS commands to get and set interrupt vectors be-
have differently in protected mode since they must hook the protected mode interrupt vec-
tors. These calls are never reflected to the “real” DOS running in V86 mode.

Microsoft Confidential Beta Release

V86 Mode Memory Manager Device Services 40-7

The DOS read and write file commands can use a buffer as large as 64K. Since the transla-
tion buffers can be as small as 4K, reads and writes must be divided before being reflected
to DOS.

Since most APIs have some interfaces that can be handled by the VS6MMGR_Xlat_API
script language and others that must be translated by custom procedures you will probably
want to dispatch to the custom procedures using the Xlat_ API_Jmp_To_Proc macro.

To adjust V86 segment reglsters you should leave the VM in PM_Exec_Mode and change
the Alt_Client registers. When in PM_Exec_Mode these registers contain the V86 seg-
ment registers and stack pomter They “will contain the PM segment registers and stack
pointer when the VM is in V86_Exec_Mode.

40.2.6 Sample API Translation

Entry

Exit

Entry

Exit

Entry

Exit

Beta Release

This sample API is for an imaginary, incredibly simple network. The functions allow you
to connect to a server and send or receive data. Assume that the network supports the fol-
lowing API from software interrupt 92h:

Function 0: Get version
AH=0

AH = Major version
AL = Minor version

Function 1: Get Server Name

AH=1
DS:DX = Pointer to a 16 byte buffer to hold name

None
Function 2: Connect To New Server

AH=2
DS:DX = Pointer to null terminated string that is name of server

None

Microsoft Confidential - April 1, 1990

40-8 Virtual Device Adapiation Guide

Entry

Exit

April 1, 1990

Function 3: Read/Write Data

AH=3

ES:BX = Pointer to command block with following structure:
Offset Size Description

0 1 Command

1 2 _ Buffer size

3 4 Buffer pointer
Command field values:

0 = Read data from server
1 = Write data to server

None

Since function 0 is register based it requires no translation other than reflecting the inter-
rupt to V86 mode. Functions 1 and 2 both can be translated by scripts using the
V86MMGR_XIlat_API service. Function 3 requires a custom translation procedure.

VxD_DATA_SEG
Fctn_@_Script:
X1at_API_Exec_Int 92h
Fctn_1_Script: Xlat_API_Fixed_Len ds, dx, 16
Xlat_API_Exec_Int 92h
Fctn_2_Script: Xlat_API_ASCIIZ ds, dx
X1at_API_Exec_Int 92h
Fctn_3_Script:
X1at_API_Jmp_To_Proc Trans_Fctn_3
Copy_Command_Block_Script:
X1at_API_Fixed_Len es, bx, 7
Xlat_API_Exec_Int 92h

Xlat_Ptr_Table:

dd OFFSET32 Fctn_@_Script
dd OFFSET32 Fctn_1_Script dd
dd OFFSET32 Fctn_3_Script

VxD_DATA_ENDS

VxD_CODE_SEG

BeginProc Translate_Sample_API
movzx edx, [ebp.Client_AH]
cmp edx, 3
Ja Chain_To_Next_Handler
VMMcall Simulate_Iret
mov edx, X1at_Ptr_Table[edx*4]
VxDcall V86MMGR_X1at_API

Microsoft Confidential

OFFSET32 Fctn_2_Script

Beta Release

V86 Mode Memory Manager Device Services 40-9
L

Jjc lransiation_trror ret
Chain_To_Next_Handler:

movzx ecx, [Chain_Segment]

jecxz Reflect_To_V86_Now

mov edx, [Chain_0ffset]
VMMcall Simulate_Far_dJmp
ret

Reflect_To_V86_Now:
VMMcall Begin_Nest_V86_Exec
mov eax, 92h
VMMcall Exec_Int VMMcall
End_Nest_Exec
ret
Translation_Error:
Debug_Out “Unable to translate sample API"
VMMjmp Crash_Cur_VM
EndProc Translate_Sample_API

BeginProc Trans_Fctn_3

push fs
push gs
pushad
; Get pointer to command block
mov ax, (Client_ES*1080h)+Client_BX

VxDcall V86MMGR_Load_Client_Ptr
; If command is invalid then fail the call
mov al, BYTE PTR fs:[esi]

cmp al, 1
ja Can_Not_Translate
; Get buffer size and pointer from command block
mov dx, fs
mov gs, dx

mov edx, esi movzx ecx, WORD PTR gs:[edx+1]
mov fs, WORD PTR gs:[edx+5]
movzx esi, WORD PTR gs:[edx+3]
; Allocate a buffer, copying data if command is a write

bt eax, @
VxDcall VBG6MMGR_Allocate_Buffer
Jjc Can_Not_Translate

mov DWORD PTR gs:[edx+3], edi
; Copy the command block and execute the interrupt
push edx
mov edx, OFFSET32 Copy_Command_Block_Script
VxDcall V86MMGR_X1at_API
pop edx
Jc Can_Not_Translate
; Free the buffer, copying data if command is a read -
mov al, BYTE PTR gs:[edx]
bt eax, @
cme
VxDcall V86MMGR_Free_Buffer
; Restore original pointer in command block
mov WORD PTR gs:[edx+5], fs

Beta Release Microsoft Confidential April 1, 1990

40-10 Virtual Device Adaptation Guide

mov WORD PIR gs:Ledx+3]), si
clc
Trans_F3_Exit:
popad
pop gs
pop fs
ret
Can_Not_Translate: - stc
Jjmp Trans_F3_Exit
EndProc Trans_Fctn_3

VxD_CODE_ENDS

V86MMGR_Set_Mapping_Info

Description

Entry

Exit

Uses

This service must be called during the Sys_Critical_Init or Device_Init phase of device
initialization. It is used to define the minimum amount of translation buffer and global V86
map address space that will be required. VxDs such as the VNETBIOS use this service to
ensure that there will be adequate global page mapping space to map network buffers. By
default the translation copy buffer size is 4K and there are no global mapping pages.

Multiple VxDs may call this service. The VE6MMGR will use the largest value for each of
the parameters when allocating buffer space. In other words, if 10 VxDs request a two-
page copy buffer then the copy buffer will be two pages (not 20).

Note that while a large copy buffer can speed up operations such as DOS reads, it requires
extra memory to be allocated for every VM. Therefore, you should try to get by with a
copy buffer size of one page if possible.

AL = Minimum number of pages required for default copy buffer
AH = Maximum number of pages desired for default copy buffer
BL = Minimum number of pages required for global page mapping region
BH = Maximum number of pages desired for global page mapping region

None

Flags

V86MMGR_Xlat_API

Description

April 1, 1990

This service is actually a simple interpreter that executes scripts that are created using mac-
ros defined in VB6MMGR.INC. The macros are described in detail below.

Microsoft Confidential Beta Release

V86 Mode Memory Manager Device Services 40-11

Entry

Exit

Uses

Beta Release

EBX = Current VM handle
EBP -> Client register structure
EDX -> Script to translate

EDX is destroyed
If carry set then

Error while executing script
else .
Script has been executed successfully

EDX, Flags

Xlat_AP[_Exec_iInt [int Number]

Terminates the interpretation of the translation script and reflects the specified interrupt
into Virtual 8086 mode. When the interrupt returns then it will return to the caller.

DOS_No_X1at_API:
X1at_API_Exec_Int 21h

Xlat_API_Fixed_Len [Segment], [Offset], [Length Constant]

Copies a fixed length buffer from extended memory into the translation buffer and fixes up
the V86 Seg:Offset.

This service will fail if there is not enough room in the translation buffer to copy the data.

For example, the DOS Get Current Directory function (AH=47h), must be called with
DS:SI pointing to a 64-byte buffer. The following script would perform the approptiate
translation:

DOS_Get_Current_Directory_API:
X1at_API_Fixed_Len ds, si, 64
Xlat_API_Exec_Int 21h

Xlat_API_Var_Len [Segment], [Offset], [Length Register]

Copies a variable number of bytes from extended memory into the translation buffer. This
is used for APIs where the caller places the buffer size in a register.

This service will fail if there is not enough room in the translation buffer to copy the data.

For example, the Int 10h write string function (AH=0Eh), must be called with ES:BP
pointing to the string to print and CX equal to the number of bytes to display. The follow-
ing script would translate this call:

Int_10h_Write_String:

Xlat_API_Var_Len es, bp, cx
X1at_API_Exec_Int 16h

Microsoft Confidential April 1, 1990

40-12 Virtual Device Adaptation Guide

April 1, 1990

Xlat_API_Calc_Len [Segment], [Ptr_0Off], [Calc_Proc_Addr]

Used to copy buffers that change in size. You must specify the selector:offset register pair
that points to the buffer and the name of a procedure that will calculate the actual buffer
size. The procedure will be called with FS:ESI pointing to the buffer and must return with
ECX equal to the number of bytes to copy. The procedure must preserve all registers ex-
cept ECX.

This service will fail if there is not enough room in the translation buffer to copy the data.

For example, the DOS buffered keyboard input command (AH=0Ah) can have a buffer
size from 3 to 257 bytes long. The first byte of the buffer specifies the length of the input
buffer as follows:

Byte Contents

0 Maximum number of characters to read (1-255); this value must be set
by the process before Function 0Ah is called.

1 Count of characters read.

2-(n+2) Actual string of characters read, including the carriage return;

n = number of bytes read.

The translation code for this API would look something like this:

VxD_DATA_SEG

Buff_Keyboard_Input_API:
X1at_API_Calc_Len ds, dx, Calc_Input_Buff_Size
X1at_API_Exec_Int 21h

VxD_DATA_ENDS

VxD_CODE_SEG
BeginProc Int_21_PM_To_V86_Translator

cmp [ebp.Client_AH], BAh

Jne Not_Buffered_Keyboard_Input

VMMcall Simulate_Iret

mov edx, OFFSET32 Buff_Keyboard_Input_API
VxDcall V86MMGR_X1at_API

ret

EndProc Int_21_PM_To_V86_Translator
BeginProc Calc_Input_Buff_Size
movzx ecx, BYTE PTR fs:[esi]
add ecx, 2

ret

EndProc Calc_Input_Buff_Size
VxD_CODE_ENDS

Microsoft Confidential Beta Release

V86 Mode Memory Manager Device Services 40-13

Beta Release

Xlat_APL_ASCIIZ [Ptr_Seg], [Ptr_0Off]

Copies a null-terminated string into V86 memory and adjusts the V86 pointer appro-
priately. Note that the string will not be copied back after the call is complete.

This service will fail if there is not enough room in the translation buffer to copy the string.

For example, the DOS Open File With Handle function (AH-3Dh), must be called with
DS:DX pointing to the name of the file to open. The followmg script could be used trans-
late the APL:

DOS_Open_File_With_Handle:
X1at_API_ASCIIZ ds, dx
X1at_API_Exec_Int 21h

Xlat_APl_Jmp_To_Proc [Proc_Name]

Terminates the interpretation of the translation script and transfers control to a user defined
procedure. The procedure can completely handle the API translation or can call
V86MMGR _Xlat_API again. This can be useful for APIs that have several sub-APIs
such as the DOS IOCTL calls.

The procedure will be called with EBX equal to Current VM Handle, EBP pointing to
Client register structure, and EDX points to the next entry in the translation script (if there
is one). It must preserve every register except for EDX. Therefore the procedure must pre-
serve EAX, EBX, ECX, ESI, EDI, EBP, DS, ES, FS, and GS.

Your procedure should return with the carry flag clear if the translation was successful.
Otherwise, it should return with carry set to indicate an error.

Xlat_API_Return_Pir [Pir_Seg], [Plr_Off]

Used for calls that return a pointer to a structure. For 16-bit protected mode programs, if an
appropriate selector does not exist to map the call, then this service automatically creates
one. For 32-bit protected mode programs the selector returned will always be the
V86MMGR_VM_Flat_Selector and the offset will be adjusted. Note that although this
macro is placed before the Exec_Int macro in a translation script, the pointer is created
after the interrupt has been executed.

This service will fail if it can not create an appropriate LDT selector. V

For example, this service is used to translate Int 15h with AH=COh, which returns a pointer
in ES:BX that points to a hardware information structure on PS/2 machines. The following
script would return the appropriate pointer:

Get_Machine_Info:
X1at_API_Return_Ptr es, bx
X1at_API_Exec_Int 15h

Microsoft Confidential April 1, 1990

40-14 Virtual Device Adaptation Guide
L __|

April 1, 1990

Xlat_API_Return_Seg [Ptr_Seg]

Used for calls that return a segment. If an appropriate selector does not exist to map the
call then this service automatically creates one. Note that although this macro is placed
before the Exec_Int macro in a translation script, the selector is created after the interrupt
has been executed.

This service will fail if it can not create an appropriate LDT selector.

For example, this service is used to translate Int 15h with AH=C1h, which returns the seg-
ment of the EBIOS data area in ES. The following script would return a selector that
points to the EBIOS data area:

Get_EBIOS_Selector:
X1at_API_Return_Seg es
X1at_API_Exec_Int 15h

Translating Multiple Pointers

The interpreter can copy multiple buffers. For example, the following translation table
translates the DOS rename file call (AH = 56h):

Rename_API:
" X1at_API_ASCIIZ ds, dx
X1at_API_ASCIIZ es, di
X1at_API_Exec_Int 21h

The first instruction copies the null-terminated string (ASCIIZ string) that DS:DX points
to into the translation buffer in V86 memory, sets the V86 DS to the translation buffer seg-
ment, and changes DX to the offset in the buffer.

The second macro copies the ASCIIZ string that is pointed to by ES:(E)SI into V86
memory and adjusts the pointer accordingly.

The final macro terminates the interpretation of the script and reflects an Int 21h into the
V86 portion of the VM. When the Int 21h returns, both buffers will be freed.

You can combine any of the macros, although &ou should keep in mind that
Xlat_API_Exec_Int and Xlat_API_Jmp_To_Proc both terminate interpretation of the
current script.

WARNING You should always specify the exact length of a buffer or else strange things may occur.
For example, it is incorrect to translate an API that has a maximum buffer size of 128 bytes by using
the Xlat_API_Fixed_Len macro if the buffer can be smaller than 128 bytes. This can cause bugs if the
program has data that is ‘updated at interrupt time that is located past the end of the buffer.

For example, assume a program has the following data:

Buffer_Length db 64
Buffer_Data db 64 dup (?)
Microsoft Confidential Beta Release

V86 Mode Memory Manager Device Services 40-15

lime_Ut_lay dd "]
Other_Stuff db 500 dup (?)

Assume the program updates the Time_Of_Day field from the timer interrupt. If the trans-
lation code copies 128 bytes of data starting with Buffer_Length into V86 mode memory
and while processing the call a timer interrupt executes then the Time_Of_Day field will
be incremented. However, when the buffer is copied back the old time will be copied oh
top of the current (correct) Time_Of_Day field.

V86MMGR_Load_Client_Ptr

Description

Entry

Exit

Uses

This service will load FS:ESI with the specified Client_Seg:Offset. If the VM is running a
16-bit protected mode then the high word of the offset in ESI will be zeroed. Otherwise, if
the VM is running a 32-bit program or is in VxD_Exec_Mode then the high word of ESI
will not be zeroed. This allows most translation procedures to operate correctly without the
need to test the execution mode of the current VM.

The value passed in AX should be formed from the Client Register Structure equates. For
example, to load the VM'’s DS:(E)DX you would use the following code:

mov ax, (Client_DS * 10@h) + Client_DX
VxDcall VB86MMGR_Load_Client_Ptr
(FS:ESI -> Same address as Client_DS:(E)DX).

VM must be in protected mode

AH = Client segment register equate
AL = Client offset register equate
EBX = Current VM Handle

EBP -> Client register structure

FS:ESI -> Client’s buffer

FS, ESI, Flags

V86MMGR_Allocate_Buffer

Description

Beta Release

Allocates a portion of the current VM’s translation buffer and optionally copies data from
the PM pointer in FS:ESI into the allocated buffer.

Note that this service will map fewer bytes than the value specified in the ECX parameter
if the length of the buffer extends past the FS segment limit. Therefore, you need to pre-
serve the value returned in ECX from this service to use when deallocating the buffer
using V86MMGR_Free_Buffer. ,

Microsoft Confidential April 1, 1990

40-16 Virtual Device Adaptation Guide
.]

Entry

Exit

Uses

The buffers are maintained as a stack. Therefore, the last buffer allocated must be the first
buffer freed.

Current VM must be in protected mode
EBX = Current VM Handle
EBP -> Client register structure
ECX = Number of bytes to allocate
FS:ESI = Pointer to extended memory to copy
If carry flag is set then
Source buffer will be copied into V86 buffer
else
Source buffer will not be copied into V86 memory

If carry set then
ERROR: Could not allocate buffer (out of space)

else
ECX = Actual number of bytes allocated (<= original ECX)
High WORD of EDI = V86 segment of translation buffer
Low WORD of EDI = Offset of allocated buffer

ECX, EDI, Flags

V86MMGR_Free_Buffer

Description

Entry

Exit

Uses

April 1, 1990

Deallocates a buffer that was allocated by the VS6MMGR _Allocate_Buffer service. It
will optionally copy data from the translation buffer to the buffer pointed to by FS:ESI.

The buffers are maintained as a stack. Therefore, the last buffer allocated must be the first
buffer freed.

Current VM must be in protected mode
EBX = Current VM Handle
EBP -> Client register structure
ECX = Number of bytes to free (returned from Allocate_Buffer)
FS:ESI = Pointer to extended memory buffer
If carry flag is set then
Buffer will be copied from V86 memory before buffer freed
else
Buffer will not be copied

None

Flags

Microsoft Confidential Beta Release

V86 Mode Memory Manager Device Services 40-17

V86MMGR_Get_Xlat_Buff_State

Description This service returns information about the current mapping buffer status.

WARNING Always call this service to find the segment of the translation buffer. Since the buffer can
move at any time you should never make any assumptions about the size or location of the buffer.

Entry EBX = VM handle (any VM handle valid)

Exit EAX = V86 segment of translation buffer (high word 0)
ECX = Number of bytes of buffer not in use
EDX = Total size of buffer in bytes (max size 10000h)

Uses EAX, EBX, ECX, Flags

V86MMGR_Set_Xlat_Buff_State

Description This service is used to switch to an alternate mapping buffer. This feature is provided for
protected mode terminated-and-stay resident programs which may need to switch to a pri-
vate translation buffer before executing protected mode DOS calls since the default buffer
may be full.

You should get the current translation buffer state, set the new state, perform any DOS call,
and then set the state back to the original values.

Entry EBX = VM handle (any VM handle valid)
EAX = V86 segment of translation buffer (high word 0)
ECX = Number of bytes of buffer not in use
EDX = Total size of buffer in bytes (max size 10000h)

Exit None

Uses Flags

V86MMGR_Get_VM_Flat_Sel

Description This service retums a selector that points to the base of the specified VM’s V86 address
space. This is useful for 32-bit applications since this selector can be used to point to any
address in the VM’s V86 address space. The selector is writeable and has a limit of
11,000h bytes so that the high memory area is also addressable.

Beta Release Microsoft Confidential April 1, 1990

40-18 Virtual Device Adaptation Guide

Entry

Exit

Uses

The selector returned is in the specified VM’s LDT. Therefore, the selector is only valid to
use when the VM is running (is the current VM).

EBX = VM handle (any VM handle is valid)
EAX = Selector with base at high linear addr of V86 memory (high word 0)

EAX, Flags

V86MMGR_Get_Mapping_Info

Description

Entry

Exit

This service will return information about the current page mapping areas.
None

CH = Number of pages reserved for global mapping (total)
CL = Number of pages available (not in use) for global mapping

V86MMGR_Map_Pages

Description

Entry

Exit

Uses

April 1, 1990

This service maps the specified buffer into every VM at the same address using page map-
ping. If the contents of memory are changed in one VM, the change will be reflected in the
original buffer as well in all other VM.

ESI -> Linear address to map
ECX = Number of bytes to map

If carry flag is set then
ERROR: Could not map memory
else _
Memory is mapped
ESI = Map handle (used to free the map region)
EDI = Linear address of map buffer (< 1 meg)

ESI, EDI, Flags

Microsoft Confidential Beta Release

V86 Mode Memory Manager Device Services 40-19

V86MMGR_Free_Page_Map_Region

Description This service will “unmap” pages that were mapped by the VS6MMGR_Map_Pages serv-
ice.

Entry ESI = Map handle to free

Exit Old map buffer address contains null memory
ESI is undefined

Uses ESI, Flags

Beta Release Microsoft Confidential April 1, 1990

40-20 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Chapter

April 1, 1990

Virtual DMA Device
(VDMAD) Services

The VDMAD virtualizes DMA (Direct Memory Access) I/O for standard DMA channels
for all VMs. By default, it handles all programmed I/O for the DMA controllers and arbi-
trates I/O to the physical DMA ports so that more than one VM can be using the same
DMA channels at the same time. In some cases, the default handling of DMA channels is
not desirable. To handle these cases, VDMAD provides a number of services to enable
another VxD to take control of the virtualization of specific DMA channels.

VDMAD also provides some services that can be used by Bus Master devices that have
their own DMA controllers. These devices still need to be able to lock and unlock DMA re-
gions in memory and determine the physical addresses of these regions. Bus Master dev-
ices can also make use of the buffer services, if they cannot otherwise scatter/gather a
linear region that is not physically contiguous.

The VDMAD services available for Bus Master use are as follows:

= VDMAD_Copy_From_Buffer
m VDMAD_Copy_To_Buffer

8 VDMAD_Default_Handler

8 VDMAD_Disable_Translation
8 VDMAD_Enable_Translation
= VDMAD_Get_EISA_Adr_Mode
8 VDMAD_Get_Region_Info

® VDMAD_Get_Version

» VDMAD_Get_Virt_State

= VDMAD_Lock_DMA_Region
® VDMAD_Mask_Channel

= VDMAD_Release_Buffer

8 VDMAD_Request_Buffer

® VDMAD_Reserve_Buffer_Space
= VDMAD_Scatter_Lock

Microsoft Confidential Beta Release

41-2 Virtual Device Adaptation Guide '
= VDMAD_Scatter_Unlock
5 VDMAD_Set EISA_Adr_Mode
= VDMAD_Set_Phys_State
8 VDMAD_Set_Region_Info
= VDMAD_Set_Virt State
8 VDMAD_Unlock_DMA_Region
= VDMAD_UnMask_Channel
8 VDMAD_Virtualize_Channel

VDMAD_Copy_From_Buffer

Description This service allows another device to copy data from the VDMAD buffer to the actual
DMA region associated with the buffer. This service is called after VDMAD_Re-
quest_Buffer, after a memory write transfer and before VDMAD_Release_Buffer.

Entry EBX = buffer ID
ESI =region linear
EDI = offset within buffer for start of copy
ECX =size

Exit Carry clear
data copied from buffer into DMA region
Carry set
AL = 0Ah (DMA_Invalid_Buffer) - invalid buffer
id supplied
= 0Bh (DMA_Copy_Out_Range) - (ESI + ECX) is
greater than buffer size

Uses Flags

VDMAD_Copy_To_Buffer

Description This service allows another device to copy data into the VDMAD buffer from the actual
DMA region associated with the buffer. This service is called after VDMAD_Re-
quest_Buffer and before starting a memory read transfer.

Entry EBX = buffer id
ESI =region linear

April 1, 1990 Microsoft Confidential Beta Release

Virtual DMA Device (VDMAD) Services 41-3

Exit

Uses

EDI = offset within buffer for start of copy
ECX =size

Carry clear
data copied from DMA region into buffer

Carry set
AL =0Ah (DMA_Invalid_Buffer) - invalid buffer
id supplied
= 0Bh (DMA_Copy_Out_Range) - (ESI + ECX) is
greater than buffer size

Flags

VDMAD_Default_Handler

Description

Entry

Exit

Uses

Default DMA channel I/O callback routine. This routine receives notifications of virtual
state changes and handles setting up the physical state to start DMA transfers.

get virtual state
If channel virtually unmasked then
lock region
If lock fails then
request buffer
If memory read opeartion then
copy data to buffer
set phyical state
physically unmask channel

EAX = DMA handle
EBX = VM handle

None

Anything

VDMAD_Disable_Translation

Description

Beta Release

This service disables the automatic translation done for the standard DMA channels.It is
necessary, if a V86 app or driver, or a PM app uses the DMA services thru INT 4BH to de-
termine actual physical addresses for DMA transfers. A disable count is maintained, so a
matching call to VDMAD_Enable_Translation is required for each call to this service to
re-enable translation.

Microsoft Confidential April 1, 1990

41-4 Virtual Device Adaptation Guide

Entry

Exit

Uses

EAX = DMA handle
EBX = VM Handle

Carry clear
automatic translation is disable for the channel

Carry set
the disable count overflowed

Flags

VDMAD_Enable_Translation

Description

Entry

Exit

Uses

This decrements the disable count associated with a standard DMA channel. If the disable
count goes to 0, then automatic translation is re-enabled. See VDMAD_Disable_Transla-
tion for further information.

EAX = DMA handle
EBX = VM Handle

Carry clear)
service completed successfully
Z-flag clear, if automatic translation is re-enabled

Carry set
attempt to enable when translation already enabled

Flags

VDMAD_Get_EISA_Adr_Mode

Description

Entry

Exit

April 1, 1990

Get EISA extended mode - the hardware doesn’t allow for reading the extended mode for a
channel, so VDMAD defaults to the ISA defaults (channels 0-3 are byte channels and 5-7
are word channels with word addresses and counts) An INI switch can specify an alternate
setting.

EAX = Channel # (0..7) or
DMA Handle

CL =0 - 8-bit I/O, with count in bytes

CL =1 - 16-bit I/O, with count in words and adr shifted
CL =2 - 32-bit I/O, with count in bytes

CL =3 - 16-bit I/O, with count in bytes

Microsoft Confidential Beta Release

Uses

Virtual DMA Device (VDMAD) Services 41-5
|

ECX, Flags

VDMAD_Get_Region_lInfo

Description

Entry

Exit

Uses

Get information about the current region assigned to a DMA handle. This information can
be used by a handler to call the following services:

= VDMAD_Unlock_DMA_Region

= VDMAD_Release_Buffer

u VDMAD_Copy_To_Buffer

= VDMAD_Copy_From_Buffer

EAX = DMA handle

BL =bufferid

BH =pages locked (0 = FALSE, else TRUE)
ESI =region linear

ECX = size in bytes

EBX, ECX, ESI

VDMAD_Get_Version

Description

Entry

Exit

Uses

Beta Release

Returns the version of the Virtual DMA Device
None

AH = Major version number

AL = Minor version number

ECX = Buffer size in bytes (0, if not allocated; a buffer will always
be allocated, but it doesn’t happen until Device_Init)

Carry flag clear

EAX, Flags

Microsoft Confidential April 1, 1990

41-6 Virtual Device Adaptation Guide
O

VDMAD_Get_Virt_State

Description

Entry

Exit

Uses

This service allows a channel owner to determine the current virtual state of the channel.
The virtual state consists of all the information necessary to physically program the DMA
channel for a DMA transfer (linear address of target region, byte length of region, mode of
transfer, and state of mask bit and software request bit) This state information reflects how
the VM thinks the hardware is currently programmed.

EAX = DMA handle
EBX = VM handle

If translation is enabled
ESI = high linear address of the user’s DMA region
(high linear is used so that the DMA can proceed
even if a different VM is actually running at the
time of the transfer)
Else
ESI = physical byte address programmed (shifted left 1,
for word ports)
ECX = count in bytes
DL= mode (same as 8042 mode byte with channel # removed
and DMA_masked & DMA _requested set as
appropriate: :
DMA_masked channel masked and not ready
) for a transfer
DMA_requested software request flag set)
DH= extended mode (ignored on non-PS2 machines that don’t
have extended DMA capabilities)

ESI, ECX, EDX, flags

VDMAD_Lock_DMA_Region

Description

April 1, 1990

This service attempts to lock a region of memory for a DMA transfer. It is called before a
DMA transfer is started (before the physical state is set for a channel and before it is un-
masked.)

It first verifies that the region is mapped to contiguous pages of physical memory.
Then it determines whether the region will result in a DMA bank (page)

wrap

On AT class machines each channel has a base address register and a page addfess
register. The base address register is incremented after each byte or word transfered. If
the increment of this 16 bit register results in the roll over from FFFFh to 0, then the

Microsoft Confidential Beta Release

Virtual DMA Device (VDMAD) Services 41-7

Entry

Uses

transfer wraps to the start of the DMA bank because the page register is not updated.
Normally DOS watches for this condition and adjusts INT 13h parameters to split trans-
fers to avoid this wrap, but DOS doesn’t know anything about the difference between
linear and physical addresses under enhanced Windows, so VDMAD checks again to
prevent wrap from occurring undesirably.

If all of these checks are okay, then the service calls the memory manager to lock the physi-
cal pages.

NOTE This routine does not check to see if the region is within some physical maximum constraint.
If the region is lockable, then it locks the memory, and it is up to the caller to check to see if the physi-
cal region is acceptable. If the region is not acceptable, then the caller should unlock the region and
perform a buffered DMA transfer.

ESI = linear address of actual DMA region
ECX =# of bytes in DMA region '
DL = 1b, if region must be aligned on 64K page boundary
= 10b, if region must be aligned on 128K page boundary

Carry set, if lock failed
ECX = # of bytes that are lockable in the region
(starting from ESI)
AL =1 (DMA_Not_Contiguous), region not contiguous
=2 (DMA_Not_Aligned), region crossed physical
alignment boundary
=3 (DMA_Lock_Failed), unatle to lock pages
ELSE
EDX = physical address of the DMA region
the region has been locked

EAX, ECX, EDX, Flags

VDMA_D_Mask_Channel

Description

Entry

Exit

Uses

Beta Release

This service physically masks a channel so that it will not attempt any further DMA trans-
fers.

EAX = DMA handle
None

Flags

Microsoft Confidential April 1, 1990

41-8 Virtual Device Adaptation Guide

VDMAD_Release_Buffer

Description

Entry

Exit

Uses

Release the VDMAD buffer assigned to a DMA channel from a previous VDMAD_Re-
quest_Buffer call. This routine exits from a critical section and the DMA buffer will now
be available for other users. Any data in the buffer is not automatically copied, so
VDMAD_Copy_From_Buffer must be called if the data is important.

EBX = Buffer ID

Carry clear
buffer released
Carry set
bad ID

Flags

VDMAD_Request_Buffer

Description

Entry

Exit

Uses

This service reserves the DMA buffer for a DMA transfer.

ESI = linear address of actual DMA region
ECX =# of bytes in DMA region

Carry clear
EBX = buffer ID
EDX = the physical address of the buffer
Carry set
=5 (DMA_Buffer_Too_Small), region request is
too large for buffer
= 6 (DMA_Buffer_In_Use), buffer already in use

EAX, EBX, ESI, Flags

VDMAD_Reserve_Buffer_Space

Description

Beta Release

This service allows other devices that are going to handle DMA to make sure that
VDMAD allocates a buffer large enough for any transfers that they might require. It also
allows a device to specify a maximum physical address that would be valid for the
device’s DMA requests (such as 1Mb for an XT.) Durmg the Device_Init phase of initiali-
zation, VDMAD will allocate the DMA buffer using all of the contraints specified by other
devices.i.e. the buffer will be at least as big as the largest size specified by the calls to this
service, and it will be allocate below the lowest maximum physical addresses specified.

Microsoft Confidential April 1, 1990

Virtual DMA Device (VDMAD) Services 41-9

Entry

Exit

Uses

This service is only available during Sys_Critical_Init.

EAX = # of pages requested
ECX = maximum physical address that can be included in a
DMA transfer; 0, if no limit.

None

Flags

VDMAD_Scatter_Lock

Description

Entry

Exit

Uses

Beta Release

This service attempts to lock all pages mapped to a DMA region and return the actual
physical addresses of the pages.

EBX = VM Handle

AL =0, if the DDS table should be filled with physical
addresses and sizes of the physical regions that
make up the DMA region

AL = 1, if the DDS table should be filled with the actual
page table entries

AL =3, if the DDS table should be filled with the actual
page table entries and not present pages should not
be locked

EDI -> extended DDS (DMA Descriptor Structure)

Carry clear
Z-flag set

whole region was locked successfully
Z-flag clear
partial region locked

Carry set
nothing locked

EDX = # of table entries needed to describe whole region

DDS_size = # of bytes locked

DDS table has been updated

if request was for page table copy (AL=1 OR 3), then
ESI = offset into first page for start of the region

EDX, ESI, Flags

Microsoft Confidential April 1, 1990

41-10 Virtual Device Adaptation Guide)
L]

VDMAD_Scatter_Unlock
This service attempts to unlock all pages locked by a previous call to VDMAD_Scat-

Description

Entry

Exit

Uses

ter_Lock

EBX = VM Handle
AL =0, if the DDS table should be filled with physical
addresses and sizes of the physical regions that
make up the DMA region
AL = 1, if the DDS table should be filled with the actual
page table entries
AL = 3, if the DDS table should be filled with the actual
page table entries and not present pages should not
be locked
EDI -> extended DDS (DMA Descriptor Structure)
(The table at the end of the DDS is not required, so
it is not necessary to maintain the table for this
unlock call.)

Carry clear
Lock counts have been decremented. If no other VxD’s

had pages locked, then the pages have been unlocked.
Carry set

The memory was not locked.

Flags

VDMAD_Set_EISA_Adr_Mode

Description

Entry

Exit

Uses

April 1, 1990

Set EISA extended mode

EAX = Channel # (0..7) or
DMA Handle
CL =0 - 8-bit I/O, with count in bytes
CL =1 - 16-bit I/O, with count in words and adr shifted
CL =2 - 32-bit I/O, with count in bytes
CL =3 - 16-bit I/O, with count in bytes

None

Flags

Microsoft Confidential

Beta Release

Virtual DMA Device (VDMAD) Services 41-11

VDMAD_Set_Phys_State

Description

Entry

Uses

This service programs the DMA controller state for a channel. All that it needs to know is
the desired mode. The location and size of the buffer is taken from the information passed
to the service VDMAD_Set_Region_Info which must be called previously.

EAX = DMA handle
EBX = VM handle
DL =mode

DH =extended mode

None

Flags

VDMAD_Set_Region_Info

Description

Entry

Exit

Uses

Set information about the current region assigned to a DMA handle. This service must be
called before calling VDMAD_Set_Phys_State.

EAX =DMA handle

BL =bufferid

BH =pages locked (0 = FALSE, else TRUE)
ESI =region linear

ECX = size in bytes

EDX = physical address for transfer

None

Flags

VDMAD_Set_Virt_State

Description

Entry

Beta Release

Modify the virtual state of a DMA channel. This is service is used when a channel owner
wants to change the virtual state of a channel from how the VM programmed it. This might
be used to split a DMA request into smaller pieces, etc.

EAX = DMA handle
EBX = VM handle
If translation is enabled
ESI = high linear address of the user’s DMA region

Microsoft Confidential April 1, 1990

41-12 Virtual Device Adaptation Guide

(high linear is used so that the DMA can proceed
even if a different VM is actually running at the
time of the transfer)
Else
ESI = physical byte address programmed (shifted left 1,
for word ports)
ECX =count in bytes
DL= mode (same as 8042 mode byte with channel # removed
and DMA_masked & DMA_requested set as
appropriate:
DMA_masked channel masked and not ready
for a transfer
DMA _requested software request flag set)
DH= extended mode (ignored on non-PS2 machines that don’t
have extended DMA capabilities)

Exit None

Uses Flags

VDMAD_Unlock_DMA_Region

Description This service unlocks the DMA region previously locked to a channel. It is called after a
DMA transfer is complete and the channel has been masked. So that the controller will not
attempt any further transfers to the programmed address.

Entry ESI = linear address of actual DMA region
ECX =# of bytes in DMA region

Exit Carry clear
memory unlocked
Carry set
error
Uses Flags

VDMAD_UnMask_Channel
Description This service physically unmasks a channel so that DMA transfers can proceed.

Entry EAX = DMA handle
EBX = VM Handle

April 1, 1990 Microsoft Confidential Beta Release

Exit

Uses

Virtual DMA Device (VDMAD) Services 41-13

VDMAD_Virtualize_Channel

Description

Entry

Exit

Uses

Callback

Beta Release

This service allows another VxD to claim ownership of a standard DMA channel. The new
owner registers a callback routine that will be called whenever the virtual state of the chan-
nel is changed as a result of I/O done in a VM. In some cases a device doesn’t want to
allow a VM to perform DMA to a channel at all (they will handle programming based on a
private AP, etc. instead of virtualized hardware I/O), so it is possible to pass a 0 to specify
a null callback routine. VDMAD will continue to trap the I/O for the channel, but won’t
ever change the physical state of the channel as a result of any VM I/O.

EAX is Channel #
ESI is I/O Callback procedure (0 = none)

Carry set if channel is already owned
ELSE
EAX is DMA handle

Flags

ENTRY
EAX = DMA handle
EBX = VM handle
Proc can modify EAX, EBX, ECX, EDX, ESI, EDI, and flags

EXIT
None

Microsoft Confidential April 1, 1990

41-14 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential : Beta Release

Appendixes

A Terms and Acronyms

B Understanding Modes

C Creating Distribution Disks for Driver
D Windows INT 2FH API

Beta Release Microsoft Confidential April 1, 1990

April 1. 1990 Microsoft Confidential Beta Release

Appendix A Terms and Acronyms

The following list explains the terms and acronyms that are found in the Device Development Kit

for Windows 3.0.

B

Banding The process of dividing a display surface
such as a page into smaller rectangles, composing
those individual bands within memory, and then
sending the output to the printer one band at a time.

c

Clipping The process of removing any portion of
a graphic image that extends beyond a specified

boundary.

Control Block A per Virtual Machine (VM) data
structure in which Virtual Devices (VxDs) and the
Virtual Machine Manager (VMM) can maintain the
VM's state information.

Control Panel A Windows application that lets

you change system settings, including printer as-
signments and characteristics.

D

Device Driver The dynamic-link library that pro-
vides the hardware-dependent, low-level interface
between Windows GDI functions and the graphics
output device.

Dynamic Data Exchange (DDE) A protocol that
cooperating programs can use to exchange data
without user intervention.

Dynamic-Link Library (DLL) A library with
which an application is fixed up upon initial load-
ing. (needs improving)

Device Independent Bitmap (DIB) A bitmap for-
mat that can be interpreted and converted by a
device driver into its own specific format. It is
called “device independent” because any driver

Beta Release

Microsoft Confidential

capable of using DIBs can display (or otherwise
use) the DIB to the best of its ability.

E

Escape A device-dependent operation that is not
supported by the device-independent GDI module.
The entry point in the device driver is called Con-
trol(); in GDI (i.e., to the application), it is called
Escape().

F

Font Resource A group of individual fonts that
have various combinations of heights, widths, and
pitches.

G

Graphics Device Interface (GDI) A device-inde-
pendent, high-level graphics manager. GDI
provides the interface that feeds graphics com-
mands from Windows application programs to the
device driver.

GDI Library A set of supporting functions for
device drivers. These utilities include versions of
output functions such as Bitblt and Strblit, a Trans-
pose function for banding devices, and priority
queue functions for daisywheel printers.

I

IOPM I/O Permission Map

M

Metafile A collection of GDI function calls stored
in a binary coded form and used to transfer device-
independent pictures between programs.

April 1, 1990

A-2 Virtual Device Adaptation Guide

Microsoft Macro Assembler (MASM) An as-
sembly language compiler. Version 5.0 includes
increased speed (25% faster than 4.0), simplified
segment declarations, support for the 80386 and
80387 processors, a version of CodeView that’s
compatible with four languages, utilities to aid in
program development, and completely revised
manuals.

N

Non-Windows Application A program that does
not make use of the Windows environment. Instead,
it calls MS-DOS and the BIOS, and accesses the
hardware directly.

P

Paging A capability used by enhanced Windows
by which any linear address (defined by segment:
offset) in the system can be mapped to any physical
memory.

Palette The range of colors that the video adapter
can display and manage.

Pixel The smallest element of a physical display
surface that can be independently assigned color or
intensity.

Pixel Array A matrix of pixels that defines the
color for a region on an actual display. There is ex-
actly one pixel definition for each addressable
picture clement of a raster display covered by the
pixel array. :

Presentation Level Protacol (PLP) A standard pro-
tocol used for transmitting high quality text.

Primitive A basic graphic function to be per-
formed.

Print Manager The Windows utility that prints
files without suspending the operation of other pro-
grams. It also enables you to change the priority of

Printer Command l.angﬁage (PCL) The language
used by Hewlett-Packard ® Laserjet ® and com-
patible printers.

Pratected Mode (PM) A mode of the 80386 pro-
cessor that provides a linear address of 4 gigabytes
per segment and 16K segments, thereby breaking
the 640K barrier and giving applications access to
much more memory. Windows and Windows appli-
cations run in protected mode. VxD’s must handle
access from both protected mode and virtual 8086
mode.

R

Raster Device A device that uses a matrix of pix-
els covering the entire screen or page area (display

or printed surface) to draw graphics. Pixels (points)
are tumed on and off, bit-by-bit.

Resolution The number of visibly distinct dots
that can be displayed in a given area of the screen.
Typical resolution is 100 dots per inch.

Red, Green, Blue (RGB) Valiies from a color
table. This color table is used in mapping from a
color index to corresponding color values.

S

Scallng Coordinate scaling transforms points
from one level to another. GDI scales coordinates
from NDC space to values appropriate for your
graphics device.

SystemVM The first Virtual Machine (VM) under
enhanced Windows. The VM in which Windows
runs.

T

TSRs Temninate-and-Stay Resident applications

v

print jobs or to cancel them. Vector Device A device that draws graphics with
lines. Beginning and ending points are setand a
line is drawn between them.

April 1, 1990 Microsoft Confidential Beta Release

Virtual Device Interface (VDI) The ANSI graphics
interface upon which GDI is based. VDI is a stand-
ard interface between device-dependent and
device-independent code in a graphics environ-
ment. VDI makes all device drivers appear identical
to the application program.

VDMAD Virtual DMA Device
VDD Virtual Display Device
VKD Virtual Keyboard Device

VMD Virtual Mouse Device
VPICD Virtual Programmable Interrupt Controller
Device

Virtual 8086 mode (V86) A mode of the 80386
processor by which the 80386 emulates the func-
tion of the 8086 processor. In this mode, each
segment has a linear address limit of 64K and the
applications can address a total of 1M + 64K - 16
bytes.

Virtual “x” Device (VxD) The name of the device
virtualized replaces the “x” in this name. There
must be a VxD for each piece of hardware that can
have a different state in each of the VMs. Any piece
of hardware that does not have an associated VxD
is global. It must handle interleaved access from
multiple VMs or have a global piece of software
(such as a DOS device driver or TSR) that serial-
izes access to the hardware. All the VxDs run in the
same, flat-model, 32-bit segment as the rest of the
VMM. A VxD can also provide services that are not
directly associated with a piece of hardware (e.g., a
piece of code that replaces an MS-DOS or BIOS
service).

Virtual Machine (VM) The collective state of an
instance (maintained in the control block) of the
VMM and the VxDs, and the memory associated
with the program executing in the VM. This in-
cludes all the code and data in virtual 8086 mode as
well as protected mode.

Beta Release

Microsoft Confidential

Appendix A Terms and Acronyms A-3

Virtual Machine Manager (VMM) The core of en-
hanced Windows. It runs, along with all the VxDs,
in one, flat-model, 32-bit segment.

w

WDEB386 An enhanced Windows version 3.0 de-
bugger program.

Window A rectangular region on a display screen
in which the system displays the contents of an
application.

Windows Application Any program that has been
specifically designed to run under Microsoft
Windows.

WIN.INI The Windows initialization file in which
you maintain the system-wide settings. This is a
text-based file that resides under the Windows soft-
ware directory.

April 1, 1990

A-4 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Appendix B
Understanding Modes

Windows 3.0 documentation uses the term “mode” in overlapping ways. This appendix is
provided to clarify the different uses.

B.1 Windows Modes

To provide the greatest features for the available hardware, Windows 3.0 can run in three

software modes: real, standard, or 386 enhanced. The following table compares the
memory models and required microprocessor for each of these Windows modes.

Windows 3.0 Real Mode Standard Mode 386 Enhanced Mode
Supported Real Mode Real Mode Real Mode
Memory Protected Mode (16-bit) Protected Mode (32-bit)
Model V86 Mode
Required 8086
Hardware 80286 80286

80386 80386 80386

80486 80486 80486

B.2 Microprocessor Modes

Beta Release

As the Intel microprocessors evolved greater capabilities, they continued to support the
programs and operating systems of the earlier architectures. As a result, the 80386 has no
fewer than four modes. Each is compared below to the earlier architectures.

The first is the familiar real-mode, wherein the 80386 functions as a fast 8086/88-com-
patible processor with some bonus opcodes. Like the 80286, the 80386 always powers up
in real mode and can, therefore, run any existing 8086 operating systems and software. .

In protected-mode, the 80386 can take on two different personalities. It can execute a logi-
cal superset of the 80286 protected-mode instructions and run 16-bit programs. Or, while
in its native protected mode, it can use 32-bit instructions, registers, and stacks and can
allow individual memory segments as large as 4GB. The native protected mode also has an
additional level of address translation—supported in hardware by page tables—that allows
much greater flexibility in mapping the linear address onto physical memory. In either pro-
tected mode, the 80386 translates selectors and offsets to linear addresses using descriptor
tables in much the same manner as the 80286.

Microsoft Confidential April 1, 1990

B-2 Virntual Device Adaptation Guide

April 1, 1990

The forth operating mode, virtual 86 mode (V86), provides another form of 8086 emula-
tion. But now, instead of a single program running in a single memory partition, the 80386
can create multiple partitions, each capable of running a real-mode program. Each parti-
tion has its own address space, I/O port space, and interrupt vector table. Enhanced
Windows uses the V86-mode partitions to create virtual machines, the fundamental com-
ponents in its virtual machine architecture. The architecture is described in Chapter 16,
“Overview of Windows in 386 Enhanced Mode.”

The following table summarizes the four modes of the 80386 microprocessor:

Mode Description

Real Mode Functions as a very fast 8086/88-compatible processor.

Protected Mode (16-bit) ~ Functions in protected mode as an enhanced 286 processor.
Protected Mode (32-bit, Functions in protected mode using full 32-bit instructions, registers,
native mode) and stacks.

Virtual 86 Mode Runs multiple, protected, virtual 8086 machines, each with its own

1MB of memory space.

Microsoft Confidential Beta Release

Appendix C
Creating Distribution Disks for Drivers

Not available for this release.

Beta Release Microsoft Confidential April 1, 1990

C-2 Virtual Device Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Appendix D
Windows INT 2FH API

Enhanced Windows 3.0 supports an Application Program Interface (API) designed to
enable DOS device drivers, TSR programs, and application programs to take full advan-
tage of the multitasking abilities of the enhanced Windows environment.

Most application program writers will use the interface that releases the current virtual ma-
chine’s time-slice. This API allows enhanced Windows and OS/2 to multitask non-
Windows specific DOS applications more efficiently. The Release Time Slice API should
be used by applications even if they are not running under enhanced Windows. This allows
08S/2 to detect idleness in DOS applications. OS/2 will recognize the enhanced Windows
release time-slice call but it does not support other enhanced Windows APIs.

The Microsoft 80286 DOS extender will issue the initialization and exit INT 2FH API
calls so that real mode software can free extended memory through XMS. The 286 DOS
extender also supports the Int 31h service detection Int 2FH API call.

Other APIs are used by DOS device drivers and TSRs that have enhanced Windows
specific requirements.

D.1 Call-In Interfaces

Call-in interfaces are APIs that real mode DOS device drivers, TSRs, and applications use
to communicate with enhanced Windows. These include:

® Get Windows version

® Get virtual machine ID

m Begin critical section

m End critical section

® Release time slice

® Get device API entry point

® Switch VMs and callback

D.1.1 Enhanced Windows Installation Check (AX=1600H)

This API call is valid under all versions of enhanced Windows. If a program intends to use
a enhanced Windows API, it must first make sure that the enhanced Windows environment
is running. To do this issue:

Beta Release Microsoft Confidential April 1, 1990

D-2 Virtual Device Adaptation Guide

mov ax, 1606h

int 2Fh

test al, 7Fh

jz Not_Running_Win386

(Otherwise enhanced Windows is running)
cmp al, 1

Jje Running_Ver_2xx

cmp al, -1

je Running_Ver_2xx

(Else al contains major version, AH contains minor)

If 0 or 80H is returned in AL, enhanced Windows is not running. Any other value means
that enhanced Windows is running. A value of 1 or -1 (OFFH) indicates that the application
is running under enhanced Windows version 2.0 or 3.0. Otherwise, AL will contain the
major version number (3 or higher) and AH will contain the minor version number. The
table below summarizes the possible return values:

Valuein AL Meaning
00H Enhanced Windows 3.x or Windows/386 version 2.xx is not
ing :

80H Enhanced Windows 3.x or Windows/386 version 2.xx is not
running

01H ‘Windows/386 version 2.xx running

FFH Windows/386 version 2.xx running

Anything else AL = Major version number AH = Minor

D.1.2 Releasing Current Virtual Machine’s Time-Slice (AX=1680h)

April 1, 1990

NOTE This APl should be used only by non-Windows specific applications. Windows programs
. should yield their time by calling the WaitMessage function.

This API is used by programs to indicate that the program is idle (usually waiting for the
user to type something). By issuing this interrupt, applications prevent enhanced Windows
from wasting time running a program that is essentially doing nothing. This allows other
programs to use the time.

Programs should always use this API even if they are not Windows-specific applications
and even if they are not currently running under Windows in 386 enhanced mode. This al-
lows OS/2 to detect idleness even though it does not support the complete enhanced

Windows API The only check you should make before issuing the API call is to make sure
that the INT 2FH interrupt vector is not zero.

Sample code:

Microsoft Confidential Beta Release

Windows INT 2FH APl D-3

mov ax, 352Fh
int 21h ; DOS get vector 2Fh

mov 3ax, es ; ES:BX = Vector
or ax, bx ; 0: Is it zero?

jz Skip_ldle_Call ; Y: Skip this
mov ax, 1680h : N: Tell Win
int 2Fh : we're idle.

Skip_Idle_Call:

If the API is supported, the INT 2FH will return with AL=0, otherwise it will return with
AL unchanged (80h). Usually application programs will not be interested in the return
value.

Note that when an application uses this API it will continue to run occasionally so your
program should re-issue the interrupt in the program’s idle loop. In other words, this API
does NOT block your application until a key is pressed.

D.1.3 Begin Critical Section (AX=1681h)

If a DOS device driver or TSR needs to prevent a task-switch from occurring, it should call
this interface. When a virtual machine is in a critical section, no other task will be allowed
to run except to service hardware interrupts. For this reason, the critical section should be
freed (using the end critical section API) as soon as possible.

D.1.4 End Critical Section (AX=1682h)

This API must be called to release ownership of the critical section that was claimed using
the Begin Critical Section AP Every call to Begin Critical Section must be followed by a
matching call to End Critical Section.

D.1.5 Get Current Virtual Machine ID (AX=1683h)

This API returns with BX = Current virtual machine ID. The ID is unique for each virtual
machine. Although Windows currently runs in VM 1, your software should not rely on
this. Also, if a VM is destroyed, its ID may be reused by another new virtual machine. Be
sure to treat VM IDs as a word (not a byte). An ID of 0 will never be returned.

D.1.6 Get Device API Entry Point (AX=1684h)

Some VxDs (enhanced Windows device drivers) provide a set of services that application
programs can access. For example, the Virtual Display Device provides services that the
Windows old application program uses to display DOS programs in a window. Any VxD
can support an API for DOS applications. Your program must issue an INT 2FH with
AX=1684h and BX = Virtual device ID. The entry point address will be returned in ES:DI.
Your application must execute a FAR CALL to this address to call the virtual device. If the
value returned is 0:0 then the device does not support an API, otherwise ES:DI is the

Beta Release Microsoft Confidential April 1, 1990

D-4 Virtual Device Adaptation Guide
L |

address of the procedure to call. You should either make sure your application is running
on version 3.0 or zero ES and DI before using this APL

xor di, di ; * Only necessary if you have *
mov es, di ; * not checked for Win ver 3.8 *
mov ax, 1684h

mov bx, My_Device_ID

int 2Fh

mov ax, es

or ax, di

API_Is_Not_Supported
(e]se API address in ES:DI)

The definition of a device API is specified by the virtual device driver. Refer to individual
virtual device documentation for details.

D.1.7 Switch VMs and CallBack (AX=1685h)

April 1, 1990

Some DOS devices, such as networks, need to perform functions in a specific virtual ma-
chine. These devices can use this interface to force the appropriate virtual machine to be in-
stalled so that they can modify the VM's data. Refer to Chapter 24, “Primary Scheduler
Services,” for information on appropriate priority boosts.

Entry: AX = 1685h
BX = VM ID of virtual machine to switch to
CX = Flags
Bit 0 = 1 if wait until interrupts enabled
Bit 1 = 1 if wait until critical section unowned
All other bits must be 0
DX:SI = Priority boost (DX=High word, SI=Low word)
ES:DI = CS:IP of procedure to call

Exit:

If carry set then
AX = Error code
else
Event will be called or has been called already.

Error codes: 1 = Invalid VM ID
2 = Invalid priority boost
3 = Invalid flags

Callback procedure: Must save all registers modified
Must IRET to caller
Priority will remain boosted until procedure irets

Microsoft Confidential Beta Release

Windows INT 2FH APl D-5

D.1.8 Detect Presence of INT 31H Services (AX=1686h)

Entry

Exit

If a program needs to detect the presence of the INT 31H protected mode API, it can use
this INT 2FH. Note that this particular API is also supported by the Microsoft 80286 DOS
extender for protected mode Windows. INT 31H services are only supported for protected
mode programs.

AX = 1686h

If AX = @ then

INT 31H services are available and can be called
else (AX != 0)

INT 31H services are not available

D.2 Call Out Interfaces

Enhanced Windows will broadcast INT 2FH to real mode device drivers and TSRs to in-
form them of various activities. These can be used to load enhanced Windows installable
devices, free extended memory, instance per-VM data structures, and turn on or off various
device services or features. For example, SmartDrv can free extended memory for en-
hanced Windows to use when the initialization call is made and then reclaim it when it re-
ceives the termination call. DOS devices such as networks can inform the enhanced
‘Windows loader to load a special protected mode installable device that cooperates with
the real mode network device driver.

D.2.1 Enhanced Windows and 286 DOS Extender Initializatian
(AX=1605h)

Beta Release

The enhanced Windows loader and the Microsoft 286 DOS extender will broadcast an INT
2FH with the following parameters:

AX = 1605h

ES:BX =0:0

DS:SI=0:0

CX=0

DX =Flags

Bit 0 = 0 if enhanced Windows initialization

1 if Microsoft 286 DOS extender initialization

. All other bits reserved and undefined.

Any DOS device driver or TSR can hook Int 2FH and watch for this particular broadcast.
‘When this broadcast is received, the real mode software can inform enhanced Windows or
the 286 DOS extender that it should not load by returning with CX !=0. The TSR or
device that fails the initialization should print an error message so the user can take appro-
priate steps to reconfigure the machine. Enhanced Windows and the Microsoft DOS ex-

Microsoft Confidential April 1, 1990

D-6 Virtual Device Adaptation Guide
W

April 1, 1990

tender will not print an error message—they will only issue the termination API call and re-
turn to DOS.

If it is OK for enhanced Windows or the DOS extender to load, the real mode software
should not modify CX and may want to do one or more of the following:

= Release extended memory through the XMS interface.

m Switch back to real mode (if currently in virtual 8086 mode) or set DS:SI to the Virtual
8086 mode enable/disable routine address.

= Load an installable device (enhanced Windows only).
= Instance private data structures (enhanced Windows only).

The DOS extender only pays attention to the value returned in CX. It will not instance any
data or load enhanced Windows installable device drivers. The DOS extender only issues
this call so that extended memory can be released and the machine can be placed in real
mode if it is currently in virtual 8086 mode.

Instance data refers to data in a TSR or DOS Device driver that must have a private copy
in each VM. Normally, all TSRs and devices loaded before enhanced Windows is run are
considered global memory. That means that all of the data is shared between virtual ma-
chines. However, there are some pieces of data that actually should be maintained on a per-
VM basis. For example, the DOS command line buffer needs to be instanced (this is done
automatically by enhanced Windows). However, TSRs such as the DOS command line edi-
tors will not function properly unless they identify the data that needs to be instanced.

The first two options (release extended memory, or switch from V86 to real mode) are up
to the device to handle on its own. The last options require returning a pointer to a list of
structures to load. Your INT 2FH hook must first chain to the next INT 2FH handler with
all registers unmodified. When the handler returns you must take the ES:BX value re-
turned and place it in the following data structure in the Next_Dev_P1r field:

Win386_Startup_Info_Struc STRUC

SIS_Version db 3, 0
SIS_Next_Dev_Ptr dd ?
SIS_Virt_Dev_File_Ptr dd ']
SIS_Reference_Data dd ?
SIS_Instance_Data_Ptr dd (%]

Win386_Startup_Info_Struc ENDS

Your software must point ES:BX at this structure and return. This allows multiple en-
hanced Windows installable devices to be loaded through a single INT 2FH call.

The SIS_Version field is used by enhanced Windows to determine the size of the struc-
ture. This field should always contain 3, 0 to indicate that it is version 3.0.

The SIS_Next_Dev_Ptr points to the next structure in the list. This field must be filled in
with the returned ES:BX after your software chains to the next INT 2FH handler.

Microsoft Confidential Beta Release

Windows INT 2FH APl D-7

Beta Release

SIS_Virt_Dev_File_Ptr is a pointer to an ASCIIZ string that contains the name of a en-
hanced Windows virtual device file. DOS devices such as networks use this to force a
special enhanced Windows protected mode virtual device to be loaded. If this field is zero,
then no device will be loaded.

The SIS_Reference_Data is only used when the SIS_Virt_Dev_File_Ptr is non-zero.
This DWORD will be passed to the virtual device when it is initialized. The DWORD can
contain any value. Often it contains a pointer to some device specific data structure.

The SIS_Instance_Data_Ptr field points to a list of data to be instanced. If the field is
zero, then no data will be instanced. Each entry in the list has the following structure:

Instance_Item_Struc STRUC
I[IS_Ptr dd ?
[IS_Size dw ?
Instance_Item_Struc ENDS

The list is terminated with a zero DWORD.

Your handler must preserve all registers except the values returned in ES, BX, and CX. It
must also preserve DS and ST unless it explicitly changes them to return the address of the
virtual 8086 mode enable/disable routine. Remember, any device that returns with CX !=0
will force enhanced Windows or the 286 DOS extender to abort. If the load is aborted, the
termination INT 2FH will be issued immediately.

Enhanced Windows supports loading with a virtual mode program such as an EMM
“LIMulator” running provided that the program supports a virtual 8086 mode enable/dis-
able callback routine. The address of the routine must be returned in DS:SI. If your TSR or
device driver sets this return parameter, it should first check to make sure that DS and SI
are both zero. If they are non-zero, then fail the initialization by setting CX=non-zero. No-
tice that the Microsoft 286 DOS extender will not call this routine. Therefore, you must
either set the processor into real mode during the initialization INT 2FH or set CX=non-
zero to abort the load.

The virtual mode enable/disable callback will be called with AX=0 to disable V86 mode
(return to real mode) and AX=1 to re-enable V86 mode. Just before attempting to enter
protected mode enhanced Windows will disable V86 mode after every VxD has been
loaded. It will call the enable/disable routine with AX=0 and with interrupts disabled. Do
not enable interrupts in your routine unless the routine will return with Carry set to indi-
cate failure. After enhanced Windows exits, it will call the enable/disable routine in real
mode with AX=1 and with interrupts disabled to set the machine back into V86 mode.

The enable/disable routine will be called with a FAR return frame. It must return with the
carry flag clear to indicate success or Carry set to indicate an error. If an error is returned
from the disable call, then enhanced Windows will abort. The error return from the enable
V386 call will be ignored and the machine will be left in real mode. It is the responsibility
of the enable/disable routine to print an error message.

Microsoft Confidential April 1, 1990

D-8 Virtual Device Adaptation Guide

D.2.2 Enhanced Windows and 286 DOS Extender Exit (AX=1606h)

When enhanced Windows or the 286 DOS extender terminates it will broadcast an INT
2FH with the following parameters:

AX = 1606H.

DX = Flags

Bit 0 = 0 if enhanced Windows exit

1 if Microsoft 286 DOS extender exit
All other bits reserved and undefined.

This call will be issued in real mode. It allows devices and TSRs to undo anything they did
when enhanced Windows or the DOS extender initialized. For example, a device like
SmartDrv may re-allocate extended memory that it released during initialization.

If the initialization broadcast fails (returns with CX != 0) then this broadcast will be issued
immediately.

D.2.3 Device Call Out API (AX=1607h)

This API is, in reality, more of a convention than an API. It specifies a standard mecha-
nism for enhanced Windows virtual devices to talk to DOS device drivers and TSRs.

Some devices need to ask real-mode DOS software for information. For example, the Vir-
tual NetBIOS mapper VxD will issue an INT 2FH to determine if a network supports an
extended NetBIOS API. The standard device call out will have AX=1607H and
BX=Device ID. As with the device API entry point call-in interface, the details of the inter-
face are specified by the device that issues the interrupt.

This interrupt may be issued at any time, either in real mode or after enhanced Windows
has begun execution.

D.2.4 Enhanced Windows Initialization Complete (AX=1608h)

April 1, 1990

This API call is made by enhanced Windows after all the installable devices have initial-
ized. At this point, it is still possible to identify instance data and perform other functions
that are restricted to enhanced Windows initialization time. The enhanced Windows device
initialization phase is complete, so it is possible to call enhanced Windows device API

entry points.

Microsoft Confidential Beta Release

Windows INT 2FH APl D-9

WARNING Real mode software such as a TSR or DOS device driver may be called after the en-
hanced Windows initialization call and before this AP! call is made. It is the responsibility of the real
mode software to detect and properly handle this situation.

D.2.5 Enhanced Windows Begin Exit (AX=1609H)

This API call is issued at the beginning of a normal Enhanced Windows exit sequence. It is
sent at the start of the Sys_VM_Terminate device control call phase. All VxDs still exist
so calls to device API entry points are still valid.

WARNING This call will not be made in the event of a fatal system crash. Also, real mode code may
be executed after this AP call has been made and before enhanced Windows has returned to real
mode. It is the responsibility of the real mode software to detect and properly handle these situations.

D.3 Windows/386 Version 2.xx APl Compatibility

The release of Windows/386 (version 2.xx) had a limited Application Program Interface
that was defined to help support real mode DOS device drivers such as networks. The 2.xx
API allows DOS programs to:

® Determine if Windows/386 or enhanced Windows (version 3.0) is running

s Get the ID of the current Virtual Machine

® Enter and leave a global critical section

The APIs used under version 2.xx are fairly complex and inflexible. We suggest that, un-

less your application or device driver absolutely needs to run under version 2.xx, you ig-
nore all version 2.xx APIs and use the 3.0 APIs instead.

D.3.1 Installation Check

To test for Windows/386 version 2.xx you should issue an Int 2fh with AX=1600h. Refer
to Windows Installation Check for complete documentation for this API call.

D.3.2 Determining the Current Virtual Machine (Get VM ID)

Once the software has determined that it is running under Windows/386 version 2.xx it
must make another call to get the API procedure address. To do this issue:

mov ax, 16802h
int 2fh
(ES:DI -> Windows/386 API procedure)

Beta Release Microsoft Confidential April 1, 1990

D-10 Virtual Device Adapiation Guide

The API procedure is the same address for every virtual machine, so you will need to issue
this call only once (although you can issue it as often as you want).

To get the ID of the current virtual machine jump to the Windows/386 API procedure with
AX =0 and ES:DI - the address to return to.

Sample code:
mov di, cs
mov es, di
mov di, OFFSET Win386_AIP_Return
xor ax, ax s AX =0

Jjmp [Win386_API_Proc]
Win386_API_Return:
(Now BX contains the current VM ID)

Note that you must place the return address in ES:DI and JUMP to the API procedure.
‘When Win386 returns control to your program it will return to ES:DI.

This interface is supported under version 3.0 only for compatibility reasons. New DOS
devices or applications should use the version 3.0 interface.

D.3.3 Critical Section Handling

Windows/386 version 2.xx does not support API calls to enter and leave a critical section.
However, by incrementing and decrementing a special DOS critical section counter called
the InDOS flag, you can force the current virtual machine into a critical section. In-
crementing InDOS is not sufficient to enter a critical section in version 3.0. You will need
to make an API call first and then, if it fails, increment the InDOS flag.

To get the address of the InDOS flag issue the following DOS call (documented in The MS-

DOS Encyclopedia):
mov ah, 34h
int 21h

(ES:BX -> InDOS flag)

The InDOS flag is a byte within the MS-DOS kemel. The value in InDOS is incremented
when MS-DOS begins execution of an Interrupt 21H and decremented when MS-DOS’s
processing of that function has completed. When you increment the byte, current versions
of enhanced Windows will not switch to another virtual machine. Therefore, to enter a criti-
cal section, you need to increment the byte and to leave a critical section you should decre-
ment the InDOS flag.

April 1, 1990 Microsoft Confidential Beta Release

Windows INT 2FH APl D-11

WARNING You must make sure your code never decrements the InDOS flag through zero. DOS will
set the InDOS flag to zero under some error conditions (for example, the user types cTRL+C). Also, even
if the InDOS flag is non-zero, an Int 28H may cause the VM to be rescheduled.

For versions 3.xx and greater of Windows you will need to issue an INT 2FH AX = 1681H
to begin a critical section and AX = 1682H to end a critical section. Note that if a program
enters the critical section N times, it must also issue the end critical section interrupt N
times before the critical section is actually released. Thus, nested begin/end critical section
calls are valid. Both of these APIs will zero the AL register to indicate that the critical sec-
tion API is supported. You should not increment and decrement InDOS under versions of
Windows that support these API calls.

Unlike the InDOS critical section method, an INT 28H will not reschedule the current vir-
tual machine. The only way a task switch will occur is by completely releasing the critical
section.

Since you need to call the Windows API or increment the InDOS flag you will probably
want to write two procedures similar to the following:

Begin_Win_Critical_Section:

push ax

mov ax, 1681h

int 2Fh

test al, al

jz BCS_Quick_Exit

push es

les ax, [InDOS_Address]

inc BYTE PTR es:[ax]

pop es
BCS_Quick_Exit:

pop ax

ret

End_Win_Critical_Section:

push ax
mov ax, 1682h
int 2Fh
test al, al
jz ECS_Quick_Exit
push es
les ax, [InDOS_Address]
cmp BYTE PTR es:[ax], 0
je (Error handler routine)
dec BYTE PTR es:[ax]
pop es

ECS_Quick_Exit:
pop ax
ret

Beta Release Microsoft Confidential April 1, 1990

D-12 Virtual Device Adaptation Guide

April 1,1990 Microsoft Confidential Beta Release

Index
A

ADDHDR, defined, 17-11
AddInstanceltem service, 19-48
Adjust_Exec_Priority service, 24-2
Adjust_Execution_Time service, 25-3
Allocate_Device_CB_Area service, 19-3
Allocate_GDT_Selector service, 19-11

Allocate_Global_V86_Data_Area service, 19-4

Allocate_LDT_Selector service, 19-12
Allocate_PM_Call_Back service, 23-1
Allocate_Temp_V86_Data_Area service, 19-7
Allocate_V86_Call_Back service, 23-1

B

‘Begin_Critical_Section service, 24-3
Begin_Nest_Exec service, 22-1
Begin_Nest_V86_Exec service, 22-2
Begin_PM_Exec service, 22-3
Begin_Reentrant_Execution service, 33-1
Begin_Use_Locked_PM_Stack service, 224
Break Point and Callback services
Allocate_PM_Call_Back, 23-1
Allocate_V86_Call_Back, 23-1
Call_When_VM_Returns, 23-2
Install_V86_Break_Point, 23-3
Remove_V86_Break_Point, 23-4
Build_Int_Stack_Frame service, 21-2
BuildDescDWORD:s service, 19-13

~"

v

Call_Global_Event service, 26-2
Call_Priority_ VM_Event service, 26-2
Call_VM_Event service, 26-4
Call_When_Not_Critical service, 24-4
Call_When_Task_Switched service, 24-5
Call_When_VM_Ints_Enabled service, 21-2
Call_When_VN_Returns service, 23-2
Callback procedures, 16-16

Calling conventions, defined, 17-5
Cancel_Global_Event service, 26-5
Cancel_Priority_VM_Event service, 265
Cancel_Time_Out service, 27-1
Cancel_VM_Event service, 26-6
CB_High_Linear service, 19-51
Claim_Critical_Section service, 24-5
Convert_Boolean_String service, 30-2
Convert_Decimal_String service, 30-2

Beta Release

Convert_Fixed_Point_String service, 30-3
Convert_Hex_String service, 30-3
CopyPageTable service, 19-20
Crash_Cur_VM service, 32-1

D

DCP. See device control procedure

DDB. See device descriptor block
DeAssign_Device_V86_Pages service, 19-10
Device control procedure, defined, 16-8
Device descriptor block, defined, 16-8
Disable_Global_Trapping service, 20-4
Disable_Local_Trapping service, 20-5
Disable_VM_Ints service, 21-3

E

Enable_Global_Trapping service, 20-4
Enable_Local_Trapping service, 20-5
Enable_VM_Ints service, 21-3
End_Crit_And_Suspend service, 24-6
End_Critical_Section service, 24-7
End_Nest_Exec service, 22-4
End_PM_ExecED service, 22-5
End_Reentrant_Execution service, 33-2
End_Use_Locked_PM_Stack service, 22-5
Error Condition services
Crash_Cur_VM, 32-1
Fatal_Error_Handler, 32-1
Fatal_Memory_Error, 32-2
Event services
Call_Global_Event, 26-2
Call_Priority_VM_Event, 26-2
Call_VM_Events, 264
Cancel_Global_Event, 26-5
Cancel_Priority_VM_Event, 26-5
Cancel_VM_Event, 26-6
Schedule_Global_Event, 26-7
Schedule_VM_Event, 26-7
Exec_Int service, 22-6
Exec_VxD_Int service, 22-6

F

Fatal_Error_Handler service, 32-1

Fatal Memory_Error service, 32-2
Free_GDT_Selector service, 19-14
Free_LDT_Selector service, 19-15
Free_Temp_V86_Data_Area service, 19-8

Microsoft Confidential

April 1,1990

2 Index

G

I

Get_Config_Directory service, 30-3
Get_Crit_Section_Status service, 24-7
Get_Cur_VM_Handle sexvice, 29-2
Get_Device_V86_Pages_Array service, 19-10
Get_Environment_String service, 30-4
Get_Exec_Path service, 304
Get_Execution_Focus service, 25-3
Get_Last_Updated_System_Time service, 27-2

Get_Last_Updated_VM_Exec_Time service, 27-2 ..

Get_Machine_Info service, 30-5
Get_Nex:_Profile_String service, 30-5
Get_Next_VM_Handle service, 29-2
Get_PM_Int_Vector service, 21-3
Get_Profile_Boolesn service,30-6 - -
Get_Profile_Decimal_Int service, 30-6 .
Get_Profile_Fixed_Point service, 30-7
Get_Profile_Hex_Int service, 30-8 .
Get_Profile_String service, 30-8
Get_PSP_Segment sexvice, 30-9
Get_Sys_VM_Handle service, 29-2
Get_System_Time sexvice, 27-2
Get_Time_Slice_Granularity service, 25-3
Get_Time_Slice_Priority service, 254
Get_V86_Int_Vector service, 21-3
Get_VM_Exec_Time service, 27-2
Get_VMM_Reenter_Count service, 29-3
Get_VMM_Version service, 29-3
Get_PM_Int_Type sexvice, 21-3
GetAppFlatDS Alias service, 19-38
GetDemandPagelnfo service, 19-21
GetFirstV86Page service, 19-38
GetFreePageCount service, 19-22
GetNulPageHandle service, 19-38
GetSet_HMA_Info service, 29-3 -
GetSetPageOutCount service, 19-22
GetSysPageCount service, 19-23
GetVMPageCount service, 19-23

H

Hardware interrupt hooks, 16-17
HeapAllocate service, 19-17

HeapFree service, 19-18

HeapGetSize service, 19-18
HeapReAllocate service, 19-18
Hook_Device_Service service, 33-2
Hook_Device_V86_API service, 33-3 -
Hook_PM_Device_API service, 33-3
Hook_V86_Int_Chain service, 21-4

1/O services and macros
Disable_Global_Trapping, 20-4
Disable_Local_Trapping, 20-5
Enable_Global_Trapping, 204
Enable_Local_Trapping, 20-5
Install_IO_Handler, 20-5
Install_Mult_IO_Handlers, 20-6
Simulate_IO, 20-6

I/O port traps, 16-17

IDT. See Interrupt Descriptor table

Information services
Get_Cur_VM_Handle, 29-2
Get_Next_VM_Handle, 29-2
Get_Sys_VM_Handle, 29-2
Get_VMM_Reenter_Count, 29-3
Get_VMM_Version, 29-3
GetSet_ HMA _Info, 29-3
Test_Cur_VM_Handle, 294
Test_Debug_Installed, 294
Test_Sys_VM_Handle, 29-5
Validate_VM_Handle, 29-5

Initalization Information services
Convert_Boolean_String, 30-2
Convert_Decimal_String, 30-2
Convert_Fixed_Point_String, 30-3
Convert_Hex_String, 30-3
Get_Config_Directory, 30-3
Get_Environment_String, 30-4
Get_Exec_Path, 304
Get_Machine_Info, 30-5
Get_Next_Profile_String, 30-5
Get_Profile_Boolean, 30-6
Get_Profile_Decimal_Int, 30-6
Get_Profile_Fixed_Point, 30-7
Get_Profile_Hex_Int, 30-8
Get_Profile_String, 30-8
Get_PSP_Segment, 30-9

Install_IO_Handler service, 20-5

Install_Muit_IO_Handlers service, 20-6

Install_V86_Break_Point service, 23-3

Interrupt descriptor table
In protected-mode, 16-11

L

Link386, defined, 17-9

Linked List services
List_Allocate, 31-1
List_Atach, 31-2
List_Arntach_Tail, 31-2
List_Create, 31-3

April 1, 1990 Microsoft Confidential

Beta Release

Index 3

List_Deallocate, 314
List_Destroy, 31-4 : Bk
List_Get_First, 31-5
List_Get_Next, 31-5
List_Insert, 31-6
List_Remove, 31-6
List_Remove_First, 31-7
LinMapInto V86 service, 19-39
LinPagelock service, 19-41
LinPageUnLock service, 19-42
List_Allocate service, 31-1
List_Attach service, 31-2
List_Attach_Tail service, 31-2
List_Create service, 31-3
List_Deallocate service, 314
List_Destroy service, 31-4
List_Get_First service, 31-5
List_Get_Next service, 31-5
List_Insert service, 31-6
List_Remove service, 31-6
List_Remove_First service, 31-7

m

Map_Flat service, 334
MaplntoV86 service, 19-24
MapPhysToLinear service, 19-37
MAPSYM32, defined, 17-11
MASMS, defined, 17-9
Memory Management services
Data Access services
GetAppFlatDSAlias, 19-38
GetFirstV86Page, 19-38
GetNulPageHandle, 19-38
Device V86 Page Management services
Assign_Device_V86_Pages, 19-9
DeAssign_Device_V86_Pages, 19-10
Get_Device_V86_Pages_Array, 19-10
GDT/LDT Management services
Allocate_GDT_Selector, 19-11
Allocate_LDT_Selector, 19-12
BuildDescDWORDs, 19-13
Free_GDT _Selector, 19-14
Free_LDT_Selector, 19-15
Instance Data Management services
AddInstanceltem, 19-48
MMGR _Toggle_HMA, 19-49
Physical Device Memory in PM services
MapPhysToLinear, 19-37
Special services for PM APIs
LinMapInto V86, 19-39
LinPageLock, 19-41
LinPageUnLock, 19-42

Beta Release

Microsoft Confidential

PageCheckLinRange, 19-43
SelectorMapFlat, 19-43

System Data Object Management services

Allocate_Device_CB_Area, 19-3
~ Allocate_Global_V86_Data_Area, 194

" Allocate_Temp_V86_Data_Area, 19-7°

Free_Temp_V86, Data_Area. 19-8
System Heap Allocator services
HeapAllocate, 19-17
HeapFree, 19-18
HeapGetSize, 19-18
HeapReAllocate, 19-18
System Page Allocator services
CopyPageTable, 19-20
GetDemandPagelnfo, 19-21 ...,
GetFreePageCount, 19-22
GetSetPageOutCount, 19-22
GetSysPageCount, 19-23
GetVMPageCount, 19-23
MapIntoV386, 19-24
ModifyPageBits, 19-25
PageAllocate, 19-27
PageFree, 19-29 LTI
PageGetAllocInfo, 19-30 =
PageGetSizeAddr, 19-30
PageLock, 19-31
PageOutDirtyPages, 19-32
PageReAllocate, 19-33
PageUnLock, 19-34
PhysIntoV86, 19-35
TestGlobal V86Mem, 19-36
V86 Address Space services
CB_High_Linear, 19-51
Miscellaneous services) :
Begin_Reentrant_| Execution, 33-1 i
End_Reentrant_Execution,33-2.
Hook_Device_Service,; 33-2
Hook_Device_V86_API, 33-3
Hook_PM_Device_APL 33-3 .
Map_Flat, 334
MMGR_SetNULPageAddr, 33-5
Simulate_Pop, 33-5
Simulate_Push, 33-6 L
System_Control, 33-6 -
MMGR_SetNULPageAddr service, 33-5
MMGR _Toggle_HMA service, 1949 . . .
Mode
Protected-mode, 16-3
Virtual 86, 16-3 PO
ModifyPageBits service, 19-25 -

April 1, 1990

4 Index

N

Nested Execution services
Begin_Nest_Exec, 22-1
Begin_Nest_V86_Exec, 22-2

Begin_PM_Exec, 22-3
Begin_Use_Locked_PM_Stack, 22-4
End_Nest_Exec, 224
End_PM_ExecED, 22-5
End_Use_Locked_PM_Stack,22-5
Exec_Int, 22-6
Exec_VxD_Int, 22-6
Restore_Client_State, 22-8
Resume_Exec, 22-9
Save_Client_State, 22-10
Set_PM_Exec_Mode, 22-11
Set_V86_Exec_Mode, 22-12

No_Fail_Resume_VM service, 24-8. -

Nuke_VM service, 24-8 :

P

PageAllocate service, 19-27)
PageClwckLmRange service, 19-43
PageFree service, 19-29
PageGetAllocInfo service, 19-30
PageGetSizeAddr service, 19-30
PageLock service, 19-31
PageOutDirtyPages sexvice, 19-32
PageReAllocate sexvice, 19-33
PageUnLock service, 19-34
PhysIntoV86 service, 19-35
PM. See protected mode
Adjust_Exec_Priority, 24-2 °
Begin_Critical_Section, 24-3
Call_When_Not_Critical, 24-4

Call_When_Task_Switched, 24-5

Claim_Critical_Section, 24-5
End_Crit_And_Suspend, 24-6
End_Critical_Section, 24-7 -
Get_Crit_Section_Status, 24-7
No_Fail_Resume_VM, 24-8
Nuke_VM, 24-8
Release_Critical_Section, 24-8
Resume_VM, 24-9
Suspend_VM, 24-9

Privilege rings, 16-14

Processor Fault and Interrupt sexvices
Get_Fault_Hook_Addrs, 28-1
Get_NMI_Handler_Addr, 28-2
Hook_NMI_Event, 28-3
Hook_PM_Fault, 28-3

April 1, 1990

Hook_V86_Fault, 28-3
Hook_V86_Page, 28-4
Hook_VMM_Fault, 28-3
Set_NMI_Handler_Addr, 28-5

Initialization, 17-14
t descriptor table, 16-11

... Protected mode, defined, 16-14

'R

 .Real mode

Initialization, 17-11

- Release_Critical_Section service, 24-8
Release_Time_Slice service, 254

Remove_V86_Break_Point service, 23-4
Restore_Client_State service, 22-8
Resume_Exec service, 22-9
Resume_VM service, 24-9

S

- Save_Client_State service, 22-10
- Schedule_Global_Event service, 26-7

Schedule_VM_Event service, 26-7
SelectorMapFlat service, 19-43
Services, 16-15
Set_Execution_Focus service, 25-5
Set_Global_Time_Out service, 27-3
Set_PM_Exec_Mode service, 22-11
Set_PM_Int_Vector service, 21-6
Set_Time_Slice_Granularity service, 25-5
Set_Time_Slice_Priority service, 25-5
Set_V86_Exec_Mode service, 22-12
Set_V86_Int_Vector service, 21-6
Set_VM_Time_Out service, 27-3
Set_PM_Int_Type service, 21-6
Shell services

SHELL_Event, 34-1

SHELL_Get_Version, 34-2

SHELL _Message, 34-2

SHELL _Resolve_Contention, 34-3
SHELL, defined, 16-7
Simulate_Far_Call service, 21-6
Simulate_Far_Jmp service, 21-7
Simulate Far_Ret_N service, 21-7
Simulate_Far_Ret service, 21-7
Simulate_Int service, 21-8
Simulate_IO service, 20-6
Simulate_Iret service, 21-9
Simulate_Pop service, 33-5
Simulate_Push service, 33-6

Software interrupt hooks, 16-17

Microsoft Confidential Beta Release

Suspend_VM service, 24-9
System_Controls service, 33-6

T

Test_Cur_VM_Handle service, 294
Test_Debug_Installed sexvice, 294
Test_Sys_VM_Handle sexrvice, 29-5
TestGlobalV86Mem service, 19-36
Time-Slice Scheduler services :
Adjust_Execution_Time, 25-3
Get_Execution_Focus, 25-3
Get_Time_Slice_Granularity, 25-3
Get_Time_Slice_Priority, 254
Set_Execution_Focus, 25-5
Set_Time_Slice_Gramularity, 25-5
Set_Time_Slice_Priority, 25-5
Time-Slice Scheduler services
Release_Time_Slice, 254
Timing services
Cancel_Time_Out, 27-1
Get_Last_Updated_System_Time, 27-2
Get_Last_Updated_VM_Exec_Time, 27-2
Get_System_Time, 27-2
Get_VM_Exec_Time, 27-2
Set_Global_Time_Out, 27-3
Set_VM_Time_Out, 27-3
Update_System_Clock, 274

u

Update_System_Clock sexvice, 274

4

V86 Mode Memory Manager Device services
V86MMGR _Allocate_Buffer, 40-15
V86MMGR _Allocate_V86_Pages, 40-2
V86MMGR _Free_Buffer, 40-16
V86MMGR _Free_Page_Map_Region, 40-19
V86MMGR_Get_EMS_XMS_Limits, 40-3
V86MMGR_Get_Mapping_Info, 40-18
V86MMGR _Get_Version, 40-2
V86MMGR _Get_VM_Flat_Sel, 40-17
V86MMGR_Get_Xlat_Buff_State, 40-17
V86MMGR_Load_Client_Prr, 40-15
V86MMGR _Map_Pages, 40-18
V86MMGR_Set_EMS_XMS_Limits, 40-3
V86MMGR_Set_Mapping_Info, 40-10
V86MMGR _Set_Xlat_Buff_State, 40-17
V86MMGR _Xlat_API, 40-10

V86. See Virtual 86 mode

V86MMGR sexvices. See V86 Mode Memory Mannget

Device sexvices

Validate_ VM_Handle sexvice, 29-5

Beta Release

Microsoft Confidential

Index § .
L

VDD services. See Virtual Disphy Device services
VDMAD_Request_Buffer sexvice, 41-8

VDMAD services. See V'mdDMADevwems
Virtual 86 mode; defiited 16-14" ’

Virtual device

APL 177
API procedure,-16-8, 174.
Declaration, 17-3
Device control procedure, 16-8
- Device control procedure name, 174
Device descriptor block, 16-8
ID, 174 .
Initialization, 174, 1711
Memory model, 17-2
. Segmentation, 17-3 L.
.- Service table, 17-4
Version, 174

. Virmal device, defined, 16-2

Virtal devices
- Defined, 16-7

Services, 17-5
Writing strategy, 17-1

Virtual Display Device services. .
VDD_Get_GrabRtm, 35-3
VDD_Get_ModTime, 35-3
VDD_Get_Version, 354
VDD_Hide_Cursor, 354
VDD_Msg_BakColor, 35-1
VDD_Msg_ClrScm, 35-2
VDD_Msg_ForColor, 35-2 -
VDD_Msg_SetCursPos, 35-2
VDD_Msg_TextOut, 35-3
VDD_PIF_State, 354
VDD_Set_HCwrTrk, 35-5
VDD_Set_VMType, 35-5

Virwal DMA Device services
VDMAD_Copy_From_Buffer, 41-2
VDMAD_Copy_To_Buffer,41-2 ..
VDMAD_Default_Handler,41-3 . .

. VDMAD_Disable_Translation, 41-3,

VDMAD_Enable_Translation, 414 .

VDMAD_ Gex.RcBmUnfo 41-5
VDMAD_Get_Version, 41-5 -
VDMAD_Get_Virt_State, 41-6 .
VDMAD_Lock_DMA_Region,41-6

. VDMAD_Mask_Channel, 41-7

* VDMAD_Release_Buffer, 41-8
VDMAD_Request_Buffer,41-8 . ..
VDMAD_Reserve_Buffer_Space, 41-8
VDMAD_Scatter_Lock, 41-9
VDMAD_Scater_Unlock, 41-10
VDMAD_Set_EISA_Adr_Mode, 41-10

""" April 11980

6 Index

VDMAD_Set_Phys_Stae,41-11
VDMAD_Set_Region_Info, 41-11
VDMAD._Set_Virt_State, 41-11

VDMAD_Unlock_DMA_Region, 41-12

-+ ..VDMAD_UnMask_Channel, 41-12
VDMAD_Virualize_Channel, 41-13
Virtual Keyboard Device servies :
VKD_API_Force_Key,36-2 -
. .VKD _API_Ge:_Vemon.BS-Z
VKD_Cancel_Hot_Key_State, 36-2
. VKD_Cancel_Paste,36-3 -

Loal_stableJ{ot_l(sy 36-7

VKD _Local_Enable_Hot_Key.36-7
VKD_Peck Msg Key,36-7:
VKD_Reflect_Hot_Key, 368"
.VKD_Remove_Hot_Key, 36-8
VKD_Start_Paste,36-8

Virtual machine
Client Register structure, 16-3 16-6
defined, 16-3 o :
Events, 16-10- .
Initialization, 17-15 - ..~ *
loading sequence, 16-17
Privilege rings, 16-3)
Scheduling, 16-10
States, 17-15 LT
Termination, 17-17 e
VM handle, 16-6 - -

Virwal machine manager
Defined, 16-7 .

Virtual machine manager, defined, 16-2

Virtual machine, defined, 16-2 :

Virwal PIC Device services
VID_EOI_Proc,37-3
VID_Hw_Int_Proc, 37-3
VID_IRET_Proc, 374
VID_Mask_Change_Proc, 37-5
VID_Virt_Int_Proc, 373
VPICD_Call_When_Hw_Int, 37-5
VPICD_Clear_Int_Request, 37-6
VPICD_Convert_Handle_To_IRQ,37-6
VPICD_Convert_Int_To_IRQ, 37-7
VPICD_Convert_IRQ_To_Int, 37-7
VPICD_Get_Complete_Status, 37-7
VPICD_Get_IRQ_Complete_Status, 37-7
VPICD_Get_Status, 37-8

April 1, 1990

g A

VPICD_Get_Version, 37-9
-- VPICD_Phys_EOI, 37-9
. VPICD_Physically_Mask, 37-9
VPICD_Physically_Unmask, 37-10
“VPICD_Set_Auto_Masking, 37-10
i+ - VPICD_Sét_Int_Request, 37-10
- VPICD_Test_Phys_Request, 37-11
VPICD_Virtualize IRQ 37-11 -
Virtusal Sound Device services -
. VSD_Bell, 38-1
VSD_Get_Version, 38-1
Virtal Timer Device services
VTD_Begin_Min_Int_Period, 39-1
- " ¥TD_Dissble_Trapping, 39-2
- .'VTD_Enable Tnppmg.39-3
.- _NTD_End_Min_Int_| Period; 39-3
VTD_Get_ltiterupt_Period,39-3
.VTD_Get_Version, 394
VID _Update_System_Clock, 394

,5VKDsavwes SeeVmalKeyboadecvxcesavm

i VM Interrupt and Call services
- Build_Jnt_Stack_Frame, 21-2

v+ Disable VM _Ints, 21-3
7t Enable_VM_Ints, 21-3
. Get_PM_Int_Vector, 21-3
" Get_V86:Int_Vector, 21-3
-Get_PM_Int_Type, 21-3
Hook_V86_Int_Chain, 214
Set . PM_Int_Vector,21-6
Set_V86_Int_Vector,21-6
~ Set_PM_Int_Type,21-6 -

% -Simulate_Far_Call, 21-6
Simulate_Far_Jmp, 21-7
‘Simulate_Far_Ret,21-7

.. Simulate_Far Ret_N, 21-7

* Simulate_Int, 218
Simulate_Iret, 21-9

VM. See virtual machine

VMM. See virmal machine manager

Call_When_VM_Ints_Enabled, 21-2 -

VPICD sexvices. See Virtual PIC Device services
VPICD. See virtual progammable interrupt controller

device
VSD_Bell service, 38-1
VSD_Get_Version, 38-1

VSD services. See Virtual Sound Device services
VTD services. See Virtual Timer Device services

VxD. See virtual device

Microsoft Confidential -

Beta Release

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	16-001
	16-002
	16-003
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	19-001
	19-002
	19-003
	19-004
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	19-27
	19-28
	19-29
	19-30
	19-31
	19-32
	19-33
	19-34
	19-35
	19-36
	19-37
	19-38
	19-39
	19-40
	19-41
	19-42
	19-43
	19-44
	19-45
	19-46
	19-47
	19-48
	19-49
	19-50
	19-51
	19-52
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	23-01
	23-02
	23-03
	23-04
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	26-07
	26-08
	27-01
	27-02
	27-03
	27-04
	28-01
	28-02
	28-03
	28-04
	28-05
	28-06
	29-01
	29-02
	29-03
	29-04
	29-05
	29-06
	30-01
	30-02
	30-03
	30-04
	30-05
	30-06
	30-07
	30-08
	30-09
	30-10
	31-01
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	32-01
	32-02
	33-01
	33-02
	33-03
	33-04
	33-05
	33-06
	33-07
	33-08
	34-01
	34-02
	34-03
	34-04
	35-01
	35-02
	35-03
	35-04
	35-05
	35-06
	36-01
	36-02
	36-03
	36-04
	36-05
	36-06
	36-07
	36-08
	36-09
	36-10
	37-01
	37-02
	37-03
	37-04
	37-05
	37-06
	37-07
	37-08
	37-09
	37-10
	37-11
	37-12
	38-01
	38-02
	39-01
	39-02
	39-03
	39-04
	40-01
	40-02
	40-03
	40-04
	40-05
	40-06
	40-07
	40-08
	40-09
	40-10
	40-11
	40-12
	40-13
	40-14
	40-15
	40-16
	40-17
	40-18
	40-19
	40-20
	41-01
	41-02
	41-03
	41-04
	41-05
	41-06
	41-07
	41-08
	41-09
	41-10
	41-11
	41-12
	41-13
	41-14
	A-001
	A-002
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06

