The Six-Volume Documentation Collection
for Microsoft Visual (++ Version 4 for Win32.
Volume Five — A complete description of allﬁ the functions

and parameters in the Microsoft Visual C++ Run-Time and
lostream class libraries, including helpful source code examples

Microsoft Press

1ostream Class Library Reference

Microsofts Visual C++™
Version 4.0
Development System for Windowss 95 and Windows NT"

Microsoft Corporation

Introduction v
About This Book v

Chapter 1 iostream Programming 1
What Is a Stream? 1
Input/Output Alternatives 1
The iostream Class Hierarchy 2
Output Streams 2
Constructing Output Stream Objects 3
Output File Stream Constructors 3
Output String Stream Constructors 3
Using Insertion Operators and Controlling Format 4
Output Width 4
Alignment 5
Precision 6
Radix 7
Output File Stream Member Functions 7
The open Function for Output Streams 7
The put Function 8
The write Function 8
The seekp and tellp Functions 8
The close Function for Output Streams 9
Error Processing Functions 9
The Effects of Buffering 10
Binary Output Files 10
Overloading the << Operator for Your Own Classes 11
Writing Your Own Manipulators Without Arguments 12
Input Streams 13
Constructing Input Stream Objects 13
Input File Stream Constructors 13
Input String Stream Constructors 14
Using Extraction Operators 14
Testing for Extraction Errors 14

Contents

Contents

Input Stream Manipulators 14
Input Stream Member Functions 15
The open Function for Input Streams 15
The get Function 15
The getline Function 16
The read Function 16
The seekg and tellg Functions 17
The close Function for Input Streams 18
Overloading the >> Operator for Your Own Classes 18
Input/Output Streams 18
Custom Manipulators with Arguments 18
Output Stream Manipulators with One Argument (int or long) 18
Other One-Argument Output Stream Manipulators 19
Output Stream Manipulators with More Than One Argument 20
Custom Manipulators for Input and Input/Output Streams 21
Using Manipulators with Derived Stream Classes 21
Deriving Your Own Stream Classes 22
The streambuf Class 22
Why Derive a Custom streambuf Class? 22
A streambuf Derivation Example 22

Chapter 2 Alphabetic Microsoft iostream Class Library Reference 29
Index 121

Introduction

Microsoft Visual C++™ contains the C++ iostream class library, which supports
object-oriented input and output. This library follows the syntax that the authors of
the C++ language originally established and thus represents a de facto standard for
C++ input and output.

About This Book

Chapter 1, iostream Programming, provides information you need to get started using
iostream classes. After reading this material, you will begin to understand how to
write programs that process formatted text character streams and binary disk files and
how to customize the library in limited ways. The chapter includes advanced
information on how to derive jostream classes and create custom multiparameter
“manipulators.” These topics will get you started on extending the library and doing
specialized formatting. You will also learn about the relationship between the
iostream classes and their subsidiary buffer classes. You can then apply some of the
iostream library design principles to your own class libraries.

Chapter 2, Alphabetic Microsoft iostream Class Library Reference, begins with a
detailed class hierarchy diagram. The iostream class library reference follows,
arranged by classes in alphabetic order. Each class description includes a summary of
each member, arranged by category, followed by alphabetical listings of member
functions (public and protected), overloaded operators, data members, and
manipulators.

Public and protected class members are documented only when they are normally
used in application programs or derived classes. See the class header files for a
complete listing of class members.

Note For information on Microsoft product support, see “Microsoft Support Services” in the
PSS.HLP file.

CHAPTER 1

iostream Programming

This chapter begins with a general description of the iostream classes and then
describes output streams, input streams, and input/output streams. The end of the
chapter provides information about advanced iostream programming.

What Is a Stream?

Like C, C++ does not have built-in input/output capability. All C++ compilers,
however, come bundled with a systematic, object-oriented I/O package, known as the
iostream classes. The “stream” is the central concept of the iostream classes. You can
think of a stream object as a “smart file” that acts as a source and destination for
bytes. A stream’s characteristics are determined by its class and by customized
insertion and extraction operators.

Through device drivers, the disk operating system deals with the keyboard, screen,
printer, and communication ports as extended files. The iostream classes interact with
these extended files. Built-in classes support reading from and writing to memory
with syntax identical to that for disk I/O, which makes it easy to derive stream
classes.

Input/Output Alternatives

This product provides several options for I/O programming:
¢ C run-time library direct, unbuffered I/O

e ANSI C run-time library stream /O

Console and port direct /O

The Microsoft Foundation Class Library
e The Microsoft iostream Class Library

The iostream classes are useful for buffered, formatted text I/O. They are also useful
for unbuffered or binary I/O if you need a C++ programming interface and decide not

iostream Class Library Reference

to use the Microsoft Foundation classes. The iostream classes are an object-oriented
1/0 alternative to the C run-time functions.

You can use iostream classes with the Microsofte Windowse operating system. String
and file streams work without restrictions, but the character-mode stream objects cin,
cout, cerr, and clog are inconsistent with the Windows graphical user interface. You
can also derive custom stream classes that interact directly with the Windows
environment. If you link with the QuickWin library, however, the cin, cout, cerr, and
clog objects are assigned to special windows because they are connected to the
predefined files stdin, stdout, and stderr.

You cannot use iostream classes in tiny-model programs because tiny-model
programs cannot contain static objects such as cin and cout.

The iostream Class Hierarchy

The class hierarchy diagram at the beginning of Chapter 2 shows some relationships
between iostream classes. There are additional “member” relationships between the
ios and streambuf families. Use the diagram to locate base classes that provide
inherited member functions for derived classes.

Output Streams

An output stream object is a destination for bytes. The three most important output
stream classes are ostream, ofstream, and ostrstream.

The ostream class, through the derived class ostream_withassign, supports the
predefined stream objects:

e cout standard output
e cerr standard error with limited buffering

¢ clog similar to cerr but with full buffering

Objects are rarely constructed from ostream or ostream_withassign; predefined
objects are generally used. In some cases, you can reassign predefined objects after
program startup. The ostream class, which can be configured for buffered or
unbuffered operation, is best suited to sequential text-mode output. All functionality
of the base class, ios, is included in ostream. If you construct an object of class
ostream, you must specify a streambuf object to the constructor.

The ofstream class supports disk file output. If you need an output-only disk,
construct an object of class ofstream. You can specify whether ofstream objects
accept binary or text-mode data before or after opening the file. Many formatting
options and member functions apply to ofstream objects, and all functionality of the
base classes ios and ostream is included.

Chapter 1 iostream Programming

If you specify a filename in the constructor, that file is automatically opened when the
object is constructed. Otherwise, you can use the open member function after
invoking the default constructor, or you can construct an ofstream object based on an
open file that is identified by a file descriptor.

Like the run-time function sprintf, the ostrstream class supports output to in-
memory strings. To create a string in memory using I/O stream formatting, construct
an object of class ostrstream. Because ostrstream objects are write-only, your
program must access the resulting string through a pointer to char.

Constructing Output Stream Objects

If you use only the predefined cout, cerr, or clog objects, you don’t need to construct
an output stream. You must use constructors for:

o File streams

e String streams

Output File Stream Constructors
You can construct an output file stream in one of three ways:

e Use the default constructor, then call the open member function.

ofstream myFile; // Static or on the stack
myFile.open("filename", iosmode);

ofstream* pmyFile = new ofstream; // On the heap
pmyFile->open("filename", iosmode);

e Specify a filename and mode flags in the constructor call.

ofstream myFile("filename", iosmode);

o Specify an integer file descriptor for a file already open for output. You can specify
unbuffered output or a pointer to your own buffer.
int fd = _open("filename"”, dosmode);
ofstream myFilel(fd); // Buffered mode (default)

ofstream myFile2(fd, NULL, @); // Unbuffered mode ofstream
myFile3(fd, pch, buflen); // User-supplied buffer

Output String Stream Constructors

To construct an output string stream, you can use one of two ostrstream constructors.
One dynamically allocates its own storage, and the other requires the address and size
of a preallocated buffer.

¢ The dynamic constructor is used like this:

char* sp;

ostrstream myString;

mystring << "this is a test" << ends;

sp = myString.str(); // Get a pointer to the string

iostream Class Library Reference

The ends “manipulator” adds the necessary terminating null character to the
string.

e The constructor that requires the preallocated buffer is used like this:

char s[32];
ostrstream myString(s, sizeof(s));
myString << "this is a test" << ends; // Text stored in s

Using Insertion Operators and Controlling Format

This section shows how to control format and how to create insertion operators for
your own classes. The insertion (<<) operator, which is preprogrammed for all
standard C++ data types, sends bytes to an output stream object. Insertion operators
work with predefined “manipulators,” which are elements that change the default
format of integer arguments.

Output Width

To align output, you specify the output width for each item by placing the setw
manipulator in the stream or by calling the width member function. This example
right aligns'the values in a column at least 10 characters wide:

#include <iostream.h>

void main()
{
double values[] = { 1.23, 35.36, 653.7, 4358.24 };
for(int 1 = 0; 1 < 4; i++)
{
cout.width(10);
cout << values[i] << '\n";

}
The output looks like this:

1.23
35.36
653.7

4358.24

Leading blanks are added to any value fewer than 10 characters wide.

To pad a field, use the fill member function, which sets the value of the padding
character for fields that have a specified width. The default is a blank. To pad the
column of numbers with asterisks, modify the previous for loop as follows:

for(int i =0; i < 4; i++)
{
cout.width(10);
cout . fi11("*");
cout << values[i] << end]

Chapter 1 iostream Programming

The endl manipulator replaces the newline character (' \n'). The output looks like
this:

*kkkkx] 23

*xkkk%35 36
HkkKkkG53 T
***4358.24

To specify widths for data elements in the same line, use the setw manipulator:

#Finclude <iostream.h>
#include <iomanip.h>

void main()

{
double values[] = { 1.23, 35.36, 653.7, 4358.24 };
char *names[] = { "Zoot", "Jimmy", "AI", "Stan" };
for(int i =0; i < 4; i++)
cout << setw(6) << names[i]
<< setw(10) << values[i] << endl;
}

The width member function is declared in IOSTREAM.H. If you use setw or any
other manipulator with arguments, you must include IOMANIPH. In the output,
strings are printed in a field of width 6 and integers in a field of width 10:

Zoot 1.23
Jimmy 35.36
Al 653.7

Stan 4358.24

Neither setw nor width truncates values. If formatted output exceeds the width, the
entire value prints, subject to the stream’s precision setting. Both setw and width
affect the following field only. Field width reverts to its default behavior (the
necessary width) after one field has been printed. However, the other stream format
options remain in effect until changed.

Alignment
Output streams default to right-aligned text. To left align the names in the previous
example and right align the numbers, replace the for loop as follows:

for (int i =0; 1 < 4; i++)
cout << setiosflags(ios::Teft)
<< setw(6) << names[i]
<< resetiosflags(ios::left)
<< setw(10) << values[i] << endl;

The output looks like this:
Zoot 1.23
Jimmy 35.36
Al 653.7
Stan 4358.24

iostream Class Library Reference

The left-align flag is set by using the setiosflags manipulator with the ios::left
enumerator. This enumerator is defined in the ios class, so its reference must include
the ios:: prefix. The resetiosflags manipulator turns off the left-align flag. Unlike
width and setw, the effect of setiosflags and resetiosflags is permanent.

Precision

The default value for floating-point precision is six. For example, the number
3466.9768 prints as 3466.98. To change the way this value prints, use the
setprecision manipulator. The manipulator has two flags, ios::fixed and
ios::scientific. If ios::fixed is set, the number prints as 3466.976800. If
ios::scientific is set, it prints as 3.4669773+003.

To display the floating-point numbers shown in Alignment with one significant digit,
replace the for loop as follows:

for (int 1 =0; 1 < 4; i++)
cout << setiosflags(ios::left)

<< setw(6)
<< names[i]
<< resetiosflags(ios::left)
<< setw(10)
<< setprecision(1)
<< values[i]
<< endl;

The program prints this list:

Zoot 1

Jimmy 4e+001
Al 7e+002
Stan 4e+003

To eliminate scientific notation, insert this statement before the for loop:
cout << setiosflags(fos::fixed);

With fixed notation, the program prints with one digit after the decimal point.

Zoot 1.2
Jimmy 35.4
Al 653.7
Stan 4358.2

If you change the ios::fixed flag to ios::scientific, the program prints this:

Zoot 1.2e+000
Jimmy 3.5e+001
Al 6.5e+002
Stan 4.4e+003

Again, the program prints one digit after the decimal point. If either ios::fixed or
ios::scientific is set, the precision value determines the number of digits after the
decimal point. If neither flag is set, the precision value determines the total number
of significant digits. The resetiosflags manipulator clears these flags.

Chapter 1 iostream Programming

Radix

The dec, oct, and hex manipulators set the default radix for input and output. For
example, if you insert the hex manipulator into the output stream, the object correctly
translates the internal data representation of integers into a hexadecimal output
format. The numbers are displayed with digits a through f in lowercase if the
ios::uppercase flag is clear (the default); otherwise, they are displayed in uppercase.
The default radix is dec (decimal).

Output File Stream Member Functions

Output stream member functions have three types: those that are equivalent to
manipulators, those that perform unformatted write operations, and those that
otherwise modify the stream state and have no equivalent manipulator or insertion
operator. For sequential, formatted output, you might use only insertion operators and
manipulators. For random-access binary disk output, you use other member
functions, with or without insertion operators.

The open Function for Output Streams

To use an output file stream (ofstream), you must associate that stream with a
specific disk file in the constructor or the open function. If you use the open function,
you can reuse the same stream object with a series of files. In either case, the
arguments describing the file are the same.

When you open the file associated with an output stream, you generally specify an
open_mode flag. You can combine these flags, which are defined as enumerators in
the ios class, with the bitwise OR () operator.

Flag Function

ios::app Opens an output file for appending.

ios::ate Opens an existing file (either input or output) and seeks the end.

ios::in Opens an input file. Use ios::in as an open_mode for an ofstream
file to prevent truncating an existing file.

ios::out Opens an output file. When you use ios::out for an ofstream object
without ios::app, ios::ate, or ios::in, ios::trunc is implied.

ios::nocreate Opens a file only if it already exists; otherwise the operation fails.

ios::noreplace Opens a file only if it does not exist; otherwise the operation fails.

ios::trunc Opens a file and deletes the old file (if it already exists).

ios::binary Opens a file in binary mode (default is text mode).

Three common output stream situations involve mode options:

o Creating a file. If the file already exists, the old version is deleted.

ostream ofile("FILENAME"); // Default is ios::out
ofstream ofile("FILENAME™, dios::out); // Equivalent to above

iostream Class Library Reference

o Appending records to an existing file or creating one if it does not exist.
ofstream ofile("FILENAME", ios::app);
e Opening two files, one at a time, on the same stream.

ofstream ofile();

ofile.open("FILE1", io0s::in);

// Do some output

ofile.close(); // FILELl closed

ofile.open("FILE2", ios::in);

// Do some more output

ofile.close(); // FILE2 closed

// When ofile goes out of scope it is destroyed.

The put Function

The put function writes one character to the output stream. The following two
statements are the same by default, but the second is affected by the stream’s format
arguments:

cout.put("A'); // Exactly one character written
cout << "A'; // Format arguments 'width' and 'fil1' apply

The write Function ;

The write function writes a block of memory to an output file stream. The length
argument specifies the number of bytes written. This example creates an output file
stream and writes the binary value of the Date structure to it:

#include <fstream.h>

struct Date

{
int mo, da, yr;
};
void main()
{
Date dt = { 6, 10, 92 };
ofstream tfile("date.dat" , ios::binary);
tfile.write((char *) &dt, sizeof dt);
}

The write function does not stop when it reaches a null character, so the complete
class structure is written. The function takes two arguments: a char pointer and a
count of characters to write. Note the required cast to char* before the address of the
structure object.

The seekp and tellp Functions

An output file stream keeps an internal pointer that points to the position where data
is to be written next. The seekp member function sets this pointer and thus provides
random-access disk file output. The tellp member function returns the file position.
For examples that use the input stream equivalants to seekp and tellp, see The seekg
and tellg Functions.

Chapter 1 iostream Programming

The close Function for Output Streams

The close member function closes the disk file associated with an output file stream.
The file must be closed to complete all disk output. If necessary, the ofstream
destructor closes the file for you, but you can use the close function if you need to
open another file for the same stream object.

The output stream destructor automatically closes a stream’s file only if the
constructor or the open member function opened the file. If you pass the constructor a
file descriptor for an already-open file or use the attach member function, you must
close the file explicitly.

Error Processing Functions
Use these member functions to test for errors while writing to a stream:

Function Return value
bad Returns TRUE if there is an unrecoverable error.
fail Returns TRUE if there is an unrecoverable error or an “expected”

condition, such as a conversion error, or if the file is not found. Processing
can often resume after a call to clear with a zero argument.

good Returns TRUE if there is no error condition (unrecoverable or otherwise)
and the end-of-file flag is not set.

eof Returns TRUE on the end-of-file condition.

clear Sets the internal error state. If called with the default arguments, it clears

all error bits.

rdstate Returns the current error state. For a complete description of error bits, see
the Class Library Reference.

The ! operator is overloaded to perform the same function as the fail function. Thus
the expression

if(lcout)...

is equivalent to

if(cout.fail())...

The void*() operator is overloaded to be the opposite of the ! operator; thus the
expression

if(cout)...
is equal to
if(lcout.fail())...

The void*() operator is not equivalent to good because it doesn’t test for the end of
file.

iostream Class Library Reference

The Effects of Buffering

The following example shows the effects of buffering. You might expect the program
to print please wait, wait 5 seconds, and then proceed. It won’t necessarily work
this way, however, because the output is buffered.

#include <jostream.h>
#include <time.h>

void main()

{
time_t tm = time(NULL) + 5;
cout << "Please wait...";
while (time(NULL) < tm)

cout << "\nAll done"™ << endl;
}

To make the program work logically, the cout object must empty itself when the
message is to appear. To flush an ostream object, send it the flush manipulator:

cout << "Please wait..." << flush;

This step flushes the buffer, ensuring the message prints before the wait. You can also
use the endl manipulator, which flushes the buffer and outputs a carriage return—
linefeed, or you can use the cin object. This object (with the cerr or clog objects) is
usually tied to the cout object. Thus, any use of cin (or of the cerr or clog objects)
flushes the cout object.

Binary Output Files

Streams were originally designed for text, so the default output mode is text. In text
mode, the newline character (hexadecimal 10) expands to a carriage return-linefeed
(16-bit only). The expansion can cause problems, as shown here:

#include <fstream.h>
int iarrayl[2] = { 99, 10 };
void main()
{
ofstream os("test.dat");
os.write((char *) iarray, sizeof(iarray)):
}

You might expect this program to output the byte sequence { 99, 0, 10, 0 }; instead, it
outputs { 99, 0, 13, 10, 0 }, which causes problems for a program expecting binary
input. If you need true binary output, in which characters are written untranslated,
you have several choices:

e Construct a stream as usual, then use the setmode member function, which
changes the mode after the file is opened:

ofstream ofs ("test.dat");

10

Chapter 1 iostream Programming

ofs.setmode(filebuf::binary);
ofs.write(char*iarray, 4); // Exactly 4 bytes written

e Specify binary output by using the ofstream constuctor mode argument:

#include <fstream.h>
#include <fcntl.h>
#include <io.h>
int iarray[2] = { 99, 10 };
void main()
{
ofstream os("test.dat"™, ios::binary):
ofs.write(iarray, 4); // Exactly 4 bytes written
}

o Use the binary manipulator instead of the setmode member function:
ofs << binary;

Use the text manipulator to switch the stream to text translation mode.

e Open the file using the run-time _open function with a binary mode flag:

filedesc fd = _open("test.dat",
_0_BINARY | _O_CREAT | _O_WRONLY);
ofstream ofs(fd);
ofs.write((char*) iarray, 4); // Exactly 4 bytes written

Overloading the << Operator for Your Own Classes

Output streams use the insertion (<<) operator for standard types. You can also
overload the << operator for your own classes.

The write function example showed the use of a Date structure. A date is an ideal
candidate for a C++ class in which the data members (month, day, and year) are
hidden from view. An output stream is the logical destination for displaying such a
structure. This code displays a date using the cout object:

Date dt(1, 2, 92);
cout << dt;

To get cout to accept a Date object after the insertion operator, overload the insertion
operator to recognize an ostream object on the left and a Date on the right. The
overloaded << operator function must then be declared as a friend of class Date so it
can access the private data within a Date object.

#include <iostream.h>

class Date

{
int wmo, da, yr;

public:
Date(int m, int d, int y)
{

11

iostream Class Library Reference

friend ostream& operator<< (ostream& os, Date& dt);
};
ostream& operator<< (ostream& os, Date& dt)
{
0s << dt.mo << "/' << dt.da << '/' <KL dt.yr;
return os;
}

void main()

{
Date dt(5, 6, 92);
cout << dt;

}

When you run this program, it prints the date:
5/6/92

The overloaded operator returns a reference to the original estream object, which
means you can combine insertions:

cout << "The date is"™ << dt << flush;

Writing Your Own Manipulators Without Arguments

Writing manipulators that don’t use arguments requires neither class derivation nor
use of complex macros. Suppose your printer requires the pair <ESC>[to enter bold
mode. You can insert this pair directly into the stream:

cout << "regular " << '\033" << '[' << "boldface" << endl;
Or you can define the bo1d manipulator, which inserts the characters:

ostream& bold(ostream& os) {
return os << "\@33' << '[";
}
cout << "regular " << bold << "boldface" << endl;

The globally defined bo1d function takes an ostream reference argument and returns
the ostream reference. It is not a member function or a friend because it doesn’t need
access to any private class elements. The bold function connects to the stream
because the stream’s << operator is overloaded to accept that type of function, using a
declaration that looks something like this:

ostream& ostream::operator<< (ostream& (*_f)(ostream&)); {
(*_f)(*this);
return *this;

}

You can use this feature to extend other overloaded operators. In this case, it is
incidental that bo1d inserts characters into the stream. The function is called when it
is inserted into the stream, not necessarily when the adjacent characters are printed.
Thus, printing could be delayed because of the stream’s buffering.

12

Chapter 1 iostream Programming

Input Streams

An input stream object is a source of bytes. The three most important input stream
classes are istream, ifstream, and istrstream.

The istream class is best used for sequential text-mode input. You can configure
objects of class istream for buffered or unbuffered operation. All functionality of the
base class, ios, is included in istream. You will rarely construct objects from class
istream. Instead, you will generally use the predefined cin object, which is actually
an object of class istream_withassign. In some cases, you can assign cin to other
stream objects after program startup.

The ifstream class supports disk file input. If you need an input-only disk file,
construct an object of class ifstream. You can specify binary or text-mode data. If you
specify a filename in the constructor, the file is automatically opened when the object
is constructed. Otherwise, you can use the open function after invoking the default
constructor. Many formatting options and member functions apply to ifstream
objects. All functionality of the base classes ios and istream is included in ifstream.

Like the library function sscanf, the istrstream class supports input from in-memory
strings. To extract data from a character array that has a null terminator, allocate and
initialize the string, then construct an object of class istrstream.

Constructing Input Stream Objects

If you use only the cin object, you don’t need to construct an input stream. You must
construct an input stream if you use:

o File stream

o String stream

Input File Stream Constructors

There are three ways to create an input file stream:

o Use the void-argument constructor, then call the open member function:
ifstream myFile; // On the stack
myFiie.open("filename"™, iosmode);
ifstream* pmyFile = new ifstream; // On the heap
pmyFile->open("filename"”, iosmode);

o Specify a filename and mode flags in the constructor invocation, thereby opening
the file during the construction process:

ifstream myFile("filename", iosmode);

13

iostream Class Library Reference

o Specify an integer file descriptor for a file already open for input. In this case you
can specify unbuffered input or a pointer to your own buffer:
int fd = _open("filename™, dosmode);
ifstream myFilel(fd); // Buffered mode (default)

ifstream myFile2(fd, NULL, @); // Unbuffered mode
ifstream myFile3(fd, pch, buflen); // User-supplied buffer

Input String Stream Constructors
Input string stream constructors require the address of preallocated, preinitialized
storage:

char s[] = "123.45";

double amt;

istrstream myString(s);

myString >> amt; // Amt should contain 123.45

Using Extraction Operators

The extraction operator (>>), which is preprogrammed for all standard C++ data
types, is the easiest way to get bytes from an input stream object.

Formatted text input extraction operators depend on white space to separate incoming
data values. This is inconvenient when a text field contains multiple words or when
commas separate numbers. In such a case, one alternative is to use the unformatted
input member function getline to read a block of text with white space included, then
parse the block with special functions. Another method is to derive an input stream
class with a member function such as GetNextToken, which can call istream
members to extract and format character data.

Testing for Extraction Errors

Output error processing functions, discussed on page 9 in “Error Processing
Functions,” apply to input streams. Testing for errors during extraction is important.
Consider this statement:

cin >> n;

If n is a signed integer, a value greater than 32,767 (the maximum allowed value, or
MAX_INT) sets the stream’s fail bit, and the cin object becomes unusable. All
subsequent extractions result in an immediate return with no value stored.

Input Stream Manipulators

14

Many manipulators, such as setprecision, are defined for the ios class and thus apply
to input streams. Few manipulators, however, actually affect input stream objects. Of
those that do, the most important are the radix manipulators, dec, oct, and hex,
which determine the conversion base used with numbers from the input stream.

Chapter 1 iostream Programming

On extraction, the hex manipulator enables processing of various input formats. For
example, c, C, Oxc, 0xC, 0Xc, and 0XC are all interpreted as the decimal integer 12.

Any character other than 0 through 9, A through F, a through f, x, and X terminates
the numeric conversion. Thus the sequence "124n5" is converted to the number 124
with the ios::fail bit set.

Input Stream Member Functions

Input stream member functions are used for disk input.

The open Function for Input Streams
If you are using an input file stream (ifstream), you must associate that stream with a
specific disk file. You can do this in the constructor, or you can use the open function.
In either case, the arguments are the same.

You generally specify an open_meode flag when you open the file associated with an
input stream (the default mode is ios::in). For a list of the open_mode flags, see The
open Function. The flags can be combined with the bitwise OR (|) operator.

To read a file, first use the fail member function to determine whether it exists:

istream ifile("FILENAME", 1ios::nocreate);
if (ifile.fail()) !
// The file does not exist ...

The get Function

The unformatted get member function works like the >> operator with two
exceptions. First, the get function includes white-space characters, whereas the
extractor excludes white space when the ios::skipws flag is set (the default). Second,
the get function is less likely to cause a tied output stream (cout, for example) to be
flushed.

A variation of the get function specifies a buffer address and the maximum number of
characters to read. This is useful for limiting the number of characters sent to a
specific variable, as this example shows:

#include <iostream.h>

void main()
{
char Tine[25];
cout << " Type a line terminated by carriage return\n>";
cin.get(line, 25);
cout << " ' K< Tine;
}

In this example, you can type up to 24 characters and a terminating character. Any
remaining characters can be extracted later.

15

iostream Class Library Reference

The getline Function

The getline member function is similar to the get function. Both functions allow a
third argument that specifies the terminating character for input. The default value is
the newline character. Both functions reserve one character for the required
terminating character. However, get leaves the terminating character in the stream
and getline removes the terminating character.

The following example specifies a terminating character for the input stream:

f#include <iostream.h>

void main()

{
char 1ine[100];
cout << " Type a line terminated by 't'" << endl;
cin.getline(line, 100, 't');
cout << Tine;
}

The read Function

The read member function reads bytes from a file to a specified area of memory.
The length argument determines the number of bytes read. If you do not include that
argument, reading stops when the physical end of file is reached or, in the case of a
text-mode file, when an embedded EOF character is read.

This example reads a binary record from a payroll file into a structure:

#include <fstream.h>
#include <fcntl.h>
#include <io.h>

void main()

{
struct
{
double salary;
char name[23];
} employee;
ifstream is("payroll", ios::binary | ios::nocreate);
if(is) { // ios::operator void*()
is.read((char *) &employee, sizeof(employee));
cout << employee.name << ' ' << employee.salary << endl;
}
else {
cout << "ERROR: Cannot open file 'payroll'.” << endl;
}
}

The program assumes that the data records are formatted exactly as specified by the
structure with no terminating carriage-return or linefeed characters.

16

Chapter 1 iostream Programming

The seekg and tellg Functions
Input file streams keep an internal pointer to the position in the file where data is to
be read next. You set this pointer with the seekg function, as shown here:

#include <fstream.h>

void main()

{
char ch;
ifstream tfile("payroll™, ios::binary | ios::nocreate);
if(tfile) {
tfile.seekg(8); // Seek 8 bytes in (past salary)
while (tfile.good()) { // EQF or failure stops the reading
tfile.get(ch);
if(Ich) break; // quit on null
cout << ch;
}
}
else {
cout << "ERROR: Cannot open file 'payroll'." << endl;
}
}

To use seekg to implement record-oriented data management systems, multiply the
fixed-length record size by the record number to obtain the byte position relative to
the end of the file, then use the get object to read the record.

The tellg member function returns the current file position for reading. This value is
of type streampos, a typedef defined in IOSTREAM.H. The following example reads
a file and displays messages showing the positions of spaces.

#include <fstream.h>

void main()
{
char ch;
ifstream tfile("payroll”, ios::binary | ios::nocreate);
if(tfile) {
while (tfile.good()) {
streampos here = tfile.tellg();
tfile.get(ch);
if (ch==""")
cout << "\nPosition " << here << " is a space”;

}
}
else {
cout << "ERROR: Cannot open file 'payroll'." << endl;
}

17

iostream Class Library Reference

The close Function for Input Streams

The close member function closes the disk file associated with an input file stream
and frees the operating system file handle. The ifstream destructor closes the file for
you (unless you called the attach function or passed your own file descriptor to the
constructor), but you can use the close function if you need to open another file for
the same stream object.

Overloading the >> Operator for Your Own Classes

Input streams use the extraction (>>) operator for the standard types. You can write
similar extraction operators for your own types; your success depends on using white
space precisely.

Here is an example of an extraction operator for the Date class presented earlier:

istream& operator>> (istream& is, Date& dt)
{

is >> dt.mo >> dt.da >> dt.yr;

return is;

}

Input/Output Streams

An iostream object is a source and/or a destination for bytes. The two most important
I/0 stream classes, both derived from iostream, are fstream and strstream. These
classes inherit the functionality of the istream and ostream classes described
previously.

The fstream class supports disk file input and output. If you need to read from and
write to a particular disk file in the same program, construct an fstream object. An
fstream object is a single stream with two logical substreams, one for input and one
for output. Although the underlying buffer contains separately designated positions
for reading and writing, those positions are tied together.

The strstream class supports input and output of in-memory strings.

Custom Manipulators with Arguments

This section describes how to create output stream manipulators with one or more
arguments, and how to use manipulators for non-output streams.

Output Stream Manipulators with One Argument
(int or long)

The iostream class library provides a set of macros for creating parameterized
manipulators. Manipulators with a single int or long argument are a special case.

18

Chapter 1 iostream Programming

To create an output stream manipulator that accepts a single int or long argument
(like setw), you must use the OMANIP macro, which is defined in [OMANIP.H.
This example defines a £111bTank manipulator that inserts a specified number of
blanks into the stream:

include <iostream.h>
#include <iomanip.h>

ostream& fb(ostream& os, int 1)

{

for(int i=0; i < 1; i++)

0s <K " ';

return os;
}
OMANIP(int) fillblank(int 1)
{

return OMANIP(int) (fb, 1);
1
void main()
{

cout << "10 blanks follow" << fillblank(10) << ".\n";

1

The IOMANIPH header file contains a macro that expands OMANIP(int) into a
class, _ OMANIP_int, which includes a constructor and an overloaded ostream
insertion operator for an object of the class. In the previous example, the fi11blank
function calls the _ OMANIP_int constructor to return an object of class
__OMANIP_int. Thus, fi11blank can be used with an ostream insertion operator.
The constructor calls the fb function. The expression OMANIP(long) expands to
another built-in class, _ OMANIP_long, which accommodates functions with a long
integer argument.

Other One-Argument Output Stream Manipulators

To create manipulators that take arguments other than int and long, you must use the
IOMANIPdeclare macro, which declares the classes for your new type, as well as
the OMANIP macro.

The following example uses a class money, which is a long type. The setpic
manipulator attaches a formatting “picture” string to the class that can be used by the
overloaded stream insertion operator of the class money. The picture string is stored
as a static variable in the money class rather than as data member of a stream class, so
you do not have to derive a new output stream class.

#include <iostream.h>
#include <iomanip.h>
f#include <string.h>

19

iostream Class Library Reference

typedef char* charp;
IOMANIPdeclare(charp);

class money {
private:
long value;
static char *szCurrentPic;
public:
money(long val) { value = val; }
friend ostream& operator << (ostream& os, money m) {
// A more complete function would merge the picture
// with the value rather than simply appending it
0s << m.value << '[' << money::szCurrentPic << "]1';
return os;
}
friend ostream& setpic(ostream& os, char* szPic) {
money::szCurrentPic = new char[strlen(szPic) + 11];
strcpy(money::szCurrentPic, szPic);
return os;
}
}s
char *money::szCurrentPic; // Static pointer to picture

OMANIP(charp) setpic(charp c)

{
return OMANIP(charp) (setpic, ¢);
}
void main()
{
money amt = 35235.22;
cout << setiosflags(ios::fixed);
cout << setpic("fHHE, #HHE HHE. ") << "amount = " << amt << endl;
}

Output Stream Manipulators with
More Than One Argument

20

The following example shows how to write a manipulator, fi11, to insert a specific
number of a particular character. The manipulator, which takes two arguments, is
similar to setpic in the previous example. The difference is that the character pointer
type declaration is replaced by a structure declaration.

#include <iostream.h>
f#inctude <iomanip.h>

struct fillpair {
char ch;
int cch;

1

Chapter 1 iostream Programming

IOMANIPdeclare(filipair);

ostream& fp(ostream& os, fillpair pair)

{

for (int ¢ = 0; ¢ < pair.cch; c++) {

0s << pair.ch;

}

return os;
}
OMANIP(fillpair) fil11(char ch, int cch)
{

fillpair pair;

pair.cch = cch;

pair.ch = ch;

return OMANIP (fillpair)(fp, pair);
}
void main()
{

cout << "1@ dots coming” << fill1(".', 10) << "done" << endl;
}

This example can be rewritten so that the manipulator definition is in a separate
program file. In this case, the header file must contain these declarations:

struct fillpair {
char ch;
int cch;
}:
IOMANIPdeclare(fillpair);
ostream& fp(ostream& o, fillpair pair);
OMANIP(fillpair) fi11(char ch, int cch);

Custom Manipulators for Input and Input/Output Streams

The OMANIP macro works with ostream and its derived classes. The SMANIP,
IMANIP, and IOMANIP macros work with the classes ios, istream, and iostream,
respectively.

Using Manipulators with Derived Stream Classes

Suppose you define a manipulator, xstream, that works with the ostream class. The
manipulator will work with all classes derived from ostream. Further suppose you
need manipulators that work only with xstream. In this case, you must add an
overloaded insertion operator that is not a member of ostream:

21

iostream Class Library Reference

xstream& operator<< (xstream& xs, xstream& (*_f)(xstream&)) {
(*_f)(xs);
return xs;

}
The manipulator code looks like this:

xstream& bold(xstream& xs) {
return xs << '\@33' <K '[";
}

If the manipulator needs to access xstream protected data member functions, you can
declare the bo1d function as a friend of the xstream class.

Deriving Your Own Stream Classes

Like any C++ class, a stream class can be derived to add new member functions, data
members, or manipulators. If you need an input file stream that tokenizes its input
data, for example, you can derive from the ifstream class. This derived class can
include a member function that returns the next token by calling its base class’s
public member functions or extractors. You may need new data members to hold the
stream object’s state between operations, but you probably won’t need to use the base
class’s protected member functions or data members.

For the straightforward stream class derivation, you need only write the necessary
constructors and the new member functions.

The streambuf Class

Unless you plan to make major changes to the iostream library, you do not need to
work much with the streambuf class, which does most of the work for the other
stream classes. In most cases, you will create a modified output stream by deriving
only a new streambuf class and connecting it to the ostream class.

Why Derive a Custom streambuf Class?

Existing output streams communicate to the file system and to in-memory strings.
You can create streams that address a memory-mapped video screen, a window as
defined by Microsoft Windows, a new physical device, and so on. A simpler method
is to alter the byte stream as it goes to a file system device.

A streambuf Derivation Example

The following example modifies the cout object to print in two-column landscape
(horizontal) mode on a printer that uses the PCL control language (for example,
Hewlett-Packard LaserJet printer). As the test driver program shows, all member
functions and manipulators that work with the original cout object work with the
special version. The application programming interface is the same.

22

Chapter 1 iostream Programming

The example is divided into three source files:

o HSTREAM.H—the LaserJet class declaration that must be included in the
implementation file and application file

o HSTREAM.CPP—the LaserJet class implementation that must be linked with the
application

e EXIOS204.CPP—the test driver program that sends output to a LaserJet printer

HSTREAM.H contains only the class declaration for hstreambuf, which is derived
from the filebuf class and overrides the appropriate filebuf virtual functions.

// hstream.h - HP LaserJet output stream header
f#include <fstream.h> // Accesses filebuf class
#include <string.h>

#include <stdio.h> // for sprintf

class hstreambuf : public filebuf
{
public:
hstreambuf(int filed);
virtual int sync();
virtual int overflow(int ch);
~hstreambuf();
private:
int column, Tine, page;
char* buffer;
void convert(long cnt);
void newline(char*& pd, int& jj);
void heading(char*& pd, int& jj);
void pstring(char* ph, char*& pd, int& jj);
1
ostream& und(ostreamd& os);
ostream& reg(ostreamd os);

HSTREAM.CPP contains the hstreambuf class implementation.

// hstream.cpp - HP Laserdet output stream
f#include "hstream.h”

const int REG = 6x01; // Regular font code
const int UND = 0x02; // Underline font code

const int CR = 0x0d; // Carriage return character
const int NL = 0x0a; // Newline character

const int FF = 0x0c; // Formfeed character

const int TAB = 0x09; // Tab character

const int LPP = 57; // Lines per page

const int TABW = 5; // Tab width

23

iostream Class Library Reference

// Prolog defines printer initialization (font, orientation, etc.
char prologl] =

{ 0x1B, 0x45, // Reset printer
0x1B, @x28, @x31, 0x30, 0x55, // IBM PC char set
0x1B, @x26, 0x6C, 0x31, 0Ox4F, // Landscape
0x1B, @x26, 0x6C, 0x38, 0x44, // 8 lines per inch
0x1B, @x26, 0x6B, 0x32, 0x53}; // Lineprinter font

// Epilog prints the final page and terminates the output
char epilog[] = { @x@C, 0x1B, @x45 }; // Formfeed, reset

char uon[] = { 0x1B, 0x26, 0x64, 0x44, @ }; // Underline on
char uoff[] = { Ox1B, @x26, 0x64, 0x40, @ };// Underline off

hstreambuf::hstreambuf(int filed) : filebuf(filed)

{
column = line = page = 0;
int size = sizeof(prolog);
setp(prolog, prolog + size);
pbump(size); // Puts the prolog in the put area
filebuf::sync(); // Sends the prolog to the output file
buffer = new char[1024]; // Allocates destination buffer
}
hstreambuf::~hstreambuf()
{
sync(); // Makes sure the current buffer is empty
delete buffer; // Frees the memory
int size = sizeof(epilog);
setp(epilog, epilog + size);
pbump(size); // Puts the epilog in the put area
filebuf::sync(): // Sends the epilog to the output file
}

int hstreambuf::sync()

long count = out_waiting();
if (count) {
convert(count);

}

return filebuf::sync();
}
int hstreambuf::overflow(int ch)
{

long count = out_waiting();

if (count) {

convert(count);

}

return filebuf::overflow(ch);
}

24

Chapter 1 iostream Programming

// The following code is specific to the HP LaserJet printer

// Converts a buffer to HP, then writes it
void hstreambuf::convert(long cnt)

{
char *bufs, *bufd; // Source, destination pointers
int j = 0;
bufs = pbase();
bufd = buffer;
if(page == 0) {
newline(bufd, j);
}
for(int i = 0; i < cnt; i++) {
char ¢ = *(bufs++); // Gets character from source buffer
if(Cc > " ") { // Character is printable
* (bufdt+) = c;
Jt+t;
column++;
}
else if(¢ == NL) { // Moves down one Tline
*(bufd++) = c; // Passes character through
J++;
linet+t;
newline(bufd, j); // Checks for page break, etc.
}
else if(¢ == FF) { // Ejects paper on formfeed
line = Tine - 1ine % LPP + LPP;
newline(bufd, j); // Checks for page break, etc.
}
else if(¢ == TAB) { // Expands tabs
do {
*(bufd++) =" '3
J++;
column++;
} while (column % TABW);
}
else if(¢ == UND) { // Responds to und manipulator
pstring(uon, bufd, j);
}
else if(¢ == REG) { // Responds to reg manipulator
pstring(uoff, bufd, j);
}
}
setp(buffer, buffer + 1024); // Sets new put area
pbump(j); // Tells number of characters in the dest buffer
}

25

iostream Class Library Reference

// simple manipulators - apply to all ostream classes
ostream& und(ostream& os) // Turns on underscore mode

{
0s << (char) UND;: return os;
}
ostream& reg(ostream& os) // Turns off underscore mode
{
os << (char) REG; return os;
}

void hstreambuf::newline(char*& pd, int& jj) {
// Called for each newline character
column = @;
if ((Tine % (LPP*2)) == 0) { // Even page

page++;
pstring("\033&a+0OL", pd, jj); // Set left margin to zero
heading(pd, jj); // Print heading

pstring("\033*p@x77Y", pd, jj);// Cursor to (0,77) dots
}
if (((line % LPP) == 0) && (line % (LPP*2)) =0) {
// 0dd page; prepare to move to right column

page++;

pstring("\033*pOx77Y", pd, jj); // Cursor to (0,77) dots

pstring("\033&a+88L", pd, jj); // Left margin to col 88

}
}
void hstreambuf::heading(char*& pd, int& jj) // Prints heading
{
char hdg[20];
int i;
if(page > 1) {
*(pd++) = FF;
Jitts
}
pstring("\@33*p0x@Y", pd, jj); // Top of page
pstring(uon, pd, jj); // Underline on
sprintf(hdg, "Page %-3d", page):
pstring(hdg, pd, jj);
for(i=0; i < 80; i++) { // Pads with blanks
*(pd++) ="' '3
Jitts
}
sprintf(hdg, "Page %-3d", paget+l) ;
pstring(hdg, pd, jj):
for(i=0; i < 80; i++) { // Pads with blanks
*(pd+t+) =" '3
Ji+ts
}
pstring(uoff, pd, jj); // Underline off
}

26

Chapter 1 iostream Programming

// Outputs a string to the buffer
void hstreambuf::pstring(char* ph, char*& pd, int& jj)

{
int Ten = strlen(ph);
strncpy(pd, ph, len);
pd += len;
Jj += len;

}

EX10S204.CPP reads text lines from the cin object and writes them to the modified
cout object.

// exios204.cpp
// hstream Driver program copies cin to cout until end of file
#include "hstream.h”

hstreambuf hsb(4); // 4=stdprn

void main()
{
char 1ine[200];
cout = &hsb; // Associates the HP LaserJet streambuf to cout
while(1) {
cin.getline(line, 200);
if(lcin.good()) break;
cout << Tine << endl;

}

Here are the main points in the preceding code:

e The new class hstreambuf is derived from filebuf, which is the buffer class for
disk file I/O. The filebuf class writes to disk in response to commands from its
associated ostream class. The hstreambuf constructor takes an argument that
corresponds to the operating system file number, in this case 1, for stdout. This
constructor is invoked by this line:

hstreambuf hsb(1);

e The ostream_withassign assignment operator associates the hstreambuf object
with the cout object:

ostream& operator =(streambuf* sbp);
This statement in EXI0S204.CPP executes the assignment:
cout = &hsbh;

e The hstreambuf constructor prints the prolog that sets up the laser printer, then
allocates a temporary print buffer.

¢ The destructor outputs the epilog text and frees the print buffer when the object
goes out of scope, which happens after the exit from main.

27

iostream Class Library Reference

28

The streambuf virtual everflow and sync functions do the low-level output. The
hstreambuf class overrides these functions to gain control of the byte stream. The
functions call the private convert member function.

The convert function processes the characters in the hstreambuf buffer and stores
them in the object’s temporary buffer. The filebuf functions process the temporary
buffer.

The details of convert relate more to the PCL language than to the iostream
library. Private data members keep track of column, line, and page numbers.

The und and reg manipulators control the underscore print attribute by inserting
codes 0x02 and 0x03 into the stream. The convert function later translates these
codes into printer-specific sequences.

The program can be extended easily to embellish the heading, add more
formatting features, and so forth.

In a more general program, the hstreambuf class could be derived from the
streambuf class rather than the filebuf class. The filebuf derivation shown gets
the most leverage from existing iostream library code, but it makes assumptions
about the implementation of filebuf, particularly the overflow and sync functions.
Thus you cannot necessarily expect this example to work with other derived
streambuf classes or with filebuf classes provided by other software publishers.

CHAPTER 2

Alphabetic Microsoft iostream Class
Library Reference

10stream Class Hierarchy Diagram

ios
— istream

— istrstream
— istream_withassign

— ifstream — lostream

fstream

— ostream
strstream

stdiostream

- ofstream
ostream_withassign
L— ostrstream

streambuf lostream_init
filebuf
strstreambuf

stdiobuf

29

iostream Class Library Reference

1ostream Class List

Abstract Stream Base Class
ios

Input Stream Classes
istream

ifstream
istream_withassign
istrstream

Output Stream Classes
ostream

ofstream
ostream_withassign
ostrstream

Input/Output Stream Classes
iostream

fstream
strstream
stdiostream

Stream Buffer Classes
streambuf

filebuf
strstreambuf
stdiobuf

Predefined Stream Initializer Class

Tostream_init

Stream base class.

General-purpose input stream class and base class for other
input streams.

Input file stream class.
Input stream class for cin.
Input string stream class.

General-purpose output stream class and base class for
other output streams.

Output file stream class.
Output stream class for cout, cerr, and clog.
Output string stream class.

General-purpose input/output stream class and base class
for other input/output streams. '

Input/output file stream class.
Input/output string stream class.
Input/output class for standard I/O files.

Abstract stream buffer base class.

Stream buffer class for disk files.

Stream buffer class for strings.

Stream buffer class for standard I/O files.

Predefined stream initializer class.

filebuf::attach

class filebuf

#include <fstream.h>

The filebuf class is a derived class of streambuf that is specialized for buffered disk
file I/O. The buffering is managed entirely within the Microsoft iostream Class
Library. filebuf member functions call the run-time low-level I/O routines (the
functions declared in IO.H) such as _sopen, _read, and _write.

The file stream classes, ofstream, ifstream, and fstream, use filebuf member
functions to fetch and store characters. Some of these member functions are virtual
functions of the streambuf class.

The reserve area, put area, and get area are introduced in the streambuf class
description. The put area and the get area are always the same for filebuf objects.
Also, the get pointer and put pointers are tied; when one moves, so does the other.

Construction/Destruction — Public Members
filebuf Constructs a filebuf object.

~filebuf Destroys a filebuf object.

Operations — Public Members
open Opens a file and attaches it to the filebuf object.

close Flushes any waiting output and closes the attached file.
setmode Sets the file’s mode to binary or text.
attach Attaches the filebuf object to an open file.

Status/Information — Public Members
fd Returns the stream’s file descriptor.

is_open Tests whether the file is open.

See Also ifstream, ofstream, streambuf, strstreambuf, stdiobuf

Member Functions
filebuf::attach

filebuf* attach(filedesc fd);
Attaches this filebuf object to the open file specified by fd.

31

filebuf::close

Return Value
The function returns NULL when the stream is already attached to a file; otherwise it
returns the address of the filebuf object.

Parameter
fd A file descriptor as returned by a call to the run-time function _open or _sopen.
filedesc is a typedef equivalent to int.

filebuf::close
filebuf* close();

Flushes any waiting output, closes the file, and disconnects the file from the filebuf
object.

Return Value
If an error occurs, the function returns NULL and leaves the filebuf object in a
closed state. If there is no error, the function returns the address of the filebuf object
and clears its error state.

See Also filebuf::open

filebuf::fd

filedesc fd() const;

Returns the file descriptor associated with the filebuf object; filedesc is a typedef
equivalent to int.

Return Value
The value is supplied by the underlying file system. The function returns EOF if the
object is not attached to a file.

See Also filebuf::attach

filebuf::filebuf

filebuf();
filebuf(filedesc fd);
filebuf(filedesc fd, char*® pr, int nLength);

Parameters
fd A file descriptor as returned by a call to the run-time function _sopen. filedesc is
a typedef equivalent to int.

32

pr Pointer to a previously allocated reserve area of length nLength.
nLength The length (in bytes) of the reserve area.

Remarks
The three filebuf constructors are described as follows:

filebuf() Constructs a filebuf object without attaching it to a file.
filebuf(filedesc) Constructs a filebuf object and attaches it to an open file.

filebuf(filedesc, char*, int) Constructs a filebuf object, attaches it to an open file,
and initializes it to use a specified reserve area.

filebuf::open

filebuf::~filebuf

~filebuf();

Remarks
Closes the attached file only if that file was opened by the open member function.

filebuf::1s_open
int is_open() const;

Return Value
Returns a nonzero value if this filebuf object is attached to an open disk file
identified by a file descriptor; otherwise 0.

See Also filebuf::open

filebuf::open
filebuf* open(const char* szName, int nMode, int nProt = filebuf::openprot);
Opens a disk file and attaches it with this filebuf object.

Return Value
If the file is already open, or if there is an error while opening the file, the function
returns NULL; otherwise it returns the filebuf address.

Parameters
szName The name of the file to be opened during construction.
nMode An integer containing mode bits defined as ios enumerators that can be

combined with the OR (1) operator. See the ofstream constructor for a list of the
enumerators.

33

filebuf::setmode

nProt The file protection specification; defaults to the static integer
filebuf::openprot, which is equivalent to the operating system default
(filebuf::sh_compat for MS-DOS). The possible values of nProt are:

filebuf::sh_compat Compatibility share mode (MS-DOS only).

filebuf::sh_none Exclusive mode—no sharing.

filebuf::sh_read Read sharing allowed.

filebuf::sh_write Write sharing allowed.

You can combine the filebuf::sh_read and filebuf::sh_write modes with the
logical OR (Il) operator.

See Also filebuf::is_open, filebuf::close, filebuf::~filebuf

filebuf::setmode
int setmode(int nMode = filebuf::text);

Parameter
nMode An integer that must be one of the static filebuf constants. The nMode
parameter must have one of the following values:

o filebuf::text Text mode (newline characters translated to and from carriage
return-linefeed pairs under MS-DOS).

o filebuf::binary Binary mode (no translation).

Return Value \
The previous mode if there is no error; otherwise 0.

Remarks
Sets the binary/text mode of the stream’s filebuf object.

See Also ios binary manipulator, ios text manipulator

34

fstream::attach

class fstream

#include <fstream.h>

The fstream class is an iostream derivative specialized for combined disk file input
and output. Its constructors automatically create and attach a filebuf buffer object.

See filebuf class for information on the get and put areas and their associated
pointers. Although the filebuf object’s get and put pointers are theoretically
independent, the get area and the put area are not active at the same time. When the
stream’s mode changes from input to output, the get area is emptied and the put area
is reinitialized. When the mode changes from output to input, the put area is flushed
and the get area is reinitialized. Thus, either the get pointer or the put pointer is null
at all times.

Construction/Destruction — Public Members
fstream Constructs an fstream object.

~fstream Destroys an fstream object.
Operations — Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.
close Flushes any waiting output and closes the stream’s file.
setbuf Attaches the specified reserve area to the stream’s filebuf object.
setmode Sets the stream’s mode to binary or text.
attach Attaches the stream (through the filebuf object) to an open file.
Status/Information — Public Members
rdbuf Gets the stream’s filebuf object.
fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream’s file is open.

See Also ifstream, ofstream, strstream, stdiostream, filebuf

Member Functions

fstream::attach

void attach(filedesc fd);
Attaches this stream to the open file specified by fd.

35

fstream::close

Parameter
fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

Remarks
The function fails when the stream is already attached to a file. In that case, the
function sets ios::failbit in the stream’s error state.

See Also filebuf::attach, fstream::fd

fstream::close

void close();

Remarks
Calls the close member function for the associated filebuf object. This function, in
turn, flushes any waiting output, closes the file, and disconnects the file from the
filebuf object. The filebuf object is not destroyed.

The stream’s error state is cleared unless the call to filebuf::close fails.

See Also filebuf::close, fstream::open, fstream::is_open

fstream::fd
filedesc fd() const;

Remarks
Returns the file descriptor associated with the stream. filedesc is a typedef equivalent
to int. Its value is supplied by the underlying file system.

See Also filebuf::fd, fstream::attach

fstream::fstream

fstream();

fstream(const char* szName, int nMode, int nProt = filebuf::openprot);
fstream(filedesc fd);

fstream(filedesc fd, char* pch, int nLength);

Parameters
szName The name of the file to be opened during construction.

36

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (|) operator. The nMode parameter must have one
of the following values:

e jos::app The function performs a seek to the end of file. When new bytes are
written to the file, they are always appended to the end, even if the position is
moved with the ostream::seekp function.

o jos::ate The function performs a seek to the end of file. When the first new
byte is written to the file, it is appended to the end, but when subsequent bytes
are written, they are written to the current position.

e ios::in The file is opened for input. The original file (if it exists) will not be
truncated.

e jos::out The file is opened for output.

e jos::trunc If the file already exists, its contents are discarded. This mode is
implied if ios::out is specified, and ios::ate, ios::app, and ios:in are not
specified.

o ios::nocreate If the file does not already exist, the function fails.
e jos::noreplace If the file already exists, the function fails.

e ios::binary Opens the file in binary mode (the default is text mode).

Note that there is no ios::in or ios::out default mode for fstream objects. You must

specify both modes if your fstream object must both read and write files.

nProt The file protection specification; defaults to the static integer
filebuf::openprot, which is equivalent to the operating system default,
filebuf::sh_compat, under MS-DOS. The possible nProt values are as follows:

e filebuf::sh_compat Compatibility share mode (MS-DOS only).

o filebuf::sh_none Exclusive mode—no sharing.

o filebuf::sh_read Read sharing allowed.

o filebuf::sh_write Write sharing allowed.

The filebuf::sh_read and filebuf::sh_write modes can be combined with the
logical OR (I) operator.

fd A file descriptor as returned by a call to the run-time function _open or _sopen.
filedesc is a typedef equivalent to int.

pch Pointer to a previously allocated reserve area of length nLength. A NULL value

(or nLength = 0) indicates that the stream will be unbuffered.
nLength The length (in bytes) of the reserve area (0 = unbuffered).

fstream::fstream

37

fstream::~fstream

Remarks
The four fstream constructors are:

o fstream() Constructs an fstream object without opening a file.

o fstream(const char*, int, int) Contructs an fstream object, opening the
specified file.

o fstream(filedesc) Constructs an fstream object that is attached to an open file.

o fstream(filedesc, char®, int) Constructs an fstream object that is associated
with a filebuf object. The filebuf object is attached to an open file and to a
specified reserve area.

All fstream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area. The user-allocated
area is not automatically released during destruction.

fstream::~fstream

~fstream();

Remarks
Flushes the buffer, then destroys an fstream object, along with its associated filebuf
object. The file is closed only if it was opened by the constructor or by the open
member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

fstream::is_open
int is_open() const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise O.

See Also filebuf::is_open, fstream::open, fstream::close

fstream::open
void open(const char* szName, int nMode, int nProt = filebuf::openprot);
Opens a disk file and attaches it to the stream’s filebuf object.

Parameters
szName The name of the file to be opened during construction.

38

nMode An integer containing mode bits defined as ios enumerators that can be
combined with the OR () operator. See the fstream constructor for a list of the
enumerators. There is no default; a valid mode must be specified.

nProt The file protection specification; defaults to the static integer
filebuf::openprot. See the fstream constructor for a list of the other allowed
values.

Remarks
If the filebuf object is already attached to an open file, or if a filebuf call fails, the
ios::failbit is set. If the file is not found, then the ios::failbit is set only if the
ios::nocreate mode was used.

See Also filebuf::open, fstream::fstream, fstream::close, fstream::is_open

fstream::setmode

fstream::rdbuf
filebuf* rdbuf() const;

Remarks
Returns a pointer to the filebuf buffer object that is associated with this stream. (This
is not the character buffer; the filebuf object contains a pointer to the character area.)

fstream::setbuf
streambuf* setbuf(char* pch, int nLength);

Attaches the specified reserve area to the stream’s filebuf object.

Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf cast as a streambuf. The reserve area will
not be released by the destructor.

Parameters
pch A pointer to a previously allocated reserve area of length nlLength. A NULL
value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of O indicates an
unbuffered stream.

fstream::setmode

int setmode(int nMode = filebuf::text);

Sets the binary/text mode of the stream’s filebuf object. It can be called only after the
file is opened.

39

fstream::setmode

Return Value
The previous mode; —1 if the parameter is invalid, the file is not open, or the mode
cannot be changed.

Parameter
nMode An integer that must be one of the following static filebuf constants:

o filebuf::text Text mode (newline characters translated to and from carriage-
return—linefeed pairs).

¢ filebuf::binary Binary mode (no translation).

See Also ios binary manipulator, ios text manipulator

40

class ifstream

#include <fstream.h>

The ifstream class is an istream derivative specialized for disk file input. Its
constructors automatically create and attach a filebuf buffer object.

The filebuf class documentation describes the get and put areas and their associated
pointers. Only the get area and the get pointer are active for the ifstream class.

Construction/Destruction — Public Members
ifstream Constructs an ifstream object.

~ifstream Destroys an ifstream object.
Operations — Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.
close Closes the stream’s file.
setbuf Associates the specified reserve area to the stream’s filebuf object.
setmode Sets the stream’s mode to binary or text.
attach Attaches the stream (through the filebuf object) to an open file.
Status/Information — Public Members
rdbuf Gets the stream’s filebuf object.
fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream’s file is open.

See Also filebuf, streambuf, ofstream, fstream

ifstream::attach

Member Functions

ifstream::attach

void attach(filedesc fd);
Attaches this stream to the open file specified by fd.

Parameter
fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

4

ifstream::close

Remarks
The function fails when the stream is already attached to a file. In that case, the
function sets ios::failbit in the stream’s error state.

See Also filebuf::attach, ifstream::fd

ifstream::close

void close();

Remarks
Calls the close member function for the associated filebuf object. This function, in
turn, closes the file and disconnects the file from the filebuf object. The filebuf object
is not destroyed.

The stream’s error state is cleared unless the call to filebuf::close fails.

See Also filebuf::close, ifstream::open, ifstream::is_open

ifstream::fd

filedesc fd() const;

Return Value
Returns the file descriptor associated with the stream; filedesc is a typedef equivalent
to int. Its value is supplied by the underlying file system.

See Also filebuf::fd, ifstream::attach

ifstream::ifstream

ifstream();

ifstream(const char* szName, int nMode = ios::in, int #nProt = filebuf::openprot);
ifstream(filedesc fd);

ifstream(filedesc fd, char* pch, int nLength);

Parameters
szName The name of the file to be opened during construction.

42

ifstream::ifstream

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (1) operator. The nMode parameter must have one
of the following values:

e jos::in The file is opened for input (default).

e jos::nocreate If the file does not already exist, the function fails.

e jos::binary Opens the file in binary mode (the default is text mode).
Note that the ios::nocreate flag is necessary if you intend to test for the file’s
existence (the usual case).

nProt The file protection specification; defaults to the static integer
filebuf::openprot that is equivalent to filebuf::sh_compat. The possible nProt
values are:

e filebuf::sh_compat Compatibility share mode.

e filebuf::sh_none Exclusive mode—no sharing.

o filebuf::sh_read Read sharing allowed.

o filebuf::sh_write Write sharing allowed.

To combine the filebuf::sh_read and filebuf::sh_write modes, use the logical OR
(') operator.

fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

pch Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength The length (in bytes) of the reserve area (0 = unbuffered).

Remarks
The four ifstream constructors are:

o ifstream() Constructs an ifstream object without opening a file.

o ifstream(const char*, int,int) Contructs an ifstream object, opening the
specified file.

o ifstream(filedesc) Constructs an ifstream object that is attached to an open file.

o ifstream(filedesc, char*, int) Constructs an ifstream object that is associated
with a filebuf object. The filebuf object is attached to an open file and to a
specified reserve area.

All ifstream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area.

43

ifstream::~ifstream

ifstream::~ifstream

~ifstream();

Remarks
Destroys an ifstream object along with its associated filebuf object. The file is closed
only if it was opened by the constructor or by the open member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

ifstream::is_open
int is_open() const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise 0.

See Also filebuf:is_open, ifstream::open, ifstream::close

ifstream::open
void open(const char* szName, int nMode = ios::in, int nProt = filebuf::openprot);

Parameters
szName The name of the file to be opened during construction.

nMode An integer containing bits defined as ios enumerators that can be combined
with the OR (1) operator. See the ifstream constructor for a list of the
enumerators. The ios::in mode is implied.

nProt The file protection specification; defaults to the static integer
filebuf::openprot. See the ifstream constructor for a list of the other allowed
values.

Remarks
Opens a disk file and attaches it to the stream’s filebuf object. If the filebuf object is
already attached to an open file, or if a filebuf call fails, the ios::failbit is set. If the
file is not found, then the ios::failbit is set only if the ios::nocreate mode was used.

See Also filebuf::open, ifstream::ifstream, ifstream::close, ifstream::is_open,
ios::flags

4

ifstream::rdbuf

filebuf* rdbuf() const;

Return Value
Returns a pointer to the filebuf buffer object that is associated with this stream. (This
is not the character buffer; the filebuf object contains a pointer to the character area.)

ifstream::setmode

ifstream::setbuf

streambuf* setbuf(char* pch, int nlLength);
Attaches the specified reserve area to the stream’s filebuf object.

Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf, which is cast as a streambuf. The reserve
area will not be released by the destructor.

Parameters
pch A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of O indicates an
unbuffered stream.

ifstream::setmode

int setmode(int nMode = filebuf::text);

Return Value
The previous mode; —1 if the parameter is invalid, the file is not open, or the mode
cannnot be changed.

Parameters
nMode An integer that must be one of the following static filebuf constants:

o filebuf::text Text mode (newline characters translated to and from carriage
return-linefeed pairs).

o filebuf::binary Binary mode (no translation).
Remarks

This function sets the binary/text mode of the stream’s filebuf object. It may be called
only after the file is opened.

45

class ios

class 10s

#include <iostream.h>

As the iostream class hierarchy diagram (on page 29) shows, ies is the base class for
all the input/output stream classes. While ios is not technically an abstract base class,
you will not usually construct ios objects, nor will you derive classes directly from ios.
Instead, you will use the derived classes istream and ostream or other derived
classes.

Even though you will not use ies directly, you will be using many of the inherited
member functions and data members described here. Remember that these inherited
member function descriptions are not duplicated for derived classes.

Data Members (static) — Public Members
basefield Mask for obtaining the conversion base flags (dec, oct, or hex).

adjustfield Mask for obtaining the field padding flags (left, right, or internal).
floatfield Mask for obtaining the numeric format (scientific or fixed).
Construction/Destruction — Public Members
ios Constructor for use in derived classes.
~ios Virtual destructor.
Flag and Format Access Functions — Public Members
flags Sets or reads the stream’s format flags.
setf Manipulates the stream’s format flags.
unsetf Clears the stream’s format flags.
fill Sets or reads the stream’s fill character.
precision Sets or reads the stream’s floating-point format display precision.
width Sets or reads the stream’s output field width.
Status-Testing Functions — Public Members
good Indicates good stream status.
bad Indicates a serious I/O error.
eof Indicates end of file.
fail Indicates a serious I/O error or a possibly recoverable I/O formatting error.
rdstate Returns the stream’s error flags.
clear Sets or clears the stream’s error ﬂags.
User-Defined Format Flags — Public Members

bitalloc Provides a mask for an unused format bit in the stream’s private flags
variable (static function).

46

class ios

xalloc Provides an index to an unused word in an array reserved for special-purpose
stream state variables (static function).

iword Converts the index provided by xalloc to a reference (valid only until the next
xalloc).

pword Converts the index provided by xalloc to a pointer (valid only until the next
xalloc).
Other Functions — Public Members
delbuf Controls the connection of streambuf deletion with ios destruction.
rdbuf Gets the stream’s streambuf object.

sync_with_stdio Synchronizes the predefined objects cin, cout, cerr, and clog with
the standard I/O system.

tie Ties a specified ostream to this stream.
Operators — Public Members

operator void*() Converts a stream to a pointer that can be used only for error
checking. :

operator !() Returns a nonzero value if a stream I/O error occurs.
ios Manipulators

dec Causes the interpretation of subsequent fields in decimal format (the default
mode).

hex Causes the interpretation of subsequent fields in hexadecimal format.
oct Causes the interpretation of subsequent fields in octal format.

binary Sets the stream’s mode to binary (stream must have an associated filebuf
buffer).

text Sets the stream’s mode to text, the default mode (stream must have an
associated filebuf buffer).
Parameterized Manipulators
(#include <iomanip.h> required)
setiosflags Sets the stream’s format flags.
resetiosflags Resets the stream’s format flags.
setfill Sets the stream’s fill character.
setprecision Sets the stream’s floating-point display precision.

setw Sets the stream’s field width (for the next field only).

See Also istream, ostream

a7

ios::bad

Member Functions

10s::bad
int bad() const;

Return Value
Returns a nonzero value to indicate a serious I/O error. This is the same as setting the
badbit error state. Do not continue I/O operations on the stream in this situation.

See Also ios::good, ios::fail, ios::rdstate

10s::bitalloc
static long bitalloc();

Remarks
Provides a mask for an unused format bit in the stream’s private flags variable (static
function). The ios class currently defines 15 format flag bits accessible through flags
and other member functions. These bits reside in a 32-bit private ios data member
and are accessed through enumerators such as ios::left and ios::hex.

The bitalloc member function provides a mask for a previously unused bit in the data
member. Once you obtain the mask, you can use it to set or test the corresponding
custom flag bit in conjunction with the ios member functions and manipulators listed
under “See Also.”

See Also ios::flags, ios::setf, ios::unsetf, ios setiosflags, ios resetiosflags
manipulator

10S::clear
void clear(int nState = 0);

Parameter
nState If 0, all error bits are cleared; otherwise bits are set according to the
following masks (ios enumerators) that can be combined using the bitwise OR (1)
operator. The nState parameter must have one of the following values:

¢ ijos::goodbit No error condition (no bits set).
e jos::eofbit End of file reached.
o jos::failbit A possibly recoverable formatting or conversion error.

e jos::badbit A severe I/O error.

48

Remarks
Sets or clears the error-state flags. The rdstate function can be used to read the
current error state.

See Also ios::rdstate, ios::good, ios::bad, ios::eof

ios::fail

10s::delbuf

void delbuf(int nDelFlag);
int delbuf() const;

Parameter
nDelFlag A nonzero value indicates that ~ios should delete the stream’s attached
streambuf object. A 0 value prevents deletion.

Remarks
The first overloaded delbuf function assigns a value to the stream’s buffer-deletion
flag. The second function returns the current value of the flag.

This function is public only because it is accessed by the Iostream_init class. Treat it
as protected.

See Also ios::rdbuf, ios::~ios

10s::eof
int eof() const;

Return Value
Returns a nonzero value if end of file has been reached. This is the same as setting
the eofbit error flag.

10s::fail
int fail() const;

Return Value
Returns a nonzero value if any IO error (not end of file) has occurred. This condition
corresponds to either the badbit or failbit error flag being set. If a call to bad returns

0, you can assume that the error condition is nonfatal and that you can probably
continue processing after you clear the flags.

See Also ios::bad, ios::clear

49

ios::fill

10s::fill
char fill(char cFill);
char fill() const;

Return Value
The first overloaded function sets the stream’s internal fill character variable to cFill
and returns the previous value. The default fill character is a space.

The second fill function returns the stream’s fill character.

Parameter
cFill The new fill character to be used as padding between fields.

See Also ios setfill manipulator

10s::flags
long flags(long [Flags);
long flags() const;

Return Value
The first overloaded flags function sets the stream’s internal flags variable to IFlags
and returns the previous value.

The second function returns the stream’s current flags.

Parameter
IFlags The new format flag values for the stream. The values are specified by the
following bit masks (ios enumerators) that can be combined using the bitwise OR
(1) operator. The [Flags parameter must have one of the following values:

e jos::skipws Skip white space on input.
o jos::left Left-align values; pad on the right with the fill character.

e ijos:right Right-align values; pad on the left with the fill character (default
alignment).

e jos::internal Add fill characters after any leading sign or base indication, but
before the value.

e ijos::dec Format numeric values as base 10 (decimal) (default radix).

o ios::oct Format numeric values as base 8 (octal).

e jos::hex Format numeric values as base 16 (hexadecimal).

e ijos::showbase Display numeric constants in a format that can be read by the

C++ compiler.

50

¢ jos::showpoint Show decimal point and trailing zeros for floating-point
values.

¢ ios::uppercase Display uppercase A through F for hexadecimal values and E
for scientific values.

o ios::showpos Show plus signs (+) for positive values.
o ios::scientific Display floating-point numbers in scientific format.
o jos::fixed Display floating-point numbers in fixed format.

o jos::unitbuf Cause ostream::osfx to flush the stream after each insertion. By
default, cerr is unit buffered.

o ios::stdio Cause ostream::osfx to flush stdout and stderr after each insertion.

See Also ios::setf, ios::unsetf, ios setiosflags manipulator, ios resetiosflags
manipulator, ios::adjustfield, ios::basefield, ios::floatfield

i0s::init

i0s::good
int good() const;

Return Vaiue
Returns a nonzero value if all error bits are clear. Note that the good member
function is not simply the inverse of the bad function.

See Also ios::bad, ios::fail, ios::rdstate

10S::1nit
Protected —»

void init(streambuf* psb);
END Protected

Parameter
psb A pointer to an existing streambuf object.

Remarks
Associates an object of a streambuf-derived class with this stream and, if necessary,
deletes a dynamically created stream buffer object that was previously associated. The
init function is useful in derived classes in conjunction with the protected default
istream, ostream, and iostream constructors. Thus, an ies-derived class constructor
can construct and attach its own predetermined stream buffer object.

See Also istream::istream, ostream::ostream, iostream::iostream

51

ios::ios

10S::10S
ios(streambuf* psb);

Parameter
psb A pointer to an existing streambuf object.

Remarks
Constructor for ies. You will seldom need to invoke this constructor except in derived
classes. Generally, you will be deriving classes not from ios but from istream,
ostream, and iostream.

10S::~108
virtual ~ios();

Remarks
Virtual destructor for ios.

10S::1word
long& iword(int nindex) const;

Parameters
nindex An index to a table of words that are associated with the ios object.

Remarks
The xalloc member function provides the index to the table of special-purpose words.
The pword function converts that index to a reference to a 32-bit word.

See Also ios::xalloc, ios::pword

10S::precision
int precision(int np);
int precision() const;

Return Value
The first overloaded precision function sets the stream’s internal floating-point
precision variable to np and returns the previous value. The default precision is six
digits. If the display format is scientific or fixed, the precision indicates the number
of digits after the decimal point. If the format is automatic (neither floating point nor
fixed), the precision indicates the total number of significant digits.

The second function returns the stream’s current precision value.

52

Parameter
np An integer that indicates the number of significant digits or significant decimal
digits to be used for floating-point display.

See Also ios setprecision manipulator

ios::rdstate

10s::pword
void* & pword(int nindex) const;

Parameter
nlndex An index to a table of words that are associated with the ios object.

Remarks

The xalloc member function provides the index to the table of special-purpose words.

The pword function converts that index to a reference to a pointer to a 32-bit word.

See Also ios::xalloc, ios::iword

10s::rdbuf

streambuf* rdbuf() const;

Return Value
Returns a pointer to the streambuf object that is associated with this stream. The
rdbuf function is useful when you need to call streambuf member functions.

10s::rdstate

int rdstate() const;

Return Value
Returns the current error state as specified by the following masks (ios enumerators):

e jos::goodbit No error condition.

o ios::eofbit End of file reached.

o jos::failbit A possibly recoverable formatting or conversion error.

e ios::badbit A severe I/O error or unknown state.

The returned value can be tested against a mask with the AND (&) operator.

See Also ios::clear

53

ios::setf

10s::setf

long setf(long [Flags);
long setf(long [Flags, long IMask);

Return Value

The first overloaded setf function turns on only those format bits that are specified by
1s in IFlags. It returns a long that contains the previous value of all the flags.

The second function alters those format bits specified by 1s in [Mask. The new values
of those format bits are determined by the corresponding bits in /Flags. It returns a
long that contains the previous value of all the flags.

Parameters

[Flags Format flag bit values. See the flags member function for a list of format
flags. To combine these flags, use the bitwise OR (1) operator.

IMask Format flag bit mask.

See Also ios::flags, ios::unsetf, ios setiosflags manipulator

10s::sync_with_stdio

Remarks

static void sync_with_stdio();

Synchronizes the C++ streams with the standard I/O system. The first time this
function is called, it resets the predefined streams (cin, cout, cerr, clog) to use a
stdiobuf object rather than a filebuf object. After that, you can mix I/O using these
streams with I/O using stdin, stdout, and stderr. Expect some performance decrease
because there is buffering both in the stream class and in the standard I/O file system.

After the call to sync_with_stdio, the ios::stdio bit is set for all affected predefined
stream objects, and cout is set to unit buffered mode.

10S::tie

ostream* tie(ostream™ pos);

ostream* tie() const;

Return Value

54

The first overloaded tie function ties this stream to the specified ostream and returns
the value of the previous tie pointer or NULL if this stream was not previously tied.
A stream tie enables automatic flushing of the estream when more characters are
needed, or there are characters to be consumed.

By default, cin is initially tied to cout so that attempts to get more characters from
standard input may result in flushing standard output. In addition, cerr and clog are
tied to cout by default.

The second function returns the value of the previous tie pointer or NULL if this
stream was not previously tied.

Parameter
pos A pointer to an ostream object.

ios::width

10s::unsetf

long unsetf(long [Flags);

Return Value
Clears the format flags specified by 1s in IFlags. It returns a long that contains the
previous value of all the flags.

Parameter
[Flags Format flag bit values. See the flags member function for a list of format

flags.

See Also ios::flags, ios::setf, ios resetiosflags manipulator

10S::width
int width(int nw);
int width() const;

Return Value
The first overloaded width function sets the stream’s internal field width variable to
nw. When the width is O (the default), inserters insert only the number of characters
necessary to represent the inserted value. When the width is not 0, the inserters pad
the field with the stream’s fill character, up to nw. If the unpadded representation of
the field is larger than nw, the field is not truncated. Thus, nw is a minimum field
width.

The internal width value is reset to O after each insertion or extraction.

The second overloaded width function returns the current value of the stream’s width
variable.

Parameter
nw The minimum field width in characters.

See Also ios setw manipulator

85

ios::xalloc

10s::xalloc

static int xalloc();

Return Value
Provides extra ios object state variables without the need for class derivation. It does
so by returning an index to an unused 32-bit word in an internal array. This index
can subsequently be converted into a reference or pointer by using the iword or
pword member functions.

Any call to xalloc invalidates values returned by previous calls to iword and pword.

See Also ios::iword, ios::pword

Operators

10s::operator void* ()
operator void* () const;

Remarks
An operator that converts a stream to a pointer that can be compared to 0.

Return Value
The conversion returns 0 if either failbit or badbit is set in the stream’s error state.
See rdstate for a description of the error state masks. A nonzero pointer is not meant
to be dereferenced.

See Also ios::good, ios::fail

10s::operator ! ()
int operator !() const;

Return Value
Returns a nonzero value if either failbit or badbit is set in the stream’s error state.
See rdstate for a description of the error state masks.

See Also ios::good, ios::fail

10s::adjustfield
static const long adjustfield;

Remarks
A mask for obtaining the padding flag bits (left, right, or internal).

56

ios& binary

Example
extern ostream os;
if((os.flags() & ios::adjustfield) == jos::left)

See Also ios::flags

10s::basefield

static const long basefield;

Remarks
A mask for obtaining the current radix flag bits (dee, oct, or hex).

Example
extern ostream os;
if((os.flags() & ios::basefield) == ios::hex)

See Also ios::flags

10s::floatfield

static const long floatfield;

Remarks
A mask for obtaining floating-point format flag bits (scientific or fixed).

Example
extern ostream os;
if((os.flags() & jos::floatfield) == ios::scientific)

See Also ios::flags

Manipulators
10s& binary

binary

Remarks
Sets the stream’s mode to binary. The default mode is text.

The stream must have an associated filebuf buffer.

See Also ios text manipulator, ofstream::setmode, ifstream::setmode,
filebuf::setmode

57

ios& dec

10s& dec

dec

Remarks
Sets the format conversion base to 10 (decimal).

See Also ios hex manipulator, ios oct manipulator

10s& hex

hex

Remarks
Sets the format conversion base to 16 (hexadecimal).

See Also ios dec manipulator, ios oct manipulator

10s& oct

oct

Remarks
Sets the format conversion base to 8 (octal).

See Also ios dec manipulator, ios hex manipulator

resetiosflags
SMANIP(long) resetiosflags(long [Flags);

#include <iomanip.h>

Parameter
[Flags Format flag bit values. See the flags member function for a list of format
flags. To combine these flags, use the OR () operator.

Remarks
This parameterized manipulator clears only the specified format flags. This setting
remains in effect until you change it.

setfill

SMANIP(int) setfill(int nFill);

#include <iomanip.h>

58

Parameter
nFill The new fill character to be used as padding between fields.

Remarks
This parameterized manipulator sets the stream’s fill character. The default is a
space. This setting remains in effect until the next change.

setw

setiosflags
SMANIP(long) setiosflags(long [Flags);

#include <iomanip.h>

Parameter
[Flags Format flag bit values. See the flags member function for a list of format
flags. To combine these flags, use the OR (1) operator.

Remarks
This parameterized manipulator sets only the specified format flags. This setting
remains in effect until the next change.

setprecision
SMANIP(int) setprecision(int np);
#iinclude <iomanip.h>

Parameter
np An integer that indicates the number of significant digits or significant decimal
digits to be used for floating-point display.

Remarks
This parameterized manipulator sets the stream’s internal floating-point precision
variable to np. The default precision is six digits. If the display format is scientific or
fixed, then the precision indicates the number of digits after the decimal point. If the
format is automatic (neither floating point nor fixed), then the precision indicates the

total number of significant digits. This setting remains in effect until the next change.

setw
SMANIP(int) setw(int nw);
#iinclude <iomanip.h>

Parameter
nw The field width in characters.

59

ios& text

Remarks
This parameterized manipulator sets the stream’s internal field width parameter. See
the width member function for more information. This setting remains in effect only
for the next insertion.

10s& text

text
Sets the stream’s mode to text (the default mode).

Remarks
The stream must have an associated filebuf buffer.

See Also ios binary manipulator, ofstream::setmode, ifstream::setmode,
filebuf::setmode

60

class 1iostream

#include <iostream.h>

The iostream class provides the basic capability for sequential and random-access
I/O. It inherits functionality from the istream and ostream classes.

The iostream class works in conjunction with classes derived from streambuf (for
example, filebuf). In fact, most of the iostream “personality” comes from its attached
streambuf class. You can use iostream objects for sequential disk I/O if you first
construct an appropriate filebuf object. More often, you will use objects of classes
fstream and strstream.

Derivation
For derivation suggestions, see the istream and ostream classes.

Public Members
iostream Constructs an iostream object that is attached to an existing streambuf
object.

~jostream Destroys an iostream object.

Protected Members
iostream Acts as a void-argument iostream constructor.

See Also istream, ostream, fstream, strstream, stdiostream

iostream::iostream

Member Functions

jostream::1ostream

Public —

iostream(streambuf* psb);
END Public

Protected —

iostream();
END Protected

Parameter
psb A pointer to an existing streambuf object (or an object of a derived class).

61

iostream::~iostream

Remarks
Constructs an object of type iostream.

See Also ios::init

10stream::~10stream
virtual ~iostream();

Remarks
Virtual destructor for the iostream class.

62

Tostream_init::~lostream_init

class lostream_ init

#finclude <iostream.h>

The Iostream_init class is a static class that initializes the predefined stream objects
cin, cout, cerr, and clog. A single object of this class is constructed “invisibly” in
response to any reference to the predefined objects. The class is documented for
completeness only. You will not normally construct objects of this class.

Public Members
Tostream_init A constructor that initializes cin, cout, cerr, and clog.

~Jostream_init The destructor for the Iostream_init class.

Member Functions

Tostream_ init::lostream_init
Tostream_init();

Remarks
Iostream_init constructor that initializes cin, cout, cerr, and clog. For internal use
only.

Iostream_ init::~lostream_ init
~Jostream_init();

Remarks
Tostream_init destructor. For internal use only.

63

class istream

class istream

#include <iostream.h>

The istream class provides the basic capability for sequential and random-access
input. An istream object has a streambuf-derived object attached, and the two
classes work together; the istream class does the formatting, and the streambuf class
does the low-level buffered input.

You can use istream objects for sequential disk input if you first construct an
appropriate filebuf object. More often, you will use the predefined stream object cin
(which is actually an object of class istream_withassign), or you will use objects of
classes ifstream (disk file streams) and istrstream (string streams).

Derivation

It is not always necessary to derive from istream to add functionality to a stream;
consider deriving from streambuf instead, as illustrated on page 22 in “Deriving
Your Own Stream Classes.” The ifstream and istrstream classes are examples of
istream-derived classes that construct member objects of predetermined derived
streambuf classes. You can add manipulators without deriving a new class.

If you add new extraction operators for a derived istream class, then the rules of C++
dictate that you must reimplement all the base class extraction operators. See the
“Derivation” section of class estream for an efficient reimplementation technique.

Construction/Destruction — Public Members

istream Constructs an istream object attached to an existing object of a streambuf-
derived class.

~istream Destroys an istream object.

Prefix/Suffix Functions — Public Members

ipfx Check for error conditions prior to extraction operations (input prefix
function).

isfx Called after extraction operations (input suffix function).

Input Functions — Public Members

64

get Extracts characters from the stream up to, but not including, delimiters.
getline Extracts characters from the stream (extracts and discards delimiters).
read Extracts data from the stream.

ignore Extracts and discards characters.

peek Returns a character without extracting it from the stream.

geount Counts the characters extracted in the last unformatted operation.

eatwhite Extracts leading white space.

Other Functions — Public Members
putback Puts characters back to the stream.

sync Synchronizes the stream buffer with the external source of characters.
seekg Changes the stream’s get pointer.
tellg Gets the value of the stream’s get pointer.

Operators — Public Members
operator >> Extraction operator for various types.

Protected Members
istream Constructs an istream object.

Manipulators
ws Extracts leading white space.

See Also streambuf, ifstream, istrstream, istream_withassign

istream::get

Member Functions

istream::eatwhite

void eatwhite();

Remarks
Extracts white space from the stream by advancing the get pointer past spaces and
tabs.

See Also istream ws manipulator

istream::gcount

int gcount() const;

Remarks
Returns the number of characters extracted by the last unformatted input function.
Formatted extraction operators may call unformatted input functions and thus reset
this number.

See Also istream::get, istream::getline, istream::ignore, istream::read

istream::get
int get(); &

65

istream::getline

istream& get(char* pch, int nCount, char delim = "\n');

istream& get(unsigned char* puch, int nCount, char delim ="\n');

istream& get(signed char* psch, int nCount, char delim = '\n');

istream& get(char& rch);

istream& get(unsigned char& ruch);

istream& get(signed char& rsch);

istream& get(streambuf& rsb, char delim = "\n');

Parameters

pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to store, including the terminating

NULL.

delim The delimiter character (defaults to newline).

rch, ruch, rsch A reference to a character.

rsb A reference to an object of a streambuf-derived class.

Remarks
These functions extract data from an input stream as follows:
Variation Description
get(); Extracts a single character from the stream and returns it.

get(char*, int, char);

get(char&);

get(streambuf&, char);

Extracts characters from the stream until either delim is found,
the limit nCount is reached, or the end of file is reached. The
characters are stored in the array followed by a null terminator.

Extracts a single character from the stream and stores it as
specified by the reference argument.

Gets characters from the stream and stores them in a streambuf
object until the delimiter is found or the end of the file is
reached. The ios::failbit flag is set if the streambuf output
operation fails.

In all cases, the delimiter is neither extracted from the stream nor returned by the
function. The getline function, in contrast, extracts but does not store the delimiter.

See Also istream::getline, istream::read, istream::ignore, istream::gcount

istream::getline

istream& getline(char* pch, int nCount, char delim = "\n');

istream& getline(unsigned char* puch, int nCount, char delim = "\n');

66

istream& getline(signed char* psch, int nCount, char delim = "\n');

Parameters
pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to store, including the terminating
NULL.

delim The delimiter character (defaults to newline).

Remarks
Extracts characters from the stream until either the delimiter delim is found, the limit
nCount-1 is reached, or end of file is reached. The characters are stored in the

specified array followed by a null terminator. If the delimiter is found, it is extracted
but not stored.

The get function, in contrast, neither extracts nor stores the delimiter.

See Also istream::get, istream::read

istream::ipfx

istream::ignore
istream& ignore(int nCount = 1, int delim = EOF);

Parameters
nCount The maximum number of characters to extract.

delim The delimiter character (defaults to EOF).

Remarks
Extracts and discards up to nCount characters. Extraction stops if the delimiter delim
is extracted or the end of file is reached. If delim = EOF (the default), then only the
end of file condition causes termination. The delimiter character is extracted.

istream::ipfx
int ipfx(int need = 0);
Return Value

A nonzero return value if the operation was successful; O if the stream’s error state is
nonzero, in which case the function does nothing.

Parameter
need Zero if called from formatted input functions; otherwise the minimum number
of characters needed.

67

istream::isfx

Remarks

This input prefix function is called by input functions prior to extracting data from
the stream. Formatted input functions call ipfx(0), while unformatted input
functions usually call ipfx(1).

Any ios object tied to this stream is flushed if need = O or if there are fewer than need
characters in the input buffer. Also, ipfx extracts leading white space if ios::skipws is
set.

See Also istream::isfx

istream::isfx

Remarks

void isfx();

This input suffix function is called at the end of every extraction operation.

1stream::istream

Public —
istream(streambuf* psb);
END Public

Protected —
istream();
END Protected

Parameter

Remarks

psb A pointer to an existing object of a streambuf-derived class.

Constructs an object of type istream.

See Also ios::init

istream;:~istream

Remarks

virtual ~istream();

Virtual destructor for the istream class.

istream::peek
int peek();

Return Value
Returns the next character without extracting it from the stream. Returns EOF if the
stream is at end of file or if the ipfx function indicates an error.

istream::seekg

istream::putback

istream& putback(char c#);

Parameter
ch The character to put back; must be the character previously extracted.

Remarks
Puts a character back into the input stream. The putback function may fail and set
the error state. If ch does not match the character that was previously extracted, the
result is undefined.

istream::read

istream& read(char* pch, int nCount);
istream& read(unsigned char* puch, int nCount);
istream& read(signed char* psch, int nCount);

Parameters
pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to read.

Remarks
Extracts bytes from the stream until the limit nCount is reached or until the end of
file is reached. The read function is useful for binary stream input.

See Also istream::get, istream::getline, istream::gcount, istream::ignore

istream::seekg

istream& seekg(streampos pos);
istream& seekg(streamoff off, ios::seek_dir dir);

Parameters
pos The new position value; streampos is a typedef equivalent to long.

69

istream::sync

off The new offset value; streamoff is a typedef equivalent to long.
dir The seek direction. Must be one of the following enumerators:

e jos::beg Seck from the beginning of the stream.
e jos::cur Seek from the current position in the stream.

o jos::end Seek from the end of the stream.

Remarks
Changes the get pointer for the stream. Not all derived classes of istream need
support positioning; it is most often used with file-based streams.

See Also istream::tellg, ostream::seekp, ostream::tellp

1stream::sync
int sync();
Synchronizes the stream’s internal buffer with the external source of characters.

Return Value
EOF to indicate errors.

Remarks
Synchronizes the stream’s internal buffer with the external source of characters. This
function calls the virtual streambuf::sync function so you can customize its
implementation by deriving a new class from streambuf.

See Also streambuf::sync

istream::tellg

streampos tellg();
Gets the value for the stream’s get pointer.

Return Value
A streampos type, corresponding to a long.

See Also istream::seekg, ostream::tellp, ostream::seekp

Operators

istream::operator >>

istream& operator >>(char* psz);

70

Remarks

istream& operator >>(unsigned char* pusz);
istream& operator >>(signed char* pssz);
istream& operator >>(char& rch);
istream& operator >>(unsigned char& ruch);
istream& operator >>(signed char& rsch);
istream& operator >>(short& s);

istream& operator >>(unsigned short& us);
istream& operator >>(int& n);

istream& operator >>(unsigned int& un);
istream& operator >>(long& [);

istream& operator >>(unsigned long& ul);
istream& operator >>(float& f);

istream& operator >>(double& d);

istream& operator >>(long double& Id); (16-bit only)

istream& operator >>(streambuf* psb);

istream& operator >>(istream& (*fcn)(istream&));

istream& operator >>(ios& (*fcn)(ios&));

These overloaded operators extract their argument from the stream. With the last two
variations, you can use manipulators that are defined for both istream and ios.

istream& ws

Manipulators

1streamé& ws

Remarks

wSs

Extracts leading white space from the stream by calling the eatwhite function.

See Also istream::eatwhite

n

class istream_withassign

class istream_withassign

#include <iostream.h>

The istream_withassign class is a variant of istream that allows object assignment.
The predefined object cin is an object of this class and thus may be reassigned at run
time to a different istream object. For example, a program that normally expects
input from stdin could be temporarily directed to accept its input from a disk file.

Predefined Objects
The cin object is a predefined object of class ostream_withassign. It is connected to
stdin (standard input, file descriptor 0).

The objects cin, cerr, and clog are tied to cout so that use of any of these may cause
cout to be flushed.

Construction/Destruction — Public Members
istream_withassign Constructs an istream_withassign object.

~istream_withassign Destroys an istream_withassign object.

Operators — Public Members
operator = Indicates an assignment operator.

See Also ostream_withassign

Member Functions

istream_withassign::istream_withassign

istream_withassign(streambuf* psb);
istream_withassign();

Parameter
psb A pointer to an existing object of a streambuf-derived class.

Remarks
The first constructor creates a ready-to-use object of type istream_withassign,
complete with attached streambuf object.

The second constructor creates an object but does not initialize it. You must
subsequently use the second variation of the istream_withassign assignment operator
to attach the streambuf object, or use the first variation to initialize this object to
match the specified istream object.

See Also istream_withassign::operator =

72

istream_withassign::operator =

istream_withassign::~istream_withassign
~istream_withassign();

Remarks
Destructor for the istream_withassign class.

Operators

istream_withassign::operator =

istream& operator =(const istream& ris);
istream& operator =(streambuf* psb);

Remarks
The first overloaded assignment operator assigns the specified istream object to this
istream_withassign object.

The second operator attaches a streambuf object to an existing istream_withassign
object, and it initializes the state of the istream_withassign object. This operator is
often used in conjunction with the void-argument constructor.

Example
char buffer[100];
class xistream; // A special-purpose class derived from istream
extern xistream xin; // An xistream object constructed elsewhere

cin = xin; // cin is reassigned to xin
cin >> buffer; // xin used instead of cin

Example
char buffer[100];
extern filedesc fd; // A file descriptor for an open file
filebuf fb(fd); // Construct a filebuf attached to fd

cin = &fb; // fb associated with cin
cin >> buffer; // cin now gets its intput from the fb file

See Also istream_withassign::istream_withassign

73

class istrstream

class istrstream

#include <strstrea.h>

The istrstream class supports input streams that have character arrays as a source.
You must allocate a character array before constructing an istrstream object. You can
use istream operators and functions on this character data. A get pointer, working in
the attached strstreambuf class, advances as you extract fields from the stream’s
array. Use istream::seekg to go backwards. If the get pointer reaches the end of the
string (and sets the ios::eof flag), you must call clear before seekg.

Construction/Destruction — Public Members
istrstream Constructs an istrstream object.

~istrstream Destroys an istrstream object.

Other Functions — Public Members
rdbuf Returns a pointer to the stream’s associated strstreambuf object.

str Returns a character array pointer to the string stream’s contents.

See Also strstreambuf, streambuf, strstream, ostrstream

Member Functions

1strstream::istrstream

istrstream(char* psz);
istrstream(char* pch, int nLength);

Parameters
Dpsz A null-terminated character array (string).

pch A character array that is not necessarily null terminated.
nLength Size (in characters) of pch. If 0, then pch is assumed to point to a null-
terminated array; if less than 0, then the array length is assumed to be unlimited.

Remarks
The first constructor uses the specified psz buffer to make an istrstream object with
length corresponding to the string length.

The second constructor makes an istrstream object out of the first nLength characters
of the pch buffer.

Both constructors automatically construct a strstreambuf object that manages the
specified character buffer.

74

1strstream::~istrstream

~istrstream();

Remarks
Destroys an istrstream object and its associated strstreambuf object. The character
buffer is not released because it was allocated by the user prior to istrstream
construction.

istrstream::str

istrstream: :rdbuf

strstreambuf* rdbuf() const;

Return Value

Returns a pointer to the strstreambuf buffer object that is associated with this stream.

Note that this is not the character buffer itself; the strstreambuf object contains a
pointer to the character area.

See Also istrstream::str

1strstream::str

char* str();

Return Value
Returns a pointer to the string stream’s character array. This pointer corresponds to
the array used to construct the istrstream object.

See Also istrstream::istrstream

75

class ofstream

class ofstream

#include <fstream.h>

The ofstream class is an estream derivative specialized for disk file output. All of its
constructors automatically create and associate a filebuf buffer object.

The filebuf class documentation describes the get and put areas and their associated
pointers. Only the put area and the put pointer are active for the ofstream class.

Construction/Destruction — Public Members
ofstream Constructs an ofstream object.

~ofstream Destroys an ofstream object.
Operations — Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.
close Flushes any waiting output and closes the stream’s file.
sethuf Associates the specified reserve area to the stream’s filebuf object.
setmode Sets the stream’s mode to binary or text.
attach Attaches the stream (through the filebuf object) to an open file.
Status/Information — Public Members
rdbuf Gets the stream’s filebuf object.
fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream’s file is open.

See Also filebuf, streambuf, ifstream, fstream

Member Functions

ofstream::attach

void attach(filedesc fd);

Parameter
fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.
Remarks
Attaches this stream to the open file specified by fd. The function fails when the
stream is already attached to a file. In that case, the function sets ios::failbit in the
stream’s error state.

See Also filebuf::attach, ofstream::fd

76

ofstream::close

void close();

Remarks
Calls the close member function for the associated filebuf object. This function, in
turn, flushes any waiting output, closes the file, and disconnects the file from the
filebuf object. The filebuf object is not destroyed.

The stream’s error state is cleared unless the call to filebuf::close fails.

See Also filebuf::close, ofstream::open, ofstream::is_open

ofstream::ofstream

ofstream::fd

filedesc fd() const;

Return Value
Returns the file descriptor associated with the stream. filedesc is a typedef equivalent
to int. Its value is supplied by the underlying file system.

See Also filebuf::fd, ofstream::attach

ofstream::is_open
int is_open() const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise 0.

See Also filebuf::is_open, ofstream::open, ofstream::close

ofstream::ofstream

ofstream();

ofstream(const char* szName, int nMode = ios::out, int nProt = filebuf::openprot);
ofstream(filedesc fd);

ofstream(filedesc fd, char* pch, int nLength);

Parameters
szName The name of the file to be opened during construction.

7

ofstream::ofstream

78

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (1) operator. The nMode parameter must have one
of the following values:

o jos::app The function performs a seek to the end of file. When new bytes are
written to the file, they are always appended to the end, even if the position is
moved with the ostream::seekp function.

e ios::ate The function performs a seek to the end of file. When the first new
byte is written to the file, it is appended to the end, but when subsequent bytes
are written, they are written to the current position.

o jos::in If this mode is specified, then the original file (if it exists) will not be
truncated.

e ios::out The file is opened for output (implied for all ofstream objects).

o jos::itrunc If the file already exists, its contents are discarded. This mode is
implied if ios::out is specified and ios::ate, ios::app, and ios:in are not
specified.

o ios::nocreate If the file does not already exist, the function fails.
¢ jos::noreplace If the file already exists, the function fails.
e jos::binary Opens the file in binary mode (the default is text mode).

nProt The file protection specification; defaults to the static integer
filebuf::openprot that is equivalent to filebuf::sh_compat. The possible nProt
values are:

o filebuf::sh_compat Compatibility share mode.

o filebuf::sh_none Exclusive mode; no sharing.

o filebuf::sh_read Read sharing allowed.

. fﬂebuf::sh_write Write sharing allowed.

To combine the filebuf::sh_read and filebuf::sh_write modes, use the logical OR
(') operator.

fd A file descriptor as returned by a call to the run-time function _epen or _sopen;
filedesc is a typedef equivalent to int.

pch Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength The length (in bytes) of the reserve area (0 = unbuffered).

Remarks
The four ofstream constructors are:
Constructor Description
ofstream() Constructs an ofstream object without opening

ofstream(const char*, int, int)
ofstream(filedesc)

ofstream(filedesc, char*, int)

a file.

Contructs an ofstream object, opening the
specified file.

Constructs an ofstream object that is attached
to an open file.

Constructs an ofstream object that is associated
with a filebuf object. The filebuf object is
attached to an open file and to a specified
reserve area.

All ofstream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area. The user-allocated
area is not automatically released during destruction.

ofstream::open

ofstream::~ofstream

~ofstream();

Remarks

Flushes the buffer, then destroys an ofstream object along with its associated filebuf
object. The file is closed only if was opened by the constructor or by the open member

function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

ofstream::open

void open(const char* szName, int nMode = ios::out, int nProt = filebuf::openprot);

Parameters

szName The name of the file to be opened during construction.

nMode An integer containing mode bits defined as ios enumerators that can be
combined with the OR (1) operator. See the ofstream constructor for a list of the
enumerators. The ios::out mode is implied.

nProt The file protection specification; defaults to the static integer
filebuf::openprot. See the ofstream constructor for a list of the other allowed

values.

79

ofstream: :rdbuf

Remarks
Opens a disk file and attaches it to the stream’s filebuf object. If the filebuf object is
already attached to an open file, or if a filebuf call fails, the ios::failbit is set. If the
file is not found, the ios::failbit is set only if the ios::nocreate mode was used.
See Also filebuf::open, ofstream::ofstream, ofstream::close, ofstream::is_open
ofstream::rdbuf
filebuf* rdbuf() const;
Return Value
Returns a pointer to the filebuf buffer object that is associated with this stream. (Note
that this is not the character buffer; the filebuf object contains a pointer to the
character area.)
Example
extern ofstream ofs;
int fd = ofs.rdbuf()->fd(); // Get the file descriptor for ofs
ofstream::setbuf
streambuf* setbuf(char* pch, int nLength);
Attaches the specified reserve area to the stream’s filebuf object.
Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf cast as a streambuf. The reserve area will
not be released by the destructor.
Parameters
pch A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.
nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.
ofstream::setmode

int setmode(int nMode = filebuf::text);

Return Value
The previous mode; —1 if the parameter is invalid, the file is not open, or the mode
cannot be changed.

Parameter
nMode An integer that must be one of the following static filebuf constants:

o filebuf::text Text mode (newline characters translated to and from carriage
return—linefeed pairs).

o filebuf::binary Binary mode (no translation).

Remarks
This function sets the binary/text mode of the stream’s filebuf object. It may be called
only after the file is opened.

See Also ios binary manipulator, ios text manipulator

ofstream::setmode

81

class ostream

class ostream

#include <iostream.h>

The ostream class provides the basic capability for sequential and random-access
output. An ostream object has a streambuf-derived object attached, and the two
classes work together; the ostream class does the formatting, and the streambuf class
does the low-level buffered output.

You can use ostream objects for sequential disk output if you first construct an
appropriate filebuf object. (The filebuf class is derived from streambuf.) More often,
you will use the predefined stream objects cout, cerr, and clog (actually objects of
class ostream_withassign), or you will use objects of classes ofstream (disk file
streams) and ostrstream (string streams).

All of the ostream member functions write unformatted data; formatted output is
handled by the insertion operators.

Derivation
It is not always necessary to derive from ostream to add functionality to a stream;
consider deriving from streambuf instead, as illustrated on page 22 in “Deriving
Your Own Stream Classes.” The ofstream and ostrstream classes are examples of
ostream-derived classes that construct member objects of predetermined derived
streambuf classes. You can add manipulators without deriving a new class.

If you add new insertion operators for a derived ostream class, then the rules of C++
dictate that you must reimplement all the base class insertion operators. If, however,
you reimplement the operators through inline equivalence, no extra code will be
generated.

Construction/Destruction — Public Members

ostream Constructs an ostream object that is attached to an existing streambuf
object.

~ostream Destroys an ostream object.
Prefix/Suffix Functions — Public Members

opfx Output prefix function, called prior to insertion operations to check for error
conditions, and so forth.

osfx Output suffix function, called after insertion operations; flushes the stream’s
buffer if it is unit buffered.

Unformatted Output — Public Members
put Inserts a single byte into the stream.

write Inserts a series of bytes into the stream.

82

Other Functions — Public Members
flush Flushes the buffer associated with this stream.

seekp Changes the stream’s put pointer.
tellp Gets the value of the stream’s put pointer.

Operators — Public Members
operator << Insertion operator for various types.

Manipulators
endl Inserts a newline sequence and flushes the buffer.
ends Inserts a null character to terminate a string.

flush Flushes the stream’s buffer.

See Also streambuf, ofstream, ostrstream, cout, cerr, clog

Example

class xstream : public ostream

{

public:
// Constructors, etc.
V7 BN
inline xstream& operator << (char ch) // insertion for char
{

return (xstream&)ostream::operator << (ch);

}
V7 A
// Insertions for other types

};

ostream::flush

Member Functions

ostream::flush

ostream& flush();

Remarks
Flushes the buffer associated with this stream. The flush function calls the sync
function of the associated streambuf.

See Also ostream flush manipulator, streambuf::sync

83

ostream::opfx

ostream::opfx
int opfx();

Return Value
If the ostream object’s error state is not O, opfx returns O immediately; otherwise it
returns a nonzero value.

Remarks
This output prefix function is called before every insertion operation. If another
ostream object is tied to this stream, the opfx function flushes that stream.

ostream::osfx

void osfx();

Remarks
This output suffix function is called after every insertion operation. It flushes the
ostream object if ios::unitbuf is set, or stdout and stderr if ios::stdio is set.

ostream::ostream

Public —

ostream(streambuf* psb);
END Public

Protected —

ostream();
END Protected

Parameter
psb A pointer to an existing object of a streambuf-derived class.

Remarks
Constructs an object of type ostream.

See Also ios::init

ostream.::~ostream

virtual ~ostream();

84

Remarks
Destroys an ostream object. The output buffer is flushed as appropriate. The attached
streambuf object is destroyed only if it was allocated internally within the ostream
constructor.

ostream::tellp

ostream::put

ostream& put(char ch);

Parameter
ch The character to insert.

Remarks
This function inserts a single character into the output stream.

ostream::seekp

ostream& seekp(streampos pos);
ostream& seekp(streamoff off, ios::seek_dir dir);

Parameters
pos The new position value; streampos is a typedef equivalent to long.

off The new offset value; streamoff is a typedef equivalent to long.

dir The seek direction specified by the enumerated type ios::seek_dir, with values
including:

e jos::tbeg Seek from the beginning of the stream.
e jos::cur Seek from the current position in the stream.
e jos::end Seek from the end of the stream.
Remarks
Changes the position value for the stream. Not all derived classes of ostream need
support positioning. For file streams, the position is the byte offset from the

beginning of the file; for string streams, it is the byte offset from the beginning of the
string.

See Also ostream::tellp, istream::seekg, istream::tellg

ostream::tellp
streampos tellp();

85

ostream::write

Return Value
A streampos type that corresponds to a long.

Remarks
Gets the position value for the stream. Not all derived classes of ostream need
support positioning. For file streams, the position is the byte offset from the
beginning of the file; for string streams, it is the byte offset from the beginning of the
string. Gets the value for the stream’s put pointer.

See Also ostream::seekp, istream::tellg, istream::seekg

ostream::write

ostream& write(const char* pch, int nCount);
ostream& write(const unsigned char* puch, int nCount);
ostream& write(const signed char* psch, int nCount);

Parameters
pch, puch, psch A pointer to a character array.

nCount The number of characters to be written.

Remarks
Inserts a specified number of bytes from a buffer into the stream. If the underlying
file was opened in text mode, additional carriage return characters may be inserted.
The write function is useful for binary stream output.

Operators

ostream::operator <<

ostream& operator <<(char ch);

ostream& operator <<(unsigned char uch);
ostream& operator <<(signed char sch);
ostream& operator <<(const char* psz);
ostream& operator <<(const unsigned char* pusz);
ostream& operator <<(const signed char* pssz);

ostream& operator <<(short s);

86

Remarks

ostream& operator <<(unsigned short us);
ostream& operator <<(int n);

ostream& operator <<(unsigned int un);

ostream& operator <<(long [);

ostream& operator <<(unsigned long u/);
ostream& operator <<(float f);

ostream& operator <<(double d);

ostream& operator <<(long double /d); (16-bit only)
ostream& operator <<(const void* pv);

ostream& operator <<(streambuf* psb);

ostream& operator <<(ostream& (*fcn)(ostream&));

ostream& operator <<(ios& (*fcn)(ios&));

These overloaded operators insert their argument into the stream. With the last two
variations, you can use manipulators that are defined for both ostream and ios.

ostreamé& ends

Manipulators

ostream& endl

Remarks

endl

This manipulator, when inserted into an output stream, inserts a newline character
and then flushes the buffer.

ostream& ends

Remarks

ends

This manipulator, when inserted into an output stream, inserts a null-terminator
character. It is particularly useful for ostrstream objects.

87

ostream& flush

ostream& flush

flush

Remarks
This manipulator, when inserted into an output stream, flushes the output buffer by
calling the streambuf::sync member function.

See Also ostream::flush, streambuf::sync

ostream_ withassign::ostream_withassign

class ostream_withassign

#include <iostream.h>

The ostream_withassign class is a variant of ostream that allows object assignment.
The predefined objects cout, cerr, and clog are objects of this class and thus may be
reassigned at run time to a different ostream object. For example, a program that
normally sends output to stdout could be temporarily directed to send its output to a
disk file.

Predefined Objects
The three predefined objects of class ostream_withassign are connected as follows:

cout Standard output (file descriptor 1).

cerr Unit buffered standard error (file descriptor 2).

clog Fully buffered standard error (file descriptor 2).

Unit buffering, as used by cerr, means that characters are flushed after each insertion

operation. The objects cin, cerr, and clog are tied to cout so that use of any of these
will cause cout to be flushed.

Construction/Destruction — Public Members
ostream_withassign Constructs an ostream_withassign object.

~ostream_withassign Destroys an ostream_withassign object.

Operators — Public Members
operator = Assignment operator.

See Also istream_withassign

Member Functions

ostream_withassign::ostream_withassign

ostream_withassign(streambuf* psb);
ostream_withassign();

Parameter
psb A pointer to an existing object of a streambuf-derived class.

Remarks
The first constructor makes a ready-to-use object of type ostream_withassign, with
an attached streambuf object.

89

ostream_withassign::~ostream_withassign

The second constructor makes an object but does not initialize it. You must
subsequently use the streambuf assignment operator to attach the streambuf object,
or use the ostream assignment operator to initialize this object to match the specified
object.

See Also ostream_withassign::operator =

ostream_withassign::~ostream_withassign

Remarks

~ostream_withassign();

Destructor for the ostream_withassign class.

Operators

ostream_withassign::operator =

Remarks

Example

90

ostream& operator =(const ostream&_os);

ostream& operator =(streambuf*_sp);

The first overloaded assignment operator assigns the specified ostream object to this
ostream_withassign object.

The second operator attaches a streambuf object to an existing ostream_withassign
object, and initializes the state of the ostream_withassign object. This operator is
often used in conjunction with the void-argument constructor.

filebuf fb("test.dat"); // Filebuf object attached to "test.dat”
cout = &fb; // fb associated with cout
cout << "testing"; // Message goes to "test.dat" instead of stdout

See Also ostream_withassign::ostream_withassign, cout

class ostrstream

#include <strstrea.h>

The ostrstream class supports output streams that have character arrays as a
destination. You can allocate a character array prior to construction, or the
constructor can internally allocate an expandable array. You can then use all the
ostream operators and functions to fill the array.

Be aware that there is a put pointer working behind the scenes in the attached
strstreambuf class. This pointer advances as you insert fields into the stream’s array.
The only way you can make it go backward is to use the ostream::seekp function. If
the put pointer reaches the end of user-allocated memory (and sets the ios::eof flag),
you must call clear before seekp.

Construction/Destruction — Public Members
ostrstream Constructs an ostrstream object.

~ostrstream Destroys an ostrstream object.
Other Functions — Public Members
pcount Returns the number of bytes that have been stored in the stream’s buffer.
rdbuf Returns a pointer to the stream’s associated strstreambuf object.
str Returns a character array pointer to the string stream’s contents and freezes the

array.

See Also strstreambuf, streambuf, strstream, istrstream

ostrstream::ostrstream

Member Functions

ostrstream::ostrstream

ostrstream();
ostrstream(char* pch, int nLength, int nMode = ios::out);

Parameters
pch A character array that is large enough to accommodate future output stream
activity.

nLength The size (in characters) of pch. If 0, then pch is assumed to point to a null-
terminated array and strlen(pch) is used as the length; if less than O, the array is
assumed to have infinite length.

91

ostrstream::~ostrstream

nMode The stream-creation mode, which must be one of the following enumerators
as defined in class ios:

e jos::out Default; storing begins at pch.

o jos::ate The pch parameter is assumed to be a null-terminated array; storing
begins at the NULL character.

e jes::app Same as ios::ate.

Remarks

The first constructor makes an ostrstream object that uses an internal, dynamic
buffer.

The second constructor makes an ostrstream object out of the first nLength
characters of the pch buffer. The stream will not accept characters once the length
reaches nLength.

ostrstream::~ostrstream

~ostrstream();

Remarks :
Destroys an ostrstream object and its associated strstreambuf object, thus releasing
all internally allocated memory. If you used the void-argument constructor, the
internally allocated character buffer is released; otherwise, you must release it.

An internally allocated character buffer will not be released if it was previously
frozen by an str or strstreambuf::freeze function call.

See Also ostrstream::str, strstreambuf::freeze

ostrstream::pcount

int pcount() const;

Return Value

Returns the number of bytes stored in the buffer. This information is especially useful
when you have stored binary data in the object.

92

ostrstream::rdbuf

strstreambuf* rdbuf() const;

Return Value

Returns a pointer to the strstreambuf buffer object that is associated with this stream.

This is not the character buffer; the strstreambuf object contains a pointer to the
character area.

See Also ostrstream::str

ostrstream.:str

ostrstream::str

char* str();

Return Value
Returns a pointer to the internal character array. If the stream was built with the
void-argument constructor, str freezes the array. You must not send characters to a
frozen stream, and you are responsible for deleting the array. You can, however,
subsequently unfreeze the array by calling rdbuf->freeze(0).

If the stream was built with the constructor that specified the buffer, the pointer
contains the same address as the array used to construct the ostrstream object.

See Also ostrstream::ostrstream, ostrstream::rdbuf, strstreambuf;::freeze

93

class stdiobuf

class stdiobuf

#include <stdiostr.h>

The run-time library supports three conceptual sets of I/O functions: iostreams (C++
only), standard I/O (the functions declared in STDIO.H), and low-level I/O (the
functions declared in I0.H). The stdiobuf class is a derived class of streambuf that is
specialized for buffering to and from the standard I/0 system.

Because the standard I/O system does its own internal buffering, the extra buffering
level provided by stdiobuf may reduce overall input/output efficiency. The stdiobuf
class is useful when you need to mix iostream I/O with standard I/O (printf and so

forth).

You can avoid use of the stdiobuf class if you use the filebuf class. You must also use
the stream class’s ios::flags member function to set the ios::stdio format flag value.

Construction/Destruction — Public Members
stdiobuf Constructs a stdiobuf object from a FILE pointer.

~stdiobuf Destroys a stdiobuf object.

Other Functions — Public Members
stdiofile Gets the file that is attached to the stdiofile object.

See Also stdiostream, filebuf, strstreambuf, ios::flags

Member Functions
stdiobuf::stdiobuf

stdiobuf(FILE* fp);

Parameter
fp A standard I/O file pointer (can be obtained through an fopen or _fsopen call).

Remarks
Objects of class stdiobuf are constructed from open standard I/O files, including
stdin, stdout, and stderr. The object is unbuffered by default.

94

stdiobuf::~stdiobuf

~stdiobuf();

Remarks
Destroys a stdiobuf object and, in the process, flushes the put area. The destructor
does not close the attached file.

stdiobuf::stdiofile

stdiobuf::stdiofile

FILE#* stdiofile();

Remarks
Returns the standard I/O file pointer associated with a stdiobuf object.

95

class stdiostream

class stdiostream

#include <stdiostr.h>

The stdiostream class makes I/O calls (through the stdiebuf class) to the standard
I/O system, which does its own internal buffering. Calls to the functions declared in
STDIO.H, such as printf, can be mixed with stdiostream I/O calls.

This class is included for compatibility with earlier stream libraries. You can avoid
use of the stdiostream class if you use the ostream or istream class with an
associated filebuf class. You must also use the stream class’s ios::flags member
function to set the ios::stdio format flag value.

The use of the stdiobuf class may reduce efficiency because it imposes an extra level
of buffering. Do not use this feature unless you need to mix iostream library calls
with standard I/O calls for the same file.

Construction/Destruction — Public Members

stdiostream Constructs a stdiostream object that is associated with a standard I/O
FILE pointer.

~stdiostream Destroys a stdiostream object (virtual).

Other Functions — Public Members
rdbuf Gets the stream’s stdiobuf object.

See Also stdiobuf, ios::flags

Member Functions

stdiostream::rdbuf

stdiobuf* rdbuf() const;

Return Value
Returns a pointer to the stdiobuf buffer object that is associated with this stream. The
rdbuf function is useful when you need to call stdiobuf member functions.

stdiostream::~stdiostream

stdiostream::stdiostream

stdiostream(FILE* fp);
Parameter

fp A standard I/O file pointer (can be obtained through an fopen or _fsopen call).

Could be stdin, stdout, or stderr.

Remarks
Objects of class stdiostream are constructed from open standard I/O files. An
unbuffered stdiobuf object is automatically associated, but the standard I/O system
" provides its own buffering.

Example
stdiostream myStream(stdout);

stdiostream::~stdiostream

~stdiostream();

Remarks

This destructor destroys the stdiobuf object associated with this stream; however, the

attached file is not closed.

97

class streambuf

class streambuf

#include <iostream.h>

All the iostream classes in the ios hierarchy depend on an attached streambuf class
for the actual I/O processing. This class is an abstract class, but the iostream class
library contains the following derived buffer classes for use with streams:

o filebuf Buffered disk file I/O.

e strstreambuf Stream data held entirely within an in-memory byte array.

e stdiobuf Disk I/O with buffering done by the underlying standard I/O system.
All streambuf objects, when configured for buffered processing, maintain a fixed
memory buffer, called a reserve area, that can be dynamically partitioned into a get
area for input, and a put area for output. These areas may or may not overlap. With
the protected member functions, you can access and manipulate a get pointer for

character retrieval and a put pointer for character storage. The exact behavior of the
buffers and pointers depends on the implementation of the derived class.

The capabilities of the iostream classes can be extended significantly through the
derivation of new streambuf classes. The ios class tree supplies the programming
interface and all formatting features, but the streambuf class does the real work. The
ios classes call the streambuf public members, including a set of virtual functions.

The streambuf class provides a default implementation of certain virtual member
functions. The “Default Implementation” section for each such function suggests
function behavior for the derived class.

Character Input Functions — Public Members
in_avail Returns the number of characters in the get area.

sgetc Returns the character at the get pointer, but does not move the pointer.
snextc Advances the get pointer, then returns the next character.
sbumpce Returns the current character, and then advances the get pointer.
stossc Moves the get pointer forward one position, but does not return a character.
sputbacke Attempts to move the get pointer back one position.
sgetn Gets a sequence of characters from the streambuf object’s buffer.
Character Output Functions — Public Members
out_waiting Returns the number of characters in the put area.
sputc Stores a character in the put area and advances the put pointer.

sputn Stores a sequence of characters in the streambuf object’s buffer and advances
the put pointer.

98

class streambuf

Construction/Destruction — Public Members
~streambuf Virtual destructor.

Diagnostic Functions — Public Members
dbp Prints buffer statistics and pointer values.

Virtual Functions — Public Members
sync Empties the get area and the put area.
setbuf Attempts to attach a reserve area to the streambuf object.
seekoff Seeks to a specified offset.
seekpos Seeks to a specified position.
overflow Empties the put area.
underflow Fills the get area if necessary.
pbackfail Augments the sputbacke function.

Construction/Destruction — Protected Members
streambuf Constructors for use in derived classes.

Other Protected Member Functions — Protected Members
base Returns a pointer to the start of the reserve area.
ebuf Returns a pointer to the end of the reserve area.
blen Returns the size of the reserve area.
pbase Returns a pointer to the start of the put area.
pptr Returns the put pointer.
epptr Returns a pointer to the end of the put area.
eback Returns the lower bound of the get area.
gptr Returns the get pointer.
egptr Returns a pointer to the end of the get area.
setp Sets all the put area pointers.
setg Sets all the get area pointers.
pbump Increments the put pointer.
gbump Increments the get pointer.
sethb Sets up the reserve area.
unbuffered Tests or sets the streambuf buffer state variable.
allocate Allocates a buffer, if needed, by calling doalloc.

doallocate Allocates a reserve area (virtual function).

See Also streambuf::doallocate, streambuf::unbuffered

99

streambuf::allocate

Member Functions

streambuf::allocate

Protected —»

int allocate();
END Protected

Return Value
Calls the virtual function doallocate to set up a reserve area. If a reserve area already
exists or if the streambuf object is unbuffered, allocate returns 0. If the space
allocation fails, allocate returns EQF.

See Also streambuf::doallocate, streambuf::unbuffered

streambuf::base

Protected —

char* base() const
END Protected

Return Value
Returns a pointer to the first byte of the reserve area. The reserve area consists of
space between the pointers returned by base and ebuf.

See Also streambuf::ebuf, streambuf::setb, streambuf::blen

streambuf::blen

Protected —

int blen() const;
END Protected

Return Value
Returns the size, in bytes, of the reserve area.

See Also streambuf::base, streambuf::ebuf, streambuf::setb

100

streambuf::eback

streambuf::dbp

void dbp();

Remarks
Writes ASCII debugging information directly on stdout. Treat this function as part of
the protected interface.

Example
STREAMBUF DEBUG INFO: this = 00E7:09DC
base()=00E7:0A0C, ebuf()=0QE7:0C0C, blen()=512
eback()=0000:0000, gptr()=0000:0000, egptr()=0000:0000
pbase()=00E7:0A0C, pptr()=00E7:0A22, epptr()=00E7:0C0OC

streambuf::doallocate

Protected —
virtual int doallocate();
END Protected

Return Value
Called by allocate when space is needed. The doallocate function must allocate a
reserve area, then call setb to attach the reserve area to the streambuf object. If the
reserve area allocation fails, doallocate returns EOF.

Remarks
By default, this function attempts to allocate a reserve area using operator new.

See Also streambuf::allocate, streambuf::setb

streambuf::eback

Protected —

char* eback() const;
END Protected

Return Value
Returns the lower bound of the get area. Space between the eback and gptr pointers
is available for putting a character back into the stream.

See Also streambuf::sputbacke, streambuf::gptr

101

streambuf::ebuf

streambuf::ebuf

Protected —
char* ebuf() const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the reserve area. The reserve area
consists of space between the pointers returned by base and ebuf.

See Also streambuf::base, streambuf::setb, streambuf::blen

streambuf::egptr

Protected —
char* egptr() const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the get area.

See Also streambuf::setg, streambuf::eback, streambuf::gptr

streambuf::epptr

Protected —

char* epptr() const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the put area.

See Also streambuf::setp, streambuf::pbase, streambuf::pptr

streambuf::gbump

Protected —
void gbump(int nCount);
END Protected

Parameter
Count The number of bytes to increment the get pointer. May be positive or
negative.

102

streambuf::overflow

Remarks
Increments the get pointer. No bounds checks are made on the result.

See Also streambuf::pbump

streambuf::gptr

Protected —

char* gptr() const;
END Protected

Return Value
Returns a pointer to the next character to be fetched from the streambuf buffer. This
pointer is known as the get pointer. :

See Also streambuf::setg, streambuf::eback, streambuf::egptr

streambuf::in_avail
int in_avail() const;

Return Value
Returns the number of characters in the get area that are available for fetching. These
characters are between the gptr and egptr pointers and may be fetched with a
guarantee of no errors.

streambuf::out_waiting
int out_waiting() const;

Return Value
Returns the number of characters in the put area that have not been sent to the final
output destination. These characters are between the pbase and pptr pointers.

streambuf::overflow

virtual int overflow(int nCh = EOF) = 0;

Return Value
EOF to indicate an error.

Parameter
nCh EOF or the character to output.

103

streambuf::pbackfail

Remarks
The virtual overflow function, together with the sync and underflow functions,
defines the characteristics of the streambuf-derived class. Each derived class might
implement overflow differently, but the interface with the calling stream class is the
same.

The overflow function is most frequently called by public streambuf functions like
sputc and sputn when the put area is full, but other classes, including the stream
classes, can call overflow anytime.

The function “consumes” the characters in the put area between the pbase and pptr
pointers and then reinitializes the put area. The overflow function must also consume
nCh (if nCh is not EOF), or it might choose to put that character in the new put area
so that it will be consumed on the next call.

The definition of “consume” varies among derived classes. For example, the filebuf
class writes its characters to a file, while the strsteambuf class keeps them in its
buffer and (if the buffer is designated as dynamic) expands the buffer in response to a
call to overflow. This expansion is achieved by freeing the old buffer and replacing it
with a new, larger one. The pointers are adjusted as necessary.

Default Implementation
No default implementation. Derived classes must define this function.

See Also streambuf::pbase, streambuf::pptr, streambuf::setp, streambuf::sync,
streambuf::underflow

streambuf::pbackfail

virtual int pbackfail(int nCh);

Return Value
The nCh parameter if successful; otherwise EOF.

Parameter
nCh The character used in a previous sputbacke call.

Remarks
This function is called by sputbackc if it fails, usually because the eback pointer
equals the gptr pointer. The pbackfail function should deal with the situation, if
possible, by such means as repositioning the external file pointer.

Default implementation
Returns EOF.

See Also streambuf::sputbackc

104

streambuf::pptr

streambuf::pbase

Protected —

char* pbase() const;
END Protected

Return Value
Returns a pointer to the start of the put area. Characters between the pbase pointer
and the pptr pointer have been stored in the buffer but not flushed to the final output
destination.

See Also streambuf::pptr, streambuf::setp, streambuf::out_waiting

streambuf::pbump

Protected —
void pbump(int nCount);
END Protected

Parameter
nCount The number of bytes to increment the put pointer. May be positive or
negative.

Remarks
Increments the put pointer. No bounds checks are made on the result.

See Also streambuf::gbump, streambuf::setp

streambulf::pptr

Protected —
char* pptr() const;
END Protected

Return Value
Returns a pointer to the first byte of the put area. This pointer is known as the put
pointer and is the destination for the next character(s) sent to the streambuf object.

See Also streambuf::epptr, streambuf::pbase, streambuf’::setp

105

streambuf: :sbumpc

streambuf::sbumpc
int sbumpc();

Return Value
Returns the current character, then advances the get pointer. Returns EOF if the get
pointer is currently at the end of the sequence (equal to the egptr pointer).

See Also streambuf::epptr, streambuf::gbump

streambuf::seekoff

virtual streampos seekoff(streamoff off, ios::seek_dir dir, int nMode = ios::in | ios::out);

Return Value
The new position value. This is the byte offset from the start of the file (or string). If
both ios::in and ios::out are specified, the function returns the output position. If the
derived class does not support positioning, the function returns EOF.

Parameters
off The new offset value; streamoff is a typedef equivalent to long.

dir One of the following seek directions specified by the enumerated type seek_dir:
o jos::beg Seek from the beginning of the stream.
e jos::cur Seek from the current position in the stream.
o jos:iend Seek from the end of the stream.

nMode An integer that contains a bitwise OR () combination of the enumerators
ios::in and ios::out.

Remarks
Changes the position for the streambuf object. Not all derived classes of streambuf
need to support positioning; however, the filebuf, strstreambuf, and stdiobuf classes
do support positioning.

Classes derived from streambuf often support independent input and output position
values. The nMode parameter determines which value(s) is set.

Default Implementation
Returns EOF.

See Also streambuf::seekpos

106

streambuf::seekpos

virtual streampos seekpos(streampes pos, int nMode = ios::in | ios::out);

Return Value
The new position value. If both ies::in and ios::out are specified, the function returns
the output position. If the derived class does not support positioning, the function
returns EOF,

Parameters
pos The new position value; streampos is a typedef equivalent to long.

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the OR (|) operator. See ofstream::ofstream for a listing of the
enumerators.

Remarks
Changes the position, relative to the beginning of the stream, for the streambuf
object. Not all derived classes of streambuf need to support positioning; however, the
filebuf, strstreambuf, and stdiobuf classes do support positioning.

Classes derived from streambuf often support independent input and output position
values. The nMode parameter determines which value(s) is set.

Default Implementation
Calls seekoff((streamoff) pos, ios::beg, nMode). Thus, to define seeking in a
derived class, it is usually necessary to redefine only seekoff.

See Also streambuf::seekoff

streambuf’::setb

streambuf::setb

Protected —
void setb(char* pb, char®* peb, int nDelete =0);
END Protected

Parameters
pb The new value for the base pointer.
peb The new value for the ebuf pointer.

nDelete Flag that controls automatic deletion. If nDelete is not 0, the reserve area
will be deleted when: (1) the base pointer is changed by another setb call, or (2)
the streambuf destructor is called.

Remarks
Sets the values of the reserve area pointers. If both pb and peb are NULL, there is no
reserve area. If pb is not NULL and peb is NULL, the reserve area has a length of 0.

See Also streambuf::base, streambuf::ebuf

107

streambuf::setbuf

streambuf::setbuf

virtual streambuf* setbuf(char* pr, int nLength);

Return Value
A streambuf pointer if the buffer is accepted; otherwise NULL.

Parameters
pr A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

Remarks
Attaches the specified reserve area to the streambuf object. Derived classes may or
may not use this area.

Defauit Inplementation
Accepts the request if there is not a reserved area already.

streambuf::setg

Protected —
void setg(char* peb, char* pg, char* peg);
END Protected)

Parameters
peb The new value for the eback pointer.

pg The new value for the gptr pointer.
peg The new value for the egptr pointer.

Remarks
Sets the values for the get area pointers.

See Also streambuf::eback, streambuf::gptr, streambuf;:egptr

streambuf::setp

Protected —

void setp(char* pp, char* pep);
END Protected

Parameters
pp The new value for the pbase and pptr pointers.

pep The new value for the epptr pointer.

108

streambuf::snextc

Remarks
Sets the values for the put area pointers.

See Also streambuf::pptr, streambuf::pbase, streambuf::epptr

streambuf::sgetc

int sgetc();

Remarks
Returns the character at the get pointer. The sgetc function does not move the get
pointer. Returns EOF if there is no character available.

See Also streambuf::sbumpc, streambuf::sgetn, streambuf::snextc,
streambuf::stossc

streambuf::sgetn
int sgetn(char* pch, int nCount);

Return Value
The number of characters fetched.

Parameters
pch A pointer to a buffer that will receive characters from the streambuf object.

nCount The number of characters to get.

Remarks
Gets the nCount characters that follow the get pointer and stores them in the area
starting at pch. When fewer than nCount characters remain in the streambuf object,
sgetn fetches whatever characters remain. The function repositions the get pointer to
follow the fetched characters.

See Also streambuf::sbumpc, streambuf::sgetc, streambuf::snextc,
streambuf::stossc

streambuf::snextc

int snextc();

Return Value
First tests the get pointer, then returns EOF if it is already at the end of the get area.
Otherwise, it moves the get pointer forward one character and returns the character

109

streambuf::sputbackc
that follows the new position. It returns EOF if the pointer has been moved to the end
of the get area.

See Also streambuf::sbumpc, streambuf::sgetc, streambuf::sgetn,
streambuf::stossc

streambuf::sputbackc

int sputbacke(char c#);

Return Value
EOF on failure.

Parameter
ch The character to be put back to the streambuf object.

Remarks
Moves the get pointer back one character. The ch character must match the character
just before the get pointer.

See Also streambuf::sbumpc, streambuf::pbackfail

streambuf::sputc
int sputc(int nCh);

Return Value
The number of characters successfully stored; EOF on error.

Parameter
nCh The character to store in the streambuf object.

Remarks
Stores a character in the put area and advances the put pointer.

This public function is available to code outside the class, including the classes
derived from ios. A derived streambuf class can gain access to its buffer directly by
using protected member functions.

See Also streambuf::sputn

110

streambuf::streambuf

streambuf::sputn

int sputn(const char* pch, int nCount);

Return Value
The number of characters stored. This number is usually nCount but could be less if
an error occurs.

Parameters
pch A pointer to a buffer that contains data to be copied to the streambuf object.

nCount The number of characters in the buffer.

Remarks
Copies nCount characters from pch to the streambuf buffer following the put pointer.
The function repositions the put pointer to follow the stored characters.

See Also streambuf::sputc

streambuf’::stossc

void stossc();

Remarks
Moves the get pointer forward one character. If the pointer is already at the end of the
get area, the function has no effect.

See Also streambuf::sbumpc, streambuf::sgetn, streambuf::snextc,
streambuf::sgetc

streambuf::streambuf

Protected —»>
streambuf();

streambuf(char* pr, int nlength);
END Protected

Parameters
pr A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

m

streambuf::~streambuf

Remarks
The first constructor makes an uninitialized streambuf object. This object is not
suitable for use until a setbuf call is made. A derived class constructor usually calls
setbuf or uses the second constructor.

The second constructor initializes the streambuf object with the specified reserve
area or marks it as unbuffered.

See Also streambuf::setbuf

streambuf::~streambuf

Protected —

virtual ~streambuf();
END Protected

Remarks
The streambuf destructor flushes the buffer if the stream is being used for output.

streambuf::sync

virtual int sync();

Return Value
EOF if an error occurs.

Remarks
The virtual sync function, with the overflow and underflow functions, defines the
characteristics of the streambuf-derived class. Each derived class might implement
sync differently, but the interface with the calling stream class is the same.

The sync function flushes the put area. It also empties the get area and, in the
process, sends any unprocessed characters back to the source, if necessary.

Default Implementation
Returns O if the get area is empty and there are no more characters to output;
otherwise, it returns EOF.

See Also streambuf::overflow

streambuf::unbuffered

Protected —
void unbuffered(int nState);

int unbuffered() const;
END Protected

112

streambuf::underflow

Parameter
nState The value of the buffering state variable; 0 = buffered, nonzero = unbuffered.

Remarks
The first overloaded unbuffered function sets the value of the streambuf object’s
buffering state. This variable’s primary purpose is to control whether the allocate
function automatically allocates a reserve area.

The second function returns the current buffering state variable.

See Also streambuf::allocate, streambuf::doallocate

streambuf::underflow

mfvirtual int underflow() = 0;

Remarks
The virtual underflow function, with the sync and overflow functions, defines the
characteristics of the streambuf-derived class. Each derived class might implement
underflow differently, but the interface with the calling stream class is the same.

The underflow function is most frequently called by public streambuf functions like
sgetc and sgetn when the get area is empty, but other classes, including the stream
classes, can call underflow anytime.

The underflow function supplies the get area with characters from the input source.
If the get area contains characters, underflow returns the first character. If the get
area is empty, it fills the get area and returns the next character (which it leaves in
the get area). If there are no more characters available, then underflow returns EOF
and leaves the get area empty.

In the strstreambuf class, underflow adjusts the egptr pointer to access storage that
was dynamically allocated by a call to overflow.

Default Implementation
No default implementation. Derived classes must define this function.

113

class strstream

class strstream

#include <strstrea.h>

The strstream class supports I/O streams that have character arrays as a source and
destination. You can allocate a character array prior to construction, or the
constructor can internally allocate a dynamic array. You can then use all the input
and output stream operators and functions to fill the array.

Be aware that a put pointer and a get pointer are working independently behind the
scenes in the attached strstreambuf class. The put pointer advances as you insert
fields into the stream’s array, and the get pointer advances as you extract fields. The
ostream::seekp function moves the put pointer, and the istream::seekg function
moves the get pointer. If either pointer reaches the end of the string (and sets the
ios::eof flag), you must call clear before seeking.

Construction/Destruction — Public Members
strstream Constructs a strstream object.

~strstream Destroys a strstream object.

Other Functions — Public Members
peount Returns the number of bytes that have been stored in the stream’s buffer.
rdbuf Returns a pointer to the stream’s associated strstreambuf object.

str Returns a pointer to the string stream’s character buffer and freezes it.

See Also strstreambuf, streambuf, istrstream, ostrstream

Member Functions

strstream::pcount

int pcount() const;

Return Value
Returns the number of bytes stored in the buffer. This information is especially useful
when you have stored binary data in the object.

114

strstream::rdbuf

strstreambuf* rdbuf() const;

Return Value
Returns a pointer to the strstreambuf buffer object that is associated with this stream.
This is not the character buffer; the strstreambuf object contains a pointer to the
character area.

See Also strstream::str

strstream::strstream

strstream::str

char* str();

Return Value
Returns a pointer to the internal character array. If the stream was built with the
void-argument constructor, then str freezes the array. You must not send characters to
a frozen stream, and you are responsible for deleting the array. You can unfreeze the
the stream by calling rdbuf->freeze(0).

If the stream was built with the constructor that specified the buffer, the pointer
contains the same address as the array used to construct the ostrstream object.

See Also strstreambuf::freeze, strstream::rdbuf

strstream::strstream

strstream();
strstream(char* pch, int nLength, int nMode);

Parameters
pch A character array that is large enough to accommodate future output stream
activity.
nLength The size (in characters) of pch. If 0, pch is assumed to point to a null-
terminated array; if less than 0, the array is assumed to have infinite length.

nMode The stream creation mode, which must be one of the following enumerators
as defined in class ios:

o jos::in Retrieval begins at the beginning of the array.
e jos::out By default, storing begins at pch.

o ijos::ate The pch parameter is assumed to be a null-terminated array; storing
begins at the NULL character.

e ios::app Same as ios::ate.

115

strstream::~strstream

The use of the ios::in and ios::out flags is optional for this class; both input and
output are implied.

Remarks

The first constructor makes an strstream object that uses an internal, dynamic buffer
that is initially empty.

The second constructor makes an strstream object out of the first nLength characters
of the psc buffer. The stream will not accept characters once the length reaches
nLength.

strstream.:: ~strstream

~strstream();

Remarks
Destroys a strstream object and its associated strstreambuf object, thus releasing all
internally allocated memory. If you used the void-argument constructor, the internally
allocated character buffer is released; otherwise, you must release it.

An internally allocated character buffer will not be released if it was previously
frozen by calling rdbuf->freeze(0).

See Also strstream::rdbuf

116

strstreambuf::freeze

class strstreambuf

#include <strstrea.h>

The strstreambuf class is a derived class of streambuf that manages an in-memory
character array.

The file stream classes, ostrstream, istrstream, and strstream, use strstreambuf
member functions to fetch and store characters. Some of these member functions are
virtual functions defined for the streambuf class.

The reserve area, put area, and get area were introduced in the streambuf class
description. For strsteambuf objects, the put area is the same as the get area, but the
get pointer and the put pointer move independently.

Construction/Destruction — Public Members
strstreambuf Constructs a strstreambuf object.

~strstreambuf Destroys a strstreambuf object.

Other Functions — Public Members
freeze Freezes a stream.

str Returns a pointer to the string.

See Also istrstream, ostrstream, filebuf, stdiobuf

Member Functions

strstreambuf::freeze

void freeze(intn=1);

Parameter
n A 0 value permits automatic deletion of the current array and its automatic growth
(if it is dynamic); a nonzero value prevents deletion.

Remarks
If a strstreambuf object has a dynamic array, memory is usually deleted on
destruction and size adjustment. The freeze function provides a way to prevent that
automatic deletion. Once an array is frozen, no further input or output is permitted.
The results of such operations are undefined.

The freeze function can also unfreeze a frozen buffer.

See Also strstreambuf::str

17

strstreambuf’ :str

strstreambuf::str

char* str();

Return Value

Returns a pointer to the object’s internal character array. If the strstreambuf object
was constructed with a user-supplied buffer, that buffer address is returned. If the
object has a dynamic array, str freezes the array. You must not send characters to a
frozen strstreambuf object, and you are responsible for deleting the array. If a
dynamic array is empty, then str returns NULL.

Use the freeze function with a 0 parameter to unfreeze a strstreambuf object.

See Also strstreambuf::freeze

strstreambuf::strstreambuf

strstreambuf();

strstreambuf(int nByzes);

strstreambuf(char* pch, int n, char* pstart =0);

strstreambuf(unsigned char* puch, int n, unsigned char* pustart = 0);
strstreambuf(signed char* psch, int n, signed char* psstart = 0);
strstreambuf(void* (*falloc)(long), void (*{free)(void*));

Parameters

118

nBytes The initial length of a dynamic stream buffer.

pch, puch, psch A pointer to a character buffer that will be attached to the object.
The get pointer is initialized to this value.

n One of the following integer parameters:

e positive n bytes, starting at pch, is used as a fixed-length stream buffer.

e 0 The pch parameter points to the start of a null-terminated string that
constitutes the stream buffer (terminator excluded).

o negative The pch parameter points to a stream buffer that continues
indefinitely.
e pstart, pustart, psstart The initial value of the put pointer.

falloc A memory-allocation function with the prototype void* falloc(long). The
default is new.

ffree A function that frees allocated memory with the prototype void ffree(void*).
The default is delete.

strstreambuf::~strstreambuf

Remarks
The four streambuf constructors are described as follows:
Constructor Description
strstreambuf() Constructs an empty strstreambuf object

with dynamic buffering. The buffer is
allocated internally by the class and grows as
needed, unless it is frozen.

strstreambuf(int) Constructs an empty strstreambuf object
with a dynamic buffer n bytes long to start
with. The buffer is allocated internally by the
class and grows as needed, unless it is frozen.

strstreambuf(char*, int, char*) Constructs a strstreambuf object from
already-allocated memory as specified by the
arguments. There are constructor variations
for both unsigned and signed character
arrays.

strstreambuf(void *(¥), void(*)) Constructs an empty strstreambuf object
with dynamic buffering. The falloc function
is called for allocation. The long parameter
specifies the buffer length and the function
returns the buffer address. If the falloc
pointer is NULL, operator new is used. The
[free function frees memory allocated by
falloc. If the ffree pointer is NULL, the
operator delete is used.

strstreambuf::~strstreambuf

~strstreambuf();

Remarks
Destroys a strstreambuf object and releases internally allocated dynamic memory
unless the object is frozen. The destructor does not release user-allocated memory.

119

A

adjustfield data member, ios class 56
allocate member function, streambuf class 100
Arguments, inserting into streams, ostream::operator<<
86
Arrays
internal character, returning pointer to,
ostrstream::str 93
strstreambuf objects, preventing memory deletion,
strstreambuf::freeze 117
Assignment operator
istream class 73
ostream class 90
attach member function
filebuf class 31
fstream class 35
ifstream class 41
ofstream class 76
Attaching filebuf objects to specified open file,
filebuf::attach 31
Attaching streams
to already open file, ostream::attach 76
to specified open file, ifstream::attach 41
to specified open, filefstream::attach 35

bad member function

ios class 48

ofstream class 9
badbit member function, ios class, ios::rdstate 53
base member function, streambuf class 100
basefield data member, ios class 57
beg, (beg, operator), ios class, streambuf::seekpos 107
Binary output files, output streams 10, 11
Binary/text mode, setting

filebuf objects, filebuf::setmode 34

stream's filebuf object, ifstream::setmode 45

streams, ios& binary 57

streams, ofstream::setmode 80
bitalloc member function, ios class 48

Index

blen member function, streambuf class 100
Book
overview v
Buffer-deletion flags, assigning value for stream,
ios::delbuf 49
Buffering
output streams, effects 10
state, setting for streambuf object,
stream::unbuffered 112
Buffers, flushing, ostream::flush 83
Bytes, extracting from streams, istream 69

C

C++ synchronizing streams with standard C stdio
streams, ios::sync_with_stdio 54
Changing position
relative to stream beginning, streambuf::seekpos
107
streambuf objects, streambuf::seekoff 106
streams, ostream::seekp 85
Character arrays, returning pointer to string stream's,
istrstream::str 75
Characters
extracting
from stream, discarding, istream::ignore 67
putting back into stream, istream::putback 69
fill, setting for stream, setfill 58
inserting into output stream, ostream::put 85
newline, inserting into output streams, ostream&
endl 87
null-terminator, inserting into output streams,
ostream& ends 87
returning number extracted by last unformatted
input function, istream::gcount 65
returning without extracting, istream::peek 69
clear member function
ios class 48
ofstream class 9

121

Index

122

Clearing

error-bits, ios::clear 48
format flags
ios::unsetf 55
streams 58

close member function

filebuf class 32
fstream::close 36
ifstream::close 42
ofstream::close 77
fstream class 36
ifstream class 42
input streams 18
ofstream class 9, 77

Closing files

associated with filebuf object, fstream::close 36, 77
attached to filebuf object, filebuf::close 32
filebuf objects, ifstream::close 42

Constructors

filebuf 32
fstream 36
ifstream 42
ios 52
iostream 61
istream 68
istrstream 74
ofstream 77
ostream 84
ostrstream 91
stdiobuf 94
stdiostream 97
streambuf 111
strstream 115
strstreambuf 118

Counting bytes stored in stream buffers,

ostrstream::pcount 92

Creating

filebuf objects to specified open file, filebuf::filebuf
32

fstream objects, fstream::fstream 36

ifstream objects, ifstream::ifstream 42

Tostream_init objects, Jostream_init::Iostream_init
63

istream objects, istream::istream 68

istream_withassign objects,
istream_withassign::istream_withassign 72

istrstream objects, istrstream::istrstream 74

ofstream objects, ofstream::ofstream 77

ostream objects, iostream::iostream 61

Creating (continued)
ostream objects, ostream::ostream 84
ostream_withassign objects,
ostream_withassign::ostream_withassign 89
ostrstream objects, ostrstream::ostrstream 91
output file streams 3
stdiobuf objects, stdiobuf::stdiobuf 94
stdiostream objects, stdiostream::stdiostream 97
streambuf objects, streambuf::streambuf 111
strstream objects, strstream::strstream 115
strstreambuf objects, strstreambuf::strstreambuf
118
Customizing output stream manipulators 12

D

Data members, ios class 56
Data, extracting from streams, istream::get 65, 66
dbp member function, streambuf class 101
Debugging using stdout, streambuf::dbp 101
delbuf member function, ios class 49
Destroying :
fstream objects, fstream::~fstream 38
ifstream objects, ifstream::~ifstream 44
iostream objects, iostream::~iostream 62
Tostream_init objects, Iostream_init::~Jostream_init
63
istream objects, istream::~istream 68
istream_withassign objects,
istream_withassign::~istream_withassign 73
istrstream objects, istrstream::~istrstream 75
ofstream objects, ofstream::~ofstream 79
ostream_withassign objects,
ostream_withassign::~ostream_withassign 90
ostrstream objects, ostrstream::~ostrstream 92
stdiobuf objects, stdiobuf::~stdiobuf 95
stdiostream objects, stdiostream::~stdiostream 97
streambuf objects, streambuf::~streambuf 112
strstream objects, strstream::~strstream 116
strstreambuf objects, strstreambuf::~strstreambuf
119
Destructors
~filebuf 33
~fstream 38
~ifstream 44
~jos 52
~iostream 62
~Jostream_init 63
~istream 68

Destructors (continued)
~istream_withassign 73
~istrstream 75
~ofstream 79
~ostream 84
~ostream_withassign 90
~ostrstream 92
~stdiobuf 95
~stdiostream 97
~streambuf 112
~strstream 116
~strstreambuf 119

doallocate member function, streambuf class 101

E

eatwhite member function, istream class 65
eback member function, streambuf class 101
ebuf member function, streambuf class 102
egptr member function, streambuf class 102
eof member function

ios class 49

ofstream class 9
eofbit member function, ios class, ios::rdstate 53
epptr member function, streambuf class 102
Error bits

setting or clearing, ios::clear 48

testing if clear, jos::good 51
Error testing, I/O, ios::fail 49
Errors

extraction 14

I/0, testing for serious, ios::bad 48

processing, ofstream class member functions 9
Extracting white space from streams, istream& ws 71
Extraction operators

input streams 14

istream class 70

overloading, input streams 18

testing for 14

using 14

F

fail member function
ios class 49
ofstream class 9

failbit member function
fstream::open 38
ifstream::attach 41

Index

failbit member function (continued)
ifstream::open 44
ios::rdstate 53
istream::get 65
ofstream::attach 76
ofstream::open 79
failbit member function, ios class, fstream::attach 35
fd member function
filebuf class 32
fstream class 36
ifstream class 42
ofstream class 77
File descriptors
associated with stream, returning, ifstream::fd 42
associated with streams, returning, fstream::fd 36
returning for filebuf object, filebuf::fd 32
streams, returning, ofstream::fd 77
filebuf class
consume defined 103
described 31
member functions
~filebuf 33
attach 31
close 32, 36,42,77
fd 32
filebuf 32
is_open 33
open 33
setmode 34
filebuf constructor 32
filebuf objects
attaching reserve area, fstream::setbuf 39
attaching specified reserve area to stream,
ifstream::setbuf 45
buffer associated with stream, returning pointer,
ifstream::rdbuf 45
closing and disconnecting, ifstream::close 42
closing associated file, fstream::close 36
closing connected file, filebuf::~filebuf 33
connecting to specified open file, filebuf::attach 31
constructors, ifstream::ifstream 42
creating, filebuf::filebuf 32
destroying, ifstream::~ifstream 44
disconnecting file and flushing, filebuf::close 32
fstream constructors, fstream::fstream 36
opening disk file for stream, ifstream::open 44
returning associated file descriptor, filebuf::fd 32

123

Index

filebuf objects (continued)
setting binary/text mode
filebuf::setmode 34
fstream::setmode 39
streams
attaching specified reserve area, ofstream::setbuf
80
closing, ofstream::close 77
opening file for attachment, ofstream::open 79
returning pointer to associated, ofstsream::rdbuf
80
testing for connection to open disk file,
filebuf::is_open 33
Files
closing
filebuf objects, filebuf::~filebuf 33
disconnecting from filebuf object, filebuf::close 32
end of, testing, ios::eof 49
name to be opened during construction,
filebuf::open 33
open
testing streams, ofstream::is_open 77
testing to attach to stream, ifstream::is_open 44
opening, attach to stream's filebuf object,
fstream::open 38
testing
for connection to open, filebuf::is_open 33
for stream attachment, fstream::is_open 38
fill member function, ios class 50
Flags
buffer-deletion, assigning value for stream,
ios::delbuf 49
error-state, setting or clearing, ios::clear 48
format clearing, ios::unsetf 55
format flag bits, defining, ios::bitalloc 48
output file stream 7, 8
setting specified format bits, ios::setf 54
stream's internal variable, setting, ios::flags 50
flags member function, ios class 50
floatfield data member, ios class 57
Floating point
format flag bits, obtaining, ios::floatfield 57
Floating-point
precision variable
setting for stream, setprecision 59
sefting, ios::precision 52
flush member function, ostream class 83

124

Flushing
output buffers, ostream& flush 88
stream buffers, ostream::flush 83
Format
bits, setting, ios::setf 54
conversion base, setting 58
flag bits, defining, ios::bitalloc 48
Format flags
clearing, ios::unsetf 55
streams
clearing specified, resetiosflags 58
setting, setiosflags 59
freeze destructor, 92
freeze member function, strstreambuf class 117
fstream class
constructor 36
described 18, 35
member functions
~fstream 38
attach 35
close 36
fd 36
fstream 36
is_open 38
open 38
rdbuf 39
setbuf 39
setmode 39
fstream objects, creating, fstream::fstream 36

G

gbump member function, streambuf class 102
geount member function, istream class 65
Get areas
returning
lower bound, streambuf::eback 101
number of character available for fetching,
streambuf::in_avail 103
pointer to byte after last, streambuf::egptr 102
setting pointer values, streambuf::setg 108
get member function
input streams 15
istream class 65
Get pointers
advancing after returning current character,
streambuf::sbumpc 106
following fetched characters, streambuf::sgetn 109
getting value of, istream::tellg 70

Get pointers (continued)
incrementing, streambuf::gbump 102
moving back, streambuf::sputbackc 110
moving forward one character, streambuf::stossc
111
returning character at, streambuf::sgetc 109
returning to next character to be fetched from
streambuf, streambuf::gptr 103
testing, streambuf::snextc 109
getline member function
input streams 16
istream class 66
Getting stream position, ostream::tellp 85
good member function
ios class 51
ofstream class 9
goodbit member function, ios class, ios::rdstate 53
gptr member function, streambuf class 103

hex member function, ios class, ios::bitalloc 48
HR manipulator

ios class 57, 58

istream class 71

ostream class 87, 88

I/0
called before insert operations, ostream::opfx 84
clearing format flags, ios::unsetf 55
errors

determining if error bits are set, ios::operator !()

56
returning current specified error state,
ios::rdstate 53
testing for serious, ios::bad 48
testing if error bits are clear, ios::good 51
testing, ios::fail 49
filebuf objects, closing associated file,
fstream::close 36
fill character, setting, setfill 58
format flags
clearing specified, resetiosflags 58
setting, setiosflags 59
insert operations, called after, ostream::0sfx 84
masks, padding flag bits, ios::adjustfield 56

Index

/O (continued)

obtaining
floating-point format flag bits, ios::floatfield 57
radix flag bits, ios::basefield 57
ostream objects, creating, iostream::iostream 61
programming, C/C++ 1
providing object state variables without providing
class derivation, ios::xalloc 56
setting
floating-point precision variable, ios::precision
52
specified format bits, ios::setf 54
stream's mode to text, ios& text 60
stream buffers, returning number of bytes stored in,
ostrstream::pcount 92
stream classes See iostream classes
streams
assigning istream object to istream_withassign
object, istream_withassign::operator = 73
attaching to specified open file, fstream::attach
35
called after extraction operations, istream::isfx
68
called before extraction operations, istream::ipfx
67
changing get pointer,istream::seekg 69
extracting bytes from streams,istream::read 69
extracting data from, istream::get 65, 66
extracting white space from, istream::eatwhite
65
extracting, discarding characters, istream::ignore
67
extraction operators, istream::operator>> 70
getting value of get pointer, istream::tellg 70
manipulators, custom 21
putting extracted character back into stream,
istream::putback 69
returning character without extracting,
istream::peek 69
setting internal field width variable 55
setting internal floating-point precision variable,
setprecision 59
synchronizing C++ with standard C stdio,
ios::sync_with_stdio 54
synchronizing internal buffer with external
character source, istream::sync 70
tying to specified ostream, ios::tie 54

125

Index

126

/O (continued)
testing for end-of-file, ios::eof 49

virtual overflow function, streambuf::overflow 103

ifstream class
described 13, 41
member functions
~ifstream 44
attach 41
close 42
fd 42
ifstream 42
is_open 44
open 44
rdbuf 45
setbuf 45
setmode 45
ifstream constructor 42
ifstream objects
creating, ifstream::ifstream 42
destroying, ifstream::~ifstream 44
ignore member function, istream class 67
in member function, ios class
streambuf::seekoff 106
streambuf::seekpos 107
in_avail member function, streambuf class 103
init member function, ios class 51
Input streams
described 13
extraction errors 14
extraction operators 14, 18
ifstream class 13
istream class 13
istrstream class 13
manipulators 14
manipulators, custom 21
objects, constructing
input file stream constructors 13
input string stream constructors 14
Inserting

arguments into streams, ostream::operator<< 86

characters into output stream, ostream::put 85
insertion operators

ostream class 86

overloading 11, 12

using 4
Internal character arrays

Internal fill character variable, setting, ios::fill 50

ios class _

constructor, ios::ios 52
data members

adjustfield 56

basefield 57

floatfield 57

operator 56
described 46
manipulators, HR 57
member functions

~ios 52

bad 48

badbit 53

bitalloc 48

clear 48

delbuf 49

eof 49

eofbit 53

fail 49

failbit 35, 38, 41, 44, 53, 65, 76,79

fill 50

flags 50

good 51

goodbit 53

hex 48

in 106, 107

init 51

ios 52

iword 52

left 48

nocreate 38, 44, 79

out 106, 107

precision 52

pword 53

rdbuf 53

rdstate 53

setf 54

stdio 54, 84

sync_with_stdio 54

tic 54

unitbuf 84

unsetf 55

width 55

xalloc 56
operators 56

returning pointer from stream, ostrstream::str 93 virtual destructor, ios::~ios 52
strstream class, returning pointer, strstream::str 115 ios constructor 52
Internal field width variable, setting, ios::width 55 ios enumerators 53

iostream class
described 61
member functions
~iostream 62
~[ostream_init 63
iostream 61
Tostream_init 63
output streams, manipulators 20
iostream class library 19-23
iostream classes
flags 7, 8
fstream class 18
hierarchy 2
input streams 14
described 13
extraction errors 14
extraction operators 14, 18
ifstream class 13
istream class 13
istrstream class 13
member functions 15-17
objects, constructing 13, 14
output streams
binary output files 10, 11
buffering, effects 10
deriving 23-28
format control 47
insertion operator, overloading 11, 12
insertion operators 4
manipulators 18-22
manipulators, custom 12
objects, constructing 3
ofstream class 3
ofstream class member functions 7-9
ostream class 2
ostrstream class 3
strstream class 18
use 1
iostream constructor 61
iostream objects, destroying, iostream::~iostream 62
Iostream_init class
described 63
member function, iostream class 63
Iostream_init objects
constructor, Iostream_init::Iostream_init 63
destructor, Iostream_init::~Jostream_init 63
ipfx member function, istream class 67

is_open member function

filebuf class 33

fstream class 38

ifstream class 44

ofstream class 77
isfx member function, istream class 68
istream class

described 13, 64

extraction operators, istream::operator>> 70

manipulators, HR 71
member functions
~istream 69
~istream_withassign 73
close 18
eatwhite 65
geount 65
get 15,65
getline 16, 66
ignore 67
ipfx 67
isfx 68
istream 68
istream_withassign 72
open 15
peek 69
putback 69
read 16, 69
seekg 17, 69
sync 70
tellg 17,70
operators 70, 73
istream constructor 68
istream objects

assigning to istream_withassign object,

istream_withassign::operator = 73
creating, istream::istream 68
destroying, istream::~istream 68

istream_withassign class described 72

Index

istream_withassign member function, istream class 72

istream_withassign objects

creating, istream_withassign::istream_withassign

72
destroying,

istream_withassign::~istream_withassign 73

istrstream class
described 13, 74
member functions
~istrstream 75
istrstream 74

127

Index

128

istrstream class (continued)
member functions (continued)
rdbuf 75
str 75
istrstream constructor 74
istrstream objects
creating, istrstream::istrstream 74
destroying, istrstream::~istrstream 75
iword member function, ios class 52

L

left member function, ios class, ios::bitalloc 48

Manipulators
argument, more than one 20
custom, input streams 21
derived stream classes, using with 21
input streams 14
ios class 57
istream class 71
ostream class 87, 88
output stream, custom 12
with one argument 18-20
with one parameter 19
Masks
current radix flag bits, ios::basefield 57
floating-point format flag bits, ios::floatfield 57
padding flag bits, ios::adjustfield 56
Member functions
filebuf class 31-34
fstream class 35-39
ifstream class 41-45
ios class 48-56
iostream class 61-63
Tostream_init class 63
istream class
close 18
get 15
getline 16
open 15
read 16
seekg 17
tellg 17
istrstream class 74, 75

Member functions (continued)
ofstream class 76—80
bad 9
clear 9
close 9
described 7
eof 9
fail 9
good 9
put 8
rdstate 9
seekp 8
tellp 8
write 8
ostream class 83-90
ostrstream class 91-93
stdiobuf class 94, 95
stdiostream class 96, 97
streambuf class 100-113
strstream class 114-116
strstreambuf class 117-119
Memory allocation
preventing memory deletion for strstreambuf object
with dynamic array, strstreambuf::freeze 117
Microsoft Windows
and iostream programming 2

nocreate member function
ios class
fstream::open 38
ifstream::open 44
ofstream::open 79

0

ofstream class
described 2, 76
flags 7, 8
member functions
~ofstream 79
attach 76
bad 9
clear 9
close 9,77
described 7
eof 9
fail 9

ofstream class (continued)
member functions (continued)
fd 77
good 9
is_open 77
ofstream 77
open 7,79
put 8
rdbuf 80
rdstate 9
seekp 8
setbuf 80
setmode 80
tellp 8
write 8
ofstream constructor 77
ofstream objects
creating, ofstream::ofstream 77
destroying, fstream::~fstream 38
destroying, ofstream::~ofstream 79
open member function
filebuf class 33
fstream class 38
ifstream class 44
input streams 15
ofstream class 7, 79
Opening files
for attachment to stream's filebuf object
ifstream::open 44
ofstream::open 79
fstream::open 38
operator data member, ios class 56
Operators
assignment operator
istream class 73
ostream class 90
extraction
istream class 70
overloading 18
insertion operators, overloading 11, 12
ios class 56
void* operator, ios class 56
opfx member function, ostream class 84
osfx member function, ostream class 84
ostream class
described 2, 82
manipulators, HR 87, 88

Index

ostream class (continued)
member functions
~ostream 84
~ostream_withassign 90
flush 83
opfx 84
osfx 84
ostream 84
ostream_withassign 89
put 85
seekp 85
tellp 85
write 86
operators 86, 90
ostream classes described 2
ostream constructor 84
ostream objects
assigning to ostream_withassign object,
ostream_withassign::operator= 90
creating
iostream::iostream 61
ostream::ostream 84
destroying, ostream::~ostream 84
ostream, tying stream to, ios::tie 54
ostream_withassign class, described 89
ostream_withassign member function, ostream class
89
ostream_withassign objects
assigning specified ostream object to,
ostream_withassign::operator= 90
creating, ostream_withassign::ostream_withassign
89
destroying,
ostream_withassign::~ostream_withassign 90
ostrstream class
described 3, 91
member functions
~ostrstream 92
ostrstream 91
pcount 92
rdbuf 93
str 93
returning pointer to internal character array,
ostrstream::str 93
ostrstream constructor 91
ostrstream objects
creating, ostrstream::ostrstream 91
destroying, ostrstream::~ostrstream 92

129

Index

130

out member function
ios class
streambuf::seekoff 106
streambuf::seekpos 107
out_waiting member function, streambuf class 103
Output streams
binary output files 10, 11
buffering, effect 10
buffering, effects 10
constructing 3
deriving, streambuf class 23-28
format control 4-7
insertion
operators 11, 12
iostream classes 4
manipulators
argument, more than one 20
custom 12
with one argument 18, 20
with one parameter 19
member functions
good 9
objects, constructing
output file stream constructors 3
output string stream constructors 3
ofstream class 3
flags 7,8
ofstream member functions
bad 9
clear 9
close 9
described 7
eof 9
fail 9
open 7
put 8
rdstate 9
seekp 8
tellp 8
write 8
ostream class 2
ostrstream class 3
overflow member function, streambuf class 103
Overloading
extraction operators 18
insertion operators 11, 12
Overview of book v

P

pbackfail member function, streambuf class 104
pbase member function, streambuf class 105
pbump member function, streambuf class 105
pcount member function
ostrstream class 92
strstream class 114
peek member function, istream class 69
Pointers
get
advancing past spaces, tabs, istream::eatwhite
65
changing for stream, istream::seekg 69
getting value, istream::tellg 70
incrementing, streambuf::gbump 102
put, incrementing, streambuf::pbump 1035
repositioning external file pointer,
streambuf::pbackfail 104
returning, stdiobuf object associated with stream,
stdiostream::rdbuf 96
returning to
filebuf buffer object associated with stream,
ofstream::rdbuf 80
filebuf object, fstream::rdbuf 39
internal character array from stream,
ostrstream::str 93
stream's filebuf buffer object, ifstream::rdbuf 45
streambuf objects associated with stream,
ios::rdbuf 53
strstreambuf buffer object, ostrstream::rdbuf 93
pptr member function, streambuf class 105
precision member function, ios class 52
Predefined output stream objects
cerr 2
clog 2
cout 2
Put areas
returning
first byte of, streambuf::pptr 105
number of characters available for fetching,
streambuf::out_waiting 103
pointer to byte after last, streambuf::epptr 102
pointer to start of, streambuf::pbase 105
setting pointer values, streambuf::setp 108
storing character, streambuf::sputc 110
put member function
ofstream class 8
ostream class 85

Put pointers
following stored characters, streambuf::sputn 111
incrementing, streambuf::pbump 105

putback member function, istream class 69

pword member function, ios class 53

rdbuf member function
fstream class 39
ifstream class 45
ios class 53
istrstream class 75
ofstream class 80
ostrstream class 93
stdiostream class 96
strs tream class 115
strstream class 115
rdstate member function
ios class 53
ofstream class 9
read member function
input streams 16
istream class 69
Reserve areas
allocating, streambuf::doallocate 101
attaching to
stream's filebuf object, ifstream::setbuf 45
streambuf object, streambuf::setbuf 108
returning pointer to byte after last, streambuf::ebuf
102
returning
pointer, streambuf::base 100
size in bytes, streambuf::blen 100
setting position values with, streambuf::setb 107
setting up, streambuf::allocate 100
Run-time, returning file pointer associated with
stdiobuf object 95

S

Sample programs, stream derivation 22-28
sbumpc member function, streambuf class 106
seekg member function

input streams 17

istream class 69
seekoff member function, streambuf class 106

Index

seekp member function
ofstream class 8
ostream class 85
seekpos member function, streambuf class 107
setb member function, streambuf class 107
setbuf member function
fstream class 39
ifstream class 45
ofstream class 80
streambuf class 108
setf member function, ios class 54
setg member function, streambuf class 108
setmode member function
filebuf class 34
fstream class 39
ifstream class 45
ofstream class 80
setp member function, streambuf class 108
Setting
binary/text mode
filebuf objects, filebuf::setmode 34
stream's filebuf object, fstream::setmode 39
stream's filebuf object, ifstream::setmode 45
streams, ios& binary 57
streams, ofstream::setmode 80
error-bits, ios::clear 48
format flags, streams, setioflags 59
stream's internal flags, ios::flags 50
streambuf object's buffering state,
streambuf::unbuffered 112
streams
fill character, setfill 58
format conversion base to 10, ios& dec 58
format conversion base to 16, ios& hex 58
format conversion base to 8, ios& oct 58
internal field width parameter, setw 59
internal field width variable, ios::width 55
internal floating-point precision variable,
setprecision 59
sgetc member function, streambuf class 109
sgetn member function, streambuf class 109
snextc member function, streambuf class 109
Special-purpose words table, providing index into
ios::iword 52
ios::;pword 53
sputbackc member function, streambuf class 110
sputc member function, streambuf class 110
sputn member function, streambuf class 111

131

Index

132

stdio member function
ios class
ios::sync_with_stdio 54
ostream:.0osfx 84
stdiobuf class
described 94
member functions
~stdiobuf 95
stdiobuf 94
stdiofile 95
stdiobuf constructor 94
stdiobuf objects
creating, stdiobuf::stdiobuf 94
destroying, stdiobuf::~stdiobuf 95
returning C run-time file pointer, stdiobuf::stdiofile
95
returning pointers, stdiostream::rdbuf 96
stdiofile member function, stdiobuf class 95
stdiostream class
described 96
member functions
~stdiostream 97
rdbuf 96
stdiostream 97
stdiostream constructor 97
stdiostream objects
creating, stdiostream::stdiostream 97
destroying, stdiostream::~stdiostream 97
stossc member function, streambuf class 111
str member function
istrstream class 75
ostrstream class 93
strstream class 115
strstreambuf class 118
Stream classes, deriving 22
Stream derivation sample program 22-28
streambuf class
consume defined 103
custom, deriving 22
defining characteristics of derived class
streambuf::underflow 113
streambuf::sync 112
described 98
get area
returning lower bound, streambuf::eback 101
returning number of character available for
fetching, streambuf::in_avail 103

streambuf class (continued)
get area (continued)
returning pointer to byte after last,
streambuf::epptr 102
setting pointer values, streambuf::setg 108
get pointer
following fetched characters, streambuf::sgetn
109
incrementing, streambuf::gbump 102
moving back, streambuf::sputbackc 110
moving forward one character, streambuf::snextc
109
moving forward one character, streambuf’:stossc
111
returning character at, streambuf::sgetc 109
returning to next character to be fetched,
streambuf::gptr 103
testing, streambuf::snextc 109
member functions
~streambuf 112
allocate 100
base 100
blen 100
dbp 101
doallocate 101
eback 101
ebuf 102
egptr 102
epptr 102
gbump 102
gptr 103
in_avail 103
out_waiting 103
overflow 103
pbackfail 104
pbase 105
pbump 105
pptr 105
sbumpc 106
seekoff 106
seekpos 107
setb 107
setbuf 108
setg 108
setp 108
sgetc 109
sgetn 109
snextc 109
sputbackc 110

streambuf class (continued)
member functions (continued)
sputc 110
sputn 111
stossc 111
streambuf 111
sync 70, 88, 112
unbuffered 112
underflow 113
output streams, deriving 23-28
put area
returning first byte, streambuf::pptr 105
returning pointer to start, streambuf::pbase 105
setting pointer values, streambuf::setp 108
storing character, streambuf::sputc 110
put pointer
following stored characters, streambuf::sputn
111
incrementing, streambuf::pbump 105
repositioning external file pointer,
streambuf::pbackfail 104
reserve area
attaching to object, streambuf::setbuf 108
returning pointer to byte after last,
streambuf::ebuf 102
returning pointer, streambuf::base 100
returning size in bytes, streambuf::blen 100
setting position values, streambuf::setb 107
setting up, streambuf::allocate 100
returning
current character and advancing get pointer,
streambuf::sbumpc 106
number of characters available for fetching,
streambuf::out_waiting 103
pointer to byte after last, streambuf::egptr 102
virtual
overflow function, streambuf::overflow 103
sync function, streambuf::sync 112
underflow function, streambuf::underflow 113
writing debugging information on stdout,
streambuf::dbp 101
streambuf constructor 111
Streambuf objects
associated with stream, returning pointer to,
ios::rdbuf 53
associating with stream, ios::init 51
changing position 107
changing position relative to stream beginning,
streambuf::seeckpos 107

Index

Streambuf objects (continued)
changing position, streambuf::seekoff 106
creating, streambuf::streambuf 111
reserve area, allocating, streambuf::doallocate 101
setting buffering state, streambuf::unbuffered 112
virtual destructor, streambuf::~streambuf 112
Streams
assigning istream object to istream_withassign
object, istream_withassign::operator = 73
associating streambuf object with, ios::init 51
attaching
to already open file, ofstream::attach 76
to specified open file, ifstream::attach 41
buffer-deletion flag, assigning value to, ios::delbuf
49
buffers
flushing, ostream::flush 83
returning number of bytes stored in,
ostrstream::pcount 92
returning pointer to strstreambuf buffer object
93
C++, synchronizing with standard C stdio streams,
ios::sync_with_stdio 54
changing position value, ostream::seekp 85
characters
inserting into output, ostream::put 85
returning next without extracting, istream::peek
69
returning number extracted by last unformatted
input function, istream::gcount 65
synchronizing internal buffer with external
character source, istream::sync 70
clearing format flags, ios::unsetf 55
defined 1
determining if error bits are set, ios::operator !() 56
errors
determining if error bits are set, ios::operator {()
56
if error bits are clear, ios::good 51
returning current specified error state,
ios::rdstate 53
extracting
and discarding characters, istream::ignore 67
data, istream::get 65, 66
white space, istream& ws 71
white space, istream::eatwhite 65
extraction operations
called after, istream::isfx 68
called before, istream::ipfx 67

133

Index

134

Streams (continued)
extraction operations (continued)
operators, istream::operator>> 70
specified number of bytes, istream::read 69
file descriptor, returning, ofstream::fd 77
filebuf objects
attaching specified reserve area, fstream::setbuf
39
attaching specified reserve area, ifstream::setbuf
45
attaching specified reserve area, ofstream::setbuf
80
closing, ofstream::close 77
opening file and attaching, fstream::open 38
opening for attachment, ofstream::open 79
returning pointer to associated, ofstream::rdbuf
80
returning pointer to, ifstream::rdbuf 45
setting binary/text mode, fstream::setmode 39
setting binary/text mode, ofstream::setmode 80
flushing output buffer, ostream& flush 88
get pointers
changing, istream::seekg 69
getting value, istream::tellg 70
getting position value, ostream::tellp 85
input, putting character back into, istream::putback
69
insert operations
called after, ostream::osfx 84
called before, ostream::opfx 84
inserting
arguments into, ostream::operator<< 86
bytes, ostream::write 86
newline character and flushing buffer, ostream&
endl 87
null-terminating character, ostream& ends 87
internal flags variable, setting, ios::flags 50
istream objects
creating, istream::istream 68
destroying, istream::~istream 68
masks
current radix flag bits, ios::basefield 57
floating-point format flag bits, ios::floatfield 57
object state variables, providing without class
derivation, ios::xalloc 56
opening file and attaching to filebuf object,
ifstream::open 44
padding flag bits, obtaining, ios::adjustfield 56

Streams (continued)
returning associated file descriptor
fstream::fd 36
ifstream::fd 42
returning pointer to associated filebuf object,
fstream::rdbuf 39
setting
binary/text mode, ifstream::setmode 45
fill character, setfill 58
floating-point precision variable, ios::precision
52
format conversion base to 10, ios& dec 58
format conversion base to 16, ios& hex 58
format conversion base to 8, ios& oct 58
internal field width parameter, setw 59
internal field width variable, ios::width 55
internal fill character variable, ios::fill 50
internal floating-point precision variable,
setprecision 59
mode to text, ios& text 60
specified format bits, ios::setf 54
text to binary mode, ios& binary 57
special-purpose words table, providing index into
ios:iiword 52
ios::pword 53
streambuf objects, returning pointer to, ios::rdbuf
53
synchronizing internal buffer with external
character source, istream::sync 70
testing end-of-file, ios::eof 49
testing for attachment to open disk file
fstream::is_open 38
testing for attachment to open file
ifstream::is_open 44
ofstream::is_open 77
testing for serious I/O errors, ios::bad 48
tying to ostream, ios::tie 54
virtual overflow function, streambuf::overflow 103
Strings
streams, returning pointer to character array,
istrstream::str 75
strstream class
buffer, returning number of bytes, strstream::pcount
114
described 18, 114
member functions
~strstream 116
pcount 114
rdbuf 115

strstream class (continued)
member functions (continued)
str 115
strstream 115
returning
number of bytes in buffer, strstream::pcount 114
pointer to internal character array, strstream::str
115
pointer to strstreambuf object, strstream::rdbuf
115
strstream constructor 115
strstream objects
creating, strstream::strstream 115
destroying, strstream::~strstream 116
returning pointer, strstream::rdbuf 115
strstreambuf class
described 117
member functions
~strstreambuf 119
freeze 92, 117
str 118
strstreambuf 118
preventing automatic memory deletion,
strstreambuf::freeze 117
returning pointer to internal character array,
strstreambuf::str 118
strstreambuf constructor 118
strstreambuf objects
creating, strstreambuf::strstreambuf 118
destroying, strstreambuf::~strstreambuf 119
returning pointer from associated stream,
ostrstream::rbuf 93
returning pointer to internal character array,
strstreambuf::str 118
sync member function
istream class 70
streambuf class 112
istream::sync 70
ostream::HR 88
sync_with_stdio member function, ios class 54
Synchronizing C++ streams with standard C stdio
streams, ios::sync_with_stdio 54

T

tellg member function
input streams 17
istream class 70

Index

tellp member function
ofstream class 8
ostream class 85
Testing for extraction operators 14
Text streams, setting mode to, ios& text 60
tie member function, ios class 54
Tiny-model programs and iostream programming 2

U

unbuffered member function, streambuf class 112
underflow member function, streambuf class 113
unitbuf member function, ios class, ostream::osfx 84
unsetf member function, ios class 55

vV

Variables
floating-point precision, setting, ios::precision 52
internal field width, setting, ios::width 55
internal fill character, setting, ios::fill 50
object state, providing without class derivation,
ios::xalloc 56
Virtual
sync function, streambuf class, streambuf::sync 112
underflow function, streambuf class,
streambuf::underflow 113
Void* operator, ios class 56, 58

w
Width
internal field variable, setting, ios::width 55
streams, setting internal field parameter, setw 59
width member function, ios class 55
write member function
ofstream class 8
ostream class 86

X

xalloc member function, ios class 56

135

Contributors to iostream Class Library Reference

Richard Carlson, Index Editor
Matt LaBelle, Production
Roger Haight, Editor
Marilyn Johnstone, Writer
Seth Manheim, Writer
David Adam Edelstein, Art Director

ere is all the information
that corporate
managers, developers,
and consultants need to design,
develop, and deliver custom
business applications using the
built-in programming
languages in Microsoft Office
Professional for Windows 95.
Every phase of the process is
“explained, from choosing which
tools to use, to designing a good
user interface, to providing end-
user support. Case studies from
the author’s extensive work with
Fortune 500 companies, along
with fully functional sample
applications and sample code
on disk, make this book both an
interesting read and a valuable
reference.

.clr)ﬂi“ -A.\"‘(T\":D]lfl‘&) er l

Microsoft Press® books are available wherever quality books are sold and
through CompuServe’s Electronic Mall—GO MSP.

Call 1-800-MSPRESS for more information or to place a credit card order.*
Please refer to BBK when placing your order. Prices subject to change.
*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander
Blvd., Agincourt, Ontario, Canada M1S 3C7, or call 1-800-667-1115.

Qutside the U.S. and Canada, write to International Coordinator, Microsoft Press, One
Microsoft Way, Redmond, WA 98052-6399, or fax +1-206-936-7329.

Microsoft Press

Run-Time Library Reference

Microsofts Visual C++™
Version 4.0
Development System for Windowss 95 and Windows NT"

Microsoft Corporation

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ programmer’s references / Microsoft Corporation.
-- 2nd ed.
p. cm.

Includes index.

v. 1. Microsoft Visual C++ user’s guide -- v. 2. Programming with
MFC -- v. 3. Microsoft foundation class library reference, part 1 --

v. 4. Microsoft foundation class library reference, part 2 -- v.
5. Microsoft Visual C++ run-time library reference -- v.
6. Microsoft Visual C/C++ language reference.

ISBN 1-55615-915-3 (v. 1). -- ISBN 1-55615-921-8 (v. 2). -- ISBN
1-55615-922-6 (v. 3). -- ISBN 1-55615-923-4 (v. 4). -- ISBN
1-55615-924-2 (v. 5). -- ISBN 1-55615-925-0 (v. 6)

1. C++ (Computer program language) 2. Microsoft Visual C++.

1. Microsoft Corporation.

QA76.73.C153MS3 1995

005.13'3--dc20 95-35604
CIp

Printed and bound in the United States of America.
123456789 MLML 098765

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office. Or contact Microsoft
Press International directly at fax (206) 936-7329.

For Run-Time Library Reference: Macintosh is a registered trademark and Power Macintosh is a
trademark of Apple Computer, Inc. Intel is a registered trademark of Intel Corporation. OS/2 is a

registered trademark of International Business Machines Corporation. Microsoft, MS, MS-DOS, Win32,
Win32s, Windows, and XENIX are registered trademarks and Visual C++, and Windows NT are trademarks
of Microsoft Corporation. MIPS is a registered trademark of MIPS Computer Systems, Inc. Motorola is a
registered trademark of Motorola, Inc. Unicode is a trademark of Unicode, Incorporated. UNIX is a
registered trademark in the United States and other countries, licensed exclusively through X/Open
Company, Ltd.

For iostream Class Library Reference: Hewlett-Packard and LaserJet are registered trademarks of
Hewlett-Packard Company. IBM is a registered trademark of International Business Machines Corporation.
Microsoft, MS, MS-DOS, and Windows are registered trademarks and Visual C++, and Windows NT are
trademarks of Microsoft Corporation.

Acquisitions Editor: Eric Stroo
Project Editor: Brenda L. Matteson

Introduction ix
C Run-Time Libraries ix
Compatibility ix
ANSI C Compliance x
Power Macintosh and 68K Macintosh x
UNIX x
Win32 Platforms xi
Backward Compatibility xi
Required and Optional Header Files xii
Choosing Between Functions and Macros xii
Type Checking xiii

Chapter 1 Run-Time Routines by Category 1
Argument Access 1
Buffer Manipulation 2
Byte Classification 2
Character Classification 3
Data Conversion 4
Debug 6
Directory Control 9
Error Handling 9
Exception Handling 10
File Handling 10
Floating-Point Support 11
Long Double 14
Input and Output 15
Text and Binary Mode File /O 15
Unicode™ Stream I/O in Text and Binary Modes 15
Stream I/O 16
Low-level /O 19
Console and Port /O 20

Contents

Contents

Internationalization 20
Locale 21
Code Pages 22
Interpretation of Multibyte-Character Sequences 23
Single-byte and Multibyte Character Sets 24
SBCS and MBCS Data Types 24
Unicode: The Wide-Character Set 25
Using Generic-Text Mappings 25
A Sample Generic-Text Program 27
Using TCHAR.H Data Types with _MBCS 29
Memory Allocation 31
Process and Environment Control 32
Searching and Sorting 34
String Manipulation 35
System Calls 37
Time Management 37

Chapter 2 Global Variables and Standard Types 39
Global Variables 39
_amblksiz 39
_daylight, _timezone, and _tzname 40
_dosermno, errno, _sys_errlist, and _sys_nerr 41
_environ, _wenviron 42
_fileinfo 43
_fmode 44
_osver, _winmajor, _winminor, _winver 44
_pgmptr, _wpgmptr 44
Control Flags 45
_CRTDBG_MAP_ALLOC 45
_DEBUG 46
_crtDbgFlag 46
Standard Types 46

Chapter 3 Global Constants 49
BUFSIZ 50

CLOCKS_PER_SEC, CLK_TCK 50
Commit-To-Disk Constants 50

Data Type Constants 51

EOF 53

errno Constants 53

Exception-Handling Constants 54
EXIT_SUCCESS, EXIT_FAILURE 55
File Attribute Constants 55

File Constants 56

File Permission Constants 56

File Read/Write Access Constants 57
File Translation Constants 58
FILENAME_MAX 58
FOPEN_MAX, _SYS_OPEN 58
_FREEENTRY, _USEDENTRY 59
fseek, _lseek Constants 59

Heap Constants 59
_HEAP_MAXREQ 60
HUGE_VAL 60

__LOCAL_SIZE 60

Locale Categories 61

_locking Constants 61

Math Error Constants 62
MB_CUR_MAX 62

NULL 63

Path Field Limits 63

RAND_MAX 63

setvbuf Constants 64

Sharing Constants 64

signal Constants 65

signal Action Constants 65

_spawn Constants 66

_stat Structure st_mode Field Constants
stdin, stdout, stderr 67
TMP_MAX, L_tmpnam 67
Translation Mode Constants 68

_WAIT_CHILD, _"WAIT_GRANDCHILD 68

32-bit Windows Time/Date Formats 69

Contents

Contents

vi

Chapter 4 Debug Version of the C Run-Time Library 71
Source Code for the Run-Time Functions 71
C Run-Time Debug Libraries 72
Debug Reporting Functions of the C Run-Time Library 73
Using Macros for Verification and Reporting 75
Memory Management and the Debug Heap 79
Types of Blocks on the Debug Heap 80
Using the Debug Heap 81
Heap State Reporting Functions 83
Using the Debug Version Versus the Base Version 84
Tracking Heap Allocation Requests 85
Using the Debug Heap from C++ 86
Writing Your Own Debug Hook Functions 86
Client Block Hook Functions 87
Allocation Hook Functions 87
Using C Run-time Library Functions in Allocation Hooks 88
Report Hook Functions 88
Example Programs 89
First Example Program 89
Second Example Program 94
_ASSERT, _ASSERTE Macros 103
_calloc_dbg 107
_CrtCheckMemory 109
_CrtDbgReport 110
_CrtDoForAllClientObjects 116
_CrtDumpMemoryLeaks 120
_CrtlsValidHeapPointer 122
_CrtlsMemoryBlock 123
_CrtIsValidPointer 124
_CrtMemCheckpoint 126
_CrtMembDifference 127
_CrtMemDumpAllObjectsSince 129
_CrtMemDumpStatistics 130
_CrtSetAllocHook 131
_CrtSetBreakAlloc 133
_CrtSetDbgFlag 135
_CrtSetDumpClient 139
_CrtSetReportFile 140
_CrtSetReportHook 145

Contents

_CrtSetReportMode 149
_expand_dbg 155
_free_dbg 157
_malloc_dbg 158
_msize_dbg 160
_realloc_dbg 161

_RPT, _RPTF Macros 163

Alphabetic Function Reference 167

Appendixes

Appendix A Language and Country Strings 679
Language and Country Strings 679

Language Strings 679

Country Strings 681

Appendix B Generic-Text Mappings 683
Data Type Mappings 683

Constant and Global Variable Mappings 684
Routine Mappings 684

Index 689

Tables

Table R.1 Hexadecimal Values 214

Table R.2 Equivalence of iswctype(¢, desc) to Other isw Testing Routines 352
Table R.3 printf Type Field Characters 485

Table R.4 Flag Characters 487

Table R.5 How Precision Values Affect Type 488

Table R.6 Size Prefixes for printf and wprintf Format-Type Specifiers 489
Table R.7 Size Prefixes for scanf and wscanf Format-Type Specifiers 518
Table R.8 Type Characters for scanf functions 520

vii

Introduction

The Microsofte run-time library provides routines for programming for the Microsoft
Windows NT™ and Windows 95™ operating systems. These routines automate
many common programming tasks that are not provided by the C and C++
languages.

C Run-Time Libraries

The following table lists the release versions of the C run-time library files, along
with their associated compiler options and environment variables. When a specific
library compiler option is defined, that library is considered to be the default and its
environment variables are automatically defined.

Library Characteristics Option Defined

LIBC.LIB Single threaded, static link /ML

LIBCMT.LIB Multithreaded, static link MT _MT

MSVCRT.LIB Multithreaded, dynamic link (import ~ /MD _MT, _DLL
library for MSVCRTx0.DLL)!

1 In place of the “x0” in the DLL name, substitute the major version numeral of Visual C++ that you are
using. For example, if you are using Visual C++ version 4, then the library name would be
MSVCRT40.DLL.

To build a debug version of your application, the _DEBUG flag must be defined and
the application must be linked with a debug version of one of these libraries. For
more information about the debug versions of the library files, see “C Run-Time
Debug Libraries” in Chapter 4 on page 72.

Compatibility

The Microsoft run-time library supports American National Standards Institute
(ANSI) C and UNIX® C. In this book, references to UNIX include XENIXw®, other

Run-Time Library Reference

UNIX-like systems, and the POSIX subsystem in Windows NT and Windows 95. The
description of each run-time library routine in this book includes a compatibility
section for these targets: ANSI, Windows 95 (listed as Win 95), Windows NT

(Win NT), Win32s, Macintoshe (68K), and Power Macintosh™ (PMac). All run-
time library routines included with this product are compatible with the Win32 API.

ANSI C Compliance

The naming convention for all Microsoft-specific identifiers in the run-time system
(such as functions, macros, constants, variables, and type definitions) is ANSI-
compliant. In this book, any run-time function that follows the ANSI/ISO C
standards is noted as being ANSI compatible. ANSI-compliant applications should
only use these ANSI compatible functions.

The names of Microsoft-specific functions and global variables begin with a single
underscore. These names can be overridden only locally, within the scope of your
code. For example, when you include Microsoft run-time header files, you can still
locally override the Microsoft-specific function named _open by declaring a local
variable of the same name. However, you cannot use this name for your own global
function or global variable.

The names of Microsoft-specific macros and manifest constants begin with two
underscores, or with a single leading underscore immediately followed by an
uppercase letter. The scope of these identifiers is absolute. For example, you cannot
use the Microsoft-specific identifier _UPPER for this reason.

Power Macintosh and 68K Macintosh

Many run-time library routines can be implemented for either or both of the
Macintosh platforms. In this book, run-time routines that are compatible with
Macintosh computers that use the Motorola® 68000-series processor list the 68K
label in their compatibility section. Routines that are compatible with RISC-based
Macintosh computers list the PMac label.

UNIX

If you plan to transport your programs to UNIX, follow these guidelines:

e Do not remove header files from the SYS Subdirectory. You can place the SYS
header files elsewhere only if you do not plan to transport your programs to UNIX.

e Use the UNIX-compatible path delimiter in routines that take strings representing
paths and filenames as arguments. UNIX supports only the forward slash (/) for
this purpose, whereas Win32 operating systems support both the backslash (\) and
the forward slash (/). Thus this book uses UNIX-compatible forward slashes as

Introduction

path delimiters in #include statements, for example. (However, the Windows NT
and Windows 95 command shell, CMD.EXE, does not support the forward slash
in commands entered at the command prompt.)

e Use paths and filenames that work correctly in UNIX, which is case sensitive. The
file allocation table (FAT) file system in Win32 operating systems is not case
sensitive; the installable Windows NT file system (NTFS) of Windows NT
preserves case for directory listings but ignores case in file searches and other
system operations.

Note In this version of Visual C++, UNIX compatibility information has been removed from the
function descriptions.

Win32 Platforms

The C run-time libraries support all of the Win32-based platforms, including
Windows 95, Windows NT, and Win32s. Although all these platforms support the
Win32 Application Programming Interface (API), only Windows NT provides full
Unicode support. In addition, any Win32 application can use a multibyte character set
(MBCS). Win32s applications use a subset of the Win32 API, and can run on the
Windows 3.1, Windows NT, and Windows 95 operating systems without being
recompiled.

Backward Compatibility

The compiler views a structure that has both an old name and a new name as two
different types. You cannot copy from an old structure type to a new structure type.
Old prototypes that take struct pointers use the old struct names in the prototype.

For compatibility with Microsoft C professional development system version 6.0 and
earlier Microsoft C versions, the library OLDNAMES.LIB maps old names to new
names. For instance, open maps to _open. You must explicitly link with
OLDNAMES.LIB only when you compile with the following combinations of
command-line options:

e /71 (omit default library name from object file) and /Ze (the default—use
Microsoft extensions)

o /link (linker-control), /NOD (no default-library search), and /Ze

For more information about compiler command-line options, see “CL Reference” in
the Visual C++ Users Guide.

Xi

Run-Time Library Reference

Required and Optional Header Files

The description of each run-time routine in this book includes a list of the required
and optional include, or header (.H), files for that routine. Required header files need
to be included to obtain the function declaration for the routine or a definition used by
another routine called internally. Optional header files are usually included to take
advantage of predefined constants, type definitions, or inline macros. The following
table lists some examples of optional header file contents:

Definition Example

Macro definition If a library routine is implemented as a macro, the macro definition
may be in a header file other than the header file for the original
routine. For instance, the toupper macro is defined in the header
file CTYPE.H, while the function toupper is declared in
STDLIB.H.

Manifest constant Many library routines refer to constants that are defined in header
files. For instance, the _open routine uses constants such as
_O_CREAT, which is defined in the header file FCNTL.H.

Type definition Some library routines return a structure or take a structure as an

argument. For example, stream input/output routines use a structure
of type FILE, which is defined in STDIO.H.

The run-time library header files provide function declarations in the ANSI/ISO C
standard recommended style. The compiler performs “type checking” on any routine
reference that occurs after its associated function declaration. Function declarations
are especially important for routines that return a value of some type other than int,
which is the default. Routines that do not specify their appropriate return value in
their declaration will be considered by the compiler to return an int, which can cause
unexpected results. See “Type Checking” on page xiii for more information.

Choosing Between Functions and Macros

Xii

Most Microsoft run-time library routines are compiled or assembled functions, but
some routines are implemented as macros. When a header file declares both a
function and a macro version of a routine, the macro definition takes precedence,
because it always appears after the function declaration. When you invoke a routine
that is implemented as both a function and a macro, you can force the compiler to use
the function version in two ways:

¢ Enclose the routine name in parentheses.

#include <ctype.h>
a = toupper(a); //use macro version of toupper
a = (toupper)(a); //force compiler to use function version of toupper

Introduction

¢ “Undefine” the macro definition with the #undef directive:

#include <ctype.h>
ffundef toupper

If you need to choose between a function and a macro implementation of a library
routine, consider the following trade-offs:

o Speed versus size. The main benefit of using macros is faster execution time.
During preprocessing, a macro is expanded (replaced by its definition) inline each
time it is used. A function definition occurs only once regardless of how many
times it is called. Macros may increase code size but do not have the overhead
associated with function calls.

¢ Function evaluation. A function evaluates to an address; a macro does not. Thus
you cannot use a macro name in contexts requiring a pointer. For instance, you
can declare a pointer to a function, but not a pointer to a macro.

e Macro side effects. A macro may treat arguments incorrectly when the macro
evaluates its arguments more than once. For instance, the toupper macro is
defined as:

f#define toupper(c) ((islower(c)) ? _toupper(c) : (c))

In the following example, the toupper macro produces a side effect:

#include <ctype.h>

int a = 'm';

a = toupper(a++);

The example code increments a when passing it to toupper. The macro evaluates
the argument a++ twice, once to check case and again for the result, therefore

increasing a by 2 instead of 1. As a result, the value operated on by islower differs
from the value operated on by toupper.

o Type-checking. When you declare a function, the compiler can check the argument
types. Because you cannot declare a macro, the compiler cannot check macro
argument types, although it can check the number of arguments you pass to a
macro.

Type Checking

The compiler performs limited type checking on functions that can take a variable
number of arguments, as follows:

xifi

Run-Time Library Reference

Function Call

Type-Checked Arguments

_cprintf, _cscanf, printf, scanf
fprintf, fscanf, sprintf, sscanf

_snprintf

_open
_sopen

_execl, _execle, _execlp, _execlpe

_spawnl, _spawnle, _spawnlp,
_spawnlpe

First argument (format string)

First two arguments (file or buffer and format
string)

First three arguments (file or buffer, count,
and format string)

First two arguments (path and _open flag)

First three arguments (path, _open flag, and
sharing mode)

First two arguments (path and first argument
pointer)

First three arguments (mode flag, path, and
first argument pointer)

The compiler performs the same limited type checking on the wide-character

counterparts of these functions.

xiv

CHAPTER 1

Run-Time Routines by Category

This chapter lists and describes Microsoft run-time library routines by category. For
reference convenience, some routines are listed in more than one category. Multibyte-
character routines and wide-character routines are grouped with single-byte—
character counterparts, where they exist.

The main categories of Microsoft run-time library routines are:

Argument access Floating-point support

Buffer manipulation Input and output

Byte classification Internationalization

Character classification Memory allocation

Data conversion Process and environment control
Debug Searching and sorting

Directory control String manipulation

Error handling System calls

Exception handling Time management

File handling

Argument Access

The va_arg, va_end, and va_start macros provide access to function arguments
when the number of arguments is variable. These macros are defined in STDARG.H
for ANSI C compatibility, and in VARARGS.H for compatibility with UNIX

System V.

Run-Time Library Reference

Argument-Access Macros

Macro Use

va_arg Retrieve argument from list

va_end Reset pointer

va_start Set pointer to beginning of argument list

Buffer Manipulation

Use these routines to work with areas of memory on a byte-by-byte basis.

Buffer-Manipulation Routines

Routine Use

_memeccpy Copy characters from one buffer to another until given character or given
number of characters has been copied

memchr Return pointer to first occurrence, within specified number of characters,
of given character in buffer

mememp Compare specified number of characters from two buffers

memepy Copy specified number of characters from one buffer to another

_memicmp Compare specified number of characters from two buffers without
regard to case

memmove Copy specified number of characters from one buffer to another

memset Use given character to initialize specified number of bytes in the buffer

_swab Swap bytes of data and store them at specified location

When the source and target areas overlap, only memmove is guaranteed to copy the
full source properly.

Byte Classification

Each of these routines tests a specified byte of a multibyte character for satisfaction of
a condition. Except where specified otherwise, the test result depends on the
multibyte code page currently in use.

Note By definition, the ASCII character set is a subset of all multibyte-character sets. For
example, the Japanese katakana character set includes ASCII as well as non-ASCII
characters.

The manifest constants in the following table are defined in CTYPE.H:

Chapter 1 Run-Time Routines by Category

Multibyte-Character Byte-Classification Routines

Routine Byte Test Condition

isleadbyte Lead byte; test result depends on LC_CTYPE category setting of
current locale

_ismbbalnum isalnum |l _ismbbkalnum

_ismbbalpha isalpha || _ismbbkalnum

_ismbbgraph Same as _ismbbprint, but _ismbbgraph does not include the space
character (0x20)

_ismbbkalnum Non-ASCII text symbol other than punctuation. For example, in
code page 932 only, _ismbbkalnum tests for katakana alphanumeric

_ismbbkana Katakana (0xA1-0xDF), code page 932 only

_ismbbkprint Non-ASCII text or non-ASCII punctuation symbol. For example, in

code page 932 only, _ismbbkprint tests for katakana alphanumeric
or katakana punctuation (range: 0xA1— OxDF).

_ismbbkpunct Non-ASCII punctuation. For example, in code page 932 only,
_ismbbkpunct tests for katakana punctuation.

_ismbblead First byte of multibyte character. For example, in code page 932
only, valid ranges are 0x81-0x9F, 0OxE0—OxFC.

_ismbbprint isprint || _ismbbkprint. ismbbprint includes the space character
(0x20)

_ismbbpunct ispunct || _ismbbkpunct

_ismbbtrail Second byte of multibyte character. For example, in code page 932
only, valid ranges are 0x40-0x7E, 0x80—-0xEC.

_ismbslead Lead byte (in string context)

_ismbstrail Trail byte (in string context)

_mbbtype Return byte type based on previous byte

_mbsbtype Return type of byte within string

The MB_LEN_MAX macro, defined in LIMITS.H, expands to the maximum length
in bytes that any multibyte character can have. MB_CUR_MAX, defined in
STDLIB.H, expands to the maximum length in bytes of any multibyte character in
the current locale.

Character Classification

Each of these routines tests a specified single-byte character, wide character, or
multibyte character for satisfaction of a condition. (By definition, the ASCII character
set is a subset of all multibyte-character sets. For example, Japanese katakana
includes ASCII as well as non-ASCII characters.) Generally these routines execute
faster than tests you might write. For example, the following code executes slower
than a call to isalpha(c):

Run-Time Library Reference

if ((c >= "A") && (c <= "Z')) |] ((c >= 'a') && (c <= 'z"))

return TRUE;
Character-Classification Routines

Routine

Character Test Condition

isalnum, iswalnum, _ismbcalnum
isalpha, iswalpha, ismbcalpha
__isascii, iswascii

iscntrl, iswentrl

__iscsym

__iscsymf

isdigit, iswdigit, _ismbcdigit
isgraph, iswgraph, _ismbcgraph
islower, iswlower, _ismbclower
_ismbchira

_ismbckata

_ismbclegal

_ismbcl0

_ismbcll

_ismbcl2

_ismbesymbol

isprint, iswprint, _ismbcprint
ispunct, iswpunct, _ismbcpunct
isspace, iswspace, _ismbcspace
isupper, iswupper, _ismbcupper
iswctype

isxdigit, iswxdigit

mblen

Alphanumeric

Alphabetic

ASCIt

Control

Letter, underscore, or digit
Letter or underscore

Decimal digit

Printable other than space
Lowercase

Hiragana

Katakana

Legal multibyte character
Japan-level 0 multibyte character
Japan-level 1 multibyte character
Japan-level 2 multibyte character
Non-alphanumeric multibyte character
Printable

‘Punctuation

White-space

Uppercase

Property specified by desc argument
Hexadecimal digit

Return length of valid multibyte character; result
depends on LC_CTYPE category setting of current
locale

Data Conversion

These routines convert data from one form to another. Generally these routines
execute faster than conversions you might write. Each routine that begins with a to
prefix is implemented as a function and as a macro. See “Choosing Between
Functions and Macros” on page xii for information about choosing an

implementation.

Data-Conversion Routines

Chapter 1 Run-Time Routines by Category

Routine Use

abs Find absolute value of integer

atof Convert string to float

atoi Convert string to int

atol Convert string to long

_ecvt Convert double to string of specified length

_fevt Convert double to string with specified number of digits
following decimal point

_gevt Convert double number to string; store string in buffer

_itoa, _itow Convert int to string

labs Find absolute value of long integer

_ltoa, _ltow Convert long to string

_mbbtombc Convert 1-byte multibyte character to corresponding 2-byte
multibyte character

_mbcjistojms Convert Japan Industry Standard (JIS) character to Japan
Microsoft (JMS) character

_mbcjmstojis Convert JMS character to JIS character

_mbctohira Convert multibyte character to 1-byte hiragana code

_mbctokata Convert multibyte character to 1-byte katakana code

_mbctombb Convert 2-byte multibyte character to corresponding 1-byte
multibyte character

mbstowcs Convert sequence of multibyte characters to corresponding
sequence of wide characters

mbtowc Convert multibyte character to corresponding wide character

strtod, westod Convert string to double

strtol, wcestol
strtoul, wcstoul
strxfrm, wesxfrm

__toascii

tolower, towlower,
_mbctolower

_tolower

toupper, towupper,
_mbctoupper

_toupper
_ultoa, _ultow
wcstombs

Convert string to long integer
Convert string to unsigned long integer

Transform string into collated form based on locale-specific
information

Convert character to ASCII code

Test character and convert to lowercase if currently
uppercase

Convert character to lowercase unconditionally

Test character and convert to uppercase if currently
lowercase

Convert character to uppercase unconditionally
Convert unsigned long to string

Convert sequence of wide characters to corresponding
sequence of multibyte characters

Run-Time Library Reference

Data-Conversion Routines (continued)

Routine Use

wctomb Convert wide character to corresponding multibyte character
_wtoi Convert wide-character string to int

_wtol Convert wide-character string to long

Debug

With this version, Visual C++ introduces debug support for the C run-time library.
The new debug version of the library supplies many diagnostic services that make
debugging programs easier and allow developers to:

e Step directly into run-time functions during debugging

e Resolve assertions, errors, and exceptions

e Trace heap allocations and prevent memory leaks

e Report debug messages to the user

To use these routines, the _DEBUG flag must be defined. All of these routines do
nothing in a retail build of an application. For more information on how to use the
new debug routines, see Chapter 4, “Debug Version of the C Run-time Library.”

Debug Versions of the C Run-time Library Routines

Routine Use

_ASSERT Evaluate an expression and generates a debug report
when the result is FALSE

_ASSERTE Similar to _ASSERT, but includes the failed expression
in the generated report

_CrtCheckMemory Confirm the integrity of the memory blocks allocated on
the debug heap

_CrtDbgReport Generate a debug report with a user message and send
the report to three possible destinations

_CrtDoForAllClientObjects Call an application-supplied function for all
_CLIENT_BLOCK types on the heap

_CrtDumpMemoryLeaks Dump all of the memory blocks on the debug heap when

_CrtIsValidHeapPointer
_CrtIsMemoryBlock

a significant memory leak has occurred
Verify that a specified pointer is in the local heap

Verify that a specified memory block is located within
the local heap and that it has a valid debug heap block
type identifier

Chapter 1 Run-Time Routines by Category

Debug Versions of the C Run-time Library Routines (continued)

Routine Use

_CrtIsValidPointer Verify that a specified memory range is valid for
reading and writing

_CrtMemCheckpoint Obtain the current state of the debug heap and store it in
an application-supplied _ CrtMemState structure

_CrtMemDifference Compare two memory states for significant differences

_CrtMemDumpAIllObjectsSince

_CrtMemDumpStatistics
_CrtSetAllocHook
_CrtSetBreakAlloc

_CrtSetDbgFlag

_CrtSetDumpClient

_CrtSetReportFile
_CrtSetReportHook
_CrtSetReportMode

_RPT[0,1,2,3,4]

_RPTF[0,1,2,3,4]

_calloc_dbg

_expand_dbg

_free_dbg

and return the results

Dump information about objects on the heap since a
specified checkpoint was taken or from the start of
program execution

Dump the debug header information for a specified
memory state in a user-readable form

Install a client-defined allocation function by hooking it
into the C run-time debug memory allocation process

Set a breakpoint on a specified object allocation order
number

Retrieve or modify the state of the _crtDbgFlag flag to
control the allocation behavior of the debug heap
manager

Install an application-defined function that is called
every time a debug dump function is called to dump
_CLIENT_BLOCK type memory blocks

Identify the file or stream to be used as a destination for
a specific report type by _CrtDbgReport

Install a client-defined reporting function by hooking it
into the C run-time debug reporting process

Specify the general destination(s) for a specific report
type generated by _CrtDbgReport

Track the application’s progress by generating a debug
report by calling _CrtDbgReport with a format string
and a variable number of arguments. Provides no source
file and line number information.

Similar to the _RPT# macros, but provides the source
file name and line number where the report request
originated

Allocate a specified number of memory blocks on the
heap with additional space for a debugging header and
overwrite buffers

Resize a specified block of memory on the heap by
expanding or contracting the block

Free a block of memory on the heap

Run-Time Library Reference

Debug Versions of the C Run-time Library Routines (continued)

Routine Use

_malloc_dbg Allocate a block of memory on the heap with additional
space for a debugging header and overwrite buffers

_msize_dbg Calculate the size of a block of memory on the heap

_realloc_dbg Reallocate a specified block of memory on the heap by

moving and/or resizing the block

The debug routines can be used to step through the source code for most of the other
C run-time routines during the debugging process. However, Microsoft considers
some technology to be proprietary and, therefore, does not provide the source code for
these routines. Most of these routines belong to either the exception handling or
floating-point processing groups, but a few others are included as well. The following
table lists these routines.

C Run-time Routines that are Not Available in Source Code Form

acos _fpclass _nextafter
asin _fpieee_fit pow

atan, atan2 _fpreset printf, wprintf1
_cabs frexp _scalb

ceil _hypot scanf, wscanf!
_chgsign _isnan setjmp
_clear87, _clearfp _jo sin

_control87, _controlfp 1 sinh

_copysign _jn sqrt

COoS ldexp _status87, _statusfp
cosh log tan

exp logl0 tanh

fabs _logb _yo

_finite longjmp _yl

floor _matherr _yn

fmod modf

1 Although source code is available for most of this routine, it makes an internal call to another routine for
which source code is not provided.

Some C run-time functions and C++ operators behave differently when called from a
debug build of an application. (Note that a debug build of an application can be
achieved by either defining the _DEBUG flag or by linking with a debug version of
the C run-time library.) The behavioral differences usually consist of extra features or
information provided by the routine to support the debugging process. The following
table lists these routines.

Chapter 1 Run-Time Routines by Category

Routines that Behave Differently in a Debug Build of an Application

C abort routine
C assert routine

C++ delete operator
C++ new operator

For more information about using the debug versions of the C++ operators in the
preceding table, see “Using the Debug Heap from C++” on page 86 in Chapter 4.

Directory Control

These routines access, modify, and obtain information about the directory structure.

Directory-Control Routines

Routine

Use

_chdir, _wchdir
_chdrive

_getcwd, _wgetcwd
_getdewd, _wgetdewd
_getdrive

_mkdir, _wmkdir
_rmdir, _wrmdir
_searchenv, _wsearchenv

Change current working directory

Change current drive

Get current working directory for default drive
Get current working directory for specified drive
Get current (default) drive

Make new directory

Remove directory

Search for given file on specified paths

Error Handling

Use these routines to handle program errors.

Error-Handling Routines

Routine

Use

assert macro

_ASSERT, _ASSERTE
macros

clearerr

_eof
feof

Test for programming logic errors; available in both the
release and debug versions of the run-time library

Similar to assert, but only available in the debug versions of
the run-time library

Reset error indicator. Calling rewind or closing a stream
also resets the error indicator.

Check for end of file in low-level /O

Test for end of file. End of file is also indicated when _read
returns 0.

Run-Time Library Reference

Error-Handling Routines (continued)

Routine Use
ferror Test for stream I/O errors
_RPT, RPTF macros Generate a report similar to printf, but only available in the

debug versions of the run-time library

Exception Handling

Use the C++ exception-handling functions to recover from unexpected events during
program execution.

Exception-Handling Functions

Function Use

_set_se_translator Handle Win32 exceptions (C structured exceptions) as C++
typed exceptions

set_terminate Install your own termination routine to be called by terminate

set_unexpected Install your own termination function to be called by
unexpected

terminate Called automatically under certain circumstances after

exception is thrown. terminate calls abort or a function you
specify using set_terminate

unexpected Calls terminate or a function you specify using
set_unexpected. unexpected is not used in current Microsoft
C++ exception-handling implementation

File Handling

10

Use these routines to create, delete, and manipulate files and to set and check file-
access permissions.

The C run-time libraries have a preset limit for the number of files that can be open
at any one time. The limit for applications that link with the single-thread static
library (LIBC.LIB) is 64 file handles or 20 file streams. Applications that link with
either the static or dynamic multithread library (LIBCMT.LIB or MSVCRT.LIB and
MSVCRT1X.DLL), have a limit of 256 file handles or 40 file streams. Attempting to
open more than the maximum number of file handles or file streams causes program
failure.

The following routines operate on files designated by a file handle:

Chapter 1 Run-Time Routines by Category

File-Handling Routines (File Handle)

Routine Use

_chsize Change file size

_filelength Get file length

_fstat, _fstati6d Get file-status information on handle
_isatty Check for character device

_locking Lock areas of file

_setmode Set file-translation mode

The following routines operate on files specified by a path or filename:

File-Handling Routines (Path or Filename)

Routine Use

_access, _waccess Check file-permission setting

_chmod, _wchmod Change file-permission setting

_fullpath, _wfullpath Expand a relative path to its absolute path name
_get_osfhandle Return operating-system file handle associated with

existing stream FILE pointer
_makepath, _wmakepath Merge path components into single, full path

_mktemp, _wmktemp Create unique filename

_open_osfhandle Associate C run-time file handle with existing operating-
system file handle

remove, _wremove Delete file

rename, _wrename Rename file

_splitpath, _wsplitpath Parse path into components

_stat, _stati64, _wstat, Get file-status information on named file

_wstati6d

_umask Set default permission mask for new files created by
program

_unlink, _wunlink Delete file

Floating-Point Support

Many Microsoft run-time library functions require floating-point support from a math
coprocessor or from the floating-point libraries that accompany the compiler.
Floating-point support functions are loaded only if required.

When you use a floating-point type specifier in the format string of a call to a
function in the printf or scanf family, you must specify a floating-point value or a
pointer to a floating-point value in the argument list to tell the compiler that floating-

11

Run-Time Library Reference

12

point support is required. The math functions in the Microsoft run-time library
handle exceptions in the same way as the UNIX V math functions.

The Microsoft run-time library sets the default internal precision of the math
coprocessor (or emulator) to 64 bits. This default applies only to the internal
precision at which all intermediate calculations are performed; it does not apply to
the size of arguments, return values, or variables. You can override this default and
set the chip (or emulator) back to 80-bit precision by linking your program with
LIB/FP10.0OBJ. On the linker command line, FP10.0BJ must appear before
LIBC.LIB, LIBCMT.LIB, or MSVCRT.LIB.

Floating-Point Functions

Routine Use

abs Return absolute value of int

acos Calculate arccosine

asin Calculate arcsine

atan, atan2 Calculate arctangent

atof Convert character string to double-precision floating-point

Bessel functions

_cabs

ceil

_chgsign

_clear87, _clearfp
_control87, _controlfp

_copysign
cos

cosh
difftime
div

_ecvt
exp
fabs
_fevt

_finite

floor
fmod

value

Calculate Bessel functions _j0, _j1, _jn, _y0, _y1, _yn
Find absolute value of complex number

Find integer ceiling

Reverse sign of double-precision floating-point argument
Get and clear floating-point status word

Get old floating-point control word and set new control-word
value

Return one value with sign of another

Calculate cosine

Calculate hyperbolic cosine

Compute difference between two specified time values

Divide one integer by another, returning quotient and
remainder

Convert double to character string of specified length
Calculate exponential function
Find absolute value

Convert double to string with specified number of digits
following decimal point

Determine whether given double-precision floating-point value
is finite

Find largest integer less than or equal to argument

Find floating-point remainder

Chapter 1 Run-Time Routines by Category

Floating-Point Functions (continued)

Routine Use

_fpclass Return status word containing information on floating-point
class

_fpieee_fit Invoke user-defined trap handler for IEEE floating-point
exceptions

_fpreset Reinitialize floating-point math package

frexp Calculate exponential value

_gevt Convert floating-point value to character string

_hypot Calculate hypotenuse of right triangle

_isnan Check given double-precision floating-point value for not a
number (NaN)

labs Return absolute value of long

Idexp Calculate product of argument and 2 to specified power

1div Divide one long integer by another, returning quotient and
remainder

log Calculate natural logarithm

log10 Calculate base-10 logarithm

_logb Extract exponential value of double-precision floating-point

_Irotl, _Irotr
_matherr

modf
_nextafter
pow

printf, wprintf
rand

_rotl, _rotr
_scalb

scanf, wscanf

sin
sinh
sqrt
srand

_status87, _statusfp

argument

Shift unsigned long int left (_Irotl) or right (_lrotr)
Handle math errors

Return larger of two values

Return smaller of two values

Split argument into integer and fractional parts
Return next representable neighbor

Calculate value raised to a power

Write data to stdout according to specified format
Get pseudorandom number

Shift unsigned int left (_rotl) or right (_rotr)
Scale argument by power of 2

Read data from stdin according to specified format and write
data to specified location

Calculate sine

Calculate hyperbolic sine
Find square root

Initialize pseudorandom series
Get floating-point status word

13

Run-Time Library Reference

Floating-Point Functions (continued)

Routine Use

strtod Convert character string to double-precision value
tan Calculate tangent

tanh Calculate hyperbolic tangent

Long Double

14

Previous 16-bit versions of Microsoft C/C++ and Microsoft Visual C++ supported the
long double, 80-bit precision data type. In Win32 programming, however, the long
double data type maps to the double, 64-bit precision data type. The Microsoft run-
time library provides long double versions of the math functions only for backward
compatibility. The long double function prototypes are identical to the prototypes for
their double counterparts, except that the long double data type replaces the double
data type. The long double versions of these functions should not be used in new
code.

Double Functions and Their Long Double Counterparts

Long Double Long Double
Function Counterpart Function Counterpart
acos acosl frexp frexpl
asin asinl _hypot _hypotl
atan atanl ldexp ldexpl
atan2 atan2l log logl
atof _atold logl0 log101
Bessel functions Bessel functions _matherr _matherrl
jo, j1, jn joL, j11, jnl
Bessel functions ~ Bessel functions modf modfl
y0, y1, yn yoOl, y11, ynl
_cabs _cabsl pow powl
ceil ceill sin sinl
cos cosl sinh sinhl
cosh coshl sqrt sqrtl
exp expl strtod _strtold
fabs fabsl tan tanl
floor floorl tanh tanhl
fmod fmodl

Chapter 1 Run-Time Routines by Category

Input and Output

The I/O functions read and write data to and from files and devices. File I/O
operations take place in text mode or binary mode. The Microsoft run-time library
has three types of I/O functions:

o Stream I/O functions treat data as a stream of individual characters.

¢ Low-level I/O functions invoke the operating system directly for lower-level
operation than that provided by stream I/O.

¢ Console and port I/O functions read or write directly to a console (keyboard and
screen) or an I/O port (such as a printer port).

v Warning Because stream functions are buffered and low-level functions are not, these two
types of functions are generally incompatible. For processing a particular file, use either stream
or low-level functions exclusively.

Text and Binary Mode File 1/0O

File I/O operations take place in one of two translation modes, text or binary,
depending on the mode in which the file is open. Data files are usually processed in
text mode. To control the file translation mode, you can:

e Retain the current default setting and specify the alternative mode only when you
open selected files.

e Change the default translation mode directly by setting the global variable _fmode
in your program. The initial default setting of _fmode is _O_TEXT, for text
mode. For more information about _fmode, see page 44.

When you call a file-open function such as _open, fopen, freopen, or _fsopen, you
can override the current default setting of _fmode by specifying the appropriate
argument to the function. The stdin, stdout, and stderr streams are always opened in
text mode by default; you can also override this default when opening any of these
files. Use _setmode to change the translation mode using the file handle after the file
is open.

Unicode™ Stream I/0 in Text and Binary Modes

When a Unicode stream I/O routine (such as fwprintf, fwscanf, fgetwc, fputwc,
fgetws, or fputws) operates on a file that is open in text mode (the default), two kinds
of character conversions take place:

15

Run-Time Library Reference

¢ Unicode-to-MBCS or MBCS-to-Unicode conversion. When a Unicode stream-1/O
function operates in text mode, the source or destination stream is assumed to be a
sequence of multibyte characters. Therefore, the Unicode stream-input functions
convert multibyte characters to wide characters (as if by a call to the mbtowc
function). For the same reason, the Unicode stream-output functions convert wide
characters to multibyte characters (as if by a call to the wetomb function).

e Carriage return—linefeed (CR-LF) translation. This translation occurs before the
MBCS—Unicode conversion (for Unicode stream input functions) and after the
Unicode—MBCS conversion (for Unicode stream output functions). During input,
each carriage return—linefeed combination is translated into a single linefeed
character. During output, each linefeed character is translated into a carriage
return—linefeed combination.

However, when a Unicode stream-1/O function operates in binary mode, the file is
assumed to be Unicode, and no CR-LF translation or character conversion occurs
during input or output.

Stream /O

16

These functions process data in different sizes and formats, from single characters to
large data structures. They also provide buffering, which can improve performance.

The default size of a stream buffer is 4K. These routines affect only buffers created by
the run-time library routines, and have no effect on buffers created by the operating

system.

Stream I/O Routines

Routine Use

clearerr Clear error indicator for stream

fclose Close stream

_fcloseall Close all open streams except stdin, stdout, and stderr

_fdopen, wfdopen
feof

ferror

fflush

fgetc, fgetwe

_fgetchar, _fgetwchar

fgetpos
fgets, fgetws
_fileno
_flashall

Associate stream with handle to open file
Test for end of file on stream

Test for error on stream

Flush stream to buffer or storage device

Read character from stream (function versions of getc and
getwce)

Read character from stdin (function versions of getchar
and getwchar)

Get position indicator of stream

Read string from stream

Get file handle associated with stream
Flush all streams to buffer or storage device

Stream 1/0 Routines (continued)

Chapter 1 Run-Time Routines by Category

Routine

Use

fopen, _wfopen
fprintf, fwprintf
fputc, fputwe

_fputchar, _fputwchar

fputs, fputws

fread

freopen, _wfreopen
fscanf, fwscanf
fseek

fsetpos

_fsopen, _wfsopen
ftell

fwrite

getc, getwce

getchar, getwchar

gets, getws
_getw

printf, wprintf
putc, putwe

putchar, putwchar

puts, _putws

_putw

rewind

_rmtmp

scanf, wscanf

setbuf

setvbuf

_snprintf, _snwprintf
sprintf, swprintf

Open stream
Write formatted data to stream

Write a character to a stream (function versions of pute and
putwc)

Write character to stdout (function versions of putchar and
putwchar)

Write string to stream

Read unformatted data from stream

Reassign FILE stream pointer to new file or device
Read formatted data from stream

Move file position to given location

Set position indicator of stream

Open stream with file sharing

Get current file position

Write unformatted data items to stream

Read character from stream (macro versions of fgetc and
fgetwce)

Read character from stdin (macro versions of fgetchar and
fgetwchar)

Read line from stdin
Read binary int from stream
Write formatted data to stdout

Write character to a stream (macro versions of fputc and
fputwce)

Write character to stdout (macro versions of fputchar and
fputwchar)

Write line to stream

Write binary int to stream

Move file position to beginning of stream
Remove temporary files created by tmpfile

Read formatted data from stdin

Control stream buffering

Control stream buffering and buffer size

Write formatted data of specified length to string
Write formatted data to string

17

Run-Time Library Reference

18

Stream I/O Routines (continued)

Routine Use

sscanf, swscanf Read formatted data from string

_tempnam, _wtempnam Generate temporary filename in given directory
tmpfile Create temporary file

tmpnam, _wtmpnam Generate temporary filename

ungetc, ungetwe Push character back onto stream

viprintf, viwprintf Write formatted data to stream

vprintf, vwprintf Write formatted data to stdout

_vsnprintf, _vsnwprintf Write formatted data of specified length to buffer
vsprintf, vswprintf Write formatted data to buffer

When a program begins execution, the startup code automatically opens several
streams: standard input (pointed to by stdin), standard output (pointed to by stdout),
and standard error (pointed to by stderr). These streams are directed to the console
(keyboard and screen) by default. Use freopen to redirect stdin, stdout, or stderr to a
disk file or a device.

Files opened using the stream routines are buffered by default. stdout and stderr are
flushed whenever they are full or, if you are writing to a character device, after each
library call. If a program terminates abnormally, output buffers may not be flushed,
resulting in loss of data. Use fflush or _flushall to ensure that the buffer associated
with a specified file or all open buffers are flushed to the operating system, which can
cache data before writing it to disk. The commit-to-disk feature ensures that the
flushed buffer contents are not lost in the event of a system failure.

There are two ways to commit buffer contents to disk:

e Link with the file COMMODE.OBJ to set a global commit flag. The default
setting of the global flag is n, for “no-commit.”

e Set the mode flag to ¢ with fopen or _fdopen.

Any file specifically opened with either the ¢ or the n flag behaves according to the
flag, regardless of the state of the global commit/no-commit flag.

If your program does not explicitly close a stream, the stream is automatically closed
when the program terminates. However, you should close a stream when your
program finishes with it, as the number of streams that can be open at one time is
limited.

Input can follow output directly only with an intervening call to fflush or to a file-
positioning function (fseek, fsetpos, or rewind). Output can follow input without an
intervening call to a file-positioning function if the input operation encounters the
end of the file.

Chapter 1 Run-Time Routines by Category

Low-level I/O

These functions invoke the operating system directly for lower-level operation than
that provided by stream I/O. Low-level input and output calls do not buffer or format
data.

Low-level routines can access the standard streams opened at program startup using
the following predefined handles:

Stream Handle
stdin 0
stdout 1
stderr 2

Low-level I/O routines set the errno global variable when an error occurs. (For more
information, see “_doserrno, errno, _sys_errlist, and _sysnerr” on page 41.) You
must include STDIO.H when you use low-level functions only if your program
requires a constant that is defined in STDIO.H, such as the end-of-file indicator
(EOF).

Low-Level I/O Functions

Function Use

_close Close file

_commit Flush file to disk

_creat, _wcreat Create file

_dup Return next available file handle for given file
_dup2 Create second handle for given file

_eof Test for end of file

_Iseek, _lseeki64 Reposition file pointer to given location

_open, _wopen Open file

_read _ Read data from file

_sopen, _wsopen Open file for file sharing

_tell, _telli64 Get current file-pointer position
_umask Set file-permission mask
_write Write data to file

_dup and _dup?2 are typically used to associate the predefined file handles with
different files.

19

Run-Time Library Reference

Console and Port I/O

These routines read and write on your console or on the specified port. The console
I/O routines are not compatible with stream I/O or low-level I/O library routines. The
console or port does not have to be opened or closed before I/O is performed, so there
are no open or close routines in this category. In Windows NT and Windows 95, the
output from these functions is always directed to the console and cannot be
redirected.

Console and Port I/O Routines

Routine Use

_cgets Read string from console

_cprintf Write formatted data to console

_cputs Write string to console

_cscanf Read formatted data from console

_getch Read character from console

_getche Read character from console and echo it

_inp Read one byte from specified I/O port

_inpd Read double word from specified I/O port

_inpw Read 2-byte word from specified I/O port

_kbhit Check for keystroke at console; use before attempting to read from console
_outp Write one byte to specified I/O port

_outpd Write double word to specified I/O port

_outpw Write word to specified I/O port

_putch Write character to console

_ungetch “Unget” last character read from console so it becomes next character read

Internationalization

20

The Microsoft run-time library provides many routines that are useful for creating
different versions of a program for international markets. This includes locale-related
routines, wide-character routines, multibyte-character routines, and generic-text
routines. For convenience, most locale-related routines are also categorized in this
reference according to the operations they perform. In this chapter and in this book’s
alphabetic reference, multibyte-character routines and wide-character routines are
described with single-byte—character counterparts, where they exist.

Locale

Chapter 1 Run-Time Routines by Category

Use the setlocale function to change or query some or all of the current program
locale information. “Locale” refers to the locality (the country and language) for
which you can customize certain aspects of your program. Some locale-dependent
categories include the formatting of dates and the display format for monetary values.

Locale-Dependent Routines

setlocale Category
Routine Use Setting Dependence
atof, atoi, atol Convert character to floating-point, LC_NUMERIC
integer, or long integer value,
respectively
is Routines Test given integer for particular LC_CTYPE
condition.
isleadbyte Test for lead byte () LC_CTYPE
localeconv Read appropriate values for LC_MONETARY,
formatting numeric quantities LC_NUMERIC
MB_CUR_MAX Maximum length in bytes of any LC_CTYPE
multibyte character in current locale
(macro defined in STDLIB.H)
_mbcepy Copy one multibyte character LC_CTYPE
_mbclen Return length, in bytes, of given LC_CTYPE
multibyte character
mblen Validate and return number of bytes LC_CTYPE
in multibyte character
_mbstrlen For multibyte-character strings: LC_CTYPE
validate each character in string;
return string length
mbstowcs Convert sequence of multibyte LC_CTYPE
characters to corresponding sequence
of wide characters
mbtowc Convert multibyte character to LC_CTYPE
corresponding wide character
printf family Write formatted output LC_NUMERIC
(determines radix
character output)
scanf family Read formatted input LC_NUMERIC
(determines radix
character recognition)
setlocale, Select locale for program Not applicable
_wsetlocale
streoll, wescoll Compare characters of two strings LC_COLLATE

21

Run-Time Library Reference

Locale-Dependent Routines (continued)

setlocale Category
Routine Use Setting Dependence
_stricoll, _wcsicoll Compare characters of two strings LC_COLLATE
(case insensitive)
_strncoll, _wesneoll Compare first 7 characters of two LC_COLLATE
strings
_strnicoll, Compare first # characters of two LC_COLLATE
_wesnicoll strings (case insensitive)
strftime, wcsftime Format date and time value according LC_TIME
to supplied format argument
_strlwr Convert, in place, each uppercase LC_CTYPE
letter in given string to lowercase
strtod, westod, Convert character string to double, LC_NUMERIC
strtol, westol, long, or unsigned long value (determines radix
strtoul, westoul character recognition)
_strupr Convert, in place, each lowercase LC_CTYPE
letter in string to uppercase
strxfrm, wesxfrm Transform string into collated form LC_COLLATE
according to locale
tolower, towlower Convert given character to LC_CTYPE
corresponding lowercase character
toupper, towupper Convert given character to LC_CTYPE
corresponding uppercase letter
westombs Convert sequence of wide characters LC_CTYPE
to corresponding sequence of
multibyte characters
wctomb Convert wide character to LC_CTYPE
corresponding multibyte character
_wtoi, _wtol Convert wide-character string to int LC_NUMERIC

or long

Code Pages

A code page is a character set, which can include numbers, punctuation marks, and
other glyphs. Different languages and locales may use different code pages. For
example, ANSI code page 1252 is used for American English and most European
languages; OEM code page 932 is used for Japanese Kanji.

A code page can be represented in a table as a mapping of characters to single-byte
values or multibyte values. Many code pages share the ASCII character set for
characters in the range 0x00—0x7F.

22

Chapter 1 Run-Time Routines by Category

The Microsoft run-time library uses the following types of code pages:

¢ System-default ANSI code page. By default, at startup the run-time system
automatically sets the multibyte code page to the system-default ANSI code page,
which is obtained from the operating system. The call

setlocale (LC_ALL, "");
also sets the locale to the system-default ANSI code page.

e Locale code page. The behavior of a number of run-time routines is dependent on
the current locale setting, which includes the locale code page. (For more
information, see “Locale-Dependent Routines™ on page 21.) By default, all locale-
dependent routines in the Microsoft run-time library use the code page that
corresponds to the “C” locale. At run-time you can change or query the locale code
page in use with a call to setlocale.

e Multibyte code page. The behavior of most of the multibyte-character routines in
the run-time library depends on the current multibyte code page setting. By
default, these routines use the system-default ANSI code page. At run-time you
can query and change the multibyte code page with _getmbcp and _setmbcp,
respectively.

e The “C” locale is defined by ANSI to correspond to the locale in which C
programs have traditionally executed. The code page for the “C” locale (“C” code
page) corresponds to the ASCII character set. For example, in the “C” locale,
islower returns true for the values 0x61-0x7A only. In another locale, islower
may return true for these as well as other values, as defined by that locale.

Interpretation of Multibyte-Character Sequences

Most multibyte-character routines in the Microsoft run-time library recognize
multibyte-character sequences according to the current multibyte code page setting.
The following multibyte-character routines depend instead on the locale code page
(specifically, on the LC_CTYPE category setting of the current locale):

Locale-Dependent Multibyte Routines

Routine Use

mblen Validate and return number of bytes in multibyte character

_mbstrlen For multibyte-character strings: validate each character in string; return
string length

mbstowcs Convert sequence of multibyte characters to corresponding sequence of
wide characters

mbtowc Convert multibyte character to corresponding wide character

wcstombs Convert sequence of wide characters to corresponding sequence of

multibyte characters
wctomb Convert wide character to corresponding multibyte character

23

Run-Time Library Reference

Single-byte and Multibyte Character Sets

The ASCII character set defines characters in the range 0x00—0x7F. There are a
number of other character sets, primarily European, that define the characters within
the range 0x00—0x7F identically to the ASCII character set and also define an
extended character set from 0x80—0xFF. Thus an 8-bit, single-byte—character set
(SBCS) is sufficient to represent the ASCII character set as well as the character sets
for many European languages. However, some non-European character sets, such as
Japanese Kanji, include many more characters than can be represented in a single-
byte coding scheme, and therefore require multibyte-character set (MBCS) encoding.

Note Many SBCS routines in the Microsoft run-time library handle multibyte bytes,
characters, and strings as appropriate. Many multibyte-character sets define the ASCII
character set as a subset. In many multibyte character sets, each character in the range 0x00-
Ox7F is identical to the character that has the same value in the ASCII character set. For
example, in both ASCII and MBCS character strings, the one-byte NULL character (\0') has
value 0x00 and indicates the terminating null character.

A multibyte character set may consist of both one-byte and two-byte characters. Thus
a multibyte-character string may contain a mixture of single-byte and double-byte
characters. A two-byte multibyte character has a lead byte and a trail byte. In a
particular multibyte-character set, the lead bytes fall within a certain range, as do the
trail bytes. When these ranges overlap, it may be necessary to evaluate the context to
determine whether a given byte is functioning as a lead byte or a trail byte.

SBCS and MBCS Data Types

24

Any Microsoft MBCS run-time library routine that handles only one multibyte
character or one byte of a multibyte character expects an unsigned int argument
(where 0x00 <= character value <= OxFFFF and 0x00 <= byte value <= OxFF). An
MBCS routine that handles multibyte bytes or characters in a string context expects a
multibyte-character string to be represented as an unsigned char pointer.

Caution Each byte of a multibyte character can be represented in an 8-bit char. However, an
SBCS or MBCS single-byte character of type char with a value greater than Ox7F is negative.
When such a character is converted directly to an int or a long, the result is sign-extended by
the compiler and can therefore yield unexpected results.

Therefore it is best to represent a byte of a multibyte character as an 8-bit unsigned
char. Or, to avoid a negative result, simply convert a single-byte character of type
char to an unsigned char before converting it to an int or a long.

Chapter 1 Run-Time Routines by Category

Because some SBCS string-handling functions take (signed) char* parameters, a
type mismatch compiler warning will result when _ MBCS is defined. There are three
ways to avoid this warning, listed in order of efficiency:

1. Use the “type-safe” inline function thunks in TCHAR.H. This is the default
behavior.

2. Use the “direct” macros in TCHAR.H by defining . MB_MAP_DIRECT on the
command line. If you do this, you must manually match types. This is the fastest
method, but is not type-safe.

3. Use the “type-safe” statically linked library function thunks in TCHAR.H. To do
so, define the constant _NQO_INLINING on the command line. This is the slowest
method, but the most type-safe.

Unicode: The Wide-Character Set

A wide character is a 2-byte multilingual character code. Any character in use in
modern computing worldwide, including technical symbols and special publishing
characters, can be represented according to the Unicode specification as a wide
character. Developed and maintained by a large consortium that includes Microsoft,
the Unicode standard is now widely accepted. Because every wide character is always
represented in a fixed size of 16 bits, using wide characters simplifies programming
with international character sets.

A wide character is of type wchar_t. A wide-character string is represented as a
wchar_t[] array and is pointed to by a wchar_t* pointer. You can represent any
ASCII character as a wide character by prefixing the letter L to the character. For
example, L\0' is the terminating wide (16-bit) NULL character. Similarly, you can
represent any ASCII string literal as a wide-character string literal simply by
prefixing the letter L to the ASCII literal (L"Hello").

Generally, wide characters take up more space in memory than multibyte characters
but are faster to process. In addition, only one locale can be represented at a time in
multibyte encoding, whereas all character sets in the world are represented
simultaneously by the Unicode representation.

Using Generic-Text Mappings

Microsoft Specific —

To simplify code development for various international markets, the Microsoft run-
time library provides Microsoft-specific “generic-text” mappings for many data types,
routines, and other objects. These mappings are defined in TCHAR.H. You can use
these name mappings to write generic code that can be compiled for any of the three
kinds of character sets: ASCII (SBCS), MBCS, or Unicode, depending on a manifest

25

Run-Time Library Reference

26

constant you define using a #define statement. Generic-text mappings are Microsoft
extensions that are not ANSI compatible.

Preprocessor Directives for Generic-Text Mappings

#define Compiled Version Example

_UNICODE Unicode (wide-character) _tesrev maps to _wcsrev
_MBCS Multibyte-character _tesrev maps to _mbsrev
None (the default: neither SBCS (ASCII) _tesrev maps to strrev
_UNICODE nor _MBCS

defined)

For example, the generic-text function _tesrev, defined in TCHAR.H, maps to
mbsrev if MBCS has been defined in your program, or to _wesrev if _UNICODE
has been defined. Otherwise _tcsrev maps to strrev.

The generic-text data type _'TCHAR, also defined in TCHAR.H, maps to type char if
_MBCS is defined, to type wchar_t if _UNICODE is defined, and to type char if
neither constant is defined. Other data type mappings are provided in TCHAR.H for
programming convenience, but _TCHAR is the type that is most useful.

Generic-Text Data Type Mappings
Generic-Text SBCS (_UNICODE,

Data Type Name _MBCS Not Defined) _MBCS Defined _UNICODE Defined

_TCHAR char char wchar_t

_TINT int int wint_t

_TSCHAR signed char signed char wchar_t

_TUCHAR unsigned char unsigned char wchar_t

_TXCHAR char unsigned char wchar_t

_T or _TEXT No effect (removed by ~ No effect L (converts following

preprocessor) (removed by character or string to its

preprocessor) Unicode counterpart)

For a complete list of generic-text mappings of routines, variables, and other objects,
see Appendix B, “Generic-Text Mappings.”

The following code fragments illustrate the use of _"TCHAR and _tcsrev for
mapping to the MBCS, Unicode, and SBCS models.

_TCHAR *RetVal, *szString;
RetVal = _tcsrev(szString);

If MBCS has been defined, the preprocessor maps the preceding fragment to the
following code:

char *RetVal, *szString;
RetVal = _mbsrev(szString);

Chapter 1 Run-Time Routines by Category

If _UNICODE has been defined, the preprocessor maps the same fragment to the
following code: :

wchar_t *RetVal, *szString;
RetVal = _wcsrev(szString);

If neither _MBCS nor _UNICODE has been defined, the preprocessor maps the
fragment to single-byte ASCII code, as follows:

char *RetVal, *szString;
RetVal = strrev(szString);

Thus you can write, maintain, and compile a single source code file to run with
routines that are specific to any of the three kinds of character sets.

A Sample Generic-Text Program

The following program, GENTEXT.C, provides a more detailed illustration of the use
of generic-text mappings defined in TCHAR.H:

/*

* GENTEXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#Hinclude <direct.h>
#include <errno.h>
#include <tchar.h>

int __cdecl _tmain(int argc, _TCHAR **argv, _TCHAR **envp)
{

_TCHAR buff[_MAX_PATH];

_TCHAR *str = _T("Astring”);

char *amsg = "Reversed";

wchar_t *wmsg = L"Is";

#ifdef _UNICODE

printf("Unicode version\n");
f#felse /* _UNICODE */
#ifdef _MBCS

printf("MBCS version\n");
felse

printf("SBCS version\n");
fendif
f#fendif /* _UNICODE */

if (_tgetcwd(buff, _MAX_PATH) == NULL)
printf("Can't Get Current Directory - errno=%d\n", errno);

27

Run-Time Library Reference

28

else

_tprintf(_T("Current Directory is '%s'\n"), buff);
_tprintf(_T("'%s' %hs %1s:\n"), str, amsg, wmsg);
_tprintf(_T("'%s'\n"), _tcsrev(str));
return 0;

}
If _MBCS has been defined, GENTEXT.C maps to the following MBCS program:

/*
* MBCSGTXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
* MBCS version of GENTEXT.C
*/
int __cdecl main(int argc, char **argv, char **envp)
{
char buff[_MAX_PATH];
char *str = "Astring";
char *amsg = "Reversed";
wchar_t *wmsg = L"Is";
printf("MBCS version\n");
if (_getcwd(buff, _MAX_PATH) == NULL)
printf("Can't Get Current Directory - errno=%d\n", errno);
else
printf("Current Directory is '%s'\n", buff);
printf("'%s' %hs %1s:\n", str, amsg, wmsg);
printf("'%s'\n", _mbsrev(str));
return 0;
}

If _UNICODE has been defined, GENTEXT.C maps to the following Unicode
version of the program. For more information about using wmain in Unicode
programs as a replacement for main, see “Using wmain” in C Language Reference.

/*

* UNICGTXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program

* Unicode version of GENTEXT.C

*/

int __cdecl wmain(int argc, wchar_t **argv, wchar_t **envp)
{

wchar_t buff[_MAX_PATH];

wchar_t *str = L"Astring";

char *amsg = "Reversed";

wchar_t *wmsg = L"Is";

printf("Unicode version\n");
if (_wgetcwd(buff, _MAX_PATH) == NULL)
printf("Can't Get Current Directory - errno=%d\n", errno);

Chapter 1 Run-Time Routines by Category

else
wprintf(L"Current Directory is '%s'\n", buff);
wprintf(L"'%s' %hs %1s:\n", str, amsg, wmsg);
wprintf(L"'%s'\n", wcsrev(str));
return 9;
}

If neither _MBCS nor _UNICODE has been defined, GENTEXT.C maps to single-
byte ASCII code, as follows:

/*
* SBCSGTXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
* Single-byte (SBCS) Ascii version of GENTEXT.C
*/
int __cdecl main(int argc, char **argv, char **envp)
{
char buff[_MAX_PATHI;
char *str = "Astring”;
char *amsg = "Reversed";
wchar_t *wmsg = L"Is";
printf("SBCS version\n");
if (_getcwd(buff, _MAX_PATH) == NULL)
printf("Can't Get Current Directory - errno=%d\n", errno);
else
printf("Current Directory is '%s'\n", buff);
printf("'%s' %hs %1s:\n", str, amsg, wmsg);
printf("'%s'\n", strrev(str));
return 0;
1

Using TCHAR.H Data Types with _MBCS

As the table of generic-text routine mappings indicates (see Appendix B, “Generic-
Text Mappings”), when the manifest constant _MBCS is defined, a given generic-
text routine maps to one of the following kinds of routines:

e An SBCS routine that handles multibyte bytes, characters, and strings
appropriately. In this case, the string arguments are expected to be of type char*.
For example, _tprintf maps to printf; the string arguments to printf are of type
char*. If you use the _'TCHAR generic-text data type for your string types, the
formal and actual parameter types for printf match because _TCHAR* maps to
char*.

e An MBCS-specific routine. In this case, the string arguments are expected to be of
type unsigned char*. For example, _tcsrev maps to _mbsrev, which expects and
returns a string of type unsigned char®. Again, if you use the _'TCHAR generic-

29

Run-Time Library Reference

text data type for your string types, there is a potential type conflict because
_TCHAR maps to type char.

Following are three solutions for preventing this type conflict (and the C compiler
warnings or C++ compiler errors that would result):

e Use the default behavior. TCHAR.H provides generic-text routine prototypes for
routines in the run-time libraries, as in the following example.

char *_tcsrev(char *);

In the default case, the prototype for _tesrev maps to _mbsrev through a thunk in
LIBC.LIB. This changes the types of the _mbsrev incoming parameters and
outgoing return value from _TCHAR * (i.e., char *) to unsigned char *. This
method ensures type matching when you are using . TCHAR, but it is relatively
slow because of the function call overhead.

e Use function inlining by incorporating the following preprocessor statement in
your code.

fidefine _USE_INLINING

This method causes an inline function thunk, provided in TCHAR.H, to map the
generic-text routine directly to the appropriate MBCS routine. The following code
excerpt from TCHAR.H provides an example of how this is done.

__inline char *_tcsrev(char *_sl)

{return (char *)_mbsrev((unsigned char *)_sl);}

If you can use inlining, this is the best solution, because it guarantees type
matching and has no additional time cost.

e Use “direct mapping” by incorporating the following preprocessor statement in
your code.

f#define _MB_MAP_DIRECT

This approach provides a fast alternative if you do not want to use the default
behavior or cannot use inlining. It causes the generic-text routine to be mapped by
a macro directly to the MBCS version of the routine, as in the following example
from TCHAR.H.

#define _tcschr _mbschr

When you take this approach, you must be careful to ensure that appropriate data
types are used for string arguments and string return values. You can use type casting
to ensure proper type matching or you can use the _'TXCHAR generic-text data type.
_TXCHAR maps to type char in SBCS code but maps to type unsigned char in
MBCS code. For more information about generic-text macros, see Appendix B,
“Generic-Text Mappings.”

END Microsoft Specific

Chapter 1 Run-Time Routines by Category

Memory Allocation

Use these routines to allocate, free, and reallocate memory.

Memory-Allocation Routines

Routine Use

_alloca Allocate memory from stack

calloc Allocate storage for array, initializing every byte in allocated
block to 0

_calloc_dbg Debug version of calloc; only available in the debug
versions of the run-time libraries

_expand Expand or shrink block of memory without moving it

_expand_dbg Debug version of _expand; only available in the debug
versions of the run-time libraries

free Free allocated block

_free_dbg Debug version of free; only available in the debug versions
of the run-time libraries

_heapadd Add memory to heap

_heapchk Check heap for consistency

_heapmin Release unused memory in heap

_heapset Fill free heap entries with specified value

_heapwalk Return information about each entry in heap

malloc Allocate block of memory from heap

_malloc_dbg Debug version of malloc; only available in the debug
versions of the run-time libraries

_msize Return size of allocated block

_msize_dbg Debug version of _msize; only available in the debug

_query_new_handler

_query_new_mode

realloc
_realloc_dbg

_set_new_handler

_set_new_mode

versions of the run-time libraries

Return address of current new handler routine as set by
_set_new_handler

Return integer indicating new handler mode set by
_set_new_mode for malloc

Reallocate block to new size

Debug version of realloc; only available in the debug
versions of the run-time libraries

Enable error-handling mechanism when new operator fails
(to allocate memory) and enable compilation of Standard
Template Libraries (STL)

Set new handler mode for malloc

31

Run-Time Library Reference

Process and Environment Control

Use the process-control routines to start, stop, and manage processes from within a
program. Use the environment-control routines to get and change information about
the operating-system environment.

32

Process and Environment Control Functions

Routine Use

abort Abort process without flushing buffers or calling functions
registered by atexit and _onexit

assert Test for logic error

_ASSERT, Similar to assert, but only available in the debug versions of the

_ASSERTE macros run-time libraries

atexit Schedule routines for execution at program termination

_beginthread, Create a new thread on a Windows NT or Windows 95 process

_beginthreadex

_cexit Perform exit termination procedures (such as flushing buffers),
then return control to calling program without terminating process

_c_exit Perform _exit termination procedures, then return control to
calling program without terminating process

_cwait Wait until another process terminates

_endthread, Terminate a Windows NT or Windows 95 thread

_endthreadex

_execl, _wexecl
_execle, _wexecle
_execlp, _wexeclp

_execlpe,
_wexeclpe

_execy, _wexecy
_execve, _wexecve
_exXecvp, _wexecvp

_execvpe,
_wexecvpe

exit
_exit
getenv, _wgetenv

_getpid
longjmp

Execute new process with argument list
Execute new process with argument list and given environment
Execute new process using PATH variable and argument list

Execute new process using PATH variable, given environment,
and argument list

Execute new process with argument array
Execute new process with argument array and given environment
Execute new process using PATH variable and argument array

Execute new process using PATH variable, given environment,
and argument array

Call functions registered by atexit and _onexit, flush all buffers
and close all open files, and terminate process

Terminate process immediately without calling atexit or _onexit
or flushing buffers

Get value of environment variable
Get process ID number .
Restore saved stack environment; use it to execute a nonlocal goto

Chapter 1 Run-Time Routines by Category

Process and Environment Control Functions (continued)

Routine Use

_onexit Schedule routines for execution at program termination; use for
compatibility with Microsoft C/C++ version 7.0 and earlier

_pclose Wait for new command processor and close stream on associated

perror, _wperror
_pipe

_popen, _wpopen
_putenv, _wputenv
raise

setjmp

signal

_spawnl, _wspawnl

_spawnle,
_wspawnle

_spawnlp,
_wspawnlp
_spawnlpe,
_wspawnlpe

_spawnv,
_wspawny

_spawnve,
_wspawnve

_spawnvp,
_wspawnvp

_spawnvpe,
_wspawnvpe

system, _wsystem

pipe

Print error message

Create pipe for reading and writing

Create pipe and execute command

Add or change value of environment variable

Send signal to calling process

Save stack environment; use to execute nonlocal goto
Handle interrupt signal

Create and execute new process with specified argument list

Create and execute new process with specified argument list and
environment

Create and execute new process using PATH variable and
specified argument list

Create and execute new process using PATH variable, specified
environment, and argument list

Create and execute new process with specified argument array

Create and execute new process with specified environment and
argument array

Create and execute new process using PATH variable and
specified argument array

Create and execute new process using PATH variable, specified
environment, and argument array

Execute operating-system command

In Windows NT and Windows 95, the spawned process is equivalent to the spawning
process. Therefore, the OS/2@ wait function, which allows a parent process to wait
for its children to terminate, is not available. Instead, any process can use _cwait to
wait for any other process for which the process ID is known.

The difference between the _exec and _spawn families is that a _spawn function can
return control from the new process to the calling process. In a _spawn function,
both the calling process and the new process are present in memory unless
_P_OVERLAY is specified. In an _exec function, the new process overlays the
calling process, so control cannot return to the calling process unless an error occurs
in the attempt to start execution of the new process.

33

Run-Time Library Reference

The differences among the functions in the _exec family, as well as among those in
the _spawn family, involve the method of locating the file to be executed as the new
process, the form in which arguments are passed to the new process, and the method
of setting the environment, as shown in the following table. Use a function that
passes an argument list when the number of arguments is constant or is known at
compile time. Use a function that passes a pointer to an array containing the
arguments when the number of arguments is to be determined at run time. The
information in the following table also applies to the wide-character counterparts of
the _spawn and _exec functions.

_spawn and _exec Function Families

Use PATH Argument-
Variable to Passing

Functions Locate File Convention Environment Settings

_execl, _spawnl No List Inherited from calling process

_execle, _spawnle No List Pointer to environment table for
new process passed as last
argument

_execlp, _spawnlp Yes List Inherited from calling process

_execlpe, _spawnlpe Yes List Pointer to environment table for
new process passed as last
argument

_execy, _spawnv No Array Inherited from calling process

_execve, _spawnve No Array Pointer to environment table for
new process passed as last
argument

_execvp, _spawnvp Yes Array Inherited from calling process

_execvpe, _spawnvpe Yes Array Pointer to environment table for
new process passed as last
argument

Searching and Sorting

34

Use the following functions for searching and sorting:

Searching and Sorting Functions

Function Search or Sort

bsearch Binary search

_Ifind Linear search for given value

_Isearch Linear search for given value, which is added to array if not found
gsort Quick sort

Chapter 1 Run-Time Routines by Category

String Manipulation

These routines operate on null-terminated single-byte character, wide-character, and
multibyte-character strings. Use the buffer-manipulation routines, described in Buffer
Manipulation, to work with character arrays that do not end with a null character.

String-Manipulation Routines

Routine

Use

_mbscoll, _mbsicoll,
_mbsncoll, _mbsnicoll

_mbsdec, _strdec, _wcsdec
_mbsing, _strinc, _wcsinc
_mbslen

_mbsnbcat

_mbsnbcmp
_mbsnbcnt

_mbsnbcpy
_mbsnbicmp

_mbsnbset
_mbsncent

_mbsnextc, _strnextc,
_wcsnexte

_mbsninc. _straninc, _wesnine

_mbsspnp, _strspnp,
_Wesspnp

_mbstrlen

strcat, wescat, _mbscat
strchr, weschr, _mbschr
stremp, wesemp, _mbscmp

strecoll, wescoll, _stricoll,
_wesicoll, _strncoll, _wcsncoll,
_strnicoll, _wcsnicoll

strcpy, wescpy, _mbscpy

Compare two multibyte-character strings using
multibyte code page information (_mbsicoll and
_mbsnicoll are case-insensitive)

Move string pointer back one character
Advance string pointer by one character

Get number of multibyte characters in multibyte-
character string; dependent upon OEM code page

Append, at most, first n bytes of one multibyte-
character string to another

Compare first n bytes of two multibyte-character strings

Return number of multibyte-character bytes within
supplied character count

Copy n bytes of string

Compare n bytes of two multibyte-character strings,
ignoring case

Set first n bytes of multibyte-character string to
specified character

Return number of multibyte characters within supplied
byte count

Find next character in string

Advance string pointer by n characters

Return pointer to first character in given string not in
another given string

Get number of multibyte characters in multibyte-
character string; locale-dependent

Append one string to another
Find first occurrence of specified character in string
Compare two strings

Compare two strings using current locale code page
information (_stricoll, _wcsicoll, _strnicoll, and
_wcsnicoll are case-insensitive)

Copy one string to another

35

Run-Time Library Reference

String-Manipulation Routines ({continued)

Routine

strespn, wesespn, _mbsespn,

_strdup, _wcsdup, _mbsdup
strerror

_strerror

strftime, wesftime

_stricmp, _wcsicmp,
_mbsicmp

strlen, weslen, _mbslen,
_mbstrien

_striwr, _wcslwr, _mbslwr
strncat, wesncat, _mbsncat

strncmp, wesnemp,
_mbsncmp

strncpy, wesncpy, _mbsncpy

_strnicmp, _wcsnicmp,
_mbsnicmp

_strnset, _wcsnset, _mbsnset
strpbrk, wespbrk, _mbspbrk

strrchr, wesrchr,_mbsrchr
_strrev, _wcsrev,_mbsrev
_strset, _wcsset, _mbsset
strspn, wesspn, _mbsspn
strstr, wesstr, _mbsstr

strtok, westok, _mbstok
_strupr, _wcsupr, _mbsupr
strxfrm, wesxfrm

Find first occurrence of character from specified
character set in string

Duplicate string

Map error number to message string
Map user-defined error message to string
Format date-and-time string

Compare two strings without regard to case
Find length of string

Convert string to lowercase
Append characters of string

A Compare characters of two strings

Copy characters of one string to another

Compare characters of two strings without regard to
case

Set first n characters of string to specified character

Find first occurrence of character from one string in
another string

Find last occurrence of given character in string
Reverse string

Set all characters of string to specified character
Find first substring from one string in another string
Find first occurrence of specified string in another
string

Find next token in string

Convert string to uppercase

Transform string into collated form based on locale-
specific information

Chapter 1 Run-Time Routines by Category

System Calls

The following functions are Windows NT and Windows 95 operating-system calls:

System Call Functions

Function Use

_findclose Release resources from previous find operations

_findfirst, _findfirstié4, Find file with specified attributes
_wfindfirst, _wfindfirstic4

_findnext, _findnexti64,
_wfindnext, _wfindnexti64

Find next file with specified attributes

Time Management

Use these functions to get the current time and convert, adjust, and store it as
necessary. The current time is the system time.

The _ftime and localtime routines use the TZ environment variable. If TZ is not set,
the run-time library attempts to use the time-zone information specified by the
operating system. If this information is unavailable, these functions use the default
value of PST8PDT. For more information on TZ, see “_tzset;” also see “_daylight,
timezone, and _tzname” on page 40.

Time Routines

Function

Use

asctime, _wasctime
clock

ctime, _wctime
difftime

_ftime

_fatime
gmtime
localtime

mktime
_strdate, _wstrdate
strftime, wesftime

Convert time from type struct tm to character string
Return elapsed CPU time for process

Convert time from type time_t to character string
Compute difference between two times

Store current system time in variable of type struct
_timeb

Set modification time on open file
Convert time from type time_t to struct tm

Convert time from type time_t to struct tm with local
correction

Convert time to calendar value
Return current system date as string
Format date-and-time string for international use

37

Run-Time Library Reference

Time Routines {continued)

Function Use

_strtime, _wstrtime Return current system time as string

time Get current system time as type time_t

_tzset Set external time variables from environment time
variable TZ

_utime, _wutime Set modification time for specified file using either

current time or time value stored in structure

Note In all versions of Microsoft C/C++ except Microsoft C/C++ version 7.0, and in all
versions of Microsoft Visual C++, the time function returns the current time as the number of
seconds elapsed since midnight on January 1, 1970. In Microsoft C/C++ version 7.0, time
returned the current time as the number of seconds elapsed since midnight on December 31,
1899.

38

CHAPTER

2

Global Variables and Standard Types

The Microsoft run-time library contains definitions for global variables, control flags,
and standard types used by library routines. Access these variables, flags, and types
by declaring them in your program or by including the appropriate header files.

Global Variables

The Microsoft run-time library provides the following global variables.

Variable Description

_amblksiz Controls memory heap granularity

daylight, _timezone, _tzname Adjust for local time; used in some date and time
functions

_doserrno, errno, _sys_errlist, Store error codes and related information

_sys_nerr

_environ, _wenviron Pointers to arrays of pointers to strings that
constitute process environment

_fileinfo Specifies whether information regarding open files
of a process is passed to new processes

_fimode Sets default file-translation mode

_osver, _winmajor, _winminor, Store build and version numbers of operating system

_winver

_pgmptr, _wpgmptr Initialized at program startup to value such as

program name, filename, relative path, or full path

_amblksiz

_amblksiz controls memory heap granularity. It is declared in MALLOC.H as

extern unsigned int _amblksiz;

39

Run-Time Library Reference

The value of _amblksiz specifies the size of blocks allocated by the operating system
for the heap. The initial requested size for a segment of heap memory is just enough
to satisfy the current allocation request (for example, a call to malloc) plus memory
required for heap manager overhead. The value of _amblksiz should represent a
trade-off between the number of times the operating system is to be called to increase
the heap to required size and the amount of memory potentially wasted (available but
not used) at the end of the heap.

The default value of _amblksiz is 8K. You can change this value by direct
assignment in your program. For example:

_amblksiz = 2045;

If you assign a value to _amblksiz, the actual value used internally by the heap
manager is the assigned value rounded up to the nearest whole power of 2. Thus, in
the previous example, the heap manager would reset the value of _amblksize to
2048.

_daylight, _timezone, and _tzname

_daylight, _timezone, and _tzname are used in some time and date routines to make
local-time adjustments. They are declared in TIME.H as

extern int _daylight;
extern long _timezone;
extern char *_tzname[2];

On a call to _ftime, localtime, or _tzset, the values of _daylight, _timezone, and
_tzname are determined from the value of the TZ environment variable. If you do
not explicitly set the value of TZ, _tzname[0] and _tzname[1] contain empty strings,
but the time-manipulation functions (_tzset, _ftime, and localtime) attempt to set the
values of _daylight and _timezone using the time-zone information specified in the
Windows NT or Windows 95 Control Panel Date/Time application. If the time-zone
information cannot be obtained from the operating system, the time-management
functions use the default value PSTSPDT. The time-zone global variable values are as

follows.

Variable Value

_daylight Nonzero if daylight-saving-time zone (DST) is specified in TZ;
otherwise, 0. Default value is 1.

_timezone Difference in seconds between coordinated universal time and local
time. Default value is 28,800.

_tzname[0] Three-letter time-zone name derived from TZ environment variable.

_tzname[1] Three-letter DST zone name derived from TZ environment variable.

Default value is PDT (Pacific daylight time). If DST zone is omitted
from TZ, _tzname[1] is empty string.

40

Chapter 2 Global Variables and Standard Types

_doserrno, errno, _sys_errlist, and _sys_nerr

These global variables hold error codes used by the perror and strerror functions for
printing error messages. Manifest constants for these variables are declared in
STDLIB.H as follows:

extern int _doserrno;
extern int errno;

extern char *_sys_errlist[1;
extern int _sys_nerr;

€rrno is set on an error in a system-level call. Because errno holds the value for the
last call that set it, this value may be changed by succeeding calls. Always check
errno immediately before and after a call that may set it. All errno values, defined as
manifest constants in ERRNO.H, are UNIX-compatible. The values valid for 32-bit
Windows applications are a subset of these UNIX values.

On an error, errno is not necessarily set to the same value as the error code returned
by a system call. For I/O operations only, use _doserrno to access the operating-
system error-code equivalents of errne codes. For other operations the value of
_doserrno is undefined.

Each errno value is associated with an error message that can be printed using
perror or stored in a string using strerror. perror and strerror use the _sys_errlist
array and _sys_nerr, the number of elements in _sys_errlist, to process error
information.

Library math routines set errno by calling _matherr. To handle math errors
differently, write your own routine according to the _matherr reference description
and name it _matherr.

The following errno values are compatible with 32-bit Windows applications. Only
ERANGE and EDOM are specified in the ANSI standard.

Constant System Error Message Value
E2BIG Argument list too long 7
EACCES Permission denied 13
EAGAIN No more processes or not enough 11
memory or maximum nesting level
reached
EBADF Bad file number 9
ECHILD No spawned processes 10
EDEADLOCK Resource deadlock would occur 36
EDOM Math argument 33
EEXIST File exists 17
EINVAL Invalid argument 22

Ly}

Run-Time Library Reference

Constant System Error Message Value
EMFILE Too many open files 24
ENOENT No such file or directory

ENOEXEC Exec format error 8
ENOMEM Not enough memory 12
ENOSPC No space left on device 28
ERANGE Result too large 34
EXDEV Cross-device link 18

_environ, _wenviron

42

The _environ variable is a pointer to an array of pointers to the multibyte-character
strings that constitute the process environment. _environ is declared in STDLIB.H as

extern char **_environ;

In a program that uses the main function, _enviren is initialized at program startup
according to settings taken from the operating-system environment. The environment
consists of one or more entries of the form

ENVVARNAME-=string

getenv and _putenv use the _environ variable to access and modify the environment
table. When _putenv is called to add or delete environment settings, the environment
table changes size. Its location in memory may also change, depending on the
program’s memory requirements. The value of _environ is automatically adjusted
accordingly.

The _wenviron variable, declared in STDLIB.H as
extern wchar_t **_wenviron;

is a wide-character version of _environ. In a program that uses the wmain function,
_wenviron is initialized at program startup according to settings taken from the
operating-system environment.

In a program that uses main, _wenviron is initially NULL, because the environment
is composed of multibyte-character strings. On the first call to _wgetenv or
_wputenv, a corresponding wide-character string environment is created and is
pointed to by _wenviron.

Similarly, in a program that uses wmain, _environ is initially NULL because the
environment is composed of wide-character strings. On the first call to _getenv or
_putenv, a corresponding wide-character string environment is created and is pointed
to by _environ.

When two copies of the environment (MBCS and Unicode) exist simultaneously in a
program, the run-time system must maintain both copies, resulting in slower

Chapter 2 Global Variables and Standard Types

execution time. For example, whenever you call _putenv, a call to _wputenv is also
executed automatically, so that the two environment strings correspond.

Caution In rare instances, when the run-time system is maintaining both a Unicode version
and a multibyte version of the environment, these two environment versions may not
correspond exactly. This is because, although any unique multibyte-character string maps to a
unigue Unicode string, the mapping from a unique Unicode string to a multibyte-character
string is not necessarily unique. Therefore, two distinct Unicode strings may map to the same
multibyte string.

The following pseudocode illustrates how this can happen.

int i, Jj;

i = _wputenv("env_var_x=stringl"); // results in the implicit call:
// putenv ("env_var_z=stringl")

J = _wputenv("env_var_y=string2”); // also results in implicit call:

// putenv("env_var_z=string2")

In the notation used for this example, the character strings are not C string literals;
rather they are placeholders that represent Unicode environment string literals in the
_wputenv call and multibyte environment strings in the putenv call. The character-
placeholders 'x' and 'y’ in the two distinct Unicode enviroment strings do not map
uniquely to characters in the current MBCS; instead, both map to some MBCS
character 'z’ that is the default result of the attempt to convert the strings.

Thus in the multibyte environment the value of "env_var_z" after the first implicit
call to putenv would be "stringl", but this value would be overwritten on the second
implicit call to putenv, when the value of "env_var_z" is set to "string2". The
Unicode environment (in _wenviron) and the multibyte environment (in _environ)
would therefore differ following this series of calls.

_fileinfo

The _fileinfo variable determines whether information about the open files of a
process is passed to new processes by functions such as _spawn. _fileinfo is declared
in STDLIB.H as

extern int _fileinfo;

o If _fileinfo is O (the default), information about open files is not passed to new
processes; otherwise the information is passed. You can modify the default value
of _fileinfo by setting the _fileinfo variable to a nonzero value in your program.

43

Run-Time Library Reference

_fmode

The _fmode variable sets the default file-translation mode for text or binary
translation. It is declared in STDLIB.H as

extern int _fmode;

The default setting of _fmode is _O_TEXT, for text-mode translation. _O_BINARY
is the setting for binary mode.

You can change the value of _fmode in either of two ways:

¢ Link with BINMODE.OBJ. This changes the initial setting of _fmode to
_O_BINARY, causing all files except stdin, stdout, and stderr to be opened in
binary mode.

¢ Change the value of _fmode directly by setting it in your program.

_0sver, _winmajor, _winminor, _winver

These variables store build and version numbers of the 32-bit Windows operating
systems: Declarations for these variables in STDLIB.H are as follows:

extern unsigned int _osver;
extern unsigned int _winmajor;
extern unsigned int _winminor;
extern unsigned int _winver;

These variables are useful in programs that run in different versions of Windows NT

or Windows 95.

Variable Description

_osver Current build number

_winmajor Major version number

_winminor Minor version number

_winver Holds value of _winmajor in high byte and value of _winmineor in low
byte

_pgmptr, _wpgmptr

When a program is run from the command interpreter (CMD.EXE), _pgmptr is
automatically initialized to the full path of the executable file. For example, if
HELLO.EXE is in C:\BIN and C:\BIN is in the path, _pgmptr is set to
CABIN\HELLO.EXE when you execute

C> hello

Chapter 2 Global Variables and Standard Types

When a program is not run from the command line, _pgmptr may be initialized to
the program name (the file’s base name without the extension), or to a filename, a
relative path, or a full path.

_wpgmptr is the wide-character counterpart of _pgmptr for use with programs that
use wmain. _pgmptr and _wpgmptr are declared in STDLIB.H as

extern char *_pgmptr;
extern wchar_t *_pgmptr;

The following program demonstrates the use of _pgmptr.

/*
* PGMPTR.C: The following program demonstrates the use of _pgmptr.
*/

f#include <stdio.h>
#include <stdlib.h>
void main(void)
{
printf("The full path of the executing program is : %Fs\n",
_pgmptr);

Control Flags

The debug version of the Microsoft C run-time library uses the following flags to
control the heap allocation and reporting process. For more information, see Chapter
4, “Debug Version of the C Run-Time Library.”

Flag Description

_CRTDBG_MAP_ALLOC Maps the base heap functions to their debug version
counterparts

_DEBUG Enables the use of the debugging versions of the run-time
functions

_crtDbgFlag Controls how the debug heap manager tracks allocations

These flags can be defined with a /D command-line option or with a #define
directive. When the flag is defined with #define, the directive must appear before the
header file include statement for the routine declarations.

_CRTDBG_MAP_ALLOC

When the _CRTDBG_MAP_ALLOC flag is defined in the debug version of an
application, the base version of the heap functions are directly mapped to their debug

45

Run-Time Library Reference

versions. This flag is declared in CRTDBG.H. This flag is only available when the
_DEBUG flag has been defined in the application.

For more information about using the debug version versus the base version of a heap
function, see “Using the Debug Version Versus the Base Version” on page 84 in
Chapter 4.

DEBUG

When the _DEBUG flag is defined, the application is built with the debug version of
the C run-time library. This flag is declared in CRTDBG.H.

For more information, see Chapter 4, “Debug Version of the C Run-Time Library.”

crtDbgFlag

The _crtDbgFlag flag consists of five bit fields that control how memory allocations
on the debug version of the heap are tracked, verified, reported, and dumped. The bit
fields of the flag are set using the _CrtSetDbgFlag function. This flag and its bit
fields are declared in CRTDBG.H. This flag is only available when the _DEBUG
flag has been defined in the application.

For more information about using this flag in conjunction with other debug functions,
see “Heap State Reporting Functions” on page 83 in Chapter 4.

Standard Types

46

The Microsoft run-time library defines the following standard types.

Type Description Declared In
clock_t structure Stores time values; used by clock. TIME.H
_complex structure Stores real and imaginary parts of MATH.H
complex numbers; used by _cabs.
_dev_t short or unsigned Represents device handles. SYS\TYPES.H
integer
div_t, Idiv_t structures Store values returned by div and Idiv, STDLIB.H
respectively.
_exception structure Stores error information for _matherr. MATH.H
FILE structure Stores information about current state STDIO.H
of stream; used in all stream I/O
operations.

Type

Chapter 2 Global Variables and Standard Types

Description

Declared In

_finddata_t, _wfinddata_t

structures

_FPIEEE_RECORD
structure

fpos_t long integer

_HEAPINFO structure
Jjmp_buf array
lconv structure

_off_t long integer
_onexit_t pointer
_PNH pointer to function

ptrdiff_t integer
sig_atomic_t integer

size_t unsigned integer
_stat structure

time_t long integer
_timeb structure

tm structure

_utimbuf structure

_finddata_t stores file-attribute
information returned by _findfirst and
_findnext. _wfinddata_t stores file-
attribute information returned by
_wfindfirst and _wfindnext.

Contains information pertaining to
IEEE floating-point exception; passed
to user-defined trap handler by
_fpieee_flt.

Used by fgetpos and fsetpos to record
information for uniquely specifying
every position within a file.

Contains information about next heap
entry for _heapwalk.

Used by setjmp and longjmp to save
and restore program environment.
Contains formatting rules for numeric
values in different countries.
Represents file-offset value.
Returned by _onexit.

Type of argument to
_set_new_handler.

Result of subtraction of two pointers.

Type of object that can be modified as
atomic entity, even in presence of
asynchronous interrupts; used with
signal.

Result of sizeof operator.

Contains file-status information
returned by _stat and _fstat.

Represents time values in mktime and

time.

Used by _ftime to store current system
time.

Used by asctime, gmtime, localtime,
mktime, and strftime to store and
retrieve time information.

Stores file access and modification
times used by _utime to change file-
modification dates.

_finddata_t:
IOH
_wfinddata_t:
I0.H, WCHAR.H

FPIEEE.H

STDIO.H

MALLOCH

SETIMP.H

LOCALEH

SYS\TYPES.H
STDLIB.H
NEW.H

STDDEF.H
SIGNAL.H

STDDEF.H and
other include files
SYS\STAT.H
TIME.H
SYS\TIMEB.H

TIME.H

SYS\UTIME.H

47

Run-Time Library Reference

Type Description Declared In
va_list structure Used to hold information needed by STDARG.H
va_arg and va_end macros. Called
function declares variable of type
va_list that can be passed as argument
to another function.
wchar_t internal type of a Useful for writing portable programs STDDEF.H,
wide character for international markets. STDLIB.H
wetype_t integer Can represent all characters of any STDDEF.H,
national character set. STDLIB.H
wint_t integer Type of data object that can hold any WCHAR . H

wide character or wide end-of-file
value.

CHAPTER 3

Global Constants

The Microsoft run-time library contains definitions for global constants used by
library routines. To use these constants, include the appropriate header files as
indicated in the description for each constant. The global constants are listed in the

following table.

BUFSIZ

CLOCKS_PER_SEC, CLK_TCK
Commit-To-Disk Constants

Data Type Constants

EOF

errno

Exception-Handling Constants
EXIT_SUCCESS, EXIT_FAILURE
File Attribute Constants

File Constants

File Permission Constants

File Read/Write Access Constants
File Translation Constants
FILENAME_MAX

FOPEN_MAX, _SYS_OPEN
_FREEENTRY, USEDENTRY
fseek, _Iseek

Heap Constants

_HEAP_MAXREQ
HUGE_VAL

__LOCAL_SIZE
Locale Categories
_locking Constants
Math Error Constants
MB_CUR_MAX
NULL

Path Field Limits
RAND_MAX
setvbuf Constants
Sharing Constants
signal Constants
signal Action Constants
_spawn Constants

_stat Structure st_mode Field
Constants

stdin, stdout, stderr
TMP_MAX, L_tmpnam
Translation Mode Constants

_WAIT_CHILD,
_WAIT_GRANDCHILD

32-bit Windows Time/Date Formats

49

Run-Time Library Reference

BUFSIZ

#include <stdio.h>

Remarks
BUFSIZ is the required user-allocated buffer for the setvbuf routine.

See Also Stream I/0

CLOCKS_PER_SEC, CLK_TCK

#include <time.h>

Remarks

The time in seconds is the value returned by the elock function, divided by
CLOCKS_PER_SEC. CLK_TCK is equivalent, but considered obsolete.

See Also clock

Commit-To-Disk Constants

Microsoft Specific —
#include <stdio.h>

Remarks
These Microsoft-specific constants specify whether the buffer associated with the
open file is flushed to operating system buffers or to disk. The mode is included in the
string specifying the type of read/write access ("'r'", ""w'", "a", "'r+", "w+"", "a+").

The commit-to-disk modes are as follows:

¢ Writes the unwritten contents of the specified buffer to disk. This commit-to-disk
functionality only occurs at explicit calls to either the fflush or the _flushall
function. This mode is useful when dealing with sensitive data. For example, if
your program terminates after a call to fflush or _flushall, you can be sure that
your data reached the operating system's buffers. However, unless a file is opened
with the ¢ option, the data might never make it to disk if the operating system also
terminates.

n Writes the unwritten contents of the specified buffer to the operating system's
buffers. The operating system can cache data and then determine an optimal time
to write to disk. Under many conditions, this behavior makes for efficient program
behavior. However, if the retention of data is critical (such as bank transactions or
airline ticket information) consider using the ¢ option. The n mode is the default.

50

Chapter 3 Global Constants

Note The ¢ and n options are not part of the ANSI standard for fopen, but are Microsoft
extensions and should not be used where ANSI portability is desired.

Using the Commit-to-Disk Feature with Existing Code

By default, calls to the fflush or _flushall library functions write data to buffers
maintained by the operating system; the operating system determines the optimal
time to actually write the data to disk. The commit-to-disk feature of the run-time
library lets you ensure that critical data is written directly to disk rather than to the
operating system's buffers. You can give this capability to an existing program
without rewriting it by linking its object files with COMMODE.OB]J.

In the resulting executable file, calls to fflush write the contents of the buffer directly
to disk, and calls to _flushall write the contents of all buffers to disk. These two
functions are the only ones affected by COMMODE.OBJ.

END Microsoft Specific

See Also Stream I/O, _fdopen, fopen

Data Type Constants

Remarks

These are implementation-dependent ranges of values allowed for integral data types.
The constants listed below give the ranges for the integral data types and are defined

in LIMITS.H.

Note The /J compiler option changes the default char type to unsigned.

Constant Value Meaning

SCHAR_MAX 127 Maximum signed char value

SCHAR_MIN -128 Minimum signed char value

UCHAR_MAX 255 Maximum unsigned char value
(0xff)

CHAR_BIT 8 Number of bits in a char

USHRT_MAX 65535 Maximum unsigned short value
(Oxffff)

SHRT_MAX 32767 Maximum (signed) short value

SHRT_MIN —32768 Minimum (signed) short value

UINT_MAX 4294967295 Maximum unsigned int value
(OxffFffer)

ULONG_MAX 4294967295 Maximum unsigned long value
(OxfTETfeee)

INT_MAX 2147483647 Maximum (signed) int value

INT_MIN -2147483647-1 Minimum (signed) int value

51

Run-Time Library Reference

52

Constant Value Meaning
LONG_MAX 2147483647 Maximum (signed) long value
LONG_MIN —2147483647-1 Minimum (signed) long value
CHAR_MAX 127 Maximum char value

(255 if /J option used)
CHAR_MIN -128 Minimum char value

(0 if /J option used)
MB_LEN_MAX 2 Maximum number of bytes in

multibyte char

The following constants give the range and other characteristics of the double and
float data types, and are defined in FLOAT.H:

Constant Value Description
DBL_DIG 15 # of decimal digits of
precision

DBL_EPSILON

DBL_MANT_DIG
DBL_MAX
DBL_MAX_10_EXP
DBL_MAX_EXP
DBL_MIN
DBL_MIN_10_EXP
DBL_MIN_EXP
_DBL_RADIX
_DBL_ROUNDS
FLT_DIG

FLT_EPSILON

FLT_MANT_DIG
FLT_MAX
FLT_MAX_10_EXP
FLT_MAX_EXP
FLT_MIN
FLT_MIN_10_EXP
FLT_MIN_EXP
FLT_RADIX
FLT_ROUNDS

2.2204460492503131e-016

53
1.7976931348623158+308
308

1024
2.2250738585072014e-308
(-307)

(~1021)

2

1

6

1.192092896e-07F

24
3.402823466e+38F
38

128
1.175494351e-38F
(=37)

(=125)

2

1

Smallest such that
1.0+4DBL_EPSILON '=1.0

of bits in mantissa
Maximum value

Maximum decimal exponent
Maximum binary exponent
Minimum positive value
Minimum decimal exponent
Minimum binary exponent
Exponent radix

Addition rounding: near

Number of decimal digits of
precision

Smallest such that
1.0+FLT_EPSILON !=1.0

Number of bits in mantissa
Maximum value

Maximum decimal exponent
Maximum binary exponent
Minimum positive value
Minimum decimal exponent
Minimum binary exponent
Exponent radix

Addition rounding: near

Chapter 3

EOF

Remarks
This value is returned by an I/O routine when the end-of-file (or in some cases, an
error) is encountered.

See Also putc, ungetc, scanf, fflush, _fcloseall, _ungetch, _putch, __isascii

Global Constants

errno Constants

#include <errno.h>

Remarks
The errno values are constants assigned to errno in the event of various error
conditions.

ERRNO.H contains the definitions of the errno values. However, not all the
definitions given in ERRNO.H are used in 32-bit Windows operating systems. Some
of the values in ERRNO.H are present to maintain compatibility with the UNIX
family of operating systems.

The errno values in a 32-bit Windows operating system, are a subset of the values for
errno in XENIX systems. Thus, the errno value is not necessarily the same as the
actual error code returned by a Windows NT or Windows 95 system call. To access
the actual operating system error code, use the _doserrno variable, which contains
this value.

The following errno values are supported:

ECHILD No spawned processes.

EAGAIN No more processes. An attempt to create a new process failed because
there are no more process slots, or there is not enough memory, or the maximum
nesting level has been reached.

E2BIG Argument list too long.

EACCES Permission denied. The file's permission setting does not allow the
specified access. This error signifies that an attempt was made to access a file (or,
in some cases, a directory) in a way that is incompatible with the file's attributes.

For example, the error can occur when an attempt is made to read from a file that
is not open, to open an existing read-only file for writing, or to open a directory
instead of a file. Under MS-DOS operating system versions 3.0 and later,
EACCES may also indicate a locking or sharing violation.

The error can also occur in an attempt to rename a file or directory or to remove
an existing directory.

53

Run-Time Library Reference

EBADF Bad file number. There are two possible causes: 1) The specified file
handle is not a valid file-handle value or does not refer to an open file. 2) An
attempt was made to write to a file or device opened for read-only access.

EDEADLOCK Resource deadlock would occur. The argument to a math function
is not in the domain of the function.

EDOM Math argument.

EEXIST Files exist. An attempt has been made to create a file that already exists.
For example, the _O_CREAT and _O_EXCL flags are specified in an _open
call, but the named file already exists.

EINVAL Invalid argument. An invalid value was given for one of the arguments to
a function. For example, the value given for the origin when positioning a file
pointer (by means of a call to fseek) is before the beginning of the file.

EMFILE Too many open files. No more file handles are available, so no more files
can be opened.

ENOENT No such file or directory. The specified file or directory does not exist or
cannot be found. This message can occur whenever a specified file does not exist
or a component of a path does not specify an existing directory.

ENOEXEC Exec format error. An attempt was made to execute a file that is not
executable or that has an invalid executable-file format.

ENOMEM Not enough core. Not enough memory is available for the attempted
operator. For example, this message can occur when insufficient memory is
available to execute a child process, or when the allocation request in a _getewd
call cannot be satisfied.

ENOSPC No space left on device. No more space for writing is available on the
device (for example, when the disk is full).

ERANGE Result too large. An argument to a math function is too large, resulting
in partial or total loss of significance in the result. This error can also occur in
other functions when an argument is larger than expected (for example, when the
buffer argument to _getcwd is longer than expected).

EXDEV Cross-device link. An attempt was made to move a file to a different device
(using the rename function).

Exception-Handling Constants

Remarks

54

The constant EXCEPTION_CONTINUE_SEARCH,
EXCEPTION_CONTINUE_EXECUTION, or
EXCEPTION_EXECUTE_HANDLER is returned when an exception occurs
during execution of the guarded section of a try-except statement. The return value

Chapter 3 Global Constants

determines how the exception is handled. For more information, see “try-except
Statement” in C Language Reference.

EXIT_SUCCESS, EXIT_FAILURE

#include <stdlib.h>

Remarks
These are arguments for the exit and _exit functions and the return values for the
atexit and _onexit functions.

See Also atexit, exit, _onexit

File Attribute Constants

#include <io.h>

Remarks
These constants specify the current attributes of the file or directory specified by the
function.

The attributes are represented by the following manifest constants:

_A_ARCH Archive. Set whenever the file is changed, and cleared by the BACKUP
command. Value: 0x20

_A_HIDDEN Hidden file. Not normally seen with the DIR command, unless the
/AH option is used. Returns information about normal files as well as files with
this attribute. Value: 0x02

_A_NORMAL Normal. File can be read or written to without restriction. Value:
0x00

_A_RDONLY Read-only. File cannot be opened for writing, and a file with the
same name cannot be created. Value: 0x01

_A_SUBDIR Subdirectory. Value: 0x10

_A_SYSTEM System file. Not normally seen with the DIR command, unless the
/AS option is used. Value: 0x04

Multiple constants can be combined with the OR operator (1).
See Also _find Functions

55

Run-Time Library Reference

File Constants

#include <fentl.h>

Remarks
The integer expression formed from one or more of these constants determines the
type of reading or writing operations permitted. It is formed by combining one or
more constants with a translation-mode constant.

The file constants are as follows:

_O_APPEND Repositions the file pointer to the end of the file before every write
operation.

_O_CREAT Creates and opens a new file for writing; this has no effect if the file
specified by filename exists.

_O_EXCL Returns an error value if the file specified by filename exists. Only
applies when used with _O_CREAT.

_O_RDONLY Opens file for reading only; if this flag is given, neither _O_RDWR
nor _O_WRONLY can be given.

_O_RDWR Opens file for both reading and writing; if this flag is given, neither
_O_RDONLY nor _O_WRONLY can be given.

_O_TRUNC Opens and truncates an existing file to zero length; the file must have
write permission. The contents of the file are destroyed. If this flag is given, you
cannot specify _O_RDONLY.

_O_WRONLY Opens file for writing only; if this flag is given, neither
_O_RDONLY nor _O_RDWR can be given.

See Also _open, _sopen

File Permission Constants

#include <sys/stat.h>

Remarks
One of these constants is required when _O_CREAT (_open, _sopen) is specified.

The pmode argument specifies the file's permission settings as follows.

Constant Meaning
_S_IREAD Reading permitted
_S_IWRITE Writing permitted

_S_IREAD | _S_IWRITE Reading and writing permitted

56

Chapter 3

When used as the pmode argument for _umask, the manifest constant sets the
permission setting, as follows.

Constant Meaning

_S_IREAD Writing not permitted (file is read-only)
_S_IWRITE Reading not permitted (file is write-only)
_S_IREAD | _S_IWRITE Neither reading nor writing permitted

See Also _open, _sopen, _umask, _stat structure

Global Constants

File Read/Write Access Constants

Remarks

#include <stdio.h>

These constants specify the access type ("a", "r", or "w") requested for the file. Both
the translation mode ("b" or "t") and the commit-to-disk mode ("¢" or "n") can be
specified with the type of access.

The access types are described below.

",

a'" Opens for writing at the end of the file (appending); creates the file first if it
does not exist. All write operations occur at the end of the file. Although the file
pointer can be repositioned using fseek or rewind, it is always moved back to the

end of the file before any write operation is carried out.

"a+' Same as above, but also allows reading.

"

"r'" Opens for reading. If the file does not exist or cannot be found, the call to open

the file will fail.

"r+'" Opens for both reading and writing. If the file does not exist or cannot be
found, the call to open the file will fail.

"w'" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

” "

w+'" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

When the "r+", "w+", or "a+" type is specified, both reading and writing are allowed
(the file is said to be open for "update"). However, when you switch between reading
and writing, there must be an intervening fflush, fsetpos, fseek, or rewind operation.
The current position can be specified for the fsetpos or fseek operation.

See Also _fdopen, fopen, freopen, _fsopen, _popen

57

Run-Time Library Reference

File Translation Constants

Remarks

#include <stdio.h>

These constants specify the mode of translation ("'b"" or "'t"). The mode is included
in the string specifying the type of access ("'r", "w'', "a", "r+", "w+", "a+").

The translation modes are as follows:

t Opens in text (translated) mode. In this mode, carriage-return/linefeed (CR-LF)
combinations are translated into single linefeeds (LF) on input, and LF characters
are translated into CR-LF combinations on output. Also, CTRL+Z is interpreted as
an end-of-file character on input. In files opened for reading or reading/writing,
fopen checks for CTRL+Z at the end of the file and removes it, if possible. This is
done because using the fseek and ftell functions to move within a file ending with
CTRL+Z may cause fseek to behave improperly near the end of the file.

Note The t option is not part of the ANSI standard for fopen and freopen it is a Microsoft
extension and should not be used where ANSI portability is desired.

b Opens in binary (untranslated) mode. The above translations are suppressed.

If t or b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. For more information about using text and binary modes, see “Text
and Binary Mode File [/O” on page 15 in Chapter 1.

See Also _fdopen, fopen, freopen, _fsopen

FILENAME_MAX

Remarks

#include <stdio.h>

This is the maximum permissible length for filename.

See Also Path Field Limits

FOPEN_MAX, _SYS_OPEN

Remarks

58

#include <stdio.h>

This is the maximum number of files that can be opened simultaneously.
FOPEN_MAX is the ANSI-compatible name. _SYS_OPEN is provided for
compatibility with existing code.

Chapter 3 Global Constants

_FREEENTRY, _USEDENTRY

#include <malloc.h>

Remarks
These constants represent values assigned by the _heapwalk routines to the _useflag
element of the _HEAPINFO structure. They indicate the status of the heap entry.

See Also _heapwalk

fseek, lseek Constants

#include <stdio.h>

Remarks
The origin argument specifies the initial position and can be one of the manifest
constants shown below:

Constant Meaning

SEEK_END End of file

SEEK_CUR Current position of file pointer
SEEK_SET Beginning of file

See Also fseek, _lIseek, _Iseeki64

Heap Constants

#include <malloc.h>

Remarks
These constants give the return value indicating status of the heap.

Constant Meaning

_HEAPBADBEGIN Initial header information was not found or was invalid.
_HEAPBADNODE Bad node was found, or heap is damaged.

_HEAPBADPTR _pentry field of _HEAPINFO structure does not contain
valid pointer into heap (_heapwalk routine only).
_HEAPEMPTY Heap has not been initialized.

59

Run-Time Library Reference

Constant Meaning
_HEAPEND End of heap was reached successfully (_heapwalk routine only).
_HEAPOK Heap is consistent (_heapset and _heapchk routines only). No

errors so far; _HEAPINFO structure contains information about
next entry (_heapwalk routine only).

See Also _heapchk, _heapset, _heapwalk

_HEAP_MAXREQ

#include <malloc.h>

Remarks
The maximum size of a user request for memory that can possibly be granted.

See Also malloc, calloc

HUGE_VAL

#include <math.h>

Remarks
HUGE_VAL is the largest representable double value. This value is returned by
many run-time math functions when an error occurs. For some functions,
—HUGE_VAL is returned.

__LOCAL_SIZE

Remarks
The compiler provides a symbol, _ _LOCAL_SIZE, for use in the inline assembler
block of function prolog code. This symbol is used to allocate space for local variables

on the stack frame in your custom prolog code.

The compiler determines the value of _ _LOCAL_SIZE. Its value is the total
number of bytes of all user-defined locals as well as compiler-generated temporary
variables.

_ _LOCAL_SIZE can be used as an immediate operand; it cannot be used in an
expression. You must not change or redefine the value of this symbol. For example:

mov eax, LOCAL_SIZE ; Immediate operand
mov eax, [ebp - __LOCAL_SIZE] ;Expression

60

Chapter 3

The following is a example of a naked function containing custom prolog and epilog
sequences using the _ _LOCAL_SIZE symbol in the prolog sequence:

For more information, see “naked Functions” and “naked” in C Language Reference.

Global Constants

Locale Categories

#include <locale.h>

Remarks
Locale categories are manifest constants used by the localization routines to specify
which portion of a program's locale information will be used. The locale refers to the
locality (or country) for which certain aspects of your program can be customized.
Locale-dependent areas include, for example, the formatting of dates or the display
format for monetary values

Locale Category Parts of Program Affected

LC_ALL All locale-specific behavior (all categories)

LC_COLLATE Behavior of streoll and strxfrm functions

LC_CTYPE Behavior of character-handling functions (except isdigit,
isxdigit, mbstowcs, and mbtowc, which are unaffected)

LC_MAX Same as LC_TIME

LC_MIN Same as LC_ALL

LC_MONETARY Monetary formatting information returned by the localeconv
function

LC_NUMERIC Decimal-point character for formatted output routines (for

example, printf), data conversion routines, and nonmonetary
formatting information returned by localeconv function

LC_TIME Behavior of strftime function

See Also localeconv, setlocale, strcoll Functions, strftime, strxfrm

_locking Constants

#iinclude <sys/locking.h>

Remarks
The mode argument in the call to the _locking function specifies the locking action
to be performed.

The mode argument must be one of the following manifest constants:

61

Run-Time Library Reference

_LK_LOCK Locks the specified bytes. If the bytes cannot be locked, the function
tries again after one second. If, after ten attempts, the bytes cannot be locked, the
function returns an error.

_LK RLCK Same as LK _LOCK.

_LK NBLCK Locks the specified bytes. If bytes cannot be locked, the function
returns an error.

_LK NBRLCK Same as _LK NBLCK.

_LK_UNLCK Unlocks the specified bytes. (The bytes must have been previously
locked.)

See Also _locking

Math Error Constants

#include <math.h>

Remarks
The math error constants can be generated by the math routines of the run-time
library.

These errors, described as follows, correspond to the exception types defined in
MATH.H and are returned by the _matherr function when a math error occurs.

Constant Meaning

_DOMAIN Argument to function is outside domain of function.
_OVERFLOW Result is too large to be represented in function's return type.
_PLOSS Partial loss of significance occurred.

_SING Argument singularity: argument to function has illegal value. (For

example, value 0 is passed to function that requires nonzero value.)
_TLOSS Total loss of significance occurred.
_UNDERFLOW Result is too small to be represented.

See Also _matherr

MB_CUR_MAX

#include <stdlib.h>

Context: ANSI multibyte- and wide-character conversion functions

62

Chapter 3

Remarks
The value of MB_CUR_MAX is the maximum number of bytes in a multibyte
character for the current locale.

See Also mblen, mbstowcs, mbtowe, wchar_t, westombs, wetomb, Data Type

Global Constants

NULL

Remarks
NULL is the null-pointer value used with many pointer operations and functions.

Path Field Limits

#include <stdlib.h>
Remarks
These constants define the maximum length for the path and for the individual fields
within the path.
Constant Meaning
_MAX_DIR Maximum length of directory component
_MAX_DRIVE Maximum length of drive component
_MAX_EXT Maximum length of extension component
_MAX _FNAME Maximum length of filename component
_MAX _PATH Maximum length of full path

The sum of the fields should not exceed _MAX_PATH.

RAND_MAX

#include <stdlib.h>

Remarks
The constant RAND_MAX is the maximum value that can be returned by the rand
function. RAND_MAX is defined as the value Ox7fff.

See Also rand

63

Run-Time Library Reference

setvbuf Constants

#finclude <stdio.h>

Remarks
These constants represent the type of buffer for setvbuf.

The possible values are given by the following manifest constants:

Constant Meaning

_IOFBF Full buffering: Buffer specified in call to setvbuf is used and its size is
as specified in setvbuf call. If buffer pointer is NULL, automatically
allocated buffer of specified size is used.

_IOLBF Same as _IOFBF.
_IONBF No buffer is used, regardless of arguments in call to setvbuf.

See Also setbuf

Sharing Constants

#include <share.h>

Remarks
The shflag argument determines the sharing mode, which consists of one or more
manifest constants. These can be combined with the oflag arguments (see “File
Constants” on page 56).

The constants and their meanings are listed below:
Constant Meaning

_SH_COMPAT Sets compatibility mode
_SH_DENYRW Denies read and write access to file
_SH DENYWR Denies write access to file

_SH_DENYRD Denies read access to file
- SH_DENYNO Permits read and write access

See Also _sopen, _fsopen

Chapter 3

signal Constants

Remarks

#include <signal.h>

The sig argument must be one of the manifest constants listed below (defined in
SIGNAL.H).

SIGABRT Abnormal termination. The default action terminates the calling
program with exit code 3.

SIGFPE Floating-point error, such as overflow, division by zero, or invalid
operation. The default action terminates the calling program. SIGFPE is the only
signal constant available when the _WINDOWS constant is defined. The
_WINDOWS constant is defined by CL options /GA, /GD, /GE, /GW, /Gw, and
/Mgq. The CL.EXE tool controls the Microsoft C and C++ compilers and linker.

SIGILL Illegal instruction. The default action terminates the calling program.

SIGINT CTRL+C interrupt. The default action issues INT 23H.

SIGSEGV Illegal storage access. The default action terminates the calling program.

SIGTERM Termination request sent to the program. The default action terminates
the calling program.

See Also signal, raise

Global Constants

signal Action Constants

Remarks

#include <signal.h>

The action taken when the interrupt signal is received depends on the value of func.

The func argument must be either a function address or one of the manifest constants
listed below and defined in SIGNAL.H.

SIG_DFL Uses system-default response. If the calling program uses stream I/O,
buffers created by the run-time library are not flushed.

SIG_IGN Ignores interrupt signal. This value should never be given for SIGFPE,
since the floating-point state of the process is left undefined.

See Also signal

65

Run-Time Library Reference

_spawn Constants

#include <process.h>

Remarks
The mode argument determines the action taken by the calling process before and
during a spawn operation. The following values for mode are possible:

Constant Meaning

_P_OVERLAY Overlays calling process with new process, destroying calling
process (same effect as _exec calls).

_P_WAIT Suspends calling process until execution of new process is
complete (synchronous _spawn).

_P_NOWAIT or Continues to execute calling process concurrently with new process

P NOWAITO (asynchronous _spawn, valid only in 32-bit Windows
applications).

_P_DETACH Continues to execute calling process; new process is run in
background with no access to console or keyboard. Calls to _cwait
against new process will fail. This is an asynchronous _spawn and
is valid only in 32-bit Windows applications.

See Also _spawn Functions

_stat Structure st. mode Field Constants

#iinclude <sys/stat.h>

Remarks
These constants are used to indicate file type in the st_meode field of the _stat
structure.

The bit mask constants are described below:

Constant Meaning

_S_IFMT File type mask

_S_IFDIR Directory

_S_IFCHR Character special (indicates a device if set)
_S_IFREG Regular

_S_IREAD Read permission, owner

_S_IWRITE Write permission, owner

_S_IEXEC Execute/search permission, owner

See Also _stat, _fstat, Standard Types

66

Chapter 3 Global Constants

stdin, stdout, stderr

Remarks

FILE *stdin;
FILE *stdout;
FILE *stderr;

#include <stdio.h>

These are standard streams for input, output, and error output.

By default, standard input is read from the keyboard, while standard output and
standard error are printed to the screen.

The following stream pointers are available to access the standard streams:

Pointer Stream

stdin Standard input
stdout Standard output
stderr Standard error

These pointers can be used as arguments to functions. Some functions, such as
getchar and putchar, use stdin and stdout automatically.

These pointers are constants, and cannot be assigned new values. The freopen
function can be used to redirect the streams to disk files or to other devices. The
operating system allows you to redirect a program's standard input and output at the
command level.

See Also Stream I/O

TMP_MAX, L_tmpnam

Remarks

#include <stdio.h>

TMP_MAX is the maximum number of unique filenames that the tmpnam function
can generate. L_tmpnam is the length of temporary filenames generated by tmpnam.

67

Run-Time Library Reference

Translation Mode Constants

#include <fcntl.h>

Remarks
The _O_BINARY and _O_TEXT manifest constants determine the translation
mode for files (_open and _sopen) or the translation mode for streams (_setmode).

The allowed values are:

O_TEXT Opens file in text (translated) mode. Carriage return—linefeed (CR-LF)
combinations are translated into a single linefeed (LF) on input. Linefeed
characters are translated into CR-LF combinations on output. Also, CTRL+Z is
interpreted as an end-of-file character on input. In files opened for reading and
reading/writing, fopen checks for CTRL+Z at the end of the file and removes it, if
possible. This is done because using the fseek and ftell functions to move within a
file ending with CTRL+Z may cause fseek to behave improperly near the end of the
file.

_O_BINARY Opens file in binary (untranslated) mode. The above translations are
suppressed.

_O_RAW Same as _O_BINARY. Supported for C 2.0 compatibility.

For more information, see “Text and Binary Mode File I/O” on page 15 in Chapter 1
and “File Translation Constants” on page 58.

See Also _open, _pipe, _sopen, _setmode

_WAIT_CHILD, _WAIT_GRANDCHILD

#include <process.h>

Remarks
The _cwait function can be used by any process to wait for any other process (if the
process ID is known). The action argument can be one of the following values:

Constant Meaning
_WAIT_CHILD Calling process waits until specified new process
terminates.

_WAIT_GRANDCHILD Calling process waits until specified new process, and all
processes created by that new process, terminate.

See Also _cwait

68

Remarks

Example

Chapter 3 Global Constants

32-bit Windows Time/Date Formats

The file time and the date are stored individually, using unsigned integers as bit
fields. File time and date are packed as follows:

Time

Bit Position: 01234 56789A BCDEF

Length: 5 6 5

Contents: hours minutes 2-second increments

Value Range: 0-23 0-59 0-29 in 2-second
intervals

Date

Bit Position: 012345¢6 789A BCDEF

Length: 7 4 5

Contents: year month day

Value Range: 0-119

(relative to 1-12 1-31

1980)

The following code sample extracts the components of a date from a variable
wr_date containing a date packed in the format described above. You can use similar
methods to extract the time from a variable containing a packed time.

69

CHAPTER 4

Debug Version of the
C Run-Time Library

Visual C++ version 4.0 adds extensive debug support to the C run-time library,
letting you step directly into run-time functions when debugging an application. The
library also provides a variety of tools to keep track of heap allocations, locate
memory leaks, and track down other memory-related problems.

Much of the heap-checking technology included in the debug version of the C run-
time library has been moved from the Microsoft Foundation Class library. To
continue to use the technology, debug builds of MFC applications must now be linked
with a debug version of the run-time library.

The C run-time debug functions are available for Windows 95, Windows NT, and the
Power Macintosh. However, the 68K Macintosh platform is not supported.

The following sections of this chapter describe the new debug components of the C
run-time library and explain how to take advantage of the debugging services they
provide:

* Source Code for the Run-Time Functions

¢ C Run-Time Debug Libraries

¢ Debug Reporting Functions of the C Run-Time Library
e Using Macros for Verification and Reporting

e Memory Management and the Debug Heap

e Writing Your Own Debug Hook Functions

e Example Programs

Source Code for the Run-Time Functions

Visual C++ introduces source code availability for most of the C run-time library
functions. You can now use the debugger to step into the source code for the run-time
functions by linking your application with a debug version of the run-time library.

n

Run-Time Library Reference

During the debugging process, source code availability allows you to confirm that the
run-time functions are working as expected, check for bad parameters and memory
states, and examine your code for other errors.

Because the C run-time library has been designed to achieve the highest possible
performance, the release versions of the functions rarely verify parameters, confirm
internal states, or perform other checking that might slow program execution. As a
result, an incorrect call to a run-time function can result in serious problems
accompanied by too little information to resolve the situation. For example, passing a
bad pointer to the strepy function usually results in a simple “General Protection
Fault” error message. The ability to step into the run-time source code provides you
with a method for controlling the type of verifications and how many to perform, as
well as the opportunity to trace through the execution of your application to resolve
specific problems.

The Setup program gives you the option of installing the C run-time library source
code on your hard disk. Even if you choose to leave the source files on the CD-ROM,
you can step into run-time functions while you are debugging, as long as the CD-
ROM is loaded in the drive.

The main definitions and macros that control the debugging process are contained in
the CRTDBG.H header file. Experienced programmers should examine this file to
understand how to take full advantage of the flexibility that the new debug libraries
offer.

Source code for the debug run-time functions is contained in source files whose
names begin with dbg. Source code for the other C run-time functions is contained in
files whose names reflect the function names. However, Microsoft considers some
run-time technology to be proprietary and does not provide source code for the
exception handling, floating point, and a few other routines. For a complete list of
these routines, see “Debug Routines” on page 6 in Chapter 1.

C Run-Time Debug Libraries

72

The following table lists the debug versions of the C run-time library files shipped
with Visual C++. For each library, a compiler option that makes it the default library
is identified, together with the environment variables that are automatically defined
by the compiler when that option is used. For a list of the release versions of these
libraries, see “C Run-Time Libraries” on page ix in the Introduction.

Chapter 4 Debug Version of the C Run-Time Library

Library Characteristics Option Defined

LIBCD.LIB Single threaded, static link /MLd _DEBUG

LIBCMTD.LIB Multithreaded, static link /MTd _DEBUG, _MT

MSVCRTD.LIB Multithreaded, dynamic link /MDd _DEBUG, _MT,
(import library for msverx0d.dll1) _DLL

1 In place of the “x0” in the DLL name, substitute the major version numeral of Visual C++ that you are
using. For example, if you are using Visual C++ version 4, then the library name would be
MSVCR40D.DLL.

The debug versions of the library functions differ from the release versions mainly in
that debug information was included when they were compiled (using the /Z7 or /Zi
compiler option), optimization was turned off, and source code is available. A few of
the debug library functions also contain asserts that verify parameter validity.

Using one of these debug libraries is as simple as linking it to your application with
the /DEBUG:FULL linker option set. You can then step directly into almost any run-
time function call.

Debug Reporting Functions of the
C Run-Time Library

The run-time library includes three new debug reporting functions that provide
extensive flexibility for reporting warnings and errors during execution of a debug
build of an application. The main reporting function is _CrtDbgReport. Two
configuration functions, _CrtSetReportMode and _CrtSetReportFile, can be used
at any point to specify the destinations to which different kinds of reports will be sent.
The following list summarizes the operation of these three functions:

_CrtDbgReport Reports from within an application. The programmer determines
the destination(s) to which the report is sent by specifying its category
(_CRT_WARN, _CRT_ERROR, and _CRT_ASSERT). The report may also
include a message string, a source file name and line number, and one or more
arguments to be formatted into the message string.

_CrtSetReportMode Specifies the general destination(s) to which a given category
of report output should be sent. The three categories of report output are
_CRT_WARN, _CRT_ERROR, and _CRT_ASSERT. Possible destinations
include the debugger, a message window, and/or a file or stream.

_CrtSetReportFile When _CrtSetReportMode has specified that a given category
of report output will be directed to a file or stream, _CrtSetReportFile identifies
that specific file or stream.

3

Run-Time Library Reference

74

For detailed information about the syntax and usage of these functions, see the
function descriptions at the end of this chapter.

Debug reports can be assigned to three different categories, depending on the urgency
of the messages they contain:

_CRT_WARN Warnings, messages, and information not needing immediate
attention.

_CRT_ERROR Errors, unrecoverable problems, and information needing
immediate attention.

_CRT_ASSERT Assertion failure (an asserted expression evaluated as FALSE).

A different destination can be specified for each of these report categories. Usually
one destination is sufficient for a category, but each category can be sent to more than
one destination. Up to three of the following bit-flags can be combined in the
reportMode argument passed to _CrtReportMode to specify the destination(s) for a
given report category:

_CRTDBG_MODE_DEBUG Reports are sent to the debugger or debug monitor,
using the Win32 QutputDebugString APIL

_CRTDBG_MODE_FILE Reports are sent to a file (including the stderr and
stdout streams) using the Win32 WriteFile API.

_CRTDBG_MODE_WNDW Reports are sent to a message window using the
Win32 MessageBox APL.

To turn off a given category of report, pass _CrtReportMode a reportMode value of
Zero.

Report destinations are handled somewhat differently on the Macintosh. If your
application will be targeting the Macintosh as well as systems running Windows
operating software, be sure to check the documentation for the Visual C-++ Macintosh
Cross-Platform Edition to see how these destinations are implemented on the
Macintosh.

By default, errors and assertion failures are directed to a message window, since they
generally signal serious problems that you want to know about right away. Warnings
from Windows applications are sent to the debugger, and warnings from console
applications are directed to stderr. You only need to use the _CrtSetReport...
functions when you want to change these destinations. For example, the following
code causes assertion failures to be sent both to a message window and to stderr:

Chapter 4 Debug Version of the C Run-Time Library

_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE |
_CRTDBG_MODE_WNDW);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);

To send a debug report, you use _CrtDbgReport and control the destination by
specifying the category of the report. If you need more flexibility, you can write your
own reporting function and hook it into the C run-time library reporting mechanism
using _CrtSetReportHook, as described later in this chapter.

Whereas messages that go to a file or the debugger are generally single lines that can
include a filename and line number, the message window contains considerably more
information. It identifies the error and the program more fully, along with message
text, and can also display a file name and line number. Assert message windows
contain additional information particular to asserts.

The following is an example of an assert message box under Windows NT:

o

Debug Assertion Failed!

Program: DAcriitesticrtdbg\cridbg.exe
File: crtdbg.c
Line: 1004

@ Expression: black == white

For information on how yeur program can cause an assertion
failure, see the Visual C++ documentation on asserts.

[Press Retry to debug the application]

All message windows display Abort/Retry/Ignore buttons. Choosing Abort causes the
program to stop execution immediately, Ignore causes execution to continue, and
Retry invokes the debugger, provided that “just-in-time” debugging is enabled.
Choosing Ignore when an error condition exists often results in “undefined behavior.”

Using Macros for Verification and
Reporting

A common way of keeping track of what is going on in an application during the
debugging process is to use printf statements in code such as the following:

75

Run-Time Library Reference

76

#ifdef _DEBUG
if (someVar > MAX_SOMEVAR)
printf("OVERFLOW! In NameOfThisFunc(),
someVar=%d,
otherVar=%d.\n",
someVar, otherVar);
#endif

The _ASSERT, _ASSERTE, RPT#7 and _RPTFr macros defined in the
CRTDBG.H header file provide a variety of more concise and flexible ways to
accomplish the same task. These macros automatically disappear in your release
build when _ DEBUG is not defined, so there is no need to enclose them in #ifdefs.
For debug builds, they provide a range of reporting options that can be directed to any
of the debugging destinations described above. The following table summarizes these
options:

Macro Reporting Option

_ASSERT If an asserted expression evaluates to FALSE, the macro
reports the filename and line number of the _ASSERT,
under the _CRT_ASSERT report category.

_ASSERTE Same as _ASSERT, except that it also reports a string

representation of the expression that was asserted to be
true but was evaluated to be false.
_RPTn These five macros send a message string and from zero to
(whereris 0,1, 2,3, 0r4) four arguments to the report category of your choice. In
the cases of macros _RPT1 through _RPT4, the message
string serves as a printf-style formatting string for the

arguments.
_RPTFn Same as _RPTn , except that these macros also include in
(wherenis 0,1, 2,3, or4) each report the filename and line number at which the

macro was executed.

Asserts are used to check specific assumptions you make in your code. ASSERTE is
a little more convenient to use because it reports the asserted expression that turned
out to be false. Often this tells you enough to identify the problem without going back
to your source code. A disadvantage, however, is that every expression asserted using
_ASSERTE must be included in the debug version of your application as a string
constant. If you use so many asserts that these string expressions take up a significant
amount of memory, you may prefer to use _ASSERT instead.

Examining the definitions of these macros in the CRTDBG.H header file can give
you a detailed understanding of how they work. When _DEBUG is defined, for
example, the _ASSERTE macro is defined essentially as follows:

Chapter 4 Debug Version of the C Run-Time Library

ftdefine _ASSERTE(expr) \

do { \
if (!(expr) && (1 == _CrtDbgReport(\
_CRT_ASSERT, __FILE__, _ LINE__, #expr))) \
_CrtDbgBreak(); \
} while (0)

If expr evaluates to TRUE, execution continues uninterrupted, but if expr evaluates to
FALSE, _CrtDbgReport is called to report the assertion failure. If the destination is
a message window in which you choose Retry, _CrtDbgReport returns 1 and
_CrtDbgBreak calls the debugger.

A single call to _ASSERTE could be used to replace the printf code at the beginning
of this section:

_ASSERTE(someVar <= MAX_SOMEVAR);

If _CRT_ASSERT reports were being directed to message boxes (the default), or to
the debugger, then program execution would be interrupted when someVar exceeded
MAX_SOMEVAR.

Asserts can also be used as a simple debugging error handling mechanism for any
function that returns FALSE when it fails. For example, in the following code, the
assertion will fail if corruption is detected in the heap:

_ASSERTE(_CrtCheckMemory());

The following memory checking functions can be used in asserts of this kind to verify
pointers, memory ranges, and specific memory blocks:

_CrtlsValidHeapPointer Verifies that a given pointer points to memory in the local
heap; “local” here refers to the particular heap created and managed by this
instance of the C run-time library. A dynamic-link library (DLL) could have its
own instance of the library, and therefore its own heap, independent of your
application’s local heap. Note that this routine catches not only null or out-of-
bounds addresses, but also pointers to static variables, stack variables, and any
other non-local memory.

_CrtIsValidPointer Verifies that a given memory range is valid for reading or
writing.

_CrtIsMemoryBlock Verifies that a specified block of memory is in the “local”
heap and has a valid block type. This function can actually do more than check a
block’s validity, however. If you pass it non-null values for the request number,
filename and/or line number, it sets the value in the block’s header accordingly.

For more information on how these and other assertion checking routines can be used
during the debugging process, see “Debugging Assertions” in Chapter 17 of the
Visual C++ User’s Guide.

The printf code at the start of this section reported actual values of someVar and
otherVar to stdout. If these values were useful in the debugging process, one of the

mn

Run-Time Library Reference

78

_RPTr or _RPTFrn macros could be used to report them. The _RPTF2 macro, for
example, is defined essentially as follows in CRTDBG.H:

f#fdefine _RPTF2(rptno, msg, argl, arg2) \

do { \
if (1 == _CrtDbgReport(rptno, __FILE , \
__LINE__, msg, argl, arg2)) \
_CrtDbgBreak(); \
} while (0)

The following call to _RPTFE2 would report the values of someVar and otherVar,
together with the filename and line number, every time the function that contained
the macro was executed:

_RPTF2(_CRT_WARN, "In NameOfThisFunc(), someVar= %d,
otherVar= %d\n",
someVar, otherVar);

Of course, you may only be interested in knowing the values of someVar and
otherVar under the circumstance that someVar has exceeded its maximum permitted
value. By using an assert, as described above, you could halt program execution and
then use the debugger to examine the values of these variables. Alternatively, you
could use a variant of the original printf code, enclosing a conditional call to the
_RPTF2 macro in #ifdefs:

#ifdef _DEBUG
if (someVar > MAX_SOMEVAR)
_RPTF2(_CRT_WARN,
"In NameOfThisFunc(), someVar= %d, otherVar= %d\n",

someVar, otherVar);
#endif

Of course, if you find that a particular application needs a kind of debug reporting
that the macros supplied with the C run-time library do not provide, you can write a
macro designed specifically to fit your own requirements. In one of your header files,
for example, you could include code like the following to define a macro called
ALERT_IF2:

{Hi fndef _DEBUG /* For RELEASE builds */
f#fdefine ALERT_IF2(expr, msg, argl, arg2) ((void)@)
felse /* For DEBUG builds */
ffdefine ALERT_IF2(expr, msg, argl, arg2) \
do { \
if ((expr) && \
(1 == _CrtDbgReport(_CRT_ERROR, \

__FILE__, LINE
_CrtDbgBreak(); \
} while (0)
Jendif

msg, argl, arg2))) \

One call to ALERT_IF2 could perform all the functions of the printf code at the start
of this section:

Chapter 4 Debug Version of the C Run-Time Library

ALERT_IF2(someVar > MAX_SOMEVAR, "OVERFLOW! In NameOfThisFunc(),
someVar=%d, otherVar=%d.\n", someVar, otherVar);

This approach can be particularly useful as your debugging requirements evolve,
because a custom macro can easily be changed to report more or less information to
different destinations, depending on what is most convenient.

Memory Management and the Debug Heap

Two of the most common and intractable problems that programmers encounter are
overwriting the end of an allocated buffer and leaking memory (failing to free
allocations after they are no longer needed). The debug heap provides powerful tools
to solve memory allocation problems of this kind.

The debug versions of the heap functions call the standard or base versions used in
release builds. When you request a memory block, the debug heap manager allocates
from the base heap a slightly larger block of memory than requested and returns a
pointer to your portion of that block. For example, suppose your application contains
the call: malloc(10). In a release build, malloc would call the base heap allocation
routine requesting an allocation of 10 bytes. In a debug build, however, malloc would
call _malloc_dbg, which would then call the base heap allocation routine requesting
an allocation of 10 bytes plus approximately 36 bytes of additional memory. All the
resulting memory blocks in the debug heap are connected in a single linked list,
ordered according to when they were allocated:

Memory blocks —>
allocated later

User' s pointer —

Heap
information

Buffer

—— Memory blocks
allocated earlier

The additional memory allocated by the debug heap routines is used for bookkeeping
information, for pointers that link debug memory blocks together, and for small
buffers on either side of your data to catch overwrites of the allocated region.

Currently, the block header structure used to store the debug heap’s bookkeeping
information is declared as follows in the DBGINT.H header file:

79

Run-Time Library Reference

typedef struct _CrtMemBlockHeader

{

// Pointer to the block allocated just before this one:
struct _CrtMemBlockHeader *pBlockHeaderNext;

// Pointer to the block allocated just after this one:
struct _CrtMemBlockHeader *pBlockHeaderPrev;

char *szFileName; // File name

int nlLine; // Line number

size_t nDataSize; // Size of user block
int nBlockUse; // Type of block

Tong TRequest; // Allocation number

// Buffer just before (lower than) the user's memory:
unsigned char gap[nNoManslLandSize]l;
} _CrtMemBlockHeader;

/* In an actual memory block in the debug heap,
* this structure is followed by:

* unsigned char datalnDataSize];
* unsigned char anotherGap[nNoManslLandSize];
*/

The “NoMansLand” buffers on either side of the user data area of the block are
currently 4 bytes in size, and are filled with a known byte value used by the debug
heap routines to verify that the limits of the user’s memory block have not been
overwritten. The debug heap also fills new memory blocks with a known value, and if
you elect to keep freed blocks in the heap’s linked list as explained below, these freed
blocks are also filled with a known value. Currently, the actual byte values used are as
follows:

NoMansLand (0xFD) The “NoMansLand” buffers on either side of the memory
used by an application are currently filled with OxFD.

Freed blocks (0xDD) The freed blocks kept unused in the debug heap’s linked list
when the _CRTDBG_DELAY_FREE_MEM_DF flag is set are currently filled
with 0xDD.

New objects (0xCD) New objects are filled with 0xCD when they are allocated.

Types of Blocks on the Debug Heap

80

Every memory block in the debug heap is assigned to one of five allocation types.
These types are tracked and reported differently for purposes of leak detection and
state reporting. You can specify a block’s type by allocating it using a direct call to
one of the debug heap allocation functions such as _malloc_dbg. The five types of
memory blocks in the debug heap (set in the nBlockUse member of the
_CrtMemBlockHeader structure) are as follows:

_NORMAL_BLOCK A call to malloc or calloc creates a Normal block. If you
intend to use Normal blocks only, and have no need for Client blocks, you may
want to define _CRTDBG_MAP_ALLOC, which causes all heap allocation calls

Chapter 4 Debug Version of the C Run-Time Library

to be mapped to their debug equivalents in debug builds. This will allow filename
and line number information about each allocation call to be stored in the
corresponding block header.

_CRT_BLOCK The memory blocks allocated internally by many run-time library
functions are marked as Crt blocks, so that they can be handled separately. As a
result, leak detection and other operations need not be affected by them. An
allocation must never allocate, reallocate, or free any block of Crt type.

CLIENT_BLOCK An application can keep special track of a given group of
allocations for debugging purposes by allocating them as this type, using explicit
calls to the debug heap functions. MFC, for example, allocates all CObjects as
Client blocks; other applications might keep different memory objects in Client
blocks. Subtypes of Client blocks can also be specified for greater tracking
granularity. A client-supplied hook function for dumping the objects stored in
Client blocks can be installed using _CrtSetDumpClient, and will then be called
whenever a Client block is dumped by a debug function. Also,
_CrtDoForAllClientObjects can be used to call a given function supplied by the
application for every Client block in the debug heap.

_FREE_BLOCK Normally, blocks that are freed are removed from the list. To
check that freed memory is not still being written to, or to simulate low memory
conditions, you can choose to keep freed blocks on the linked list, marked as Free
and filled with a known byte value (currently 0xDD).

_IGNORE_BLOCK It is possible to turn off the debug heap operations for a period
of time. During this time, memory blocks are kept on the list, but are marked as
Ignore blocks.

Using the Debug Heap

To use the debug heap, link the debug build of your application with a debug version
of the C run-time library. All calls to heap functions such as malloc, free, calloc,
realloc, new and delete resolve to debug versions of those functions that operate in
the debug heap. When you free a memory block, the debug heap automatically checks
the integrity of the buffers on either side of your allocated area and issues an error
report if overwriting has occurred.

Many of the debug heap’s features, however, must be accessed from within your code.
You can use a call to _CrtCheckMemory, for example, to check the heap’s integrity
at any point. This function inspects every memory block in the heap, verifies that the
memory block header information is valid, and confirms that the buffers have not
been modified. You can control how the debug heap keeps track of allocations using
an internal flag, _crtDbgFlag, which can be read and set using the _CrtSetDbgFlag
function. By changing this flag, you can instruct the debug heap to check for memory
leaks when the program exits, and report any leaks that are detected. Similarly, you
can specify that freed memory blocks not be removed from the linked list, to simulate

81

Run-Time Library Reference

82

low memory situations. When the heap is checked, these freed blocks are inspected in
their entirety to ensure that they have not been disturbed.

The _crtDbgFlag flag contains the following bit fields:

_CRTDBG_ALLOC_MEM_DF (On by default) Turns on debug allocation. When
this bit is off, allocations remain chained together but their block type is
_IGNORE_BLOCK.

_CRTDBG_DELAY_FREE_MEM_DF (Off by default) Prevents memory from
actually being freed, as for simulating low-memory conditions. When this bit is
on, freed blocks are kept in the debug heap’s linked list but are marked as
_FREE_BLOCK and filled with a special byte value.

_CRTDBG_CHECK_ALWAYS_DF (Off by default) Causes _CrtCheckMemory
to be called at every allocation and deallocation. This slows execution, but catches
errors quickly.

_CRTDBG_CHECK_CRT_DF (Off by default) Causes blocks marked as type
_CRT_BLOCK to be included in leak detection and state difference operations.

When this bit is off, the memory used internally by the run-time library is ignored
during such operations.

_CRTDBG_LEAK_CHECK_DF (Off by default) Causes leak checking to be
performed at program exit via a call to _CrtDumpMemoryLeaks. An error report
is generated if the application has failed to free all the memory that it allocated.

To change one or more of these bit fields and create a new state for the flag, follow
these steps:

1. Call _CrtSetDbgFlag with the newFlag parameter set to
_CRTDBG_REPORT_FLAG to obtain the current _crtDbgFlag state and store
the returned value in a temporary variable.

2. Turn on any bits by OR-ing (bitwise | symbol) the temporary variable with the
corresponding bitmasks (represented in the application code by manifest
constants).

3. Turn off the other bits by AND-ing (bitwise & symbol) the variable with a NOT
(bitwise ~ symbol) of the appropriate bitmasks.

4. Call _CrtSetDbgFlag with the newFlag parameter set to the value stored in the
temporary variable to create the new state for _crtDbgFlag.

For example, the following lines of code turn on automatic leak detection and turn off
checking for blocks of type _CRT_BLOCK:

// Get current flag
int tmpFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

// Turn on leak-checking bit
tmpFlag |= _CRTDBG_LEAK_CHECK_DF;

Chapter 4 Debug Version of the C Run-Time Library

// Turn off CRT block checking bit
tmpFlag &= ~_CRTDBG_CHECK_CRT_DF;

// Set flag to the new value
_CrtSetDbgFlag(tmpFlag);

Heap State Reporting Functions

Several new functions report the contents of the debug heap at a given moment. To
capture a summary snapshot of the state of the heap at a given time, they use the
_CrtMemState structure defined in CRTDBG.H:

typedef struct _CrtMemState

{

// Pointer to the most recently allocated block:
struct _CrtMemBlockHeader * pBlockHeader;

// A counter for each of the 5 types of block:
Tong 1Counts[_MAX_BLOCKS];

// Total bytes allocated in each block type:
Tong 1Sizes[_MAX_BLOCKS];

// The most bytes allocated at a time up to now:
Tong 1HighWaterCount;

// The total bytes allocated at present:
Tong 1TotalCount;

} _CrtMemState;

This structure saves a pointer to the first (most recently allocated) block in the debug
heap’s linked list. Then, in two arrays, it records how many of each type of memory
block (. NORMAL_BLOCK, _CLIENT_BLOCK, _FREE_BLOCK, and so forth)
there are in the list, and the number of bytes allocated in each type of block. Finally,
it records the highest number of bytes allocated in the heap as a whole up to that
point, and the number of bytes currently allocated.

The following functions report the state and contents of the heap, and use the
information to help detect memory leaks and other problems:

Function Description

_CrtMemCheckpoint Saves a snapshot of the heap in a _CrtMemState
structure supplied by the application.

_CrtMembDifference Compares two memory state structures, saves the
difference between them in a third state structure, and
returns TRUE if the two states are different.

_CrtMemDumpStatistics Dumps a given _CrtMemState structure. The structure
may contain a snapshot of the state of the debug heap at
a given moment, or the difference between two
snapshots. “Dumping” means reporting the data in a
form that a person can understand.

83

Run-Time Library Reference

Function Description

_CrtMemDumpAllObjectsSince = Dumps information about all objects allocated since a
given snapshot was taken of the heap, or from the start
of execution. Every time it dumps a
_CLIENT_BLOCK block, it calls a hook function
supplied by the application, if one has been installed
using _CrtSetDumpClient.

_CrtDumpMemoryLeaks Determines whether any memory leaks occurred since
the start of program execution, and if so, it dumps all
allocated objects. Every time it dumps a
_CLIENT_BLOCK block, it calls a hook function
supplied by the application, if one has been installed
using _CrtSetDumpClient.

Using the Debug Version Versus the Base Version

The run-time library now contains special debug versions of the heap allocation
functions that use the same names as the base versions and add the _dbg ending.
This section describes the differences in behavior between the debug version and the
base version in a debug build of an application. The information in this section is
presented using malloc and _malloc_dbg as the example, but is applicable to all of
the heap allocation functions discussed in this chapter.

Applications that contain existing calls to malloc do not need to convert their calls to
_malloc_dbg to obtain the debugging features. When _DEBUG is defined, all calls
to malloc are resolved to _malloc_dbg. However, explicitly calling _malloc_dbg
allows the application to perform additional debugging tasks: it can separately track
_CLIENT_BLOCK type allocations, and it can include the source file and line
number where the allocation request occurred in the bookkeeping information stored
in the debug header.

Because the base versions of the allocation functions are implemented as wrappers,
the source file name and line number of each heap allocation request is not available
by explicitly calling the base version. Applications that do not want to convert their
malloc calls to _malloc_dbg can obtain the source file information by defining the
_CRTDBG_MAP_ALLOC environment variable. Defining this variable causes the
preprocessor to directly map all calls to malloc to _malloc_dbg, thereby providing
the additional information. To track particular types of allocations separately in client
blocks, _malloc_dbg must be called directly and the blockType parameter must be set
to _CLIENT_BLOCK.

When _DEBUG is not defined, calls to malloc are not disturbed, calls to
_malloc_dbg are resolved to malloc, the CRTDBG_MAP_ALLOC environment
variable is ignored, and source file information pertaining to the allocation request is
not provided. Because malloc does not have a block type parameter, requests for
_CLIENT_BLOCK types are treated as standard allocations.

Chapter 4 Debug Version of the C Run-Time Library

Tracking Heap Allocation Requests

Although pinpointing the source file name and line number at which an assert or
reporting macro executes is often very useful in locating the cause of a problem, the
same is not as likely to be true of heap allocation functions. Whereas macros can be
inserted at many appropriate points in an application’s logic tree, an allocation is
often buried in a special routine that is called from many different places at many
different times. The question is usually not what line of code made a bad allocation,
but rather which one of the thousands of allocations made by that line of code was
bad, and why.

The simplest way to identify the specific heap allocation call that went bad is to take
advantage of the unique allocation request number associated with each block in the
debug heap. When information about a block is reported by one of the dump
functions, this allocation request number is enclosed in curly brackets (for example,
“{36}).

Once you know the allocation request number of an improperly allocated block, you
can pass this number to _CrtSetBreakAlloc to create a breakpoint. Execution will
break just prior to allocating the block, and you can backtrack to determine what
routine was responsible for the bad call. To avoid recompiling, you can accomplish
the same thing in the debugger by setting _crtBreakAlloc to the allocation request
number you are interested in.

A somewhat more complicated approach is to create debug versions of your own
allocation routines, comparable to the _dbg versions of the heap allocation functions.
You can then pass source file and line number arguments through to the underlying
heap allocation routines, and you will immediately be able to see where a bad
allocation originated.

For example, suppose your application contains a commonly used routine something
like the following:

int addNewRecord(struct RecStruct * prevRecord,
int recType, int recAccess)

{
/* ...code omitted through actual allocation... */
if ((newRec = malloc(recSize)) == NULL)
/* ... rest of routine omitted too ... */

}

In a header file, you could add code such as the following:

#ifdef _DEBUG
f#define addNewRecord(p, t, a) \

addNewRecord(p, t, a, __FILE__, _ LINE_)
fendif

85

Run-Time Library Reference

Next, you could change the allocation in your record-creation routine as follows:

int addNewRecord(struct RecStruct *prevRecord,
int recType, int recAccess
#ifdef _DEBUG
, const char *srcFile, int srclLine

ffendif

)
{

/* ... code omitted through actual allocation ... */

if ((newRec = _malloc_dbg(recSize, _NORMAL_BLOCK,

srcFile, scrline)) == NULL)

/* ... rest of routine omitted too ... */

}

Now the source file name and line number where addNewRecord was called will be
stored in each resulting block allocated in the debug heap, and will be reported when
that block is examined.

Using the Debug Heap from C++

The debug versions of the C run-time library contain debug versions of the C++ new
and delete operators. Unless you intend to make special use of the
_CLIENT_BLOCK allocation type, be sure to define _CRTDBG_MAP_ALLOC
when you are using C++. This environment variable causes all instances of new in
your code to be mapped properly to the debug version of new so as to record source
file and line number information. If you intend to use the _CLIENT_BLOCK type,
do not define _CRTDBG_MAP_ALLOC, but instead include code like the
following in an include file:

#ifdef _DEBUG
inTine void* __cdecl operator new(unsigned int s)
{ return ::operator new(s, _CLIENT_BLOCK, __FILE_,
_LINE__); 3}
fendif

The debug version of the delete operator works with all block types and should
require no changes in your program.

Writing Your Own Debug Hook Functions

You may need special features and tools when debugging a complex application. In
many cases, you can add exactly the capabilities you want by taking advantage of the
debug hooks in the C run-time library.

Chapter 4 Debug Version of the C Run-Time Library

Client Block Hook Functions

If you are interested in validating or reporting the contents of the data that you are
storing in _CLIENT_BLOCK blocks, you can write a function specifically for this
purpose. The function that you write must have a prototype similar to the following,
as defined in CRTDBG.H:

void YourClientDump(void *, size_t)

In other words, your hook function should accept a veid pointer to the beginning of
the user’s section of the allocation block, together with a size_t type value indicating
the size of the allocation, and return void. Other than that, its contents are up to you.

Once you have installed it using _CrtSetDumpClient, your hook function will be
called every time a _CLIENT_BLOCK block is dumped.

The pointer to your function that you pass to _CrtSetDumpClient is of type
_CRT_DUMP_CLIENT, as defined in CRTDBG.H:

typedef void (__cdecl *_CRT_DUMP_CLIENT)
(void *, size_t);

Allocation Hook Functions

An allocation hook function, installed using _CrtSetAllocHook, is called every time
memory is allocated, re-allocated, or freed. This type of hook can be used for many
different purposes. Use it to test how an application handles insufficient memory
situations, for example, or to examine allocation patterns, or to log allocation
information for later analysis. Be aware of the restriction described below about using
C run-time library functions in an allocation hook function.

An allocation hook function should have a prototype like the following:

int YourAllocHook(int nAllocType, void *pvData,
size_t nSize, int nBlockUse, Tong 1Request,
const unsigned char * szFileName, int nLine)

The pointer that you pass to _CrtSetAllocHook is of type _CRT_ALLOC_HOOK,
as defined in CRTDBG.H:

typedef int (__cdecl * _CRT_ALLOC_HOOK)
(int, void *, size_t, int, long, const char *, int);

When the run-time library calls your hook, the nAllocType argument indicates what
allocation operation is about to be performed (HOOK_ALLOC,
_HOOK_REALLOC, or _HOOK_FREE). In the case of a free or a reallocation,
pvData contains a pointer to the user section of the block about to be freed, but in the
case of an allocation this pointer is null, since the allocation has not yet occurred.
The remaining arguments contain the size of the allocation in question, its block
type, the sequential request number associated with it, and a pointer to the filename

87

Run-Time Library Reference

and line number in which the allocation was made, if available. After the hook
function performs whatever analysis and other tasks its author wants, it must return
either TRUE, indicating that the allocation operation can continue, or FALSE,
indicating that the operation should fail. A simple hook of this type might check the
amount of memory allocated so far, and return FALSE if that amount exceeded a
small limit. The application would then experience the kind of allocation errors that
would normally only occur when available memory was very low. More complex
hooks might keep track of allocation patterns, analyze memory use, or report when
specific situations occur.

Using C Run-time Library Functions
in Allocation Hooks

A very important restriction on allocation hook functions is that they must explicitly
ignore _CRT_BLOCK blocks (the memory allocations made internally by C run-
time library functions) if they make any calls to C run-time library functions that
allocate internal memory. _CRT_BLOCK blocks can be ignored by including code
such as the following at the beginning of your allocation hook function:

if (nBlockUse == _CRT_BLOCK)
return(TRUE);

If your allocation hook does not ignore _CRT_BLOCK blocks, then any C run-time
library function called in your hook can trap the program in an endless loop. For
example, printf makes an internal allocation. If your hook code calls printf, then the
resulting allocation will cause your hook to be called again, which will call printf
again, and so on until the stack overflows. If you need to report _CRT_BLOCK
allocation operations, one way to circumvent this restriction is to use Windows API
functions for formatting and output rather than C run-time functions. Because the
Windows APIs do not use the C run-time library heap, they will not trap your
allocation hook in an endless loop.

If you examine the run-time library source files, you will see that the default
allocation hook function, CrtDefaultAllocHook (which simply returns TRUE), is
located in a separate file of its own, DBGHOOK.C. If you want your allocation hook
to be called even for the allocations made by the run-time startup code that is
executed before your application’s main function, you can replace this default
function with one of your own, instead of using _CrtSetAllocHook.

Report Hook Functions

A report hook function, installed using _CrtSetReportHook, is called every time
_CrtDbgReport generates a debug report. You can use it, among other things, for

Chapter 4 Debug Version of the C Run-Time Library

filtering reports so as to focus on specific types of allocations. A report hook function
should have a prototype like the following:

int YourReportHook(int nRptType, char *szMsg, int *retVal);

The pointer that you pass to _CrtSetReportHook is of type
_CRT_REPORT_HOQOK, as defined in CRTDBG.H:

typedef int (__cdecl *_CRT_REPORT_HOOK)(int, char *, int *);

When the run-time library calls your hook function, the nRptType argument contains
the category of the report (CRT_WARN, _CRT_ERROR, or _CRT_ASSERT),
szMsg contains a pointer to a fully assembled report message string, and retVal
specifies the value that should be returned by _CrtDbgReport. If the hook handles
the message in question completely, so that no further reporting is required, it should
return FALSE. If it returns TRUE, then _CrtDbgReport will report the message in
the normal way.

Example Programs

Build these example programs as Win32 console applications. Your command line
should look like the following:

cl -D_DEBUG /MTd -0d -Zi -W3 t.c -link -verbose:1ib -debug:full

In console applications such as the following examples, debugging is complicated by
the fact that errors do not interrupt execution of the program, as they normally would
when directed to a message window.

First Example Program

This simple program illustrates most of the basic debugging features of the C run-
time library, and the kind of debug output that results.

/***

* EXAMPLE 1 *
* This simple program illustrates the basic debugging features *
* of the C runtime libraries, and the kind of debug output *
* that these features generate. *

***/

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

89

Run-Time Library Reference

// This routine place comments at the head of a section of debug output
void OutputHeading(const char * explanation)

{

_RPTl (_C RT_WARN) "\n \n%s: \n**************************************\

FkkF ARk kR kR KRR Rkk kAR IRRARARRFFRR\N" | explanation);

}

// The following macros set and clear, respectively, given bits

// of the C runtime library debug flag, as specified by a bitmask.
f#ifdef _DEBUG

j#idefine SET_CRT_DEBUG_FIELD(a) \

_CrtSetDbgFlag((a) | _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))

f#fdefine CLEAR_CRT_DEBUG_FIELD(a) \

_CrtSetDbgFlag(~(a) & _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))

ffelse
f#fdefine SET_CRT_DEBUG_FIELD(a) ((void) @)
{#fdefine CLEAR_CRT_DEBUG_FIELD(a) ((void) @)
#endif

void main()

{

char *pl, *p2;
_CrtMemState s1, s2, s3;

// Send all reports to STDOUT

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);
// Allocate 2 memory blocks and store a string in each
pl = malloc(34);

strcpy(pl, "This is the pl string (34 bytes).");

p2 = malloc(34);
strcpy(p2, "This is the p2 string (34 bytes).");

OutputHeading(
"Use _ASSERTE to check that the two strings are identical");
_ASSERTE(strcmp(pl, p2) = 0);

OutputHeading(
"Use a _RPT macro to report the string contents as a warning”™);
_RPT2(_CRT_WARN, "pl points to '%s' and \np2 points to '%s'\n", pl, p2

Chapter 4 Debug Version of the C Run-Time Library

OutputHeading(
"Use _CRTMemDumpAllObjectsSince to check the pl and p2 allocations");
_CrtMemDumpA110bjectsSince(NULL);

free(p2);

OutputHeading(
"Having freed p2, dump allocation information about pl only");
_CrtMemDumpA110bjectsSince(NULL);

// Store a memory checkpoint in the sl memory-state structure
_CrtMemCheckpoint(&sl);

// Allocate another block, pointed to by p2
p2 = malloc(38);
strcpy(p2, "This new p2 string occupies 38 bytes.");

// Store a 2nd memory checkpoint in s2
_CrtMemCheckpoint(&s2);

OutputHeading(

"Dump the changes that occurred between two memory checkpoints”);
if (_CrtMemDifference(&s3, &sl, &s2))

_CrtMemDumpStatistics(&s3);

// Free p2 again and store a new memory checkpoint in s2
free(p2);
_CrtMemCheckpoint(&s2);
OutputHeading(
"Now the memory state at the two checkpoints is the same");
if (_CrtMemDifference(&s3, &sl, &s2))
_CrtMemDumpStatistics(&s3);

strcpy(pl, "This new pl string is over 34 bytes");
OQutputHeading("Free pl after overwriting the end of the allocation™);
free(pl);

// Set the debug-heap flag so that freed blocks are kept on the
// linked 1ist, to catch any inadvertent use of freed memory
SET_CRT_DEBUG_FIELD(_CRTDBG_DELAY_FREE_MEM_DF);

pl = malloc(10);
free(pl);
strcpy(pl, "Oops"™);

OutputHeading("Perform a memory check after corrupting freed memory");
_CrtCheckMemory();

91

Run-Time Library Reference

Output

// Use explicit calls to _malloc_dbg to save file name and 1ine number
// information, and also to allocate Client type blocks for tracking
pl = _malloc_dbg(40, _NORMAL_BLOCK, _ FILE__, _ LINE__);

p2 = _malloc_dbg(40, _CLIENT_BLOCK, FILE_ , __LINE__);

strepy(pl, "pl points to a Normal allocation block”);

strepy(p2, "p2 points to a Client allocation block");

// You must use _free_dbg to free a Client block
QutputHeading(
"Using free() to free a Client block causes an assertion failure");
free(pl);
free(p2);

pl = malloc(10);
QutputHeading("Examine outstanding allocations (dump memory leaks)");
_CrtDumpMemoryleaks();

// Set the debug-heap flag so that memory leaks are reported when
// the process terminates. Then, exit.

OutputHeading("Program exits without freeing a memory block");
SET_CRT_DEBUG_FIELD(_CRTDBG_LEAK CHECK_DF);

Use _ASSERTE to check that the two strings are identical:

FhIAKKKA I KA I AXIA KA X AkARI X Ahhhkhhkhhkhhhhkhhhkhhhkhkhhkhhkhkhkhkhkhkhhkhkhkhkkkkhhkkhkkkkhkhkkkikkx

C:\DEV\EXAMPLE1.C(56) : Assertion failed: strcmp(pl, p2) == 0

Use a _RPT macro to report the string contents as a warning:

KR KA K IA AR KA A AAAARI A A A I AR A IR I I A A A AA A Ak AT Tk I Ak hkhkhkhkhkhkhkkhkhkhkhkkdhhkkkx*
pl points to 'This is the pl string (34 bytes).' and

p2 points to 'This is the p2 string (34 bytes).'

Use _CRTMemDumpA110bjectsSince to check the pl and p2 allocations:
hhkhkkhkkhkhkhkkhhkkkkhkkhkkhkhkkhkkhhkhkhkhkhkhkhkdhhkhkhkhkhkrhkkhhhkhhkhkhkhkhhkkhkhkkhkhhkhhkhkkhkkhkkhkhkhkhkkhkhkhkkhkkhkhkkkk
Dumping objects ->

{13} normal block at 0x00660B5C, 34 bytes long

Data: <This is the p2 s> 54 68 69 73 20 69 73 20 74 68 65 20 70 32 20 73
{12} normal block at 0x00660B190, 34 bytes long

Data: <This is the pl s> 54 68 69 73 20 69 73 20 74 68 65 20 70 31 20 73
Object dump complete.

Having freed p2, dump allocation information about pl only:
dhkkkhkhkhkkhkkhkhkhkhkhkkhkhkhkhkhhkhkkhkkhhhkhkhhhkhkhhkhkdhhhkhkhkkhhkrhhhkhdrdhhhhihhhkhdkhhkkhhhkhkhhhhk
Dumping objects ->

{12} normal block at 0x00660B1@, 34 bytes long

Data: <This is the pl s> 54 68 69 73 20 69 73 20 74 68 65 20 70 31 20 73
Object dump complete.

Chapter 4 Debug Version of the C Run-Time Library

Dump the changes that occurred between two memory checkpoints:
kkkkkhkkhkhkhkhkhkhkhkhkhkhhkhkhhkkhkhkhkhkhkhkdhkhkhkhhkhkhhkdhkkhkhkhhkhkhkhkhkkhkhkkhkrhkhkrdhkhkhhkhkhkhxhhkhkkhkhx
0 bytes in 0 Free Blocks.

38 bytes in 1 Normal Blocks.

©® bytes in @ CRT Blocks.

@ bytes in @ IgnoreClient Blocks.

@ bytes in @ (null) Blocks.

Largest number used: 4 bytes.

Total allocations: 38 bytes.

Now the memory state at the two checkpoints is the same:
khkhkhkhkhkkhkhkhkkkkhhkhkkhkhhhhkhhhhhkhkhkkhkhhkdhhhhhkhkkhkhhkhkhhkhkdhhkhkhhhkhhkhkhhhkhkhkhhhhkhhkhhkhkk

Free pl after overwriting the end of the allocation:
hhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhrhhkhkhkkhkhkhkkhkkkhhkhhhhhhkhkhkhkhhkhkhkhhrhhkkhhkhkhkhkxhhkhkhkkkkx
memory check error at 0x00660B32 = 0x73, should be @xFD.

memory check error at 0x00660B33 = 0x00, should be OxFD.

DAMAGE: after Normal block (#12) at 0x00660810.

Perform a memory check after corrupting freed memory:
KRAKKKAKKAAKRKERKAKRKRAIRKXA KRR A AIA AR K EAA R AR A A AT AR A AR hkhkhkkkhhhkhkkhkhArhhdhhhhhkhihhhhhhk
memory check error at 0x00660B10 = 0x4F, should be 0xDD.

memory check error at 0x00660B11 0x6F, should be 0xDD.

memory check error at 0x00660B12 0x70, should be @xDD.

memory check error at 0x00660B13 = 0x73, should be 0xDD.

memory check error at 0x00660B14 = 0x00, should be @OxDD.

DAMAGE: on top of Free block at 0x00660B10.

DAMAGED located at 0x00660B10 is 10 bytes long.

]

Using free() to free a Client block causes an assertion failure:
dkkkkhkhkhkhkhkkhkhhkhkhkhkhkhkhkhkhhkhkhkdkhkhkhkdhhhhkhkhkhkdhkdkhkhkhhkhkkhkhkhkhkhkhhkrkhkhhkdhhkhdhkhhhkhkkhkrkkhkk

dbgheap.c(1039) : Assertion failed: pHead->nBlockUse == nBlockUse

Examine outstanding allocations (dump memory teaks):
hhkkhkhkkhkkrhkhkhkhkhhhhkhhhkhkkhkhhhhkhhhdhhhkhdhhhhhhhhhhkhkhhhhhhhhkhhkhkhhkhkhhkhhkhkkhhkhhkhxk
Detected memory leaks!

Dumping objects ->

{18} normal block at 0x@0660BE4, 10 bytes long

Data: < > CD CD CD CD CD CD CD CD CD CD
Object dump complete.

Program exits without freeing a memory block:
KhkIhkhkhkhkhkhkkkhhkhkhkhkhkhkhkhkxhkhAhkkhkhhkhkhhkhkhkhkhkhkhkhkhkkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkhkkhhkhhhkkhkkhkhkkx
Detected memory leaks!

Dumping objects ->

{18} normal block at 0x00660BE4, 10 bytes long

Data: < > CD CD CD CD CD CD CD CD CD CD
Object dump complete.

93

Run-Time Library Reference

Second Example Program

94

This program illustrates several ways to use debugging hook functions with the new
debug versions of the C run-time library. To add some realism, it has a few elements
of an actual application, including two bugs.

The program stores birth date information in a linked list of Client blocks. A Client-
dump hook function validates the birthday data and reports the contents of the Client
blocks. An allocation hook function logs heap operations to a text file, and the report
hook function logs selected reports to the same text file.

Note that the allocation hook function explicitly excludes Crt blocks (the memory
allocated internally by the C run-time library) from its log. The hook function uses
fprintf to write to the log file, and fprintf allocates a CRT block. If CRT blocks were
not excluded in this case, an endless loop would overflow the stack: fprintf would
cause the hook function to be called, the hook would in turn call fprintf, which
would in turn cause the hook to be called again, and so forth.

To be able to report CRT-type blocks in your allocation hook, Windows API functions
could be used instead of C run-time functions. Since the Windows APIs do not use
the CRT heap, they would not trap the hook in an endless loop.

The debug heap catches two bugs and a data error in the second example. One bug is
that the birthday name field is not large enough to hold several of the test names. The
field should be larger, and strncepy should be used instead of strepy. The second bug
is that the ‘while’ loop in the printRecords function should not end until the
HeadPtr itself is equal to null. This bug results not only in an incomplete display of
birthdays, but also in a memory leak. Finally, Gauss’ birthday should be April 30, not
April 32.

[Rhrkdkhkhkkhkhhhhkhhkhkhkhkhkhkkhhhdhhhhkhhhhkhhhhhhhkkhkhkhhhkhkkhhkhhhhhhkhhxx

* EXAMPLE 2

This program illustrates several ways to use debugging hook
functions with the new debug versions of the C runtime
Tibraries. To add some realism, it has a few elements of an
actual application, including two bugs.

*

The program stores birthdate information in a linked 1ist
of Client blocks. A Client-dump hook function validates the
birthday data and reports the contents of the Client blocks.
An allocation hook function logs heap operations to a text
file, and the report hook function logs reports to the same
text file.

k% X Sk Sk Ok X X % * F F
N I D R O T N

NOTE:

HINT:

BUGS:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

***/

#include
finctude
#include
#include
#include
f#include

Chapter 4 Debug Version of the C Run-Time Library

The allocation hook function explicitly excludes CRT
blocks (the memory allocated internally by the C
runtime library) from its log. It is important to
understand why! The hook function uses fprintf() to
write to the log file, and fprintf() allocates a CRT
block. If CRT blocks were not excluded in this case,
an endless loop would be created in which fprintf()
would cause the hook function to be called, and the
hook would in turn call fprintf(), which would cause
the hook to be called again, and so on. The moral is:

IF YOUR ALLOCATION HOOK USES ANY C RUNTIME FUNCTION
THAT ALLOCATES MEMORY, THE HOOK MUST IGNORE CRT-TYPE
ALLOCATION OPERATIONS!

If you want to be able to report CRT-type blocks in
your allocation hook, use Windows API functions for

formatting and output, instead of C runtime functions.

Since the Windows APIs do not use the CRT heap, they
will not trap your hook in an endless loop.

There are two bugs in the program below, which the
debug heap features identify in several ways. One bug
is that the birthDay.Name field is not large enough
to hold several of the test names. The field should
be larger, and strncpy() should be used in place of
strcpy(). The second bug is that the while() Toop
in the printRecords() function should not end until
HeadPtr itself == NULL. This bug results not only in
an incomplete display of birthdays, but also in a
memory leak. In addition to these two bugs, Gauss'
birthday data is out of range (April 30, not 32).

<stdio.h>
<std1lib.h>
<string.h>
<malloc.h>
<time.h>
<crtdbg.i>

* ok % R ok ok R % R bk % ok ok %k % % oF ok % 3k b ok % ok F Ok % F F F F

*

/***

* DATA

***/

DECLARATIONS AND DEFINES

*

// The following arrays provide test data for the example program:

95

Run-Time Library Reference

const char * Names[] =

{
"George Washington",
"Thomas Jefferson",
"Carl Friedrich Gauss",
"Ludwig van Beethoven",
"Thomas Carlyle"”

Yo

const int Dates[] =
{
1732, 2, 11,
1743, 4, 13,
1777, 4, 32,
1795, 12, 4,
1770, 12, 16
1

#define TEST_RECS 5
// A generic sort of linked-1ist data structure, in this case for birthdays:
typedef struct BirthdayStruct
{
struct BirthdayStruct * NextRec;
int Year;
int Month;
int Day:;
char Name[20];
} birthDay;

birthDay * HeadPtr;
birthDay * TailPtr;

ffdefine FILE_IO_ERROR 0
ffdefine OUT_OF_MEMORY 1
ffdefine TRUE 7
ffdefine FALSE 0

// Macros for setting or clearing bits in the CRT debug flag
f#ifdef _DEBUG

ffdefine SET_CRT_DEBUG_FIELD(a) _CrtSetDbgFlag((a) |
_CrtSetDbgFl1ag(_CRTDBG_REPORT_FLAG))

#define CLEAR_CRT_DEBUG_FIELD(a) _CrtSetDbgFlag(~(a) &
_CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))

f#else

jdefine SET_CRT_DEBUG_FIELD(a) ((void) 0)

ffdefine CLEAR_CRT_DEBUG_FIELD(a) ((void) @)

#endif

96

Chapter 4 Debug Version of the C Run-Time Library

/***

* SPECIAL-PURPOSE ROUTINES *

***/

/* ERROR HANDLER
Handling serious errors gracefully is a real test of craftsmanship.
This function is just a stub; it doesn't really handle errors.

*/

void FatalError(int ErrType)

{
exit(1);

}

/* MEMORY ALLOCATION FUNCTION
The createRecord function allocates memory for a new birthday record,
fills in the structure members, and then adds the record to a linked list.
In debug builds, it makes these allocations in Client blocks. If memory
is not available, it calls the error handler.

*/

void createRecord(
const int Year,
const int Month,
const int Day,

const char * Name
i fdef _DEBUG
, const unsigned char * szFileName, int nlLine
f#fendif
)
{
birthDay * ptr;
size_t n;

n = sizeof(struct BirthdayStruct);
ptr = (birthDay *) _malloc_dbg(n, _CLIENT_BLOCK, szFileName, nlLine);
if(ptr == NULL)
FatalError(OUT_OF_MEMORY);
ptr->Year = Year;
ptr->Month = Month;
ptr->Day = Day;
strcpy(ptr->Name, Name);

ptr->NextRec = NULL;

if (HeadPtr == NULL) // 1If this is the first record in the linked list
HeadPtr = ptr;

else
TailPtr->NextRec = ptr;

TailPtr = ptr;

97

Run-Time Library Reference

/* BIRTHDAY DISPLAY FUNCTION
This function traverses the linked list, displays the birthday data,
and then frees the memory blocks used to store the birthdays.
*/
void printRecords()
{
birthDay * ptr;
char *months[] = {
"", "January", "February", "March", "April", "May", "June", "July",
"August™, "September"”, "October™, "November", "December” };

if (HeadPtr == NULL) // Do nothing if Tist is empty
return;

printf("\n\nThis is the birthday list:\n");
while (HeadPtr->NextRec != NULL)

{
printf(" %s was born on %s %d, %d.\n",
HeadPtr->Name, months[HeadPtr->Month], HeadPtr->Day, HeadPtr->Year
ptr = HeadPtr->NextRec;
_free_dbg(HeadPtr, _CLIENT_BLOCK);
HeadPtr = ptr;
}

/***

* DEBUG C RUNTIME LIBRARY HOOK FUNCTIONS AND DEFINES *

***/

Jifdef _DEBUG
f#fdefine createRecord(a, b, c, d) \

createRecord(a, b, ¢, d, __FILE__, __LINE_)
FILE *1ogFile; // Used to log allocation information
const char TineStr[] = { "------------------------eiee oo \
------------------------------------- \n" 3}

A hook function for dumping a Client block usually reports some
or all of the contents of the block in question. The function
below also checks the data in several ways, and reports corruption
or inconsistency as an assertion failure.
*/
void __cdecl MyDumpClientHook(
void * pUserData,
size_t nBytes
)

birthDay * bday:

bday = (birthDay *) pUserData;

98

/*

*/

Chapter 4 Debug Version of the C Run-Time Library

_RPT4(_CRT_WARN, " The birthday of %s is %d/%d/%d.\n",
bday->Name, bday->Month, bday->Day, bday->Year);
_ASSERTE((bday->Day > @) && (bday->Day < 32));
_ASSERTE((bday->Month > @) && (bday->Month < 13));
_ASSERTE((bday->Year > 0) && (bday->Year < 1996));

ALLOCATION HOOK FUNCTION

An allocation hook function can have many, many different
uses. This one simply Togs each allocation operation in a file.

int __cdecl MyAllocHook(

/*

*/

int nAllocType,
void * pvData,
size_t nSize,

int nBlockUse,

Tong 1Request,

const unsigned char * szFileName,
int nLine

)

{"", "allocating”, "re-allocating”™, "freeing” };
{ "Free", "Normal™, "CRT", "Ignore", "Client" };

char *operation[]
char *blockTypel]

if (nBlockUse == _CRT_BLOCK) // Ignore internal C runtime library allocations
return{ TRUE);

_ASSERT((nAllocType > @) && (nAllocType < 4));
_ASSERT((nBlockUse >= @) && (nBlockUse < 5));

fprintf(togFile,
"Memory operation in %s, Tine %d: %s a %d-byte '%s' block (# %1d)\n",
szFileName, nLine, operation[nAllocTypel, nSize,
blockType[nBlockUse], TRequest);
if (pvData != NULL)
fprintf(logFile, " at %X", pvData);

return(TRUE); // Allow the memory operation to proceed

REPORT HOOK FUNCTION

Again, report hook functions can serve a very wide variety of purposes.
This one logs error and assertion failure debug reports in the

log file, along with 'Damage' reports about overwritten memory.

By setting the retVal parameter to zero, we are instructing _CrtDbgReport

to return zero, which causes execution to continue. If we want the function
to start the debugger, we should have _CrtDbgReport return one.

99

Run-Time Library Reference

100

int MyReportHook(
int nRptType,
char *szMsg,
int “*retVal
)

{
char *RptTypes[] = { "Warning", “"Error", "Assert” };
if ((nRptType > @) |] (strstr(szMsg, "DAMAGE")))
fprintf(logFile, "%s: %s™, RptTypes[nRptTypel, szMsg);
retVal = 0;
return(TRUE); // Allow the report to be made as usual
}
ffendif // End of #ifdef _DEBUG

[FxFxxxkkkkkkkhhhkhhhkhkkhhhhhhhhhhhhhhhhhhdkhhhhhhhhhhhhhhhhkkhhkhhrkk

* MAIN FUNCTION *
***/
void main()
{

int i, j;

#ifdef _DEBUG
_CrtMemState checkPtl;
char timeStr[10], dateStr[10]; - // Used to set up log file

// Send all reports to STDOUT, since this example is a console app
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

// Set the debug heap to report memory leaks when the process terminates,
// and to keep freed blocks in the Tinked 1ist.

SET_CRT_DEBUG_FIELD(_CRTDBG_LEAK_CHECK_DF | _CRTDBG_DELAY_FREE_MEM_DF);

// Open a log file for the hook functions to use
TogFile = fopen("MEM-LOG.TXT", "w");
if (logFile == NULL)
FatalError(FILE_IO_ERROR);
_strtime(timeStr);
_strdate(dateStr);
fprintf(logFile,

"Memory Allocation Log File for Example Program, run at %s on %s.

timeStr, dateStr);
fputs(1ineStr, logFile);

\n",

Output

Chapter 4 Debug Version of the C Run-Time Library

// Install the hook functions
_CrtSetDumpClient(MyDumpClientHook);
_CrtSetAllocHook(MyAllocHook);
_CrtSetReportHook(MyReportHook);

ffendif // End of #ifdef _DEBUG

HeadPtr = NULL;

// Create a trial birthday record.
createRecord(1749, 3, 23, "Pierre de Laplace”);

// Check the debug heap, and dump the new birthday record. --Note that

// debug C runtime library functions such as _CrtCheckMemory() and

// _CrtMemDumpAl10bjectsSince() automatically disappear in a release build.
_CrtMemDumpAl110bjectsSince(NULL);

_CrtCheckMemory();

_CrtMemCheckpoint(&checkPtl);

// Since everything has worked so far, create more records
for (i =0, j=0; i < TEST_RECS; i++, j+=3)
createRecord(Dates[j], Dates[j+1], Dates[j+2], Names[i]):

// Examine the results
_CrtMemDumpAl10bjectsSince(&checkPtl);
_CrtMemCheckpoint(&checkPtl);
_CrtMemDumpStatistics(&checkPtl);
_CrtCheckMemory();

// This fflush needs to be removed...
fflush(logFile);

// Now try displaying the records, which frees the memory being used
printRecords();

// OK, time to go. Did I forget to turn out any Tights? I could check
// explicitly using _CrtDumpMemorylLeaks(), but I have set

// _CRTDBG_LEAK_CHECK_DF, so the C runtime library debug heap will

// automatically alert me at exit of any memory Teaks.

f#ifdef _DEBUG

fclose(logFile);

ffendif

Screen output:

Dumping objects ->
C:\DEV\EXAMPLE2.C(327) : {13} client block at 0x00661B38, subtype @, 36 bytes long:

The birthday of Pierre de Laplace is 3/23/1749.

Object dump complete.
Dumping objects ->

101

Run-Time Library Reference

C:\DEV\EXAMPLE2.C(338) : {18} client block at 0x00661CB4, subtype 0, 36 bytes long:
The birthday of Thomas Carlyle is 12/16/1770.

C:\DEV\EXAMPLE2.C(338) : {17} client block at 0x00661C68, subtype @, 36 bytes long:
The birthday of Ludwig van Beethoven is 12/4/1795. .

C:\DEV\EXAMPLE2.C(338) : {16} client block at 0x00661C1C, subtype @, 36 bytes long:
The birthday of Carl Friedrich Gauss is 4/32/1777.

C:\DEV\EXAMPLE2.C(219) : Assertion failed: (bday->Day > 0) && (bday->Day < 32)

C:\DEV\EXAMPLE2.C(338) : {15} client block at 0x00661BDO, subtype @, 36 bytes long:
The birthday of Thomas Jefferson is 4/13/1743.

C:\DEV\EXAMPLE2.C(338) : {14} client block at 0x00661B84, subtype @, 36 bytes long:
The birthday of George Washington is 2/11/1732.

Object dump complete.

0 bytes in @ Free Blocks.

® bytes in @ Normal Blocks.

6442 bytes in 12 CRT Blocks.

0@ bytes in @ IgnoreClient Blocks.

216 bytes in 6 (null) Blocks.

Largest number used: 6658 bytes.

Total allocations: 6658 bytes.

memory check error at 0x00661C8C = 0x00, should be OxFD.

DAMAGE: after (null) block (#17) at 0x00661C68.

(null) allocated at file C:\DEV\EXAMPLE2.C(338).

(null) located at 0x00661C68 is 36 bytes long.

memory check error at 0x00661C40 = 0x00, should be @xFD.

DAMAGE: after (null) block (#16) at 0x00661C1C.

(null1) allocated at file C:\DEV\EXAMPLE2.C(338).

(nul1) Tocated at 0x00661C1C is 36 bytes long.

memory check error at 0x00661C40 = 0x00, should be OxFD.

DAMAGE: after (null) block (#16) at 0x00661C1C.

memory check error at 0x00661C8C = 0x00, should be OxFD.

DAMAGE: after (null) block (#17) at 0x00661C68.

This is the birthday list:
Pierre de Laplace was born on March 23, 1749.
George Washington was born on February 11, 1732.
Thomas Jefferson was born on April 13, 1743.
Carl Friedrich Gauss was born on April 32, 1777.
Ludwig van Beethoven was born on December 4, 1795.
Detected memory leaks!
Dumping objects ->
C:\DEV\EXAMPLE2.C(338) : {18} client block at 8x00661CB4, subtype @, 36 bytes long:
The birthday of Thomas Carlyle is 12/16/1770.
Object dump compiete.

Log file output:
Memory Allocation Log File for Example Program, run at 14:11:01 on 04/28/95.

Memory operation in C:\DEV\EXAMPLE2.C, line 327:

allocating a 36-byte 'Client' block (# 13)
Memory operation in C:\DEV\EXAMPLE2.C, Tine 338:

allocating a 36-byte 'Client' block (# 14)

102

Memory operation
Memory operation
Memory operation

Memory operation

Warning: DAMAGE:
Warning: DAMAGE:
Memory operation

at 661B38Memory

at 661B84Memory
at 661BDOMemory
at 661C1CError:

Memory operation
at 661C68Error:

Chapter 4 Debug Version of the C Run-Time Library

in C:\DEV\EXAMPLE2.C, line 338:

allocating a 36-byte 'Client' block (# 15)

in C:\DEV\EXAMPLE2.C, line 338:

allocating a 36-byte 'Client' block (# 16)

in C:\DEV\EXAMPLE2.C, line 338:

allocating a 36-byte 'Client' block (# 17)

in C:\DEV\EXAMPLE2.C, line 338:

allocating a 36-byte 'Client' block (# 18)

Assert: C:\DEV\EXAMPLE2.C(219) : Assertion failed:
(bday->Day > @) && (bday->Day < 32)

after (null) block (#17) at 0x00661C68.

after (null) block (#16) at 0x00661C1C.

in (null), line 0: freeing a 0-byte
operation in (null), line 0:
freeing a 0-byte
operation in (null), Tine 0:
freeing a 0-byte
operation in (null), line 0:
freeing a 0-byte
DAMAGE: after (null) block (#16) at
in (null), line @: freeing a 0-byte
DAMAGE: after (null) block (#17) at

"Client' block (# 0)
"Client' block (# 0)
'Client' block (# 0)
"Client' block (# 0)
0x00661C1C.

"Client’ block (# 0)
0x00661C68.

_ASSERT, ASSERTE Macros

Evaluate an expression and generate a debug report when the result is FALSE (debug

version only).

_ASSERT(booleanExpression);
_ASSERTE(booleanExpression);

Macro Required Header Optional Headers Compatibility

_ASSERT <crtdbg.h> Win NT, Win 95,
PMac

_ASSERTE <crtdbg.h> Win NT, Win 95,
PMac

For additional compatibility information, see “Compatibility” on page ix in the

Introduction.

Libraries

LIBCD.LIB
LIBCMTD.LIB
MSVCRTD.LIB
MSVCRx0D.DLL

Single thread static library, debug version
Multithread static library, debug version

Import library for MSVCRx0OD.DLL, debug version

Multithread DLL library, debug version

103

Run-Time Library Reference

Although _ASSERT and _ASSERTE are macros and are obtained by including
CRTDBG.H, the application must link with one of the libraries listed above because
these macros call other run-time functions.

Return Value

None

Parameter

Remarks

104

booleanExpression Expression (including pointers) that evaluates to nonzero or 0

The _ASSERT and _ASSERTE macros provide an application with a clean and
simple mechanism for checking assumptions during the debugging process. They are
very flexible because they do not need to be enclosed in #ifdef statements to prevent
them from being called in a retail build of an application. This flexibility is achieved
by using the _DEBUG macro. _ASSERT and _ASSERTE are only available when
_DEBUG is defined. When _DEBUG is not defined, calls to these macros are
removed during preprocessing.

_ASSERT and _ASSERTE evaluate their booleanExpression argument and when
the result is FALSE (0), they print a diagnostic message and call _CrtDbgReport to
generate a debug report. The _ASSERT macro prints a simple diagnostic message,
while _ASSERTE includes a string representation of the failed expression in the
message. These macros do nothing when booleanExpression evaluates to nonzero.

Because the _ASSERTE macro specifies the failed expression in the generated
report, it enables users to identify the problem without referring to the application
source code. However, a disadvantage exists in that every expression evaluated by
_ASSERTE must be included in the debug version of your application as a string
constant. Therefore, if a large number of calls are made to _ASSERTE, these
expressions can take up a significant amount of space.

_CrtDbgReport generates the debug report and determines its destination(s), based
on the current report mode(s) and file defined for the _CRT_ASSERT report type.
By default, assertion failures and errors are directed to a debug message window. The
_CrtSetReportMode and _CrtSetReportFile functions are used to define the
destination(s) for each report type.

When the destination is a debug message window and the user chooses the Retry
button, _CrtDbgReport returns 1, causing the _ASSERT and _ASSERTE macros to
start the debugger, provided that “just-in-time” (JIT) debugging is enabled. See page
75 for an example of an assert message box under Windows NT.

For more information about the reporting process, see the _CrtDbgReport function
and the section “Debug Reporting Functions of the C Run-Time Library” on page 73.
For more information about resolving assertion failures and using these macros as a
debugging error handling mechanism, see “Using Macros for Verification and
Reporting” on page 75.

Example

Chapter 4 Debug Version of the C Run-Time Library

The _RPT, _RPTF debug macros are also available for generating a debug report,
but they do not evaluate an expression. The _RPT macros generate a simple report
and the _RPTF macros include the source file and line number where the report
macro was called, in the generated report. In addition to the _ASSERTE macros, the
ANSI assert routine can also be used to verify program logic. This routine is
available in both the debug and release versions of the libraries.

DBGMACRO.C

In this program, calls are made to the _ASSERT and _ASSERTE
macros to test the condition 'stringl == string2'. If the
condition fails, these macros print a diagnostic message.
The _RPTn and _RPTFn group of macros are also exercised in
this program, as an alternative to the printf function.

#include <stdio.h>

#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

int main()

{

char *pl, *p2;

* The Reporting Mode and File must be specified

* before generating a debug report via an assert

* or report macro.

* This program sends all report types to STDOUT

*/
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/*

* Allocate and assign the pointer variables
*/

pl = malloc(10);

strcpy(pl, "I am pl");

p2 = malloc(10);

strcpy(p2, "I am p2™);

105

Run-Time Library Reference

~
*

* Use the report macros as a debugging
* warning mechanism, similar to printf.
*
* Use the assert macros to check if the
* pl and p2 variables are equivalent.
*
* If the expression fails, _ASSERTE will
* include a string representation of the
* failed expression in the report.
* _ASSERT does not include the
* expression in the generated report.
*/
_RPTO(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression pl ==
p2.\n");
_RPTF2(_CRT_WARN, "\n Will _ASSERT find '%s' == '%s' ?2\n", pl, p2);
_ASSERT(pl == p2);
_RPTF2(_CRT_WARN, "\n\n WiT1 _ASSERTE find '%s' == "%s' ?\n", pl, p2);
_ASSERTE(pl == p2);
_RPT2(_CRT_ERROR, "\n \n '%s' != "%s'\n", pl, p2);
free(p2);
free(pl);
return @;

Output
Use the assert macros to evaluate the expression pl == p2.

dbgmacro.c(54) : Will _ASSERT find 'I am pl' == 'I am p2' ?
dbgmacro.c(55) : Assertion failed

dbgmacro.c(57) : Will _ASSERTE find 'I am pl' == 'I am p2' ?
dbgmacro.c(58) : Assertion failed: pl == p2

'T am pl' !="'I am p2°'

See Also _RPT,_RPTF

106

Chapter 4 Debug Version of the C Run-Time Library

_calloc_dbg

Allocates a number of memory blocks in the heap with additional space for a
debugging header and overwrite buffers (debug version only).

void *_calloc_dbg(size_t num, size_t size, int blockType, const char *filename,
int linenumber);

Routine Required Header Optional Headers Compatibility
_calloc_dbg <crtdbg.h> Win NT, Win 95, PMac
For additional compatibility information, see “Compatibility” on page ix in the
Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version

LIBCMTD.LIB Multithread static library, debug version

MSVCRTD.LIB Import library for MSVCRx0D.DLL, debug version

MSVCRx0D.DLL Muitithread DLL library, debug version

Return Value
Upon successful completion, this function either returns a pointer to the user portion
of the last allocated memory block, calls the new handler function, or returns NULL.
See the following Remarks section for a complete description of the return behavior.
See the calloc function for more information on how the new handler function is
used.

Parameters
num Requested number of memory blocks

size Requested size of each memory block (bytes)

blockType Requested type of memory block: _CLIENT_BLOCK or
_NORMAL_BLOCK

filename Pointer to name of source file that requested allocation operation or NULL

linenumber Line number in source file where allocation operation was requested or
NULL

The filename and linenumber parameters are only available when _calloc_dbg has
been called explicitly or the _CRTDBG_MAP_ALLOC environment variable has
been defined.

Remarks
_calloc_dbg is a debug version of the calloc function. When _DEBUG is not
defined, calls to _calloc_dbg are removed during preprocessing. Both calloc and
_calloc_dbg allocate num memory blocks in the base heap, but _calloc_dbg offers
several debugging features: buffers on either side of the user portion of the block to

107

Run-Time Library Reference

test for leaks, a block type parameter to track specific allocation types, and
filenamellinenumber information to determine the origin of allocation requests.

_calloc_dbg allocates each memory block with slightly more space than the
requested size. The additional space is used by the debug heap manager to link the
debug memory blocks together and to provide the application with debug header
information and overwrite buffers. When the block is allocated, the user portion of
the block is filled with the value 0xCD and each of the overwrite buffers are filled
with OxFD.

For information about how memory blocks are allocated, initialized, and managed in
the debug version of the base heap, see “Memory Management and the Debug Heap”
on page 79. For information about the allocation block types and how they are used,
see “Types of Blocks on the Debug Heap” on page 80. For information on the
differences between calling a standard heap function versus its debug version in a
debug build of an application, see “Using the Debug Version Versus the Base
Version” on page 84.

Example

/ *

* CALLOCD.C

* This program uses _calloc_dbg to allocate space for

* 40 long integers. It initializes each element to zero.
*/

#include <stdio.h>

#include <malloc.h>

#include <crtdbg.h>

void main(void)

{
long *bufferN, *bufferC;
/*
* Call _calloc_dbg to include the filename and 1ine number
* of our allocation request in the header and also so we can
* allocate CLIENT type blocks specifically
*/
bufferN = (long *)_calloc_dbg(4@, sizeof(long), _NORMAL_BLOCK, FILE__,
__LINE__)
bufferC = (long *)_calloc_dbg(40, sizeof(long), _CLIENT_BLOCK, FILE _,
__LINE__)
if(bufferN != NULL && bufferC != NULL)
printf("Allocated memory successfully\n”);
else
printf("Problem allocating memory\n");
/*
* _free_dbg must be called to free CLIENT type blocks
*/
free(bufferN);
_free_dbg(bufferC, _CLIENT_BLOCK);
}

108

Output

Chapter 4 Debug Version of the C Run-Time Library

Allocated memory successfully

See Also calloc, _malloc_dbg, DEBUG

_CrtCheckMemory

Confirms the integrity of the memory blocks allocated in the debug heap (debug
version only).

int _CrtCheckMemory(void);

Routine Required Header Optional Headers Compatibility
_CrtCheckMemory <crtdbg.h> Win NT, Win 95,
PMac

For additional compatibility information, see “Compatibility” on page ix in the
Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRx0D.DLL, debug version

MSVCRx0D.DLL Muttithread DLL library, debug version

Return Value

Remarks

If successful, _CrtCheckMemory returns TRUE; otherwise, the function returns
FALSE.

The _CrtCheckMemory function validates memory allocated by the debug heap
manager by verifying the underlying base heap and inspecting every memory block.
If an error or memory inconsistency is encountered in the underlying base heap, the
debug header information, or the overwrite buffers, _CrtCheckMemory generates a
debug report with information describing the error condition. When ' DEBUG is not
defined, calls to _CrtCheckMemory are removed during preprocessing.

The behavior of _CrtCheckMemory can be controlled by setting the bit fields of the
_crtDbgFlag flag using the _CrtSetDbgFlag function. Turning the
_CRTDBG_CHECK_ALWAYS_DF bit field ON results in _CrtCheckMemory
being called every time a memory allocation operation is requested. Although this
method slows down execution, it is useful for catching errors quickly. Turning the
_CRTDBG_ALLOC_MEM_DF bit field OFF causes _CrtCheckMemory to not
verify the heap and immediately return TRUE.

109

Run-Time Library Reference

Example

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if corruption is detected in the heap:

_ASSERTE(_CrtCheckMemory());

For more information about how _CrtCheckMemeory can be used with other debug
functions, see “Heap State Reporting Functions” on page 83. For an overview of
memory management and the debug heap, see “Memory Management and the Debug
Heap” on page 79.

See “First Example Program” on page 89.

See Also _crtDbgFlag, _CrtSetDbgFlag

_CrtDbgReport

Generates a report with a debugging message and sends the report to three possible
destinations (debug version only).

int _CrtDbgReport(int reportType, const char *filename, int linenumber,
const char *moduleName, const char *format [, argument] ...);

Routine Required Header Optional Headers Compatibility

_CrtDbgReport <crtdbg.h> Win NT, Win 95, PMac

For additional compatibility information, see “Compatibility” on page ix in the
Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRx0D.DLL, debug version

MSVCRx0D.DLL Multithread DLL library, debug version

Return Value

110

For all report destinations, _CrtDbgReport returns —1 if an error occurs and 0 if no
errors are encountered. However, when the report destination is a debug message
window and the user chooses the Retry button, _CrtDbgReport returns 1. If the user
chooses the Abort button in the debug message window, _CrtDbgReport
immediately aborts and does not return a value.

The _ASSERTI[E] and _RPT, _RPTF debug macros call _CrtDbgReport to
generate their debug report. When _CrtDbgReport returns 1, these macros start the
debugger, provided that “just-in-time” (JIT) debugging is enabled.

Chapter 4 Debug Version of the C Run-Time Library

Parameters

Remarks

reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT
filename Pointer to name of source file where assert/report occurred or NULL
linenumber Line number in source file where assert/report occured or NULL

moduleName Pointer to name of module (EXE or .DLL) where assert/report
occurred

format Pointer to format-control string used to create the user message

argument Optional substitution arguments used by format

The _CrtDbgReport function is similar to the printf function, as it can be used to
report warnings, errors, and assert information to the user during the debugging
process. However, this function is more flexible than printf because it does not need
to be enclosed in #ifdef statements to prevent it from being called in a retail build of
an application. This is achieved by using the _DEBUG flag: When _DEBUG is not
defined, calls to _CrtDbgReport are removed during preprocessing.

_CrtDbgReport can send the debug report to three different destinations: a debug
report file, a debug monitor (the Visual C++ debugger), or a debug message window.
Two configuration functions, _CrtSetReportMode and _CrtSetReportFile, are used
to specify the destination(s) for each report type. These functions allow the reporting
destination(s) for each report type to be separately controlled. For example, it is
possible to specify that a reportType of _CRT_WARN only be sent to the debug
monitor, while a reportType of _CRT_ASSERT be sent to a debug message window
and a user-defined report file.

_CrtDbgReport creates the user message for the debug report by substituting the
argument[n] arguments into the format string, using the same rules defined by the
printf function. _CrtDbgReport then generates the debug report and determines the
destination(s), based on the current report modes and file defined for reportType.
When the report is sent to a debug message window, the filename, lineNumber, and
moduleName are included in the information displayed in the window.

The following table lists the available choices for the report mode(s) and file and the
resulting behavior of _CrtDbgReport. These options are defined as bit-flags in
CRTDBG.H.

11

Run-Time Library Reference

Example

112

Report Mode Report File _CrtDbgReport Behavior

CRTDBG- Not applicable Writes message to Windows OQutputDebugString

MODE_DEBUG APL

_CRTDBG _- Not applicable Calls Windows MessageBox API to create message

MODE_WNDW box to display the message along with Abort, Retry,
and Ignore buttons. If user selects Abort,
_CrtDbgReport immediately aborts. If user selects
Retry, it returns 1. If user selects Ignore, execution
continues and _CrtDbgReport returns 0. Note that
choosing Ignore when an error condition exists often
results in “undefined behavior.”

CRTDBG- _ _HFILE Writes message to user-supplied HANDLE, using

MODE_FILE the Windows WriteFile API, and does not verify
validity of file handle; the application is responsible
for opening the report file and passing a valid file
handle.

CRTDBG- _CRTDBG _- Writes message to stderr.

MODE_FILE FILE_STDERR

CRTDBG- _CRTDBG - Writes message to stdout.

MODE_FILE FILE_STDOUT

The report may be sent to one, two, or three destinations, or no destination at all. For
more information about specifying the report mode(s) and report file, see the
_CrtSetReportMode and _CrtSetReportFile functions. For more information about
using the debug macros and reporting functions, see “Using Macros for Verification
and Reporting” on page 75 and “Debug Reporting Functions of the C Run-Time
Library” on page 73.

If your application needs more flexibility than that provided by _CrtDbgReport, you
can write your own reporting function and hook it into the C run-time library
reporting mechanism by using the _CrtSetReportHook function.

~
*

REPORT.C:

E I T A R T I

*
~

In this program, calls are made to the _CrtSetReportMode,
_CrtSetReportFile, and _CrtSetReportHook functions.

The _ASSERT macros are called to evaluate their expression.

When the condition fails, these macros print a diagnostic message
and call _CrtDbgReport to generate a debug report and the
client-defined reporting function is called as well.

The _RPTn and _RPTFn group of macros are also exercised in

this program, as an alternative to the printf function.

When these macros are called, the client-defined reporting function
takes care of all the reporting - _CrtDbgReport won't be called.

Chapter 4 Debug Version of the C Run-Time Library

#include <stdio.h>
f#finclude <string.h>
#include <malloc.h>
#include <crtdbg.h>

/

*

*
*
*
*
*
*

how
*/

Define our own reporting function.
We'11l hook it into the debug reporting
process later using _CrtSetReportHook.

Define a global int to keep track of

many assertion failures occur.

int gl_num_asserts=0;
int OurReportingFunction(int reportType, char *userMessage, int *retVal)

{

/*
*
*

Tell the user our reporting function is being called.
In other words - verify that the hook routine worked.

*/

fprintf("Inside the client-defined reporting function.\n", STDOUT);
fflush(STDOUT);

/*

* When the report type is for an ASSERT,

* we'll report some information, but we also

* want _CrtDbgReport to get called -

* so we'll return TRUE.

*

* When the report type is a WARNing or ERROR,

* we'll take care of all of the reporting. We don't
* want _CrtDbgReport to get called -

* so we'll return FALSE.

*/

if (reportType == _CRT_ASSERT)

{

gl_num_asserts++;
fprintf("This is the number of Assertion failures that have occurred: %d \n",

gl_num_asserts, STDOUT);

fflush(STDOUT) ;
fprintf("Returning TRUE from the client-defined reporting function.\n",

STDOUT) ;

fflush(STDOUT);
return(TRUE);

} else {

fprintf("This is the debug user message: %s \n", userMessage, STDOUT);
fflush(STDOUT);
fprintf("Returning FALSE from the client-defined reporting function.\n",

STDOUT) ;

fflush(STDOUT);
return(FALSE);

113

Run-Time Library Reference

114

* By setting retVal to zero, we are instructing _CrtDbgReport

* to continue with normal execution after generating the report.
* If we wanted _CrtDbgReport to start the debugger, we would set
* retVal to one.

*/

retVal = 0;
}
int main()
{

char *pl, *p2;

/*

* Hook in our client-defined reporting function.

* Every time a _CrtDbgReport is called to generate

* a debug report, our function will get called first.
*/
_CrtSetReportHook(OQurReportingFunction);

/-k

* Define the report destination(s) for each type of report

* we are going to generate. In this case, we are going to

* generate a report for every report type: _CRT_WARN,

* _CRT_ERROR, and _CRT_ASSERT.

* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.

* This program sends all report types to STDOUT.

*/
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/*

* Allocate and assign the pointer variables
*/

pl = malloc(10);

strcpy(pl, "I am pl");

p2 = malloc(10);

strcpy(p2, "1 am p2");

/*
Use the report macros as a debugging
warning mechanism, similar to printf.

Use the assert macros to check if the
pl and p2 variables are equivalent.

* ok F F X

Output

Chapter 4 Debug Version of the C Run-Time Library

If the expression fails, _ASSERTE will
include a string representation of the
failed expression in the report.

* ok ok F *

_ASSERT does not include the
expression in the generated report.
*/
_RPTO(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression pl ==
p2.\n");
_RPTF2(_CRT_WARN, "\n Will _ASSERT find '%s' == '%s°' ?\n", pl, p2);
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, "\n\n Wi11 _ASSERTE find '%s' == '%s' ?\n", pl, p2);
_ASSERTE(pl == p2);

_RPT2(_CRT_ERROR, "\n \n '%s' I= "%s'\n", pl, p2);

free(p2);
free(pl);

return 0;

Inside the client-defined reporting function.

This is the debug user message: Use the assert macros to evaluate the expression pl ==
p2

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the debug user message: dbgmacro.c(54) : Will _ASSERT find 'I am pl' == 'I am
p2' ?

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the number of Assertion failures that have occurred: 1

Returning TRUE from the client-defined reporting function.

dbgmacro.c(55) : Assertion failed

Inside the client-defined reporting function.

This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find 'I am pl' == 'I am
p2' ?

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the number of Assertion failures that have occurred: 2

Returning TRUE from the client-defined reporting function.

dbgmacro.c(58) : Assertion failed: pl == p2

Inside the client-defined reporting function.

This is the debug user message: 'I am pl' != "I am p2'

Returning FALSE from the client-defined reporting function.

See Also _CrtSetReportMode, _CrtSetReportFile, printf, DEBUG

115

Run-Time Library Reference

_CrtDoForAllClientObjects

Calls an application-supplied function for all _CLIENT BLOCK types in the heap
(debug version only).

void _CrtDoForAllClientObjects(void (*pfn)(void *, void *), void *conrext);

Required Optional
Routine Header Headers Compatibility
_CrtDoForAllClientObjects <crtdbg.h> Win NT, Win 95, PMac

For additional compatibility information, see “Compatibility” on page ix in the
Introduction.

Libraries
LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRx0D.DLL, debug version
MSVCRx0D.DLL Multithread DLL library, debug version

Return Value
None

Parameters

Remarks

116

void (*pfu)(void *, void *) Pointer to the application-supplied function to call

context Pointer to the application-supplied context to pass to the application-
supplied function

The _CrtDoForAllClientObjects function searches the heap’s linked list for
memory blocks with the _CLIENT_BLOCK type and calls the application-supplied
function when a block of this type is found. The found block and the context
parameter are passed as arguments to the application-supplied function. During
debugging, an application can track a specific group of allocations by explicitly
calling the debug heap functions to allocate the memory and specifying that the
blocks be assigned the _ CLIENT_BLOCK block type. These blocks can then be
tracked separately and reported on differently during leak detection and memory state
reporting.

If the _CRTDBG_ALLOC_MEM_DF bit field of the _crtDbgFlag flag is not
turned on, _CrtDoForAllClientObjects immediately returns. When _DEBUG is not
defined, calls to _CrtDoForAllClientObjects are removed during preprocessing.

For more information about the _CLIENT_BLOCK type and how it can be used by
other debug functions, see “Types of Blocks on the Debug Heap” on page 80. For
information about how memory blocks are allocated, initialized, and managed in the

Chapter 4 Debug Version of the C Run-Time Library

debug version of the base heap, see “Memory Management and the Debug Heap” on
page 79.

Example
/ *
* DFACOBJS.C
* This program allocates some CLIENT type blocks of memory
* and then calls _CrtDoForAl1ClientObjects to print out the contents
* of each client block found on the heap.
*/

fFinclude <stdio.h>

f#Finclude <malloc.h>
#include <stdlib.h>
#include <crtdbg.h>

/*
* My Memory Block linked-list data structure
*/
typedef struct MyMemoryBlockStruct
{
struct MyMemoryBlockStruct *NextPtr;
int blockType;
int allocNum;
} aMemoryBlock;
aMemoryBlock *HeadPtr:
aMemoryBlock *TailPtr;

* CreateMemoryBlock
* allocates a block of memory, fills in the data structure
* and adds the new block to the Tinked 1ist
* Returns 1 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>