Designed for

g ~ Vv i

e of the fo me
M‘i::‘rosoft: Microsof C++ 5.0
Windows NT* Progra nce Set
Windows 95

Complete documentation for
Microsoft Visual C++ version 5.0

soft
Vis iIsual C++

MFC Library Reference,

Part 2

Icrosoft’

isual C++

MFC Library Reference,
Part 2

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1997 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ MFC Library Reference / Microsoft Corporation.
p- cm.
Includes index.
ISBN 1-57231-519-9
1. C++ (Computer program language) 2. Microsoft Visual C++.
3. Microsoft foundation class library. 1. Microsoft Corporation.
QA76.73.C153M535 1997
005.26'8--dc21 97-2421
CIP

Printed and bound in the United States of America.
123456789 QMQM 210987

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (206) 936-7329.

Macintosh and TrueType are registered trademarks of Apple Computer, Inc. FoxPro, Microsoft,
Microsoft Press, MS, MS-DOS, Visual Basic, Visual C++, Win32, Windows, and Windows NT are
registered trademarks of Microsoft Corporation. Other product and company names mentioned herein
may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Maureen Williams Zimmerman

Contents

Part 1

Introduction xi

Class Library Overview 1

About the Microsoft Foundation Classes 1
Root Class: CObject 4

MFC Application Architecture Classes 5
Window, Dialog, and Control Classes 10
Drawing and Printing Classes 17

Simple Data Type Classes 19

Array, List, and Map Classes 20

File and Database Classes 22

Internet and Networking Classes 25
OLE Classes 27

Debugging and Exception Classes 32

Alphabetical Reference to the Microsoft Foundation Class Library 35
CAnimateCtrl 35

CArchive 40
CArchiveException 59
CArray 61
CAsyncMonikerFile 71
CAsyncSocket 80

CBitmap 113

CBitmapButton 123

CBrush 127

CButton 136

CByteArray 145
CCachedDataPathProperty 147
CCheckListBox 149
CClientDC 156

CCmdTarget 158

Contents

CCmdUI 168
CColorDialog 172
CComboBox 177
CCommandLinelnfo 202
CCommonDialog 208
CConnectionPoint 210
CControlBar 214
CCreateContext 222
CCeriticalSection 224
CCtrlView 227
CDaoDatabase 229
CDaoException 251
CDaoFieldExchange 256
CDaoQueryDef 260
CDaoRecordset 280
CDaoRecordView 348
CDaoTableDef 354
CDaoWorkspace 378
CDatabase 402
CDataExchange 419
CDataPathProperty 423
CDBException 427
CDBVariant 431

CDC 436

CDialog 563
CDialogBar 575
CDocltem 577
CDockState 579
CDocObjectServer 582
CDocObjectServerltem 586
CDocTemplate 589
CDocument 601
CDragListBox 620
CDumpContext 624
CDWordArray 629
CEdit 631

CEditView 653
CEvent 663
CException 667

CFieldExchange 672
CFile 676

CFileDialog 694
CFileException 704
CFileFind 709
CFindReplaceDialog 721
CFont 728
CFontDialog 737
CFontHolder 743
CFormView 747
CFrameWnd 751
CFtpConnection 770
CFipFileFind 780
CGdiObject 783
CGopherConnection 790
CGopherFile 794
CGopherFileFind 796
CGopherLocator 800
CHeaderCtrl 803
CHotKeyCirl 810
CHtmlStream 814
CHttpConnection 822
CHttpFile 825
CHutpFilter 833
CHttpFilterContext 844
CHttpServer 850
CHttpServerContext 860
CImageList 868
ClnternetConnection 881
ClnternetException 884
ClInternetFile 886
ClInternetSession 893
CList 909

CListBox 920
CListCtrl 945
CListView 976
CLongBinary 978
CMap 980
CMapPtrToPtr 986

Contents

Contents

vi

CMapPtrToWord 988
CMapStringToOb 990
CMapStringToPtr 998
CMapStringToString 1000
CMapWordToOb 1002
CMapWordToPtr 1004
CMDIChildWnd 1006
CMDIFrameWnd 1011
CMemFile 1019
CMemoryException 1025
CMemoryState 1026
CMenu 1030
CMetaFileDC 1053
CMiniFrameWnd 1058
CMonikerFile 1060
CMultiDocTemplate 1064
CMultiLock 1067
CMutex 1071
CNotSupportedException 1073
CObArray 1074

CObject 1091

CObList 1099
COleBusyDialog 1116
COleChangelconDialog 1120
COleChangeSourceDialog 1124
COleClientltem 1129
COleCmdUI 1173
COleControl 1176
COleControlModule 1256
COleConvertDialog 1257
COleCurrency 1263
COleDataObject 1275
COleDataSource 1282
COleDateTime 1293

Index

Contents

Part 2

COleDateTimeSpan 1317
COleDialog 1332
COleDispatchDriver 1334
COleDispatchException 1341
COleDocument 1344
COleDropSource 1356
COleDropTarget 1359
COleException 1366
COlelnsertDialog 1368
COlelPFrameWnd 1374
COleLinkingDoc 1377
COleLinksDialog 1381
COleMessageFilter 1384
COleObjectFactory 1391
COlePasteSpecialDialog 1398
COlePropertiesDialog 1405
COlePropertyPage 1410
COleResizeBar 1417
COleSafeArray 1419
COleServerDoc 1431
COleServerltem 1450
COleStreamFile 1470
COleTemplateServer 1474
COleUpdateDialog 1477
COleVariant 1479
CPageSetupDialog 1487
CPaintDC 1495

CPalette 1497

CPen 1503
CPictureHolder 1510
CPoint 1515
CPrintDialog 1521
CPrintInfo 1530
CProgressCtrl 1538
CPropertyPage 1542
CPropertySheet 1551

vii

Contents

viii

CPropExchange 1563
CPtrArray 1568
CPtrList 1570
CRecentFileList 1572
CRecordset 1576
CRecordView 1633
CRect 1639
CRectTracker 1657
CResourceException 1666
CRgn 1667
CRichEditCntrltem 1681
CRichEditCtrl 1683
CRichEditDoc 1711
CRichEditView 1714
CRuntimeClass 1735
CScrollBar 1737
CScrollView 1744
CSemaphore 1752
CSharedFile 1754
CSingleDocTemplate 1757
CSingleLock 1760
CSize 1763
CSliderCtrl 1767
CSocket 1779
CSocketFile 1785
CSpinButtonCtrl 1787
CSplitterWnd 1794
CStatic 1812
CStatusBar 1818
CStatusBarCtrl 1825
CStdioFile 1833
CString 1837
CStringArray 1863
CStringList 1865
CSyncObject 1867
CTabCtrl 1870
CTime 1882
CTimeSpan 1894
CToolBar 1901

CToolBarCtrl 1913
CToolTipCtrl 1940
CTreeCtrl 1948
CTreeView 1974
CTypedPtrArray 1976
CTypedPtrList 1981
CTypedPtrMap 1989
CUlIntArray 1993
CUserException 1995
CView 1997
CWiaitCursor 2017
CWinApp 2021
CWindowDC 2064
CWinThread 2066
CWnd 2078
CWordArray 2277

MFC Macros and Globals 2279

Data Types 2281

Type Casting of MFC Class Objects 2282

Run-Time Object Model Services 2282

Diagnostic Services 2283

Exception Processing 2285

CString Formatting and Message-Box Display 2287
Application Information and Management 2287
Standard Command and Window IDs 2288

Collection Class Helpers 2289

Record Field Exchange Functions 2290

Dialog Data Exchange Functions for CRecordView and CDaoRecordView 2292
Dialog Data Exchange Functions for OLE Controls 2293

Database Macros 2294

DAO Database Engine Initialization and Termination 2295

OLE Initialization 2295

Application Control 2295

Dispatch Maps 2296

Variant Parameter Type Constants 2296
Type Library Access 2297

Property Pages 2298
Event Maps 2299

Contents

Contents

Event Sink Maps 2300

Connection Maps 2300

Registering OLE Controls 2301

Class Factories and Licensing 2302

Persistence of OLE Controls 2303

Internet Server API (ISAPI) Parse Maps 2303
Internet Server API (ISAPI) Diagnostic Macros 2304
Macros, Global Functions, and Global Variables 2304
ClassWizard Comment Delimiters 2483

Structures, Styles, and Callback Functions 2489
Structures Used by MFC 2489

Styles Used by MFC 2564

Callback Functions Used by MFC 2575

Index

COleDateTimeSpan

COleDateTimeSpan

COleDateTimeSpan does not have a base class.

A COleDateTimeSpan object represents a relative time, a time span. A
COleDateTimeSpan keeps time in days.

COleDateTimeSpan is used with its companion class COleDateTime.
COleDateTime encapsulates the DATE data type of OLE automation.
COleDateTime represents absolute time values. All COleDateTime calculations
involve COleDateTimeSpan values. The relation between these classes is analogous
to the one between CTime and CTimeSpan.

For more information on the COleDateTime and COleDateTimeSpan classes, see
the article “Date and Time: Automation Support” in Visual C++ Programmer’s Guide
online.

#include <afxdisp.h>

COleDateTimeSpan Class Members

Constructor

COleDateTimeSpan Constructs a COleDateTimeSpan object.

Attributes

GetStatus Gets the status (validity) of this COleDateTimeSpan object.

SetStatus Sets the status (validity) of this COleDateTimeSpan object.

GetDays Returns the day portion of the span this COleDateTimeSpan object
represents.

GetHours Returns the hour portion of the span this COleDateTimeSpan object
represents.

GetMinutes Returns the minute portion of the span this COleDateTimeSpan
object represents.

GetSeconds Returns the second portion of the span this COleDateTimeSpan
object represents.

GetTotalDays Returns the number of days this COleDateTimeSpan object
represents.

GetTotalHours Returns the number of hours this COleDateTimeSpan object
represents.

GetTotalMinutes Returns the number of minutes this COleDateTimeSpan object
represents.

GetTotalSeconds Returns the number of seconds this COleDateTimeSpan object
represents.

1317

COleDateTimeSpan::COleDateTimeSpan

Operations

SetDateTimeSpan Sets the value of this COleDateTimeSpan object.

Format Generates a formatted string representation of a COleDateTimeSpan
object.

Operators

operator double
operator =
operator +, -
operator +=, -=

operator ==, <, <=

Converts this COleDateTimeSpan value to a double.
Copies a COleDateTimeSpan value.
Add, subtract, and change sign for COleDateTimeSpan values.

Add and subtract a COleDateTimeSpan value from this
COleDateTimeSpan value.

Compare two COleDateTimeSpan values.

Data Members

m_span Contains the underlying double for this COleDateTimeSpan
object.

m_status Contains the status of this COleDateTimeSpan object.

Dumpl/Archive

operator <<

operator >>

Outputs a COleDateTimeSpan value to CArchive or
CDumpContext.

Inputs a COleDateTimeSpan object from CArchive.

Member Functions
COleDateTimeSpan::COleDateTimeSpan

COleDateTimeSpan();

COleDateTimeSpan(const COleDateTimeSpan& dateSpanSrc);
COleDateTimeSpan(double dbiSpanSrc);

COleDateTimeSpan(long [Days, int nHours, int nMins, int nSecs);

Parameters
dateSpanSrc An existing COleDateTimeSpan object to be copied into the new
COleDateTimeSpan object.

1318

dbiSpanSrc The number of days to be copied into the new COleDateTimeSpan

object.

IDays, nHours, nMins, nSecs Indicate the day and time values to be copied into the
new COleDateTimeSpan object.

COleDateTimeSpan::Format

Remarks
All of these constructors create new COleDateTimeSpan objects initialized to the
specified value. A brief description of each of these constructors follows:

e COleDateTimeSpan() Constructs a COleDateTimeSpan object initialized to 0.

¢ COleDateTimeSpan(dateSpanSrc) Constructs a COleDateTimeSpan object
from an existing COleDateTimeSpan object.

¢ COleDateTimeSpan(dblSpanSrc) Constructs a COleDateTimeSpan object
from a floating-point value.

¢ COleDateTimeSpan([Days, nHours, nMins, nSecs) Constructs a
COleDateTimeSpan object initialized to the specified numerical values.

The status of the new COleDateTimeSpan object is set to valid.

For more information about the bounds for COleDateTimeSpan values, see the
article “Date and Time: Automation Support” in Visual C++ Programmer’s Guide
online.

Example
COleDateTimeSpan spanOne(2.75); // 2 days and 18 hours
COleDateTimeSpan spanTwo(2, 18, 0, @); // 2 days and 18 hours
COleDateTimeSpan spanThree(3, -6, 0, @); // 2 days and 18 hours

See Also: COleDateTimeSpan::operator =, COleDateTimeSpan::GetStatus,
COleDateTimeSpan::m_span, COleDateTimeSpan::m_status

COleDateTimeSpan::Format

CString Format(LPCTSTR pFormat) const;
CString Format(UINT nID) const;

Return Value
A CString that contains the formatted date/time-span value.

Parameters
pFormat A formatting string similar to the printf formatting string. Formatting
codes, preceded by a percent (%) sign, are replaced by the corresponding
COleDateTimeSpan component. Other characters in the formatting string are
copied unchanged to the returned string. See the run-time function strftime for
details. The value and meaning of the formatting codes for Format are listed
below:

e %D Total days in this COleDateTimeSpan
e %H Hours in the current day

e %M Minutes in the current hour

1319

COleDateTimeSpan::GetDays

Remarks

e %S Seconds in the current minute
® %% Percentsign

nID The resource ID for the format-control string.

Call these functions to create a formatted representation of the time-span value. If the
status of this COleDateTimeSpan object is null, the return value is an empty string. If
the status is invalid, the return string is specified by the string resource
IDS_INVALID_DATETIMESPAN.

A brief description of the forms for this function follows:

Format(pFormat) This form formats the value using the format string which
contains special formatting codes that are preceded by a percent sign (%), as in
printf. The formatting string is passed as a parameter to the function.

Format(nID) This form formats the value using the format string which contains
special formatting codes that are preceded by a percent sign (%), as in printf. The
formatting string is a resource. The ID of this string resource is passed as the
parameter.

For more information about the formatting codes used in this function, see strftime,
wesftime in the Run-Time Library Reference. For a listing of locale ID values, see the
section “Supporting Multiple National Languages” in the Win32 SDK OLE
Programmer’s Reference.

See Also: COleDateTimeSpan::GetStatus

COleDateTimeSpan::GetDays

long GetDays() const;

Return Value

Remarks

1320

The day portion of this date/time-span value.

Call this member function to retrieve the day portion of this date/time-span value.

The return values from this function range between approximately —3,615,000 and
3,615,000.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

e GetHours

¢ GetMinutes
e GetSeconds
¢ GetTotalDays

COleDateTimeSpan::GetMinutes

e GetTotalHours
¢ GetTotalMinutes
¢ GetTotalSeconds

See Also: COleDateTimeSpan::SetDateTimeSpan

COleDateTimeSpan::GetHours

long GetHours() const;

Return Value :
The hours portion of this date/time-span value.

Remarks
Call this member function to retrieve the hour portion of this date/time-span value.

The return values from this function range between —23 and 23.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

e GetDays

e GetMinutes

e GetSeconds

¢ GetTotalDays

o GetTotalHours
¢ GetTotalMinutes
e GetTotalSeconds

See Also: COleDateTimeSpan::SetDateTimeSpan

COleDateTimeSpan::GetMinutes

long GetMinutes() const;

Return Value
The minutes portion of this date/time-span value.

Remarks
Call this member function to retrieve the minute portion of this date/time-span value.

The return values from this function range between —59 and 59.

1321

COleDateTimeSpan::GetSeconds
For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:
¢ GetDays
e GetHours
o GetSeconds
¢ GetTotalDays
e GetTotalHours
¢ GetTotalMinutes
e GetTotalSeconds

See Also: COleDateTimeSpan::SetDateTimeSpan

COleDateTimeSpan::GetSeconds

long GetSeconds() const;

Return Value
The seconds portion of this date/time-span value.

Remarks
Call this member function to retrieve the second portion of this date/time-span value.

The return values from this function range between —59 and 59.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

e GetDays

o GetHours

e GetMinutes

¢ GetTotalDays

¢ GetTotalHours
¢ GetTotalMinutes
¢ GetTotalSeconds

See Also: COleDateTimeSpan::SetDateTimeSpan

COleDateTimeSpan::GetStatus

DateTimeSpanStatus GetStatus() const;

Return Value
The status of this COleDateTimeSpan value.

1322

Remarks

COleDateTimeSpan::GetTotalDays

Call this member function to get the status (validity) of this COleDateTimeSpan
object.

The return value is defined by the DateTimeSpanStatus enumerated type, which is
defined within the COleDateTimeSpan class.

enum DateTimeSpanStatus({
valid = 0,
invalid = 1,
null = 2,

}:

For a brief description of these status values, see the following list:

e COleDateTimeSpan::valid Indicates that this COleDateTimeSpan object is
valid.

e COleDateTimeSpan::invalid Indicates that this COleDateTimeSpan object is
invalid; that is, its value may be incorrect.

e COleDateTimeSpan::null Indicates that this COleDateTimeSpan object is null,
that is, that no value has been supplied for this object. (This is “null” in the
database sense of “having no value,” as opposed to the C++ NULL.)

The status of a COleDateTimeSpan object is invalid in the following cases:

e If this object has experienced an overflow or underflow during an arithmetic
assignment operation, namely, += or -=.

e If an invalid value was assigned to this object.
e If the status of this object was explicitly set to invalid using SetStatus.

For more information about the operations that may set the status to invalid, see
COleDateTimeSpan::operator +, - and COleDateTimeSpan::operator +=, -=.

For more information about the bounds for COleDateTimeSpan values, see the
article “Date and Time: Automation Support” in Visual C++ Programmer’s Guide
online.

See Also: COleDateTimeSpan::SetStatus, COleDateTimeSpan::m_status

COleDateTimeSpan::GetTotalDays

double GetTotalDays() const;

Return Value

Remarks

This date/time-span value expressed in days.

Call this member function to retrieve this date/time-span value expressed in days.

1323

COleDateTimeSpan::GetTotalHours

The return values from this function range between approximately —3.65e6 and
3.65e6.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

e GetDays

e GetHours

e GetMinutes

e GetSeconds

e GetTotalHours
¢ GetTotalMinutes
e GetTotalSeconds

See Also: COleDateTimeSpan::SetDateTimeSpan,
COleDateTimeSpan::operator double

COleDateTimeSpan::GetTotalHours

double GetTotalHours() const;

Return Value
This date/time-span value expressed in hours.

Remarks
Call this member function to retrieve this date/time-span value expressed in hours.

The return values from this function range between approximately —8.77e7 and
8.77¢1.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

e GetDays

e GetHours

o GetMinutes

e GetSeconds

e GetTotalDays

¢ GetTotalMinutes
e GetTotalSeconds

See Also: COleDateTimeSpan::SetDateTimeSpan

1324

COleDateTimeSpan::GetTotalSeconds

COleDateTimeSpan::GetTotalMinutes

double GetTotalMinutes() const;

Return Value

Remarks

This date/time-span value expressed in minutes.

Call this member function to retrieve this date/time-span value expressed in minutes.

The return values from this function range between approximately —5.26e9 and
5.26€9.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

e GetDays

e GetHours

¢ GetMinutes

¢ GetSeconds

¢ GetTotalDays

e GetTotalHours
¢ GetTotalSeconds

See Also: COleDateTimeSpan::SetDateTimeSpan

COleDateTimeSpan::GetTotalSeconds

double GetTotalSeconds() const;

Return Value

Remarks

This date/time-span value expressed in seconds.

Call this member function to retrieve this date/time-span value expressed in seconds.

The return values from this function range between approximately —3.16el1 to
3.16el1.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

¢ GetDays

¢ GetHours
e GetMinutes
e GetSeconds

1325

COleDateTimeSpan::SetDateTimeSpan

¢ GetTotalDays
o GetTotalHours
¢ GetTotalMinutes

See Also: COleDateTimeSpan::SetDateTimeSpan

COleDateTimeSpan::SetDateTimeSpan

void SetDateTimeSpan(long [Days, int nHours, int nMins, int nSecs);

Parameters
[Days, nHours, nMins, nSecs Indicate the date-span and time-span values to be
copied into this COleDateTimeSpan object.

Remarks
Call this member function to set the value of this date/time-span value.

For functions that query the value of a COleDateTimeSpan object, see the following
member functions:

e GetDays

¢ GetHours

e GetMinutes

e GetSeconds

¢ GetTotalDays

¢ GetTotalHours
¢ GetTotalMinutes
o GetTotalSeconds

Example
COleDateTimeSpan spanOne;
COleDateTimeSpan spanTwo;
spanOne.SetDateTimeSpan(@, 2, 45, @); // 2 hours and 45 seconds
spanTwo.SetDateTimeSpan(@, 3, -15, 0); // 2 hours and 45 seconds

See Also: COleDateTimeSpan::GetStatus, COleDateTimeSpan::m_span

COleDateTimeSpan::SetStatus

void SetStatus(DateTimeSpanStatus nStartus);

Parameters
nStatus The new status value for this COleDateTimeSpan object.

1326

Remarks

COleDateTimeSpan::operator =

Call this member function to set the status (validity) of this COleDateTimeSpan
object. The nStatus parameter value is defined by the DateTimeSpanStatus
enumerated type, which is defined within the COleDateTimeSpan class.

enum DateTimeSpanStatus{
valid = @,
invalid = 1,
null = 2,
};
For a brief description of these status values, see the following list:

e COleDateTimeSpan::valid Indicates that this COleDateTimeSpan object is
valid.

e COleDateTimeSpan::invalid Indicates that this COleDateTimeSpan object is
invalid; that is, its value may be incorrect.

e COleDateTimeSpan::null Indicates that this COleDateTimeSpan object is null,
that is, that no value has been supplied for this object. (This is “null” in the
database sense of “having no value,” as opposed to the C++ NULL.)

Caution This function is for advanced programming situations. This function does not alter the
data in this object. It will most often be used to set the status to null or invalid. Note that the
assignment operator (operator =) and SetDateTimeSpan do set the status of the object based
on the source value(s).

See Also: COleDateTimeSpan::GetStatus, COleDateTimeSpan::m_status

Operators
COleDateTimeSpan::operator =

Remarks

const COleDateTimeSpan& operator=(double dblSpanSrc);
const COleDateTimeSpan& operator=(const COleDateTimeSpan& dateSpanSrc);

These overloaded assignment operators copy the source date/time-span value into this
COleDateTimeSpan object.

See Also: COleDateTimeSpan::COleDateTimeSpan

1327

COleDateTimeSpan::operator +, -

COleDateTimeSpan::operator +, -

Remarks

COleDateTimeSpan operator+(const COleDateTimeSpan& dateSpan) const;
COleDateTimeSpan operator-(const COleDateTimeSpan& dateSpan) const;
COleDateTimeSpan operator-() const;

The first two operators let you add and subtract date/time-span values. The third lets
you change the sign of a date/time-span value.

If either of the operands is null, the status of the resulting COleDateTimeSpan value
is null.

If either of the operands is invalid and the other is not null, the status of the resulting
COleDateTimeSpan value is invalid.

For more information on the valid, invalid, and null status values, see the m_status
member variable.

See Also: COleDateTimeSpan::operator +=, -=

COleDateTimeSpan::operator +=, -=

Remarks

const COleDateTimeSpan& operator+=(const COleDateTimeSpan dateSpan);
const COleDateTimeSpan& operator-=(const COleDateTimeSpan dateSpan);

These operators let you add and subtract date/time-span values from this
COleDateTimeSpan object.

If either of the operands is null, the status of the resulting COleDateTimeSpan value
is null.

If either of the operands is invalid and the other is not null, the status of the resulting
COleDateTimeSpan value is invalid.

For more information on the valid, invalid, and null status values, see the m_status
member variable.

See Also: COleDateTimeSpan::operator +, -

COleDateTimeSpan::operator double

Remarks

1328

operator double() const;

This operator returns the value of this COleDateTimeSpan value as a floating-point
number of days.

COleDateTimeSpan::operator <<, >>

See Also: COleDateTimeSpan::GetTotalDays,
COleDateTimeSpan::SetDateTimeSpan, COleDateTimeSpan::m_span

COleDateTimeSpan Relational Operators

BOOL operator==(const COleDateTimeSpan& dateSpan) const;
BOOL operator!=(const COleDateTimeSpan& dateSpan) const;
BOOL operator<(const COleDateTimeSpan& dateSpan) const;
BOOL operator>(const COleDateTimeSpan& dateSpan) const;
BOOL operator<=(const COleDateTimeSpan& dateSpan) const;
BOOL operator>=(const COleDateTimeSpan& dateSpan) const;

Remarks
These operators compare two date/time-span values and return nonzero if the
condition is true; otherwise 0.
Note The return value of the ordering operations (<, <=, >, >=) is undefined if the status of
either operand is null or invalid. The equality operators (==, !=) consider the status of the
operands.

Example
COleDateTimeSpan spanOne(3, 12, 0, 0); // 3 days and 12 hours
COleDateTimeSpan spanTwo(spanOne); // 3 days and 12 hours
BOOL b;
b = spanOne == spanTwo; // TRUE
spanTwo.SetStatus(COleDateTimeSpan::invalid);
b = spanOne == spanTwo; // FALSE, different status
b = spanOne != spanTwo; // TRUE, different status
b = spanOne < spanTwo; // FALSE, same value
b = spanOne > spanTwo; // FALSE, same value
b = spanOne <= spanTwo; // TRUE, same value
b = spanOne >= spanTwo; // TRUE, same value

Note The last four lines of the preceding example will ASSERT in debug mode.

COleDateTimeSpan::operator <<, >>

friend CDumpContext& AFXAPI operator<<(CDumpContext& dc,

= COleDateTimeSpan dateSpan);
friend CArchive& AFXAPI operator<<(CArchive& ar, COleDateTimeSpan dateSpan);
friend CArchive& AFXAPI operator>>(CArchive& ar, COleDateTimeSpan& dateSpan);

Remarks
The COleDateTimeSpan insertion (<<) operator supports diagnostic dumping and
storing to an archive. The extraction (>>) operator supports loading from an archive.

See Also: CDumpContext, CArchive

1329

COleDateTimeSpan::m_span

Data Members
COleDateTimeSpan::m_span

Remarks
The underlying double value for this COleDateTime object. This value expresses the
date/time-span in days.

Caution Changing the value in the double data member will change the value of this
COleDateTimeSpan object. It does not change the status of this COleDateTimeSpan object.

See Also: COleDateTimeSpan::COleDateTimeSpan,
COleDateTimeSpan::SetDateTimeSpan, COleDateTimeSpan::operator double

COleDateTimeSpan::m_status

Remarks
The type for this data member is the enumerated type DateTimeSpanStatus, which is
defined within the COleDateTimeSpan class.

enum DateTimeSpanStatus{
valid = 0,
invalid = 1,
null = 2,

};

For a brief description of these status values, see the following list:

¢ COleDateTimeSpan::valid Indicates that this COleDateTimeSpan object is
valid.

o COleDateTimeSpan::invalid Indicates that this COleDateTimeSpan object is
invalid; that is, its value may be incorrect.

¢ COleDateTimeSpan::null Indicates that this COleDateTimeSpan object is null,
that is, that no value has been supplied for this object. (This is “null” in the
database sense of “having no value,” as opposed to the C++ NULL.)

The status of a COleDateTimeSpan object is invalid in the following cases:

e If this object has experienced an overflow or underflow during an arithmetic
assignment operation, namely, += or -=.

e If an invalid value was assigned to this object.

o If the status of this object was explicitly set to invalid using SetStatus.

1330

COleDateTimeSpan::m_status

For more information about the operations that may set the status to invalid, see
COleDateTimeSpan::operator +, - and COleDateTimeSpan::operator +=, -=.

Caution This data member is for advanced programming situations. You should use the inline
member functions GetStatus and SetStatus. See SetStatus for further cautions regarding
explicitly setting this data member.

For more information about the bounds for COleDateTimeSpan values, see the
article “Date and Time: Automation Support” in Visual C++ Programmer’s Guide
online.

See Also: COleDateTimeSpan::GetStatus, COleDateTimeSpan::SetStatus

1331

COleDialog

COleDialog

The COleDialog class provides functionality common to dialog boxes for OLE.
The Microsoft Foundation Class Library provides several classes derived from
COleDialog.

These are:

COlelnsertDialog
COleConvertDialog
COleChangelconDialog
COleLinksDialog
COleBusyDialog
COleUpdateDialog
COlePasteSpecialDialog
COlePropertiesDialog
COleChangeSourceDialog

For more information about OLE-specific dialog boxes, see the article “Dialog Boxes
in OLE” in Visual C++ Programmer’s Guide online.

#include <afxodlgs.h>

COleDialog Class Members

Operations

GetLastError Gets the error code returned by the dialog box.

1332

COleDialog::GetLastError

Member Functions
COleDialog::GetLastError

UINT GetLastError() const;

Return Value
The error codes returned by GetLastError depend on the specific dialog box
displayed.

Remarks
Call the GetLastError member function to get additional error information when
DoModal returns IDABORT. See the DoModal member function in the derived
classes for information about specific error messages.

See Also: COleBusyDialog::DoModal, COleChangelconDialog::DoModal,
COleChangeSourceDialog::DoModal, COleConvertDialog::DoModal,
COlelnsertDialog::DoModal, COleLinksDialog::DoModal,
COlePasteSpecialDialog::DoModal, COlePropertiesDialog::DoModal,
COleUpdateDialog::DoModal

1333

COleDispatchDriver

COleDispatchDriver

COleDispatchDriver does not have a base class.

The COleDispatchDriver class implements the client side of OLE automation. OLE
dispatch interfaces provide access to an object’s methods and properties. Member
functions of COleDispatchDriver attach, detach, create, and release a dispatch
connection of type IDispatch. Other member functions use variable argument lists to
simplify calling IDispatch::Invoke.

For more information, see IDispatch and IDispatch::Invoke in the Win32 SDK OLE
Programmer’s Reference.

This class can be used directly, but it is generally used only by classes created by
ClassWizard. When you create new C++ classes by importing a type library,
ClassWizard derives the new classes from COleDispatchDriver.

For more information on using COleDispatchDriver, see the following articles in
Visual C++ Programmer’s Guide online:

¢ Automation Clients

¢ Automation Servers

¢ ClassWizard: Automation Support
#include <afxdisp.h>

See Also: CCmdTarget

COleDispatchDriver Class Members

1334

Data Members

m_bAutoRelease Specifies whether to release the IDispatch during ReleaseDispatch
or object destruction.

m_lpDispatch Indicates the pointer to the IDispatch interface attached to this
COleDispatchDriver.

Construction

COleDispatchDriver Constructs a COleDispatchDriver object.

Operations

CreateDispatch Creates an IDispatch connection and attaches it to the
COleDispatchDriver object.

AttachDispatch Attaches an IDispatch connection to the COleDispatchDriver
object.

DetachDispatch Detaches an IDispatch connection, without releasing it.

COleDispatchDriver::COleDispatchDriver

Operations (continued)

ReleaseDispatch Releases an IDispatch connection.
InvokeHelper Helper for calling automation methods.
SetProperty Sets an automation property.
GetProperty Gets an automation property.

Member Functions
COleDispatchDriver:: AttachDispatch

void AttachDispatch(LPDISPATCH IpDispatch, BOOL bAutoRelease = TRUE);

Parameters
IpDispatch Pointer to an OLE IDispatch object to be attached to the
COleDispatchDriver object.

bAutoRelease Specifies whether the dispatch is to be released when this object goes
out of scope.

Remarks
Call the AttachDispatch member function to attach an IDispatch pointer to the
COleDispatchDriver object. This function releases any IDispatch pointer that is
already attached to the COleDispatchDriver object.

See Also: COleDispatchDriver::DetachDispatch,
COleDispatchDriver::ReleaseDispatch, COleDispatchDriver::CreateDispatch,
COleDispatchDriver::m_lpDispatch, COleDispatchDriver::m_bAutoRelease

COleDispatchDriver::COleDispatchDriver

COleDispatchDriver();
COleDispatchDriver(LPDISPATCH IpDispatch, BOOL bAutoRelease = TRUE);
COleDispatchDriver(const COleDispatchDriver& dispatchSrc);

Parameters
IpDispatch Pointer to an OLE IDispatch object to be attached to the
COleDispatchDriver object.

bAutoRelease Specifies whether the dispatch is to be released when this object goes
out of scope.

dispatchSrc Reference to an existing COleDispatchDriver object.

1335

COleDispatchDriver::CreateDispatch

Remarks
Constructs a COleDispatchDriver object. The form
COleDispatchDriver(LPDISPATCH IpDispatch, BOOL bAutoRelease = TRUE)
connects the IDispatch interface.

The form COleDispatchDriver(const COleDispatchDriver& dispatchSrc) copies an
existing COleDispatchDriver object and increments the reference count.

The form COleDispatchDriver() creates a COleDispatchDriver object but does not
connect the IDispatch interface. Before using COleDispatchDriver() without
arguments, you should connect an IDispatch to it using either
COleDispatchDriver::CreateDispatch or COleDispatchDriver::AttachDispatch.

See Also: COleDispatchDriver::AttachDispatch,
COleDispatchDriver::CreateDispatch

COleDispatchDriver::CreateDispatch

BOOL CreateDispatch(REFCLSID cisid, COleException* pError = NULL);
BOOL CreateDispatch(LPCTSTR /pszProgID, COleException* pError = NULL);

Return Value
Nonzero on success; otherwise 0.

Parameters
clsid Class ID of the IDispatch connection object to be created.

pError Pointer to an OLE exception object, which will hold the status code resulting
from the creation.

IpszProgID Pointer to the programmatic identifier, such as “Excel.Document.5”, of
the automation object for which the dispatch object is to be created.

Remarks
Creates an IDispatch object and attaches it to the COleDispatchDriver object.

See Also: COleDispatchDriver::DetachDispatch,
COleDispatchDriver::ReleaseDispatch, COleDispatchDriver::AttachDispatch,
COleException, COleDispatchDriver::m_lpDispatch

COleDispatchDriver::DetachDispatch

LPDISPATCH DetachDispatch();

Return Value
A pointer to the previously attached OLE IDispatch object.

1336

COleDispatchDriver::InvokeHelper

Remarks
Detaches the current IDispatch connection from this object. The IDispatch is not
released.

For more information about the LPDISPATCH type, see IDispatch in the OLE
Programmer’s Reference.

See Also: COleDispatchDriver::ReleaseDispatch,
COleDispatchDriver::CreateDispatch, COleDispatchDriver::AttachDispatch,
COleDispatchDriver::m_lpDispatch

COleDispatchDriver::GetProperty

void GetProperty(DISPID dwDispID, VARTYPE vtProp, void* pvProp) const;

Parameters

dwDispID Identifies the property to be retrieved. This value is usually supplied by
ClassWizard.

vtProp Specifies the property to be retrieved. For possible values, see the Remarks
section for COleDispatchDriver::InvokeHelper.

pvProp Address of the variable that will receive the property value. It must match the
type specified by vtProp.

Remarks
Gets the object property specified by dwDispID.

See Also: COleDispatchDriver::InvokeHelper,
COleDispatchDriver::SetProperty

COleDispatchDriver::InvokeHelper

void InvokeHelper(DISPID dwDispID, WORD wFlags, VARTYPE vtRet,
< void* pvRet, const BYTE FAR* pbParamlnfo, ...);
throw(COleException);
throw(COleDispatchException);

Parameters
dwDispID Identifies the method or property to be invoked. This value is usually
supplied by ClassWizard.

wFlags Flags describing the context of the call to IDispatch::Invoke. For possible
values, see the OLE Programmer’s Reference.

viRet Specifies the type of the return value. For possible values, see the Remarks
section.

1337

COleDispatchDriver::InvokeHelper

Remarks

1338

pvRet Address of the variable that will receive the property value or return value. It
must match the type specified by vtRer.

pbParamlinfo Pointer to a null-terminated string of bytes specifying the types of the
parameters following pbParamlinfo.

Variable list of parameters, of types specified in pbParaminfo.

Calls the object method or property specified by dwDispID, in the context specified
by wFlags. The pbParamlnfo parameter specifies the types of the parameters passed
to the method or property. The variable list of arguments is represented by ... in the
syntax declaration.

Possible values for the vtRet argument are taken from the VARENUM enumeration.
Possible values are as follows:

Symbol Return Type
VT_EMPTY void

VT_I2 short

VT_I4 long

VT_R4 float

VT_RS8 double

VT_CY CY

VT_DATE DATE
VT_BSTR BSTR
VT_DISPATCH LPDISPATCH
VT_ERROR SCODE
VT_BOOL BOOL
VT_VARIANT VARIANT
VT_UNKNOWN LPUNKNOWN

The pbParamlinfo argument is a space-separated list of VTS_ constants. One or more
of these values, separated by spaces (not commas), specifies the function’s parameter
list. Possible values are listed with the EVENT_CUSTOM macro.

This function converts the parameters to VARIANTARG values, then invokes the
IDispatch::Invoke method. If the call to Invoke fails, this function will throw an
exception. If the SCODE (status code) returned by IDispatch::Invoke is
DISP_E_EXCEPTION, this function throws a COleException object; otherwise it
throws a COleDispatchException.

For more information, see VARIANTARG, IDispatch, IDispatch::Invoke, and
“Structure of OLE Error Codes” in the Win32 SDK OLE Programmer’s Reference.

See Also: COleException, COleDispatchException

' COleDispatchDriver::m_bAutoRelease

COleDispatchDriver::ReleaseDispatch

void ReleaseDispatch();

Remarks
Releases the IDispatch connection. If auto release has been set for this connection,
this function calls IDispatch::Release before releasing the interface.

See Also: COleDispatchDriver::DetachDispatch,
COleDispatchDriver::CreateDispatch, COleDispatchDriver::AttachDispatch,
COleDispatchDriver::m_lpDispatch, COleDispatchDriver::m_bAutoRelease

COleDispatchDriver::SetProperty

void SetProperty(DISPID dwDispID, VARTYPE vtProp, ...);

Parameters
dwDispID Identifies the property to be set. This value is usually supplied by
ClassWizard.

vtProp Specifies the type of the property to be set. For possible values, see the
Remarks section for COleDispatchDriver::InvokeHelper.

. A single parameter of the type specified by vtProp.

Remarks
Sets the OLE object property specified by dwDispID.

See Also: COleDispatchDriver::InvokeHelper,
COleDispatchDriver::GetProperty

Data Members
COleDispatchDriver::m_bAutoRelease

Remarks
If TRUE, the COM object accessed by m_lpDispatch will be automatically released
when ReleaseDispatch is called or when this COleDispatchDriver object is
destroyed.

By default, m_bAutoRelease is set to TRUE in the constructor.

For more information on releasing COM objects, see “Implementing Reference

Counting” and IUnknown::Release in the OLE 2 Programmer’s Reference, Volume 1.

See Also: COleDispatchDriver::AttachDispatch,
COleDispatchDriver::ReleaseDispatch, COleDispatchDriver::m_lpDispatch

1339

COleDispatchDriver::m_lpDispatch

COleDispatchDriver::m_lpDispatch

Remarks

The pointer to the IDispatch interface attached to this COleDispatchDriver. The
m_lpDispatch data member is a public variable of type LPDISPATCH.

For more information, see IDispatch in the OLE Programmer’s Reference.

See Also: COleDispatchDriver::AttachDispatch,
COleDispatchDriver::ReleaseDispatch, COleDispatchDriver::CreateDispatch,
COleDispatchDriver::DetachDispatch

1340

COleDispatchException

COleDispatchException

The COleDispatchException class handles exceptions specific to the OLE IDispatch
interface, which is a key part of OLE automation.

Like the other exception classes derived from the CException base class,
COleDispatchException can be used with the THROW, THROW_LAST, TRY,
CATCH, AND_CATCH, and END_CATCH macros.

In general, you should call AfxThrowOleDispatchException to create and throw a
COleDispatchException object.

For more information on exceptions, see the articles “Exceptions” and “Exceptions:
OLE Exceptions” in Visual C++ Programmer’s Guide online.

#include <afxdisp.h>

See Also: COleDispatchDriver, COleException

COleDispatchException Class Members

Data Members

m_wCode IDispatch-specific error code.
m_strDescription Verbal error description.
m_dwHelpContext Help context for error.

m_strHelpFile Help file to use with m_dwHelpContext.
m_strSource Application that generated the exception.

1341

COleDispatchException::m_dwHelpContext

Data Members
COleDispatchException::m_dwHelpContext

DWORD m_dwHelpContext;

Remarks
Identifies a help context in your application’s help ((HLP) file. This member is set by
the function AfxThrowOleDispatchException when an exception is thrown.

See Also: COleDispatchException::m_strDescription,
COleDispatchException::m_wCode, AfxThrowQOleDispatchException

COleDispatchException::m_strDescription

CString m_strDescription;

Remarks
Contains a verbal error description, such as “Disk full.” This member is set by the
function AfxThrowOleDispatchException when an exception is thrown.

See Also: COleDispatchException::m_dwHelpContext,
COleDispatchException::m_wCode, AfxThrowOQOleDispatchException

COleDispatchException::m_strHelpFile
CString m_strHelpFile;

Remarks
The framework fills in this string with the name of the application’s help file.

See Also: AfxThrowOleDispatchException

COleDispatchException::m_strSource

CString m_strSource;

Remarks
The framework fills in this string with the name of the application that generated the
exception.

See Also: AfxThrowOleDispatchException

1342

COleDispatchException::m_wCode

COleDispatchException::m_wCode

Remarks

WORD m_wCode;

Contains an error code specific to your application. This member is set by the function
AfxThrowOleDispatchException when an exception is thrown.

See Also: COleDispatchException::m_strDescription,
COleDispatchException::m_dwHelpContext, AfxThrowOleDispatchException

1343

COleDocument

COleDocument

1344

COleDocument is the base class for OLE documents that support visual editing.
COleDocument is derived from CDocument, which allows your OLE applications
to use the document/view architecture provided by the Microsoft Foundation Class
Library.

COleDocument treats a document as a collection of CDocltem objects to handle
OLE items. Both container and server applications require such an architecture
because their documents must be able to contain OLE items. The COleServerItem
and COleClientItem classes, both derived from CDocltem, manage the interactions
between applications and OLE items.

If you are writing a simple container application, derive your document class from
COleDocument. If you are writing a container application that supports linking

to the embedded items contained by its documents, derive your document class
from COleLinkingDoc. If you are writing a server application or combination
container/server, derive your document class from COleServerDoc.
COleLinkingDoc and COleServerDoc are derived from COleDocument, so these
classes inherit all the services available in COleDocument and CDocument.

To use COleDocument, derive a class from it and add functionality to manage the
application’s non-OLE data as well as embedded or linked items. If you define
CDocltem-derived classes to store the application’s native data, you can use the
default implementation defined by COleDocument to store both your OLE and
non-OLE data. You can also design your own data structures for storing your
non-OLE data separately from the OLE items. For more information, see the article
“Containers: Compound Files” in Visual C++ Programmer’s Guide online.

CDocument supports sending your document via mail if mail support (MAPI) is
present. COleDocument has updated OnFileSendMail to handle compound
documents correctly. For more information, see the articles “MAPI Topics” and
“MAPI Support in MFC” in Visual C++ Programmer’s Guide online.

#include <afxole.h>

COleDocument Class Members

Construction

COleDocument Constructs a COleDocument object.

Operations

HasBlankItems Checks for blank items in the document.

EnableCompoundFile Causes documents to be stored using the OLE Structured
Storage file format.

GetInPlaceActiveltem Returns the OLE item that is currently in-place active.

GetStartPosition Gets the initial position to begin iteration.

GetNextItem Gets the next document item for iterating.

GetNextClientItem Gets the next client item for iterating.

GetNextServerItem Gets the next server item for iterating.

UpdateModifiedFlag Marks the document as modified if any of the contained OLE
items have been modified.

ApplyPrintDevice Sets the print-target device for all client items in the
document.

AddItem Adds an item to the list of items maintained by the document.

Removeltem Removes an item from the list of items maintained by the
document.

Overridables

GetPrimarySelectedItem

OnShowViews

Mail Functions

Returns the primary selected OLE item in the document.
Called when the document becomes visible or invisible.

OnFileSendMail

Message Handlers

Sends a mail message with the document attached.

OnEditChangelcon
OnEditConvert

OnEditLinks

OnUpdateEditChangelcon

OnUpdateEditLinksMenu

Handles events in the Change Icon menu command.

Handles the conversion of an embedded or linked object from
one type to another.

Handles events in the Links command on the Edit menu.

Called by the framework to update the command UI for the
Edit/Change Icon menu option.

Called by the framework to update the command UI for the
Edit/Links menu option.

(continued)

COleDocument

1345

COleDocument::AddItem

Message Handlers (continued)

OnUpdateObjectVerbMenu Called by the framework to update the command UI for the
Edit/ObjectName menu option and the Verb submenu
accessed from Edit/ObjectName.

OnUpdatePasteLinkMenu Called by the framework to update the command UI for the
Paste Special menu option.

OnUpdatePasteMenu Called by the framework to update the command Ul for the
Paste menu option.

Member Functions
COleDocument::AddItem

virtual void AddItem(CDocltem* pltem);

Parameters
pltem Pointer to the document item being added.

Remarks

Call this function to add an item to the document. You do not need to call this function

explicitly when it is called by the COleClientItem or COleServerItem constructor
that accepts a pointer to a document.

See Also: CDoclItem, COleDocument::Removeltem,
COleServerIltem::COleServerItem, COleClientItem::COleClientItem

COleDocument:: ApplyPrintDevice

BOOL ApplyPrintDevice(const DVTARGETDEVICE FAR* ptd);
BOOL ApplyPrintDevice(const PRINTDLG* ppd);

Return Value
Nonzero if the function was successful; otherwise 0.

Parameters
ptd Pointer to a DVTARGETDEVICE data structure, which contains information
about the new print-target device. Can be NULL.

ppd Pointer to a PRINTDLG data structure, which contains information about the
new print-target device. Can be NULL.

1346

Remarks

COleDocument::EnableCompoundFile

Call this function to change the print-target device for all embedded COleClientItem
items in your application’s container document. This function updates the print-target
device for all items but does not refresh the presentation cache for those items. To
update the presentation cache for an item, call COleClientItem::UpdateLink.

The arguments to this function contain information that OLE uses to identify the target
device. The PRINTDLG structure contains information that Windows uses to
initialize the common Print dialog box. After the user closes the dialog box, Windows
returns information about the user’s selections in this structure. The m_pd member of
a CPrintDialog object is a PRINTDLG structure.

For more information, see the PRINTDLG structure in the Win32 SDK
documentation.

For more information, see the DVTARGETDEVICE structure in the OLE 2
Programmer’s Reference, Volume 1.

See Also: CPrintDialog

COleDocument::COleDocument

Remarks

COleDocument();

Constructs a COleDocument object.

COleDocument::EnableCompoundFile

void EnableCompoundFile(BOOL bEnable = TRUE);

Parameters

Remarks

bEnable Specifies whether compound file support is enabled or disabled.

Call this function if you want to store the document using the compound-file format.
This is also called structured storage. You typically call this function from the
constructor of your COleDocument-derived class. For more information about
compound documents, see the article “Containers: Compound Files” in Visual C++
Programmer’s Guide online.

If you do not call this member function, documents will be stored in a nonstructured
(“flat”) file format.

After compound file support is enabled or disabled for a document, the setting should
not be changed during the document’s lifetime.

See Also: COleClientItem

1347

COleDocument::GetInPlaceActiveltem

COleDocument::GetInPlaceActiveltem

COleClientItem* GetInPlaceActiveltem(CWnd* pWnd);

Return Value
A pointer to the single, in-place active OLE item; NULL if there is no OLE item
currently in the “in-place active” state.

Parameters
pWnd Pointer to the window that displays the container document.

Remarks
Call this function to get the OLE item that is currently activated in place in the frame
window containing the view identified by pWnd.

See Also: COleClientItem

COleDocument::GetNextClientItem

COleClientItem* GetNextClientItem(POSITION& pos) const;

Return Value
A pointer to the next client item in the document, or NULL if there are no more client
items.

Parameters
pos A reference to a POSITION value set by a previous call to GetNextClientItem;
the initial value is returned by the GetStartPosition member function.

Remarks
Call this function repeatedly to access each of the client items in your document. After
each call, the value of pos is set for the next item in the document, which might or
might not be a client item.

Example
// Example for COleDocument::GetNextClientItem
// pDoc points to a COleDocument object
POSITION pos = pDoc->GetStartPosition();
COleClientItem *pltem;
while ((pItem = pDoc->GetNextClientItem(pos)) != NULL)
{
// Use pltem
}

See Also: COleClientItem, COleDocument::GetStartPosition,
COleDocument::GetNextServerItem, COleDocument::GetNextItem

1348

COleDocument::GetNextServerltem

COleDocument::GetNextltem

virtual CDocItem* GetNextItem(POSITION& pos) const;

Return Value
A pointer to the document item at the specified position.

Parameters
pos A reference to a POSITION value set by a previous call to GetNextItem; the
initial value is returned by the GetStartPosition member function.

Remarks
Call this function repeatedly to access each of the items in your document. After each
call, the value of pos is set to the POSITION value of the next item in the document.
If the retrieved element is the last element in the document, the new value of pos is
NULL.

Example
// Example for COleDocument::GetNextItem
// pDoc points to a COleDocument object
POSITION pos = pDoc->GetStartPosition();
CDocItem *pltem;
while(pos != NULL)
{
pltem = pDoc->GetNextItem(pos);
// Use pltem
}

See Also: COleDocument::GetStartPosition,
COleDocument::GetNextClientItem, COleDocument::GetNextServerIltem

COleDocument::GetNextServerltem

COleServerItem* GetNextServerItem(POSITION& pos) const;

Return Value

A pointer to the next server item in the document, or NULL if there are no more
server items.

Parameters
pos A reference to a POSITION value set by a previous call to
GetNextServerltem,; the initial value is returned by the GetStartPosition member
function.

1349

COleDocument::GetPrimarySelectedItem

Remarks
Call this function repeatedly to access each of the server items in your document.
After each call, the value of pos is set for the next item in the document, which might
or might not be a server item.

Example
// Example for COleDocument::GetNextServerltem
// pDoc points to a COleDocument object
POSITION pos = pDoc->GetStartPosition();
COleServerItem *pltem;
while ((pItem = pDoc->GetNextServerItem(pos)}) != NULL)
{
// Use pltem
1

See Also: COleServerItem, COleDocument::GetStartPosition,
COleDocument::GetNextClientItem, COleDocument::GetNextItem

COleDocument::GetPrimarySelectedItem

virtual COleClientItem* GetPrimarySelectedItem(CView* pView);

Return Value

A pointer to the single, selected OLE item; NULL if no OLE items are selected or if
more than one is selected.

Parameters
pView Pointer to the active view object displaying the document.

Remarks
Called by the framework to retrieve the currently selected OLE item in the specified
view. The default implementation searches the list of contained OLE items for a single
selected item and returns a pointer to it. If there is no item selected, or if there is more
than one item selected, the function returns NULL. You must override the
CView::IsSelected member function in your view class for this function to work.
Opverride this function if you have your own method of storing contained OLE items.

See Also: CView::IsSelected

COleDocument::GetStartPosition

virtual POSITION GetStartPosition() const;

Return Value
A POSITION value that can be used to begin iterating through the document’s items;
NULL if the document has no items.

1350

COleDocument::OnEditConvert

Remarks
Call this function to get the position of the first item in the document. Pass the value
returned to GetNextItem, GetNextClientItem, or GetNextServerItem.

See Also: COleDocument::GetNextItem, COleDocument::GetNextClientItem,
COleDocument::GetNextServerltem

COleDocument::HasBlankItems

BOOL HasBlankItems() const;

Return Value
Nonzero if the document contains any blank items; otherwise 0.

Remarks
Call this function to determine whether the document contains any blank items. A
blank item is one whose rectangle is empty.

See Also: CDocltem::IsBlank

COleDocument::OnEditChangelcon

afx_msg void OnEditChangelcon();

Remarks
Displays the OLE Change Icon dialog box and changes the icon representing the
currently selected OLE item to the icon the user selects in the dialog box.
OnEditChangelcon creates and launches a COleChangelconDialog Change Icon
dialog box.

See Also: COleDocument::OnUpdateEditChangelcon, COleChangelconDialog

COleDocument::OnEditConvert

afx_msg void OnEditConvert();

Remarks
Displays the OLE Convert dialog box and converts or activates the currently selected
OLE item according to user selections in the dialog box. OnEditConvert creates and
launches a COleConvertDialog Convert dialog box.

An example of conversion is converting a Microsoft Word document into a WordPad
document.

See Also: COleDocument::OnUpdateObjectVerbMenu, COleConvertDialog

1351

COleDocument::OnEditLinks

COleDocument::OnEditLinks

afx_msg void OnEditLinks();

Remarks
Displays the OLE Edit/Links dialog box. OnEditLinks creates and launches a
COleLinksDialog Links dialog box that allows the user to change the linked objects.

See Also: COleDocument::OnUpdateEditLinksMenu, COleLinksDialog

COleDocument::OnFileSendMail

afx_msg void OnFileSendMail();

Remarks
Sends a message via the resident mail host (if any) with the document as an
attachment. OnFileSendMail calls OnSaveDocument to serialize (save) untitled and
modified documents to a temporary file, which is then sent via electronic mail. If the
document has not been modified, a temporary file is not needed; the original is sent.
OnFileSendMail loads MAPI32.DLL if it has not already been loaded.

Unlike the implementation of OnFileSendMail for CDocument, this function
handles compound files correctly.

For more information, see the “MAPI Topics” and “MAPI Support in MFC” articles
in Visual C++ Programmer’s Guide online.

See Also: CDocument::OnFileSendMail, CDocument::OnUpdateFileSendMail,
CDocument::OnSaveDocument

COleDocument::OnShow Views

virtual veid OnShowViews(BOOL bVisible);

Parameters
bVisible Indicates whether the document has become visible or invisible.

Remarks
The framework calls this function after the document’s visibility state changes.

The default version of this function does nothing. Override it if your application must
perform any special processing when the document’s visibility changes.

1352

COleDocument::OnUpdateObjectVerbMenu

COleDocument::OnUpdateEditChangelcon

afx_msg void OnUpdateEditChangelcon(CCmdUI* pCmdUI);

Parameters
pCmdUI A pointer to a CCmdUI structure that represents the menu that generated
the update command. The update handler calls the Enable member function of the
CCmdUI structure through pCmdUI to update the user interface.

Remarks
Called by the framework to update the Change Icon command on the Edit menu.
OnUpdateEditChangelcon updates the command’s user interface depending on
whether or not a valid icon exists in the document. Override this function to change
the behavior.

See Also: COleDocument::OnEditChangelcon, CCmdUI

COleDocument::OnUpdateEditLinksMenu

afx_msg void OnUpdateEditLinksMenu(CCmdUI* pCmdUTI);

Parameters
pCmdUI A pointer to a CCmdUI structure that represents the menu that generated
the update command. The update handler calls the Enable member function of the
CCmdUI structure through pCmdUI to update the user interface.

Remarks
Called by the framework to update the Links command on the Edit menu. Starting
with the first OLE item in the document, OnUpdateEditLinksMenu accesses each
item, tests whether the item is a link, and, if it is a link, enables the Lmks command.
Override this function to change the behavior.

See Also: COleDocument::OnEditLinks, COleDocument::GetStartPosition,
COleDocument::GetNextClientItem, CCmdUI

COleDocument::OnUpdateObjectVerbMenu

afx_msg void OnUpdateObjectVerbMenu(CCmdUI* pCmdUI);

Parameters
pCmdUI A pointer to a CCmdUI structure that represents the menu that generated
the update command. The update handler calls the Enable member function of the
CCmdUI structure through pCmdUI to update the user interface.

1353

COleDocument::OnUpdatePasteLinkMenu

Remarks
Called by the framework to update the ObjectName command on the Edit menu and
the Verb submenu accessed from the ObjectName command, where ObjectName is the
name of the OLE object embedded in the document. OnUpdateObjectVerbMenu
updates the ObjectName command’s user interface depending on whether or not a
valid object exists in the document. If an object exists, the ObjectName command on
the Edit menu is enabled. When this menu command is selected, the Verb submenu is
displayed. The Verb submenu contains all the verb commands available for the object,
such as Edit, Properties, and so on. Override this function to change the behavior.

See Also: COleDocument::OnEditConvert, CCmdUI

COleDocument::OnUpdatePasteL.inkMenu

afx_msg void OnUpdatePasteLinkMenu(CCmdUI* pCmdUI);

Parameters
pCmdUI A pointer to a CCmdUI structure that represents the menu that generated
the update command. The update handler calls the Enable member function of the
CCmdUI structure through pCmdUI to update the user interface.

Remarks
Called by the framework to determine whether a linked OLE item can be pasted from
the Clipboard. The Paste Special menu command is enabled or disabled depending on
whether the item can be pasted into the document or not.

See Also: COleDocument::OnUpdatePasteMenu, CCmdUI

COleDocument::OnUpdatePasteMenu

afx_msg void OnUpdatePasteMenu(CCmdUI* pCmdUI);

Parameters
pCmdUI A pointer to a CCmdUI structure that represents the menu that generated
the update command. The update handler calls the Enable member function of the
CCmdUI structure through pCmdUI to update the user interface.

Remarks
Called by the framework to determine whether an embedded OLE item can be pasted
from the Clipboard. The Paste menu command and button are enabled or disabled
depending on whether the item can be pasted into the document or not.

See Also: COleDocument::OnUpdatePasteLinkMenu, CCmdUI

1354

COleDocument::UpdateModifiedFlag

COleDocument::Removeltem

virtual void Removeltem(CDocltem* pltem);

Parameters
pltem Pointer to the document item to be removed.

Remarks
Call this function to remove an item from the document. You typically do not need to
call this function explicitly; it is called by the destructors for COleClientItem and
COleServerltem.

See Also: COleServerIltem, COleClientItem, COleDocument::AddItem,
CDocltem

COleDocument::UpdateModifiedFlag

void UpdateModifiedFlag();

Remarks
Call this function to mark the document as modified if any of the contained OLE
items have been modified. This allows the framework to prompt the user to save the
document before closing, even if the native data in the document has not been
modified.

See Also: CDocument::SetModifiedFlag, COleClientItem::IsModified

1355

COleDropSource

COleDropSource

A COleDropSource object allows data to be dragged to a drop target. The
COleDropTarget class handles the receiving portion of the drag-and-drop operation.
The COleDropSource object is responsible for determining when a drag operation
begins, providing feedback during the drag operation, and determining when the drag
operation ends.

To use a COleDropSource object, just call the constructor. This simplifies the process
of determining what events, such as a mouse click, begin a drag operation using
COleDataSource::DoDragDrop, COleClientItem::DoDragDrop, or
COleServerItem::DoDragDrop function. These functions will create a
COleDropSource object for you. You might want to modify the default behavior of
the COleDropSource overridable functions. These member functions will be called at
the appropriate times by the framework.

For more information on drag-and-drop operations using OLE, see the article “Drag
and Drop (OLE)” in Visual C++ Programmer’s Guide online.

For more information, see IDropSource in the OLE 2 Programmer’s Reference,
Volume 1.

#include <afxole.h>

COleDropSource Class Members

Construction

COleDropSource Constructs a COleDropSource object.

Overridables

GiveFeedback Changes the cursor during a drag-and-drop operation.
OnBeginDrag Handles mouse capture during a drag-and-drop operation.
QueryContinueDrag Checks to see whether dragging should continue.

COleDropSource::GiveFeedback

Member Functions
COleDropSource::COleDropSource

COleDropSource();

Remarks
Constructs a COleDropSource object.

See Also: COleDropTarget

COleDropSource::GiveFeedback

virtual SCODE GiveFeedback(DROPEFFECT dropEffect);

Return Value
Returns DRAGDROP_S_USEDEFAULTCURSORS if dragging is in progress,
NOERROR if it is not.

Parameters
dropEffect The effect you would like to display to the user, usually indicating what
would happen if a drop occurred at this point with the selected data. Typically, this
is the value returned by the most recent call to CView::OnDragEnter or
CView::OnDragOver. It can be one or more of the following:

e DROPEFFECT_NONE A drop would not be allowed.
¢ DROPEFFECT_COPY A copy operation would be performed.
e DROPEFFECT_MOVE A move operation would be performed.

e DROPEFFECT_LINK A link from the dropped data to the original data
would be established.

e DROPEFFECT_SCROLL A drag scroll operation is about to occur or is
occurring in the target.

Remarks
Called by the framework after calling COleDropTarget::OnDragOver or
COleDropTarget::DragEnter. Override this function to provide feedback to the user
about what would happen if a drop occurred at this point. The default implementation
uses the OLE default cursors. For more information on drag-and-drop operations
using OLE, see the article “Drag and Drop (OLE)” in Visual C++ Programmer’s
Guide online.

For more information, see IDropSource::GiveFeedback, IDropTarget::DragOver,
and IDropTarget::DragEnter in the OLE 2 Programmer's Reference, Volume 1.

See Also: CView::OnDragEnter, CView::OnDragOver
1357

COleDropSource::OnBeginDrag

COleDropSource::OnBeginDrag

virtual BOOL OnBeginDrag(CWnd* pWnd);

Return Value
Nonzero if dragging is allowed, otherwise 0.

Parameters
pWnd Points to the window that contains the selected data.

Remarks
Called by the framework when an event occurs that could begin a drag operation, such
as pressing the left mouse button. Override this function if you want to modify the
way the dragging process is started. The default implementation captures the mouse
and stays in drag mode until the user clicks the left or right mouse button or hits ESC,
at which time it releases the mouse.

See Also: COleDropSource::GiveFeedback

COleDropSource::QueryContinueDrag

virtual SCODE QueryContinueDrag(BOOL bEscapePressed, DWORD dwKeyState);

Return Value
DRAGDROP_S_CANCEL if the ESC key or right button is pressed, or left button is
raised before dragging starts. DRAGDROP_S_DROP if a drop operation should
occur. Otherwise S_OK.

Parameters
bEscapePressed States whether the ESC key has been pressed since the last call to
COleDropSource::QueryContinueDrag.

dwKeyState Contains the state of the modifier keys on the keyboard. This is a
combination of any number of the following: MK_CONTROL, MK_SHIFT,
MK_ALT, MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

Remarks
After dragging has begun, this function is called repeatedly by the framework until the
drag operation is either canceled or completed. Override this function if you want to
change the point at which dragging is canceled or a drop occurs.

The default implementation initiates the drop or cancels the drag as follows. It cancels
a drag operation when the ESC key or the right mouse button is pressed. It initiates a
drop operation when the left mouse button is raised after dragging has started.
Otherwise, it returns S_OXK and performs no further operations.

Because this function is called frequently, it should be optimized as much as possible.

See Also: COleDropSource::OnBeginDrag, COleDropTarget::OnDrop

COleDropTarget

COleDropTarget

A COleDropTarget object provides the communication mechanism between a
window and the OLE libraries. Creating an object of this class allows a window to
accept data through the OLE drag-and-drop mechanism.

To get a window to accept drop commands, you should first create an object of the
COleDropTarget class, and then call the Register function with a pointer to the
desired CWnd object as the only parameter.

For more information on drag-and-drop operations using OLE, see the article “Drag
and Drop (OLE)” in Visual C++ Programmer’s Guide online.

#include <afxole.h>

See Also: COleDropSource

COleDropTarget Class Members

Construction

COleDropTarget Constructs a COleDropTarget object.

Operations

Register Registers the window as a valid drop target.

Revoke Causes the window to cease being a valid drop target.

Overridables

OnDragEnter Called when the cursor first enters the window.

OnDragLeave Called when the cursor is dragged out of the window.

OnDragOver Called repeatedly when the cursor is dragged over the window.

OnDragScroll Called to determine whether the cursor is dragged into the scroll
region of the window.

OnDrop Called when data is dropped into the window, default handler.

OnDropEx Called when data is dropped into the window, initial handler.

1359

COleDropTarget::COleDropTarget

Member Functions
COleDropTarget::COleDropTarget

COleDropTarget();

Remarks
Constructs an object of class COleDropTarget. Call Register to associate this object
with a window.

See Also: COleDropSource, COleDropTarget::Register,
COleDropTarget::Revoke

COleDropTarget::OnDragEnter

virtual DROPEFFECT OnDragEnter(CWnd* pWnd,
o COleDataObject* pDataObject, DWORD dwKeyState, CPoint point);

Return Value
The effect that would result if a drop were attempted at the location specified by point.
It can be one or more of the following:

e DROPEFFECT_NONE A drop would not be allowed.
e DROPEFFECT_COPY A copy operation would be performed.
¢ DROPEFFECT_MOVE A move operation would be performed.

o DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

o DROPEFFECT_SCROLL A drag scroll operation is about to occur or is
occurring in the target.

Parameters
pWnd Points to the window the cursor is entering.

pDataObject Points to the data object containing the data that can be dropped.

dwKeyState Contains the state of the modifier keys. This is a combination of any
number of the following: MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point Contains the current location of the cursor in client coordinates.

Remarks
Called by the framework when the cursor is first dragged into the window. Override
this function to allow drop operations to occur in the window. The default
implementation calls CView::OnDragEnter, which simply returns
DROPEFFECT_NONE by default.

1360

COleDropTarget::OnDragOver

For more information, see IDropTarget::DragEnter in the OLE 2 Programmer’s
Reference, Volume 1.

See Also: COleDropTarget::OnDragOver, COleDropTarget::OnDragLeave,
COleDropTarget::OnDrop, COleDropTarget::OnDropEx, CView::OnDragEnter

COleDropTarget::OnDragl.eave

virtual void OnDragLeave(CWnd* pWnd);

Parameters
pWnd Points to the window the cursor is leaving.

Remarks
Called by the framework when the cursor leaves the window while a dragging
operation is in effect. Override this function if you want special behavior when the
drag operation leaves the specified window. The default implementation of this
function calls CView::OnDragLeave.

For more information, see IDropTarget::DraglLeave in the OLE 2 Programmer’s
Reference, Volume 1.

See Also: COleDropTarget::OnDragEnter, COleDropTarget::OnDragOver,
COleDropTarget::OnDrop, COleDropTarget::OnDropEx

COleDropTarget::OnDragOver

virtual DROPEFFECT OnDragOver(CWnd* pWnd,
« COleDataObject* pDataObject, DWORD dwKeyState, CPoint point);

Return Value
The effect that would result if a drop were attempted at the location specified by point.
It can be one or more of the following:

e DROPEFFECT_NONE A drop would not be allowed.
e DROPEFFECT_COPY A copy operation would be performed.
¢ DROPEFFECT_MOVE A move operation would be performed.

e DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

e DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to
occur or is occurring in the target.

1361

COleDropTarget::OnDragScroll

Parameters
pWnd Points to the window that the cursor is over.

pDataObject Points to the data object that contains the data to be dropped.

dwKeyState Contains the state of the modifier keys. This is a combination of any
number of the following: MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point Contains the current location of the cursor in client coordinates.

Remarks
Called by the framework when the cursor is dragged over the window. This function
should be overridden to allow drop operations to occur in the window. The default
implementation of this function calls CView::OnDragOver, which returns
DROPEFFECT_NONE by default. Because this function is called frequently during
a drag-and-drop operation, it should be optimized as much as possible.

For more information, see IDropTarget::DragOver in the OLE 2 Programmer’s
Reference, Volume 1.

See Also: COleDropTarget::OnDragEnter, COleDropTarget::OnDragLeave,
COleDropTarget::OnDrop, COleDropTarget::OnDropEx

COleDropTarget::OnDragScroll

virtual DROPEFFECT OnDragScroll(CWnd* pWnd,
«+ DWORD dwKeyState, CPoint point);

Return Value
The effect that would result if a drop were attempted at the location specified by point.
It can be one or more of the following:

e DROPEFFECT_NONE A drop would not be allowed.
e DROPEFFECT_COPY A copy operation would be performed.
e DROPEFFECT_MOVE A move operation would be performed.

e DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

e DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to
occur or is occurring in the target.
Parameters
pWnd Points to the window the cursor is currently over.

dwKeyState Contains the state of the modifier keys. This is a combination of any
number of the following: MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point Contains the location of the cursor, in pixels, relative to the screen.

1362

COleDropTarget::OnDrop

Remarks
Called by the framework before calling OnDragEnter or OnDragOver to determine
whether point is in the scrolling region. Override this function when you want to
provide special behavior for this event. The default implementation of this function
calls CView::OnDragScroll, which returns DROPEFFECT_NONE and scrolls the
window when the cursor is dragged into the default scroll region inside the border of
the window.

COleDropTarget::OnDrop

virtual BOOL OnDrop(CWnd* pWnd, COleDataObject* pDataObject,
» DROPEFFECT dropEffect, CPoint point);

Return Value
Nonzero if the drop is successful; otherwise 0.

Parameters
pWnd Points to the window the cursor is currently over.
pDataObject Points to the data object that contains the data to be dropped.

dropEffect The effect that the user chose for the drop operation. It can be one or
more of the following:

e DROPEFFECT_COPY A copy operation would be performed.
o DROPEFFECT_MOVE A move operation would be performed.

e DROPEFFECT_LINK A link from the dropped data to the original data
would be established.

point Contains the location of the cursor, in pixels, relative to the screen.

Remarks
Called by the framework when a drop operation is to occur. The framework first calls
OnDropEx. If the OnDropEx function does not handle the drop, the framework then
calls this member function, OnDrop. Typically, the application overrides OnDropEx
in the view class to handle right mouse-button drag and drop. Typically, the view class
OnDrop is used to handle simple drag and drop.

The default implementation of COleDropTarget::OnDrop calls CView::OnDrop,
which simply returns FALSE by default.

For more information, see IDropTarget::Drop in the OLE 2 Programmer’s
Reference, Volume 1.

See Also: COleDropTarget::OnDragOver, COleDropTarget::OnDragEnter,
COleDropTarget::OnDropEx

1363

COleDropTarget::OnDropEx

COleDropTarget::OnDropEx

virtual DROPEFFECT OnDropEx(CWnd* pWnd, COleDataObject* pDataObject,
» DROPEFFECT dropDefault, DROPEFFECT dropList, CPoint point);

Return Value

The drop effect that resulted from the drop attempt at the location specified by point.
Drop effects are discussed in the Remarks section.

Parameters

Remarks

pWnd Points to the window the cursor is currently over.
pDataObject Points to the data object that contains the data to be dropped.

dropDefault The effect that the user chose for the default drop operation based on the
current key state. It can be DROPEFFECT_NONE. Drop effects are discussed in
the Remarks section.

dropList A list of the drop effects that the drop source supports. Drop effect values
can be combined using the bitwise OR (I) operation. Drop effects are discussed in
the Remarks section.

point Contains the location of the cursor, in pixels, relative to the screen.

Called by the framework when a drop operation is to occur. The framework first calls
this function. If it does not handle the drop, the framework then calls OnDrop.
Typically, you will override OnDropEx in the view class to support right
mouse-button drag and drop. Typically, the view class OnDrop is used to handle the
case of support for simple drag and drop.

The default implementation of COleDropTarget::OnDropEx calls
CView::0OnDropEx. By default, CView::OnDropEx simply returns a dummy value
to indicate the OnDrop member function should be called.

Drop effects describe the action associated with a drop operation. See the following
list of drop effects:

e DROPEFFECT_NONE A drop would not be allowed.
e DROPEFFECT_COPY A copy operation would be performed.
¢ DROPEFFECT_MOVE A move operation would be performed.

e DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

e DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to
occur or is occurring in the target.

COleDropTarget::Revoke

For more information, see IDropTarget::Drop in the OLE 2 Programmer's
Reference, Volume 1.

See Also: COleDropTarget::OnDragOver, COleDropTarget::OnDragEnter

COleDropTarget::Register

BOOL Register(CWnd* pWnd);

Return Value

Nonzero if registration is successful; otherwise 0.

Parameters

Remarks

pWnd Points to the window that is to be registered as a drop target.

Call this function to register your window with the OLE DLLs as a valid drop target.
This function must be called for drop operations to be accepted.

For more information, see RegisterDragDrop in the OLE 2 Programmer’s Reference,
Volume 1.

See Also: COleDropTarget::Revoke, COleDropTarget::COleDropTarget

COleDropTarget::Revoke

Remarks

virtual void Revoke();

Call this function before destroying any window that has been registered as a drop
target through a call to Register to remove it from the list of drop targets. This
function is called automatically from the OnDestroy handler for the window that
was registered, so it is usually not necessary to call this function explicitly.

For more information, see RevokeDragDrop in the OLE 2 Programmer’s Reference,
Volume 1.

1365

COleException

COleException

A COleException object represents an exception condition related to an OLE
operation. The COleException class includes a public data member that holds the

status code indicating the reason for the exception.

In general, you should not create a COleException object directly; instead, you

should call AfxThrowOleException.

For more information on exceptions, see the articles “Exceptions” and “Exceptions:

OLE Exceptions” in Visual C++ Programmer’s Guide online.

#include <afxole.h>

COleException Class Members

Data Members

m_sc Contains the status code that indicates the reason for the exception.
Operations

Process Translates a caught exception into an OLE return code.

Member Functions

COleException::Process
static SCODE PASCAL Process(const CException* pAnyException);

Return Value
An OLE status code.

Parameters
pAnyException Pointer to a caught exception.

Remarks
Call the Process member function to translate a caught exception into an OLE status
code.

Note This function is static.

For more information on SCODE, see “Structure of OLE Error Codes” in the OLE 2
Programmer’s Reference, Volume 1.

See Also: CException

COleException::m_sc

Data Members

COleException::m_sc
SCODE m_sc;

Remarks
This data member holds the OLE status code that indicates the reason for the
exception. This variable’s value is set by AfxThrowOleException.

For more information on SCODE, see “Structure of OLE Error Codes” in the OLE 2
Programmer’s Reference, Volume 1.

See Also: AfxThrowOleException

1367

COlelnsertDialog

COlelnsertDialog

The COlelnsertDialog class is used for the OLE Insert Object dialog box. Create
an object of class COleInsertDialog when you want to call this dialog box. After a
COlelnsertDialog object has been constructed, you can use the m_jo structure to
initialize the values or states of controls in the dialog box. The m_io structure is of
type OLEUIINSERTOBJECT. For more information about using this dialog class,
see the DoModal member function.

Note AppWizard-generated container code uses this class.
For more information, see the OLEUIINSERTOBJECT structure in the OLE 2.01
User Interface Library.

For more information regarding OLE-specific dialog boxes, see the article “Dialog
Boxes in OLE” in Visual C++ Programmer’s Guide online.

#include <afxodlgs.h>
See Also: COleDialog

COlelnsertDialog Class Members

1368

Data Members

m_io A structure of type OLEUIINSERTOBJECT
that controls the behavior of the dialog box.

Construction

COlelnsertDialog Constructs a COlelnsertDialog object.

COlelnsertDialog::COlelnsertDialog

Operations and Attributes

DoMaodal Displays the OLE Insert Object dialog box.

Createltem Creates the item selected in the dialog box.
GetSelectionType Gets the type of object selected.

GetClassID Gets the CLSID associated with the chosen item.
GetDrawAspect Tells whether to draw the item as an icon.
GetlconicMetafile Gets a handle to the metafile associated with the iconic form

of this item.

GetPathName Gets the full path to the file chosen in the dialog box.

Member Functions
COlelnsertDialog::COlelnsertDialog

COlelnsertDialog (DWORD dwFlags = IOF_SELECTCREATENEW,
» CWnd* pParentWnd = NULL);

Parameters

dwFlags Creation flag that contains any number of the following values to be
combined using the bitwise-OR operator:

IOF_SHOWHELP Specifies that the Help button will be displayed when the
dialog box is called.

IOF_SELECTCREATENEW Specifies that the Create New radio button will
be selected initially when the dialog box is called. This is the default and cannot
be used with IOF_SELECTCREATEFROMFILE.

IOF_SELECTCREATEFROMFILE Specifies that the Create From File
radio button will be selected initially when the dialog box is called. Cannot be
used with IOF_SELECTCREATENEW.

IOF_CHECKLINK Specifies that the Link check box will be checked
initially when the dialog box is called.

IOF_DISABLELINK Specifies that the Link check box will be disabled
when the dialog box is called.

IOF_CHECKDISPLAYASICON Specifies that the Display As Icon check
box will be checked initially, the current icon will be displayed, and the Change
Icon button will be enabled when the dialog box is called.

IOF_VERIFYSERVERSEXIST Specifies that the dialog box should validate
the classes it adds to the list box by ensuring that the servers specified in the
registration database exist before the dialog box is displayed. Setting this flag
can significantly impair performance.

1369

COlelnsertDialog::Createltem

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog object is
set to the main application window.

Remarks
This function constructs only a COleInsertDialog object. To display the dialog box,
call the DoModal function.

See Also: COlelnsertDialog::DoModal

COlelnsertDialog::Createltem

BOOL Createltem(COleClientItem* pltem);

Return Value
Nonzero if item was created; otherwise 0.

Parameters
pltem Points to the item to be created.

Remarks
Call this function to create an object of type COleClientItem only if DoModal
returns IDOK. You must allocate the COleClientItem object before you can call this
function.

See Also: COleClientItem::CreateLinkFromPFile,
COleClientItem::CreateFromFile, COleClientItem::CreateNewlItem,
COleClientItem::SetDrawAspect, COleInsertDialog::GetSelectionType,
COlelnsertDialog::DoModal

COlelnsertDialog::DoModal

virtual int DoModal();

Return Value
Completion status for the dialog box. One of the following values:
¢ IDOK if the dialog box was successfully displayed.
e IDCANCEL if the user canceled the dialog box.

e IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the
OleUlInsertObject function in the OLE 2.01 User Interface Library.

1370

COlelnsertDialog::GetDrawAspect

Remarks
Call this function to display the OLE Insert Object dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_io structure, you should do this before calling DoModal, but after the dialog object
is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the
settings or information input into the dialog box by the user.

See Also: COleDialog::GetLastError, CDialog::DoModal,
COlelnsertDialog::GetSelectionType, COleInsertDialog::GetClassID,
COlelnsertDialog::GetDrawAspect, COlelnsertDialog::GetIconicMetafile,
COlelnsertDialog::GetPathName, COleInsertDialog::m_io

COlelnsertDialog::GetClassID

const CLSID& GetClassID() const;

Return Value
Returns the CLSID associated with the selected item.

Remarks
Call this function to get the CLSID associated with the selected item only if DoModal
returns IDOK and the selection type is COleInsertDialog::createNewlItem.

For more information, see CLSID Key in the OLE 2 Programmer’s Reference,
Volume 1.

See Also: COlelnsertDialog::DoModal, COlelnsertDialog::GetSelectionType

COlelnsertDialog::GetDrawAspect

DVASPECT GetDrawAspect() const;

Return Value
The method needed to render the object.

e DVASPECT_CONTENT Returned if the Display As Icon check box was not
checked.

o DVASPECT_ICON Returned if the Display As Icon check box was checked.
Remarks

Call this function to determine if the user chose to display the selected item as an icon.
Call this function only if DoModal returns IDOK.

For more information on drawing aspect, see FORMATETC data structure in the
OLE 2 Programmer’s Reference, Volume 1.

See Also: COlelnsertDialog::DoModal, COleInsertDialog::COleInsertDialog
1371

COlelnsertDialog::GetIconicMetafile

COlelnsertDialog::GetlconicMetafile

HGLOBAL GetlIconicMetafile() const;

Return Value
The handle to the metafile containing the iconic aspect of the selected item, if the
Display As Icon check box was checked when the dialog was dismissed by choosing
OK; otherwise NULL.

Remarks
Call this function to get a handle to the metafile that contains the iconic aspect of the
selected item.

See Also: COlelnsertDialog::DoModal, COleInsertDialog::GetDrawAspect

COlelnsertDialog::GetPathName

CString GetPathName() const;

Return Value
The full path to the file selected in the dialog box. If the selection type is
createNewItem, this function returns a meaningless CString in release mode or
causes an assertion in debug mode.

Remarks
Call this function to get the full path of the selected file only if DoModal returns
IDOK and the selection type is not COleInsertDialog::createNewItem.

See Also: COlelInsertDialog::GetSelectionType, COleInsertDialog::DoModal

COlelnsertDialog::GetSelectionType

UINT GetSelectionType() const;

Return Value
Type of selection made.

Remarks
Call this function to get the selection type chosen when the Insert Object dialog box
was dismissed by choosing OK.

The return type values are specified by the Selection enumeration type declared in the
COlelnsertDialog class.

enum Selection

{
createNewltem,
insertFromFile,
TinkToFile

};

1372

Brief descriptions of these values follow:

COlelnsertDialog::m_io

e COlelnsertDialog::createNewltem The Create New radio button was selected.

e COlelnsertDialog::insertFromFile The Create From File radio button was
selected and the Link check box was not checked.

o (COlelnsertDialog::linkToFile The Create From File radio button was selected
and the Link check box was checked.

See Also: COlelInsertDialog::DoModal, COleInsertDialog::COleInsertDialog

Data Members
COlelnsertDialog::m_io

Remarks

Structure of type OLEUIINSERTOBJECT used to control the behavior of the
Insert Object dialog box. Members of this structure can be modified either directly
or through member functions.

For more information, see the OLEUIINSERTOBJECT structure in the OLE 2.01
User Interface Library.

See Also: COlelnsertDialog::COlelnsertDialog, COleInsertDialog::DoModal

1373

COlelPFrameWnd

COlelPFrameWnd

Use the COleIPFrameWnd class as the base for your application’s in-place

editing window. This class creates and positions control bars within the container
application’s document window. It also handles notifications generated by an
embedded COleResizeBar object when the user resizes the in-place editing window.

For more information on using COleIPFrameWnd, see the article “Activation” in
Visual C++ Programmer’s Guide online.

#include <afxole.h>

See Also: CFrameWnd

COlelPFrameWnd Class Members

Construction

COlelPFrameWnd Constructs a COleIPFrameWnd object.

Overridables

OnCreateControlBars Called by the framework when an item is activated for in-place
editing.

RepositionFrame Called by the framework to reposition the in-place editing window.

Member Functions
COlelPFrameWnd::COlelPFrameWnd

COlelPFrameWnd();

Remarks
Constructs a COleIPFrameWnd object and initializes its in-place state information,
which is stored in a structure of type OLEINPLACEFRAMEINFO.

1374

COlelPFrameWnd::RepositionFrame

For more information, see OLEINPLACEFRAMEINFO in the OLE 2
Programmer’s Reference, Volume 1.

See Also: COleServerDoc::ActivateInPlace

COlelPFrameWnd::OnCreateControlBars

virtual BOOL OnCreateControlBars(CWnd* pWndFrame, CWnd* pWndDoc);

Return Value
Nonzero on success; otherwise, O.

Parameters
pWndFrame Pointer to the container application’s frame window.

pWndDoc Pointer to the container’s document-level window. Can be NULL if the
container is an SDI application.

Remarks
The framework calls the OnCreateControlBars function when an item is activated
for in-place editing.

The default implementation does nothing. Override this function to perform any
special processing required when control bars are created.

See Also: COleServerDoc::ActivateInPlace

COlelPFrameWnd::RepositionFrame

virtual void RepositionFrame(LPCRECT /pPosRect, LPCRECT IpClipRect);

Parameters
IpPosRect Pointer to a RECT structure or a CRect object containing the in-place
frame window’s current position coordinates, in pixels, relative to the client area.

IpClipRect Pointer to a RECT structure or a CRect object containing the in-place
frame window’s current clipping-rectangle coordinates, in pixels, relative to the
client area.

Remarks
The framework calls the RepositionFrame member function to lay out control bars
and reposition the in-place editing window so all of it is visible.

Layout of control bars in the container window differs from that performed by a
non-OLE frame window. The non-OLE frame window calculates the positions of
control bars and other objects from a given frame-window size, as in a call to
CFrameWnd::RecalcLayout. The client area is what remains after space for control
bars and other objects is subtracted. A COleIPFrameWnd window, on the other

1375

COleIPFrameWnd::RepositionFrame

hand, positions toolbars in accordance with a given client area. In other words,
CFrameWnd::RecalcLayout works “from the outside in,” whereas
COlelPFrameWnd::RepositionFrame works “from the inside out.”

See Also: CFrameWnd::RecalcLayout

1376

COleLinkingDoc

COleLinkingDoc

CObject __
CCmdTarget

CDocumnt o

COleDocument

COleLinkingDoc 1§

The COleLinkingDoc class is the base class for OLE container documents that
support linking to the embedded items they contain. A container application that
supports linking to embedded items is called a “link container.” The OCLIENT
sample application is an example of a link container.

When a linked item’s source is an embedded item in another document, that
containing document must be loaded in order for the embedded item to be edited.
For this reason, a link container must be able to be launched by another container
application when the user wants to edit the source of a linked item. Your application
must also use the COleTemplateServer class so that it can create documents when
launched programmatically.

To make your container a link container, derive your document class from
COleLinkingDoc instead of COleDocument. As with any other OLE container, you
must design your class for storing the application’s native data as well as embedded or
linked items. Also, you must design data structures for storing your native data. If you
define a CDocltem-derived class for your application’s native data, you can use the
interface defined by COleDocument to store your native data as well as your

OLE data.

To allow your application to be launched programmatically by another container,
declare a COleTemplateServer object as a member of your application’s
CWinApp-derived class:

class COleClientApp : public CWinApp
{
/11 ...
protected:

COleTemplateServer m_server;
/...
1

In the InitInstance member function of your CWinApp-derived class, create a
document template and specify your COleLinkingDoc-derived class as the document
class:

1377

COleLinkingDoc

// CMainDoc is derived from COtelLinkingDoc
CMultiDocTemplate* pDocTemplate = new CMultiDocTemplate(IDR_OCLIENTTYPE,
RUNTIME_CLASS(CMainDoc),
RUNTIME_CLASS(CSplitFrame),
RUNTIME_CLASS(CMainView)):
pDocTemplate->SetContainerInfo(
IDR_OCLIENTTYPE_CNTR_IP);
AddDocTemplate(pDocTemplate);

Connect your COleTemplateServer object to your document templates by calling the
object’s ConnectTemplate member function, and register all class objects with the
OLE system by calling COleTemplateServer::RegisterAll:

m_server.ConnectTemplate(clsid, pDocTemplate, FALSE);
COleTemplateServer::RegisterAl1();

For a sample CWinApp-derived class definition and InitInstance function, see
OCLIENT.H and OCLIENT.CPP in the MFC sample OCLIENT.

For more information on using COleLinkingDoc, see the articles “Containers:
Implementing a Container” and “Containers: Advanced Features” in Visual C++
Programmer’s Guide online.

#include <afxole.h>

See Also: CDocTemplate, COleTemplateServer

COleLinkingDoc Class Members

Construction

COleLinkingDoc Constructs a COleLinkingDoc object.

Operations

Register Registers the document with the OLE system DLLs.
Revoke Revokes the document’s registration.

Overridables

OnFindEmbeddedItem Finds the specified embedded item.
OnGetLinkedItem Finds the specified linked item.

1378

COleLinkingDoc::OnGetLinkedItem

Member Functions
COleLinkingDoc::COleLinkingDoc

COleLinkingDoc();

Remarks
Constructs a COleLinkingDoc object without beginning communications with the
OLE system DLLs. You must call the Register member function to inform OLE that
the document is open.

See Also: COleLinkingDoc::Register

COleLinkingDoc::OnFindEmbeddedItem

virtual COleClientItem* OnFindEmbeddedItem(LPCTSTR IpszltemName);

Return Value
A pointer to the specified item; NULL if the item is not found.

Parameters
IpszitemName Pointer to the name of the embedded OLE item requested.

Remarks
Called by the framework to determine whether the document contains an embedded
OLE item with the specified name. The default implementation searches the list of
embedded items for an item with the specified name (the name comparison is case
sensitive). Override this function if you have your own method of storing or naming
embedded OLE items.

See Also: COleClientItem, COleLinkingDoc::OnGetLinkedItem

COleLinkingDoc::OnGetLinkedItem

virtual COleServerltem* OnGetLinkedItem(LPCTSTR IpszltemName);

Return Value
A pointer to the specified item; NULL if the item is not found.

Parameters
IpszltemName Pointer to the name of the linked OLE item requested.

Remarks
Called by the framework to check whether the document contains a linked server item
with the specified name. The default COleLinkingDoc implementation always returns
NULL. This function is overriden in the derived class COleServerDoc to search the

1379

COleLinkingDoc::Register

list of OLE server items for a linked item with the specified name (the name
comparison is case sensitive). Override this function if you have implemented your
own method of storing or retrieving linked server items.

See Also: COleServerItem::GetltemName, COleServerItem::SetItemName,
COleLinkingDoc::OnFindEmbeddedItem

COleLinkingDoc::Register
BOOL Register(COleObjectFactory* pFactory, LPCTSTR IpszPathName);

Return Value
Nonzero if the document is successfully registered; otherwise 0.

Parameters
pFactory Pointer to an OLE factory object (can be NULL).

IpszPathName Pointer to the fully qualified path of the container document.

Remarks
Informs the OLE system DLLs that the document is open. Call this function when
creating or opening a named file to register the document with the OLE system DLLs.
There is no need to call this function if the document represents an embedded item.

If you are using COleTemplateServer in your application, Register is called for you
by COleLinkingDoc’s implementation of OnNewDocument, OnOpenDocument,
and OnSaveDocument.

See Also: COleTemplateServer, COleObjectFactory,
CDocument::OnNewDocument, CDocument::OnOpenDocument

COleLinkingDoc::Revoke

void Revoke();

Remarks
Informs the OLE system DLLs that the document is no longer open. Call this function
to revoke the document’s registration with the OLE system DLLs.

You should call this function when closing a named file, but you usually do not need
to call it directly. Revoke is called for you by COleLinkingDoc’s implementation of
OnCloseDocument, OnNewDocument, OnOpenDocument, and
OnSaveDocument.

See Also: COleTemplateServer, CDocument::OnCloseDocument,
CDocument::OnNewDocument, CDocument::OnOpenDocument,
CDocument::OnSaveDocument

1380

COleLinksDialog

COleLinksDialog

The COleLinksDialog object is used for the OLE Edit Links dialog box. Create an
object of class COleLinksDialog when you want to call this dialog box. After a
COleLinksDialog object has been constructed, you can use the m_el structure to
initialize the values or states of controls in the dialog box. The m_el structure is of
type OLEUIEDITLINKS. For more information about using this dialog class, see the
DoModal member function.

Note AppWizard-generated container code uses this class.

For more information, see the OLEUIEDITLINKS structure in the OLE 2.01 User
Interface Library.

For more information regarding OLE-specific dialog boxes, see the article “Dialog
Boxes in OLE” in Visual C++ Programmer’s Guide online.

#include <afxodlgs.h>
See Also: COleDialog

COleLinksDialog Class Members

Data Members

m_el A structure of type OLEUIEDITLINKS that controls
the behavior of the dialog box.

Construction

COleLinksDialog Constructs a COleLinksDialog object.

Operations

DoModal Displays the OLE Edit Links dialog box.

1381

COleLinksDialog::COleLinksDialog

Member Functions
COleLinksDialog::COleLinksDialog

COleLinksDialog (COleDocument* pDoc, CView* pView, DWORD dwFlags = 0,
« CWnd* pParentWnd = NULL);

Parameters
pDoc Points to the OLE document that contains the links to be edited.
pView Points to the current view on pDoc.

dwFlags Creation flag, which contains either 0 or ELF_SHOWHELP to specify
whether the Help button will be displayed when the dialog box is displayed.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog box is set
to the main application window.

Remarks
This function constructs only a COleLinksDialog object. To display the dialog box,
call the DoModal function.

See Also: COleDocument, COleLinksDialog::DoModal, CView, CWnd

COleLinksDialog::DoModal

virtual int DoModal();

Return Value
Completion status for the dialog box. One of the following values:

o IDOK if the dialog box was successfully displayed.
e IDCANCEL if the user canceled the dialog box.

e IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the OleUIEditLinks
function in the OLE 2.01 User Interface Library.

Remarks
Call this function to display the OLE Edit Links dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_el structure, you should do it before calling DoModal, but after the dialog object is
constructed.

See Also: COleDialog::GetLastError, CDialog::DoModal,
COleLinksDialog::m_el

1382

COleLinksDialog::m_el

Data Members
COleLinksDialog::m_el

Remarks
Structure of type OLEUIEDITLINKS used to control the behavior of the Edit Links
dialog box. Members of this structure can be modified either directly or through
member functions.

For more information, see the OLEUIEDITLINKS structure in the OLE 2.01 User
Interface Library.

See Also: COleLinksDialog::COleLinksDialog, COleLinksDialog::DoModal

1383

COleMessageFilter

COleMessageFilter

The COleMessageFilter class manages the concurrency required by the interaction of
OLE applications.

The COleMessageFilter class is useful in visual editing server and container
applications, as well as OLE automation applications. For server applications that are
being called, this class can be used to make the application “busy” so that incoming
calls from other container applications are either canceled or retried later. This class
can also be used to determine the action to be taken by a calling application when the
called application is busy.

Common usage is for a server application to call BeginBusyState and EndBusyState
when it would be dangerous for a document or other OLE accessible object to be
destroyed. These calls are made in CWinApp::Onldle during user-interface updates.

By default, a COleMessageFilter object is allocated when the application is
initialized. It can be retrieved with AfxOleGetMessageFilter.

This is an advanced class; you seldom need to work with it directly.

For more information, see the article “Servers: Implementing a Server” in Visual C++
Programmer’s Guide online.

#include <afxole.h>

See Also: CCmdTarget, AfxOleGetMessageFilter, CWinApp::Onldle

COleMessageFilter Class Members

1384

Construction

COleMessageFilter Constructs a COleMessageFilter object.

Operations

Register Registers the message filter with the OLE system DLLs.

Revoke Revokes the message filter’s registration with the OLE
system DLLs.

BeginBusyState Puts the application in the busy state.

COleMessageFilter::BeginBusyState

Operations (continued)

EndBusyState Terminates the application’s busy state.

SetBusyReply Determines the busy application’s reply to an OLE call.

SetRetryReply Determines the calling application’s reply to a busy
application.

SetMessagePendingDelay Determines how long the application waits for a response
to an OLE call.

EnableBusyDialog Enables and disables the dialog box that appears when a

called application is busy.

EnableNotRespondingDialog Enables and disables the dialog box that appears when a
called application is not responding.

Overridables

OnMessagePending Called by the framework to process messages while an
OLE call is in progress.

Member Functions
COleMessageFilter::BeginBusyState

Remarks

virtual void BeginBusyState();

Call this function to begin a busy state. It works in conjunction with EndBusyState
to control the application’s busy state. The function SetBusyReply determines the
application’s reply to calling applications when it is busy.

The BeginBusyState and EndBusyState calls increment and decrement, respectively,
a counter that determines whether the application is busy. For example, two calls to
BeginBusyState and one call to EndBusyState still result in a busy state. To cancel

a busy state it is necessary to call EndBusyState the same number of times
BeginBusyState has been called.

By default, the framework enters the busy state during idle processing, which is
performed by CWinApp::Onldle. While the application is handling
ON_COMMANDUPDATEUI notifications, incoming calls are handled later,
after idle processing is complete.

See Also: COleMessageFilter::EndBusyState,
COleMessageFilter::SetBusyReply, CWinApp::Onldle

1385

COleMessageFilter::COleMessageFilter

COleMessageFilter::COleMessageFilter

COleMessageFilter();

Remarks
Creates a COleMessageFilter object.

See Also: COleMessageFilter::Register, COleMessageFilter::Revoke

COleMessageFilter::EnableBusyDialog

void EnableBusyDialog(BOOL bEnableBusy = TRUE);

Parameters
bEnableBusy Specifies whether the “busy” dialog box is enabled or disabled.

Remarks
Enables and disables the busy dialog box, which is displayed when the
message-pending delay expires (see SetRetryReply) during an OLE call.

See Also: COleMessageFilter::EnableNotRespondingDialog,
COleMessageFilter::BeginBusyState, COleMessageFilter::SetBusyReply,
COleMessageFilter::SetRetryReply, COleBusyDialog

COleMessageFilter::EnableNotRespondingDialog

void EnableNotRespondingDialog(BOOL bEnableNotResponding = TRUE);

Parameters
bEnableNotResponding Specifies whether the “not responding” dialog box is
enabled or disabled.

Remarks
Enables and disables the “not responding” dialog box, which is displayed if a
keyboard or mouse message is pending during an OLE call and the call has timed out.

See Also: COleMessageFilter::EnableBusyDialog,
COleMessageFilter::BeginBusyState, COleMessageFilter::SetBusyReply,
COleBusyDialog

1386

COleMessageFilter::OnMessagePending

COleMessageFilter::EndBusyState

Remarks

virtual void EndBusyState();

Call this function to end a busy state. It works in conjunction with BeginBusyState to
control the application’s busy state. The function SetBusyReply determines the
application’s reply to calling applications when it is busy.

The BeginBusyState and EndBusyState calls increment and decrement, respectively,
a counter that determines whether the application is busy. For example, two calls to
BeginBusyState and one call to EndBusyState still result in a busy state. To cancel a
busy state it is necessary to call EndBusyState the same number of times
BeginBusyState has been called.

By default, the framework enters the busy state during idle processing, which is
performed by CWinApp::Onldle. While the application is handling
ON_UPDATE_COMMAND_UI notifications, incoming calls are handled after idle
processing is complete.

See Also: COleMessageFilter::BeginBusyState,
COleMessageFilter::SetBusyReply, CWinApp::Onldle

COleMessageFilter::OnMessagePending

virtual BOOL OnMessagePending(const MSG* pMsg);

Return Value

Nonzero on success; otherwise 0.

Parameters

Remarks

pMsg Pointer to the pending message.

Called by the framework to process messages while an OLE call is in progress.

When a calling application is waiting for a call to be completed, the framework calls
OnMessagePending with a pointer to the pending message. By default, the
framework dispatches WM_PAINT messages, so that window updates can occur
during a call that is taking a long time.

You must register your message filter by means of a call to Register before it can
become active.

See Also: COleMessageFilter::Register, AfxOleInit, CWinApp::InitInstance

1387

COleMessageFilter::Register

COleMessageFilter::Register

BOOL Register();

Return Value
Nonzero on success; otherwise 0.

Remarks
Registers the message filter with the OLE system DLLs. A message filter has no effect
unless it is registered with the system DLLs. Usually your application’s initialization
code registers the application’s message filter. Any other message filter registered by
your application should be revoked before the program terminates by a call to
Revoke.

The framework’s default message filter is automatically registered during initialization
and revoked at termination.

See Also: COleMessageFilter::Revoke

COleMessageFilter::Revoke

void Revoke();

Remarks
Revokes a previous registration performed by a call to Register. A message filter
should be revoked before the program terminates.

The default message filter, which is created and registered automatically by the
framework, is also automatically revoked.

See Also: COleMessageFilter::Register

COleMessageFilter::SetBusyReply

void SetBusyReply(SERVERCALL nBusyReply);

Parameters
nBusyReply A value from the SERVERCALL enumeration, which is defined in
COMPOBIJ.H. It can have any one of the following values:

e SERVERCALL_ISHANDLED The application can accept calls but may fail
in processing a particular call.

e SERVERCALL_REJECTED The application probably will never be able to
process a call.

e SERVERCALL_RETRYLATER The application is temporarily in a state in
which it cannot process a call.

1388

Remarks

COleMessageFilter::SetRetryReply

This function sets the application’s “busy reply.” The BeginBusyState and
EndBusyState functions control the application’s busy state.

When an application has been made busy with a call to BeginBusyState, it responds
to calls from the OLE system DLLs with a value determined by the last setting of
SetBusyReply. The calling application uses this busy reply to determine what action
to take.

By default, the busy reply is SERVERCALL_RETRYLATER. This reply causes the
calling application to retry the call as soon as possible.

See Also: COleMessageFilter::BeginBusyState,
COleMessageFilter::EndBusyState

COleMessageFilter::SetMessagePendingDelay

void SetMessagePendingDelay(DWORD nTimeout = 5000);

Parameters

Remarks

nTimeout Number of milliseconds for the message-pending delay.

Determines how long the calling application waits for a response from the called
application before taking further action.

This function works in concert with SetRetryReply.

See Also: COleMessageFilter::SetRetryReply

COleMessageFilter::SetRetryReply

void SetRetryReply(DWORD nRetryReply = 0);

Parameters

Remarks

nRetryReply Number of milliseconds between retries.

Determines the calling application’s action when it receives a busy response from a
called application.

When a called application indicates that it is busy, the calling application may decide
to wait until the server is no longer busy, to retry right away, or to retry after a
specified interval. It may also decide to cancel the call altogether.

The caller’s response is controlled by the functions SetRetryReply and
SetMessagePendingDelay. SetRetryReply determines how long the calling
application should wait between retries for a given call. SetMessagePendingDelay

1389

COleMessageFilter::SetRetryReply

1390

determines how long the calling application waits for a response from the server
before taking further action.

Usually the defaults are acceptable and do not need to be changed. The framework
retries the call every nRetryReply milliseconds until the call goes through or the
message-pending delay has expired. A value of O for nRetryReply specifies an
immediate retry, and —1 specifies cancellation of the call.

When the message-pending delay has expired, the OLE “busy dialog box” (see
COleBusyDialog) is displayed so that the user can choose to cancel or retry the call.
Call EnableBusyDialog to enable or disable this dialog box.

When a keyboard or mouse message is pending during a call and the call has timed
out (exceeded the message-pending delay), the “not responding” dialog box is
displayed. Call EnableNotRespondingDialog to enable or disable this dialog box.
Usually this state of affairs indicates that something has gone wrong and the user is
getting impatient.

When the dialogs are disabled, the current “retry reply” is always used for calls to
busy applications.

See Also: COleBusyDialog, COleMessageFilter::EnableNotRespondingDialog,
COleMessageFilter::EnableBusyDialog,
COleMessageFilter::SetMessagePendingDelay

COleObjectFactory

COleObjectFactory

The COleObjectFactory class implements the OLE class factory, which creates OLE
objects such as servers, automation objects, and documents.

The COleObjectFactory class has member functions for performing the following
functions:

e Managing the registration of objects.

e Updating the OLE system register, as well as the run-time registration that informs
OLE that objects are running and ready to receive messages.

e Enforcing licensing by limiting use of the control to licensed developers at design
time and to licensed applications at run time.

e Registering control object factories with the OLE system registry.

For more information about object creation, see the articles “Data Objects and Data
Sources (OLE)” and “Data Objects and Data Sources: Creation and Destruction”.
For more about registration, see the article “Registration”. These articles are in
Visual C++ Programmer’s Guide online.

#include <afxdisp.h>
See Also: COleTemplateServer

COleObjectFactory Class Members

Construction

COleObjectFactory Constructs a COleObjectFactory object.

Operations

Register Registers this object factory with the OLE system DLLs.

RegisterAll Registers all of the application’s object factories with OLE system
DLLs.

Revoke Revokes this object factory’s registration with the OLE system DLLs.

(continued)

1391

COleObjectFactory::COleObjectFactory

Operations (continued)

RevokeAll Revokes an application’s object factories’ registrations with the OLE
system DLLs.

UpdateRegistryAll Registers all of the application’s object factories with the OLE system
registry.

Attributes

IsRegistered Indicates whether the object factory is registered with the OLE
system DLLs.

GetClassID Returns the OLE class ID of the objects this factory creates.

Overridables

OnCreateObject Called by the framework to create a new object of this factory’s type.

UpdateRegistry Registers this object factory with the OLE system registry.

VerifyUserLicense Verifies that the control is licensed for design-time use.

GetLicenseKey Requests a unique key from the control’s DLL.

VerifyLicenseKey Verifies that the key embedded in the control matches the key

embedded in the container.

Member Functions
COleObjectFactory::COleObjectFactory

COleObjectFactory(REFCLSID clsid, CRuntimeClass* pRuntimeClass,
= BOOL bMultilnstance, LPCTSTR IpszProgID);

Parameters
clsid Reference to the OLE class ID this object factory represents.

pRuntimeClass Pointer to the run-time class of the C++ objects this factory can
create.

bMultilnstance Indicates whether a single instance of the application can support
multiple instantiations. If TRUE, multiple instances of the application are launched
for each request to create an object.

IpszProgID Pointer to a string containing a verbal program identifier, such as
“Microsoft Excel.”

Remarks
Constructs a COleObjectFactory object, initializes it as an unregistered object
factory, and adds it to the list of factories. To use the object, however, you must
register it.

1392

COleObjectFactory::GetLicenseKey

For more information, see CLSID Key in the OLE 2 Programmer’s Reference,
Volume 1.

See Also: CRuntimeClass

COleObjectFactory::GetClassID

REFCLSID GetClassID() const;

Return Value
Reference to the OLE class ID this factory represents.

Remarks
Returns a reference to the OLE class ID this factory represents.

For more information, see CLSID Key in the OLE 2 Programmer’s Reference,
Volume 1.

See Also: COleObjectFactory::COleObjectFactory

COleObjectFactory::GetLicenseKey

virtual BOOL GetLicenseKey(DWORD dwReserved, BSTR *pbstrKey);

Return Value
Nonzero if the license-key string is not NULL; otherwise 0.

Parameters
dwReserved Reserved for future use.

pbstrKey Pointer to a BSTR that will store the license key.
Remarks

Requests a unique license key from the control’s DLL and stores it in the BSTR
pointed to by pbstrKey.

The default implementation of this function returns O and stores nothing in the BSTR.

If you use MFC ActiveX ControlWizard to create your project, ControlWizard
supplies an override that retrieves the control’s license key.

See Also: COleObjectFactory::VerifyUserLicense,
COleObjectFactory::VerifyLicenseKey

1393

COleObjectFactory::IsRegistered

COleObjectFactory::IsRegistered

BOOL IsRegistered() const;

Return Value
Nonzero if the factory is registered; otherwise 0.

Remarks
Returns a nonzero value if the factory is registered with the OLE system DLLs.

See Also: COleObjectFactory::Register, COleObjectFactory::Revoke

COleObjectFactory::OnCreateObject

virtual CCmdTarget* OnCreateObject();

Return Value
A pointer to the created object. It can throw a memory exception if it fails.

Remarks
Called by the framework to create a new object. Override this function to create the
object from something other than the CRuntimeClass passed to the constructor.

See Also: COleObjectFactory::COleObjectFactory, CRuntimeClass

COleObjectFactory::Register

BOOL Register();

Return Value
Nonzero if the factory is successfully registered; otherwise 0.

Remarks
Registers this object factory with the OLE system DLLs. This function is usually
called by CWinApp::InitInstance when the application is launched.

See Also: COleObjectFactory::Revoke, COleObjectFactory::RegisterAll,
CWinApp::InitInstance

COleObjectFactory::RegisterAll

static BOOL PASCAL RegisterAll();

Return Value
Nonzero if the factories are successfully registered; otherwise 0.

1394

COleObjectFactory::UpdateRegistry

Remarks
Registers all of the application’s object factories with the OLE system DLLs. This
function is usually called by CWinApp::InitInstance when the application is
launched.

See Also: COleObjectFactory::Revoke, COleObjectFactory::Register,
CWinApp::InitInstance

COleObjectFactory::Revoke

void Revoke();

Remarks
Revokes this object factory’s registration with the OLE system DLLs. The framework
calls this function automatically before the application terminates. If necessary, call it
from an override of CWinApp::ExitInstance.

See Also: COleObjectFactory::RevokeAll, COleObjectFactory::Register,
CWinApp::ExitInstance

COleObjectFactory::RevokeAll

static void PASCAL RevokeAll();

Remarks
Revokes all of the application’s object factories’ registrations with the OLE system
DLLs. The framework calls this function automatically before the application
terminates. If necessary, call it from an override of CWinApp::ExitInstance.

See Also: COleObjectFactory::Revoke, COleObjectFactory::RegisterAll,
CWinApp::ExitInstance

COleObjectFactory::UpdateRegistry

void UpdateRegistry(LPCTSTR IpszProgID = NULL);
virtual void UpdateRegistry(BOOL bRegister) = 0;

Parameters
IpszProgID Pointer to a string containing the human-readable program identifier,
such as “Excel.Document.5.”

bRegister Determines whether the control class’s object factory is to be registered.

1395

COleObjectFactory::UpdateRegistryAll

Remarks
Brief discussions of the two forms for this function follow:

o UpdateRegistry(IpszProgID) Registers this object factory with the OLE system
registry. This function is usually called by CWinApp::InitInstance when the
application is launched.

o UpdateRegistry(bRegister) This form of the function is overridable. If
bRegister is TRUE, this function registers the control class with the system
registry. Otherwise, it unregisters the class.

If you use MFC ActiveX ControlWizard to create your project, ControlWizard
supplies an override to this pure virtual function.

See Also: COleObjectFactory::Revoke, COleObjectFactory::Register,
COleObjectFactory::UpdateRegistryAll, CWinApp::InitInstance

COleObjectFactory::UpdateRegistryAll

static void PASCAL UpdateRegistryAll();

Remarks
Registers all of the application’s object factories with the OLE system registry. This
function is usually called by CWinApp::InitInstance when the application is
launched.

See Also: COleObjectFactory::Revoke, COleObjectFactory::Register,
COleObjectFactory::UpdateRegistry, CWinApp::InitInstance

COleObjectFactory:: VerifyLicenseKey

virtual BOOL VerifyLicenseKey(BSTR bstrKey);

Return Value
Nonzero if the run-time license is valid; otherwise 0.

Parameters
bstrKey A BSTR storing the container’s version of the license string.

Remarks
This function verifies that the container is licensed to use the OLE control. The default
version calls GetLicenseKey to get a copy of the control’s license string and
compares it with the string in bstrKey. If the two strings match, the function returns a
nonzero value; otherwise it returns 0.

You can override this function to provide customiized verification of the license.

The function VerifyUserLicense verifies the design-time license.

1396

See Also: COleObjectFactory:: VerifyUserLicense,
COleObjectFactory::GetLicenseKey

COleObjectFactory:: VerifyUserLicense

COleObjectFactory:: VerifyUserLicense

virtual BOOL VerifyUserLicense();

Return Value
Nonzero if the design-time license is valid; otherwise 0.

Remarks
Verifies the design-time license for the OLE control.

See Also: COleObjectFactory::VerifyLicenseKey,
COleObjectFactory::GetLicenseKey

1397

COlePasteSpecialDialog

COlePasteSpecialDialog

The COlePasteSpecialDialog class is used for the OLE Paste Special dialog box.
Create an object of class COlePasteSpecialDialog when you want to call this dialog
box. After a COlePasteSpecialDialog object has been constructed, you can use the
AddFormat and AddStandardFormats member functions to add Clipboard formats
to the dialog box. You can also use the m_ps structure to initialize the values or states
of controls in the dialog box. The m_ps structure is of type
OLEUIPASTESPECIAL.

For more information, see the OLEUIPASTESPECIAL structure in the OLE 2.01
User Interface Library.

For more information regarding OLE-specific dialog boxes, see the article “Dialog
Boxes in OLE” in Visual C++ Programmer’s Guide online.

#include <afxodlgs.h>
See Also: COleDialog

COlePasteSpecialDialog Class Members

Data Members

m_ps A structure of type OLEUIPASTESPECIAL that controls
the function of the dialog box.

Construction

COlePasteSpecialDialog Constructs a COlePasteSpecialDialog object.

1398

Operations and Attributes

COlePasteSpecialDialog:: AddFormat

DoModal
AddFormat

AddStandardFormats

Createltem

GetSelectionType
GetDrawAspect
GetlconicMetafile

GetPasteIndex

Displays the OLE Paste Special dialog box.

Adds custom formats to the list of formats your application
can paste.

Adds CF_BITMAP, CF_DIB, CF_METAFILEPICT, and
optionally CF_LINKSOURCE to the list of formats your
application can paste.

Creates the item in the container document using the specified
format.

Gets the type of selection chosen.
Tells whether to draw item as an icon or not.

Gets a handle to the metafile associated with the iconic form
of this item.

Gets the index of available paste options that was chosen
by the user.

Member Functions
COlePasteSpecialDialog:: AddFormat

void AddFormat(const FORMATETC& fint, LPTSTR IpstrFormat,
« LPTSTR IpstrResult, DWORD flags);

void AddFormat(UINT ¢f, DWORD #ymed, UINT nFormatiD,
w BOOL bEnablelcon, BOOL bLink);

Parameters

fint Reference to the data type to add.

IpstrFormat String that describes the format to the user.

IpstrResult String that describes the result if this format is chosen in the dialog box.

flags The different linking and embedding options available for this format. This flag
is a bitwise combination of one or more of the different values in the
OLEUIPASTEFLAG enumerated type.

¢f The clipboard format to add.

tymed The types of media available in this format. This is a bitwise combination of
one or more of the values in the TYMED enumerated type.

nFormatID The ID of the string that identifies this format. The format of this string
is two separate strings separated by a ‘\n’ character. The first string is the same that
would be passed in the IpstrFormat parameter, and the second is the same as the

IpstrResult parameter.

1399

COlePasteSpecialDialog:: AddStandardFormats

Remarks

bEnablelcon Flag that determines whether the Display As Icon check box is enabled
when this format is chosen in the list box.

bLink Flag that determines whether the Paste Link radio button is enabled when this
format is chosen in the list box.

Call this function to add new formats to the list of formats your application can
support in a Paste Special operation. This function can be called to add either standard
formats such as CF_TEXT or CF_TIFF or custom formats that your application has
registered with the system. For more information about pasting data objects into your
application, see the article “Data Objects and Data Sources: Manipulation” in

Visual C++ Programmer’s Guide online.

For more information, see the TYMED enumeration type and the FORMATETC
structure in the OLE 2 Programmer's Reference, Volume 1.

For more information, see the OLEUIPASTEFLAG enumerated type in the
OLE 2.01 User Interface Library.

See Also: COlePasteSpecialDialog::AddStandardFormats

COlePasteSpecialDialog:: AddStandardFormats

void AddStandardFormats(BOOL bEnableLink = TRUE);

Parameters

Remarks

1400

bEnableLink Flag that determines whether to add CF_LINKSOURCE to the list of
formats your application can paste.

Call this function to add the following Clipboard formats to the list of formats your
application can support in a Paste Special operation:

e CF_BITMAP

e CF_DIB

e CF_METAFILEPICT
¢ “Embedded Object”

¢ (optionally) “Link Source”

These formats are used to support embedding and linking.

See Also: COlePasteSpecialDialog::AddFormat

COlePasteSpecialDialog::Createltem

COlePasteSpecialDialog::COlePasteSpecialDialog

COlePasteSpecialDialog(DWORD dwFlags = PSF_SELECTPASTE,
« COleDataObject* pDataObject = NULL, CWnd* pParentWnd = NULL);

Parameters
dwFlags Creation flag, contains any number of the following flags combined using
the bitwise-OR operator:
e PSF_SELECTPASTE Specifies that the Paste radio button will be checked

initially when the dialog box is called. Cannot be used in combination with
PSF_SELECTPASTELINK. This is the default.

o PSF_SELECTPASTELINK Specifies that the Paste Link radio button will be
checked initially when the dialog box is called. Cannot be used in combination
with PSF_SELECTPASTE.

e PSF_CHECKDISPLAYASICON Specifies that the Display As Icon check
box will be checked initially when the dialog box is called.

o PSF_SHOWHELP Specifies that the Help button will be displayed when the
dialog box is called.

pDataObject Points to the COleDataObject for pasting. If this value is NULL, it
gets the COleDataObject from the Clipboard.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog box is set
to the main application window.

Remarks
This function only constructs a COlePasteSpecialDialog object. To display the dialog
box, call the DoModal function.

For more information, see the OLEUIPASTEFLAG enumerated type in the
OLE 2.01 User Interface Library.

See Also: COleDataObject, COlePasteSpecialDialog::DoModal

COlePasteSpecialDialog::Createltem

BOOL Createltem(COleClientItem* pNewltem);

Return Value
Nonzero if the item was created successfully; otherwise 0.

Parameters
pNewltem Points to a COleClientItem instance. Cannot be NULL.

1401

COlePasteSpecialDialog::DoModal

Remarks

Call this function to create the new item that was chosen in the Paste Special dialog
box. This function should only be called after DoModal returns IDOK.

See Also: COleClientItem, COlePasteSpecialDialog::DoModal,
COlePasteSpecialDialog::GetSelectionType,
COlePasteSpecialDialog::COlePasteSpecialDialog

COlePasteSpecialDialog::DoModal

virtual int DoModal();

Return Value

Remarks

Completion status for the dialog box. One of the following values:

o IDOK if the dialog box was successfully displayed.
e IDCANCEL if the user canceled the dialog box.

e IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the
OleUIPasteSpecial function in the OLE 2.01 User Interface Library.

Call this function to display the OLE Paste Special dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_ps structure, you should do this before calling DoModal, but after the dialog
object is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the
settings or information input by the user into the dialog box.

See Also: COleDataObject, COleDialog::GetLastError, CDialog::DoModal,
COlePasteSpecialDialog:: COlePasteSpecialDialog,
COlePasteSpecialDialog::GetDrawAspect,
COlePasteSpecialDialog::GetIconicMetafile,
COlePasteSpecialDialog::GetPasteIndex,
COlePasteSpecialDialog::GetSelectionType

COlePasteSpecialDialog::GetDraw Aspect

DVASPECT GetDrawAspect() const;

Return Value

1402

The method needed to render the object.

COlePasteSpecialDialog::GetPasteIndex

e DVASPECT_CONTENT Returned if the Display As Icon check box was not
checked when the dialog box was dismissed.

e DVASPECT_ICON Returned if the Display As Icon check box was checked
when the dialog box was dismissed.

Remarks
Call this function to determine if the user chose to display the selected item as an icon.
Only call this function after DoModal returns IDOK.

For more information on drawing aspect, see the FORMATETC structure in the
OLE 2 Programmer’s Reference, Volume 1.

See Also: COlePasteSpecialDialog::DoModal

COlePasteSpecialDialog::GetlconicMetafile

HGLOBAL GetIconicMetafile() const;

Return Value
The handle to the metafile containing the iconic aspect of the selected item, if the
Display As Icon check box was selected when the dialog box was dismissed by
choosing OK; otherwise NULL.

Remarks
Gets the metafile associated with the item selected by the user.

See Also: COlePasteSpecialDialog::GetDrawAspect,
COlePasteSpecialDialog::DoModal

COlePasteSpecialDialog::GetPasteIndex

int GetPasteIndex() const;

Return Value
The index into the array of OLEUIPASTEENTRY structures that was selected by the
user. The format that corresponds to the selected index should be used when
performing the paste operation.

Remarks
Gets the index value associated with the entry the user selected.

For more information, see the OLEUIPASTEENTRY structure in the OLE 2.01 User
Interface Library.

See Also: COlePasteSpecialDialog::DoModal

1403

COlePasteSpecialDialog::GetSelectionType

COlePasteSpecialDialog::GetSelectionType

UINT GetSelectionType() const;

Return Value

Remarks

Returns type of selection made.

Call this function to determine the type of selection the user made.

The return type values are specified by the Selection enumeration type declared in the
COlePasteSpecialDialog class.

enum Selection
{
pastelink,
pasteNormal,
pasteOther,
pasteStatic
I

Brief desccriptions of these values follow:

¢ COlePasteSpecialDialog::pasteLink The Paste Link radio button was checked
and the chosen format was a standard OLE format.

¢ COlePasteSpecialDialog::pasteNormal The Paste radio button was checked and
the chosen format was a standard OLE format.

o COlePasteSpecialDialog::pasteOther The selected format is not a standard OLE
format.

¢ COlePasteSpecialDialog::pasteStatic The chosen format was a metafile.

See Also: COlePasteSpecialDialog::DoModal

Data Members
COlePasteSpecialDialog::m_ps

Remarks

1404

Structure of type OLEUIPASTESPECIAL used to control the behavior of the Paste
Special dialog box. Members of this structure can be modified directly or through
member functions.

For more information, see the OLEUIPASTESPECIAL structure in the OLE 2.01
User Interface Library.

See Also: COlePasteSpecialDialog::COlePasteSpecialDialog,
COlePasteSpecialDialog::DoModal

COlePropertiesDialog

COlePropertlelealo g

The COlePropertiesDialog class encapsulates the Windows common OLE Object
Properties dialog box. Common OLE Object Properties dialog boxes provide an easy
way to display and modify the properties of an OLE document item in a manner
consistent with Windows standards. These properties include, among others,
information on the file represented by the document item, options for displaying the
icon and image scaling, and information on the item’s link (if the item is linked).

To use a COlePropertiesDialog object, first create the object using the
COlePropertiesDialog constructor. After the dialog box has been constructed, call
the DoModal member function to display the dialog box and allow the user to modify
any properties of the item. DoModal returns whether the user selected the OK
(IDOK) or the Cancel (IDCANCEL) button. In addition to the OK and Cancel
buttons, there is an Apply button. When the user selects Apply, any changes made

to the properties of the document item are applied to the item and its image is
automatically updated, but remains active.

The m_psh data member is a pointer to a PROPSHEETHEADER structure, and in
most cases you will not need to access it explicitly. One exception is when you need
additional property pages beyond the default General, View, and Link pages. In this
case, you can modify the m_psh data member to include your custom pages before
calling the DoModal member function.

For more information on OLE dialog boxes, see the article “Dialog Boxes in OLE” in
Visual C++ Programmer’s Guide online.

#include <afxodlgs.h>
See Also: COleDialog, CPropertyPage

1405

COlePropertiesDialog::COlePropertiesDialog

COlePropertiesDialog Class Members

Construction

COlePropertiesDialog Constructs a COlePropertiesDialog object.

Data Members

m_gp A structure used to initialize the “General” page of a
COlePropertiesDialog object.

m_Ip A structure used to initialize the “Link” page of a
COlePropertiesDialog object.

m_op A structure used to initialize theCOlePropertiesDialog object.

m_psh A structure used to add additional custom property pages.

m_vp A structure used to customize the “View” page of a
COlePropertiesDialog object.

Operations

DoModal Displays the dialog box and allows the user to make a selection.

Overridables

OnApplyScale Called by the framework when the scaling of the document item

has changed.

Member Functions
COlePropertiesDialog::COlePropertiesDialog

COlePropertiesDialog(COleClientIltem™* pitem, UINT nScaleMin = 10,
o UINT nScaleMax = 500, CWnd* pParentWnd = NULL);

Parameters
pltem Pointer to the document item whose properties are being accessed.

nScaleMin Minimum scaling percentage for the document item image.
nScaleMax Maximum scaling percentage for the document item image.
pParentWnd Pointer to the dialog box’s parent or owner.
Remarks
Creates a COlePropertiesDialog object. Derive your common OLE Object Properties
dialog class from COlePropertiesDialog in order to implement scaling for your

document items. Any dialog boxes implemented by an instance of this class will not
support scaling of the document item.

1406

COlcPropertiesDialog::OnApplyScale

By default, the common OLE Object Properties dialog box has three default pages:

o General

This page contains system information for the file represented by the selected
document item. From this page, the user can convert the selected item to
another type.

e View
This page contains options for displaying the item, changing the icon, and
changing the scaling of the image.

e Link
This page contains options for changing the location of the linked item and

updating the linked item. From this page, the user can break the link of the
selected item.

To add pages beyond those provided by default, modify the m_psh member variable
before exiting the constructor of your COlePropertiesDialog-derived class. This is
an advanced implementation of the COlePropertiesDialog constructor.

See Also: COlePropertiesDialog::OnApplyScale

COlePropertiesDialog::DoModal

virtual int DoModal();

Return Value
IDOK or IDCANCEL if successful; otherwise 0. IDOK and IDCANCEL are
constants that indicate whether the user selected the OK or Cancel button.

If IDCANCEL is returned, you can call the Windows CommbDIgExtendedError
function to determine whether an error occurred.

Remarks
Call this member function to display the Windows common OLE Object Properties
dialog box and allow the user to view and/or change the various properties of the
document item.

See Also: COlePropertiesDialog::OnApplyScale, COlePropertiesDialog::m_psh

COlePropertiesDialog::OnApplyScale

virtual BOOL OnApplyScale(COleClientItem* pltem, int nCurrentScale,
« BOOL bRelativeToOrig);

Return Value
Nonzero if handled; otherwise 0.

1407

COlePropertiesDialog::m_gp

Parameters
pltem Pointer to the document item whose properties are being accessed.

nCurrentScale Numerical value of the dialog scale.

bRelativeToOrig Indicates whether scaling applies to the original size of the
document item.

Remarks
Called by the framework when the scaling value has changed and either OK or Apply
was selected. The default implementation does nothing. You must override this
function to enable the scaling controls.

Note Before the common OLE Object Properties dialog box is displayed, the framework calls
this function with a NULL for pltem and a-1 for nCurrentScale. This is done to determine if the
scaling controls should be enabled.

See Also: COlePropertiesDialog::DoModal

Data Members
COlePropertiesDialog::m_gp

Remarks
A structure of type OLEUIGNRLPROPS, used to initialize the General page of
the OLE Object Properties dialog box. This page shows the type and size of an
embedding and allows the user access to the Convert dialog box. This page also
shows the link destination if the object is a link.

For more information on the OLEUIGNRLPROPS structure, see the OLE
documentation.

COlePropertiesDialog::m_lp

Remarks
A structure of type OLEUILINKPROPS, used to initialize the Link page of the OLE
Object Properties dialog box. This page shows the location of the linked item and
allows the user to update, or break, the link to the item.

For more information on the OLEUILINKPROPS structure, see the OLE
documentation.

1408

COlePropertiesDialog::m_vp

COlePropertiesDialog::m_op

Remarks
A structure of type OLEUIOBJECTPROPS, used to initialize the common OLE
Object Properties dialog box. This structure contains members used to initialize the
General, Link, and View pages.

For more information, see the OLEUIOBJECTPROPS and OLEUILINKPROPS
structures in the OLE documentation.

COlePropertiesDialog::m_psh

Remarks
A structure of type PROPSHEETHEADER, whose members store the characteristics
of the dialog object. After constructing a COlePropertiesDialog object, you can use
m_psh to set various aspects of the dialog box before calling the DoModal member
function.

If you modify the m_psh data member directly, you will override any default
behavior.

For more information on the PROPSHEETHEADER structure, see the Win32 SDK
documentation.

See Also: COlePropertiesDialog::DoModal

COlePropertiesDialog::m_vp

Remarks
A structure of type OLEUIVIEWPROPS, used to initialize the View page of the
OLE Object Properties dialog box. This page allows the user to toggle between
“content” and “iconic” views of the object, and change its scaling within the
container. It also allows the user access to the Change Icon dialog box when the
object is being displayed as an icon.

For more information on the OLEUIVIEWPROPS structure, see the OLE
documentation.

1409

COlePropertyPage

COlePropertyPage

The COlePropertyPage class is used to display the properties of a custom control in
a graphical interface, similar to a dialog box. For instance, a property page may
include an edit control that allows the user to view and modify the control’s caption

property.

Each custom or stock control property can have a dialog control that allows the
control’s user to view the current property value and modify that value if needed.

For more information on using COlePropertyPage, see the article “ActiveX
Controls: Property Pages” in Visual C++ Programmer’s Guide online and “Modifying
the Default Property Page” in Visual C++ Tutorials online.

#include <afxctl.h>

See Also: CDialog

COlePropertyPage Class Members

Construction

COlePropertyPage Constructs a COlePropertyPage object.

Operations

GetObjectArray Returns the array of objects being edited by the property page.
SetModifiedFlag Sets a flag indicating whether the user has modified the property page.
IsModified Indicates whether the user has modified the property page.
GetPageSite Returns a pointer to the property page’s IPropertyPageSite interface.
SetDialogResource Sets the property page’s dialog resource.

SetPageName Sets the property page’s name (caption).

SetHelpInfo Sets the property page’s brief help text, the name of its help file, and

its help context.

1410

COlePropertyPage::GetControlStatus

Operations (continued)

GetControlStatus Indicates whether the user has modified the value in the control.

SetControlStatus Sets a flag indicating whether the user has modified the value in
the control.

IgnoreApply Determines which controls do not enable the Apply button.

Overridables

OnEditProperty Called by the framework when the user edits a property.

OnHelp Called by the framework when the user invokes help.

OnInitDialog Called by the framework when the property page is initialized.

OnObjectsChanged Called by the framework when another OLE control, with new
properties, is chosen.

OnSetPageSite Called by the framework when the property frame provides the
page’s site.

Member Functions
COlePropertyPage::COlePropertyPage

COlePropertyPage(UINT idDlg, UINT idCaption);

Parameters
idDlg Resource ID of the dialog template.

idCaption Resource ID of the property page’s caption.

Remarks
When you implement a subclass of COlePropertyPage, your subclass’s constructor
should use the COlePropertyPage constructor to identify the dialog-template
resource on which the property page is based and the string resource containing its
caption.

COlePropertyPage::GetControlStatus

BOOL GetControlStatus(UINT niD);

Return Value
TRUE if the control value has been modified; otherwise FALSE.

Parameters
nID Resource ID of a property page control.

1411

COlePropertyPage::GetObjectArray

Remarks
Call this function to determine whether the user has modified the value of the property
page control with the specified resource ID.

See Also: COlePropertyPage::SetControlStatus

COlePropertyPage::GetObjectArray

LPDISPATCH FAR* GetObjectArray(ULONG FAR* pnObjects);

Return Value
Pointer to an array of IDispatch pointers, which are used to access the properties of
each control on the property page. The caller must not release these interface pointers.

Parameters
pnObjects Pointer to an unsigned long integer that will receive the number of objects
being edited by the page.

Remarks
Each property page object maintains an array of pointers to the IDispatch interfaces
of the objects being edited by the page. This function sets its pnObjects argument to
the number of elements in that array and returns a pointer to the first element of the
array.

COlePropertyPage::GetPageSite

LPPROPERTYPAGESITE GetPageSite();

Return Value
A pointer to the property page’s IPropertyPageSite interface.

Remarks
Call this function to get a pointer to the property page’s IPropertyPageSite interface.

Controls and containers cooperate so that users can browse and edit control properties.
The control provides property pages, each of which is an OLE object that allows the
user to edit a related set of properties. The container provides a property frame that
displays the property pages. For each page, the property frame provides a page site,
which supports the IPropertyPageSite interface.

See Also: COlePropertyPage::OnSetPageSite

1412

COlePropertyPage::OnEditProperty

COlePropertyPage::Ignore Apply

void IgnoreApply(UINT niD);

Parameters
nID 1D of the control to be ignored.

Remarks
The property page’s Apply button is enabled only when values of property page
controls have been changed. Use this function to specify controls that do not cause the
Apply button to be enabled when their values change.

See Also: COlePropertyPage::GetControlStatus

COlePropertyPage::IsModified

BOOL IsModified();

Return Value
TRUE if the property page has been modified.

Remarks
Call this function to determine whether the user has changed any values on the

property page.
See Also: COlePropertyPage::SetModifiedFlag

COlePropertyPage::OnEditProperty

virtual BOOL OnEditProperty(DISPID dispid);

Return Value
The default implementation returns FALSE. Overrides of this function should return
TRUE.

Parameters
dispid Dispatch ID of the property being edited.

Remarks
The framework calls this function when a specific property is to be edited. You can
override it to set the focus to the appropriate control on the page. The default
implementation does nothing and returns FALSE.

1413

COlePropertyPage::OnHelp

COlePropertyPage::OnHelp

virtual BOOL OnHelp(LPCTSTR ipszHelpDir);

Return Value
The default implementation returns FALSE.

Parameters
IpszHelpDir Directory containing the property page’s help file.

Remarks
The framework calls this function when the user requests online help. Override it if
your property page must perform any special action when the user accesses help. The
default implementation does nothing and returns FALSE, which instructs the
framework to call WinHelp.

COlePropertyPage::OnlnitDialog
virtual BOOL OnlnitDialog();

Return Value
The default implementation returns FALSE.

Remarks
The framework calls this function when the property page’s dialog is initialized.
Override it if any special action is required when the dialog is initialized. The default
implementation calls CDialog::OnInitDialog and returns FALSE.

See Also: CDialog::OnInitDialog

COlePropertyPage::OnObjectsChanged

virtual void OnObjectsChanged();

Remarks
When viewing the properties of an OLE control in the developer environment, a
modeless dialog box is used to display its property pages. If another control is
selected, a different set of property pages must be displayed for the new set of
properties. The framework calls this function to notify the property page of the
change.

Override this function to receive notification of this action and perform any special
actions.

1414

COlePropertyPage::SetDialogResource

COlePropertyPage::OnSetPageSite

virtual void OnSetPageSite();

Remarks
The framework calls this function when the property frame provides the property
page’s page site. The default implementation loads the page’s caption and attempts to
determine the page’s size from the dialog resource. Override this function if your
property page requires any further action; your override should call the base-class
implementation.

See Also: COlePropertyPage::GetPageSite

COlePropertyPage::SetControlStatus

BOOL SetControlStatus(UINT n/D, BOOL IsDirty);

Return Value
TRUE, if the specified control was set; otherwise FALSE.

Parameters
nID Contains the ID of a property page control.

IsDirty Specifies if a field of the property page has been modified. Set to TRUE if
the field has been modified, FALSE if it has not been modified.

Remarks
Call this function to change the status of a property page control.

If the status of a property page control is dirty when the property page is closed or the
Apply button is chosen, the control’s property will be updated with the appropriate
value.

See Also: COlePropertyPage::GetControlStatus

COlePropertyPage::SetDialogResource

void SetDialogResource(HGLOBAL hDialog);

Parameters
hDialog Handle to the property page’s dialog resource.

Remarks
Call this function to set the property page’s dialog resource.

1415

COlePropertyPage::SetHelpInfo

COlePropertyPage::SetHelpInfo

void SetHelpInfo(LPCTSTR IpszDocString, LPCTSTR IpszHelpFile = NULL,
« DWORD dwHelpContext =0);

Parameters
IpszDocString A string containing brief help information for display in a status bar or
other location.

IpszHelpFile Name of the property page’s help file.
dwHelpContext Help context for the property page.
Remarks

Use this function to specify “tool tip” information, the help filename, and the help
context for your property page.

See Also: COlePropertyPage::OnHelp

COlePropertyPage::SetModifiedFlag

void SetModifiedFlag(BOOL bModified = TRUE);

Parameters
bModified Specifies the new value for the property page’s modified flag.

Remarks
Use this function to indicate whether the user has modified the property page.

See Also: COlePropertyPage::IsModified

COlePropertyPage::SetPageName

void SetPageName(LPCTSTR IpszPageName);

Parameters
IpszPageName Pointer to a string containing the property page’s name.

Remarks
Use this function to set the property page’s name, which the property frame will
typically display on the page’s tab.

1416

COleResizeBar

COleResizeBar

COleResizeBar o

An object of the class COleResizeBar is a type of control bar that supports resizing
of in-place OLE items. COleResizeBar objects appear as a CRectTracker with a
hatched border and outer resize handles.

COleResizeBar objects are usually embedded members of frame-window objects
derived from the COleIPFrameWnd class.

For more information, see the article Activation in Visual C++ Programmer’s Guide
online.

#include <afxole.h>
See Also: COleServerDoc, CRectTracker, COleIPFrameWnd

COleResizeBar Class Members

Construction
COleResizeBar Constructs a COleResizeBar object.
Create Creates and initializes a Windows child window and associates it to the

COleResizeBar object.

Member Functions
COleResizeBar::Create

BOOL Create(CWnd* pParentWnd, DWORD dwStyle = WS_CHILD | WS_VISIBLE,
"~ = UINT /D = AFX_IDW_RESIZE_BAR);

Return Value
Nonzero if the resize bar was created; otherwise 0.

1417

COleResizeBar::COleResizeBar

Parameters
pParentWnd Pointer to the parent window of the resize bar.
dwStyle Specifies the window style attributes.
nID The resize bar’s child window ID.

Remarks
Creates a child window and associates it with the COleResizeBar object.

See Also: CWnd::Create, CControlBar

COleResizeBar::COleResizeBar

COleResizeBar();

Remarks
Constructs a COleResizeBar object. Call Create to create the resize bar object.

See Also: COleResizeBar::Create

1418

COleSafeArray

COleSafeArray

Class COleSafeArray is a class for working with arrays of arbitrary type and

dimension. COleSafeArray derives from the OLE VARIANT structure. The OLE
SAFEARRAY member functions are available through COleSafeArray, as well as a
set of member functions specifically designed for one-dimensional arrays of bytes.

#include <afxdisp.h>

See Also: COleVariant, CRecordSet, CDatabase

COleSafeArray Class Members

Construction

COleSafeArray Constructs a COleSafeArray object.

Operations

Attach Gives control of the existing VARIANT array to the
COleSafeArray object.

Clear Frees all data in the underlying VARIANT.

Detach Detaches the VARIANT array from the COleSafeArray object

Win32 API Wrappers

(so that the data will not be freed).

AccessData Retrieves a pointer to the array data.

AllocData Allocates memory for the array.

AllocDescriptor Allocates memory for the safe array descriptor.

Copy Creates a copy of an existing array.

Create Creates a safe array.

Destroy Destroys an existing array.

DestroyData Destroys data in a safe array.

DestroyDescriptor Destroys a descriptor of a safe array.

GetDim Returns the number of dimensions in the array.
GetElement Retrieves a single element of the safe array.

GetElemSize Returns the size, in bytes, of one element in a safe array.
GetLBound Returns the lower bound for any dimension of a safe array.
GetUBound Returns the upper bound for any dimension of a safe array.
Lock Increments the lock count of an array and places a pointer to the

array data in the array descriptor.
(continued)

1419

COleSafeArray::AccessData

Win32 APl Wrappers (continued)

PtrOfIndex
PutElement
Redim
UnaccessData

Unlock

Returns a pointer to the indexed element.
Assigns a single element into the array.
Changes the least significant (rightmost) bound of a safe array.

Decrements the lock count of an array and invalidates the pointer
retrieved by AccessData.

Decrements the lock count of an array so it can be freed or
resized.

One-Dimensional Array Operations

CreateOneDim Creates a one-dimensional COleSafeArray object.

GetOneDimSize Returns the number of elements in the one-dimensional
COleSafeArray object.

ResizeOneDim Changes the number of elements in a one-dimensional
COleSafeArray object.

Operators

operator = Copies values into a COleSafeArray object (SAFEARRAY,
VARIANT, COleVariant, or COleSafeArray array).

operator == Compares two variant arrays (SAFEARRAY, VARIANT,
COleVariant, or COleSafeArray arrays).

operator LPVARIANT Accesses the underlying VARIANT structure of the
COleSafeArray object.

operator LPCVARIANT Accesses the underlying VARIANT structure of the

COleSafeArray object.

Member Functions
COleSafeArray::AccessData

void AccessData(void** ppvData);

Parameters

Remarks

1420

ppvData A pointer to a pointer to the array data.

Retrieves a pointer to the array data. On error, the function throws a
CMemoryException or COleException.

See Also: COleSafeArray::UnaccessData, SafeArrayAccessData

COleSafeArray::Clear

COleSafeArray:: AllocData

void AllocData();

Remarks
Call this function to allocate memory for a safe array. On error, the function throws a
CMemoryException or COleException.

See Also: COleSafeArray::AllocDescriptor, SafeArrayAllocData

COleSafeArray:: AllocDescriptor

void AllocDescriptor(DWORD dwDims);

Parameters
dwDims Number of dimensions in the safe array.

Remarks
Call this function to allocate memory for the descriptor of a safe array. On error, the
function throws a CMemoryException or COleException.

See Also: COleSafeArray::AllocData, SafeArrayAllocDescriptor

COleSafeArray:: Attach

void Attach(VARIANT& varSrc);

Parameters
varSrc A VARIANT object. The varSrc parameter must have the VARTYPE
VT_ARRAY.

Remarks
Call this function to give control of the data in an existing VARIANT array to the
COleSafeArray object. The source VARIANTs type is set to VI_EMPTY. This
function clears the current array data, if any.

See Also: COleSafeArray::Detach

COleSafeArray::Clear

void Clear();

Remarks
Call this function to clear the safe array. The function clears a safe array by setting the
VARTYPE of the object to VT_EMPTY. The current contents are released and the
array is freed.

1421

COleSafeArray::COleSafe Array

See Also: VariantClear

COleSafeArray::COleSafeArray

COleSafeArray();

COleSafeArray(const SAFEARRAY & saSrc, VARTYPE vtSrc);
COleSafeArray(LPCSAFEARRAY psaSrc, VARTYPE vtSrc);
COleSafeArray(const COleSafeArray& saSrc);
COleSafeArray(const VARIANT& varSrc);

COleSafeArray(LPCVARIANT pSrc);

COleSafeArray(const COleVariant& varSrc);

Parameters

Remarks

saSrc An existing COleSafeArray object or SAFEARRAY to be copied into the
new COleSafeArray object.

vtSrc The VARTYPE of the new COleSafeArray object.

psaSrc A pointer to a SAFEARRAY to be copied into the new COleSafeArray
object.

varSrc An existing VARTANT or COleVariant object to be copied into the new
COleSafeArray object.

pSrc A pointer to a VARIANT object to be copied into the new COleSafeArray
object.

All of these constructors create new COleSafeArray objects. If there is no parameter,
an empty COleSafeArray object is created (VT_EMPTY). If the COleSafeArray is
copied from another array whose VARTYPE is known implicitly (a COleSafeArray,
COleVariant, or VARIANT), the VARTYPE of the source array is retained and need
not be specified. If the COleSafeArray is copied from another array whose
VARTYPE is not known (SAFEARRAY), the VARTYPE must be specified in the
vtSrc parameter.

On error, the function throws a CMemoryException or COleException.

See Also: VariantCopy

COleSafeArray::Copy

void Copy(LPSAFEARRAY* ppsa);

Parameters

1422

ppsa Pointer to a location in which to return the new array descriptor.

COleSafeArray::CreateOneDim

Remarks
Creates a copy of an existing safe array. On error, the function throws a
CMemoryException or COleException.

See Also: SafeArrayCopy

COleSafeArray::Create

void Create(VARTYPE v:Src, DWORD dwDims, DWORD#* rgElements);
void Create(VARTYPE viSrc, DWORD dwDims, SAFEARRAYBOUND#* rgsabounds);

Parameters
vtSrc The base type of the array (that is, the VARTYPE of each element of the
array). The VARTYPE is restricted to a subset of the variant types. Neither the
VT_ARRAY nor the VT_BYREEF flag can be set. VIT_EMPTY and VT_NULL
are not valid base types for the array. All other types are legal.

dwDims Number of dimensions in the array. This can be changed after the array is
created with Redim.

rgElements Pointer to an array of the number of elements for each dimension in the
array.

rgsabounds Pointer to a vector of bounds (one for each dimension) to allocate for the
array.

Remarks
Call this function to allocate and initialize the data for the array. This function will
clear the current array data if necessary. On error, the function throws a
CMemoryException.

See Also: SafeArrayCreate

COleSafeArray::CreateOneDim

void CreateOneDim(VARTYPE vtSrc, DWORD dwElements,
« void pvSrcData = NULL, long nLBound =0);

Parameters
viSrc The base type of the array (that is, the VARTYPE of each element of the
array).

dwElements Number of elements in the array. This can be changed after the array is
created with ResizeOneDim.

pvSrcData Pointer to the data to copy into the array.

nLBound The lower bound of the array.

1423

COleSafeArray::Destroy

Remarks
Call this function to create a new one-dimensional COleSafeArray object. The
function allocates and initializes the data for the array, copying the specified data if
the pointer pvSrcData is not NULL.

On error, the function throws a CMemoryException.

See Also: COleSafeArray::GetOneDimSize, COleSafeArray::ResizeOneDim,
COleSafeArray::Create

COleSafeArray::Destroy

void Destroy();

Remarks
Call this function to destroy an existing array descriptor and all the data in the array. If
objects are stored in the array, each object is released. On error, the function throws a
CMemoryException or COleException.

See Also: COleSafeArray::DestroyData, COleSafeArray::DestroyDescriptor,
SafeArrayDestroy

COleSafeArray::DestroyData

void DestroyData();

Remarks
Call this function to destroy all the data in a safe array. If objects are stored in the
array, each object is released. On error, the function throws a CMemoryException or
COleException.

See Also: COleSafeArray::Destroy, COleSafeArray::DestroyDescriptor,
SafeArrayDestroyData

COleSafeArray::DestroyDescriptor

void DestroyDescriptor();

Remarks
Call this function to destroy a descriptor of a safe array. On error, the function throws
a CMemoryException or COleException.

See Also: COleSafeArray::Destroy, COleSafeArray::DestroyData,
SafeArrayDestroyDescriptor

1424

COleSafeArray::GetElement

COleSafeArray::Detach

VARIANT Detach();

Return Value
The underlying VARIANT value in the COleSafeArray object.

Remarks
Call this function to detach the VARIANT data from the COleSafeArray object. The
function detaches the data in a safe array by setting the VARTYPE of the object to
VT_EMPTY. It is the caller’s responsibility to free the array by calling the Windows
function VariantClear.

On error, the function throws a COleException.

See Also: COleSafeArray::Attach, VariantClear

COleSafeArray::GetDim

DWORD GetDim();

Return Value
The number of dimensions in the safe array.

Remarks
Call this function to return the number of dimensions in the COleSafeArray object.

See Also: COleSafeArray::Create, COleSafeArray::Redim, SafeArrayGetDim

COleSafeArray::GetElement

void GetElement(long* rglndices, void* pvData);

Parameters
rgindices Pointer to an array of indexes for each dimension of the array.

pvData Pointer to the location to place the element of the array.

Remarks
Call this function to retrieve a single element of the safe array. This function
automatically calls the windows functions SafeArrayLock and SafeArrayUnlock
before and after retrieving the element. If the data element is a string, object, or

variant, the function copies the element in the correct way. The parameter pvData
should point to a large enough buffer to contain the element.

On error, the function throws a CMemoryException or COleException.

See Also: COleSafeArray::PutElement, SafeArrayGetElement

1425

COleSafeArray::GetElemSize

COleSafeArray::GetElemSize

DWORD GetElemSize();

Return Value
The size, in bytes, of the elements of a safe array.

Remarks
Call this function to retrieve the size of an element in a COleSafeArray object.

See Also: COleSafeArray::GetDim, SafeArrayGetElemSize

COleSafeArray::GetLBound

void GetLBound(DWORD dwDim, long* pLBound);

Parameters
dwDim The array dimension for which to get the lower bound.

pLBound Pointer to the location to return the lower bound.

Remarks
Call this function to return the lower bound for any dimension of a COleSafeArray
object. On error, the function throws a COleException.

See Also: COleSafeArray::GetUBound, SafeArrayGetLBound

COleSafeArray::GetOneDimSize

DWORD GetOneDimSize();

Return Value
The number of elements in the one-dimensional safe array.

Remarks
Call this function to return the number of elements in the one-dimensional
COleSafeArray object.

See Also: COleSafeArray::CreateOneDimSize, COleSafeArray::ResizeOneDim,
SafeArrayRedim

COleSafeArray::GetUBound

void GetUBound(DWORD dwDim, long* pUBound);

Parameters
dwDim The array dimension for which to get the upper bound.

pUBound Pointer to the location to return the upper bound.

1426

COleSafeArray::PutElement

Remarks
Call this function to return the upper bound for any dimension of a safe array. On
error, the function throws a COleException.

See Also: COleSafeArray::GetLBound, SafeArrayGetUBound

COleSafeArray::Lock

void Lock();

Remarks
Call this function to increment the lock count of an array and place a pointer to the
array data in the array descriptor. On error, it throws a COleException.

The pointer in the array descriptor is valid until Unlock is called. Calls to Lock can be
nested; an equal number of calls to Unlock are required.

An array cannot be deleted while it is locked.

See Also: COleSafeArray::Unlock, SafeArrayLock

COleSafeArray::PtrOfIndex

void PtrOfIndex(long* rglndices, void** ppvData);

Parameters
rgindices An array of index values that identify an element of the array. All indexes
for the element must be specified.

ppvData On return, pointer to the element identified by the values in rglndices.

Remarks
Call this function to return a pointer to the element specified by the index values.

See Also: SafeArrayPtrOfIndex

COleSafeArray::PutElement

void PutElement(long* rglndices, LPVOID pvData);
Parameters
rgindices Pointer to an array of indexes for each dimension of the array.

pvData Pointer to the data to assign to the array. VT_DISPATCH,
VT_UNKNOWN, and VT_BSTR variant types are pointers and do not require
another level of indirection.

1427

COleSafeArray::Redim

Remarks
Call this function to assign a single element into the array. This function automatically
calls the Windows functions SafeArrayLock and SafeArrayUnlock before and after
assigning the element. If the data element is a string, object, or variant, the function
copies it correctly, and if the existing element is a string, object, or variant, it is
cleared correctly.

Note that you can have multiple locks on an array, so you can put elements into an
array while the array is locked by other operations.

On error, the function throws a CMemoryException or COleException.

See Also: COleSafeArray::GetElement, SafeArrayPutElement

COleSafeArray::Redim

void Redim(SAFEARRAYBOUND* psaboundNew);

Parameters
psaboundNew Pointer to a new safe array bound structure containing the new array
bound. Only the least significant dimension of an array may be changed.

Remarks
Call this function to change the least significant (rightmost) bound of a safe array. On
error, the function throws a COleException.

See Also: COleSafeArray::Create, COleSafeArray::GetDim,
COleSafeArray::ResizeOneDim, SafeArrayRedim

COleSafeArray::ResizeOneDim

void ResizeOneDim(DWORD dwElements);

Parameters
dwElements Number of elements in the one-dimensional safe array.

Remarks
Call this function to change the number of elements in a one-dimensional
COleSafeArray object. On error, the function throws a COleException.

See Also: COleSafeArray::Redim, COleSafeArray::GetOneDimSize,
COleSafeArray::CreateOneDim, SafeArrayRedim

1428

COleSafeArray::operator =

COleSafeArray::UnaccessData

void UnaccessData();

Remarks
Call this function to decrement the lock count of an array and invalidate the pointer
retrieved by AccessData. On error, the function throws a COleException.

See Also: COleSafeArray::AccessData, SafeArrayUnaccessData

COleSafeArray::Unlock

void Unlock();

Remarks
Call this function to decrement the lock count of an array so it can be freed or resized.
This function is called after access to the data in an array is finished. On error, it
throws a COleException.

See Also: COleSafeArray::Lock, SafeArrayUnlock

Operators
COleSafeArray::operator =

COleSafeArray& operator =(const COleSafeArray& saSrc);
COleSafeArray& operator =(const VARIANT& varSrc);
COleSafeArray& operator =(LPCVARIANT pSrc);
COleSafeArray& operator =(const COleVariant& varSrc);

Remarks
These overloaded assignment operators copy the source value into this
COleSafeArray object. A brief description of each operator follows:

e operator =(saSrc) Copies an existing COleSafeArray object into this object.

e operator =(varSrc) Copies an existing VARIANT or COleVariant array into
this object.

e operator =(pSrc) Copies the VARIANT array object accessed by pSrc into this
object.

See Also: VariantCopy

1429

COleSafeArray::operator ==

COleSateArray::operator ==

BOOL operator ==(const SAFEARRAY & saSrc) const;
BOOL operator ==(LPCSAFEARRAY pSrc) const;
BOOL operator ==(const COleSafeArray& saSrc) const;
BOOL operator ==(const VARIANT & varSrc) const;
BOOL operator ==(LPCVARIANT pSrc) const;

BOOL operator ==(const COleVariant& varSrc) const;

Remarks
This operator compares two arrays (SAFEARRAY, VARIANT, COleVariant, or
COleSafeArray arrays) and returns nonzero if they are equal; otherwise 0. Two
arrays are equal if they have an equal number of dimensions, equal size in each
dimension, and equal element values.

COleSafeArray::operator LPCVARIANT

operator LPCVARIANT() const;

Remarks

Call this casting operator to access the underlying VARIANT structure for this
COleSafeArray object.

COleSafeArray::operator LPVARIANT

operator LPVARIANT();

Remarks
Call this casting operator to access the underlying VARIANT structure for this
COleSafeArray object.

Note that changing the value in the VARIANT structure accessed by the pointer
returned by this function will change the value of this COleSafeArray object.

1430

COleServerDoc

COleServerDoc

e

mdTarget

COleServerDoc is the base class for OLE server documents. A server document can
contain COleServerItem objects, which represent the server interface to embedded
or linked items. When a server application is launched by a container to edit an
embedded item, the item is loaded as its own server document; the COleServerDoc
object contains just one COleServerItem object, consisting of the entire document.
When a server application is launched by a container to edit a linked item, an existing
document is loaded from disk; a portion of the document’s contents is highlighted to
indicate the linked item.

COleServerDoc objects can also contain items of the COleClientItem class. This
allows you to create container-server applications. The framework provides functions
to properly store the COleClientItem items while servicing the COleServerItem
objects.

If your server application does not support links, a server document will always
contain only one server item, which represents the entire embedded object as a
document. If your server application does support links, it must create a server
item each time a selection is copied to the Clipboard.

To use COleServerDoc, derive a class from it and implement the
OnGetEmbeddedItem member function, which allows your server to support
embedded items. Derive a class from COleServerItem to implement the items in
your documents, and return objects of that class from OnGetEmbeddedItem.

To support linked items, COleServerDoc provides the OnGetLinkedItem member
function. You can use the default implementation or override it if you have your own
way of managing document items.

You need one COleServerDoc-derived class for each type of server document your
application supports. For example, if your server application supports worksheets and
charts, you need two COleServerDoc-derived classes.

For more information on servers, see the article “Servers: Implementing a Server” in
Visual C++ Programmer’s Guide online.

1431

COleServerDoc

#include <afxole.h>

See Also: COleDocument, COleLinkingDoc, COleTemplateServer,

COleServerItem

COleServerDoc Class Members

1432

Construction

COleServerDoc Constructs a COleServerDoc object.

Attributes

IsEmbedded Indicates whether the document is embedded in a container
document or running stand-alone.

IsInPlaceActive Returns TRUE if the item is currently activated in place.

GetEmbeddedItem Returns a pointer to an item representing the entire document.

GetItemPosition Returns the current position rectangle, relative to the container
application’s client area, for in-place editing.

GetItemClipRect Returns the current clipping rectangle for in-place editing.

GetZoomFactor Returns the zoom factor in pixels.

Operations

OnExecOleCmd Executes a specified command or displays help for the
command.

NotifyChanged Notifies containers that the user has changed the document.

NotifyRename Notifies containers that the user has renamed the document.

NotifySaved Notifies containers that the user has saved the document.

NotifyClosed Notifies containers that the user has closed the document.

SaveEmbedding Tells the container application to save the document.

ActivateInPlace Activates the document for in-place editing.

DeactivateAndUndo Deactivates the server’s user interface.

DiscardUndoState Discards undo-state information.

RequestPositionChange

Changes the position of the in-place editing frame.

ScrollContainerBy Scrolls the container document.

UpdateAllltems Notifies containers that the user has changed the document.

Overridables

GetDocObjectServer Override this function to create a new CDocObjectServer
object and indicate that this document is a DocObject container.

OnUpdateDocument Called by the framework when a server document that is an

embedded item is saved, updating the container’s copy of
the item.

Overridables (continued)

COleServerDoc::ActivateInPlace

OnGetEmbeddedItem

OnClose

OnSetHostNames

OnShowDocument
OnDeactivate

OnDeactivateUI

OnSetItemRects

OnReactivateAndUndo

OnFrameWindowA ctivate

OnDocWindowActivate

OnShowControlBars

OnResizeBorder

CreateInPlaceFrame

DestroyInPlaceFrame

Called to get a COleServerItem that represents the entire
document; used to get an embedded item. Implementation
required.

Called by the framework when a container requests to close

the document.

Called by the framework when a container sets the window title
for an embedded object.

Called by the framework to show or hide the document.

Called by the framework when the user deactivates an item that
was activated in place.

Called by the framework to destroy controls and other
user-interface elements created for in-place activation.

Called by the framework to position the in-place editing frame
window within the container application’s window.

Called by the framework to undo changes made during in-place
editing.

Called by the framework when the container’s frame window is
activated or deactivated.

Called by the framework when the container’s document frame
window is activated or deactivated.

Called by the framework to show or hide control bars for
in-place editing.

Called by the framework when the container application’s
frame window or document window is resized.

Called by the framework to create a frame window for in-place
editing.

Called by the framework to destroy a frame window for
in-place editing.

Member Functions
COleServerDoc::ActivateInPlace

BOOL ActivateInPlace();
Return Value

Nonzero if successful; otherwise 0, which indicates that the item is fully open.

Activates the item for in-place editing.

1433

COleServerDoc::COleServerDoc

This function performs all operations necessary for in-place activation. It creates an
in-place frame window, activates it and sizes it to the item, sets up shared menus and
other controls, scrolls the item into view, and sets the focus to the in-place frame
window.

This function is called by the default implementation of COleServerItem::OnShow.
Call this function if your application supports another verb for in-place activation
(such as Play).

See Also: COleServerItem::OnShow

COleServerDoc::COleServerDoc

COleServerDoc();

Remarks
Constructs a COleServerDoc object without connecting with the OLE system DLLs.
You must call COleLinkingDoc::Register to open communications with OLE. If you
are using COleTemplateServer in your application, COleLinkingDoc::Register is
called for you by COleLinkingDoc’s implementation of OnNewDocument,
OnOpenDocument, and OnSaveDocument.

See Also: COleLinkingDoc::Register

COleServerDoc::DeactivateAndUndo

BOOL DeactivateAndUndo();

Return Value
Nonzero on success; otherwise 0.

Remarks
Call this function if your application supports Undo and the user chooses Undo after
activating an item but before editing it. If the container application is written using the
Microsoft Foundation Class Library, calling this function causes
COleClientItem::OnDeactivateAndUndo to be called, which deactivates the
server’s user interface.

See Also: COleClientItem::OnDeactivateAndUndo

1434

COleServerDoc::DiscardUndoState

COleServerDoc::CreateInPlaceFrame

virtual COleIPFrameWnd* CreateInPlaceFrame(CWnd* pParentWnd);

Return Value
A pointer to the in-place frame window, or NULL if unsuccessful.

Parameters
pParentWnd Pointer to the container application’s parent window.

Remarks
The framework calls this function to create a frame window for in-place editing. The
default implementation uses information specified in the document template to create
the frame. The view used is the first view created for the document. This view is
temporarily detached from the original frame and attached to the newly created frame.

This is an advanced overridable.

See Also: COleServerDoc::DestroyInPlaceFrame

COleServerDoc::DestroyInPlaceFrame

virtual void DestroyInPlaceFrame(COleIPFrameWnd* pFrame);

Parameters
pFrame Pointer to the in-place frame window to be destroyed.

Remarks
The framework calls this function to destroy an in-place frame window and return the
server application’s document window to its state before in-place activation.

This is an advanced overridable.

See Also: COleServerDoc::CreateInPlaceFrame

COleServerDoc::DiscardUndoState

BOOL DiscardUndoState();

Return Value
Nonzero on success; otherwise 0.

Remarks
If the user performs an editing operation that cannot be undone, call this function to
force the container application to discard its undo-state information.

1435

COleServerDoc::GetDocObjectServer

This function is provided so that servers that support Undo can free resources that
would otherwise be consumed by undo-state information that cannot be used.

See Also: COleServerDoc::OnReactivateAndUndo

COleServerDoc::GetDocObjectServer

virtual CDocObjectServer* GetDocObjectServer(LPOLEDOCUMENTSITE pSize);

Return Value
A pointer to a CDocObjectServer; NULL if the operation failed.

Parameters
pSite Pointer to the IOleDocumentSite interface that will connect this document to
the server.

Remarks
Override this function to create a new CDocObjectServer item and return a pointer to
it. When a DocObject server is activated, the return of a non-NULL pointer shows
that the client can support DocObjects. The default implementation returns NULL.

A typical implementation for a document that supports DocObjects will simply
allocate a new CDocObjectServer object and return it to the caller. For example:

CDocObjectServer* COleServerDoc::GetDocObjectServer(LPOLEDOCUMENTSITE pSite)
{

return new CDocObjectServer(this, pSite);
}

See Also: CDocObjectServer::CDocObjectServer

COleServerDoc::GetEmbeddedItem

COleServerltem* GetEmbeddedItem();

Return Value
A pointer to an item representing the entire document; NULL if the operation failed.

Remarks
Call this function to get a pointer to an item representing the entire document. It calls
COleServerDoc::OnGetEmbeddedItem, a virtual function with no default
implementation.

See Also: COleServerDoc::OnGetEmbeddedItem

1436

COleServerDoc::GetZoomFactor

COleServerDoc::GetltemClipRect

void GetItemClipRect(LPRECT IpClipRect) const;

Parameters
IpClipRect Pointer to a RECT structure or a CRect object to receive the
clipping-rectangle coordinates of the item.

Remarks
Call the GetItemClipRect member function to get the clipping-rectangle coordinates
of the item that is being edited in place. Coordinates are in pixels relative to the
container application window’s client area.

Drawing should not occur outside the clipping rectangle. Usually, drawing is
automatically restricted. Use this function to determine whether the user has scrolled
outside the visible portion of the document; if so, scroll the container document as
needed by means of a call to ScrollContainerBy.

See Also: COleServerDoc::GetItemPosition,
COleServerDoc::ScrollContainerBy

COleServerDoc::GetltemPosition

void GetItemPosition(LPRECT IpPosRect) const;

Parameters
IpPosRect Pointer to a RECT structure or a CRect object to receive the coordinates
of the item.

Remarks
Call the GetItemPosition member function to get the coordinates of the item being
edited in place. Coordinates are in pixels relative to the container application
window’s client area.

The item’s position can be compared with the current clipping rectangle to determine
the extent to which the item is visible (or not visible) on the screen.

See Also: COleServerDoc::GetItemClipRect

COleServerDoc::GetZoomFactor

BOOL GetZoomFactor(LPSIZE IpSizeNum = NULL,
w» LPSIZE IpSizeDenom = NULL, LPCRECT IpPosRect = NULL) const;

Return Value
Nonzero if the item is activated for in-place editing and its zoom factor is other than
100% (1:1); otherwise 0.

1437

COleServerDoc::IsEmbedded

Parameters

Remarks

IpSizeNum Pointer to an object of class CSize that will hold the zoom factor’s
numerator. Can be NULL.

IpSizeDenom Pointer to an object of class CSize that will hold the zoom factor’s
denominator. Can be NULL.

IpPosRect Pointer to an object of class CRect that describes the item’s new position.
If this argument is NULL, the function uses the item’s current position.

The GetZoomFactor member function determines the “zoom factor” of an item that
has been activated for in-place editing. The zoom factor, in pixels, is the proportion of
the item’s size to its current extent. If the container application has not set the item’s
extent, its natural extent (as determined by COleServerItem::OnGetExtent) is used.

The function sets its first two arguments to the numerator and denominator of the
item’s “zoom factor.” If the item is not being edited in place, the function sets these
arguments to a default value of 100% (or 1:1) and returns zero. For further
information, see Technical Note 40 online, MFC/OLE In-Place Resizing and

Zooming.

See Also: COleServerDoc::GetItemPosition, COleServerDoc::GetItemClipRect,
COleServerDoc::OnSetItemRects

COleServerDoc::IsEmbedded

BOOL IsEmbedded() const;

Return Value

Remarks

Nonzero if the COleServerDoc object is a document that represents an object
embedded in a container; otherwise 0.

Call the IsEmbedded member function to determine whether the document represents
an object embedded in a container. A document loaded from a file is not embedded
although it may be manipulated by a container application as a link. A document
which is an embedding in a container document is considered to be embedded.

COleServerDoc::IsInPlaceActive

BOOL IsInPlaceActive() const;

Return Value

1438

Nonzero if the COleServerDoc object is active in place; otherwise 0.

Remarks

COleServerDoc::NotifyRename

Call the IsInPlaceActive member function to determine whether the item is currently
in the in-place active state.

See Also: COleClientItem::OnActivate,
COleServerDoc::OnReactivateAndUndo, COleServerDoc::ActivateInPlace

COleServerDoc::NotifyChanged

Remarks

‘void NotifyChanged();

Call this function to notify all linked items connected to the document that the
document has changed. Typically, you call this function after the user changes some
global attribute such as the dimensions of the server document. If an OLE item is
linked to the document with an automatic link, the item is updated to reflect the
changes. In container applications written with the Microsoft Foundation Class
Library, the OnChange member function of COleClientItem is called.

Note This function is included for compatibility with OLE 1. New applications should use
UpdateAllltems.

See Also: OleServerDoc::NotifyClosed, COleServerDoc::NotifySaved,
COleClientItem::OnChange

COleServerDoc::NotifyClosed

Remarks

void NotifyClosed();

Call this function to notify the container(s) that the document has been closed. When
the user chooses the Close command from the File menu, NotifyClosed is called by
COleServerDoc’s implementation of the OnCloseDocument member function. In
container applications written with the Microsoft Foundation Class Library, the
OnChange member function of COleClientItem is called.

See Also: COleServerDoc::NotifyChanged, COleServerDoc::NotifySaved,
COleClientItem::OnChange, CDocument::OnCloseDocument

COleServerDoc::NotifyRename

void NotifyRename(LPCTSTR IpszNewName);

Parameters

IpszNewName Pointer to a string specifying the new name of the server document;
this is typically a fully qualified path.

1439

COleServerDoc::NotifySaved

Remarks
Call this function after the user renames the server document. When the user chooses
the Save As command from the File menu, NotifyRename is called by
COleServerDoc’s implementation of the OnSaveDocument member function. This
function notifies the OLE system DLLs, which in turn notify the containers. In
container applications written with the Microsoft Foundation Class Library, the
OnChange member function of COleClientItem is called.

See Also: COleServerDoc::NotifySaved, CDocument::OnSaveDocument

COleServerDoc::NotifySaved

void NotifySaved();

Remarks
Call this function after the user saves the server document. When the user chooses the
Save command from the File menu, NotifySaved is called for you by
COleServerDoc’s implementation of OnSaveDocument. This function notifies the
OLE system DLLs, which in turn notify the containers. In container applications
written with the Microsoft Foundation Class Library, the OnChange member function
of COleClientItem is called.

See Also: COleServerDoc::NotifyChanged, COleServerDoc::NotifyClosed,
COleClientItem::OnChange, CDocument::OnSaveDocument

COleServerDoc::OnClose

virtual void OnClose(OLECLOSE dwCloseOption);

Parameters
dwCloseOption A value from the enumeration OLECLOSE. This parameter can
have one of the following values:

e OLECLOSE_SAVEIFDIRTY The file is saved if it has been modified.

e OLECLOSE_NOSAVE The file is closed without being saved.

o OLECLOSE_PROMPTSAVE If the file has been modified, the user is
prompted about saving it.

Remarks
Called by the framework when a container requests that the server document be
closed. The default implementation calls CDocument::OnCloseDocument.

For more information and additional values, see OLECLOSE in the OLE
documentation.

See Also: COleException, CDocument::OnCloseDocument

1440

COleServerDoc::OnDocWindowActivate

COleServerDoc::OnDeactivate

virtual void OnDeactivate();

Remarks
Called by the framework when the user deactivates an embedded or linked item that is
currently in-place active. This function restores the container application’s user
interface to its original state and destroys any menus and other controls that were
created for in-place activation.

The undo state information should be unconditionally released at this point.

For more information, see the article “Activation” in Visual C++ Programmer’s
Guide online.

See Also: COleServerDoc::ActivateInPlace, COleServerDoc::OnDeactivateUI,
COleServerDoc::DestroyInPlaceFrame

COleServerDoc::OnDeactivateUI

virtual void OnDeactivateUI(BOOL bUndoable);

Parameters
bUndoable Specifies whether the editing changes can be undone.

Remarks
Called when the user deactivates an item that was activated in place. This function
restores the container application’s user interface to its original state, hiding any
menus and other controls that were created for in-place activation.

The framework always sets bUndoable to FALSE. If the server supports undo and
there is an operation that can be undone, call the base-class implementation with
bUndoable set to TRUE.

See Also: COleServerDoc::OnDeactivate

COleServerDoc::OnDocWindowActivate

virtual void OnDocWindowActivate(BOOL bActivate);

Parameters
bActivate Specifies whether the document window is to be activated or deactivated.

Remarks
The framework calls this function to activate or deactivate a document window for
in-place editing. The default implementation removes or adds the frame-level user

1441

COleServerDoc::OnExecOleCmd

interface elements as appropriate. Override this function if you want to perform
additional actions when the document containing your item is activated or deactivated.

For more information, see the article “Activation” in Visual C++ Programmer’s
Guide online.

See Also: COleServerDoc::ActivateInPlace,
COleServerDoc::OnReactivateAndUndo, COleServerDoc::OnShowControlBars,
COleServerDoc::OnDeactivateUI, COleServerDoc::OnFrameWindowActivate,
COlelPFrameWnd

COleServerDoc::OnExecOleCmd

HRESULT OnExecOleCmd(const GUID* pGroup, DWORD nCmdID,
« DWORD nCmdExecOut, VARTIANTARG* pvaln, VARIANTARG™ pvaOut);

Return Value
Returns S_OK if successful; otherwise, one of the following error codes:

Value Description

E_UNEXPECTED Unexpected error occurred

E_FAIL Error occurred

E_NOTIMPL Indicates MFC itself should attempt to translate

and dispatch the command

OLECMDERR_E_UNKNOWNGROUP pGroup is non-NULL but does not specify a
recognized command group

OLECMDERR_E_NOTSUPPORTED nCmdID is not recognized as a valid command

in the group pGroup
OLECMDERR_DISABLED The command identified by nCmdID is disabled

and cannot be executed
OLECMDERR_NOHELP Caller asked for help on the command identified

by nCmdID but no help is available
OLECMDERR_CANCELED User canceled the execution

Parameters
pGroup A pointer to a GUID that identifies a set of commands. Can be NULL to
indicate the default command group.

nCmdID The command to execute. Must be in the group identified by pGroup.

nCmdExecOut The way the object should execute the command, one or more of the
following values from the OLECMDEXECOPT enumeration:

OLECMDEXECOPT_DODEFAULT
OLECMDEXECOPT_PROMPTUSER
OLECMDEXECOPT_DONTPROMPTUSER
OLECMDEXECOPT_SHOWHELP

1442

COleServerDoc::OnFrameWindowActivate

pvaln Pointer to a VARIANTARG containing input arguments for the command.
Can be NULL.

pvaOut Pointer to a VARIANTARG to receive the output return values from the
command. Can be NULL.

Remarks
The framework calls this function to execute a specified command or display help for
the command.

COleCmdUI can be used to enable, update, and set other properties of DocObject
user interface commands. After the commands are initialized, you can execute them
with OnExecOleCmd.

The framework calls the function before attempting to translate and dispatch an OLE
document command. You don't need to override this function to handle standard OLE
document commands, but you must supply an override to this function if you want to
handle your own custom commands or handle commands that accept parameters or
return results.

Most of the commands do not take arguments or return values. For a majority of
commands the caller can pass NULLs for pvaln and pvaOut. For commands that
expect input values, the caller can declare and initialize a VARIANTARG variable
and pass a pointer to the variable in pvaln. For commands that require a single value,
the argument can be stored directly in the VARIANTARG and passed to the function.
Multiple arguments must be packaged within the VARIANTARG using one of the
supported types (such as IDispatch and SAFEARRAY).

Similarly, if a command returns arguments the caller is expected to declare a
VARIANTARG, initialize it to VIT_EMPTY, and pass its address in pvaOut. If a
command returns a single value, the object can store that value directly in pvaOut.
Multiple output values must be packaged in some way appropriate for the
VARIANTARG.

The base-class implementation of this function will walk the
OLE_COMMAND_MAP structures associated with the command target and try to
dispatch the command to an appropriate handler. The base-class implementation
works only with commands that do not-accept arguments or return values. If you need
to handle commands that do accept arguments or return values, you must override this
function and work with the pvaln and pvaQut parameters yourself.

See Also: COleCmdUI

COleServerDoc::OnFrameWindowActivate

virtual void OnFrameWindowA ctivate(BOOL bActivate);

Parameters
bActivate Specifies whether the frame window is to be activated or deactivated.

1443

COleServerDoc::OnGetEmbeddeditem

Remarks

The framework calls this function when the container application’s frame window is
activated or deactivated.

The default implementation cancels any help modes the frame window might be in.
Override this function if you want to perform special processing when the frame
window is activated or deactivated.

For more information, see the article “Activation” in Visual C++ Programmer’s
Guide online.

See Also: COleServerDoc::OnDocWindowActivate

COleServerDoc::OnGetEmbeddedItem

virtual COleServerItem* OnGetEmbeddedItem() = 0;

Return Value

Remarks

A pointer to an item representing the entire document; NULL if the operation failed.

Called by the framework when a container application calls the server application to
create or edit an embedded item. There is no default implementation. You must
override this function to return an item that represents the entire document. This return
value should be an object of a COleServerItem-derived class.

See Also: COleLinkingDoc::OnGetLinkedItem, COleServerItem

COleServerDoc::OnReactivate AndUndo

virtual BOOL OnReactivateAndUndo();

Return Value

Remarks

1444

Nonzero if successful; otherwise 0.

The framework calls this function when the user chooses to undo changes made to an
item that has been activated in place, changed, and subsequently deactivated. The
default implementation does nothing except return FALSE to indicate failure.

Override this function if your application supports undo. Usually you would perform
the undo operation, then activate the item by calling ActivateInPlace. If the container
application is written with the Microsoft Foundation Class Library, calling
COleClientItem::ReactivateAndUndo causes this function to be called.

See Also: COleServerDoc::ActivateInPlace, COleServerDoc::IsInPlaceActive,
COleClientItem::ReactivateAndUndo

COleServerDoc::OnSetHostNames

COleServerDoc::OnResizeBorder

virtual void OnResizeBorder(LPCRECT I[pRectBorder,
» LPOLEINPLACEUIWINDOW I[pUIWindow, BOOL bFrame);

Parameters
IpRectBorder Pointer to a RECT structure or a CRect object that specifies the
coordinates of the border.

IpUIWindow Pointer to an object of class IOleInPlaceUIWindow that owns the
current in-place editing session.

bFrame TRUE if IpUIWindow points to the container application’s top-level frame
window, or FALSE if IpUIWindow points to the container application’s
document-level frame window.

Remarks
The framework calls this function when the container application’s frame windows
change size. This function resizes and adjusts toolbars and other user-interface
elements in accordance with the new window size.

For more information, see I0leInPlaceUIWindow in the OLE documentation.
This is an advanced overridable.

See Also: COleServerDoc::OnShowControlBars

COleServerDoc::OnSetHostNames

virtual void OnSetHostNames(LPCTSTR IpszHost, LPCTSTR IpszHostObj);

Parameters
IpszHost Pointer to a string that specifies the name of the container application.

IpszHostObj Pointer to a string that specifies the container’s name for the document.

Remarks
Called by the framework when the container sets or changes the host names for this
document. The default implementation changes the document title for all views
referring to this document.

Override this function if your application sets the titles through a different mechanism.

See Also: COleClientItem::SetHostNames

1445

COleServerDoc::OnSetltemRects

COleServerDoc::OnSetltemRects

virtual void OnSetItemRects(LPCRECT I[pPosRect, LPCRECT IpClipRect);

Parameters
IpPosRect Pointer to a RECT structure or a CRect object that specifies the in-place
frame window’s position relative to the container application’s client area.

IpClipRect Pointer to a RECT structure or a CRect object that specifies the in-place
frame window’s clipping rectangle relative to the container application’s client
area.

Remarks
The framework calls this function to position the in-place editing frame window
within the container application’s frame window. Override this function to update the
view’s zoom factor, if necessary.

This function is usually called in response to a RequestPositionChange call, although
it can be called at any time by the container to request a position change for the
in-place item.

See Also: COleServerDoc::RequestPositionChange,
COlelPFrameWnd::RepositionFrame, COleClientItem::SetItemRects,
COleServerDoc::GetZoomFactor

COleServerDoc::OnShowControlBars

virtual void OnShowControlBars(CFrameWnd *pFrameWnd, BOOL bShow);

Parameters
pFrameWnd Pointer to the frame window whose control bars should be hidden or
shown.

bShow Determines whether control bars are shown or hidden.

Remarks
The framework calls this function to show or hide the server application’s control bars
associated with the frame window identified by pFrameWnd. The default
implementation enumerates all control bars owned by that frame window and hides or
shows them.

See Also: COleServerDoc::ActivateInPlace,
COleServerDoc::OnReactivateAndUndo,
COleServerDoc::OnFrameWindowActivate, COleServerDoc::IsInPlaceActive

1446

COleServerDoc::RequestPositionChange

COleServerDoc::OnShowDocument

virtual void OnShowDocument(BOOL bShow);

Parameters

bShow Specifies whether the user interface to the document is to be shown or
hidden.

Remarks
The framework calls the OnShowDocument function when the server document must
be hidden or shown. If bShow is TRUE, the default implementation activates the
server application, if necessary, and causes the container application to scroll its
window so that the item is visible. If bShow is FALSE, the default implementation
deactivates the item through a call to OnDeactivate, then destroys or hides all frame
windows that have been created for the document, except the first one. If no visible
documents remain, the default implementation hides the server application.

See Also: COleServerDoc::ActivateInPlace, COleServerItem::OnDoVerb,
COleServerDoc::IsInPlaceActive, COleServerDoc::OnDeactivateUI

COleServerDoc::OnUpdateDocument

virtual BOOL OnUpdateDocument();

Return Value
Nonzero if the document was successfully updated; otherwise 0.

Remarks
Called by the framework when saving a document that is an embedded item in a
compound document. The default implementation calls the
COleServerDoc::NotifySaved and COleServerDoc::SaveEmbedding member
functions and then marks the document as clean. Override this function if you want to
perform special processing when updating an embedded item.

See Also: COleServerDoc::NotifySaved, COleServerDoc::SaveEmbedding,
CDocument::OnSaveDocument

COleServerDoc::RequestPositionChange

void RequestPositionChange(LPCRECT [pPosRect);

Parameters
IpPosRect Pointer to a RECT structure or a CRect object containing the item’s new
position.

1447

COleServerDoc::SaveEmbedding

Remarks
Call this member function to have the container application change the item’s
position. This function is usually called (in conjunction with UpdateAllltems) when
the data in an in-place active item has changed. Following this call, the container
might or might not perform the change by calling OnSetItemRects. The resulting
position might be different from the one requested.

See Also: COleServerDoc::ScrollContainerBy

COleServerDoc::SaveEmbedding

void SaveEmbedding();

Remarks
Call this function to tell the container application to save the embedded object. This
function is called automatically from OnUpdateDocument. Note that this function
causes the item to be updated on disk, so it is usually called only as a result of a
specific user action.

See Also: COleServerDoc::NotifyClosed

COleServerDoc::ScrollContainerBy

BOOL ScrollContainerBy(CSize sizeScroll);

Return Value
Nonzero if successful; otherwise 0.

Parameters
sizeScroll Indicates how far the container document is to scroll.

Remarks ‘
Call the ScrollContainerBy member function to scroll the container document by the
amount, in pixels, indicated by sizeScroll. Positive values indicate scrolling down and
to the right; negative values indicate scrolling up and to the left.

See Also: COleClientItem::OnScrollBy

COleServerDoc::UpdateAllltems

void UpdateAllltems(COleServerltem* pSender, LPARAM [Hint = OL,
=« CObject* pHint = NULL, DVASPECT nDrawAspect = DVASPECT_CONTENT);

Parameters
pSender Pointer to the item that modified the document, or NULL if all items are to
be updated.

1448

COleServerDoc::UpdateAllltems

IHint Contains information about the modification.
pHint Pointer to an object storing information about the modification.

nDrawAspect Determines how the item is to be drawn. This is a value from the
DVASPECT enumeration. This parameter can have one of the following values:

e DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

e DVASPECT_THUMBNAIL Item is rendered in a “thumbnail” representation
so that it can be displayed in a browsing tool.

e DVASPECT_ICON Item is represented by an icon.

e DVASPECT_DOCPRINT Item is represented as if it were printed using the
" Print command from the File menu.

Remarks
Call this function to notify all linked items connected to the document that the
document has changed. You typically call this function after the user changes the
server document. If an OLE item is linked to the document with an automatic link, the
item is updated to reflect the changes. In container applications written with the
Microsoft Foundation Class Library, the OnChange member function of
COleClientItem is called.

This function calls the OnUpdate member function for each of the document’s items
except the sending item, passing pHint, [Hint, and nDrawAspect. Use these parameters
to pass information to the items about the modifications made to the document. You
can encode information using /Hint or you can define a CObject-derived class to
store information about the modifications and pass an object of that class using pHint.
Override the OnUpdate member function in your COleServerItem-derived class to
optimize the updating of each item depending on whether its presentation has
changed.

See Also: COleServerDoc::NotifyChanged, COleServerItem::OnUpdate,
COleServerDoc::NotifySaved, COleClientItem::OnChange

1449

COleServerltem

COleServerltem

The COleServerItem class provides the server interface to OLE items. A linked item
can represent some or all of a server document. An embedded item always represents
an entire server document.

The COleServerItem class defines several overridable member functions that are
called by the OLE system dynamic-link libraries (DLLs), usually in response to
requests from the container application. These member functions allow the container
application to manipulate the item indirectly in various ways, such as by displaying it,
executing its verbs, or retrieving its data in various formats.

To use COleServerltem, derive a class from it and implement the OnDraw and
Serialize member functions. The OnDraw function provides the metafile
representation of an item, allowing it to be displayed when a container application
opens a compound document. The Serialize function of CObject provides the native
representation of an item, allowing an embedded item to be transferred between the
server and container applications. OnGetExtent provides the natural size of the item
to the container, enabling the container to size the item.

For more information about servers and related topics, see the articles “Servers:
Implementing a Server” and “Creating a Container/Server Application” in the article
“Containers: Advanced Features.” Both articles are in Visual C++ Programmer’s
Guide online.

#include <afxole.h>

See Also: COleClientItem, COleServerDoc, COleTemplateServer,
CObject::Serialize

COleServerltem Class Members

1450

Status
GetDocument Returns the server document that contains the item.
GetltemName Returns the name of the item. Used for linked items only.

Status (continued)

COleServerltem

SetItemName Sets the name of the item. Used for linked items only.

IsConnected Indicates whether the item is currently attached to an active
container.

IsLinkedItem Indicates whether the item represents a linked OLE item.

Operations

CopyToClipboard Copies the item to the Clipboard.

NotifyChanged Updates all containers with automatic link update.

DoDragDrop Performs a drag-and-drop operation.

GetClipboardData Gets the data source for use in data transfer (drag and drop or
Clipboard).

GetEmbedSourceData Gets the CF_EMBEDSOURCE data for an OLE item.

AddOtherClipboardData

GetLinkSourceData
GetObjectDescriptorData

Places presentation and conversion formats in a
COleDataSource object.

Gets the CF_LINKSOURCE data for an OLE item.
Gets the CF_OBJECTDESCRIPTOR data for an OLE item.

Construction

COleServerItem Constructs a COleServerItem object.

GetDataSource Gets the object used to store conversion formats.

Overridables

OnDraw Called when the container requests to draw the item;
implementation required.

OnDrawEx Called for specialized item drawing.

OnUpdate Called when some portion of the document the item belongs in
is changed.

OnlnitFromData Called by the framework to initialize an OLE item using the
contents of the data transfer object specified.

OnGetExtent Called by the framework to retrieve the size of the OLE item.

OnSetExtent Called by the framework to set the size of the OLE item.

OnGetClipboardData Called by the framework to get the data that would be copied to
the Clipboard.

OnSetColorScheme Called to set the item’s color scheme.

OnSetData Called to set the item’s data.

OnDoVerb Called to execute a verb.

OnQueryUpdateltems Called to determine whether any linked items require updating.

OnRenderData Retrieves data as part of delayed rendering.

OnRenderFileData

Retrieves data into a CFile object as part of delayed rendering.
‘ (continued)

1451

COleServerltem::AddOtherClipboardData

Overridables (continued)

OnRenderGlobalData Retrieves data into an HGLOBAL as part of delayed rendering.

OnUpdateltems Called to update the presentation cache of all items in the server
document.

OnOpen Called by the framework to display the OLE item in its own
top-level window.

OnShow Called when the container requests to show the item.

OnHide Called by the framework to hide the OLE item.

Data Members

m_sizeExtent Informs the server about how much of the OLE item is visible.

Member Functions
COleServerltem:: AddOtherClipboardData

void AddOtherClipboardData(COleDataSource* pDataSource);

