
"~-"EB :-",,-
"
"-tlII_

Version 4

MICROSOFT@

~
32-8it Application

The Six-Volume Documentation Collection
for Microsoft Visual C++ Version 4 for Win32®

Volume Five - A complete description of all the functions
and parameters in the Microsoft Visual C++ Run-Time and
iostream class libraries, including helpful source code examples

Micl'OSottbPress
- -~

iostream Class Library Reference

Microsoft® Visual C++ TIl

Version 4.0

Development System for Windows® 95 and Windows NTTM

Microsoft Corporation

Introduction v
About This Book v

Chapter 1 iostream Programming 1
What Is a Stream? 1

Input/Output Alternatives 1
The iostream Class Hierarchy 2

Output Streams 2
Constructing Output Stream Objects 3

Output File Stream Constructors 3

Output String Stream Constructors 3
U sing Insertion Operators and Controlling Format 4

Output Width 4
Alignment 5
Precision 6

Radix 7
Output File Stream Member Functions 7

The open Function for Output Streams 7
The put Function 8

The write Function 8
The seekp and tellp Functions 8
The close Function for Output Streams 9
Error Processing Functions 9

The Effects of Buffering 10
Binary Output Files 10
Overloading the« Operator for Your Own Classes 11

Writing Your Own Manipulators Without Arguments 12
Input Streams 13

Constructing Input Stream Objects 13
Input File Stream Constructors 13

Input String Stream Constructors 14
Using Extraction Operators 14
Testing for Extraction Errors 14

Contents

iii

Contents

iv

Input Stream Manipulators 14
Input Stream Member Functions 15

The open Function for Input Streams 15
The get Function 15
The getline Function 16
The read Function 16
The seekg and tellg Functions 17
The close Function for Input Streams 18

Overloading the» Operator for Your Own Classes 18
Input/Output Streams 18
Custom Manipulators with Arguments 18

Output Stream Manipulators with One Argument (int or long) 18
Other One-Argument Output Stream Manipulators 19
Output Stream Manipulators with More Than One Argument 20
Custom Manipulators for Input and Input/Output Streams 21
Using Manipulators with Derived Stream Classes 21

Deriving Your Own Stream Classes 22
The streambuf Class 22
Why Derive a Custom streambuf Class? 22
A streambuf Derivation Example 22

Chapter 2 Alphabetic Microsoft iostream Class Library Reference 29

Index 121

Introduction

Microsoft Visual C++ ™ contains the C++ iostream class library, which supports
object-oriented input and output. This library follows the syntax that the authors of
the C++ language originally established and thus represents a de facto standard for
C++ input and output.

About This Book
Chapter 1, iostream Programming, provides information you need to get started using
iostream classes. After reading this material, you will begin to understand how to
write programs that process formatted text character streams and binary disk files and
how to customize the library in limited ways. The chapter includes advanced
information on how to derive iostream classes and create custom multiparameter
"manipulators." These topics will get you started on extending the library and doing
specialized formatting. You will also learn about the relationship between the
iostream classes and their subsidiary buffer classes. You can then apply some of the
iostream library design principles to your own class libraries.

Chapter 2, Alphabetic Microsoft iostream Class Library Reference, begins with a
detailed class hierarchy diagram. The iostream class library reference follows,
arranged by classes in alphabetic order. Each class description includes a summary of
each member, arranged by category, followed by alphabetical listings of member
functions (public and protected), overloaded operators, data members, and
manipulators.

Public and protected class members are documented only when they are normally
used in application programs or derived classes. See the class header files for a
complete listing of class members.

Note For information on Microsoft product support, see "Microsoft Support Services" in the
PSS.HLP file.

v

CHAPTER 1

iostream Programming

This chapter begins with a general description of the iostream classes and then
describes output streams, input streams, and input/output streams. The end of the
chapter provides information about advanced iostream programming.

What Is a Stream?
Like C, C++ does not have built-in input/output capability. All C++ compilers,
however, come bundled with a systematic, object-oriented UO package, known as the
iostream classes. The "stream" is the central concept of the iostream classes. You can
think of a stream object as a "smart file" that acts as a source and destination for
bytes. A stream's characteristics are determined by its class and by customized
insertion and extraction operators.

Through device drivers, the disk operating system deals with the keyboard, screen,
printer, and communication ports as extended files. The iostream classes interact with
these extended files. Built-in classes support reading from and writing to memory
with syntax identical to that for disk I/O, which makes it easy to derive stream
classes.

Input/Output Alternatives
This product provides several options for I/O programming:

• C run-time library direct, unbuffered I/O

• ANSI C run-time library stream I/O

• Console and port direct I/O

• The Microsoft Foundation Class Library

• The Microsoft iostream Class Library

The iostream classes are useful for buffered, formatted text I/O. They are also useful
for unbuffered or binary I/O if you need a C++ programming interface and decide not

iostream Class Library Reference

to use the Microsoft Foundation classes. The iostream classes are an object-oriented
I/O alternative to the C run-time functions.

You can use iostream classes with the Microsoft® Windows® operating system. String
and file streams work without restrictions, but the character-mode stream objects cio,
cout, cerr, and clog are inconsistent with the Windows graphical user interface. You
can also derive custom stream classes that interact directly with the Windows
environment. If you link with the QuickWin library, however, the cio, cout, cerr, and
clog objects are assigned to special windows because they are connected to the
predefined files stdin, stdout, and stderr.

You cannot use iostream classes in tiny-model programs because tiny-model
programs cannot contain static objects such as cio and cout.

The iostream Class Hierarchy
The class hierarchy diagram at the beginning of Chapter 2 shows some relationships
between iostream classes. There are additional "member" relationships between the
ios and streambuf families. Use the diagram to locate base classes that provide
inherited member functions for derived classes.

Output Streams

2

An output stream object is a destination for bytes. The three most important output
stream classes are ostream, of stream , and ostrstream.

The ostream class, through the derived class ostream_ withassign, supports the
predefined stream objects:

• COllt standard output

• cerr standard error with limited buffering

• clog similar to cerr but with full buffering

Objects are rarely constructed from ostream or ostream_ withassign; predefined
objects are generally used. In some cases, you can reassign predefined objects after
program startup. The ostream class, which can be configured for buffered or
unbuffered operation, is best suited to sequential text-mode output. All functionality
of the base class, ios, is included in ostream. If you construct an object of class
ostream, you must specify a streambuf object to the constructor.

The of stream class supports disk file output. If you need an output-only disk,
construct an object of class of stream. You can specify whether of stream objects
accept binary or text-mode data before or after opening the file. Many formatting
options and member functions apply to of stream objects, and all functionality of the
base classes ios and ostream is included.

Chapter 1 iostrearn Programming

If you specify a filename in the constructor, that file is automatically opened when the
object is constructed. Otherwise, you can use the open member function after
invoking the default constructor, or you can construct an of stream object based on an
open file that is identified by a file descriptor.

Like the run-time function sprintf, the ostrstream class supports output to in­
memory strings. To create a string in memory using 110 stream formatting, construct
an object of class ostrstream. Because ostrstream objects are write-only, your
program must access the resulting string through a pointer to char.

Constructing Output Stream Objects
If you use only the predefined coot, cerr, or clog objects, you don't need to construct
an output stream. You must use constructors for:

• File streams

• String streams

Output File Stream Constructors
You can construct an output file stream in one of three ways:

• Use the default constructor, then call the open member function.

ofstream myFile; II Static or on the stack
myFile.open("filename", iosmode);

ofstream* pmyFile = new of stream; /1 On the heap
pmyFil e ->open ("fil ename", i osmode);

• Specify a filename and mode flags in the constructor call.

ofstream myFile("filename", iosmode);

• Specify an integer file descriptor for a file already open for output. You can specify
unbuffered output or a pointer to your own buffer.

int fd = _open("filename", dosmode);
of stream myFilel(fd); II Buffered mode (default)
ofstream myFile2(fd, NULL, 0); /1 Unbuffered mode ofstream
myFile3(fd, pch, buflen); II User-supplied buffer

Output String Stream Constructors
To construct an output string stream, you can use one of two ostrstream constructors.
One dynamically allocates its own storage, and the other requires the address and size
of a pr~allocated buffer.

• The dynamic constructor is used like this:

char* sp;
ostrstream myString;
mystring « "this is a test" « ends;
sp = myString.str(); II Get a pointer to the string

3

iostream Class Library Reference

The ends "manipulator" adds the necessary terminating null character to the
string.

• The constructor that requires the preallocated buffer is used like this:

char s[32];
ostrstream myString(s. sizeof(s));
myString « "this is a test" « ends; II Text stored in s

U sing Insertion Operators and Controlling Format

4

This section shows how to control format and how to create insertion operators for
your own classes. The insertion «<) operator, which is preprogrammed for all
standard C++ data types, sends bytes to an output stream object. Insertion operators
work with predefined "manipulators," which are elements that change the default
format of integer arguments.

Output Width
To align output, you specify the output width for each item by placing the setw
manipulator in the stream or by calling the width member function. This example
right aligns'the values in a column at least 10 characters wide:

#include <iostream.h>

void mainO
{

double values[]
for(int i = 0;
{

cout.width(10) ;

{ 1.23. 35.36. 653.7.4358.24 };
<4;i++)

cout « values[i] « '\nO;

}

The output looks like this:

1. 23
35.36
653.7

4358.24

Leading blanks are added to any value fewer than 10 characters wide.

To pad a field, use the fill member function, which sets the value of the padding
character for fields that have a specified width. The default is a blank. To pad the
column of numbers with asterisks, modify the previous for loop as follows:

for(int i = 0; i < 4; i++)
{

}

cout.width(10);
cout.fill('*');
cout « values[i] « endl

Chapter 1 iostream Programming

The endl manipulator replaces the newline character (' \ n '). The output looks like
this:

******1.23
*****35.36
*****653.7
***4358.24

To specify widths for data elements in the same line, use the setw manipulator:

#include <iostream.h>
#include <iomanip.h>

void maine)
{

}

double values[] {1.23, 35.36, 653.7, 4358.24 };
char *names[] = { "Zoot", "Jimmy", "Al", "Stan" };
fore int i = 0; i < 4; i++)

cout « setw(6) «names[i]
« setw(10) « values[i] « endl;

The width member function is declared in IOSTREAM.H. If you use setw or any
other manipulator with arguments, you must include IOMANIP.H. In the output,
strings are printed in a field of width 6 and integers in a field of width 10:

Zoot
Jimmy

Al
Stan

1. 23
35.36
653.7

4358.24

Neither setw nor width truncates values. If formatted output exceeds the width, the
entire value prints, subject to the stream's precision setting. Both setw and width
affect the following field only. Field width reverts to its default behavior (the
necessary width) after one field has been printed. However, the other stream format
options remain in effect until changed.

Alignment
Output streams default to right-aligned text. To left align the names in the previous
example and right align the numbers, replace the for loop as follows:

for (int i = 0; i < 4; i++)
cout « setiosflags(ios::left)

« setw(6) «names[i]
« resetiosflags(ios::left
« setw(10) « values[i] « endl;

The output looks like this:

Zoot 1.23
Jimmy 35.36
Al 653.7
Stan 4358.24

5

iostream Class Library Reference

6

The left-align flag is set by using the setiosflags manipulator with the ios::left
enumerator. This enumerator is defined in the ios class, so its reference must include
the ios:: prefix. The resetiosflags manipulator turns off the left-align flag. Unlike
width and setw, the effect of setiosflags and resetiosflags is permanent.

Precision
The default value for floating-point precision is six. For example, the number
3466.9768 prints as 3466.98. To change the way this value prints, use the
setprecision manipulator. The manipulator has two flags, ios: :flXed and
ios::scientific. If ios::flXed is set, the number prints as 3466.976800. If
ios::scientific is set, it prints as 3.4669773+003.

To display the floating-point numbers shown in Alignment with one significant digit,
replace the for loop as follows:

for (i nt i = 0; i < 4; i ++)
cout « setiosflags(ios::left

« setw(6)
« names[i]
« resetiosflags(ios::left
« setw(10)
« setprecision(1)
« values[i]
« endl;

The program prints this list:

Zoot
Jimmy
Al
Stan

4e+001
7e+002
4e+003

To eliminate scientific notation, insert this statement before the for loop:

cout « setiosflags(ios::fixed);

With fixed notation, the program prints with one digit after the decimal point.

Zoot
Jimmy
Al
Stan

1.2
35.4

653.7
4358.2

If you change the ios::fixed flag to ios::scientific, the program prints this:

Zoot 1.2e+000
Jimmy 3.5e+001
Al 6.5e+002
Stan 4.4e+003

Again, the program prints one digit after the decimal point. If either ios: : fixed or
ios::scientific is set, the precision value determines the number of digits after the
decimal point. If neither flag is set, the precision value determines the total number
of significant digits. The resetiosflags manipulator clears these flags.

Chapter 1 iostream Programming

Radix
The dec, oct, and hex manipulators set the default radix for input and output. For
example, if you insert the hex manipulator into the output stream, the object correctly
translates the internal data representation of integers into a hexadecimal output
format. The numbers are displayed with digits a through f in lowercase if the
ios::uppercase flag is clear (the default); otherwise, they are displayed in uppercase.
The default radix is dec (decimal).

Output File Stream Member Functions
Output stream member functions have three types: those that are equivalent to
manipulators, those that perform unformatted write operations, and those that
otherwise modify the stream state and have no equivalent manipulator or insertion
operator. For sequential, formatted output, you might use only insertion operators and
manipulators. For random-access binary disk output, you use other member
functions, with or without insertion operators.

The open Function for Output Streams
To use an output file stream (of stream) , you must associate that stream with a
specific disk file in the constructor or the open function. If you use the open function,
you can reuse the same stream object with a series of files. In either case, the
arguments describing the file are the same.

When you open the file associated with an output stream, you generally specify an
openJllode flag. You can combine these flags, which are defined as enumerators in
the ios class, with the bitwise OR (I) operator.

Flag

ios::app

ios::ate

ios::in

ios::out

ios::nocreate

ios: :noreplace

ios::trunc

ios::binary

Function

Opens an output file for appending.

Opens an existing file (either input or output) and seeks the end.

Opens an input file. Use ios::in as an open_mode for an of stream
file to prevent truncating an existing file.

Opens an output file. When you use ios: :out for an of stream object
without ios::app, ios::ate, or ios::in, ios::trunc is implied.

Opens a file only if it already exists; otherwise the operation fails.

Opens a file only if it does not exist; otherwise the operation fails.

Opens a file and deletes the old file (if it already exists).

Opens a file in binary mode (default is text mode).

Three common output stream situations involve mode options:

• Creating a file. If the file already exists, the old version is deleted.

ostream ofile("FILENAME"); II Default is ios: :out
of stream ofile("FILENAME", ios::out); II Equivalent to above

7

iostream Class Library Reference

8

• Appending records to an existing file or creating one if it does not exist.

of stream ofile("FILENAME", ios::app);

• Opening two files, one at a time, on the same stream.

of stream ofile();
ofile.open("FILE1", ios::in);
II Do some output
ofile.close(); II FILE1 closed
ofile.open("FILE2", ios::in);
II Do some more output
ofile.close(); II FILE2 closed
II When ofile goes out of scope it is destroyed.

The put Function
The put function writes one character to the output stream. The following two
statements are the same by default, but the second is affected by the stream's format
arguments:

cout.put('A'); II Exactly one character written
cout « 'A'; II Format arguments 'width' and 'fill' apply

The write Function
The write function writes a block of memory to an output file stream. The length
argument specifies the number of bytes written. This example creates an output file
stream and writes the binary value of the Date structure to it:

#include <fstream.h>

struct Date
{

int mo, da, yr;
} ;

void maine)
{

}

Date dt = { 6, 10, 92 };
of stream tfile("date.dat" , ios::binary);
tfile.write((char *) &dt, sizeof dt);

The write function does not stop when it reaches a null character, so the complete
class structure is written. The function takes two arguments: a char pointer and a
count of characters to write. Note the required cast to char* before the address of the
structure object.

The seekp and tellp Functions
An output file stream keeps an internal pointer that points to the position where data
is to be written next. The seekp member function sets this pointer and thus provides
random-access disk file output. The tellp member function returns the file position.
For examples that use the input stream equivalants to seekp and tellp, see The seekg
and tellg Functions.

Chapter 1 iostream Programming

The close Function for Output Streams
The close member function closes the disk file associated with an output file stream.
The file must be closed to complete all disk output. If necessary, the of stream
destructor closes the file for you, but you can use the close function if you need to
open another file for the same stream object.

The output stream destructor automatically closes a stream's file only if the
constructor or the open member function opened the file. If you pass the constructor a
file descriptor for an already-open file or use the attach member function, you must
close the file explicitly.

Error Processing Functions
Use these member functions to test for errors while writing to a stream:

Function

bad

fail

good

eof

clear

rdstate

Return value

Returns TRUE if there is an unrecoverable error.

Returns TRUE if there is an unrecoverable error or an "expected"
condition, such as a conversion error, or if the file is not found. Processing
can often resume after a call to clear with a zero argument.

Returns TRUE if there is no error condition (unrecoverable or otherwise)
and the end-of-file flag is not set.

Returns TRUE on the end-of-file condition.

Sets the internal error state. If called with the default arguments, it clears
all error bits.

Returns the current error state. For a complete description of error bits, see
the Class Library Reference.

The ! operator is overloaded to perform the same function as the fail function. Thus
the expression

if(!cout) ...

is equivalent to

if(cout.fail ()) ...

The void*O operator is overloaded to be the opposite of the! operator; thus the
expression

if(cout) ...

is equal to

if(!cout.fail()) ...

The void*O operator is not equivalent to good because it doesn't test for the end of
file.

9

iostream Class Library Reference

The Effects of Buffering
The following example shows the effects of buffering. You might expect the program
to print plea s e wa it, wait 5 seconds, and then proceed. It won't necessarily work
this way, however, because the output is buffered.

#include <iostream.h>
#include <time.h>

void maine)
{

}

time_t tm = time(NULL) + 5;
cout « "Please wait ... ";
while (time(NULL) < tm)

cout « "\nAll done" « endl;

To make the program work logically, the cout object must empty itself when the
message is to appear. To flush an ostream object, send it the flush manipulator:

cout « "Please wait ... " « flush;

This step flushes the buffer, ensuring the message prints before the wait. You can also
use the eodl manipulator, which flushes the buffer and outputs a carriage return­
linefeed, or you can use the cio object. This object (with the cerr or clog objects) is
usually tied to the cout object. Thus, any use of cio (or of the cerr or clog objects)
flushes the cout object.

Binary Output Files

10

Streams were originally designed for text, so the default output mode is text. In text
mode, the newline character (hexadecimal 10) expands to a carriage return-linefeed
(16-bit only). The expansion can cause problems, as shown here:

#include <fstream.h>
int iarray[2] = { 99. 10 };
void maine)
{

of stream os ("test. dat");
os.write((char *) iarray. sizeof(iarray));

}

You might expect this program to output the byte sequence { 99, 0, 10, ° }; instead, it
outputs { 99,0, 13, 10, ° }, which causes problems for a program expecting binary
input. If you need true binary output, in which characters are written untranslated,
you have several choices:

• Construct a stream as usual, then use the setmode member function, which
changes the mode after the file is opened:

ofstream ofs ("test.dat");

Chapter 1 iostream Programming

ofs.setmode(filebuf::binary);
ofs.write(char*iarray, 4); II Exactly 4 bytes written

• Specify binary output by using the of stream constuctor mode argument:

#include <fstream.h>
#include <fcntl.h>
#include <io.h>
int iarray[2] = { 99, 10 };
void main()
{

of stream os("test.dat", ios::binary);
ofs.write(iarray, 4); II Exactly 4 bytes written

• Use the binary manipulator instead of the setmode member function:

ofs « binary;

Use the text manipulator to switch the stream to text translation mode.

• Open the file using the run-time _open function with a binary mode flag:

filedesc fd = _open("test.dat",
_O_BINARY I _O_CREAT I _O_WRONLY);

of stream ofs(fd);
ofs.write((char*) iarray, 4); II Exactly 4 bytes written

Overloading the « Operator for Your Own Classes
Output streams use the insertion «<) operator for standard types. You can also
overload the « operator for your own classes.

The write function example showed the use of a Da te structure. A date is an ideal
candidate for a c++ class in which the data members (month, day, and year) are
hidden from view. An output stream is the logical destination for displaying such a
structure. This code displays a date using the coot object:

Date dt(1, 2, 92);
cout « dt:

To get coot to accept a Date object after the insertion operator, overload the insertion
operator to recognize an ostream object on the left and a Date on the right. The
overloaded« operator function must then be declared as a friend of class Date so it
can access the private data within a Date object.

#include <iostream.h>
class Date
{

int mo, da, yr;
public:

Date(int m, int d, int y)
{

mo = m; da = d; yr = y;
}

11

iostream Class Library Reference

friend ostream& operator« (ostream&
} ;

ostream& operator« (
{

os « dt.mo
return os;

}

void main()
{

« '/ '

ostream&

« dt.da

Date dt(5, 6, 92);
cout « dt;

}

os, Date&

« ' /' «

When you run this program, it prints the date:

5/6/92

os, Date& dt);

dt)

dt.yr;

The overloaded operator returns a reference to the original ostream object, which
means you can combine insertions:

cout « "The date is" « dt « flush;

Writing Your Own Manipulators Without Arguments

12

Writing manipulators that don't use arguments requires neither class derivation nor
use of complex macros. Suppose your printer requires the pair <ESC) [to enter bold
mode. You can insert this pair directly into the stream:

cout « "regular" « '\033' « '[' « "boldface" « endl;

Or you can define the bol d manipulator, which inserts the characters:

ostream& bold(ostream& os) {
return os « '\033' « '[';

}

cout « "regular" « bold « "boldface" « endl;

The globally defined bo 1 d function takes an ostream reference argument and returns
the ostream reference. It is not a member function or a friend because it doesn't need
access to any private class elements. The bol d function connects to the stream
because the stream's «operator is overloaded to accept that type of function, using a
declaration that looks something like this:

ostream& ostream::operator« (ostream& (*_f)(ostream&)); {
(*_f)(*this);
return *this;

}

You can use this feature to extend other overloaded operators. In this case, it is
incidental that bo 1 d inserts characters into the stream. The function is called when it
is inserted into the stream, not necessarily when the adjacent characters are printed.
Thus, printing could be delayed because of the stream's buffering.

Chapter 1 iostream Programming

Input Streams
An input stream object is a source of bytes. The three most important input stream
classes are istream, ifstream, and istrstream.

The istream class is best used for sequential text-mode input. You can configure
objects of class istream for buffered or unbuffered operation. All functionality of the
base class, ios, is included in istream. You will rarely construct objects from class
istream. Instead, you will generally use the predefined cin object, which is actually
an object of class istream_ withassign. In some cases, you can assign cin to other
stream objects after program startup.

The if stream class supports disk file input. If you need an input-only disk file,
construct an object of class ifstream. You can specify binary or text-mode data. If you
specify a filename in the constructor, the file is automatically opened when the object
is constructed. Otherwise, you can use the open function after invoking the default
constructor. Many formatting options and member functions apply to if stream
objects. All functionality of the base classes ios and istream is included in ifstream.

Like the library function sscanf, the istrstream class supports input from in-memory
strings. To extract data from a character array that has a null terminator, allocate and
initialize the string, then construct an object of class istrstream.

Constructing Input Stream Objects
If you use only the cin object, you don't need to construct an input stream. You must
construct an input stream if you use:

• File stream

• String stream

Input File Stream Constructors
There are three ways to create an input file stream:

• Use the void-argument constructor, then call the open member function:

ifstream myFile; liOn the stack
myFile.open("filename", iosmode);

ifstream* pmyFile = new ifstream; liOn the heap
pmyFile-)open("filename", iosmode);

• Specify a filename and mode flags in the constructor invocation, thereby opening
the file during the construction process:

ifstream myFile("filename", iosmode);

13

iostream Class Library Reference

• Specify an integer file descriptor for a file already open for input. In this case you
can specify unbuffered input or a pointer to your own buffer:

i nt fd = _open ("fi 1 ename". dosmode);
ifstream myFile1(fd); II Buffered mode (default)
ifstream myFile2(fd. NULL. 0); II Unbuffered mode
ifstream myFile3(fd. pch. buflen); II User-supplied buffer

Input String Stream Constructors
Input string stream constructors require the address of preallocated, preinitialized
storage:

char s[] = "123.45";
double amt;
istrstream myString(s);
myString » amt; II Amt should contain 123.45

U sing Extraction Operators
The extraction operator (»), which is preprogrammed for all standard C++ data
types, is the easiest way to get bytes from an input stream object.

Formatted text input extraction operators depend on white space to separate incoming
data values. This is inconvenient when a text field contains multiple words or when
commas separate numbers. In such a case, one alternative is to use the unformatted
input member function getline to read a block of text with white space included, then
parse the block with special functions. Another method is to derive an input stream
class with a member function such as GetNextToken, which can call istream
members to extract and format character data.

Testing for Extraction Errors
Output error processing functions, discussed on page 9 in "Error Processing
Functions," apply to input streams. Testing for errors during extraction is important.
Consider this statement:

cin » n;

If n is a signed integer, a value greater than 32,767 (the maximum allowed value, or
MAX_INT) sets the stream's fail bit, and the cin object becomes unusable. All
subsequent extractions result in an immediate return with no value stored.

Input Stream Manipulators

14

Many manipulators, such as setprecision, are defined for the ios class and thus apply
to input streams. Few manipulators, however, actually affect input stream objects. Of
those that do, the most important are the radix manipulators, dec, oct, and hex,
which determine the conversion base used with numbers from the input stream.

Chapter 1 iostream Programming

On extraction, the hex manipulator enables processing of various input formats. For
example, c, C, Oxc, OxC, OXc, and OXC are all interpreted as the decimal integer 12.

Any character other than 0 through 9, A through F, a through f, x, and X terminates
the numeric conversion. Thus the sequence "124n5" is converted to the number 124
with the ios: :fail bit set.

Input Stream Member Functions
Input stream member functions are used for disk input.

The open Function for Input Streams
If you are using an input file stream (ifstream), you must associate that stream with a
specific disk file. You can do this in the constructor, or you can use the open function.
In either case, the arguments are the same.

You generally specify an open_mode flag when you open the file associated with an
input stream (the default mode is ios::in). For a list of the open_mode flags, see The
open Function. The flags can be combined with the bitwise OR (I) operator.

To read a file, first use the fail member function to determine whether it exists:

istream ifile("FILENAME", ios::nocreate);
if (ifile.failO)
II The file does not exist

The get Function
The unformatted get member function works like the » operator with two
exceptions. First, the get function includes white-space characters, whereas the
extractor excludes white space when the ios::skipws flag is set (the default). Second,
the get function is less likely to cause a tied output stream (cout, for example) to be
flushed.

A variation of the get function specifies a buffer address and the maximum number of
characters to read. This is useful for limiting the number of characters sent to a
specific variable, as this example shows:

#include <iostream.h>

void mainO
{

char line[25];
cout « " Type a line terminated by carriage return\n>";
cin.get(line, 25);
cout « · • « line;

In this example, you can type up to 24 characters and a terminating character. Any
remaining characters can be extracted later.

15

iostream Class Library Reference

16

The getline Function
The getline member function is similar to the get function. Both functions allow a
third argument that specifies the terminating character for input. The default value is
the newline character. Both functions reserve one character for the required
terminating character. However, get leaves the terminating character in the stream
and getline removes the terminating character.

The following example specifies a terminating character for the input stream:

#include <iostream.h>

void maine)
{

}

char line[100];
cout « " Type a line terminated by 'ttl' « endl;
cin.getline(line, 100, 't');
cout « line;

The read Function
The read member function reads bytes from a file to a specified area of memory.
The length argument determines the number of bytes read. If you do not include that
argument, reading stops when the physical end of file is reached or, in the case of a
text-mode file, when an embedded EOF character is read.

This example reads a binary record from a payroll file into a structure:

#include <fstream.h>
#include <fcntl.h>
1/include <io.h>

void maine)
{

}

struct
{

double salary;
char name[23];

employee;

ifstream is("payroll", ios::binary I ios::nocreate);
if(is) { II ios::operator void*()

is.read((char *) &employee, sizeof(employee));
cout « employee.name « ' , « employee.salary « endl;

}

else {
cout « "ERROR: Cannot open file 'payroll'." « endl;

}

The program assumes that the data records are formatted exactly as specified by the
structure with no terminating carriage-return or linefeed characters.

Chapter 1 iostream Programming

The seekg and tellg Functions
Input file streams keep an internal pointer to the position in the file where data is to
be read next. You set this pointer with the seekg function, as shown here:

#include <fstream.h>

void main()
(

}

char ch;

ifstream tfile("payroll". ios::binary I ios::nocreate);
if(tfile) (

tfile.seekg(8);
while (tfile.good()

tfile.get(ch);

II Seek 8 bytes in (past salary)
(II EOF or failure stops the reading

if(!ch) break; I I quit on null
cout « ch;

}

else
cout « "ERROR: Cannot open file 'payroll'." « endl;

To use seekg to implement record-oriented data management systems, mUltiply the
fixed-length record size by the record number to obtain the byte position relative to
the end of the file, then use the get object to read the record.

The tellg member function returns the current file position for reading. This value is
of type streampos, a typedef defined in IOSTREAM.H. The following example reads
a file and displays messages showing the positions of spaces.

#include <fstream.h>

void main()
(

char ch;
ifstream tfile("payroll". ios::binary I ios::nocreate);

if(tfile) (

}

while (tfile.good()) (

}

else (

streampos here = tfile.tellg();
tfile.get(ch);
if (ch ..)

cout « "\nPositi on " « here « " is a space";

cout « "ERROR: Cannot open file 'payroll'." « endl;

17

iostream Class Library Reference

The close Function for Input Streams
The close member function closes the disk file associated with an input file stream
and frees the operating system file handle. The if stream destructor closes the file for
you (unless you called the attach function or passed your own file descriptor to the
constructor), but you can use the close function if you need to open another file for
the same stream object.

Overloading the» Operator for Your Own Classes
Input streams use the extraction (») operator for the standard types. You can write
similar extraction operators for your own types; your success depends on using white
space precisely.

Here is an example of an extraction operator for the Date class presented earlier:

istream& operator» (istream& is, Date& dt)
{

is » dt.mo » dt.da » dt.yr;
return is;

}

Input/Output Streams
An iostr~am object is a source and/or a destination for bytes. The two most important
I/O stream classes, both derived from iostream, are fstream and strstream. These
classes inherit the functionality of the istream and ostream classes described
previously.

The fstream class supports disk file input and output. If you need to read from and
write to a particular disk file in the same program, construct an fstream object. An
fstream object is a single stream with two logical substreams, one for input and one
for output. Although the underlying buffer contains separately designated positions
for reading and writing, those positions are tied together.

The strstream class supports input and output of in-memory strings.

Custom Manipulators with Arguments
This section describes how to create output stream manipulators with one or more
arguments, and how to use manipulators for non-output streams.

Output Stream Manipulators with One Argument
(int or long)

18

The iostream class library provides a set of macros for creating parameterized
manipulators. Manipulators with a single int or long argument are a special case.

Chapter 1 iostream Programming

To create an output stream manipulator that accepts a single int or long argument
(like setw), you must use the OMANIP macro, which is defined in IOMANIP.H.
This example defines a fi 11 b 1 an k manipulator that inserts a specified number of
blanks into the stream:

#inc1ude <iostream.h>
#inc1ude <iomanip.h>

ostream& fb(ostream& os. i nt 1)
{

for (i n t i =0; i < 1; i ++)
os « ' '.

return os;

OMANIP(int) fi11b1ank(int 1)
{

return OMANIP(int) (fb. 1);

void main()
{

cout « "10 blanks follow" « fi11b1ank(10) « ".\n";

The IOMANIP.H header file contains a macro that expands OMANIP(int) into a
class, _OMANIP _int, which includes a constructor and an overloaded ostream
insertion operator for an object of the class. In the previous example, the fi 11 b 1 an k
function calls the _OMANIP _int constructor to return an object of class
_OMANIP _int. Thus, fi 11 b 1 an k can be used with an ostream insertion operator.
The constructor calls the fb function. The expression OMANIP(long) expands to
another built-in class, _OMANIP _long, which accommodates functions with a long
integer argument.

Other One-Argument Output Stream Manipulators
To create manipulators that take arguments other than int and long, you must use the
IOMANIPdecIare macro, which declares the classes for your new type, as well as
the OMANIP macro.

The following example uses a class money, which is a long type. The setpi c
manipulator attaches a formatting "picture" string to the class that can be used by the
overloaded stream insertion operator of the class money. The picture string is stored
as a static variable in the money class rather than as data member of a stream class, so
you do not have to derive a new output stream class.

#include <iostream.h>
#inc1ude <iomanip.h>
#inc1ude <string.h>

19

iostream Class Library Reference

typedef char* charp;
IOMANIPdeclare(charp);

class money {
private:

long value;
static char *szCurrentPic;

public:

} ;

money(long val) { value = val; }
friend ostream& operator « (ostream& os, money m) {

1/ A more complete function would merge the picture
1/ with the value rather than simply appending it
os « m.value « '[' « money::szCurrentPic « ']';
return os;

}

friend ostream& setpic(ostream& os, char* szPic {
money::szCurrentPic = new char[strlen(szPic + 1];
strcpy(money::szCurrentPic. szPic);
return os;

}

char *money::szCurrentPic; II Static pointer to picture

OMANIP(charp) setpic(charp c)
{

return OMANIP(charp) (setpic, c);
}

void main()
{

money amt = 35235.22;
cout « setiosflags(ios::fixed);
cout « setpic("111111.111111.111111.1111") «"amount "« amt « endl;

}

Output Stream Manipulators with
More Than One Argument

20

The following example shows how to write a manipulator, fi 11, to insert a specific
number of a particular character. The manipulator, which takes two arguments, is
similar to set pic in the previous example. The difference is that the character pointer
type declaration is replaced by a structure declaration.

#include <iostream.h>
#include <iomanip.h>

struct fillpair {
char ch;

int cch;
} ;

Chapter 1 iostream Programming

IOMANIPdeclare(fillpair);

ostream& fpC ostream& os, fill pair pair
{

for (int c = 0; c < pair.cch; c++) {
os « pa i r. ch;

return os;

OMANIP(fillpair) fill(char ch, int cch)
{

}

fillpair pair;

pair.cch = cch;
pair.ch = ch;
return OMANIP (fillpair)(fp, pair);

void mainO
{

cout « "10 dots coming" « fill('.', 10) « "done" « endl;
}

This example can be rewritten so that the manipulator definition is in a separate
program file. In this case, the header file must contain these declarations:

struct fillpair {

} ;

char ch;
int cch;

IOMANIPdeclare(fillpair);
ostream& fpC ostream& 0, fillpair pair);
OMANIP(fillpair) fill(char ch, int cch);

Custom Manipulators for Input and Input/Output Streams
The OMANIP macro works with ostream and its derived classes. The SMANIP,
IMANIP, and IOMANIP macros work with the classes ios, istream, and iostream,
respectively.

Using Manipulators with Derived Stream Classes
Suppose you define a manipulator, xstream, that works with the ostream class. The
manipulator will work with all classes derived from ostream. Further suppose you
need manipulators that work only with xstream. In this case, you must add an
overloaded insertion operator that is not a member of ostream:

21

iostream Class Library Reference

xstream& operator« (xstream& xs, xstream& (*_f)(xstream&)) {
(*_f)(xs);
return xs;

}

The manipulator code looks like this:

xstream& bold(xstream& xs) {
return xs « '\033' « '[';

}

If the manipulator needs to access xstream protected data member functions, you can
declare the bol d function as a friend of the xstream class.

Deriving Your Own Stream Classes
Like any C++ class, a stream class can be derived to add new member functions, data
members, or manipulators. If you need an input file stream that tokenizes its input
data, for example, you can derive from the ifstream class. This derived class can
include a member function that returns the next token by calling its base class's
public member functions or extractors. You may need new data members to hold the
stream object's state between operations, but you probably won't need to use the base
class's protected member functions or data members.

For the straightforward stream class derivation, you need only write the necessary
constructors and the new member functions.

The streambuf Class
Unless you plan to make major changes to the iostream library, you do not need to
work much with the streambuf class, which does most of the work for the other
stream classes. In most cases, you will create a modified output stream by deriving
only a new streambuf class and connecting it to the ostream class.

Why Derive a Custom streambuf Class?
Existing output streams communicate to the file system and to in-memory strings.
You can create streams that address a memory-mapped video screen, a window as
defined by Microsoft Windows, a new physical device, and so on. A simpler method
is to alter the byte stream as it goes to a file system device.

A streambuf Derivation Example

22

The following example modifies the coot object to print in two-column landscape
(horizontal) mode on a printer that uses the PCL control language (for example,
Hewlett-Packard LaserJet printer). As the test driver program shows, all member
functions and manipulators that work with the original coot object work with the
special version. The application programming interface is the same.

Chapter 1 iostream Programming

The example is divided into three source files:

• HSTREAM.H-the LaserJet class declaration that must be included in the
implementation file and application file

• HSTREAM.CPP-the LaserJet class implementation that must be linked with the
application

• EXIOS204.CPP-the test driver program that sends output to a LaserJet printer

HSTREAM.H contains only the class declaration for hstreambuf, which is derived
from the filebuf class and overrides the appropriate filebuf virtual functions.

II hstream.h - HP LaserJet output stream header
#include <fstream.h> II Accesses filebuf class
#include <string.h>
#include <stdio.h> II for sprintf

class hstreambuf public filebuf
{

public:
hstreambuf(int filed);
virtual int sync();
virtual int overflow(int ch);
~hstreambuf();

private:
int column, line, page;
char* buffer;
void convert(long cnt);
void newline(char*& pd, int& jj);
void heading(char*& pd, int& jj);
void pstring(char* ph, char*& pd, int& jj);

} ;
ostream& und(ostream& os);
ostream& reg(ostream& os);

HSTREAM.CPP contains the hstreambuf class implementation.

II hstream.cpp - HP LaserJet autput stream
#include "hstream.h"

canst int REG 0x01; II Regular font code
canst int UNO 0x02; II Underline font code
canst int CR 0x0d; II Carriage return character
canst int NL 0x0a; II Newline character
canst int FF 0x0c; II Farmfeed character
canst int TAB = 0x09; II Tab character
canst int LPP 57; II Li nes per page
canst int TABW 5 ; II Tab width

23

iostream Class Library Reference

24

II Prolog defines printer initialization (font. orientation.
char prolog[J
{ 0xlB. 0x45. II Reset printer

0xlB. 0x28. 0x31. 0x30. 0x55. I I I BM PC char
0xlB. 0x26. 0x6C. 0x31, 0x4F. II Landscape
0xlB. 0x26. 0x6C. 0x38. 0x44. II 8 1 ines per inch
0xlB. 0x26. 0x6B. 0x32. 0x53}; II Lineprinter font

II Epilog prints the final page and terminates the output
char epilog[] = { 0x0C. 0xlB. 0x45}; II Formfeed. reset

char uon[] = { 0xlB. 0x26. 0x64. 0x44. 0 }; II Underline on
char uoff[] = { 0xlB. 0x26. 0x64. 0x40. 0 };II Underline off

hstreambuf::hstreambuf(int filed) : filebuf(filed)
{

}

column = line = page = 0;
int size = sizeof(prolog);
setp(prolog. prolog + size);
pbump(size); II Puts the prolog in the put area
filebuf::sync(); II Sends the prolog to the output file
buffer = new char[1024]; II Allocates destination buffer

hstreambuf::~hstreambuf()

{

}

sync(); II Makes sure the current buffer is empty
delete buffer; II Frees the memory
int size = sizeof(epilog);
setp(epilog. epilog + size);
pbump(size); II Puts the epilog in the put area
filebuf::sync(); II Sends the epilog to the output file

int hstreambuf::sync()
{

}

long count = out_waiting();
if (count) {

convert(count);
}

return filebuf::sync();

int hstreambuf::overflow(int ch
{

}

long count = out_waiting();
if (count) {

convert(count);
}

return filebuf::overflow(ch);

etc.

set

Chapter 1 iostream Programming

II The following code is specific to the HP LaserJet printer

II Converts a buffer to HP, then writes it
void hstreambuf::convert(long cnt)
{

char *bufs, *bufd; II Source, destination pOinters
int j = 0;

bufs = pbase();
bufd = buffer;
if(page == 0) {

newline(bufd, j);

fore int i = 0; i < cnt; i++) {
char c = *(bufs++); II Gets character from source buffer
i f(c)= ' ,) { I I C h a r act e r i s p r i n tab 1 e

* (bufd++) = c;
j++;
column++;

else if(c == NL) {
*(bufd++ c;

II Moves down one line
II Passes character through

j++;
line++;
newline(bufd, j); II Checks for page break. etc.

else if(c == FF) II Ejects paper on formfeed
line = line - line % LPP + LPP;
newline(bufd, j); II Checks for page break, etc.

else if(c == TAB
do {

II Expands tabs

*(bufd++
j++;
column++;

, '.

while (column % TABW);

else if(c == UNO) { II Responds to und manipulator
pstring(uon, bufd, j);

else if(c == REG) { II Responds to reg manipulator
pstring(uoff, bufd, j);

}

setp(buffer, buffer + 1024); II Sets new put area
pbump(j); II Tells number of characters in the dest buffer

25

iostream Class Library Reference

26

II simple manipulators - apply to all ostream classes
ostream& und(ostream& os) II Turns on underscore mode
{

os « (char) UNO: return os;
}

ostream& reg(ostream& os) II Turns off underscore mode
{

os « (char) REG: return os;
}

void hstreambuf::newline(char*& pd, int& jj) {
II Called for each newline character

column = 0;
if ((1 i ne % (LPP*2)) == 0) { II Even page

page++;
pstring("\033&a+0L", pd, jj); II Set left margin to zero
heading(pd, jj); I I Print heading
pstring("\033*p0x77Y", pd, jj);11 Cursor to (0,77) dots

}

if (((1 i ne % LPP) 0) && (1 i ne % (LPP*2)) != 0) {
II Odd page; prepare to move to right column

}

page++;
pstring("\033*p0x77Y", pd, jj); II Cursor to (0,77) dots
pstring("\033&a+88L", pd, jj); II Left margin to col 88

void hstreambuf::heading(char*& pd, int& jj) II Prints heading
{

}

char hdg[20];
i nt i;

if (pa ge > 1) {
*(pd++) = FF;
jj++;

}

pstring("\033*p0x0Y", pd, jj); II Top of page
pstring(uon, pd, jj); II Underline on
sprintf(hdg, "Page %-3d", page);
pstring(hdg, pd, jj);
fore i=0; i < 80; i++) { II Pads with bl anks

*(pd++) " .
jj++;

}

sprintf(hdg,
pstring(hdg,
for (i=0; i <

}

*(pd++)
jj++;

"Page %-3d", page+l)
pd, jj);
80; i++) { II Pads with blanks

, '. ,

pstring(uoff, pd, jj); II Underline off

Chapter 1 iostream Programming

II Outputs a string to the buffer
void hstreambuf::pstring(char* ph, char*& pd, int& jj
{

}

int len = strlen(ph);
strncpy(pd, ph, len);
pd += len;
jj += len;

EXIOS204.CPP reads text lines from the do object and writes them to the modified
coot object.

II exios204.cpp
II hstream Driver program copies cin to cout until end of file
#include "hstream.h"

hstreambuf hsb(4); II 4=stdprn

void main()
{

char line[200];
cout = &hsb; II Associates the HP LaserJet streambuf to cout
while(1) {

cin.getline(line, 200);
if(!cin.good()) break;
cout « line « endl;

Here are the main points in the preceding code:

• The new class hstreambuf is derived from filebuf, which is the buffer class for
disk file I/O. The filebuf class writes to disk in response to commands from its
associated ostream class. The hstreambuf constructor takes an argument that
corresponds to the operating system file number, in this case 1, for stdout. This
constructor is invoked by this line:

hstreambuf hsb(1);

• The ostream_withassigo assignment operator associates the hstreambuf object
with the cout object:

ostream& operator =(streambuf* sbp);

This statement in EXIOS204.CPP executes the assignment:

cout = &hsb;

• The hstreambuf constructor prints the prolog that sets up the laser printer, then
allocates a temporary print buffer.

• The destructor outputs the epilog text and frees the print buffer when the object
goes out of scope, which happens after the exit from main.

27

iostream Class Library Reference

28

• The streambuf virtual overflow and sync functions do the low-level output. The
hstreambuf class overrides these functions to gain control of the byte stream. The
functions call the private convert member function.

• The convert function processes the characters in the hstreambuf buffer and stores
them in the object's temporary buffer. The filebuf functions process the temporary
buffer.

• The details of convert relate more to the peL language than to the iostream
library. Private data members keep track of column, line, and page numbers.

• The und and reg manipulators control the underscore print attribute by inserting
codes Ox02 and Ox03 into the stream. The convert function later translates these
codes into printer-specific sequences.

• The program can be extended easily to embellish the heading, add more
formatting features, and so forth.

• In a more general program, the hstreambuf class could be derived from the
streambuf class rather than the filebuf class. The filebuf derivation shown gets
the most leverage from existing iostream library code, but it makes assumptions
about the implementation of filebuf, particularly the overflow and sync functions.
Thus you cannot necessarily expect this example to work with other derived
streambuf classes or with filebuf classes provided by other software publishers.

CHAPTER 2

Alphabetic Microsoft iostream Class
Library Reference

iostream Class Hierarchy Diagram
ios

istream

istrstream

istream_withassign

ifstream

ostream

of stream

ostream_ withassign

ostrstream

iostream

~
fstream

strstream

stdiostream

streambuf lostreamjnit

~
filebuf

strstreambuf

stdiobuf

29

iostream Class Library Reference

iostream Class List
Abstract Stream Base Class

ios

Input Stream Classes
istream

ifstream

istream_ withassign

istrstream

Output Stream Classes
ostream

of stream

ostream_ withassign

ostrstream

Input/Output Stream Classes
iostream

fstream

strstream

stdiostream

Stream Buffer Classes
streambuf

filebuf

strstreambuf

stdiobuf

Predefined Stream Initializer Class
Iostream_init

30

Stream base class.

General-purpose input stream class and base class for other
input streams.

Input file stream class.

Input stream class for cin.

Input string stream class.

General-purpose output stream class and base class for
other output streams.

Output file stream class.

Output stream class for cout, cerr, and clog.

Output string stream class.

General-purpose input/output stream class and base class
for other input/output streams.

Input/output file stream class.

Input/output string stream class.

Input/output class for standard I/O files.

Abstract stream buffer base class.

Stream buffer class for disk files.

Stream buffer class for strings.

Stream buffer class for standard I/O files.

Predefined stream initializer class.

class filebuf
#include <fstream.h>

The filebuf class is a derived class of streambuf that is specialized for buffered disk
file 110. The buffering is managed entirely within the Microsoft iostream Class
Library. filebuf member functions call the run-time low-level 110 routines (the
functions declared in IO.H) such as _sopen, _read, and _write.

The file stream classes, of stream, ifstream, and fstream, use filebuf member
functions to fetch and store characters. Some of these member functions are virtual
functions of the streambuf class.

The reserve area, put area, and get area are introduced in the streambuf class
description. The put area and the get area are always the same for filebuf objects.
Also, the get pointer and put pointers are tied; when one moves, so does the other.

Construction/Destruction - Public Members
filebuf Constructs a filebuf object.

-filebuf Destroys a filebuf object.

Operations - Public Members
open Opens a file and attaches it to the filebuf object.

close Flushes any waiting output and closes the attached file.

setmode Sets the file's mode to binary or text.

attach Attaches the filebuf object to an open file.

Status/Information - Public Members
fd Returns the stream's file descriptor.

is_open Tests whether the file is open.

See Also ifstream, of stream , streambuf, strstreambuf, stdiobuf

Member Functions
filebuf: : attach

filebuf* attach(filedesc fd);

Attaches this filebuf object to the open file specified by fd.

filebuf: : attach

31

filebuf: :c1ose

Return Value
The function returns NULL when the stream is already attached to a file; otherwise it
returns the address of the rIlebuf object.

Parameter
fd A file descriptor as returned by a call to the run-time function _open or _sopen.

filedesc is a typedef equivalent to int.

filebuf: :close
filebuf* c1oseO;

Flushes any waiting output, closes the file, and disconnects the file from the filebuf
object.

Return Value
If an error occurs, the function returns NULL and leaves the filebuf object in a
closed state. If there is no error, the function returns the address of the tilebuf object
and clears its error state.

See Also filebuf: : open

filebuf: :fd
filedesc fdO const;

Returns the file descriptor associated with the filebuf object; filedesc is a typedef
equivalent to into

Return Value
The value is supplied by the underlying file system. The function returns EOF if the
object is not attached to a file.

See Also filebuf: : attach

filebuf: :filebuf
filebufO;

filebuf(filedesc fd);

filebuf(tiledesc fd, char* pr, int nLength);

Parameters

32

fd A file descriptor as returned by a call to the run-time function _sopen. filedesc is
a typedef equivalent to int.

Remarks

pr Pointer to a previously allocated reserve area of length nLength.

nLength The length (in bytes) of the reserve area.

The three filebuf constructors are described as follows:

filebufO Constructs a filebuf object without attaching it to a file.

filebuf(filedesc) Constructs a filebuf object and attaches it to an open file.

filebuf(filedesc, char*, int) Constructs a filebuf object, attaches it to an open file,
and initializes it to use a specified reserve area.

filebuf:: -filebuf
-filebufO;

Remarks
Closes the attached file only if that file was opened by the open member function.

filebuf: : is_open
int is_openO const;

Return Value
Returns a nonzero value if this filebuf object is attached to an open disk file
identified by a file descriptor; otherwise O.

See Also filebuf: :open

filebuf::open
filebuf* open(const char* szName, int nMode, int nProt = filebuf::openprot);

Opens a disk file and attaches it with this filebuf object.

Return Value
If the file is already open, or if there is an error while opening the file, the function
returns NULL; otherwise it returns the filebuf address.

Parameters
szName The name of the file to be opened during construction.

nMode An integer containing mode bits defined as ios enumerators that can be
combined with the OR (I) operator. See the of stream constructor for a list of the
enumerators.

filebuf::open

33

filebuf: :setmode

nProt The file protection specification; defaults to the static integer
filebuf: :openprot, which is equivalent to the operating system default
(filebuf::sh_compat for MS-DOS). The possible values of nProt are:

• filebuf::sh_compat Compatibility share mode (MS-DOS only).

• filebuf::sh_none Exclusive mode-no sharing.

• filebuf: :sh_read Read sharing allowed.

• filebuf: :sh_ write Write sharing allowed.

You can combine the filebuf::sh_read and filebuf::sh_write modes with the
logical OR (II) operator.

See Also filebuf::is_open, filebuf::close, filebuf::-filebuf

filebuf::setmode
int setmode(int nMode = filebuf::text);

Parameter
nMode An integer that must be one of the static filebuf constants. The nMode

parameter must have one of the following values:

• filebuf::text Text mode (newline characters translated to and from carriage
return-linefeed pairs under MS-DOS).

• filebuf::binary Binary mode (no translation).

Return Value

Remarks

34

The previous mode if there is no error; otherwise O.

Sets the binary/text mode of the stream's filebuf object.

See Also ios binary manipulator, ios text manipulator

class fstream
#include <fstream.h>

The fstream class is an iostream derivative specialized for combined disk file input
and output. Its constructors automatically create and attach a filebuf buffer object.

See filebuf class for information on the get and put areas and their associated
pointers. Although the filebuf object's get and put pointers are theoretically
independent, the get area and the put area are not active at the same time. When the
stream's mode changes from input to output, the get area is emptied and the put area
is reinitialized. When the mode changes from output to input, the put area is flushed
and the get area is reinitialized. Thus, either the get pointer or the put pointer is null
at all times.

Construction/Destruction - Public Members
fstream Constructs an fstream object.

-fstream Destroys an fstream object.

Operations - Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.

close Flushes any waiting output and closes the stream's file.

setbuf Attaches the specified reserve area to the stream's filebuf object.

setmode Sets the stream's mode to binary or text.

attach Attaches the stream (through the filebuf object) to an open file.

Status/Information - Public Members
rdbuf Gets the stream's filebuf object.

fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream's file is open.

See Also ifstream, of stream, strstream, stdiostream, filebuf

Member Functions
fstream::attach

void attach(filedescJd);

Attaches this stream to the open file specified by Jd.

fstream:: attach

35

fstream: :c1ose

Parameter

Remarks

fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to into

The function fails when the stream is already attached to a file. In that case, the
function sets ios::failbit in the stream's error state.

See Also filebuf: : attach, fstream: :fd

fstream: :close

Remarks

void closeO;

Calls the close member function for the associated filebuf object. This function, in
tum, flushes any waiting output, closes the file, and disconnects the file from the
filebuf object. The filebuf object is not destroyed.

The stream's error state is cleared unless the call to filebuf: : close fails.

See Also filebuf::c1ose, fstream::open, fstream::is_open

fstream::fd

Remarks

filedesc fdO const;

Returns the file descriptor associated with the stream. filedesc is a typedef equivalent
to int. Its value is supplied by the underlying file system.

See Also filebuf: :fd, fstream: : attach

fstream: :fstream
fstreamO;

fstream(const char* szName, int nMode, iot nProt = filebuf::opeoprot);

fstream(filedesc fd);

fstream(filedesc fd, char* pch, int nLength);

Parameters
szName The name of the file to be opened during construction.

36

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (I) operator. The nMode parameter must have one
of the following values:

• ios: :app The function performs a seek to the end of file. When new bytes are
written to the file, they are always appended to the end, even if the position is
moved with the ostream: :seekp function.

• ios::ate The function performs a seek to the end of file. When the first new
byte is written to the file, it is appended to the end, but when subsequent bytes
are written, they are written to the current position.

• ios: :in The file is opened for input. The original file (if it exists) will not be
truncated.

• ios::out The file is opened for output.

• ios: :trunc If the file already exists, its contents are discarded. This mode is
implied if ios: :out is specified, and ios: :ate, ios: :app, and ios:in are not
specified.

• ios::nocreate If the file does not already exist, the function fails.

• ios: :noreplace If the file already exists, the function fails.

• ios::binary Opens the file in binary mode (the default is text mode).

Note that there is no ios::in or ios::out default mode for fstream objects. You must
specify both modes if your fstream object must both read and write files.

nProt The file protection specification; defaults to the static integer
filebuf: :openprot, which is equivalent to the operating system default,
filebuf::sh_compat, under MS-DOS. The possible nProt values are as follows:

• filebuf::sh_compat Compatibility share mode (MS-DOS only).

• filebuf::sh_none Exclusive mode-no sharing.

• filebuf: :sh_read Read sharing allowed.

• filebuf: :sh_ write Write sharing allowed.

The filebuf: :sh_read and filebuf: :sh_ write modes can be combined with the
logical OR (II) operator.

fd A file descriptor as returned by a call to the run-time function _open or _sopen.
filedesc is a typedef equivalent to int.

pch Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength The length (in bytes) of the reserve area (0 = unbuffered).

fstream: :fstream

37

fstream: :-fstream

Remarks
The four fstream constructors are:

• fstreamO Constructs an fstream object without opening a file.

• fstream(const char*, int, int) Contructs an fstream object, opening the
specified file.

• fstream(filedesc) Constructs an fstream object that is attached to an open file.

• fstream(filedesc, char*, int) Constructs an fstream object that is associated
with a filebuf object. The filebuf object is attached to an open file and to a
specified reserve area.

All fstream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area. The user-allocated
area is not automatically released during destruction.

fstream: : --fstream

Remarks

-fstreamO;

Flushes the buffer, then destroys an fstream object, along with its associated filebuf
object. The file is closed only if it was opened by the constructor or by the open
member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

fstream: : is_open
int is_openO const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise O.

See Also filebuf::is_open, fstream::open, fstream::c1ose

fstream:: open
void open(const char* szName, int nMode, int nProt = filebuf::openprot);

Opens a disk file and attaches it to the stream's filebuf object.

Parameters
szName The name of the file to be opened during construction.

38

Remarks

nMode An integer containing mode bits defined as ios enumerators that can be
combined with the OR (I) operator. See the fstream constructor for a list of the
enumerators. There is no default; a valid mode must be specified.

nProt The file protection specification; defaults to the static integer
filebuf: :openprot. See the fstream constructor for a list of the other allowed
values.

If the filebuf object is already attached to an open file, or if a filebuf call fails, the
ios::failbit is set. If the file is not found, then the ios::failbit is set only if the
ios::nocreate mode was used.

See Also filebuf::open, fstream::fstream, fstream::c1ose, fstream::is_open

fstream: :rdbuf

Remarks

filebuf* rdbufO const;

Returns a pointer to the filebuf buffer object that is associated with this stream. (This
is not the character buffer; the filebuf object contains a pointer to the character area.)

fstream: : setbuf
streambuf* setbuf(char* pch, int nLength);

Attaches the specified reserve area to the stream's filebuf object.

Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf cast as a streambuf. The reserve area will
not be released by the destructor.

Parameters
pch A pointer to a previously allocated reserve area of length nLength. A NULL

value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

fstream:: setmode
int setmode(int nMode = filebuf::text);

Sets the binary/text mode of the stream's filebuf object. It can be called only after the
file is opened.

fstream:: setmode

39

fstream: :setmode

Return Value
The previous mode; -1 if the parameter is invalid, the file is not open, or the mode
cannot be changed.

Parameter

40

nMode An integer that must be one of the following static filebuf constants:

• fdebuf::text Text mode (newline characters translated to and from carriage­
return-linefeed pairs) .

• fllebuf::binary Binary mode (no translation).

See Also ios binary manipulator, ios text manipulator

class ifstream
#include <fstream.h>

The jfstream class is an jstream derivative specialized for disk file input. Its
constructors automatically create and attach a filebuf buffer object.

The filebuf class documentation describes the get and put areas and their associated
pointers. Only the get area and the get pointer are active for the jfstream class.

Construction/Destruction - Public Members
jfstream Constructs an if stream object.

-ifstream Destroys an ifstream object.

Operations - Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.

close Closes the stream's file.

setbuf Associates the specified reserve area to the stream's filebuf object.

setmode Sets the stream's mode to binary or text.

attach Attaches the stream (through the filebuf object) to an open file.

Status/Information - Public Members
rdbuf Gets the stream's filebuf object.

fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream's file is open.

See Also filebuf, streambuf, of stream, fstream

Member Functions
ifstream: : attach

void attach(filedesc fd);

Attaches this stream to the open file specified by fd.

Parameter
fd A file descriptor as returned by a call to the run-time function _open or _sopen;

filedesc is a typedef equivalent to into

ifstream: : attach

41

ifstream::c1ose

Remarks
The function fails when the stream is already attached to a file. In that case, the
function sets ios::failbit in the stream's error state.

See Also filebuf::attach, ifstream::fd

ifstream: :close

Remarks

void cioseO;

Calls the close member function for the associated filebuf object. This function, in
tum, closes the file and disconnects the file from the filebuf object. The filebuf object
is not destroyed.

The stream's error state is cleared unless the call to filebuf::c1ose fails.

See Also filebuf: :ciose, ifstream: :open, ifstream: :is_ open

ifstream: :fd
filedesc fdO const;

Return Value
Returns the file descriptor associated with the stream; filedesc is a typedef equivalent
to int. Its value is supplied by the underlying file system.

See Also filebuf: :fd, ifstream: :attach

ifstream: :ifstream
ifstreamO;

ifstream(const char* szName, int nMode = ios::in, int nProt = filebuf::openprot);

ifstream(filedescJd);

ifstream(filedesc Jd, char* pch, int nLength);

Parameters
szName The name of the file to be opened during construction.

42

Remarks

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (I) operator. The nMode parameter must have one
of the following values:

• ios::in The file is opened for input (default).

• ios: :nocreate If the file does not already exist, the function fails.

• ios::binary Opens the file in binary mode (the default is text mode).

Note that the ios::nocreate flag is necessary if you intend to test for the file's
existence (the usual case).

nProt The file protection specification; defaults to the static integer
filebuf::openprot that is equivalent to filebuf::sh_compat. The possible nProt
values are:

• filebuf::sh_compat Compatibility share mode.

• filebuf::sh_none Exclusive mode-no sharing.

• filebuf: :sh_read Read sharing allowed.

• filebuf: :sh_ write Write sharing allowed.

To combine the filebuf::sh_read and filebuf::sh_write modes, use the logical OR
(\I) operator.

fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

pch Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength The length (in bytes) of the reserve area (0 = unbuffered).

The four ifstream constructors are:

• ifstreamO Constructs an ifstream object without opening a file.

• ifstream(const char*, int, int) Contructs an ifstream object, opening the
specified file.

• ifstream(filedesc) Constructs an ifstream object that is attached to an open file.

• ifstream(filedesc, char*, int) Constructs an ifstream object that is associated
with a filebuf object. The filebuf object is attached to an open file and to a
specified reserve area.

All ifstream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area.

ifstream: :ifstream

43

ifstream:: -ifstream

ifstream:: -ifstream

Remarks

-ifstreamO;

Destroys an if stream object along with its associated filebuf object. The file is closed
only if it was opened by the constructor or by the open member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

ifstream: : is_open
int is_openO const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise O.

See Also filebuf::is_open, ifstream::open, ifstream::ciose

ifstream: : open
void open(const char* szName, int nMode = ios::in, int nProt = filebuf::openprot);

Parameters

Remarks

44

szName The name of the file to be opened during construction.

nMode An integer containing bits defined as ios enumerators that can be combined
with the OR (I) operator. See the ifstream constructor for a list of the
enumerators. The ios::in mode is implied.

nProt The file protection specification; defaults to the static integer
filebuf::openprot. See the if stream constructor for a list of the other allowed
values.

Opens a disk file and attaches it to the stream's filebuf object. If the filebuf object is
already attached to an open file, or if a filebuf call fails, the ios::failbit is set. If the
file is not found, then the ios: :failbit is set only if the ios: :nocreate mode was used.

See Also filebuf: : open, ifstream: :ifstream, ifstream: :ciose, ifstream::is_open,
ios::flags

ifstream: :rdbuf
filebuf* rdbufO const;

Return Value
Returns a pointer to the filebuf buffer object that is associated with this stream. (This
is not the character buffer; the filebuf object contains a pointer to the character area.)

ifstream:: setbuf
streambuf* setbuf(char* pch, int nLength);

Attaches the specified reserve area to the stream's filebuf object.

Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf, which is cast as a streambuf. The reserve
area will not be released by the destructor.

Parameters
pch A pointer to a previously allocated reserve area of length nLength. A NULL

value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

ifstream:: setmode
int setmode(int nMode = filebuf::text);

Return Value
The previous mode; -1 if the parameter is invalid, the file is not open, or the mode
cannnot be changed.

Parameters

Remarks

nMode An integer that must be one of the following static filebuf constants:

• filebuf::text Text mode (newline characters translated to and from carriage
return-linefeed pairs) .

• filebuf::binary Binary mode (no translation).

This function sets the binary/text mode of the stream's filebuf object. It may be called
only after the file is opened.

ifstream: :setmode

45

class ios

class ios
#include <iostream.h>

As the iostream class hierarchy diagram (on page 29) shows, ios is the base class for
all the input/output stream classes. While ios is not technically an abstract base class,
you will not usually construct ios objects, nor will you derive classes directly from ios.
Instead, you will use the derived classes istream and ostream or other derived
classes.

Even though you will not use ios directly, you will be using many of the inherited
member functions and data members described here. Remember that these inherited
member function descriptions are not duplicated for derived classes.

Data Members (static) - Public Members
basefield Mask for obtaining the conversion base flags (dec, oct, or hex).

adjustfield Mask for obtaining the field padding flags (left, right, or internal).

floatfield Mask for obtaining the numeric format (scientific or fixed).

Construction/Destruction - Public Members
ios Constructor for use in derived classes.

-ios Virtual destructor.

Flag and Format Access Functions - Public Members
flags Sets or reads the stream's format flags.

setf Manipulates the stream's format flags.

unsetf Clears the stream's format flags.

fill Sets or reads the stream's fill character.

precision Sets or reads the stream's floating-point format display precision.

width Sets or reads the stream's output field width.

StatUS-Testing Functions - Public Members
good Indicates good stream status.

bad Indicates a serious I/O error.

eof Indicates end of file.

fail Indicates a serious I/O error or a possibly recoverable I/O formatting error.

rdstate Returns the stream's error flags.

clear Sets or clears the stream's error flags.

User-Defined Format Flags - Public Members

46

bitalloc Provides a mask for an unused format bit in the stream's private flags
variable (static function).

xalloc Provides an index to an unused word in an array reserved for special-purpose
stream state variables (static function).

iword Converts the index provided by xalloc to a reference (valid only until the next
xalloc).

pword Converts the index provided by xalloc to a pointer (valid only until the next
xalloc).

Other Functions - Public Members
delbuf Controls the connection of streambuf deletion with ios destruction.

rdbuf Gets the stream's streambuf object.

sync_with_stdio Synchronizes the predefined objects cin, cout, cerr, and clog with
the standard I/O system.

tie Ties a specified ostream to this stream.

Operators - Public Members
operator void*O Converts a stream to a pointer that can be used only for error

checking.

operator!O Returns a nonzero value if a stream I/O error occurs.

ios Manipulators
dec Causes the interpretation of subsequent fields in decimal format (the default

mode).

hex Causes the interpretation of subsequent fields in hexadecimal format.

oct Causes the interpretation of subsequent fields in octal format.

binary Sets the stream's mode to binary (stream must have an associated filebuf
buffer).

text Sets the stream's mode to text, the default mode (stream must have an
associated filebuf buffer).

Parameterized Manipulators
(#include <iomanip.h> required)

setiosflags Sets the stream's format flags.

resetiosflags Resets the stream's format flags.

setfill Sets the stream's fill character.

setprecision Sets the stream's floating-point display precision.

setw Sets the stream's field width (for the next field only).

See Also istream, ostream

class ios

47

ios::bad

Member Functions
ios::bad

int badO const;

Return Value
Returns a nonzero value to indicate a serious 110 error. This is the same as setting the
badbit error state. Do not continue 110 operations on the stream in this situation.

See Also ios::good, ios::fail, ios::rdstate

ios::bitalloc

Remarks

static long bitallocO;

Provides a mask for an unused format bit in the stream's private flags variable (static
function). The ios class currently defines 15 format flag bits accessible through flags
and other member functions. These bits reside in a 32-bit private ios data member
and are accessed through enumerators such as ios: :Ieft and ios: :hex.

The bitalloc member function provides a mask for a previously unused bit in the data
member. Once you obtain the mask, you can use it to set or test the corresponding
custom flag bit in conjunction with the ios member functions and manipulators listed
under "See Also."

See Also ios: :flags, ios: :setf, ios: :unsetf, ios setiostlags, ios resetiostlags
manipulator

ios::clear
void c1ear(int nState = 0);

Parameter

48

nState If 0, all error bits are cleared; otherwise bits are set according to the
following masks (ios enumerators) that can be combined using the bitwise OR (I)
operator. The nState parameter must have one of the following values:

• ios::goodbit No error condition (no bits set).

• ios: :eotbit End of file reached.

• ios: :failbit A possibly recoverable formatting or conversion error.

• ios:: badbit A severe 110 error.

Remarks
Sets or clears the error-state flags. The rdstate function can be used to read the
current error state.

See Also ios::rdstate, ios::good, ios::bad, ios::eof

ios::delbuf
void delbuf(int nDelFlag);

int delbufO const;

Parameter

Remarks

nDelFlag A nonzero value indicates that ios should delete the stream's attached
streambuf object. A 0 value prevents deletion.

The first overloaded delbuf function assigns a value to the stream's buffer-deletion
flag. The second function returns the current value of the flag.

This function is public only because it is accessed by the Iostream_init class. Treat it
as protected.

See Also ios::rdbuf, ios:: ios

ios::eof
int eofO const;

Return Value
Returns a nonzero value if end of file has been reached. This is the same as setting
the eofbit error flag.

ios::fail
int failO const;

Return Value
Returns a nonzero value if any I/O error (not end of file) has occurred. This condition
corresponds to either the badbit or failbit error flag being set. If a call to bad returns
0, you can assume that the error condition is nonfatal and that you can probably
continue processing after you clear the flags.

See Also ios::bad, ios::clear

ios::fail

49

ios::fill

ios: : fill
char fill(char cFill);

char fillO const;

Return Value
The first overloaded function sets the stream's internal fill character variable to cFill
and returns the previous value. The default fill character is a space.

The second fill function returns the stream's fill character.

Parameter
cFill The new fill character to be used as padding between fields.

See Also ios setfill manipulator

ios::flags
long flags(long IFlags);

long flagsO const;

Return Value
The first overloaded flags function sets the stream's internal flags variable to IFlags
and returns the previous value.

The second function returns the stream's current flags.

Parameter

50

IFlags The new format flag values for the stream. The values are specified by the
following bit masks (ios enumerators) that can be combined using the bitwise OR
(I) operator. The IFlags parameter must have one of the following values:

• ios: :skipws Skip white space on input.

• ios::left Left-align values; pad on the right with the fill character.

• ios::right Right-align values; pad on the left with the fill character (default
alignment).

• ios::internal Add fill characters after any leading sign or base indication, but
before the value.

• ios::dec Format numeric values as base 10 (decimal) (default radix).

• ios::oct Format numeric values as base 8 (octal).

• ios: :hex Format numeric values as base 16 (hexadecimal).

• ios::showbase Display numeric constants in a format that can be read by the
C++ compiler.

• ios::showpoint Show decimal point and trailing zeros for floating-point
values.

• ios: : uppercase Display uppercase A through F for hexadecimal values and E
for scientific values.

• ios::showpos Show plus signs (+) for positive values.

• ios::scientific Display floating-point numbers in scientific format.

• ios::fixed Display floating-point numbers in fixed format.

• ios::unitbuf Cause ostream::osfx to flush the stream after each insertion. By
default, cerr is unit buffered.

• ios: :stdio Cause ostream: :osfx to flush stdout and stderr after each insertion.

See Also ios::setf, ios::unsetf, ios setiosflags manipulator, ios resetiosflags
manipulator, ios::adjustfield, ios::basefield, ios::floatfield

ios::good
int goodO const;

Return Value
Returns a nonzero value if all error bits are clear. Note that the good member
function is not simply the inverse of the bad function.

See Also ios:: bad, ios: : fail, ios: :rdstate

ios: :init
Protected ~

void init(streambuf* psb);
END Protected

Parameter

Remarks

psb A pointer to an existing streambuf object.

Associates an object of a streambuf-derived class with this stream and, if necessary,
deletes a dynamically created stream buffer object that was previously associated. The
init function is useful in derived classes in conjunction with the protected default
istream, ostream, and iostream constructors. Thus, an ios-derived class constructor
can construct and attach its own predetermined stream buffer object.

See Also istream: :istream, ostream: :ostream, iostream: :iostream

ios::init

51

ios::ios

· .
10S::10S

ios(streambuf* psb);

Parameter

Remarks

psb A pointer to an existing streambuf object.

Constructor for ios. You will seldom need to invoke this constructor except in derived
classes. Generally, you will be deriving classes not from ios but from istream,
ostream, and iostream.

· .
lOS: :-10S

virtual-ios{};

Remarks
Virtual destructor for ios.

ios::iword
long& iword(int nlndex) const;

Parameters

Remarks

nlndex An index to a table of words that are associated with the ios object.

The xalloc member function provides the index to the table of special-purpose words.
The pword function converts that index to a reference to a 32-bitword.

See Also ios: :xalloc, ios: :pword

· . .
lOS: :preC1S10n

int precision(int np);

int precisionO const;

Return Value

52

The first overloaded precision function sets the stream's internal floating-point
precision variable to np and returns the previous value. The default precision is six
digits. If the display format is scientific or fixed, the precision indicates the number
of digits after the decimal point. If the format is automatic (neither floating point nor
fixed), the precision indicates the total number of significant digits.

The second function returns the stream's current precision value.

Parameter
np An integer that indicates the number of significant digits or significant decimal

digits to be used for floating-point display.

See Also ios setprecision manipulator

ios::pword
void*& pword(int nlndex) const;

Parameter

Remarks

nlndex An index to a table of words that are associated with the ios object.

The xalloc member function provides the index to the table of special-purpose words.
The pword function converts that index to a reference to a pointer to a 32-bit word.

See Also ios: :xalloc, ios: :iword

ios::rdbuf
streambuf* rdbufO const;

Return Value
Returns a pointer to the streambuf object that is associated with this stream. The
rdbuf function is useful when you need to call streambuf member functions.

ios: :rdstate
int rdstate() const;

Return Value
Returns the current error state as specified by the following masks (ios enumerators):

• ios::goodbit No error condition.

• ios: :eotbit End of file reached.

• ios: :failbit A possibly recoverable formatting or conversion error.

• ios::badbit A severe I/O error or unknown state.

The returned value can be tested against a mask with the AND (&) operator.

See Also ios: : clear

ios::rdstate

53

ios::setf

ios: :setf
long setf(long IFlags);

long setf(long IFlags, long IMask);

Return Value
The first overloaded setf function turns on only those format bits that are specified by
1 s in IFlags. It returns a long that contains the previous value of all the flags.

The second function alters those format bits specified by Is in IMask. The new values
of those format bits are determined by the corresponding bits in IFlags. It returns a
long that contains the previous value of all the flags.

Parameters
IFlags Format flag bit values. See the flags member function for a list of format

flags. To combine these flags, use the bitwise OR (I) operator.

lMask Format flag bit mask.

See Also ios::flags, ios::onsetf, ios setiosflags manipulator

ios::sync_ with_stdio

Remarks

static void sync_ with_stdioO;

Synchronizes the C++ streams with the standard I/O system. The first time this
function is called, it resets the predefined streams (cin, coot, cerr, clog) to use a
stdiobuf object rather than a filebof object. After that, you can mix I/O using these
streams with I/O using stdin, stdoot, and stderr. Expect some performance decrease
because there is buffering both in the stream class and in the standard I/O file system.

After the call to sync_ with_stdio, the ios::stdio bit is set for all affected predefined
stream objects, and coot is set to unit buffered mode.

ios: :tie
ostream* tie(ostream* pos);

ostream * tieO const;

Return Value

54

The first overloaded tie function ties this stream to the specified ostream and returns
the value of the previous tie pointer or NULL if this stream was not previously tied.
A stream tie enables automatic flushing of the ostream when more characters are
needed, or there are characters to be consumed.

By default, cin is initially tied to cont so that attempts to get more characters from
standard input may result in flushing standard output. In addition, cerr and clog are
tied to cout by default.

The second function returns the value of the previous tie pointer or NULL if this
stream was not previously tied.

Parameter
pos A pointer to an ostream object.

ios: :unsetf
long unsetf(long IFlags);

Return Value
Clears the format flags specified by Is in IFlags. It returns a long that contains the
previous value of all the flags.

Parameter
IFlags Format flag bit values. See the flags member function for a list of format

flags.

See Also ios: :flags, ios: :setf, ios resetiosflags manipulator

ios::width
int width(int nw);

int widthO const;

Return Value
The first overloaded width function sets the stream's internal field width variable to
nw. When the width is 0 (the default), inserters insert only the number of characters
necessary to represent the inserted value. When the width is not 0, the inserters pad
the field with the stream's fill character, up to nw. If the unpadded representation of
the field is larger than nw, the field is not truncated. Thus, nw is a minimum field
width.

The internal width value is reset to 0 after each insertion or extraction.

The second overloaded width function returns the current value of the stream's width
variable.

Parameter
nw The minimum field width in characters.

See Also ios setw manipulator

ios::width

55

ios::xalloc

ios: :xalloc
static int xallocO;

Return Value
Provides extra ios object state variables without the need for class derivation. It does
so by returning an index to an unused 32-bit word in an internal array. This index
can subsequently be converted into a reference or pointer by using the iword or
pword member functions.

Any call to xalloc invalidates values returned by previous calls to iword and pword.

See Also ios: :iword, ios: :pword

Operators
ios::operator void* ()

operator void* 0 const;

Remarks
An operator that converts a stream to a pointer that can be compared to o.

Return Value
The conversion returns 0 if either failbit or badbit is set in the stream's error state.
See rdstate for a description of the error state masks. A nonzero pointer is not meant
to be dereferenced.

See Also ios: : good , ios: :fail

ios::operator ! ()
int operator! 0 const;

Return Value
Returns a nonzero value if either failbit or badbit is set in the stream's error state.
See rdstate for a description of the error state masks.

See Also ios: : good, ios: :fail

ios:: adjustfield
static const long adjustfield;

Remarks
A mask for obtaining the padding flag bits (left, right, or internal).

56

Example
extern ostream os;
if((os.flags() & ios::adjustfield) == ios::left)

See Also ios: :f1ags

ios: : basefield
static const long basefield;

Remarks
A mask for obtaining the current radix flag bits (dec, oct, or hex).

Example
extern ostream os;
if((os.flags() & ios::basefield) == ios::hex)

See Also ios: :f1ags

ios: :floatfield
static const long floatfield;

Remarks
A mask for obtaining floating-point format flag bits (scientific or fixed).

Example
extern ostream os;
if((os.flags() & ios::floatfield) ios: :scientific)

See Also ios: :f1ags

Manipulators
ios& binary

Remarks

binary

Sets the stream's mode to binary. The default mode is text.

The stream must have an associated filebuf buffer.

See Also ios text manipulator, of stream: :setmode, ifstream: :setmode,
filebuf: :setmode

ios& binary

57

ios& dec

ios& dec

Remarks

dec

Sets the format conversion base to 10 (decimal).

See Also ios hex manipulator, ios oct manipulator

ios& hex

Remarks

hex

Sets the format conversion base to 16 (hexadecimal).

See Also ios dec manipulator, ios oct manipulator

ios& oct
oct

Remarks
Sets the format conversion base to 8 (octal).

See Also ios dec manipulator, ios hex manipulator

resetiosfiags
SMANIP(long) resetiosflags(long IFlags);

#include <iomanip.h>

Parameter

Remarks

IFlags Format flag bit values. See the flags member function for a list of format
flags. To combine these flags, use the OR (I) operator.

This parameterized manipulator clears only the specified format flags. This setting
remains in effect until you change it.

setfill

58

SMANIP(int) setfill(int nFill);

#include <iomanip.h>

Parameter

Remarks

nFill The new fill character to be used as padding between fields.

This parameterized manipulator sets the stream's fill character. The default is a
space. This setting remains in effect until the next change.

setiosflags
SMANIP(long) setiosflags(long IFlags);

#include <iomanip.h>

Parameter

Remarks

IFlags Format flag bit values. See the flags member function for a list of format
flags. To combine these flags, use the OR (I) operator.

This parameterized manipulator sets only the specified format flags. This setting
remains in effect until the next change.

setprecision
SMANIP(int) setprecision(int np);

#include <iomanip.h>

Parameter

Remarks

setw

np An integer that indicates the number of significant digits or significant decimal
digits to be used for floating-point display.

This parameterized manipulator sets the stream's internal floating-point precision
variable to np. The default precision is six digits. If the display format is scientific or
fixed, then the precision indicates the number of digits after the decimal point. If the
format is automatic (neither floating point nor fixed), then the precision indicates the
total number of significant digits. This setting remains in effect until the next change.

SMANIP(int) setw(int nw);

#include <iomanip.h>

Parameter
nw The field width in characters.

setw

59

ios& text

Remarks
This parameterized manipulator sets the stream's internal field width parameter. See
the width member function for more information. This setting remains in effect only
for the next insertion.

ios& text

Remarks

60

text

Sets the stream's mode to text (the default mode).

The stream must have an associated filebuf buffer.

See Also ios binary manipulator, of stream: :setmode, ifstream: :setmode,
filebuf: :setmode

class iostream
#include <iostream.h>

The iostream class provides the basic capability for sequential and random-access
I/O. It inherits functionality from the istream and ostream classes.

The iostream class works in conjunction with classes derived from streambuf (for
example, filebuf). In fact, most of the iostream "personality" comes from its attached
streambuf class. You can use iostream objects for sequential disk I/O if you first
construct an appropriate filebuf object. More often, you will use objects of classes
fstream and strstream.

Derivation
For derivation suggestions, see the istream and ostream classes.

Public Members
iostream Constructs an iostream object that is attached to an existing streambuf

object.

-iostream Destroys an iostream object.

Protected Members
iostream Acts as a void-argument iostream constructor.

See Also istream, ostream, fstream, strstream, stdiostream

Member Functions
iostream: :iostream

Public~

iostream(streambuf* psb);
END Public

Protected ~

iostream();
END Protected

Parameter
psb A pointer to an existing streambuf object (or an object of a derived class).

iostream: :iostream

61

iostream::-iostream

Remarks
Constructs an object of type iostream.

See Also ios: :init

iostream:: -iostream
virtual -iostreamO;

Remarks
Virtual destructor for the iostream class.

62

class Iostream_init
#include <iostream.h>

The Iostream_init class is a static class that initializes the predefined stream objects
cin, coot, cerr, and clog. A single object of this class is constructed "invisibly" in
response to any reference to the predefined objects. The class is documented for
completeness only. You will not normally construct objects of this class.

Public Members
Iostream_init A constructor that initializes cin, coot, cerr, and clog .

..... Iostream_init The destructor for the Iostream_init class.

Member Functions
Iostream_init: : Iostream_init

Remarks

Iostream_initO;

Iostream_init constructor that initializes cin, cout, cerr, and clog. For internal use
only.

Iostream_init:: - Iostream_init
..... Iostream_initO;

Remarks
Iostream_init destructor. For internal use only.

63

class istream

class istream
#include <iostream.h>

The istream class provides the basic capability for sequential and random-access
input. An istream object has a streambuf-derived object attached, and the two
classes work together; the istream class does the formatting, and the streambuf class
does the low-level buffered input.

You can use istream objects for sequential disk input if you first construct an
appropriate filebuf object. More often, you will use the predefined stream object cin
(which is actually an object of class istream_withassign), or you will use objects of
classes if stream (disk file streams) and istrstream (string streams).

Derivation
It is not always necessary to derive from istream to add functionality to a stream;
consider deriving from streambuf instead, as illustrated on page 22 in "Deriving
Your Own Stream Classes." The if stream and istrstream classes are examples of
istream-derived classes that construct member objects of predetermined derived
streambuf classes. You can add manipulators without deriving a new class.

If you add new extraction operators for a derived istream class, then the rules of C++
dictate that you must reimplement all the base class extraction operators. See the
"Derivation" section of class ostream for an efficient reimplementation technique.

Construction/Destruction - Public Members
istream Constructs an istream object attached to an existing object of a streambuf­

derived class.

-istream Destroys an istream object.

PrefiX/Suffix Functions - Public Members
ipfx Check for error conditions prior to extraction operations (input prefix

function).

isfx Called after extraction operations (input sll_ffix function).

Input Functions - Public Members

64

get Extracts characters from the stream up to, but not including, delimiters.

getline Extracts characters from the stream (extracts and discards delimiters).

read Extracts data from the stream.

ignore Extracts and discards characters.

peek Returns a character without extracting it from the stream.

gcount Counts the characters extracted in the last unformatted operation.

eatwhite Extracts leading white space.

Other Functions - Public Members
putback Puts characters back to the stream.

sync Synchronizes the stream buffer with the external source of characters.

seekg Changes the stream's get pointer.

tellg Gets the value of the stream's get pointer.

Operators - Public Members
operator» Extraction operator for various types.

Protected Members
istream Constructs an istream object.

Manipulators
ws Extracts leading white space.

See Also streambuf, ifstream, istrstream, istream_ withassign

Member Functions
istrearn: :eatwhite

Remarks

void eatwhiteO;

Extracts white space from the stream by advancing the get pointer past spaces and
tabs.

See Also istream ws manipulator

istrearn: : gcount

Remarks

int gcountO const;

Returns the number of characters extracted by the last unformatted input function.
Formatted extraction operators may call unformatted input functions and thus reset
this number.

See Also istream: :get, istream: :getline, istream: : ignore , istream: : read

istrearn: : get
int getO;&

istream::get

65

istream: :getline

istream& get(char* pch, int nCount, char delim = '\n');

istream& get(unsigned char* puch, int nCount, char delim = '\n');

istream& get(signed char* psch, int nCount, char de lim = '\n');

istream& get(char& rch);

istream& get(unsigned char& ruch);

istream& get(signed char& rsch);

istream& get(streambuf& rsb, char de lim = '\n');

Parameters

Remarks

pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to store, including the terminating
NULL.

delim The delimiter character (defaults to newline).

rch, ruch, rsch A reference to a character.

rsb A reference to an object of a streambuf-derived class.

These functions extract data from an input stream as follows:

Variation Description

getO; Extracts a single character from the stream and returns it.

get(char*, int, char); Extracts characters from the stream until either delim is found,
the limit nCount is reached, or the end of file is reached. The
characters are stored in the array followed by a null terminator.

get(char&); Extracts a single character from the stream and stores it as
specified by the reference argument.

get(streambuf&, char); Gets characters from the stream and stores them in a streambuf
object until the delimiter is found or the end of the file is
reached. The ios::failbit flag is set if the streambuf output
operation fails.

In all cases, the delimiter is neither extracted from the stream nor returned by the
function. The getline function, in contrast, extracts but does not store the delimiter.

See Also istream::getline, istream::read, istream::ignore, istream::gcount

istream: :getline
istream& getline(char* pch, int nCount, char delim = '\n');

istream& getline(unsigned char* puch, int nCount, char delim = '\n');

66

istream& getline(signed char* psch, int nCount, char delim = '\0');

Parameters

Remarks

pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to store, including the terminating
NULL.

delim The delimiter character (defaults to newline).

Extracts characters from the stream until either the delimiter delim is found, the limit
nCount-l is reached, or end of file is reached. The characters are stored in the
specified array followed by a null terminator. If the delimiter is found, it is extracted
but not stored.

The get function, in contrast, neither extracts nor stores the delimiter.

See Also istream::get, istream::read

istream: : ignore
istream& ignore(int nCount = 1, int delim = EOF);

Parameters

Remarks

nCount The maximum number of characters to extract.

delim The delimiter character (defaults to EOF).

Extracts and discards up to nCount characters. Extraction stops if the delimiter delim
is extracted or the end of file is reached. If de lim = EOF (the default), then only the
end of file condition causes termination. The delimiter character is extracted.

istream: :ipfx
int ipfx(int need = 0);

Return Value
A nonzero return value if the operation was successful; 0 if the stream's error state is
nonzero, in which case the function does nothing.

Parameter
need Zero if called from formatted input functions; otherwise the minimum number

of characters needed.

istream: :ipfx

67

istream: :isfx

Remarks
This input prefix function is called by input functions prior to extracting data from
the stream. Formatted input functions call ipfx(0), while unformatted input
functions usually call ipfx(1).

Any ios object tied to this stream is flushed if need = 0 or if there are fewer than need
characters in the input buffer. Also, ipfx extracts leading white space if ios::skipws is
set.

See Also istream: :isfx

istream: :isfx
void isfxO;

Remarks
This input suffix function is called at the end of every extraction operation.

istream: :istream
Public~

istream(streambuf* psb);
END Public

Protected ~

istream();
END Protected

Parameter

Remarks

psb A pointer to an existing object of a streambuf-derived class.

Constructs an object of type istream.

See Also ios: :init

istream: :-istream
virtual-istreamO;

Remarks
Virtual destructor for the istream class.

68

istream: :peek
int peek();

Return Value
Returns the next character without extracting it from the stream. Returns EOF if the
stream is at end of file or if the ipfx function indicates an error.

istream: :putback
istream& putback(char ch);

Parameter

Remarks

ch The character to put back; must be the character previously extracted.

Puts a character back into the input stream. The putback function may fail and set
the error state. If ch does not match the character that was previously extracted, the
result is undefined.

istream: :read
istream& read(char* pch, int nCount);

istream& read(unsigned char* puch, int nCount);

istream& read(signed char* psch, int nCount);

Parameters

Remarks

pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to read.

Extracts bytes from the stream until the limit nCount is reached or until the end of
file is reached. The read function is useful for binary stream input.

See Also istream: :get, istream: :getline, istream: :gcount, istream: : ignore

istream: : seekg
istream& seekg(streampos pos);

istream& seekg(streamoff off, ios::seek_dir dir);

Parameters
pos The new position value; streampos is a typedef equivalent to long.

istream: :seekg

69

istream: : sync

Remarks

off The new offset value; streamoff is a typedef equivalent to long.

dir The seek direction. Must be one of the following enumerators:

• ios::beg Seek from the beginning of the stream.

• ios::cur Seek from the current position in the stream.

• ios: : end Seek from the end of the stream.

Changes the get pointer for the stream. Not all derived classes of istream need
support positioning; it is most often used with file-based streams.

See Also istream::tellg, ostream::seekp, ostream::tellp

istream::sync
int syncO;

Synchronizes the stream's internal buffer with the external source of characters.

Return Value

Remarks

EOF to indicate errors.

Synchronizes the stream's internal buffer with the external source of characters. This
function calls the virtual streambuf: :sync function so you can customize its
implementation by deriving a new class from streambuf.

See Also streambuf: :sync

istream: :tellg
streampos tellgO;

Gets the value for the stream's get pointer.

Return Value
A streampos type, corresponding to a long.

See Also istream: :seekg, ostream: :tellp, ostream: :seekp

Operators
istream::operator »

istream& operator »(char* psz);

70

Remarks

istream& operator »(unsigned char* pusz);

istream& operator »(signed char* pssz);

istream& operator »(char& rch);

istream& operator »(unsigned char& ruch);

istream& operator »(signed char& rsch);

istream& operator »(short& s);

istream& operator »(unsigned short& us);

istream& operator »(int& n);

istream& operator »(unsigned int& un);

istream& operator »(long& I);

istream& operator »(unsigned long& ul);

istream& operator »(float&f);

istream& operator »(double& d);

istream& operator »(long double& ld); (16-bit only)

istream& operator »(streambuf* psb);

istream& operator »(istream& (*fcn)(istream&»;

istream& operator »(ios& (*fcn)(ios&»;

These overloaded operators extract their argument from the stream. With the last two
variations, you can use manipulators that are defined for both istream and ios.

Manipulators
istream& ws

Remarks

ws

Extracts leading white space from the stream by calling the eatwhite function.

See Also istream: :eatwhite

istream& ws

71

class istream_ withassign

class istrearn_ withassign
#include <iostream.h>

The istream_ withassign class is a variant of istream that allows object assignment.
The predefined object cin is an object of this class and thus may be reassigned at run
time to a different istream object. For example, a program that normally expects
input from stdin could be temporarily directed to accept its input from a disk file.

Predefined Objects
The cio object is a predefined object of class ostream_ withassign. It is connected to
stdin (standard input, file descriptor 0).

The objects cin, cerr, and clog are tied to coot so that use of any of these may cause
coot to be flushed.

Construction/Destruction - Public Members
istream_ withassign Constructs an istream_ withassign object.

-istream_ withassign Destroys an istream_ withassign object.

Operators - Public Members
operator = Indicates an assignment operator.

See Also ostream_ withassign

Member Functions
istrearn_ withassign: :istrearn_ withassign

istream_ withassign(streambuf* psb);

istream_ withassignO;

Parameter

Remarks

72

psb A pointer to an existing object of a streambuf-derived class.

The first constructor creates a ready-to-use object of type istream_ withassign,
complete with attached streambuf object.

The second constructor creates an object but does not initialize it. You must
subsequently use the second variation of the istream_ withassign assignment operator
to attach the streambof object, or use the first variation to initialize this object to
match the specified istream object.

See Also istream_ withassign: :operator =

istream_withassign::operator =

istream_ withassign:: -istream_ withassign
-istream_ withassign();

Remarks
Destructor for the istream_ withassign class.

Operators
istream_ withassign: : operator =

Remarks

Example

Example

istream& operator =(const istream& ris);

istream& operator =(streambuf* psb);

The first overloaded assignment operator assigns the specified istream object to this
istream_ withassign object.

The second operator attaches a streambuf object to an existing istream_ witbassign
object, and it initializes the state of the istream_ witbassign object. This operator is
often used in conjunction with the void-argument constructor.

char buffer[100];
class xistream; II A special-purpose class derived from istream
extern xistream xin; II An xi stream object constructed elsewhere

cin = xin; II cin is reassigned to xin
cin » buffer; II xin used instead of cin

char buffer[100];
extern filedesc fd; II A file descriptor for an open file
filebuf fb(fd); II Construct a filebuf attached to fd

cin = &fb; II fb associated with cin
cin » buffer; II cin now gets its intput from the fb file

See Also istream_ witbassign: :istream_ witbassign

73

class istrstream

class istrstream
#include <strstrea.h>

The istrstream class supports input streams that have character arrays as a source.
You must allocate a character array before constructing an istrstream object. You can
use istream operators and functions on this character data. A get pointer, working in
the attached strstreambuf class, advances as you extract fields from the stream's
array. Use istream::seekg to go backwards. If the get pointer reaches the end of the
string (and sets the ios::eof flag), you must call clear before seekg.

Construction/Destruction - Public Members
istrstream Constructs an istrstream object.

-istrstream Destroys an istrstream object.

Other Functions - Public Members
rdbuf Returns a pointer to the stream's associated strstreambuf object.

str Returns a character array pointer to the string stream's contents.

See Also strstreambuf, streambuf, strstream, ostrstream

Member Functions
istrstream: :istrstream

istrstream(char* psz);

istrstream(char* pch, int nLength);

Parameters

Remarks

74

psz A null-terminated character array (string).

pch A character array that is not necessarily null terminated.

nLength Size (in characters) of pch. If 0, then pch is assumed to point to a null­
terminated array; if less than 0, then the array length is assumed to be unlimited.

The first constructor uses the specified psz buffer to make an istrstream object with
length corresponding to the string length.

The second constructor makes an istrstream object out of the first nLength characters
of the pch buffer.

Both constructors automatically construct a strstreambuf object that manages the
specified character buffer.

istrstream:: -istrstream

Remarks

-istrstreamO;

Destroys an istrstream object and its associated strstreambuf object. The character
buffer is not released because it was allocated by the user prior to istrstream
construction.

istrstream: :rdbuf
strstreambuf* rdbufO const;

Return Value
Returns a pointer to the strstreambuf buffer object that is associated with this stream.
Note that this is not the character buffer itself; the strstreambuf object contains a
pointer to the character area.

See Also istrstream: :str

istrstream:: str
char* strO;

Return Value
Returns a pointer to the string stream's character array. This pointer corresponds to
the array used to construct the istrstream object.

See Also istrstream: :istrstream

istrstream: :str

75

class of stream

class ofstream
#include <fstream.h>

The of stream class is an ostream derivative specialized for disk file output. All of its
constructors automatically create and associate a filebuf buffer object.

The filebuf class documentation describes the get and put areas and their associated
pointers. Only the put area and the put pointer are active for the of stream class.

Construction/Destruction - Public Members
of stream Constructs an of stream object.

-of stream Destroys an of stream object.

Operations - Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.

close Flushes any waiting output and closes the stream's file.

setbuf Associates the specified reserve area to the stream's filebuf object.

setmode Sets the stream's mode to binary or text.

attach Attaches the stream (through the filebuf object) to an open file.

Status/Information - Public Members
rdbuf Gets the stream's filebuf object.

fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream's file is open.

See Also filebuf, streambuf, ifstream, fstream

Member Functions
of stream: : attach

void attach(filedesc fd);

Parameter

Remarks

76

fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

Attaches this stream to the open file specified by fd. The function fails when the
stream is already attached to a file. In that case, the function sets ios::failbit in the
stream's error state.

See Also filebuf: : attach, of stream: :fd

of stream: :close

Remarks

void closeO;

Calls the close member function for the associated filebuf object. This function, in
tum, flushes any waiting output, closes the file, and disconnects the file from the
filebuf object. The filebuf object is not destroyed.

The stream's error state is cleared unless the call to filebuf::c1ose fails.

See Also filebuf::c1ose, ofstream::open, ofstream::is_open

of stream: :fd
filedesc fdO const;

Return Value
Returns the file descriptor associated with the stream. filedesc is a typedef equivalent
to int. Its value is supplied by the underlying file system.

See Also filebuf: :fd, of stream: : attach

of stream: :is_open
int is_openO const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise O.

See Also filebuf::is_open, ofstream::open, ofstream::c1ose

of stream: : of stream
ofstreamO;

ofstream(const char* siName, int nMode = ios::out, int nProt = filebuf::openprot);

ofstream(filedesc Jd);
ofstream(filedescJd, char* pch, int nLength);

Parameters
siName The name of the file to be opened during construction.

of stream: : of stream

77

of stream: : of stream

78

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (I) operator. The nMode parameter must have one
of the following values:

• ios: :app The function performs a seek to the end of file. When new bytes ·are
written to the file, they are always appended to the end, even if the position is
moved with the ostream: :seekp function.

• ios: : ate The function performs a seek to the end of file. When the first new
byte is written to the file, it is appended to the end, but when subsequent bytes
are written, they are written to the current position.

• ios: :in If this mode is specified, then the original file (if it exists) will not be
truncated.

• ios: : out The file is opened for output (implied for all of stream objects).

• ios: :trunc If the file already exists, its contents are discarded. This mode is
implied if ios: :out is specified and ios: : ate, ios: :app, and ios:in are not
specified.

• ios::nocreate If the file does not already exist, the function fails.

• ios: :noreplace If the file already exists, the function fails.

• ios::binary Opens the file in binary mode (the default is text mode).

nProt The file protection specification; defaults to the static integer
filebuf::openprot that is equivalent to filebuf::sh_compat. The possible nProt
values are:

• filebuf::sh_compat Compatibility share mode.

• filebuf: :sh_Done Exclusive mode; no sharing.

• filebuf: :sh_read Read sharing allowed.

• filebuf: :sh_ write Write sharing allowed.

To combine the filebuf::sh_read and filebuf::sh_write modes, use the logical OR
(II) operator.

fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to into

pch Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength The length (in bytes) of the reserve area (0 = unbuffered).

Remarks
The four of stream constructors are:

Constructor

ofstreamO

ofstream(const char*, int, int)

ofstream(filedesc)

ofstream(filedesc, char*, int)

Description

Constructs an of stream object without opening
a file.

Contructs an of stream object, opening the
specified file.

Constructs an of stream object that is attached
to an open file.

Constructs an of stream object that is associated
with a filebuf object. The filebuf object is
attached to an open file and to a specified
reserve area.

All of stream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area. The user-allocated
area is not automatically released during destruction.

of stream: : -of stream

Remarks

-ofstreamO;

Flushes the buffer, then destroys an of stream object along with its associated filebuf
object. The file is closed only if was opened by the constructor or by the open member
function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

of stream: :open
void open(const char* siName, int nMode = ios::out, int nProt = filebuf::openprot);

Parameters
siName The name of the file to be opened during construction.

nMode An integer containing mode bits defined as ios enumerators that can be
combined with the OR (I) operator. See the of stream constructor for a list of the
enumerators. The ios::out mode is implied.

nProt The file protection specification; defaults to the static integer
filebuf: : ()penprot. See the of stream constructor for a list of the other allowed
values.

of stream: :open

79

of stream: :rdbuf

Remarks
Opens a disk file and attaches it to the stream's filebuf object. If the filebuf object is
already attached to an open file, or if a filebuf call fails, the ios: :failbit is set. If the
file is not found, the ios::failbit is set only if the ios::nocreate mode was used.

See Also filebuf::open, ofstream::ofstream, ofstream::cIose, ofstream::is_open

of stream: :rdbuf
filebuf* rdbufO const;

Return Value

Example

Returns a pointer to the filebufbuffer object that is associated with this stream. (Note
that this is not the character buffer; the filebuf object contains a pointer to the
character area.)

extern of stream ofs;
int fd = ofs.rdbuf()->fd(); II Get the file descriptor for ofs

of stream: : setbuf
streambuf* setbuf(char * pch, int nLength);

Attaches the specified reserve area to the stream's filebuf object.

Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf cast as a streambuf. The reserve area will
not be released by the destructor.

Parameters
pch A pointer to a previously allocated reserve area of length nLength. A NULL

value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

of stream: : setmode
int setmode(int nMode = filebuf::text);

Return Value

80

The previous mode; -1 if the parameter is invalid, the file is not open, or the mode
cannot be changed.

Parameter

Remarks

nMode An integer that must be one of the following static filebuf constants:

• filebuf::text Text mode (newline characters translated to and from carriage
return -linefeed pairs) .

• filebuf::binary Binary mode (no translation).

This function sets the binary/text mode of the stream's filebuf object. It may be called
only after the file is opened.

See Also ios binary manipulator, ios text manipulator

of stream: :setmode

81

class ostream

class ostream
#include <iostream.h>

The ostream class provides the basic capability for sequential and random-access
output. An ostream object has a streambuf-derived object attached, and the two
classes work together; the ostream class does the formatting, and the streambuf class
does the low-level buffered output.

You can use ostream objects for sequential disk output if you fIrst construct an
appropriate filebuf object. (The filebuf class is derived from streambuf.) More often,
you will use the predefIned stream objects cout, cerr, and clog (actually objects of
class ostream_ withassign), or you will use objects of classes of stream (disk file
streams) and ostrstream (string streams).

All of the ostream member functions write unformatted data; formatted output is
handled by the insertion operators.

Derivation
It is not always necessary to derive from ostream to add functionality to a stream;
consider deriving from streambuf instead, as illustrated on page 22 in "Deriving
Your Own Stream Classes." The of stream and ostrstream classes are examples of
ostream-derived classes that construct member objects of predetermined derived
streambuf classes. You can add manipulators without deriving a new class.

If you add new insertion operators for a derived ostream class, then the rules of C++
dictate that you must reimplement all the base class insertion operators. If, however,
you reimplement the operators through inline equivalence, no extra code will be
generated.

Construction/Destruction - Public Members
ostream Constructs an ostream object that is attached to an existing streambuf

object.

-ostream Destroys an ostream object.

Prefix/Suffix Functions - Public Members
opfx Output prefix function, called prior to insertion operations to check for error

conditions, and so forth.

osfx Output suffix function, called after insertion operations; flushes the stream's
buffer if it is unit buffered.

Unformatted Output - Public Members
put Inserts a single byte into the stream.

write Inserts a series of bytes into the stream.

82

Other Functions - Public Members
flush Flushes the buffer associated with this stream.

seekp Changes the stream's put pointer.

tellp Gets the value of the stream's put pointer.

Operators - Public Members
operator« Insertion operator for various types.

Manipulators

Example

endl Inserts a newline sequence and flushes the buffer.

ends Inserts a null character to terminate a string.

flush Flushes the stream's buffer.

See Also streambuf, of stream, ostrstream, cout, cerr, clog

class xstream : public ostream
{

public:

} ;

II Constructors. etc.
I I
inline xstream& operator « (char ch) II insertion for char
{

return (xstream&)ostream::operator « (ch);
}

I I
II Insertions for other types

Member Functions
ostream: : flush

Remarks

ostream& flushO;

Flushes the buffer associated with this stream. The flush function calls the sync
function of the associated streambuf.

See Also ostream flush manipulator, streambuf: :sync

ostream: : flush

83

ostream::opfx

ostream: : opfx
int opfxO;

Return Value

Remarks

If the ostream object's error state is not 0, opfx returns 0 immediately; otherwise it
returns a nonzero value.

This output prefix function is called before every insertion operation. If another
ostream object is tied to this stream, the opfx function flushes that stream.

ostream: :osfx

Remarks

void osfxO;

This output suffix function is called after every insertion operation. It flushes the
ostream object if ios::unitbuf is set, or stdout and stderr if ios::stdio is set.

ostream::ostream
Public~

ostream(streambuf* psb);
END Public

Protected ~

ostream();
END Protected

Parameter

Remarks

psb A pointer to an existing object of a streambuf-derived class.

Constructs an object of type ostream.

See Also ios: :init

ostream: : -ostream
virtual-ostreamO;

84

Remarks
Destroys an ostream object. The output buffer is flushed as appropriate. The attached
streambuf object is destroyed only if it was allocated internally within the ostream
constructor.

ostream: :put
ostream& put(char ch);

Parameter
ch The character to insert.

Remarks
This function inserts a single character into the output stream.

ostream:: seekp
ostream& seekp(streampos pos);

ostream& seekp(streamoff off, ios::seek_dir dir);

Parameters

Remarks

pos The new position value; streampos is a typedef equivalent to long.

off The new offset value; streamoff is a typedef equivalent to long.

dir The seek direction specified by the enumerated type ios::seek_dir, with values
including:

• ios::beg Seek from the beginning of the stream.

• ios: :cur Seek from the current position in the stream.

• ios: :end Seek from the end of the stream.

Changes the position value for the stream. Not all derived classes of ostream need
support positioning. For file streams, the position is the byte offset from the
beginning of the file; for string streams, it is the byte offset from the beginning of the
string.

See Also ostream: :tellp, istream: :seekg, istream: :tellg

ostream: :tellp
streampos tellpO;

ostream: :tellp

85

ostream: : write

Return Value

Remarks

A streampos type that corresponds to a long.

Gets the position value for the stream. Not all derived classes of ostream need
support positioning. For file streams, the position is the byte offset from the
beginning of the file; for string streams, it is the byte offset from the beginning of the
string. Gets the value for the stream's put pointer.

See Also ostream: :seekp, istream: :tellg, istream: :seekg

ostream: : write
ostream& write(const char * pch, int nCount);

ostream& write(const unsigned char * puch, int nCount);

ostream& write(const signed char * psch, int nCount);

Parameters

Remarks

pch, puch, psch A pointer to a character array.

nCount The number of characters to be written.

Inserts a specified number of bytes from a buffer into the stream. If the underlying
file was opened in text mode, additional carriage return characters may be inserted.
The write function is useful for binary stream output.

Operators
ostream: : operator «

86

ostream& operator «(char ch);

ostream& operator «(unsigned char uch);

ostream& operator «(signed char sch);

ostream& operator «(const char* psz);

ostream& operator «(const unsigned char * pusz);

ostream& operator «(const signed char* pssz);

ostream& operator «(short s);

Remarks

ostream& operator «(unsigned short us);

ostream& operator «(int n);

ostream& operator «(unsigned int un);

ostream& operator «(long I);

ostream& operator «(unsigned long ul);

ostream& operator «(floatf);

ostream& operator «(double d);

ostream& operator «(long double ld); (16-bit only)

ostream& operator «(const void* pv);

ostream& operator «(streambuf* psb);

ostream& operator «(ostream& (*fcn)(ostream&»;

ostream& operator «(ios& (*fcn)(ios&»;

These overloaded operators insert their argument into the stream. With the last two
variations, you can use manipulators that are defined for both ostream and ios.

Manipulators
ostream& endl

Remarks

endl

This manipulator, when inserted into an output stream, inserts a newline character
and then flushes the buffer.

ostream& ends

Remarks

ends

This manipulator, when inserted into an output stream, inserts a null-terminator
character. It is particularly useful for ostrstream objects.

ostream& ends

87

ostream& flush

ostream& flush

Remarks

88

flush

This manipulator, when inserted into an output stream, flushes the output buffer by
calling the streambuf::sync member function.

See Also ostream: :flush, streambuf: :sync

ostream_ withassign: :ostream_ withassign

class o stream_ withassign
#include <iostream.h>

The ostream_ withassign class is a variant of ostream that allows object assignment.
The predefined objects coot, cerr, and clog are objects of this class and thus may be
reassigned at run time to a different ostream object. For example, a program that
normally sends output to stdout could be temporarily directed to send its output to a
disk file.

Predefined Objects
The three predefined objects of class ostream_ withassign are connected as follows:

coot Standard output (file descriptor 1).

cerr Unit buffered standard error (file descriptor 2).

clog Fully buffered standard error (file descriptor 2).

Unit buffering, as used by cerr, means that characters are flushed after each insertion
operation. The objects cin, cerr, and clog are tied to cout so that use of any of these
will cause coot to be flushed.

Construction/Destruction - Public Members
ostream_ withassign Constructs an ostream_ withassign object.

-ostream_ withassign Destroys an ostream_ withassign object.

Operators - Public Members
operator = Assignment operator.

See Also istream_ withassign

Member Functions
o stream_ withassign: : o stream_ withassign

ostream_ withassign(streambuf* psb);

ostream_ withassignO;

Parameter

Remarks

psb A pointer to an existing object of a streambuf-derived class.

The first constructor makes a ready-to-use object of type ostream_ withassign, with
an attached streambuf object.

89

ostream_ withassign:: -ostream_ withassign

The second constructor makes an object but does not initialize it. You must
subsequently use the streambuf assignment operator to attach the streambuf object,
or use the ostream assignment operator to initialize this object to match the specified
object.

See Also ostream_ withassign: : operator =

o stream_ withassign:: -ostream_ withassign
-ostream_ withassignO;

Remarks
Destructor for the ostream_ withassign class.

Operators
o stream_ withassign: : operator =

Remarks

Example

90

ostream& operator =(const ostream&_os);

ostream& operator =(streambuf* _sp);

The first overloaded assignment operator assigns the specified ostream object to this
ostream_ withassign object.

The second operator attaches a streambuf object to an existing ostream_ withassign
object, and initializes the state of the ostream_ withassign object. This operator is
often used in conjunction with the void-argument constructor.

filebuf fbC "test.dat"); II Filebuf object attached to "test.dat"
cout = &fb; II fb associated with cout
cout « "testing"; II Message goes to "test.dat" instead of stdout

See Also ostream_ withassign: :ostream_ withassign, cout

class ostrstream
#include <strstrea.h>

The ostrstream class supports output streams that have character arrays as a
destination. You can allocate a character array prior to construction, or the
constructor can internally allocate an expandable array. You can then use all the
ostream operators and functions to fill the array.

Be aware that there is a put pointer working behind the scenes in the attached
strstreambuf class. This pointer advances as you insert fields into the stream's array.
The only way you can make it go backward is to use the ostream::seekp function. If
the put pointer reaches the end of user-allocated memory (and sets the ios::eof flag),
you must call clear before seekp.

Construction/Destruction - Public Members
ostrstream Constructs an ostrstream object.

-ostrstream Destroys an ostrstream object.

Other Functions - Public Members
pcount Returns the number of bytes that have been stored in the stream's buffer.

rdbuf Returns a pointer to the stream's associated strstreambuf object.

str Returns a character array pointer to the string stream's contents and freezes the
array.

See Also strstreambuf, streambuf, strstream, istrstream

Member Functions
ostrstream: :ostrstream

ostrstream();

ostrstream(char* pch, int nLength, int nMode = ios::out);

Parameters
pch A character array that is large enough to accommodate future output stream

activity.

nLength The size (in characters) of pch. If 0, then pch is assumed to point to a null­
terminated array and strlen(pch) is used as the length; if less than 0, the array is
assumed to have infinite length.

ostrstream: :ostrstream

91

ostrstream: :-ostrstream

Remarks

nMode The stream-creation mode, which must be one of the following enumerators
as defined in class ios:

• ios::out Default; storing begins at pch.

• ios::ate The pch parameter is assumed to be a null-terminated array; storing
begins at the NULL character.

• ios::app Same as ios::ate.

The first constructor makes an ostrstream object that uses an internal, dynamic
buffer.

The second constructor makes an ostrstream object out of the fIrst nLength
characters of the pch buffer. The stream will not accept characters once the length
reaches nLength.

ostrstream: : ostrstream

Remarks

.... ostrstreamO;

Destroys an ostrstream object and its associated strstreambuf object, thus releasing
all internally allocated memory. If you used the void-argument constructor, the
internally allocated character buffer is released; otherwise, you must release it.

An internally allocated character buffer will not be released if it was previously
frozen by an str or strstreambuf: :freeze function call.

See Also ostrstream::str, strstreambuf::freeze

ostrstream: :pcount
int pcountO const;

Return Value

92

Returns the number of bytes stored in the buffer. This information is especially useful
when you have stored binary data in the object.

ostrstream: :rdbuf
strstreambuf* rdbufO const;

Return Value
Returns a pointer to the strstreambuf buffer object that is associated with this stream.
This is not the character buffer; the strstreambuf object contains a pointer to the
character area.

See Also ostrstream: :str

ostrstream: : str
char* strO;

Return Value
Returns a pointer to the internal character array. If the stream was built with the
void-argument constructor, str freezes the array. You must not send characters to a
frozen stream, and you are responsible for deleting the array. You can, however,
subsequently unfreeze the array by calling rdbuf->freeze(0).

If the stream was built with the constructor that specified the buffer, the pointer
contains the same address as the array used to construct the ostrstream object.

See Also ostrstream::ostrstream, ostrstream::rdbuf, strstreambuf::freeze

ostrstream:: str

93

class stdiobuf

class stdiobuf
#include <stdiostr.h>

The run-time library supports three conceptual sets of I/O functions: iostreams (C++
only), standard I/O (the functions declared in STDIO.H), and low-level I/O (the
functions declared in IO.H). The stdiobuf class is a derived class of streambuf that is
specialized for buffering to and from the standard I/O system.

Because the standard I/O system does its own internal buffering, the extra buffering
level provided by stdiobuf may reduce overall input/output efficiency. The stdiobuf
class is useful when you need to mix iostream I/O with standard I/O (printf and so
forth).

You can avoid use of the stdiobuf class if you use the filebuf class. You must also use
the stream class's ios::flags member function to set the ios::stdio format flag value.

Construction/Destruction - Public Members
stdiobuf Constructs a stdiobuf object from a FILE pointer .

.... stdiobuf Destroys a stdiobuf object.

Other Functions - Public Members
stdiofile Gets the file that is attached to the stdiofile object.

See Also stdiostream, filebuf, strstreambuf, ios::flags

Member Functions
stdiobuf:: stdiobuf

stdiobuf(FILE* fp);

Parameter

Remarks

94

fp A standard I/O file pointer (can be obtained through an fopen or _fsopen call).

Objects of class stdiobuf are constructed from open standard I/O files, including
stdin, stdout, and stderr. The object is unbuffered by default.

stdiobuf: : -stdiobuf
-stdiobufO;

Remarks
Destroys a stdiobuf object and, in the process, flushes the put area. The destructor
does not close the attached file.

stdiobuf:: stdiofile
FILE* stdiofileO;

Remarks
Returns the standard I/O file pointer associated with a stdiobuf object.

stdiobuf: :stdiofile

95

class stdiostream

class stdiostream
#include <stdiostr.h>

The stdiostream class makes 110 calls (through the stdiobuf class) to the standard
I/O system, which does its own internal buffering. Calls to the functions declared in
STDIO.H, such as printf, can be mixed with stdiostream 110 calls.

This class is included for compatibility with earlier stream libraries. You can avoid
use of the stdiostream class if you use the ostream or istream class with an
associated filebuf class. You must also use the stream class's ios::flags member
function to set the ios: :stdio format flag value.

The use of the stdiobuf class may reduce efficiency because it imposes an extra level
of buffering. Do not use this feature unless you need to mix iostream library calls
with standard 110 calls for the same file.

Construction/Destruction - Public Members
stdiostream Constructs a stdiostream object that is associated with a standard 110

FILE pointer.

-stdiostream Destroys a stdiostream object (virtual).

Other Functions - Public Members
rdbuf Gets the stream's stdiobuf object.

See Also stdiobuf, ios: :flags

Member Functions
stdiostream: :rdbuf

stdiobuf* rdbufO const;

Return Value

96

Returns a pointer to the stdiobuf buffer object that is associated with this stream. The
rdbuf function is useful when you need to call stdiobuf member functions.

stdiostream:: -stdiostream

stdiostream: :stdiostream
stdiostream(FILE* fp);

Parameter
fp A standard I/O file pointer (can be obtained through an fopen or _fsopen call).

Could be stdin, stdont, or stderr.

Remarks
Objects of class stdiostream are constructed from open standard I/O files. An
unbuffered stdiobuf object is automatically associated, but the standard I/O system

/ provides its own buffering.

Example
stdiostream myStream(stdout);

stdiostream: : -stdiostream

Remarks

-stdiostreamO;

This destructor destroys the stdiobuf object associated with this stream; however, the
attached file is not closed.

97

class streambuf

class streambuf
#include <iostream.h>

All the iostream classes in the ios hierarchy depend on an attached streambuf class
for the actual 110 processing. This class is an abstract class, but the iostream class
library contains the following derived buffer classes for use with streams:

• filebuf Buffered disk file 110.

• strstreambuf Stream data held entirely within an in-memory byte array.

• stdiobuf Disk 110 with buffering done by the underlying standard 110 system.

All streambuf objects, when configured for buffered processing, maintain a fixed
memory buffer, called a reserve area, that can be dynamically partitioned into a get
area for input, and a put area for output. These areas mayor may not overlap. With
the protected member functions, you can access and manipulate a get pointer for
character retrieval and a put pointer for character storage. The exact behavior of the
buffers and pointers depends on the implementation of the derived class.

The capabilities of the iostream classes can be extended significantly through the
derivation of new streambuf classes. The ios class tree supplies the programming
interface and all formatting features, but the streambuf class does the real work. The
ios classes call the streambuf public members, including a set of virtual functions.

The streambuf class provides a default implementation of certain virtual member
functions. The "Default Implementation" section for each such function suggests
function behavior for the derived class.

Character Input Functions - Public Members
in_avail Returns the number of characters in the get area.

sgetc Returns the character at the get pointer, but does not move the pointer.

snextc Advances the get pointer, then returns the next character.

sbumpc Returns the current character, and then advances the get pointer.

stossc Moves the get pointer forward one position, but does not return a character.

sputbackc Attempts to move the get pointer back one position.

sgetn Gets a sequence of characters from the streambuf object's buffer.

Character Output Functions - Public Members

98

out_waiting Returns the number of characters in the put area.

sputc Stores a character in the put area and advances the put pointer.

sputo Stores a sequence of characters in the streambuf object's buffer and advances
the put pointer.

Construction/Destruction - Public Members
-streambuf Virtual destructor.

Diagnostic Functions - Public Members
dbp Prints buffer statistics and pointer values.

Virtual Functions - Public Members
sync Empties the get area and the put area.

setbuf Attempts to attach a reserve area to the streambuf object.

seekoff Seeks to a specified offset.

seekpos Seeks to a specified position.

overflow Empties the put area.

underflow Fills the get area if necessary.

pbackfail Augments the sputbackc function.

Construction/Destruction - Protected Members
streambuf Constructors for use in derived classes.

Other Protected Member Functions - Protected Members
base Returns a pointer to the start of the reserve area.

ebuf Returns a pointer to the end of the reserve area.

bien Returns the size of the reserve area.

pbase Returns a pointer to the start of the put area.

pptr Returns the put pointer.

epptr Returns a pointer to the end of the put area.

eback Returns the lower bound of the get area.

gptr Returns the get pointer.

egptr Returns a pointer to the end of the get area.

setp Sets all the put area pointers.

setg Sets all the get area pointers.

pbump Increments the put pointer.

gbump Increments the get pointer.

setb Sets up the reserve area.

unbuffered Tests or sets the streambuf buffer state variable.

allocate Allocates a buffer, if needed, by calling doalloc.

doallocate Allocates a reserve area (virtual function).

See Also streambuf: :doallocate, streambuf: : unbuffered

class streambuf

99

streambuf: : allocate

Member Functions
streambuf: : allocate

Protected ~

int allocateO;
END Protected

Return Value
Calls the virtual function doallocate to set up a reserve area. If a reserve area already
exists or if the streambuf object is unbuffered, allocate returns O. If the space'
allocation fails, allocate returns EOF.

See Also streambuf: :doallocate, streambuf: :unbufTered

streambuf: : base
Protected ~

char* baseO const
END Protected

Return Value
Returns a pointer to the first byte of the reserve area. The reserve area consists of
space between the pointers returned by base and ebuf.

See Also streambuf: :ebuf, streambuf: :setb, streambuf:: bien

streambuf: : bIen
Protected ~

int blenO const;
END Protected

Return Value
Returns the size, in bytes, of the reserve area.

See Also streambuf:: base, streambuf: :ebuf, streambuf: :setb

100

streambuf: :dbp

Remarks

Example

void dbpO;

Writes ASCII debugging information directly on stdout. Treat this function as part of
the protected interface.

STREAMBUF DEBUG INFO: this = 00E7:09DC
base()=00E7:0A0C, ebuf()=00E7:0C0C, blen()=512
eback()=0000:0000, gptr()=0000:0000, egptr()=0000:0000
pbase()=00E7:0A0C, pptr()=00E7:0A22, epptr()=00E7:0C0C

streambuf: :doallocate
Protected -7

virtual int doallocateO;
END Protected

Return Value

Remarks

Called by allocate when space is needed. The doallocate function must allocate a
reserve area, then call setb to attach the reserve area to the streambuf object. If the
reserve area allocation fails, doallocate returns EOF.

By default, this function attempts to allocate a reserve area using operator new.

See Also streambuf::allocate, streambuf::setb

streambuf: :eback
Protected -7

char* ebackO const;
END Protected

Return Value
Returns the lower bound of the get area. Space between the eback and gptr pointers
is available for putting a character back into the stream.

See Also streambuf::sputbackc, streambuf::gptr

streambuf: :eback

101

streambuf::ebuf

streambuf: :ebuf
Protected -7

char* ebufO const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the reserve area. The reserve area
consists of space between the pointers returned by base and ebuf.

See Also streambuf::base, streambuf::setb, streambuf::blen

streambuf: :egptr
Protected -7

char* egptrO const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the get area.

See Also streambuf: :setg, streambuf: :eback, streambuf: :gptr

streambuf: :epptr
Protected -7

char* epptrO const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the put area.

See Also streambuf: :setp, streambuf: :pbase, streambuf: :pptr

streambuf: :gbump
Protected -7

void gbump(int nCount);
END Protected

Parameter

102

Count The number of bytes to increment the get pointer. May be positive or
negative.

Remarks
Increments the get pointer. No bounds checks are made on the result.

See Also streambuf: :pbump

streambuf::gptr
Protected ~

char* gptrO const;
END Protected

Return Value
Returns a pointer to the next character to be fetched from the streambuf buffer. This
pointer is known as the get pointer.

See Also streambuf: :setg, streambuf: :eback, streambuf: :egptr

streambuf: : in_avail
int in_avaiiO const;

Return Value
Returns the number of characters in the get area that are available for fetching. These
characters are between the gptr and egptr pointers and may be fetched with a
guarantee of no errors.

streambuf: : out_ waiting
int out_ waitingO const;

Return Value
Returns the number of characters in the put area that have not been sent to the final
output destination. These characters are between the pbase and pptr pointers.

streambuf: : overflow
virtual int overflow(int nCh = EOF) = 0;

Return Value
EOF to indicate an error.

Parameter
nCh EOF or the character to output.

streambuf: : overflow

103

streambuf: :pbackfail

Remarks
The virtual overflow function, together with the sync and underflow functions,
defines the characteristics of the streambuf-derived class. Each derived class might
implement overflow differently, but the interface with the calling stream class is the
same.

The overflow function is most frequently called by public streambuf functions like
sputc and sputn when the put area is full, but other classes, including the stream
classes, can call overflow anytime.

The function "consumes" the characters in the put area between the pbase and pptr
pointers and then reinitializes the put area. The overflow function must also consume
nCh (if nCh is not EOF), or it might choose to put that character in the new put area
so that it will be consumed on the next call.

The definition of "consume" varies among derived classes. For example, the filebuf
class writes its characters to a file, while the strsteambuf class keeps them in its
buffer and (if the buffer is designated as dynamic) expands the buffer in response to a
call to overflow. This expansion is achieved by freeing the old buffer and replacing it
with a new, larger one. The pointers are adjusted as necessary.

Default Implementation
No default implementation. Derived classes must define this function.

See Also streambuf::pbase, streambuf::pptr, streambuf::setp, streambuf::sync,
streambuf: :underflow

streambuf: :pbackfail
virtual int pbackfail(int nCh);

Return Value
The nCh parameter if successful; otherwise EOF.

Parameter

Remarks

nCh The character used in a previous sputbackc call.

This function is called by sputbackc if it fails, usually because the eback pointer
equals the gptr pointer. The pbackfail function should deal with the situation, if
possible, by such means as repositioning the external file pointer.

Default implementation
Returns EOF.

See Also streambuf: :sputbackc

104

streambuf: :pbase
Protected ~

char* pbaseO const;
END Protected

Return Value
Returns a pointer to the start of the put area. Characters between the pbase pointer
and the pptr pointer have been stored in the buffer but not flushed to the final output
destination.

See Also streambuf: :pptr, streambuf: :setp, streambuf: :out_ waiting

streambuf: :pbump
Protected ~

void pbump(int nCount);
END Protected

Parameter

Remarks

nCount The number of bytes to increment the put pointer. May be positive or
negative.

Increments the put pointer. No bounds checks are made on the result.

See Also streambuf: :gbump, streambuf: :setp

streambuf: :pptr
Protected ~

char* pptrO const;
END Protected

Return Value
Returns a pointer to the first byte of the put area. This pointer is known as the put
pointer and is the destination for the next character(s) sent to the streambuf object.

See Also streambuf: :epptr, streambuf: :pbase, streambuf: :setp

streambuf: :pptr

105

streambuf: :sbumpc

streambuf: : sbumpc
int sbumpcO;

Return Value
Returns the current character, then advances the get pointer. Returns EOF if the get
pointer is currently at the end of the sequence (equal to the egptr pointer).

See Also streambuf: :epptr, streambuf: :gbump

streambuf: : seekoff
virtual streampos seekoff(streamoff off, ios::seek_dir dir, int nMode = ios::in I ios::out);

Return Value
The new position value. This is the byte offset from the start of the file (or string). If
both ios::in and ios::out are specified, the function returns the output position. If the
derived class does not support positioning, the function returns EOF.

Parameters

Remarks

off The new offset value; streamoff is a typedef equivalent to long.

dir One of the following seek directions specified by the enumerated type seek_dir:

• ios:: beg Seek from the beginning of the stream.

• ios: : cur Seek from the current position in the stream.

• ios: :end Seek from the end of the stream.

nMode An integer that contains a bitwise OR (I) combination of the enumerators
ios: :in and ios: :out.

Changes the position for the streambuf object. Not all derived classes of streambuf
need to support positioning; however, the filebuf, strstreambuf, and stdiobuf classes
do support positioning.

Classes derived from streambuf often support independent input and output position
values. The nMode parameter determines which value(s) is set.

Default Implementation
Returns EOP.

See Also streambuf: :seekpos

106

streambuf:: seekpos
virtual streampos seekpos(streampos pos, int nMode = ios::in I ios::out);

Return Value
The new position value. If both ios::in and ios::out are specified, the function returns
the output position. If the derived class does not support positioning, the function
returns EOF.

Parameters

Remarks

pas The new position value; streampos is a typedef equivalent to long.

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the OR (I) operator. See ofstream::ofstream for a listing of the
enumerators.

Changes the position, relative to the beginning of the stream, for the streambuf
object. Not all derived classes of streambuf need to support positioning; however, the
filebuf, strstreambuf, and stdiobuf classes do support positioning.

Classes derived from streambuf often support independent input and output position
values. The nMode parameter determines which value(s) is set.

Default Implementation
Calls seekoff((streamotl) pos, ios::beg, nMode). Thus, to define seeking in a
derived class, it is usually necessary to redefine only seekoff.

See Also streambuf: :seekoff

streambuf: : setb
Protected ~

void setb(char* pb, char* peb, int nDelete = 0);
END Protected

Parameters

Remarks

pb The new value for the base pointer.

peb The new value for the ebuf pointer.

nDelete Flag that controls automatic deletion. If nDelete is not 0, the reserve area
will be deleted when: (1) the base pointer is changed by another setb call, or (2)
the streambuf destructor is called.

Sets the values of the reserve area pointers. If both pb and peb are NULL, there is no
reserve area. If pb is not NULL and peb is NULL, the reserve area has a length of 0.

See Also streambuf:: base, streambuf: :ebuf

streambuf: :setb

107

streambuf:: setbuf

streambuf:: setbuf
virtual streambuf* setbuf(char* pr, int nLength);

Return Value
A streambuf pointer if the buffer is accepted; otherwise NULL.

Parameters

Remarks

pr A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

Attaches the specified reserve area to the streambuf object. Derived classes mayor
may not use this area.

Default Implementation
Accepts the request if there is not a reserved area already.

streambuf: : setg
Protected ~

void setg(char* peb, char* pg, char* peg);
END Protected

Parameters

Remarks

peb The new value for the eback pointer.

pg The new value for the gptr pointer.

peg The new value for the egptr pointer.

Sets the values for the get area pointers.

See Also streambuf: :eback, streambuf: :gptr, streambuf: :egptr

streambuf: :setp
Protected ~

void setp(char* pp, char* pep);
END Protected

Parameters
pp The new value for the pbase and pptr pointers.

pep The new value for the epptr pointer.

108

Remarks
Sets the values for the put area pointers.

See Also streambuf: :pptr, streambuf: :pbase, streambuf: :epptr

streambuf: :sgetc
int sgetcO;

Remarks
Returns the character at the get pointer. The sgetc function does not move the get
pointer. Returns EOF if there is no character available.

See Also streambuf: :sbumpc, streambuf: :sgetn, streambuf: :snextc,
streambuf: :stossc

streambuf: :sgetn
int sgetn(char* pch, int nCount);

Return Value
The number of characters fetched.

Parameters

Remarks

pch A pointer to a buffer that will receive characters from the streambuf object.

nCount The number of characters to get.

Gets the nCount characters that follow the get pointer and stores them in the area
starting at pch. When fewer than nCount characters remain in the streambuf object,
sgetn fetches whatever characters remain. The function repositions the get pointer to
follow the fetched characters.

See Also streambuf: :sbumpc, streambuf: :sgetc, streambuf: :snextc,
streambuf: :stossc

streambuf:: snextc
int snextcO;

Return Value
First tests the get pointer, then returns EOF if it is already at the end of the get area.
Otherwise, it moves the get pointer forward one character and returns the character

streambuf: :snextc

109

streambuf: :sputbackc

that follows the new position. It returns EOF if the pointer has been moved to the end
of the get area.

See Also streambuf: :sbumpc, streambuf: :sgetc, streambuf: :sgetn,
streambuf: :stossc

streambuf:: sputbackc
int sputbackc(char ch);

Return Value
EOF on failure.

Parameter

Remarks

ch The character to be put back to the streambuf object.

Moves the get pointer back one character. The ch character must match the character
just before the get pointer.

See Also streambuf: :sbumpc, streambuf: :pbackfaiJ

streambuf::sputc
int sputc(int nCh);

Return Value
The number of characters successfully stored; EOF on error.

Parameter

Remarks

110

nCh The character to store in the streambuf object.

Stores a character in the put area and advances the put pointer.

This public function is available to code outside the class, including the classes
derived from ios. A derived streambuf class can gain access to its buffer directly by
using protected member functions.

See Also streambuf: :sputn

streambuf:: sputn
int sputn(const char* pch, int nCount);

Return Value
The number of characters stored. This number is usually nCount but could be less if
an error occurs.

Parameters

Remarks

pch A pointer to a buffer that contains data to be copied to the streambuf object.

nCount The number of characters in the buffer.

Copies nCount characters from pch to the streambuf buffer following the put pointer.
The function repositions the put pointer to follow the stored characters.

See Also streambuf: :sputc

streambuf: : stossc

Remarks

void stosscO;

Moves the get pointer forward one character. If the pointer is already at the end of the
get area, the function has no effect.

See Also streambuf: :sbumpc, streambuf: :sgetn, streambuf: :snextc,
streambuf: :sgetc

streambuf:: streambuf
Protected -7

streambufO;

streambuf(char* pr, int nLength);
END Protected

Parameters
pr A pointer to a previously allocated reserve area of length nLength. A NULL

value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

streambuf: :streambuf

111

streambuf:: -streambuf

Remarks
The first constructor makes an uninitialized streambuf object. This object is not
suitable for use until a setbuf call is made. A derived class constructor usually calls
setbuf or uses the second constructor.

The second constructor initializes the streambuf object with the specified reserve
area or marks it as unbuffered.

See Also streambuf: :setbuf

streambuf:: -streambuf

Remarks

Protected ~

virtual streambufO;
END Protected

The streambuf destructor flushes the buffer if the stream is being used for output.

streambuf::sync
virtual int syncO;

Return Value

Remarks

EOF if an error occurs.

The virtual sync function, with the overflow and underflow functions, defines the
characteristics of the streambuf-derived class. Each derived class might implement
sync differently, but the interface with the calling stream class is the same.

The sync function flushes the put area. It also empties the get area and, in the
process, sends any unprocessed characters back to the source, if necessary.

Default Implementation
Returns 0 if the get area is empty and there are no more characters to output;
otherwise, it returns EOF.

See Also streambuf::overflow

streambuf: : unbuffered
Protected ~

void unbufTered(int nState);

int unbufferedO const;
END Protected

112

Parameter

Remarks

nState The value of the buffering state variable; 0 = buffered, nonzero = unbuffered.

The first overloaded unbuffered function sets the value of the streambuf object's
buffering state. This variable's primary purpose is to control whether the allocate
function automatically allocates a reserve area.

The second function returns the current buffering state variable.

See Also streambuf: : allocate, streambuf: :doallocate

streambuf: : underflow

Remarks

mfvirtual int underflowO = 0;

The virtual underflow function, with the sync and overflow functions, defines the
characteristics of the streambuf-derived class. Each derived class might implement
underflow differently, but the interface with the calling stream class is the same.

The underflow function is most frequently called by public streambuf functions like
sgetc and sgetn when the get area is empty, but other classes, including the stream
classes, can call underflow anytime.

The underflow function supplies the get area with characters from the input source.
If the get area contains characters, underflow returns the first character. If the get
area is empty, it fills the get area and returns the next character (which it leaves in
the get area). If there are no more characters available, then underflow returns EOF
and leaves the get area empty.

In the strstreambuf class, underflow adjusts the egptr pointer to access storage that
was dynamically allocated by a call to overflow.

Default Implementation
No default implementation. Derived classes must define this function.

streambuf: :underflow

113

class strstream

class strstream
#include <strstrea.h>

The strstream class supports I/O streams that have character arrays as a source and
destination. You can allocate a character array prior to construction, or the
constructor can internally allocate a dynamic array. You can then use all the input
and output stream operators and functions to fill the array.

Be aware that a put pointer and a get pointer are working independently behind the
scenes in the attached strstreambuf class. The put pointer advances as you insert
fields into the stream's array, and the get pointer advances as you extract fields. The
ostream: :seekp function moves the put pointer, and the istream: :seekg function
moves the get pointer. If either pointer reaches the end of the string (and sets the
ios::eof flag), you must call clear before seeking.

Construction/Destruction - Public Members
strstream Constructs a strstream object.

-strstream Destroys a strstream object.

Other Functions - Public Members
pcount Returns the number of bytes that have been stored in the stream's buffer.

rdbuf Returns a pointer to the stream's associated strstreambuf object.

str Returns a pointer to the string stream's character buffer and freezes it.

See Also strstreambuf, streambuf, istrstream, ostrstream

Member Functions
strstream: :pcount

int pcountO const;

Return Value

114

Returns the number of bytes stored in the buffer. This information is especially useful
when you have stored binary data in the object.

strstream: :rdbuf
strstreambuf* rdbufO const;

Return Value
Returns a pointer to the strstreambuf buffer object that is associated with this stream.
This is not the character buffer; the strstreambuf object contains a pointer to the
character area.

See Also strstream::str

strstream::str
char* strO;

Return Value
Returns a pointer to the internal character array. If the stream was built with the
void-argument constructor, then str freezes the array. You must not send characters to
a frozen stream, and you are responsible for deleting the array. You can unfreeze the
the stream by calling rdbuf->freeze(0).

If the stream was built with the constructor that specified the buffer, the pointer
contains the same address as the array used to construct the ostrstream object.

See Also strstreambuf: :freeze, strstream: :rdbuf

strstream: : strstream
strstreamO;

strstream(char* pch, int nLength, int nMode);

Parameters
pch A character array that is large enough to accommodate future output stream

activity.

nLength The size (in characters) of pch. If 0, pch is assumed to point to a null­
terminated array; if less than 0, the array is assumed to have infinite length.

nMode The stream creation mode, which must be one of the following enumerators
as defined in class ios:

• ios: :in Retrieval begins at the beginning of the array.

• ios::out By default, storing begins at pch.

• ios::ate The pch parameter is assumed to be a null-terminated array; storing
begins at the NULL character.

• ios::app Same as ios::ate.

strstream: : strstream

115

strstream:: -strstream

Remarks

The use of the ios::in and ios::out flags is optional for this class; both input and
output are implied.

The first constructor makes an strstream object that uses an internal, dynamic buffer
that is initially empty.

The second constructor makes an strstream object out of the first nLength characters
of the psc buffer. The stream will not accept characters once the length reaches
nLength.

strstream:: -strstrearn

Remarks

116

-strstreamO;

Destroys a strstream object and its associated strstreambuf object, thus releasing all
internally allocated memory. If you used the void-argument constructor, the internally
allocated character buffer is released; otherwise, you must release it.

An internally allocated character buffer will not be released if it was previously
frozen by calling rdbuf->freeze(0).

See Also strstream: :rdbuf

class strstreambuf
#include <strstrea.h>

The strstreambuf class is a derived class of streambuf that manages an in-memory
character array.

The file stream classes, ostrstream, istrstream, and strstream, use strstreambuf
member functions to fetch and store characters. Some of these member functions are
virtual functions defined for the streambuf class.

The reserve area, put area, and get area were introduced in the streambuf class
description. For strsteambuf objects, the put area is the same as the get area, but the
get pointer and the put pointer move independently.

Construction/Destruction - Public Members
strstreambuf Constructs a strstreambuf object.

-strstreambuf Destroys a strstreambuf object.

Other Functions - Public Members
freeze Freezes a stream.

str Returns a pointer to the string.

See Also istrstream, ostrstream, filebuf, stdiobuf

Member Functions
strstreambuf: : freeze

void freeze(int n = 1);

Parameter

Remarks

n A 0 value permits automatic deletion of the current array and its automatic growth
(if it is dynamic); a nonzero value prevents deletion.

If a strstreambuf object has a dynamic array, memory is usually deleted on
destruction and size adjustment. The freeze function provides a way to prevent that
automatic deletion. Once an array is frozen, no further input or output is permitted.
The results of such operations are undefined.

The freeze function can also unfreeze a frozen buffer.

See Also strstreambuf: :str

strstreambuf: : freeze

117

strstreambuf: :str

strstreambuf: : str
char* strO;

Return Value
Returns a pointer to the object's internal character array. If the strstreambuf object
was constructed with a user-supplied buffer, that buffer address is returned. If the
object has a dynamic array, str freezes the array. You must not send characters to a
frozen strstreambuf object, and you are responsible for deleting the array. If a
dynamic array is empty, then str returns NULL.

Use the freeze function with a 0 parameter to unfreeze a strstreambuf object.

See Also strstreambuf: : freeze

strstreambuf: : strstreambuf
strstreambufO;

strstreambuf(int nBytes);

strstreambuf(char* pch, int n, char* pstart = 0);

strstreambuf(unsigned char* puch, int n, unsigned char* pustart = 0);

strstreambuf(signed char* psch, int n, signed char* psstart = 0);

strstreambuf(void* (*Jalloc)(long), void (*ffree)(void*));

Parameters

118

nBytes The initial length of a dynamic stream buffer.

pch, puch, psch A pointer to a character buffer that will be attached to the object.
The get pointer is initialized to this value.

n One of the following integer parameters:

• positive n bytes, starting at pch, is used as a fixed-length stream buffer.

• 0 The pch parameter points to the start of a null-terminated string that
constitutes the stream buffer (terminator excluded).

• negative The pch parameter points to a stream buffer that continues
indefinitely.

• pstart, pustart, psstart The initial value of the put pointer.

Jalloc A memory-allocation function with the prototype void * falloc(long). The
default is new.

ffree A function that frees allocated memory with the prototype void ffree(void *).
The default is delete.

strstreambuf:: -strstreambuf

Remarks
The four streambuf constructors are described as follows:

Constructor

strstreambufO

strstreambuf(int)

strstreambuf(char*, int, char*)

strstreambuf(void *(*), void(*))

Description

Constructs an empty strstreambuf object
with dynamic buffering. The buffer is
allocated internally by the class and grows as
needed, unless it is frozen.

Constructs an empty strstreambuf object
with a dynamic buffer n bytes long to start
with. The buffer is allocated internally by the
class and grows as needed, unless it is frozen.

Constructs a strstreambuf object from
already-allocated memory as specified by the
arguments. There are constructor variations
for both unsigned and signed character
arrays.

Constructs an empty strstreambuf object
with dynamic buffering. The faUoe function
is called for allocation. The long parameter
specifies the buffer length and the function
returns the buffer address. If the faUoe
pointer is NULL, operator new is used. The
ffree function frees memory allocated by
faUoe. If the ffree pointer is NULL, the
operator delete is used.

strstreambuf: : -strstreambuf

Remarks

.... strstreambufO;

Destroys a strstreambuf object and releases internally allocated dynamic memory
unless the object is frozen. The destructor does not release user-allocated memory.

119

A
adjustfield data member, ios class 56
allocate member function, streambuf class 100
Arguments, inserting into streams, ostream::operator«

86
Arrays

internal character, returning pointer to,
ostrstream::str 93

strstreambuf objects, preventing memory deletion,
strstreambuf::freeze 117

Assignment operator
istream class 73
ostream class 90

attach member function
filebuf class 31
fstream class 35
ifstream class 41
of stream class 76

Attaching filebuf objects to specified open file,
filebuf: : attach 31

Attaching streams

B

to already open file, ostream::attach 76
to specified open file, ifstream::attach 41
to specified open, filefstream::attach 35

bad member function
ios class 48
of stream class 9

badbit member function, ios class, ios: :rdstate 53
base member function, streambuf class 100
basefield data member, ios class 57
beg, (beg, operator), ios class, streambuf::seekpos 107
Binary output files, output streams 10, 11
Binary/text mode, setting

filebuf objects, filebuf::setrnode 34
stream's filebuf object, ifstream::setmode 45
streams, ios& binary 57
streams,ofstream::setmode 80

bitalloc member function, ios class 48

Index

bIen member function, streambuf class 100
Book

overview v
Buffer-deletion flags, assigning value for stream,

ios::delbuf 49
Buffering

output streams, effects 10
state, setting for streambuf object,

stream: : unbuffered 112
Buffers, flushing, ostream::flush 83
Bytes, extracting from streams, istream 69

c
c++ synchronizing streams with standard C stdio

streams, ios: : sync_ with_stdio 54
Changing position

relative to stream beginning, strearnbuf::seekpos
107

streambuf objects, streambuf:: seekoff 106
streams,ostream::seekp 85

Character arrays, returning pointer to string stream's,
istrstream::str 75

Characters
extracting

from stream, discarding, istream::ignore 67
putting back into stream, istream: :putback 69

fill, setting for stream, setfill 58
inserting into output stream, ostream: :put 85
newline, inserting into output streams, ostream&

endl 87
null-terminator, inserting into output streams,

ostream& ends 87
returning number extracted by last unformatted

input function, istream::gcount 65
returning without extracting, istream::peek 69

clear member function
ios class 48
of stream class 9

121

Index

122

Clearing
error-bits, ios::clear 48
format flags

ios::unsetf 55
streams 58

close member function
filebuf class 32
fstream::close 36
ifstream::close 42
ofstream::close 77
fstream class 36
ifstream class 42
input streams 18
of stream class 9, 77

Closing files
associated with filebuf object, fstream::close 36, 77
attached to filebuf object, filebuf::close 32
filebuf objects, ifstream::close 42

Constructors
filebuf 32
fstream 36
ifstream 42
ios 52
iostream 61
istream 68
istrstream 74
of stream 77
ostream 84
ostrstream 91
stdiobuf 94
stdiostream 97
streambuf 111
strstream 115
strstreambuf 118

Counting bytes stored in stream buffers,
ostrstream::pcount 92

Creating
filebuf objects to specified open file, filebuf::filebuf

32
fstream objects, fstream::fstream 36
ifstream objects, ifstream::ifstream 42
Iostream_init objects, Iostream_init: :Iostream_init

63
istream objects, istream: :istream 68
istream_ withassign objects,

istream_ withassign: :istream_ withassign 72
istrstream objects, istrstrearn::istrstream 74
of stream objects, ofstream::ofstream 77
ostream objects, iostream: :iostream 61

Creating (continued)
ostream objects, ostream: :ostream 84
ostream_ withassign objects,

ostream_ withassign: :ostream_ withassign 89
ostrstream objects, ostrstream::ostrstream 91
output file streams 3
stdiobuf objects, stdiobuf::stdiobuf 94
stdiostream objects, stdiostream: :stdiostream 97
strearnbuf objects, streambuf: :streambuf 111
strstream objects, strstream: :strstream 115
strstreambuf objects, strstreambuf:: strstreambuf

118
Customizing output stream manipulators 12

D
Data members, ios class 56
Data, extracting from streams, istream::get 65,66
dbp member function, streambuf class 101
Debugging using stdout, streambuf::dbp 101
delbuf member function, ios class 49
Destroying

fstream objects, fstream::-fstrearn 38
ifstream objects, ifstream::-ifstream 44
iostream objects, iostream:: -iostream 62
Iostrearn_init objects, Iostream_init:: - Iostream_init

63
istream objects, istream::-istrearn 68
istream_ withassign objects,

istrearn_ withassign:: -istrearn_ withassign 73
istrstream objects, istrstream::-istrstream 75
of stream objects, of stream: : -ofstrearn 79
ostream_ withassign objects,

o stream_ withassign:: -ostrearn_ withassign 90
ostrstream objects, ostrstream::-ostrstream 92
stdiobuf objects, stdiobuf::-stdiobuf 95
stdiostream objects, stdiostream::-stdiostream 97
streambuf objects, streambuf::-streambuf 112
strstream objects, strstream::-strstream 116
strstreambuf objects, strstrearnbuf:: -strstreambuf

119
Destructors

-filebuf 33
-fstream 38
-ifstream 44
-ios 52
-iostrearn 62
-Iostream_init 63
-istream 68

Destructors (continued)
-istream_ withassign 73
-istrstream 75
-of stream 79
-ostream 84
-ostream_ with assign 90
-ostrstream 92
-stdiobuf 95
-stdiostream 97
-streambuf 112
-strstream 116
-strstreambuf 119

doallocate member function, streambuf class 101

E
eatwhite member function, istream class 65
eback member function, streambuf class 101
ebuf member function, streambuf class 102
egptr member function, streambuf class 102
eof member function

ios class 49
of stream class 9

eofbit member function, ios class, ios: :rdstate 53
epptr member function, streambuf class 102
Error bits

setting or clearing, ios: : clear 48
testing if clear, ios::good 51

Error testing, 110, ios::fail 49
Errors

extraction 14
110, testing for serious, ios::bad 48
processing, of stream class member functions 9

Extracting white space from streams, istream& ws 71
Extraction operators

F

input streams 14
istream class 70
overloading, input streams 18
testing for 14
using 14

fail member function
ios class 49
of stream class 9

failbit member function
fstream: :open 38
ifstream::attach 41

Index

failbit member function (continued)
ifstream: :open 44
ios: :rdstate 53
istream: :get 65
ofstream::attach 76
ofstream::open 79

failbit member function, ios class, fstream::attach 35
fd member function

filebuf class 32
fstream class 36
ifstream class 42
of stream class 77

File descriptors
associated with stream, returning, ifstream: :fd 42
associated with streams, returning, fstream: :fd 36
returning for filebuf object, filebuf::fd 32
streams, returning, of stream: :fd 77

filebuf class
consume defined 103
described 31
member functions

-filebuf 33
attach 31
close 32, 36, 42, 77
fd 32
filebuf 32
is_open 33
open 33
setmode 34

filebuf constructor 32
filebuf objects

attaching reserve area, fstream::setbuf 39
attaching specified reserve area to stream,

ifstream::setbuf 45
buffer associated with stream, returning pointer,

ifstream: :rdbuf 45
closing and disconnecting, ifstream: :close 42
closing associated file, fstream::close 36
closing connected file, filebuf::-filebuf 33
connecting to specified open file, filebuf::attach 31
constructors, ifstream: :ifstream 42
creating, filebuf::filebuf 32
destroying, ifstream::-ifstream 44
disconnecting file and flushing, filebuf::close 32
fstream constructors, fstream::fstream 36
opening disk file for stream, ifstream::open 44
returning associated file descriptor, filebuf::fd 32

123

Index

124

filebuf objects (continued)
setting binary/text mode

filebuf::setmode 34
fstream::setmode 39

streams
attaching specified reserve area, ofstream::setbuf

80
closing, of stream: :close 77
opening file for attachment, ofstream::open 79
returning pointer to associated, ofstsream::rdbuf

80
testing for connection to open disk file,

filebuf::is_open 33
Files

closing
filebuf objects, filebuf::-filebuf 33

disconnecting from filebuf object, filebuf::close 32
end of, testing, ios::eof 49
name to be opened during construction,

filebuf::open 33
open

testing streams, ofstream::is_open 77
testing to attach to stream, ifstream::is_open 44

opening, attach to stream's filebuf object,
fstream::open 38

testing
for connection to open, filebuf::is_open 33
for stream attachment, fstream::is_open 38

fill member function, ios class 50
Flags

buffer-deletion, assigning value for stream,
ios::delbuf 49

error-state, setting or clearing, ios::clear 48
format clearing, ios::unsetf 55
format flag bits, defining, ios::bitalloc 48
output file stream 7, 8
setting specified format bits, ios::setf 54
stream's internal variable, setting, ios: :flags 50

flags member function, ios class 50
floatfield data member, ios class 57
Floating point

format flag bits, obtaining, ios::floatfield 57
Floating -point

precision variable
setting for stream, setprecision 59
setting, ios: :precision 52

flush member function, ostream class 83

Flushing
output buffers, ostream& flush 88
stream buffers, ostream::flush 83

Format
bits, setting, ios::setf 54
conversion base, setting 58
flag bits, defining, ios::bitalloc 48

Format flags
clearing, ios::unsetf 55
streams

clearing specified, resetiosflags 58
setting, setiosflags 59

freeze destructor, 92
freeze member function, strstreambuf class 117
fstream class

constructor 36
described 18,35
member functions

-fstream 38
attach 35
close 36
fd 36
fstream 36
is_open 38
open 38
rdbuf 39
setbuf 39
setmode 39

fstream objects, creating, fstream::fstream 36

G
gbump member function, streambuf class 102
gcount member function, istream class 65
Get areas

returning
lower bound, streambuf::eback 101
number of character available for fetching,

streambuf: : in_avail 103
pointer to byte after last, streambuf::egptr 102

setting pointer values, streambuf::setg 108
get member function

input streams 15
istream class 65

Get pointers
advancing after returning current character,

streambuf::sbumpc 106
following fetched characters, streambuf::sgetn 109
getting value of, istream::tellg 70

Get pointers (continued)
incrementing, streambuf::gbump 102
moving back, streambuf:: sputbackc 110
moving forward one character, streambuf::stossc

111
returning character at, streambuf::sgetc 109
returning to next character to be fetched from

streambuf, streambuf::gptr 103
testing, streambuf::snextc 109

getline member function
input streams 16
istream class 66

Getting stream position, ostream: :tellp 85
good member function

ios class 51
of stream class 9

goodbit member function, ios class, ios::rdstate 53
gptr member function, streambuf class 103

H
hex member function, ios class, ios::bitalloc 48
HR manipulator

110

ios class 57, 58
istream class 71
ostream class 87, 88

called before insert operations, ostream::opfx 84
clearing format flags, ios: :unsetf 55
errors

determining if error bits are set, ios: : operator !O
56

returning current specified error state,
ios::rdstate 53

testing for serious, ios::bad 48
testing if error bits are clear, ios::good 51
testing, ios::fail 49

filebuf objects, closing associated file,
fstream::close 36

fill character, setting, setfill 58
format flags

clearing specified, resetiosflags 58
setting, setiosflags 59

insert operations, called after, ostream::osfx 84
masks, padding flag bits, ios::adjustfield 56

Index

110 (continued)
obtaining

floating-point format flag bits, ios::floatfield 57
radix flag bits, ios::basefield 57

ostream objects, creating, iostream: :iostream 61
programming, C/C++ 1
providing object state variables without providing

class derivation, ios::xalloc 56
setting

floating-point precision variable, ios::precision
52

specified format bits, ios::setf 54
stream's mode to text, ios& text 60

stream buffers, returning number of bytes stored in,
ostrstream: :pcount 92

stream classes See iostream classes
streams

assigning istream object to istream_ withassign
object, istream_withassign::operator = 73

attaching to specified open file, fstream::attach
35

called after extraction operations, istream::isfx
68

called before extraction operations, istream: :ipfx
67

changing get pointer,istream::seekg 69
extracting bytes from streams,istream: :read 69
extracting data from, istream::get 65,66
extracting white space from, istream: :eatwhite

65
extracting, discarding characters, istream: : ignore

67
extraction operators, istream::operator» 70
getting value of get pointer, istream::tellg 70
manipulators, custom 21
putting extracted character back into stream,

istream: :putback 69
returning character without extracting,

istream: :peek 69
setting internal field width variable 55
setting internal floating-point precision variable,

setprecision 59
synchronizing C++ with standard C stdio,

ios::sync_with_stdio 54
synchronizing internal buffer with external

character source, istream::sync 70
tying to specified ostream, ios::tie 54

125

Index

126

110 (continued)
testing for end-of-file, ios::eof 49
virtual overflow function, streambuf::overflow 103

ifstream class
described 13,41
member functions

-ifstream 44
attach 41
close 42
fd 42
ifstream 42
is_open 44
open 44
rdbuf 45
setbuf 45
setmode 45

ifstream constructor 42
ifstream objects

creating, ifstream::ifstream 42
destroying, ifstream:: -ifstream 44

ignore member function, istream class 67
in member function, ios class

streambuf:: seekoff 106
streambuf::seekpos 107

in_avail member function, streambuf class 103
init member function, ios class 51
Input streams

described 13
extraction errors 14
extraction operators 14, 18
ifstrearn class 13
istream class 13
istrstream class 13
manipulators 14
manipulators, custom 21
objects, constructing

input file stream constructors 13
input string stream constructors 14

Inserting
arguments into streams, ostream::operator« 86
characters into output stream, ostream: :put 85

insertion operators
ostrearn class 86
overloading 11, 12
using 4

Internal character arrays
returning pointer from stream, ostrstream::str 93
strstream class, returning pointer, strstream::str 115

Internal field width variable, setting, ios::width 55

Internal fill character variable, setting, ios::fill 50
ios class

constructor, ios::ios 52
data members

adjustfield 56
basefield 57
floatfield 57
operator 56

described 46
manipulators, HR 57
member functions

-ios 52
bad 48
badbit 53
bitalloc 48
clear 48
delbuf 49
eof 49
eofbit 53
fail 49
failbit 35,38,41,44,53,65, 76, 79
fill 50
flags 50
good 51
goodbit 53
hex 48
in 106,107
init 51
ios 52
iword 52
left 48
no create 38,44, 79
out 106,107
precision 52
pword 53
rdbuf 53
rdstate 53
setf 54
stdio 54,84
sync_ with_stdio 54
tie 54
unitbuf 84
unsetf 55
width 55
xalloc 56

operators 56
virtual destructor, ios::-ios 52

ios constructor 52
ios enumerators 53

iostream class
described 61
member functions

-iostream 62
-Iostream_init 63
iostream 61
Iostream_init 63

output streams, manipulators 20
iostream class library 19-23
iostream classes

flags 7,8
fstream class 18
hierarchy 2
input streams 14

described 13
extraction errors 14
extraction operators 14, 18
ifstream class 13
istream class 13
istrstream class 13
member functions 15-17
objects, constructing 13, 14

output streams
binary output files 10, 11
buffering, effects 10
deriving 23-28
format control 4-7
insertion operator, overloading 11, 12
insertion operators 4
manipulators 18-22
manipulators, custom 12
objects, constructing 3
of stream class 3
of stream class member functions 7-9
ostream class 2
ostrstream class 3

strstream class 18
use 1

iostream constructor 61
iostream objects, destroying, iostream::-iostream 62
Iostream_init class

described 63
member function, iostream class 63

Iostream_init objects
constructor,Iostream_init::Iostream_init 63
destructor, Iostream_init:: - Iostream_init 63

ipfx member function, istream class 67

Index

is_open member function
filebuf class 33
fstream class 38
ifstream class 44
of stream class 77

isfx member function, istream class 68
istream class

described 13,64
extraction operators, istream::operator» 70
manipulators, HR 71
member functions

-istream 69
-istream_ withassign 73
close 18
eatwhite 65
gcount 65
get 15,65
getline 16, 66
ignore 67
ipfx 67
isfx 68
istream 68
istream_ withassign 72
open 15
peek 69
putback 69
read 16,69
seekg 17,69
sync 70
tellg 17, 70

operators 70, 73
istream constructor 68
istream objects

assigning to istream_ withassign object,
istream_ withassign: : operator = 73

creating, istream::istream 68
destroying, istream::-istream 68

istream_ withassign class described 72
istream_ withassign member function, istream class 72
istream_ withassign objects

creating, istream_ withassign: :istream_ withassign
72

destroying,
istream_ withassign: :-istream_ withassign 73

istrstream class
described 13, 74
member functions

-istrstream 75
istrstream 74

127

Index

128

istrstream class (continued)
member functions (continued)

rdbuf 75
str 75

istrstream constructor 74
istrstream objects

creating, istrstream::istrstream 74
destroying, istrstream:: -istrstream 75

iword member function, ios class 52

L
left member function, ios class, ios::bitalloc 48

M
Manipulators

argument, more than one 20
custom, input streams 21
derived stream classes, using with 21
input streams 14
ios class 57
istream class 71
ostream class 87, 88
output stream, custom 12
with one argument 18-20
with one parameter 19

Masks
current radix flag bits, ios::basefield 57
floating-point format flag bits, ios::floatfield 57
padding flag bits, ios::adjustfield 56

Member functions
filebuf class 31-34
fstream class 35-39
ifstream class 41-45
ios class 48-56
iostream class 61-63
Iostream_init class 63
istream class

close 18
get 15
getline 16
open 15
read 16
seekg 17
tellg 17

istrstream class 74, 75

Member functions (continued)
of stream class 76-80

bad 9
clear 9
close 9
described 7
eof 9
fail 9
good 9
put 8
rdstate 9
seekp 8
tellp 8
write 8

ostream class 83-90
ostrstream class 91-93
stdiobuf class 94, 95
stdiostream class 96, 97
streambuf class 100-113
strstream class 114-116
strstreambuf class 117 -119

Memory allocation
preventing memory deletion for strstreambuf object

with dynamic array, strstreambuf: :freeze 117
Microsoft Windows

and iostream programming 2

N
nocreate member function

o

ios class
fstream::open 38
ifstream: : open 44
of stream: :open 79

of stream class
described 2, 76
flags 7,8
member functions

-of stream 79
attach 76
bad 9
clear 9
close 9,77
described 7
eof 9
fail 9

of stream class (continued)
member functions (continued)

fd 77
good 9
is_open 77
of stream 77
open 7,79
put 8
rdbuf 80
rdstate 9
seekp 8
setbuf 80
setmode 80
tellp 8
write 8

of stream constructor 77
of stream objects

creating,ofstream::ofstream 77
destroying, fstream::-fstream 38
destroying, of stream: :-ofstream 79

open member function
filebuf class 33
fstream class 38
ifstream class 44
input streams 15
of stream class 7, 79

Opening files
for attachment to stream's filebuf object

ifstream::open 44
of stream: : open 79
fstream::open 38

operator data member, ios class 56
Operators

assignment operator
istream class 73
ostream class 90

extraction
istream class 70
overloading 18

insertion operators, overloading 11, 12
ios class 56
void* operator, ios class 56

opfx member function, ostream class 84
osfx member function, ostream class 84
ostream class

described 2, 82
manipulators, HR 87,88

Index

ostream class (continued)
member functions

-ostream 84
-ostream_ withassign 90
flush 83
opfx 84
osfx 84
ostream 84
ostream_ withassign 89
put 85
seekp 85
tellp 85
write 86

operators 86, 90
ostream classes described 2
ostream constructor 84
ostream objects

assigning to ostream_ withassign object,
ostream_ withassign: :operator= 90

creating
iostream: :iostream 61
ostream::ostream 84

destroying,ostream::-ostream 84
ostream, tying stream to, ios::tie 54
ostream_ withassign class, described 89
ostream_ withassign member function, ostream class

89
ostream_ with assign objects

assigning specified ostream object to,
ostream_ withassign: :operator= 90

creating, ostream_ withassign: :ostream_ withassign
89

destroying,
OStream_ withassign: :-ostream_ withassign 90

ostrstream class
described 3, 91
member functions

-ostrstream 92
ostrstream 91
pcount 92
rdbuf 93
str 93

returning pointer to internal character array,
ostrStream::str 93

ostrstream constructor 91
ostrstream objects

creating,ostrstream::ostrstream 91
destroying, ostrstream:: -ostrstream 92

129

Index

130

out member function
ios class

streambuf::seekoff 106
streambuf:: seekpos 107

ouC waiting member function, streambuf class 103
Output streams

binary output files 10, 11
buffering, effect 10
buffering, effects 10
constructing 3
deriving, streambuf class 23-28
format control 4-7
insertion

operators 11, 12
iostream classes 4

manipulators
argument, more than one 20
custom 12
with one argument 18, 20
with one parameter 19

member functions
good 9

objects, constructing
output file stream constructors 3
output string stream constructors 3

of stream class 3
flags 7,8

of stream member functions
bad 9
clear 9
close 9
described 7
eof 9
fail 9
open 7
put 8
rdstate 9
seekp 8
tellp 8
write 8

ostream class 2
ostrstream class 3

overflow member function, streambuf class 103
Overloading

extraction operators 18
insertion operators 11, 12

Overview of book v

p
pbackfail member function, streambuf class 104
pbase member function, streambuf class 105
pbump member function, streambuf class 105
pcount member function

ostrstream class 92
strstream class 114

peek member function, istream class 69
Pointers

get
advancing past spaces, tabs, istream::eatwhite

65
changing for stream, istream::seekg 69
getting value, istream::tellg 70
incrementing, streambuf::gbump 102

put, incrementing, streambuf: :pbump 105
repositioning external file pointer,

streambuf: :pbackfail 104
returning, stdiobuf object associated with stream,

stdiostream: :rdbuf 96
returning to

filebuf buffer object associated with stream,
of stream: :rdbuf 80

filebuf object, fstream: :rdbuf 39
internal character array from stream,

ostrstream::str 93
stream's filebuf buffer object, ifstream: :rdbuf 45
streambuf objects associated with stream,

ios::rdbuf 53
strstreambuf buffer object, ostrstream: :rdbuf 93

pptr member function, streambuf class 105
precision member function, ios class 52
Predefined output stream objects

cerr 2
clog 2
cout 2

Put areas
returning

first byte of, streambuf::pptr 105
number of characters available for fetching,

streambuf: :ouC waiting 103
pointer to byte after last, streambuf::epptr 102
pointer to start of, streambuf: :pbase 105

setting pointer values, streambuf::setp 108
storing character, streambuf::sputc 110

put member function
of stream class 8
ostream class 85

Put pointers
following stored characters, streambuf::sputn 111
incrementing, streambuf::pbump 105

putback member function, istream class 69
pword member function, ios class 53

R
rdbuf member function

fstream class 39
ifstream class 45
ios class 53
istrstream class 75
of stream class 80
ostrstream class 93
stdiostream class 96
strs tream class 115
strstream class 115

rdstate member function
ios class 53
of stream class 9

read member function
input streams 16
istream class 69

Reserve areas
allocating, streambuf::doallocate 101
attaching to

stream's filebuf object, ifstream::setbuf 45
streambuf object, streambuf::setbuf 108

returning pointer to byte after last, streambuf: :ebuf
102

returning
pointer, streambuf::base 100
size in bytes, streambuf::blen 100

setting position values with, streambuf::setb 107
setting up, streambuf::a1locate 100

Run-time, returning file pointer associated with
stdiobuf object 95

s
Sample programs, stream derivation 22-28
sbumpc member function, streambuf class 106
seekg member function

input streams 17
istream class 69

seekoff member function, streambuf class 106

Index

seekp member function
of stream class 8
ostream class 85

seekpos member function, streambuf class 107
setb member function, streambuf class 107
setbuf member function

fstream class 39
ifstream class 45
of stream class 80
streambuf class 108

setf member function, ios class 54
setg member function, streambuf class 108
setmode member function

filebuf class 34
fstream class 39
ifstream class 45
of stream class 80

setp member function, streambuf class 108
Setting

binary Itext mode
filebuf objects, filebuf::setmode 34
stream's filebuf object, fstream::setmode 39
stream's filebuf object, ifstream::setmode 45
streams, ios& binary 57
streams,ofstream::setmode 80

error-bits, ios: : clear 48
format flags, streams, setioflags 59
stream's internal flags, ios::flags 50
streambuf object's buffering state,

streambuf: : unbuffered 112
streams

fill character, setfill 58
format conversion base to 10, ios& dec 58
format conversion base to 16, ios& hex 58
format conversion base to 8, ios& oct 58
internal field width parameter, setw 59
internal field width variable, ios::width 55
internal floating-point precision variable,

setprecision 59
sgetc member function, streambuf class 109
sgetn member function, streambuf class 109
snextc member function, streambuf class 109
Special-purpose words table, providing index into

ios: :iword 52
ios: :pword 53

sputbackc member function, streambuf class 110
sputc member function, streambuf class 110
sputn member function, streambuf class 111

131

Index

132

stdio member function
ios class

ios::sync_with_stdio 54
ostream:: osfx 84

stdiobuf class
described 94
member functions

~stdiobuf 95
stdiobuf 94
stdiofile 95

stdiobuf constructor 94
stdiobuf objects

creating, stdiobuf::stdiobuf 94
destroying, stdiobuf::~stdiobuf 95
returning C run-time file pointer, stdiobuf::stdiofile

95
returning pointers, stdiostream::rdbuf 96

stdiofile member function, stdiobuf class 95
stdiostream class

described 96
member functions

~stdiostream 97
rdbuf 96
stdiostream 97

stdiostream constructor 97
stdiostream objects

creating, stdiostream:: stdiostream 97
destroying, stdiostream::~stdiostream 97

stossc member function, streambuf class 111
str member function

istrstream class 75
ostrstream class 93
strstream class 115
strstreambuf class 118

Stream classes, deriving 22
Stream derivation sample program 22-28
streambuf class

consume defined 103
custom, deriving 22
defining characteristics of derived class

streambuf::underflow 113
streambuf::sync 112

described 98
get area

returning lower bound, streambuf::eback 101
returning number of character available for

fetching, streambuf::in_avail 103

streambuf class (continued)
get area (continued)

returning pointer to byte after last,
streambuf::epptr 102

setting pointer values, streambuf::setg 108
get pointer

following fetched characters, streambuf::sgetn
109

incrementing, streambuf::gbump 102
moving back, streambuf::sputbackc 110
moving forward one character, streambuf::snextc

109
moving forward one character, streambuf::stossc

111
returning character at, streambuf::sgetc 109
returning to next character to be fetched,

streambuf::gptr 103
testing, streambuf::snextc 109

member functions
~streambuf 112
allocate 100
base 100
bIen 100
dbp 101
doallocate 10 1
eback 101
ebuf 102
egptr 102
epptr 102
gbump 102
gptr 103
in_avail 103
ouC waiting 103
overflow 103
pbackfail 104
pbase 105
pbump 105
pptr 105
sbumpc 106
seekoff 106
seekpos 107
setb 107
setbuf 108
setg 108
setp 108
sgetc 109
sgetn 109
snextc 109
sputbackc 110

streambuf class (continued)
member functions (continued)

sputc 110
sputn 111
stossc 111
streambuf 111
sync 70, 88, 112
unbuffered 112
underflow 113

output streams, deriving 23-28
put area

returning first byte, streambuf: :pptr 105
returning pointer to start, streambuf::pbase 105
setting pointer values, streambuf::setp 108
storing character, streambuf::sputc 110

put pointer
following stored characters, streambuf::sputn

111
incrementing, streambuf: :pbump 105

repositioning external file pointer,
streambuf: :pbackfail 104

reserve area
attaching to object, streambuf::setbuf 108
returning pointer to byte after last,

streambuf: :ebuf 102
returning pointer, streambuf::base 100
returning size in bytes, streambuf:: bIen 100
setting position values, streambuf::setb 107
setting up, streambuf::allocate 100

returning
current character and advancing get pointer,

streambuf::sbumpc 106
number of characters available for fetching,

streambuf: :ouC waiting 103
pointer to byte after last, streambuf: :egptr 102

virtual
overflow function, streambuf::overflow 103
sync function, streambuf::sync 112
underflow function, streambuf: : underflow 113

writing debugging information on stdout,
streambuf::dbp 101

streambuf constructor 111
Streambuf objects

associated with stream, returning pointer to,
ios::rdbuf 53

associating with stream, ios::init 51
changing position 107
changing position relative to stream beginning,

streambuf::seekpos 107

Index

Streambuf objects (continued)
changing position, streambuf::seekoff 106
creating, streambuf::streambuf 111
reserve area, allocating, streambuf::doallocate 101
setting buffering state, streambuf: :unbuffered 112
virtual destructor, streambuf::-streambuf 112

Streams
assigning istream object to istream_ withassign

object, istream_withassign::operator = 73
associating streambuf object with, ios::init 51
attaching

to already open file, ofstream::attach 76
to specified open file, ifstream::attach 41

buffer-deletion flag, assigning value to, ios: :delbuf
49

buffers
flushing, ostream: : flush 83
returning number of bytes stored in,

ostrstream: :pcount 92
returning pointer to strstreambuf buffer object

93
C++, synchronizing with standard C stdio streams,

ios::sync_with_stdio 54
changing position value, ostream: :seekp 85
characters

inserting into output, ostream::put 85
returning next without extracting, istream: :peek

69
returning number extracted by last unformatted

input function, istream::gcount 65
synchronizing internal buffer with external

character source, istream::sync 70
clearing format flags, ios::unsetf 55
defined 1
determining if error bits are set, ios::operator!O 56
errors

determining if error bits are set, ios::operator !O
56

if error bits are clear, ios::good 51
returning current specified error state,

ios::rdstate 53
extracting

and discarding characters, istream: :ignore 67
data, istream::get 65,66
white space, istream& ws 71
white space, istream::eatwhite 65

extraction operations
called after, istream::isfx 68
called before, istream::ipfx 67

133

Index

134

Streams (continued)
extraction operations (continued)

operators, istream::operator» 70
specified number of bytes, istream: :read 69

file descriptor, returning, ofstream::fd 77
filebuf objects

attaching specified reserve area, fstream::setbuf
39

attaching specified reserve area, ifstream::setbuf
45

attaching specified reserve area, ofstream::setbuf
80

closing, of stream: :close 77
opening file and attaching, fstream::open 38
opening for attachment, ofstream::open 79
returning pointer to associated, of stream: :rdbuf

80
returning pointer to, ifstream: :rdbuf 45
setting binary/text mode, fstream::setmode 39
setting binary/text mode, ofstream::setmode 80

flushing output buffer, ostream& flush 88
get pointers

changing, istream::seekg 69
getting value, istream::tellg 70

getting position value, ostream::tellp 85
input, putting character back into, istream::putback

69
insert operations

called after, ostream::osfx 84
called before, ostream::opfx 84

inserting
arguments into, ostream::operator« 86
bytes,ostream::write 86
newline character and flushing buffer, ostream&

endl 87
null-terminating character, ostream& ends 87

internal flags variable, setting, ios::flags 50
istream objects

creating, istream: :istream 68
destroying, istream::-istream 68

masks
current radix flag bits, ios::basefield 57
floating-point format flag bits, ios::floatfield 57

object state variables, providing without class
derivation, ios: :xalloc 56

opening file and attaching to filebuf object,
ifstream::open 44

padding flag bits, obtaining, ios::adjustfield 56

Streams (continued)
returning associated file descriptor

fstream: :fd 36
ifstream: :fd 42

returning pointer to associated filebuf object,
fstream: :rdbuf 39

setting
binary/text mode, ifstream::setmode 45
fill character, setfill 58
floating-point precision variable, ios: :precision

52
format conversion base to 10, ios& dec 58
format conversion base to 16, ios& hex 58
format conversion base to 8, ios& oct 58
internal field width parameter, setw 59
internal field width variable, ios::width 55
internal fill character variable, ios::fill 50
internal floating-point precision variable,

setprecision 59
mode to text, ios& text 60
specified format bits, ios: :setf 54
text to binary mode, ios& binary 57

special-purpose words table, providing index into
ios: :iword 52
ios: :pword 53

streambuf objects, returning pointer to, ios: :rdbuf
53

synchronizing internal buffer with external
character source, istream::sync 70

testing end-of-file, ios::eof 49
testing for attachment to open disk file

fstream::is_open 38
testing for attachment to open file

ifstream::is_open 44
ofstream::is_open 77

testing for serious va errors, ios::bad 48
tying to ostream, ios: :tie 54
virtual overflow function, streambuf::overflow 103

Strings
streams, returning pointer to character array,

istrstream:: str 75
strstream class

buffer, returning number of bytes, strstream::pcount
114

described 18, 114
member functions

-strstream 116
pcount 114
rdbuf 115

strstream class (continued)
member functions (continued)

str 115
strstream 115

returning
number of bytes in buffer, strstream: :pcount 114
pointer to internal character array, strstream::str

115
pointer to strstreambuf object, strstream: :rdbuf

115
strstream constructor 115
strstream objects

creating, strstream::strstream 115
destroying, strstream::-strstream 116
returning pointer, strstream::rdbuf 115

strstreambuf class
described 117
member functions

-strstreambuf 119
freeze 92, 117
str 118
strstreambuf 118

preventing automatic memory deletion,
strstreambuf: :freeze 117

returning pointer to internal character array,
strstreambuf::str 118

strstreambuf constructor 118
strstreambuf objects

creating, strstreambuf::strstreambuf 118
destroying, strstreambuf:: -strstreambuf 119
returning pointer from associated stream,

ostrstream::rbuf 93
returning pointer to internal character array,

strstreambuf::str 118
sync member function

istream class 70
streambuf class 112

istream::sync 70
ostream: :HR 88

sync_ with_stdio member function, ios class 54
Synchronizing C++ streams with standard C stdio

streams, ios::sync_with_stdio 54

T
tellg member function

input streams 17
istream class 70

Index

tellp member function
of stream class 8
ostream class 85

Testing for extraction operators 14
Text streams, setting mode to, ios& text 60
tie member function, ios class 54
Tiny-model programs and iostream programming 2

u
unbuffered member function, streambuf class 112
underflow member function, streambuf class 113
unitbuf member function, ios class, ostream::osfx 84
unsetf member function, ios class 55

v
Variables

floating-point precision, setting, ios::precision 52
internal field width, setting, ios::width 55
internal fill character, setting, ios: :fill 50
object state, providing without class derivation,

ios::xalloc 56
Virtual

sync function, streambuf class, streambuf::sync 112
underflow function, streambuf class,

streambuf: :underflow 113
Void* operator, ios class 56,58

w
Width

internal field variable, setting, ios::width 55
streams, setting internal field parameter, setw 59

width member function, ios class 55
write member function

of stream class 8
ostream class 86

x
xalloc member function, ios class 56

135

Contributors to iostream Class Library Reference

Richard Carlson, Index Editor
Matt LaBelle, Production

Roger Haight, Editor
Marilyn Johnstone, Writer

Seth Manheim, Writer
David Adam Edelstein, Art Director

!i '

Source" f<6>~:'

\'\Cre~t,ihg Cust~Pt
K,) ~+ <~ "

'Jausines§
?~ "'&t

A'1tRicat$.dns

H
ere is all the information
that corporate
managers, developers,

and consultants need to design,
develop, and deliver custom
business applications using the
built-in programming
languages in Microsoft Office
Professional for Windows 95.
Every phase of the process is

. explained, from choosing which
tools to use, to designing a good
user interface, to providing end­
user support. Case studies from
the author's extensive work with
Fortune 500 companies, along
with fully functional sample
applications and sample code
on disk, make this book both an
interesting read and a valuable
reference.

Microsoft Press® books are available wherever quality books are sold and
through CompuServe's Electronic Mall-GO MSP.

Call 1-800-MSPRESS for more information or to place a credit card order. *
Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander
Blvd., Agincourt, Ontario, CanadaM1S 3C7, or call 1-800-667-1115.

Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One
Microsoft Way, Redmond, WA 98052-6399, or fax + 1-206-936-7329.

Aficrosoft"Press

Run-Time Library Reference

Microsoft® Visual C++ TM

Version 4.0

Development System for Windows® 95 and Windows NTTM

Microsoft Corporation

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ programmer's references I Microsoft Corporation.

-- 2nd ed.
p. cm.

Includes index.
v.I. Microsoft Visual C++ user's guide -- v. 2. Programming with

MFC -- v. 3. Microsoft foundation class library reference, part 1
v. 4. Microsoft foundation class library reference, part 2 -- v.
5. Microsoft Visual C++ run-time library reference -- v.
6. Microsoft Visual C/C++ language reference.

ISBN 1-55615-915-3 (v. 1). -- ISBN 1-55615-921-8 (v. 2). -- ISBN
1-55615-922-6 (v. 3). -- ISBN 1-55615-923-4 (v. 4). -- ISBN
1-55615-924-2 (v. 5). -- ISBN 1-55615-925-0 (v. 6)

1. C++ (Computer program language) 2. Microsoft Visual C++.
I. Microsoft Corporation.
QA76.73.CI53M53 1995
005.13'3--dc20 95-35604

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 ~ML 0 9 8 7 6 5

CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor­
mation about international editions, contact your local Microsoft Corporation office. Or contact Microsoft
Press International directly at fax (206) 936-7329.

For Run-Time Library Reference: Macintosh is a registered trademark and Power Macintosh is a
trademark of Apple Computer, Inc. Intel is a registered trademark of Intel Corporation. OS/2 is a
registered trademark of International Business Machines Corporation. Microsoft, MS, MS-DOS, Win32,
Win32s, Windows, and XENIX are registered trademarks and Visual C++, and Windows NT are trademarks
of Microsoft Corporation. MIPS is a registered trademark of MIPS Computer Systems, Inc. Motorola is a
registered trademark of Motorola, Inc. Unicode is a trademark of Unicode, Incorporated. UNIX is a
registered trademark in the United States and other countries, licensed exclusively through X/Open
Company, Ltd.

For iostream Class Library Reference: Hewlett-Packard and LaserJet are registered trademarks of
Hewlett-Packard Company. IBM is a registered trademark of International Business Machines Corporation.
Microsoft, MS, MS-DOS, and Windows are registered trademarks and Visual C++, and Windows NT are
trademarks of Microsoft Corporation.

Acquisitions Editor: Eric Stroo
Project Editor: Brenda L. Matteson

Introduction ix
C Run-Time Libraries ix
Compatibility ix

ANSI C Compliance x
Power Macintosh and 68K Macintosh x
UNIX x
Win32 Platforms xi
Backward Compatibility xi

Required and Optional Header Files xii
Choosing Between Functions and Macros xii
Type Checking xiii

Chapter 1 Run-Time Routines by Category 1
Argument Access 1
Buffer Manipulation 2
Byte Classification 2
Character Classification 3
Data Conversion 4
Debug 6
Directory Control 9
Error Handling 9
Exception Handling 10
File Handling 10
Floating-Point Support 11

Long Double 14
Input and Output 15

Text and Binary Mode File 110 15
Unicode™ Stream 110 in Text and Binary Modes 15
Stream 110 16
Low-levelllO 19
Console and Port 110 20

Contents

iii

Contents

iv

Internationalization 20

Locale 21

Code Pages 22

Interpretation of Multibyte-Character Sequences 23

Single-byte and Multibyte Character Sets 24

SBCS and MBCS Data Types 24

Unicode: The Wide-Character Set 25

Using Generic-Text Mappings 25

A Sample Generic-Text Program 27

Using TCHAR.H Data Types with _MBCS 29

Memory Allocation 31

Process and Environment Control 32

Searching and Sorting 34

String Manipulation 35

System Calls 37

Time Management 37

Chapter 2 Global Variables and Standard Types 39
Global Variables 39

_amblksiz 39

_daylight, _timezone, and _tzname 40

_dosermo, ermo, _sys_errlist, and _sys_nerr 41

_environ, _ wenviron 42

_fileinfo 43

_fmode 44

_osver, _ winmajor, _ winminor, _ winver 44

_pgmptr, _ wpgmptr 44

Control Flags 45

_CRTDBG_MAP _ALLOC 45

_DEBUG 46

_crtDbgFlag 46

Standard Types 46

Chapter 3 Global Constants 49
BUFSIZ 50

CLOCKS_PER_SEC, CLK_TCK 50

Commit-To-Disk Constants 50

Data Type Constants 51

EOF 53

ermo Constants 53

Exception-Handling Constants 54
EXIT_SUCCESS, EXIT_FAILURE 55
File Attribute Constants 55

File Constants 56
File Permission Constants 56
File ReadlWrite Access Constants 57
File Translation Constants 58
FILENAME_MAX 58
FOPEN_MAX, _SYS_OPEN 58

_FREEENTRY, _USEDENTRY 59
fseek, _lseek Constants 59

Heap Constants 59
_HEAP _MAXREQ 60

HUGE_VAL 60
__ LOCAL_SIZE 60

Locale Categories 61
_locking Constants 61

Math Error Constants 62
MB_CUR_MAX 62

NULL 63
Path Field Limits 63
RAND_MAX 63

setvbuf Constants 64
Sharing Constants 64

signal Constants 65
signal Action Constants 65
_spawn Constants 66

_stat Structure sCmode Field Constants 66
stdin, stdout, stderr 67
TMP _MAX, L_tmpnam 67
Translation Mode Constants 68
_WAIT_CHILD, _WAIT_GRANDCHILD 68

32-bit Windows TimelDate Formats 69

Contents

v

Contents

vi

Chapter 4 Debug Version of the C Run-Time Library 71
Source Code for the Run-Time Functions 71
C Run-Time Debug Libraries 72
Debug Reporting Functions of the C Run-Time Library 73

Using Macros for Verification and Reporting 75
Memory Management and the Debug Heap 79

Types of Blocks on the Debug Heap 80
U sing the Debug Heap 81

Heap State Reporting Functions 83
U sing the Debug Version Versus the Base Version 84
Tracking Heap Allocation Requests 85
U sing the Debug Heap from C++ 86

Writing Your Own Debug Hook Functions 86
Client Block Hook Functions 87
Allocation Hook Functions 87
Using C Run-time Library Functions in Allocation Hooks 88

Report Hook Functions 88
Example Programs 89

First Example Program 89
Second Example Program 94

_ASSERT, _ASSERTE Macros 103
_calloc_dbg 107
_ CrtCheckMemory 109

_CrtDbgReport 110
_ CrtDoForAllClientObjects 116

_ CrtDumpMemoryLeaks 120
_ Crtls ValidHeapPointer 122

_CrtlsMemoryBlock 123
_ Crtls ValidPointer 124

_CrtMemCheckpoint 126
_CrtMemDifference 127
_ CrtMemDumpAllObjectsSince 129
_ CrtMemDumpStatistics 130

_CrtSetAllocHook 131
_CrtSetBreakAlloc 133
_CrtSetDbgFlag 135

_CrtSetDumpClient 139
_ CrtSetReportFile 140
_CrtSetReportHook 145

_ CrtSetReportMode 149

_expand_dbg 155
_free_dbg 157

_malloc_dbg 158
_msize_dbg 160
_realloc_dbg 161
_RPT, _RPTF Macros 163

Alphabetic Function Reference 167

Appendixes
Appendix A Language and Country Strings 679
Language and Country Strings 679
Language Strings 679

Country Strings 681

Appendix B Generic-Text Mappings 683
Data Type Mappings 683
Constant and Global Variable Mappings 684

Routine Mappings 684

Index 689

Tables
Table R.l Hexadecimal Values 214

Table R.2 Equivalence of iswctype(c, desc) to Other isw Testing Routines 352
Table R.3 printf Type Field Characters 485

Table RA Flag Characters 487
Table R.5 How Precision Values Affect Type 488

Table R.6 Size Prefixes for printf and wprintf Format-Type Specifiers 489
Table R.7 Size Prefixes for scanf and wscanfFormat-Type Specifiers 518

Table R.8 Type Characters for scanf functions 520

Contents

vii

Introduction

The Microsoft® run-time library provides routines for programming for the Microsoft
Windows NTTM and Windows 95™ operating systems. These routines automate
many common programming tasks that are not provided by the C and C++
languages.

C Run-Time Libraries
The following table lists the release versions of the C run-time library files, along
with their associated compiler options and environment variables. When a specific
library compiler option is defined, that library is considered to be the default and its
environment variables are automatically defined.

Library Characteristics Option Defined

LIBC.LIB Single threaded, static link IML

LIBCMT.LIB Multithreaded, static link IMT _MT

MSVCRT.LIB Multithreaded, dynamic link (import IMD _MT,_DLL
library for MSVCRTxO.DLL)l

1 In place of the "xO" in the DLL name, substitute the major version numeral of Visual c++ that you are
using. For example, if you are using Visual C++ version 4, then the library name would be
MSVCRT40.DLL.

To build a debug version of your application, the _DEBUG flag must be defined and
the application must be linked with a debug version of one of these libraries. For
more information about the debug versions of the library files, see "c Run-Time
Debug Libraries" in Chapter 4 on page 72.

Compatibility
The Microsoft run-time library supports American National Standards Institute
(ANSI) C and UNIX® C. In this book, references to UNIX include XENIX®, other

ix

Run-Time Library Reference

UNIX-like systems, and the POSIX subsystem in Windows NT and Windows 95. The
description of each run-time library routine in this book includes a compatibility
section for these targets: ANSI, Windows 95 (listed as Win 95), Windows NT
(Win NT), Win32s, Macintosh® (68K), and Power Macintosh™ (PMac). All run­
time library routines included with this product are compatible with the Win32 API.

ANSI C Compliance
The naming convention for all Microsoft-specific identifiers in the run-time system
(such as functions, macros, constants, variables, and type definitions) is ANSI­
compliant. In this book, any run-time function that follows the ANSIIISO C
standards is noted as being ANSI compatible. ANSI -compliant applications should
only use these ANSI compatible functions.

The names of Microsoft-specific functions and global variables begin with a single
underscore. These names can be overridden only locally, within the scope of your
code. For example, when you include Microsoft run-time header files, you can still
locally override the Microsoft-specific function named _open by declaring a local
variable of the same name. However, you cannot use this name for your own global
function or global variable.

The names of Microsoft-specific macros and manifest constants begin with two
underscores, or with a single leading underscore immediately followed by an
uppercase letter. The scope of these identifiers is absolute. For example, you cannot
use the Microsoft-specific identifier _UPPER for this reason.

Power Macintosh and 68K Macintosh
Many run-time library routines can be implemented for either or both of the
Macintosh platforms. In this book, run-time routines that are compatible with
Macintosh computers that use the Motorola® 68000-series processor list the 68K
label in their compatibility section. Routines that are compatible with RISC-based
Macintosh computers list the PMac label.

UNIX

x

If you plan to transport your programs to UNIX, follow these guidelines:

• Do not remove header files from the SYS subdirectory. You can place the SYS
header files elsewhere only if you do not plan to transport your programs to UNIX.

• Use the UNIX -compatible path delimiter in routines that take strings representing
paths and filenames as arguments. UNIX supports only the forward slash (I) for
this purpose, whereas Win32 operating systems support both the backs lash (\) and
the forward slash (I). Thus this book uses UNIX-compatible forward slashes as

path delimiters in #include statements, for example. (However, the Windows NT
and Windows 95 command shell, CMD.EXE, does not support the forward slash
in commands entered at the command prompt.)

• Use paths and filenames that work correctly in UNIX, which is case sensitive. The
file allocation table (FAT) file system in Win32 operating systems is not case
sensitive; the installable Windows NT file system (NTFS) of Windows NT
preserves case for directory listings but ignores case in file searches and other
system operations.

Note In this version of Visual C++, UNIX compatibility information has been removed from the
function descriptions.

Win32 Platforms
The C run-time libraries support all of the Win32-based platforms, including
Windows 95, Windows NT, and Win32s. Although all these platforms support the
Win32 Application Programming Interface (API), only Windows NT provides full
Unicode support. In addition, any Win32 application can use a multibyte character set
(MBCS). Win32s applications use a subset of the Win32 API, and can run on the
Windows 3.1, Windows NT, and Windows 95 operating systems without being
recompiled.

Backward Compatibility
The compiler views a structure that has both an old name and a new name as two
different types. You cannot copy from an old structure type to a new structure type.
Old prototypes that take struct pointers use the old struct names in the prototype.

For compatibility with Microsoft C professional development system version 6.0 and
earlier Microsoft C versions, the library OLDNAMES.LIB maps old names to new
names. For instance, open maps to _open. You must explicitly link with
OLDNAMES.LIB only when you compile with the following combinations of
command-line options:

• IZI (omit default library name from object file) and IZe (the default-use
Microsoft extensions)

• Ilink (linker-control), /NOD (no default-library search), and IZe

For more information about compiler command-line options, see "CL Reference" in
the Visual C++ Users Guide.

Introduction

xi

Run-Time Library Reference

Required and Optional Header Files
The description of each run-time routine in this book includes a list of the required
and optional include, or header (.R), files for that routine. Required header files need
to be included to obtain the function declaration for the routine or a definition used by
another routine called internally. Optional header files are usually included to take
advantage of predefined constants, type definitions, or inline macros. The following
table lists some examples of optional header file contents:

Definition

Macro definition

Manifest constant

Type definition

Example

If a library routine is implemented as a macro, the macro definition
may be in a header file other than the header file for the original
routine. For instance, the toupper macro is defined in the header
file CTYPE.H, while the function toupper is declared in
STDLIB.H.

Many library routines refer to constants that are defined in header
files. For instance, the _open routine uses constants such as
0 CREAT, which is defined in the header file FCNTL.H.

Some library routines return a structure or take a structure as an
argument. For example, stream input/output routines use a structure
of type FILE, which is defined in STDIO.H.

The run-time library header files provide function declarations in the ANSIIISO C
standard recommended style. The compiler performs "type checking" on any routine
reference that occurs after its associated function declaration. Function declarations
are especially important for routines that return a value of some type other than int,
which is the default. Routines that do not specify their appropriate return value in
their declaration will be considered by the compiler to return an int, which can cause
unexpected results. See "Type Checking" on page xiii for more information.

Choosing Between Functions and Macros

xii

Most Microsoft run-time library routines are compiled or assembled functions, but
some routines are implemented as macros. When a header file declares both a
function and a macro version of a routine, the macro definition takes precedence,
because it always appears after the function declaration. When you invoke a routine
that is implemented as both a function and a macro, you can force the compiler to use
the function version in two ways:

• Enclose the routine name in parentheses.

#include <ctype.h>
a toupper(a);
a = (toupper)(a);

Iluse macro version of toupper
Ilforce compiler to use function version of toupper

• "Un define" the macro definition with the #Undef directive:

#include <ctype.h>
#undef toupper

If you need to choose between a function and a macro implementation of a library
routine, consider the following trade-offs:

• Speed versus size. The main benefit of using macros is faster execution time.
During preprocessing, a macro is expanded (replaced by its definition) inline each
time it is used. A function definition occurs only once regardless of how many
times it is called. Macros may increase code size but do not have the overhead
associated with function calls.

• Function evaluation. A function evaluates to an address; a macro does not. Thus
you cannot use a macro name in contexts requiring a pointer. For instance, you
can declare a pointer to a function, but not a pointer to a macro.

• Macro side effects. A macro may treat arguments incorrectly when the macro
evaluates its arguments more than once. For instance, the toupper macro is
defined as:

#define toupper(c) ((islower(c) ? _toupper(c): (c»

In the following example, the toupper macro produces a side effect:

#include <ctype.h>

inta='m';
a = toupper(a++);

The example code increments a when passing it to toupper. The macro evaluates
the argument a++ twice, once to check case and again for the result, therefore
increasing a by 2 instead of 1. As a result, the value operated on by islower differs
from the value operated on by toupper.

• Type-checking. When you declare a function, the compiler can check the argument
types. Because you cannot declare a macro, the compiler cannot check macro
argument types, although it can check the number of arguments you pass to a
macro.

Type Checking
The compiler performs limited type checking on functions that can take a variable
number of arguments, as follows:

Introduction

xiii

Run-Time Library Reference

xiv

Function Call

_cprintf, _cscanf, printf, scanf

fprintf, fscanf, sprintf, sscanf

_snprintf

_execl, _execle, _execlp, _execlpe

_spawnl, _spawnle, _spawnlp,
_spawnlpe

Type-Checked Arguments

First argument (format string)

First two arguments (file or buffer and format
string)

First three arguments (file or buffer, count,
and format string)

First two arguments (path and _open flag)

First three arguments (path, _open flag, and
sharing mode)

First two arguments (path and first argument
pointer)

First three arguments (mode flag, path, and
first argument pointer)

The compiler performs the same limited type checking on the wide-character
counterparts of these functions.

C HAP T E R

Run-Time Routines by Category

This chapter lists and describes Microsoft run-time library routines by category. For
reference convenience, some routines are listed in more than one category. Multibyte­
character routines and wide-character routines are grouped with single-byte­
character counterparts, where they exist.

The main categories of Microsoft run-time library routines are:

Argument access

Buffer manipulation

Byte classification

Character classification

Data conversion

Debug

Directory control

Error handling

Exception handling

File handling

Floating-point support

Input and output

Internationalization

Memory allocation

Process and environment control

Searching and sorting

String manipulation

System calls

Time management

Argument Access
The va_arg, va_end, and va_start macros provide access to function arguments
when the number of arguments is variable. These macros are defined in STDARG.H
for ANSI C compatibility, and in V ARARGS.H for compatibility with UNIX
System V.

Run-Time Library Reference

Argument-Access Macros

Macro

va_arg

va_end

va_start

Use

Retrieve argument from list

Reset pointer

Set pointer to beginning of argument list

Buffer Manipulation
Use these routines to work with areas of memory on a byte-by-byte basis.

Buffer-Manipulation Routines

Routine

_memccpy

memchr

memcmp

memcpy

_memicmp

memmove

memset

_swab

Use

Copy characters from one buffer to another until given character or given
number of characters has been copied

Return pointer to first occurrence, within specified number of characters,
of given character in buffer

Compare specified number of characters from two buffers

Copy specified number of characters from one buffer to another

Compare specified number of characters from two buffers without
regard to case

Copy specified number of characters from one buffer to another

Use given character to initialize specified number of bytes in the buffer

Swap bytes of data and store them at specified location

When the source and target areas overlap, only memmove is guaranteed to copy the
full source properly.

Byte Classification

2

Each of these routines tests a specified byte of a multibyte character for satisfaction of
a condition. Except where specified otherwise, the test result depends on the
multibyte code page currently in use.

Note By definition, the ASCII character set is a subset of all multibyte-character sets. For
example, the Japanese katakana character set includes ASCII as well as non-ASCII
characters.

The manifest constants in the following table are defined in CTYPE.H:

Chapter 1 Run-Time Routines by Category

Multibyte-Character Byte-Classification Routines

Routine Byte Test Condition

isleadbyte

_ismbbalnum

_ismbbalpba

_ismbbgrapb

_ismbbkalnum

_ismbbkana

_ismbbkprint

_ismbbkpunct

_ismbblead

_ismbbprint

_ismbbpunct

_ismbbtrail

_ismbslead

_ismbstrail

_mbbtype

_mbsbtype

Lead byte; test result depends on LC_CTYPE category setting of
current locale

isalnum II _ismbbkalnum

isalpba II _ismbbkalnum

Same as _ismbbprint, but _ismbbgrapb does not include the space
character (Ox20)

Non-ASCII text symbol other than punctuation. For example, in
code page 932 only, _ismbbkalnum tests for katakana alphanumeric

Katakana (OxAI-OxDF), code page 932 only

Non-ASCII text or non-ASCII punctuation symbol. For example, in
code page 932 only, _ismbbkprint tests for katakana alphanumeric
or katakana punctuation (range: OxAl- OxDF).

Non-ASCII punctuation. For example, in code page 932 only,
_ismbbkpunct tests for katakana punctuation.

First byte of multibyte character. For example, in code page 932
only, valid ranges are Ox81-0x9F, OxEO-OxFC.

isprint II _ismbbkprint. ismbbprint includes the space character
(Ox20)

ispunct II _ismbbkpunct

Second byte of multi byte character. For example, in code page 932
only, valid ranges are Ox40-0x7E, Ox80-0xEC.

Lead byte (in string context)

Trail byte (in string context)

Return byte type based on previous byte

Return type of byte within string

The MB_LEN_MAX macro, defined in LIMITS.H, expands to the maximum length
in bytes that any multibyte character can have. MB_CUR_MAX, defined in
STDLIB.H, expands to the maximum length in bytes of any multibyte character in
the current locale.

Character Classification
Each of these routines tests a specified single-byte character, wide character, or
multibyte character for satisfaction of a condition. (By definition, the ASCII character
set is a subset of all multibyte-character sets. For example, Japanese katakana
includes ASCII as well as non-ASCII characters.) Generally these routines execute
faster than tests you might write. For example, the following code executes slower
than a call to isalpha(c):

3

Run-Time Library Reference

if «c >= 'A') && (c <= 'Z')) I I «c >= 'a') && (c <= 'z'))
return TRUE;

Character-Classification Routines

Routine

isalnum, iswalnum, _ismbcalnum

isalpba, iswalpba, ismbcalpba

_isascii, iswascii

iscntrl, iswcntrl

_iscsym

_iscsymf

isdigit, iswdigit, _ismbcdigit

isgrapb, iswgrapb, _ismbcgrapb

islower, iswlower, _ismbclower

_ismbchira

_ismbckata

_ismbclegal

_ismbclO

_ismbcll

_ismbcl2

_ismbcsymbol

isprint, iswprint, _ismbcprint

ispunct, iswpunct, _ismbcpunct

isspace, iswspace, _ismbcspace

isupper, iswupper, _ismbcupper

iswctype

isxdigit, iswxdigit

mblen

Character Test Condition

Alphanumeric

Alphabetic

Ascn
Control

Letter, underscore, or digit

Letter or underscore

Decimal digit

Printable other than space

Lowercase

Hiragana

Katakana

Legal multibyte character

Japan-level 0 multibyte character

Japan-Ievell multibyte character

Japan-level 2 multibyte character

Non-alphanumeric multibyte character

Printable

Punctuation

White-space

Uppercase

Property specified by desc argument

Hexadecimal digit

Return length of valid multibyte character; result
depends on LC_CTYPE category setting of current
locale

Data Conversion

4

These routines convert data from one form to another. Generally these routines
execute faster than conversions you might write. Each routine that begins with a to
prefix is implemented as a function and as a macro. See "Choosing Between
Functions and Macros" on page xii for information about choosing an
implementation.

Data-Conversion Routines

Routine

abs

atof

atoi

atol

_eevt

_fevt

~evt

_itoa, _itow

labs

_ltoa, _ltow

_mbbtombe

_mbejistojms

_mbcjmstojis

_mbctohira

_mbctokata

_mbctombb

mbstowes

mbtowe

strtod, westod

strtol, westol

strtoul, westoul

strxfrm, wesxfrm

_toascii

tolower, towlower,
_mbctolower

_tolower

toupper, townpper,
_mbctoupper

_toupper

_ultoa, _ultow

wcstombs

Chapter 1 Run-Time Routines by Category

Use

Find absolute value of integer

Convert string to float

Convert string to int

Convert string to long

Convert double to string of specified length

Convert double to string with specified number of digits
following decimal point

Convert double number to string; store string in buffer

Convert int to string

Find absolute value of long integer

Convert long to string

Convert I-byte multi byte character to corresponding 2-byte
multibyte character

Convert Japan Industry Standard (nS) character to Japan
Microsoft OMS) character

Convert JMS character to ns character

Convert multibyte character to I-byte hiragana code

Convert multibyte character to I-byte katakana code

Convert 2-byte multibyte character to corresponding I-byte
multibyte character

Convert sequence of multibyte characters to corresponding
sequence of wide characters

Convert multibyte character to corresponding wide character

Convert string to double

Convert string to long integer

Convert string to unsigned long integer

Transform string into collated form based on locale-specific
information

Convert character to ASCII code

Test character and convert to lowercase if currently
uppercase

Convert character to lowercase unconditionally

Test character and convert to uppercase if currently
lowercase

Convert character to uppercase unconditionally

Convert unsigned long to string

Convert sequence of wide characters to corresponding
sequence of multibyte characters

5

Run-Time Library Reference

Data-Conversion Routines (continued)

Routine

wctomb

_wtoi

_wtol

Use

Convert wide character to corresponding multibyte character

Convert wide-character string to int

Convert wide-character string to long

Debug

6

With this version, Visual C++ introduces debug support for the C run-time library.
The new debug version of the library supplies many diagnostic services that make
debugging programs easier and allow developers to:

• Step directly into run-time functions during debugging

• Resolve assertions, errors, and exceptions

• Trace heap allocations and prevent memory leaks

• Report debug messages to the user

To use these routines, the _DEBUG flag must be defined. All of these routines do
nothing in a retail build of an application. For more information on how to use the
new debug routines, see Chapter 4, "Debug Version of the C Run-time Library."

Debug Versions of the C Run-time Library Routines

Routine

_ASSERT

_ASSERTE

_ CrtCheckMemory

_ CrtDbgReport

_ CrtDoFor AlIClientObjects

_CrtDumpMemoryLeaks

_ CrtIsValidHeapPointer

_ CrtIsMemoryBlock

Use

Evaluate an expression and generates a debug report
when the result is FALSE

Similar to _ASSERT, but includes the failed expression
in the generated report

Confirm the integrity of the memory blocks allocated on
the debug heap

Generate a debug report with a user message and send
the report to three possible destinations

Call an application-supplied function for all
_CLIENT_BLOCK types on the heap

Dump all of the memory blocks on the debug heap when
a significant memory leak has occurred

Verify that a specified pointer is in the local heap

Verify that a specified memory block is located within
the local heap and that it has a valid debug heap block
type identifier

Chapter 1 Run-Time Routines by Category

Debug Versions of the C Run-time Library Routines (continued)

_ CrtIs ValidPointer Verify that a specified memory range is valid for
reading and writing

_CrtMemCheckpoint Obtain the current state of the debug heap and store it in
an application-supplied _ CrtMemState structure

_ CrtMemDifference Compare two memory states for significant differences
and return the results

_CrtMemDumpAllObjectsSince Dump information about objects on the heap since a
specified checkpoint was taken or from the start of
program execution

_ CrtMemDumpStatistics Dump the debug header information for a specified
memory state in a user-readable form

_CrtSetAllocHook Install a client-defined allocation function by hooking it
into the C run-time debug memory allocation process

_CrtSetBreakAlloc Set a breakpoint on a specified object allocation order
number

_CrtSetDbgFlag Retrieve or modify the state of the _crtDbgFlag flag to
control the allocation behavior of the debug heap
manager

_ CrtSetDumpClient Install an application-defined function that is called
every time a debug dump function is called to dump
_CLIENT_BLOCK type memory blocks

_ CrtSetReportFile Identify the file or stream to be used as a destination for
a specific report type by _ CrtDbgReport

_CrtSetReportHook Install a client-defined reporting function by hooking it
into the C run-time debug reporting process

_CrtSetReportMode Specify the general destination(s) for a specific report
type generated by _ CrtDbgReport

_RPT[O,1,2,3,4] Track the application's progress by generating a debug
report by calling _ CrtDbgReport with a format string
and a variable number of arguments. Provides no source
file and line number information.

_RPTF[O,1,2,3,4] Similar to the _RPTn macros, but provides the source
file name and line number where the report request
originated

_calloc_dbg Allocate a specified number of memory blocks on the
heap with additional space for a debugging header and
overwrite buffers

_expand_dbg Resize a specified block of memory on the heap by
expanding or contracting the block

_free_dbg Free a block of memory on the heap

7

Run-Time Library Reference

8

Debug Versions of the C Run-time Library Routines (continued)

Routine

_msize_dbg

_realloc_dbg

Use

Allocate a block of memory on the heap with additional
space for a debugging header and overwrite buffers

Calculate the size of a block of memory on the heap

Reallocate a specified block of memory on the heap by
moving andlor resizing the block

The debug routines can be used to step through the source code for most of the other
C run-time routines during the debugging process. However, Microsoft considers
some technology to be proprietary and, therefore, does not provide the source code for
these routines. Most of these routines belong to either the exception handling or
floating-point processing groups, but a few others are included as well. The following
table lists these routines.

C Run-time Routines that are Not Available in Source Code Form

acos _fpclass

asin _fpieee_flt

atan, atan2 _fpreset

_cabs frexp

ceil _hypot

_chgsign _isnan

_clearS7, _clearfp -.i0
_controIS7, _controlfp -.il
_copysign -.in

cos Idexp

cosh log

exp loglO

fabs _10gb

_finite longjmp

floor _matherr

fmod modf

_nextafter

pow

printf, wprintfI

_scalb

scanf, wscanfl

setjmp

sin

sinh

sqrt

_statusS7, _statusfp

tan

tanh

-yO

-yl

-YD

1 Although source code is available for most of this routine, it makes an internal call to another routine for
which source code is not provided.

Some C run-time functions and C++ operators behave differently when called from a
debug build of an application. (Note that a debug build of an application can be
achieved by either defining the _DEBUG flag or by linking with a debug version of
the C run-time library.) The behavioral differences usually consist of extra features or
information provided by the routine to support the debugging process. The following
table lists these routines.

Chapter 1 Run-Time Routines by Category

Routines that Behave Differently in a Debug Build of an Application

C abort routine

C assert routine

c++ delete operator

C++ new operator

For more information about using the debug versions of the C++ operators in the
preceding table, see "Using the Debug Heap from C++" on page 86 in Chapter 4.

Directory Control
These routines access, modify, and obtain information about the directory structure.

Directory-Control Routines

Routine

_chdir, _wchdir

_chdrive

_getcwd, _ wgetcwd

_getdcwd, _ wgetdcwd

_getdrive

_mkdir, _ wmkdir

_rmdir, _ wrmdir

_searchenv, _ wsearchenv

Use

Change current working directory

Change current drive

Get current working directory for default drive

Get current working directory for specified drive

Get current (default) drive

Make new directory

Remove directory

Search for given file on specified paths

Error Handling
Use these routines to handle program errors.

Error-Handling Routines

Routine

assert macro

_ASSERT, _ASSERTE
macros

clearerr

_eof

feof

Use

Test for programming logic errors; available in both the
release and debug versions of the run-time library

Similar to assert, but only available in the debug versions of
the run-time library

Reset error indicator. Calling rewind or closing a stream
also resets the error indicator.

Check for end of file in low-level 110

Test for end of file. End of file is also indicated when _read
returns O.

9

Run-Time Library Reference

Error-Handling Routines (continued)

Routine Use

ferror

_RPT, _RPTF macros

Test for stream ua errors

Generate a report similar to printf, but only available in the
debug versions of the run-time library

Exception Handling
Use the c++ exception-handling functions to recover from unexpected events during
program execution.

Exception-Handling Functions

Function Use

seCterminate

seCunexpected

terminate

unexpected

Handle Win32 exceptions (C structured exceptions) as C++
typed exceptions

Install your own termination routine to be called by terminate

Install your own termination function to be called by
unexpected

Called automatically under certain circumstances after
exception is thrown. terminate calls abort or a function you
specify using seCterminate

Calls terminate or a function you specify using
seCunexpected. unexpected is not used in current Microsoft
C++ exception-handling implementation

File Handling

10

Use these routines to create, delete, and manipulate files and to set and check file­
access permissions.

The C run-time libraries have a preset limit for the number of files that can be open
at anyone time. The limit for applications that link with the single-thread static
library (LIBC.LIB) is 64 file handles or 20 file streams. Applications that link with
either the static or dynamic multithread library (LIBCMT.Lffi or MSVCRT.LIB and
MSVCRTIX.DLL), have a limit of 256 file handles or 40 file streams. Attempting to
open more than the maximum number of file handles or file streams causes program
failure.

The following routines operate on files designated by a file handle:

Chapter 1 Run-Time Routines by Category

File-Handling Routines (File Handle)

Routine

_chsize

_filelength

_fstat, _fstati64

_isatty

_locking

_setmode

Use

Change file size

Get file length

Get file-status information on handle

Check for character device

Lock areas of file

Set file-translation mode

The following routines operate on files specified by a path or filename:

File-Handling Routines (Path or Filename)

Routine

_access, _ waccess

_chmod, _ wchmod

_fullpath, _ wfullpath

~eCosfbandle

_makepath, _ wmakepath

_mktemp, _ wmktemp

_open_osfbandle

remove,_wremove

rename, _ wrename

_splitpath, _ wsplitpath

_stat, _stati64, _ wstat,
_wstati64

_umask

_unlink, _ wunlink

Use

Check file-permission setting

Change file-permission setting

Expand a relative path to its absolute path name

Return operating-system file handle associated with
existing stream FILE pointer

Merge path components into single, full path

Create unique filename

Associate C run-time file handle with existing operating­
system file handle

Delete file

Rename file

Parse path into components

Get file-status information on named file

Set default permission mask for new files created by
program

Delete file

Floating-Point Support
Many Microsoft run-time library functions require floating-point support from a math
coprocessor or from the floating-point libraries that accompany the compiler.
Floating-point support functions are loaded only if required.

When you use a floating-point type specifier in the format string of a call to a
function in the printf or scanf family, you must specify a floating-point value or a
pointer to a floating-point value in the argument list to tell the compiler that floating-

11

Run-Time Library Reference

12

point support is required. The math functions in the Microsoft run-time library
handle exceptions in the same way as the UNIX V math functions.

The Microsoft run-time library sets the default internal precision of the math
coprocessor (or emulator) to 64 bits. This default applies only to the internal
precision at which all intermediate calculations are performed; it does not apply to
the size of arguments, return values, or variables. You can override this default and
set the chip (or emulator) back to 80-bit precision by linking your program with
LIBIFPIO.OBJ. On the linker command line, FPIO.OBJ must appear before
LIBC.LIB, LIBCMT.LIB, or MSVCRT.LIB.

Floating-Point Functions

Routine

abs

acos

asin

atan, atan2

atof

Bessel functions

_cabs

ceil

_chgsign

_clearS7, _clearfp

_controIS7, _controlfp

_copysign

cos

cosh

difftime

div

_ecvt

exp

fabs

_fcvt

floor

fmod

Use

Return absolute value of int

Calculate arccosine

Calculate arcsine

Calculate arctangent

Convert character string to double-precision floating-point
value

Calculate Bessel functions --i0, --iI, --in, -yO, -yl, ---YD

Find absolute value of complex number

Find integer ceiling

Reverse sign of double-precision floating-point argument

Get and clear floating-point status word

Get old floating-point control word and set new control-word
value

Return one value with sign of another

Calculate cosine

Calculate hyperbolic cosine

Compute difference between two specified time values

Divide one integer by another, returning quotient and
remainder

Convert double to character string of specified length

Calculate exponential function

Find absolute value

Convert double to string with specified number of digits
following decimal point

Determine whether given double-precision floating-point value
is finite

Find largest integer less than or equal to argument

Find floating-point remainder

Chapter 1 Run-Time Routines by Category

Floating-Point Functions (continued)

Routine

_fpclass

_fpreset

frexp

~cvt

_hypot

_isnan

labs

ldexp

ldiv

log

loglO

_10gb

_Irotl, _Irotr

_matherr

_max

_min

modf

_nextafter

pow

printf, wprintf

rand

_rotl, _rotr

_scalb

scanf, wscanf

sin

sinh

sqrt

srand

_status87,_statusfp

Use

Return status word containing information on floating-point
class

Invoke user-defined trap handler for IEEE floating-point
exceptions

Reinitialize floating-point math package

Calculate exponential value

Convert floating-point value to character string

Calculate hypotenuse of right triangle

Check given double-precision floating-point value for not a
number (NaN)

Return absolute value of long

Calculate product of argument and 2 to specified power

Divide one long integer by another, returning quotient and
remainder

Calculate natural logarithm

Calculate base-IO logarithm

Extract exponential value of double-precision floating-point
argument

Shift unsigned long int left Clrotl) or right Clrotr)

Handle math errors

Return larger of two values

Return smaller of two values

Split argument into integer and fractional parts

Return next representable neighbor

Calculate value raised to a power

Write data to stdout according to specified format

Get pseudorandom number

Shift unsigned int left Crotl) or right Crotr)

Scale argument by power of 2

Read data from stdin according to specified format and write
data to specified location

Calculate sine

Calculate hyperbolic sine

Find square root

Initialize pseudorandom series

Get floating-point status word

13

Run-Time Library Reference

Floating-Point Functions (continued)

Routine Use

strtod

tan

tanh

Convert character string to double-precision value

Calculate tangent

Calculate hyperbolic tangent

Long Double

14

Previous 16-bit versions of Microsoft C/C++ and Microsoft Visual C++ supported the
long double, 80-bit precision data type. In Win32 programming, however, the long
double data type maps to the double, 64-bit precision data type. The Microsoft run­
time library provides long double versions of the math functions only for backward
compatibility. The long double function prototypes are identical to the prototypes for
their double counterparts, except that the long double data type replaces the double
data type. The long double versions of these functions should not be used in new
code.

Double Functions and Their Long Double Counterparts

Long Double Long Double
Function Counterpart Function Counterpart

acos acosl frexp frexpl

asin asinl _hypot _hypotl

atan atanl ldexp ldexpl

atan2 atan21 log logl

atof _atold log10 loglOl

Bessel functions Bessel functions _math err _matherrl
jO, jl, jn jOl, jll, jnl

Bessel functions Bessel functions modf modfl
yO,yl,yn yOl, yll, ynl

_cabs _cabsl pow powl

ceil ceill sin sinl

cos cosl sinh sinhl

cosh coshl sqrt sqrtl

exp expl strtod _strtold

fabs fabsl tan tanl

floor floorl tanh tanhl

fmod fmodl

Chapter 1 Run-Time Routines by Category

Input and Output

v

The I/O functions read and write data to and from files and devices. File I/O
operations take place in text mode or binary mode. The Microsoft run-time library
has three types of I/O functions:

• Stream I/O functions treat data as a stream of individual characters.

• Low-level I/O functions invoke the operating system directly for lower-level
operation than that provided by stream I/O.

• Console and port I/O functions read or write directly to a console (keyboard and
screen) or an I/O port (such as a printer port).

Warning Because stream functions are buffered and low-level functions are not, these two
types of functions are generally incompatible. For processing a particular file, use either stream
or low-level functions exclusively.

Text and Binary Mode File 110
File I/O operations take place in one of two translation modes, text or binary,
depending on the mode in which the file is open. Data files are usually processed in
text mode. To control the file translation mode, you can:

• Retain the current default setting and specify the alternative mode only when you
open selected files.

• Change the default translation mode directly by setting the global variable _fmode
in your program. The initial default setting of _fmode is _0_ TEXT, for text
mode. For more information about _fmode, see page 44.

When you call a file-open function such as _open, fopen, freopen, or _fsopen, you
can override the current default setting of _fmode by specifying the appropriate
argument to the function. The stdin, stdout, and stderr streams are always opened in
text mode by default; you can also override this default when opening any of these
files. Use _setmode to change the translation mode using the file handle after the file
is open.

Unicode™ Stream 110 in Text and Binary Modes
When a Unicode stream I/O routine (such as fwprintf, fwscanf, fgetwc, fputwc,
fgetws, or fputws) operates on a file that is open in text mode (the default), two kinds
of character conversions take place:

15

Run-Time Library Reference

• Unicode-to-MBCS or MBCS-to-Unicode conversion. When a Unicode stream-I/O
function operates in text mode, the source or destination stream is assumed to be a
sequence of multibyte characters. Therefore, the Unicode stream-input functions
convert multibyte characters to wide characters (as if by a call to the mbtowc
function). For the same reason, the Unicode stream-output functions convert wide
characters to multibyte characters (as if by a call to the wctomb function).

• Carriage return-linefeed (CR-LF) translation. This translation occurs before the
MBCS-Unicode conversion (for Unicode stream input functions) and after the
Unicode-MBCS conversion (for Unicode stream output functions). During input,
each carriage return -linefeed combination is translated into a single linefeed
character. During output, each linefeed character is translated into a carriage
return -linefeed combination.

However, when a Unicode stream-I/O function operates in binary mode, the file is
assumed to be Unicode, and no CR-LF translation or character conversion occurs
during input or output.

Stream I/O

16

These functions process data in different sizes and formats, from single characters to
large data structures. They also provide buffering, which can improve performance.
The default size of a stream buffer is 4K. These routines affect only buffers created by
the run-time library routines, and have no effect on buffers created by the operating
system.

Stream I/O Routines

Routine

clearerr

fclose

_fcloseall

_fdopen, wfdopen

feof

ferror

fflush

fgetc, fgetwc

_fgetchar, _fgetwchar

fgetpos

fgets, fgetws

_fileno

_flushall

Use

Clear error indicator for stream

Close stream

Close all open streams except stdin, stdout, and stderr

Associate stream with handle to open file

Test for end of file on stream

Test for error on stream

Flush stream to buffer or storage device

Read character from stream (function versions of getc and
getwc)

Read character from stdin (function versions of getchar
and getwchar)

Get position indicator of stream

Read string from stream

Get file handle associated with stream

Flush all streams to buffer or storage device

Stream 1/0 Routines (continued)

Routine

fopen, _ wfopen

fprintf, fwprintf

fputc, fputwc

Jputchar, _fputwchar

fputs, fputws

fread

freopen,_wfreopen

fscanf, fwscanf

fseek

fsetpos

_fsopen, _ wfsopen

ftell

fwrite

getc, getwc

getchar, getwchar

gets, getws

~etw

printf, wprintf

putc, putwc

putchar, putwchar

puts, _putws

_putw

rewind

_rmtmp

scanf, wscanf

setbuf

setvbuf

_snprintf, _snwprintf

sprintf, swprintf

Chapter 1 Run-Time Routines by Category

Use

Open stream

Write formatted data to stream

Write a character to a stream (function versions of putc and
putwc)

Write character to stdout (function versions of putchar and
putwchar)

Write string to stream

Read unformatted data from stream

Reassign FILE stream pointer to new file or device

Read formatted data from stream

Move file position to given location

Set position indicator of stream

Open stream with file sharing

Get current file position

Write unformatted data items to stream

Read character from stream (macro versions of fgetc and
fgetwc)

Read character from stdin (macro versions of fgetchar and
fgetwchar)

Read line from stdin

Read binary int from stream

Write formatted data to stdout

Write character to a stream (macro versions of fputc and
fputwc)

Write character to stdout (macro versions of fputchar and
fputwchar)

Write line to stream

Write binary int to stream

Move file position to beginning of stream

Remove temporary files created by tmpfile

Read formatted data from stdin

Control stream buffering

Control stream buffering and buffer size

Write formatted data of specified length to string

Write formatted data to string

17

Run-Time Library Reference

18

Stream 1/0 Routines (continued)

Routine

sscanf, swscanf

_tempnam, _ wtempnam

tmpfile

tmpnam, _ wtmpnam

ungetc, ungetwc

vfprintf, vfwprintf

vprintf, vwprintf

_ vsnprintf, _ vsnwprintf

vsprintf, vswprintf

Use

Read formatted data from string

Generate temporary filename in given directory

Create temporary file

Generate temporary filename

Push character back onto stream

Write formatted data to stream

Write formatted data to stdout

Write formatted data of specified length to buffer

Write formatted data to buffer

When a program begins execution, the startup code automatically opens several
streams: standard input (pointed to by stdin), standard output (pointed to by stdout),
and standard error (pointed to by stderr). These streams are directed to the console
(keyboard and screen) by default. Use freopen to redirect stdin, stdout, or stderr to a
disk file or a device.

Files opened using the stream routines are buffered by default. stdout and stderr are
flushed whenever they are full or, if you are writing to a character device, after each
library call. If a program terminates abnormally, output buffers may not be flushed,
resulting in loss of data. Use mush or _flushall to ensure that the buffer associated
with a specified file or all open buffers are flushed to the operating system, which can
cache data before writing it to disk. The commit-to-disk feature ensures that the
flushed buffer contents are not lost in the event of a system failure.

There are two ways to commit buffer contents to disk:

• Link with the file COMMODE.OBJ to set a global commit flag. The default
setting of the global flag is n, for "no-commit."

• Set the mode flag to c with fopen or _fdopen.

Any file specifically opened with either the c or the n flag behaves according to the
flag, regardless of the state of the global commit/no-commit flag.

If your program does not explicitly close a stream, the stream is automatically closed
when the program terminates. However, you should close a stream when your
program finishes with it, as the number of streams that can be open at one time is
limited.

Input can follow output directly only with an intervening call to mush or to a file­
positioning function (fseek, fsetpos, or rewind). Output can follow input without an
intervening call to a file-positioning function if the input operation encounters the
end of the file.

Chapter 1 Run-Time Routines by Category

Low-level I/O
These functions invoke the operating system directly for lower-level operation than
that provided by stream I/O. Low-level input and output calls do not buffer or format
data.

Low-level routines can access the standard streams opened at program startup using
the following predefined handles:

Stream Handle

stdin

stdout

stderr

o

2

Low-level I/O routines set the errno global variable when an error occurs. (For more
information, see "_doserrno, errno, _sys_errlist, and _sysnerr" on page 41.) You
must include STDIO.H when you use low-level functions only if your program
requires a constant that is defined in STDIO.H, such as the end-of-file indicator
(EOF).

Low-Level 1/0 Functions

Function

_close

_commit

_creat, _ wcreat

_dup

_dup2

_eof

_lseek, _lseeki64

_open, _ wopen

_read

_sopen, _ wsopen

_tell, _telli64

_umask

_write

Use

Close file

Flush file to disk

Create file

Return next available file handle for given file

Create second handle for given file

Test for end of file

Reposition file pointer to given location

Open file

Read data from file

Open file for file sharing

Get current file-pointer position

Set file-permission mask

Write data to file

_dup and _dup2 are typically used to associate the predefined file handles with
different files.

19

Run-Time Library Reference

Console and Port 110
These routines read and write on your console or on the specified port. The console
I/O routines are not compatible with stream 110 or low-level 110 library routines. The
console or port does not have to be opened or closed before 110 is performed, so there
are no open or close routines in this category. In Windows NT and Windows 95, the
output from these functions is always directed to the console and cannot be
redirected.

Console and Port 1/0 Routines

Routine

_cgets

_cprintf

_cputs

_cscanf

_getch

~etche

_inp

_inpd

_inpw

_khhit

_outp

_outpd

_outpw

_putch

_ungetch

Use

Read string from console

Write formatted data to console

Write string to console

Read formatted data from console

Read character from console

Read character from console and echo it

Read one byte from specified I/O port

Read double word from specified I/O port

Read 2-byte word from specified I/O port

Check for keystroke at console; use before attempting to read from console

Write one byte to specified I/O port

Write double word to specified I/O port

Write word to specified I/O port

Write character to console

"Unget" last character read from console so it becomes next character read

Internationalization

20

The Microsoft run-time library provides many routines that are useful for creating
different versions of a program for international markets. This includes locale-related
routines, wide-character routines, multibyte-character routines, and generic-text
routines. For convenience, most locale-related routines are also categorized in this
reference according to the operations they perform. In this chapter and in this book's
alphabetic reference, multibyte-character routines and wide-character routines are
described with single-byte-character counterparts, where they exist.

Chapter 1 Run-Time Routines by Category

Locale
Use the setlocale function to change or query some or all of the current program
locale information. "Locale" refers to the locality (the country and language) for
which you can customize certain aspects of your program. Some locale-dependent
categories include the formatting of dates and the display format for monetary values.

Locale-Dependent Routines

setlocale Category
Routine Use Setting Dependence

atof, atoi, atol Convert character to floating-point, LC_NUMERIC
integer, or long integer value,
respectively

is Routines Test given integer for particular LC_CTYPE
condition.

isleadbyte Test for lead byte 0 LC_CTYPE

localeconv Read appropriate values for LC_MONETARY,
fonnatting numeric quantities LC_NUMERIC

MB_CUR_MAX Maximum length in bytes of any LC_CTYPE
multibyte character in current locale
(macro defined in STDLIB.H)

_mbccpy Copy one multibyte character LC_CTYPE

_mbclen Return length, in bytes, of given LC_CTYPE
multibyte character

mblen Validate and return number of bytes LC_CTYPE
in multibyte character

_mbstrlen For multibyte-character strings: LC_CTYPE
validate each character in string;
return string length

mbstowcs Convert sequence of multibyte LC_CTYPE
characters to corresponding sequence
of wide characters

mbtowc Convert multibyte character to LC_CTYPE
corresponding wide character

printf family Write formatted output LC_NUMERIC
(determines radix
character output)

scanf family Read formatted input LC_NUMERIC
(determines radix
character recognition)

setlocale, Select locale for program Not applicable
_ wsetlocale

strcoll, wcscoll Compare characters of two strings LC_COLLATE

21

Run-Time Library Reference

Locale-Dependent Routines (continued)

setlocale Category
Routine Use Setting Dependence

_stricoll, _ wcsicoll Compare characters of two strings LC_COLLATE
(case insensitive)

_strncoll, _ wcsncoll Compare first n characters of two LC_COLLATE
strings

_strnicoll, Compare first n characters of two LC_COLLATE
_wcsnicoll strings (case insensitive)

strftime, wcsftime Format date and time value according LC_TlME
to supplied format argument

- strlwr Convert, in place, each uppercase LC_CTYPE
letter in given string to lowercase

strtod, wcstod, Convert character string to double, LC_NUMERIC
strtol, wcstol, long, or unsigned long value (determines radix
strtoul, wcstoul character recognition)

_strupr Convert, in place, each lowercase LC_CTYPE
letter in string to uppercase

strxfrm, wcsxfrm Transform string into collated form LC_COLLATE
according to locale

tolower, towlower Convert given character to LC_CTYPE
corresponding lowercase character

toupper, towupper Convert given character to LC_CTYPE
corresponding uppercase letter

wcstombs Convert sequence of wide characters LC_CTYPE
to corresponding sequence of
multibyte characters

wctomb Convert wide character to LC_CTYPE
corresponding multibyte character

_ wtoi, _ wtol Convert wide-character string to int LC_NUMERIC
or long

Code Pages

22

A code page is a character set, which can include numbers, punctuation marks, and
other glyphs. Different languages and locales may use different code pages. For
example, ANSI code page 1252 is used for American English and most European
languages; OEM code page 932 is used for Japanese Kanji.

A code page can be represented in a table as a mapping of characters to single-byte
values or multibyte values. Many code pages share the ASCII character set for
characters in the range OxOO-Ox7F.

Chapter 1 Run-Time Routines by Category

The Microsoft run-time library uses the following types of code pages:

• System-default ANSI code page. By default, at startup the run-time system
automatically sets the multibyte code page to the system-default ANSI code page,
which is obtained from the operating system. The call

set 1 0 cal e (L C _A L L. '''');

also sets the locale to the system-default ANSI code page.

• Locale code page. The behavior of a number of run-time routines is dependent on
the current locale setting, which includes the locale code page. (For more
information, see "Locale-Dependent Routines" on page 21.) By default, all locale­
dependent routines in the Microsoft run-time library use the code page that
corresponds to the "C" locale. At run-time you can change or query the locale code
page in use with a call to setlocale.

• Multibyte code page. The behavior of most of the multi byte-character routines in
the run-time library depends on the current multibyte code page setting. By
default, these routines use the system-default ANSI code page. At run-time you
can query and change the multi byte code page with ~etmbcp and _setmbcp,
respectively.

• The "C" locale is defined by ANSI to correspond to the locale in which C
programs have traditionally executed. The code page for the "C" locale ("C" code
page) corresponds to the ASCII character set. For example, in the "C" locale,
islower returns true for the values Ox61-0x7 A only. In another locale, islower
may return true for these as well as other values, as defined by that locale.

Interpretation of Multibyte-Character Sequences
Most multibyte-character routines in the Microsoft run-time library recognize
multibyte-character sequences according to the current multibyte code page setting.
The following multi byte-character routines depend instead on the locale code page
(specifically, on the LC_CTYPE category setting of the current locale):

Locale-Dependent Multibyte Routines

Routine

mblen

_mbstrlen

mbstowcs

mbtowc

wcstombs

wctomb

Use

Validate and return number of bytes in multibyte character

For multibyte-character strings: validate each character in string; return
string length

Convert sequence of multibyte characters to corresponding sequence of
wide characters

Convert multibyte character to corresponding wide character

Convert sequence of wide characters to corresponding sequence of
multibyte characters

Convert wide character to corresponding multibyte character

23

Run-Time Library Reference

Single-byte and Multibyte Character Sets
The ASCII character set defines characters in the range OxOO-Ox7F. There are a
number of other character sets, primarily European, that define the characters within
the range OxOO-Ox7F identically to the ASCII character set and also define an
extended character set from Ox80-0xFF. Thus an 8-bit, single-byte-character set
(SBCS) is sufficient to represent the ASCII character set as well as the character sets
for many European languages. However, some non-European character sets, such as
Japanese Kanji, include many more characters than can be represented in a single­
byte coding scheme, and therefore require multibyte-character set (MBCS) encoding.

Note Many SBCS routines in the Microsoft run-time library handle multibyte bytes,
characters, and strings as appropriate. Many multibyte-character sets define the ASCII
character set as a subset. In many multibyte character sets, each character in the range OxOO­
Ox7F is identical to the character that has the same value in the ASCII character set. For
example, in both ASCII and MBCS character strings, the one-byte NULL character ('\01

) has
value OxOO and indicates the terminating null character.

A multibyte character set may consist of both one-byte and two-byte characters. Thus
a multibyte-character string may contain a mixture of single-byte and double-byte
characters. A two-byte multibyte character has a lead byte and a trail byte. In a
particular multi byte-character set, the lead bytes fall within a certain range, as do the
trail bytes. When these ranges overlap, it may be necessary to evaluate the context to
determine whether a given byte is functioning as a lead byte or a trail byte.

SBCS and MBCS Data Types

24

Any Microsoft MBCS run-time library routine that handles only one multibyte
character or one byte of a multibyte character expects an unsigned int argument
(where OxOO <= character value <= OxFFFF and OxOO <= byte value <= OxFF). An
MBCS routine that handles multibyte bytes or characters in a string context expects a
multibyte-character string to be represented as an unsigned char pointer.

Caution Each byte of a multibyte character can be represented in an a-bit char. However, an
SBCS or MBCS single-byte character of type char with a value greater than Ox7F is negative.
When such a character is converted directly to an int or a long, the result is sign-extended by
the compiler and can therefore yield unexpected results.

Therefore it is best to represent a byte of a multibyte character as an 8-bit unsigned
char. Or, to avoid a negative result, simply convert a single-byte character of type
char to an unsigned char before converting it to an int or a long.

Chapter 1 Run-Time Routines by Category

Because some SBCS string-handling functions take (signed) char* parameters, a
type mismatch compiler warning will result when _MBCS is defined. There are three
ways to avoid this warning, listed in order of efficiency:

1. Use the "type-safe" inline function thunks in TCHAR.H. This is the default
behavior.

2. Use the "direct" macros in TCHAR.H by defining _MB_MAP _DIRECT on the
command line. If you do this, you must manually match types. This is the fastest
method, but is not type-safe.

3. Use the "type-safe" statically linked library function thunks in TCHAR.H. To do
so, define the constant _NO_INLINING on the command line. This is the slowest
method, but the most type-safe.

Unicode: The Wide-Character Set
A wide character is a 2-byte multilingual character code. Any character in use in
modem computing worldwide, including technical symbols and special publishing
characters, can be represented according to the Unicode specification as a wide
character. Developed and maintained by a large consortium that includes Microsoft,
the Unicode standard is now widely accepted. Because every wide character is always
represented in a fixed size of 16 bits, using wide characters simplifies programming
with international character sets.

A wide character is of type wchar_t. A wide-character string is represented as a
wchar_t[] array and is pointed to by a wchar_t* pointer. You can represent any
ASCII character as a wide character by prefixing the letter L to the character. For
example, L'\O' is the terminating wide (16-bit) NULL character. Similarly, you can
represent any ASCII string literal as a wide-character string literal simply by
prefixing the letter L to the ASCII literal (L"Hello").

Generally, wide characters take up more space in memory than multibyte characters
but are faster to process. In addition, only one locale can be represented at a time in
multibyte encoding, whereas all character sets in the world are represented
simultaneously by the Unicode representation.

Using Generic-Text Mappings
Microsoft Specific ---7

To simplify code development for various international markets, the Microsoft run­
time library provides Microsoft-specific "generic-text" mappings for many data types,
routines, and other objects. These mappings are defined in TCHAR.H. You can use
these name mappings to write generic code that can be compiled for any of the three
kinds of character sets: ASCII (SBCS), MBCS, or Unicode, depending on a manifest

25

Run-Time Library Reference

26

constant you define using a #define statement. Generic-text mappings are Microsoft
extensions that are not ANSI compatible.

Preprocessor Directives for Generic-Text Mappings

#define Compiled Version

_UNICODE

_MBCS

None (the default: neither
_UNICODE nor _MBCS
defined)

Unicode (wide-character)

Multibyte-character

SBCS (ASCII)

Example

_tcsrev maps to _ wcsrev

_tcsrev maps to _mbsrev

_tcsrev maps to strrev

For example, the generic-text function _tcsrev, defined in TCHAR.H, maps to
mbsrev ifMBCS has been defined in your program, or to _wcsrev if _UNICODE
has been defined. Otherwise _tcsrev maps to strrev.

The generic-text data type _TCHAR, also defined in TCHAR.H, maps to type char if
_MBCS is defined, to type wchar_t if _UNICODE is defined, and to type char if
neither constant is defined. Other data type mappings are provided in TCHAR.H for
programming convenience, but _TCHAR is the type that is most useful.

Generic-Text Data Type Mappings

Generic-Text SBCS lUNICODE,
Data Type Name _ MBCS Not Defined) -MBCS Defined _UNICODE Defined

_TCHAR char char wchar_t

- TINT int int winet

_TSCHAR signed char signed char wchar_t

_TUCHAR unsigned char unsigned char wchar_t

_TXCHAR char unsigned char wchar_t

_Tor _TEXT No effect (removed by No effect L (converts following
preprocessor) (removed by character or string to its

preprocessor) Unicode counterpart)

For a complete list of generic-text mappings of routines, variables, and other objects,
see Appendix B, "Generic-Text Mappings."

The following code fragments illustrate the use of _TCHAR and _tcsrev for
mapping to the MBCS, Unicode, and SBCS models.

_TCHAR *RetVal, *szString;
RetVal = _tcsrev(szString);

If MBCS has been defined, the preprocessor maps the preceding fragment to the
following code:

char *RetVal, *szString;
RetVal = _mbsrev(szString);

Chapter 1 Run-Time Routines by Category

If _UNICODE has been defined, the preprocessor maps the same fragment to the
following code:

wchar_t *RetVal. *szString;
RetVal = _wcsrev(szString);

If neither _MBCS nor _UNICODE has been defined, the preprocessor maps the
fragment to single-byte ASCII code, as follows:

char *RetVal. *szString;
RetVal = strrev(szString);

Thus you can write, maintain, and compile a single source code file to run with
routines that are specific to any of the three kinds of character sets.

A Sample Generic-Text Program
The following program, GENTEXT.C, provides a more detailed illustration of the use
of generic-text mappings defined in TCHAR.H:

/*
* GENTEXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <direct.h>
#include <errno.h>
#include <tchar.h>

int __ cdecl _tmain(int argc. _TCHAR **argv. _TCHAR **envp)
{

_TCHAR buff[_MAX_PATH];
_TCHAR *str = _T("Astring");
char *amsg = "Reversed";
wchar_t *wmsg = L"Is";

#ifdef _UNICODE
printf("Unicode version\n");

#else /* _UNICODE */
#ifdef _MBCS

printf("MBCS version\n");
#else

printf("SBCS version\n");
#endif
#endif 1* _UNICODE */

if (_tgetcwd(buff. _MAX_PATH) == NULL)
printf("Can't Get Current Directory - errno=%d\n". errno);

27

Run-Time Library Reference

28

}

else
_tprintf(_T("Current Directory is '%s'\n"), buff);

_tprintf(_T("'%s' %hs %ls:\n"), str, amsg, wmsg);
_tprintf(_T("'%s'\n"), _tcsrev(str));
return 0;

If _MBCS has been defined, GENTEXT.C maps to the following MBCS program:

/*
* MBCSGTXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
* MBCS version of GENTEXT.C
*/

int __ cdecl main(int argc, char **argv, char **envp)
{

}

char buff[_MAX_PATH];
char *str = "Astring";
char *amsg = "Reversed";
wchar_t *wmsg = L"Is";

printf("MBCS version\n");
if (_getcwd(buff, _MAX_PATH) == NULL)

printf("Can't Get Current Directory - errno=%d\n", errno);
else

pri ntf("Current Di rectory is' %s' \n", buff);
printf("'%s' %hs %ls:\n", str, amsg, wmsg);
printf("'%s'\n", _mbsrev(str));
return 0;

If _UNICODE has been defined, GENTEXT.C maps to the following Unicode
version of the program. For more information about using wmain in Unicode
programs as a replacement for main, see "Using wmain" in C Language Reference.

/*
* UNICGTXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
* Unicode version of GENTEXT.C
*/

int cdecl wmain(int argc, wchar_t **argv, wchar_t **envp)
{

wchar_t buff[_MAX_PATH];
wchar_t *str = L"Astring";
char *amsg = "Reversed";
wchar_t *wmsg = L"Is";

printf("Unicode version\n");
if (_wgetcwd(buff, _MAX_PATH) == NULL)

printf("Can't Get Current Directory - errno=%d\n", errno);

Chapter 1 Run-Time Routines by Category

}

else
wpri ntf(L"Current Di rectory is '%s' \n", buff);

wprintf(L"'%s' %hs %ls:\n", str, amsg, wmsg);
wprintf(L"'%s'\n", wcsrev(str));
return 0;

If neither _MBCS nor _UNICODE has been defined, GENTEXT.C maps to single­
byte ASCII code, as follows:

1*
* SBCSGTXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
* Single-byte (SBCS) Ascii version of GENTEXT.C
*1

int __ cdecl main(int argc, char **argv, char **envp)
{

}

char buff[_MAX_PATH];
char *str = "Astring";
char *amsg = "Reversed";
wchar_t *wmsg = LnIs";

printf("SBCS version\n");
if (_getcwd(buff, _MAX_PATH) == NULL)

printf("Can't Get Current Directory - errno=%d\nn, errno);
else

printf("Current Directory is '%s'\n", buff);
printf(n,%s' %hs %ls:\n", str, amsg, wmsg);
printf(n'%s'\n", strrev(str));
return 0;

Using TCHAR.H Data Types with _MBCS
As the table of generic-text routine mappings indicates (see Appendix B, "Generic­
Text Mappings"), when the manifest constant _MBCS is defined, a given generic­
text routine maps to one of the following kinds of routines:

• An SBCS routine that handles multibyte bytes, characters, and strings
appropriately. In this case, the string arguments are expected to be of type char*.
For example, _tprintf maps to printf; the string arguments to printf are of type
char*. If you use the _ TCHAR generic-text data type for your string types, the
formal and actual parameter types for printf match because _ TCHAR * maps to
char*.

• An MBCS-specific routine. In this case, the string arguments are expected to be of
type unsigned char*. For example, _tcsrev maps to _mbsrev, which expects and
returns a string of type unsigned char*. Again, if you use the _ TCHAR generic-

29

Run-Time Library Reference

30

text data type for your string types, there is a potential type conflict because
_ TCHAR maps to type char.

Following are three solutions for preventing this type conflict (and the C compiler
warnings or C++ compiler errors that would result):

• Use the default behavior. TCHAR.H provides generic-text routine prototypes for
routines in the run-time libraries, as in the following example.

char *_tcsrev(char *);

In the default case, the prototype for _tcsrev maps to _mbsrev through a thunk in
LIBC.LIB. This changes the types of the _mbsrev incoming parameters and
outgoing return value from _TCHAR * (i.e., char *) to unsigned char *. This
method ensures type matching when you are using _TCHAR, but it is relatively
slow because of the function call overhead.

• Use function inlining by incorporating the following preprocessor statement in
your code.

#define _USE_INLINING

This method causes an inline function thunk, provided in TCHAR.H, to map the
generic-text routine directly to the appropriate MBCS routine. The following code
excerpt from TCHAR.H provides an example of how this is done.

__ inline char *_tcsrev(char *_sl)
{return (char *)_mbsrev«unsigned char *)_sl);}

If you can use inlining, this is the best solution, because it guarantees type
matching and has no additional time cost.

• Use "direct mapping" by incorporating the following preprocessor statement in
your code.

#define _MB_MAP_DIRECT

This approach provides a fast alternative if you do not want to use the default
behavior or cannot use inlining. It causes the generic-text routine to be mapped by
a macro directly to the MBCS version of the routine, as in the following example
from TCHAR.H.

#define _tcschr _mbschr

When you take this approach, you must be careful to ensure that appropriate data
types are used for string arguments and string return values. You can use type casting
to ensure proper type matching or you can use the _TXCHAR generic-text data type.
_TXCHAR maps to type char in SBCS code but maps to type unsigned char in
MBCS code. For more information about generic-text macros, see Appendix B,
"Generic-Text Mappings."

END Microsoft Specific

Chapter 1 Run-Time Routines by Category

Memory Allocation
Use these routines to allocate, free, and reallocate memory.

Memory-Allocation Routines

Routine

_alloca

calloc

_expand

_expand_dbg

_heapadd

_heapchk

_heapmin

_heapset

_heapwalk

malloc

_malloc_dbg

_msize

_msize_dbg

realloc

_realloc_dbg

Use

Allocate memory from stack

Allocate storage for array, initializing every byte in allocated
block to 0

Debug version of calloc; only available in the debug
versions of the run-time libraries

Expand or shrink block of memory without moving it

Debug version of _expand; only available in the debug
versions of the run-time libraries

Free allocated block

Debug version of free; only available in the debug versions
of the run-time libraries

Add memory to heap

Check heap for consistency

Release unused memory in heap

Fill free heap entries with specified value

Return information about each entry in heap

Allocate block of memory from heap

Debug version of malloc; only available in the debug
versions of the run-time libraries

Return size of allocated block

Debug version of _msize; only available in the debug
versions of the run-time libraries

Return address of current new handler routine as set by
_seCnew _handler

Return integer indicating new handler mode set by
_seCnew _mode for malloc

Reallocate block to new size

Debug version of realloc; only available in the debug
versions of the run-time libraries

Enable error-handling mechanism when new operator fails
(to allocate memory) and enable compilation of Standard
Template Libraries (STL)

Set new handler mode for malloc

31

Run-Time Library Reference

Process and Environment Control

32

Use the process-control routines to start, stop, and manage processes from within a
program. Use the environment-control routines to get and change information about
the operating-system environment.

Process and Environment Control Functions

Routine

abort

assert

_ASSERT,
_ASSERTE macros

atexit

_beginthread,
_beginthreadex

_cexit

_cwait

_endthread,
_endthreadex

_execl, _ wexecl

_execle, _ wexecle

_execlp, _ wexeclp

_execlpe,
_wexeclpe

_execv, _ wexecv

_execve,_wexecve

_execvp, _ wexecvp

_execvpe,
_wexecvpe

exit

getenv, _ wgetenv

~etpid

longjmp

Use

Abort process without flushing buffers or calling functions
registered by atexit and _onexit

Test for logic error

Similar to assert, but only available in the debug versions of the
run-time libraries

Schedule routines for execution at program termination

Create a new thread on a Windows NT or Windows 95 process

Perform exit termination procedures (such as flushing buffers),
then return control to calling program without terminating process

Perform _exit termination procedures, then return control to
calling program without terminating process

Wait until another process terminates

Terminate a Windows NT or Windows 95 thread

Execute new process with argument list

Execute new process with argument list and given environment

Execute new process using PATH variable and argument list

Execute new process using PATH variable, given environment,
and argument list

Execute new process with argument array

Execute new process with argument array and given environment

Execute new process using PATH variable and argument array

Execute new process using PATH variable, given environment,
and argument array

Call functions registered by atexit and _onexit, flush all buffers
and close all open files, and terminate process

Terminate process immediately without calling atexit or _onexit
or flushing buffers

Get value of environment variable

Get process ID number

Restore saved stack environment; use it to execute a nonlocal goto

Chapter 1 Run-Time Routines by Category

Process and Environment Control Functions (continued)

Routine

_pclose

perror,_~perror

_pipe

_popen, _ ~popen

_putenv, _ ~putenv

raise

setjmp

signal

_spa~nl, _ ~spa~nl

_spa~nle,

_~spa~nle

_spa~nlp,

_~spa~nlp

_spa~nlpe,

_~spa~nlpe

_spa~v,

_~spa~nv

_spa~nve,

_~spa~nve

_spa~nvp,

_~spa~vp

_spa~nvpe,

_~spa~nvpe

system, _ ~system

Use

Schedule routines for execution at program termination; use for
compatibility with Microsoft C/C++ version 7.0 and earlier

Wait for new command processor and close stream on associated
pipe

Print error message

Create pipe for reading and writing

Create pipe and execute command

Add or change value of environment variable

Send signal to calling process

Save stack environment; use to execute nonlocal goto

Handle interrupt signal

Create and execute new process with specified argument list

Create and execute new process with specified argument list and
environment

Create and execute new process using PATH variable and
specified argument list

Create and execute new process using PATH variable, specified
environment, and argument list

Create and execute new process with specified argument array

Create and execute new process with specified environment and
argument array

Create and execute new process using PATH variable and
specified argument array

Create and execute new process using PATH variable, specified
environment, and argument array

Execute operating-system command

In Windows NT and Windows 95, the spawned process is equivalent to the spawning
process. Therefore, the OS/2® wait function, which allows a parent process to wait
for its children to terminate, is not available. Instead, any process can use _cwait to
wait for any other process for which the process ID is known.

The difference between the _exec and _spawn families is that a Jpawn function can
return control from the new process to the calling process. In a _spawn function,
both the calling process and the new process are present in memory unless
_P _OVERLAY is specified. In an _exec function, the new process overlays the
calling process, so control cannot return to the calling process unless an error occurs
in the attempt to start execution of the new process.

33

Run-Time Library Reference

The differences among the functions in the _exec family, as well as among those in
the _spawn family, involve the method of locating the file to be executed as the new
process, the form in which arguments are passed to the new process, and the method
of setting the environment, as shown in the following table. Use a function that
passes an argument list when the number of arguments is constant or is known at
compile time. Use a function that passes a pointer to an array containing the
arguments when the number of arguments is to be determined at run time. The
information in the following table also applies to the wide-character counterparts of
the _spawn and _exec functions.

_spawn and _exec Function Families

Use PATH Argument-
Variable to Passing

Functions Locate File Convention Environment Settings

_exeel, _spawnl No List Inherited from calling process

_exeele, _spawnle No List Pointer to environment table for
new process passed as last
argument

_exeelp, _spawnlp Yes List Inherited from calling process

_exeelpe, _spawnlpe Yes List Pointer to environment table for
new process passed as last
argument

_execv, _spawnv No Array Inherited from calling process

_execve,_spawnve No Array Pointer to environment table for
new process passed as last
argument

_execvp, _spawnvp Yes Array Inherited from calling process

_execvpe, _spawnvpe Yes Array Pointer to environment table for
new process passed as last
argument

Searching and Sorting

34

Use the following functions for searching and sorting:

Searching and Sorting Functions

Function Search or Sort

bsearch

_lfind

_lsearch

qsort

Binary search

Linear search for given value

Linear search for given value, which is added to array if not found

Quick sort

Chapter 1 Run-Time Routines by Category

String Manipulation
These routines operate on null-terminated single-byte character, wide-character, and
multibyte-character strings. Use the buffer-manipulation routines, described in Buffer
Manipulation, to work with character arrays that do not end with a null character.

String-Manipulation Routines

Routine

_mbscoll, _mbsicoll,
_mbsncoll, _mbsnicoll

_mbsdec, _strdec, _ wcsdec

_mbsinc, _strinc, _ wcsinc

_mbslen

_mbsnbcat

_mbsnbcmp

_mbsnbcnt

_mbsnbcpy

_mbsnbicmp

_mbsnbset

_mbsncent

_mbsnextc, _strnextc,
_wcsnextc

_mbsninc. _strnine, _ wcsninc

_mbsspnp, _strspnp,
_wcsspnp

_mbstrlen

strcat, wcseat, _mbscat

strchr, wcschr, _mbsehr

strcmp, wcsemp, _mbscmp

strcoll, wcscoll, _strieoll,
_ wcsieoll, _strncoll, _ wcsncoll,
_strnieoll, _ wesnieoll

strcpy, wcscpy, _mbsepy

Use

Compare two multibyte-character strings using
multibyte code page information Cmbsicoll and
_mbsnicoll are case-insensitive)

Move string pointer back one character

Advance string pointer by one character

Get number of multibyte characters in multibyte­
character string; dependent upon OEM code page

Append, at most, first n bytes of one multibyte­
character string to another

Compare first n bytes of two multibyte-character strings

Return number of multibyte-character bytes within
supplied character count

Copy n bytes of string

Compare n bytes of two multibyte-character strings,
ignoring case

Set first n bytes of multibyte-character string to
specified character

Return number of multibyte characters within supplied
byte count

Find next character in string

Advance string pointer by n characters

Return pointer to first character in given string not in
another given string

Get number of multibyte characters in multibyte­
character string; locale-dependent

Append one string to another

Find first occurrence of specified character in string

Compare two strings

Compare two strings using current locale code page
information Cstricoll, _ wesicoll, _strnicoll, and
_wesnicoll are case-insensitive)

Copy one string to another

35

Run-Time Library Reference

36

String-Manipulation Routines (continued)

Routine Use

strcspn, wcscspn, _mbscspn,

_strdup, _ wcsdup, _mbsdup

strerror

_strerror

strftime, wcsftime

_stricmp, _ wcsicmp,
_mbsicmp

strlen, wcslen, _mbslen,
_mbstrlen

_strlwr, _ wcslwr, _mbslwr

strncat, wcsncat, _mbsncat

strncmp, wcsncmp,
_mbsncmp

strncpy, wcsncpy, _mbsncpy

_strnicmp, _ wcsnicmp,
_mbsnicmp

_strnset, _ wcsnset, _mbsnset

strpbrk, wcspbrk, _mbspbrk

~trrchr, wcsrchr,_mbsrchr

_strrev, _ wcsrev,_mbsrev

_strset, _ wcsset, _mbsset

strspn, wcsspn, _mbsspn

strstr, wcsstr, _mbsstr

strtok, wcstok, _mbstok

_strupr, _ wcsupr, _mbsupr

strxfrm, wcsxfrm

Find first occurrence of character from specified
character set in string

Duplicate string

Map error number to message string

Map user-defined error message to string

Format date-and-time string

Compare two strings without regard to case

Find length of string

Convert string to lowercase

Append characters of string

Compare characters of two strings

Copy characters of one string to another

Compare characters of two strings without regard to
case

Set first n characters of string to specified character

Find first occurrence of character from one string in
another string

Find last occurrence of given character in string

Reverse string

Set all characters of string to specified character

Find first substring from one string in another string

Find first occurrence of specified string in another
string

Find next token in string

Convert string to uppercase

Transform string into collated form based on locale­
specific information

Chapter 1 Run-Time Routines by Category

System Calls
The following functions are Windows NT and Windows 95 operating-system calls:

System Call Functions

Function

_findclose

_findfirst, _findfirsti64,
_ wfindfirst, _ wfindfirsti64

_findnext, _findnexti64,
_ wfindnext, _ wfindnexti64

Use

Release resources from previous find operations

Find file with specified attributes

Find next file with specified attributes

Time Management
Use these functions to get the current time and convert, adjust, and store it as
necessary. The current time is the system time.

The _ftime and localtime routines use the TZ environment variable. If TZ is not set,
the run-time library attempts to use the time-zone information specified by the
operating system. If this information is unavailable, these functions use the default
value of PST8PDT. For more information on TZ, see "_tzset;" also see "_daylight,
timezone, and _tzname" on page 40.

Time Routines

Function

asctime, _ wasctime

clock

ctime, _ wctime

difftime

_ftime

_futime

gmtime

localtime

mktime

_strdate, _ wstrdate

strftime, wcsftime

Use

Convert time from type struct tm to character string

Return elapsed CPU time for process

Convert time from type time_t to character string

Compute difference between two times

Store current system time in variable of type struct
_timeb

Set modification time on open file

Convert time from type time_t to struct tm

Convert time from type time_t to struct tm with local
correction

Convert time to calendar value

Return current system date as string

Format date-and-time string for international use

37

Run-Time Library Reference

38

Time Routines (continued)

Function

_strtime, _ wstrtime

time

_tzset

_utime, _ wutime

Use

Return current system time as string

Get current system time as type time_t

Set external time variables from environment time
variable TZ

Set modification time for specified file using either
current time or time value stored in structure

Note In all versions of Microsoft C/C++ except Microsoft C/C++ version 7.0, and in all
versions of Microsoft Visual C++, the time function returns the current time as the number of
seconds elapsed since midnight on January 1, 1970. In Microsoft C/C++ version 7.0, time
returned the current time as the number of seconds elapsed since midnight on December 31 ,
1899.

CHAPTER 2

Global Variables and Standard Types

The Microsoft run-time library contains definitions for global variables, control flags,
and standard types used by library routines. Access these variables, flags, and types
by declaring them in your program or by including the appropriate header files.

Global Variables
The Microsoft run-time library provides the following global variables.

Variable

_amblksiz

daylight, _timezone, _tzname

_doserrno, errno, _sys_errlist,
_sys_nerr

_environ, _ wenviron

_fileinfo

_fmode

_osver, _winmajor, _winminor,
_winver

_pgmptr, _ wpgmptr

_amblksiz

Description

Controls memory heap granularity

Adjust for local time; used in some date and time
functions

Store error codes and related information

Pointers to arrays of pointers to strings that
constitute process environment

Specifies whether information regarding open files
of a process is passed to new processes

Sets default file-translation mode

Store build and version numbers of operating system

Initialized at program startup to value such as
program name, filename, relative path, or full path

_amblksiz controls memory heap granUlarity. It is declared in MALLOC.H as

extern unsigned int _amblksiz;

39

Run-Time Library Reference

The value of _amblksiz specifies the size of blocks allocated by the operating system
for the heap. The initial requested size for a segment of heap memory is just enough
to satisfy the current allocation request (for example, a call to maUoc) plus memory
required for heap manager overhead. The value of _amblksiz should represent a
trade-off between the number of times the operating system is to be called to increase
the heap to required size and the amount of memory potentially wasted (available but
not used) at the end of the heap.

The default value of _amblksiz is 8K. You can change this value by direct
assignment in your program. For example:

_amblksiz = 2045:

If you assign a value to _amblksiz, the actual value used internally by the heap
manager is the assigned value rounded up to the nearest whole power of 2. Thus, in
the previous example, the heap manager would reset the value of _amblksize to
2048.

_daylight, _timezone, and _tzname

40

_daylight, _timezone, and _tzname are used in some time and date routines to make
local-time adjustments. They are declared in TIME.H as

extern int _daylight;
extern long _timezone;
extern char * _tzname[2];

On a call to _ftime, locaItime, or _tzset, the values of _daylight, _timezone, and
_tzname are determined from the value of the TZ environment variable. If you do
not explicitly set the value of TZ, _tzname[O] and _tzname[1] contain empty strings,
but the time-manipulation functions Ltzset, _ftime, and locaItime) attempt to set the
values of _daylight and _timezone using the time-zone information specified in the
Windows NT or Windows 95 Control Panel Date/Time application. If the time-zone
information cannot be obtained from the operating system, the time-management
functions use the default value PST8PDT. The time-zone global variable values are as
follows.

Variable

_daylight

_timezone

_tzname[O]

_tzname[1]

Value

Nonzero if daylight-saving-time zone (DST) is specified in TZ;
otherwise, O. Default value is 1.

Difference in seconds between coordinated universal time and local
time. Default value is 28,800.

Three-letter time-zone name derived from TZ environment variable.

Three-letter DST zone name derived from TZ environment variable.
Default value is PDT (Pacific daylight time). If DST zone is omitted
from TZ, _tzname[l] is empty string.

Chapter 2 Global Variables and Standard Types

These global variables hold error codes used by the perror and strerror functions for
printing error messages. Manifest constants for these variables are declared in
STDLIB.H as follows:

extern int _doserrno;
extern int errno;
extern char * _sys_errlist[];
extern int _sys_nerr;

/ errno is set on an error in a system-level call. Because errno holds the value for the
last call that set it, this value may be changed by succeeding calls. Always check
errno immediately before and after a call that may set it. All errno values, defined as
manifest constants in ERRNO.H, are UNIX-compatible. The values valid for 32-bit
Wmdows applications are a subset of these UNIX values.

On an error, errno is not necessarily set to the same value as the error code returned
by a system call. For I/O operations only, use _doserrno to access the operating­
system error-code equivalents of errno codes. For other operations the value of
_doserrno is undefined.

Each errno value is associated with an error message that can be printed using
perror or stored in a string using strerror. perror and strerror use the _sys_errlist
array and _sys_nerr, the number of elements in _sys_errlist, to process error
information.

Library math routines set errno by calling _matherr. To handle math errors
differently, write your own routine according to the _matherr reference description
and name it _matherr.

The following errno values are compatible with 32-bit Windows applications. Only
ERANGE and EDOM are specified in the ANSI standard.

Constant System Error Message Value

E2BIG Argument list too long 7

EACCES Permission denied 13

EAGAIN No more processes or not enough 11
memory or maximum nesting level
reached

EBADF Bad file number 9

ECHILD No spawned processes 10

EDEADLOCK Resource deadlock would occur 36

EDOM Math argument 33

EEXIST File exists 17

EINVAL Invalid argument 22

41

Run-Time Library Reference

Constant

EMFILE
ENOENT
ENOEXEC
ENOMEM
ENOSPC
ERANGE
EXDEV

System Error Message

Too many open files

No such file or directory

Exec format error

Not enough memory

No space left on device

Result too large

Cross-device link:

. .

Value

24

2

8

12

28

34

18

_enVIrOn, _ WenVIfOn

42

The _environ variable is a pointer to an array of pointers to the muItibyte-character
strings that constitute the process environment. _environ is declared in STDLIB.H as

extern char ** _environ;

In a program that uses the main function, _environ is initialized at program startup
according to settings taken from the operating-system environment. The environment
consists of one or more entries of the form

ENVVARNAME=string

getenv and _putenv use the _environ variable to access and modify the environment
table. When _putenv is called to add or delete environment settings, the environment
table changes size. Its location in memory may also change, depending on the
program's memory requirements. The value of _environ is automatically adjusted
accordingly.

The _wenviron variable, declared in STDLIB.H as

extern wchar_t ** _wenviron;

is a wide-character version of _environ. In a program that uses the wmain function,
_ wenviron is initialized at program startup according to settings taken from the
operating -system environment.

In a program that uses main, _ wenviron is initially NULL, because the environment
is composed of multibyte-character strings. On the fIrst call to _ wgetenv or
_ wputenv, a corresponding wide-character string environment is created and is
pointed to by _ wenviron.

Similarly, in a program that uses wmain, _environ is initially NULL because the
environment is composed of wide-character strings. On the first call to ~etenv or
_putenv, a corresponding wide-character string environment is created and is pointed
to by _environ.

When two copies of the environment (MBCS and Unicode) exist simultaneously in a
program, the run-time system must maintain both copies, resulting in slower

Chapter 2 Global Variables and Standard Types

execution time. For example, whenever you call _putenv, a call to _ wputenv is also
executed automatically, so that the two environment strings correspond.

Caution In rare instances, when the run-time system is maintaining both a Unicode version
and a multibyte version of the environment, these two environment versions may not
correspond exactly. This is because, although any unique multibyte-character string maps to a
unique Unicode string, the mapping from a unique Unicode string to a multibyte-character
string is not necessarily unique. Therefore, two distinct Unicode strings may map to the same
multibyte string.

The following pseudocode illustrates how this can happen.

int i, j;
= _wputenv("env_var_x=stringl");

j = _wputenv("env_var_y=string2");

II results in the implicit call:
II putenv ("env_var_z==stringl")
II also results in implicit call:
II putenv("env_var_z=string2")

In the notation used for this example, the character strings are not C string literals;
rather they are placeholders that represent Unicode environment string literals in the
_ wputenv call and multibyte environment strings in the putenv call. The character­
placeholders 'x' and 'y' in the two distinct Unicode enviroment strings do not map
uniquely to characters in the current MBCS; Instead, both map to some MBCS
character 'z' that is the default result of the attempt to convert the strings.

Thus in the multibyte environment the value of "env_var_z" after the first implicit
call to putenv would be "string]", but this value would be overwritten on the second
implicit call to putenv, when the value of "env _var _z" is set to "string2". The
Unicode environment (in _ wenviron) and the multibyte environment (in _environ)
would therefore differ following this series of calls.

fileinfo
The _fileinfo variable determines whether information about the open files of a
process is passed to new processes by functions such as _spawn. _fileinfo is declared
in STDLIB.H as

extern int _fileinfo;

• If _fileinfo is 0 (the default), information about open files is not passed to new
processes; otherwise the information is passed. You can modify the default value
of _fileinfo by setting the Jileinfo variable to a nonzero value in your program.

43

Run-Time Library Reference

The _fmode variable sets the default file-translation mode for text or binary
translation. It is declared in STDLIB.H as

extern int _fmode;

The default setting of _fmode is _O_TEXT, for text-mode translation. _O_BINARY
is the setting for binary mode.

You can change the value of _fmode in either of two ways:

• Link with BINMODE.OBJ. This changes the initial setting of _fmode to
_0 _BINARY, causing all files except stdin, stdout, and stderr to be opened in
binary mode.

• Change the value of _fmode directly by setting it in your program.

.
_osver, _ WlllmaJOr,. _ WlllffilllOf, _ WlllVer

These variables store build and version numbers of the 32-bit Windows operating
systems; Declarations for these variables in STDLIB.H are as follows:

extern unsigned int _osver;
extern unsigned int _ winmajor;
extern unsigned int _ winminor;
extern unsigned int _ winver;

These variables are useful in programs that run in different versions of Windows NT
or Windows 95.

Variable

_osver

_winmajor

_winminor

_winver

Description

Current build number

Major version number

Minor version number

Holds value of _ winmajor in high byte and value of _ winminor in low
byte

_pgmptr, _ wpgmptr

44

When a program is run from the command interpreter (CMD.EXE), _pgmptr is
automatically initialized to the full path of the executable file. For example, if
HELLO.EXE is in C:\BIN and C:\BIN is in the path, _pgmptr is set to
C:\BIN\HELLO.EXE when you execute

C> hello

Chapter 2 Global Variables and Standard Types

When a program is not run from the command line, _pgmptr may be initialized to
the program name (the file's base name without the extension), or to a filename, a
relative path, or a full path.

_ wpgmptr is the wide-character counterpart of _pgmptr for use with programs that
use wmain. _pgmptr and _wpgmptr are declared in STDLIB.H as

extern char * _pgmptr;
extern wchar_t * _pgmptr;

The following program demonstrates the use of _pgmptr.

/*
* PGMPTR.C: The following program demonstrates the use of _pgmptr.
*/

#include <stdio.h>
#include <stdlib.h>
void main(void)
{

pri ntf("The full path of the executi ng program is %Fs\n".
_pgmptr) ;

Control Flags
The debug version of the Microsoft C run-time library uses the following flags to
control the heap allocation and reporting process. For more information, see Chapter
4, "Debug Version of the C Run-Time Library."

Flag

_crtDbgFlag

Description

Maps the base heap functions to their debug version
counterparts

Enables the use of the debugging versions of the run-time
functions

Controls how the debug heap manager tracks allocations

These flags can be defined with a ID command-line option or with a #define
directive. When the flag is defined with #define, the directive must appear before the
header file include statement for the routine declarations.

When the _CRTDBG_MAP _ALLOC flag is defined in the debug version of an
application, the base version of the heap functions are directly mapped to their debug

45

Run-Time Library Reference

versions. This flag is declared in CRTDBG.H. This flag is only available when the
_DEBUG flag has been defined in the application.

For more information about using the debug version versus the base version of a heap
function, see "Using the Debug Version Versus the Base Version" on page 84 in
Chapter 4.

_DEBUG
When the _DEBUG flag is defined, the application is built with the debug version of
the C run-time library. This flag is declared in CRTDBG.H.

For more information, see Chapter 4, "Debug Version of the C Run-Time Library."

_crtDbgFlag
The _crtDbgFlag flag consists of five bit fields that control how memory allocations
on the debug version of the heap are tracked, verified, reported, and dumped. The bit
fields of the flag are set using the _ CrtSetDbgFlag function. This flag and its bit
fields are declared in CRTDBG.H. This flag is only available when the _DEBUG
flag has been defined in the application.

For more information about using this flag in conjunction with other debug functions,
see "Heap State Reporting Functions" on page 83 in Chapter 4.

Standard Types
The Microsoft run-time library defines the following standard types.

Type Description Declared In

clock_t structure Stores time values; used by clock. TIME.H

_complex structure Stores real and imaginary parts of MATH.H
complex numbers; used by _cabs.

_dev_t short or unsigned Represents device handles. SYS\TYPES.H
integer

div _t, ldiv _t structures Store values returned by div and ldiv, STDLID.H
respectively.

_exception structure Stores error information for _matherr. MATH.H

FILE structure Stores information about current state STDIO.H
of stream; used in all stream I/O
operations.

46

Type

3inddata_t, _ wfinddata_t
structures

_FPIEEE_RECORD
structure

fpos_t long integer

_HEAPINFO structure

lconv structure

_off_t long integer

_onexiCt pointer

_PNH pointer to function

ptrdifCt integer

si~atomic_t integer

size_t unsigned integer

_stat structure

time_t long integer

_timeb structure

tm structure

_utimbuf structure

Chapter 2 Global Variables and Standard Types

Description

_finddata_t stores file-attribute
information returned by _findfirst and
_findnext. _ wfinddata_t stores file­
attribute information returned by
_ wfindfirst and _ wfindnext.

Contains information pertaining to
IEEE floating-point exception; passed
to user-defined trap handler by
_fpieee_flt.

U sed by fgetpos and fsetpos to record
information for uniquely specifying
every position within a file.

Contains information about next heap
entry for _heapwalk.

Used by setjmp and longjmp to save
and restore program environment.

Contains formatting rules for numeric
values in different countries.

Represents file-offset value.

Returned by _onexit.

Type of argument to
_seCnew _handler.

Result of subtraction of two pointers.

Type of object that can be modified as
atomic entity, even in presence of
asynchronous interrupts; used with
signal.

Result of sizeof operator.

Declared In

_finddata_t:
IO.H
_ wfinddata_t:
IO.H, WCHAR.H

FPIEEE.H

STDIO.H

MALLOC.H

SETJMP.H

LOCALE.H

SYS\TYPES.H

STDLffi.H

NEW.H

STDDEF.H

SIGNAL.H

STDDEF.H and
other include files

Contains file-status information SYS\STAT.H
returned by _stat and _fstat.

Represents time values in mktime and TIME.H
time.

Used by _ftime to store current system SYS\TIMEB.H
time.

U sed by asctime, gmtime, localtime,
mktime, and strftime to store and
retrieve time information.

Stores file access and modification
times used by _utime to change file­
modification dates.

TIME.H

SYS\UTIME.H

47

Run-Time Library Reference

48

Type

va_list structure

wcbar_t internal type of a
wide character

wctype_t integer

winet integer

Description

Used to hold information needed by
va_arg and va_end macros. Called
function declares variable of type
va_list that can be passed as argument
to another function.

Useful for writing portable programs
for international markets.

Can represent all characters of any
national character set.

Type of data object that can hold any
wide character or wide end-of-file
value.

Declared In

STDARG.H

STDDEF.H,
STDLlli.H

STDDEF.H,
STDLlli.H

WCHAR.H

CHAPTER 3

Global Constants

The Microsoft run-time library contains definitions for global constants used by
library routines. To use these constants, include the appropriate header files as
indicated in the description for each constant. The global constants are listed in the
following table.

BUFSIZ

CLOCKS_PER_SEC, CLK_TCK

Commit-To-Disk Constants

Data Type Constants

EOF

errno

Exception-Handling Constants

EXIT_SUCCESS, EXIT_FAILURE

File Attribute Constants

File Constants

File Permission Constants

File Read/Write Access Constants

File Translation Constants

FOPEN_MAX, _SYS_OPEN

_FREEENTRY,_USEDENTRY

fseek, _Iseek

Heap Constants

_HEAP _MAXREQ

HUGE_VAL

__ LOCAL_SIZE

Locale Categories

_locking Constants

Math Error Constants

Path Field Limits

RAND_MAX

setvbuf Constants

Sharing Constants

signal Constants

signal Action Constants

_spawn Constants

_stat Structure sCmode Field
Constants

stdin, stdout, stderr

TMP _MAX, L_tmpnam

Translation Mode Constants

_WAIT_CHILD,
_WAIT_GRANDCHILD

32-bit Windows Time/Date Formats

49

Run-Time Library Reference

BUFSIZ

Remarks

#include <stdio.h>

BUFSIZ is the required user-allocated buffer for the setvbuf routine.

See Also Stream I/O

CLOCKS_PER_SEC, CLK_TCK

Remarks

#include <time.h>

The time in seconds is the value returned by the clock function, divided by
CLOCKS_PER_SEC. CLK_TCK is equivalent, but considered obsolete.

See Also clock

Commit-To-Disk Constants

Remarks

50

Microsoft Specific ~

#include <stdio.h>

These Microsoft -specific constants specify whether the buffer associated with the
open file is flushed to operating system buffers or to disk. The mode is included in the
string specifying the type of read/write access ("r", "w", "a", "r+", "w+", "a+").

The commit-to-disk modes are as follows:

c Writes the unwritten contents of the specified buffer to disk. This commit-to-disk
functionality only occurs at explicit calls to either the mush or the _flushall
function. This mode is useful when dealing with sensitive data. For example, if
your program terminates after a call to mush or _flushall, you can be sure that
your data reached the operating system's buffers. However, unless a file is opened
with the c option, the data might never make it to disk if the operating system also
terminates.

n Writes the unwritten contents of the specified buffer to the operating system's
buffers. The operating system can cache data and then determine an optimal time
to write to disk. Under many conditions, this behavior makes for efficient program
behavior. However, if the retention of data is critical (such as bank transactions or
airline ticket information) consider using the c option. The n mode is the default.

Chapter 3 Global Constants

Note The c and n options are not part of the ANSI standard for fopen, but are Microsoft
extensions and should not be used where ANSI portability is desired.

Using the Commit-to-Disk Feature with Existing Code
By default, calls to the mush or _flushalllibrary functions write data to buffers
maintained by the operating system; the operating system determines the optimal
time to actually write the data to disk. The commit-to-disk feature of the run-time
library lets you ensure that critical data is written directly to disk rather than to the
operating system's buffers. You can give this capability to an existing program
without rewriting it by linking its object files with COMMODE.OBJ.

In the resulting executable file, calls to mush write the contents of the buffer directly
to disk, and calls to _flushall write the contents of all buffers to disk. These two
functions are the only ones affected by COMMODE.OBJ.

END Microsoft Specific

See Also Stream I/O, _fdopen, fopen

Data Type Constants
Remarks

These are implementation-dependent ranges of values allowed for integral data types.
The constants listed below give the ranges for the integral data types and are defined
in LIMITS .R.

Note The /J compiler option changes the default char type to unsigned.

Constant Value Meaning

SCHAR_MAX 127 Maximum signed char value

SCHAR_MIN -128 Minimum signed char value

UCHAR_MAX 255 Maximum unsigned char value
(Oxff)

CHAR_BIT 8 Number of bits in a char

USHRT_MAX 65535 Maximum unsigned short value
(Oxffff)

SHRT_MAX 32767 Maximum (signed) short value

SHRT_MIN -32768 Minimum (signed) short value

UINT_MAX 4294967295 Maximum unsigned int value
(Oxffffffff)

ULONG_MAX 4294967295 Maximum unsigned long value
(Oxffffffff)

INT_MAX 2147483647 Maximum (signed) int value

INT_MIN -2147483647-1 Minimum (signed) int value

51

Run-Time Library Reference

52

Constant

LONG_MAX

LONG_MIN

CHAR_MAX

Value

2147483647

-2147483647-1

127
(255 if /J option used)

-128
(0 if /J option used)

2

Meaning

Maximum (signed) long value

Minimum (signed) long value

Maximum char value

Minimum char value

Maximum number of bytes in
multibyte char

The following constants give the range and other characteristics of the double and
float data types, and are defined in FLOAT.H:

Constant Value Description

DBL_DIG 15 # of decimal digits of
precision

DBL_EPSILON 2.2204460492503131e-016 Smallest such that
1.0+DBL_EPSILON !=1.0

DBL_MANT_DIG 53 # of bits in mantissa

DBL_MAX 1.7976931348623158e+308 Maximum value

DBL_MAX_IO_EXP 308 Maximum decimal exponent

DBL_MAX_EXP 1024 Maximum binary exponent

DBL_MIN 2.2250738585072014e-308 Minimum positive value

DBL_MIN_IO_EXP (-307) Minimum decimal exponent

DBL_MIN_EXP (-1021) Minimum binary exponent

_DBL_RADIX 2 Exponent radix

_DBL_ROUNDS 1 Addition rounding: near

FLT_DIG 6 Number of decimal digits of
precision

FLT_EPSILON 1. 192092896e-07F Smallest such that
1.0+FLT_EPSILON !=1.0

FLT_MANT_DIG 24 Number of bits in mantissa

FLT_MAX 3.402823466e+38F Maximum value

FLT_MAX_IO_EXP 38 Maximum decimal exponent

FLT_MAX_EXP 128 Maximum binary exponent

FLT_MIN 1. 175494351e-38F Minimum positive value

FLT_MIN_IO_EXP (-37) Minimum decimal exponent

FLT_MIN_EXP (-125) Minimum binary exponent

FLT_RADIX 2 Exponent radix

FLT_ROUNDS 1 Addition rounding: near

Chapter 3 Global Constants

EOF
Remarks

This value is returned by an 110 routine when the end-of-file (or in some cases, an
error) is encountered.

See Also putc, ungetc, scanf, mush, _fcloseall, _ungetch, _putch, _isascii

errno Constants

Remarks

#include <errno.h>

The errno values are constants assigned to errno in the event of various error
conditions.

ERRNO.H contains the definitions of the errno values. However, not all the
definitions given in ERRNO.H are used in 32-bit Windows operating systems. Some
of the values in ERRNO.H are present to maintain compatibility with the UNIX
family of operating systems.

The errno values in a 32-bit Windows operating system, are a subset of the values for
errno in XENIX systems. Thus, the errno value is not necessarily the same as the
actual error code returned by a Windows NT or Windows 95 system call. To access
the actual operating system error code, use the _doserrno variable, which contains
this value.

The following errno values are supported:

ECIDLD No spawned processes.

EAGAIN No more processes. An attempt to create a new process failed because
there are no more process slots, or there is not enough memory, or the maximum
nesting level has been reached.

E2BIG Argument list too long.

EACCES Permission denied. The file's permission setting does not allow the
specified access. This error signifies that an attempt was made to access a file (or,
in some cases, a directory) in a way that is incompatible with the file's attributes.

For example, the error can occur when an attempt is made to read from a file that
is not open, to open an existing read-only file for writing, or to open a directory
instead of a file. Under MS-DOS operating system versions 3.0 and later,
EACCES may also indicate a locking or sharing violation.

The error can also occur in an attempt to rename a file or directory or to remove
an existing directory.

53

Run-Time Library Reference

EBADF Bad file number. There are two possible causes: 1) The specified file
handle is not a valid file-handle value or does not refer to an open file. 2) An
attempt was made to write to a file or device opened for read-only access.

EDEADLOCK Resource deadlock would occur. The argument to a math function
is not in the domain of the function.

EDOM Math argument.

EEXIST Files exist. An attempt has been made to create a file that already exists.
For example, the _O_CREAT and _O_EXCL flags are specified in an _open
call, but the named file already exists.

EINVAL Invalid argument. An invalid value was given for one of the arguments to
a function. For example, the value given for the origin when positioning a file
pointer (by means of a call to fseek) is before the beginning of the file.

EMFILE Too many open files. No more file handles are available, so no more files
can be opened.

ENOENT No such file or directory. The specified file or directory does not exist or
cannot be found. This message can occur whenever a specified file does not exist
or a component of a path does not specify an existing directory.

ENOEXEC Exec format error. An attempt was made to execute a file that is not
executable or that has an invalid executable-file format.

ENOMEM Not enough core. Not enough memory is available for the attempted
operator. For example, this message can occur when insufficient memory is
available to execute a child process, or when the allocation request in a _getcwd
call cannot be satisfied.

ENOSPC No space left on device. No more space for writing is available on the
device (for example, when the disk is full).

ERANGE Result too large. An argument to a math function is too large, resulting
in partial or total loss of significance in the result. This error can also occur in
other functions when an argument is larger than expected (for example, when the
buffer argument to ~etcwd is longer than expected).

EXDEV Cross-device link. An attempt was made to move a file to a different device
(using the rename function).

Exception-Handling Constants
Remarks

54

The constant EXCEPTION_CONTINUE_SEARCH,
EXCEPTION_CONTINUE_EXECUTION, or
EXCEPTION_EXEC UTE_HANDLER is returned when an exception occurs
during execution of the guarded section of a try-except statement. The return value

Chapter 3 Global Constants

determines how the exception is handled. For more information, see "try-except
Statement" in C Language Reference.

EXIT_SUCCESS, EXIT_FAILURE

Remarks

#include <stdlih.h>

These are arguments for the exit and _exit functions and the return values for the
atexit and _onexit functions.

See Also atexit, exit, _onexit

File Attribute Constants

Remarks

#include <io.h>

These constants specify the current attributes of the file or directory specified by the
function.

The attributes are represented by the following manifest constants:

_A_ARCH Archive. Set whenever the file is changed, and cleared by the BACKUP
command. Value: Ox20

_A_IDDDEN Hidden file. Not normally seen with the DIR command, unless the
I AH option is used. Returns information about normal files as well as files with
this attribute. Value: Ox02

_A_NORMAL Normal. File can be read or written to without restriction. Value:
OxOO

_A_RDONLY Read-only. File cannot be opened for writing, and a file with the
same name cannot be created. Value: OxO 1

_A_SUBDIR Subdirectory. Value: OxlO

_A_SYSTEM System file. Not normally seen with the DIR command, unless the
lAS option is used. Value: Ox04

Multiple constants can be combined with the OR operator (I).

See Also _find Functions

55

Run-Time Library Reference

File Constants

Remarks

#include <fcntl.h>

The integer expression formed from one or more of these constants determines the
type of reading or writing operations permitted. It is formed by combining one or
more constants with a translation-mode constant.

The file constants are as follows:

_O_APPEND Repositions the file pointer to the end of the file before every write
operation.

_O_CREAT Creates and opens a new file for writing; this has no effect if the file
specified by filename exists.

_O_EXCL Returns an error value if the file specified by filename exists. Only
applies when used with _O_CREAT.

_O_RDONLY Opens file for reading only; if this flag is given, neither _O_RDWR
nor _0_ WRONLY can be given.

_O_RDWR Opens file for both reading and writing; if this flag is given, neither
_O_RDONLY nor _0_ WRONLY can be given.

_O_TRUNC Opens and truncates an existing file to zero length; the file must have
write permission. The contents of the file are destroyed. If this flag is given, you
cannot specify _O_RDONLY.

0 WRONLY Opens file for writing only; if this flag is given, neither
_O_RDONLY nor _O_RDWR can be given.

See Also _open, _sopen

File Permission Constants
#include <sys/stat.h>

Remarks
One of these constants is required when _O_CREAT (_open, _sopen) is specified.

The pmode argument specifies the file's permission settings as follows.

56

Constant

_S_IREAD

_S_IWRITE

_S_IREAD '_S_IWRITE

Meaning

Reading permitted

Writing permitted

Reading and writing permitted

When used as the pmode argument for _umask, the manifest constant sets the
permission setting, as follows.

Constant

_S_IREAD

_S_IWRITE

_S_IREAD I_S_IWRITE

Meaning

Writing not permitted (file is read-only)

Reading not permitted (file is write-only)

Neither reading nor writing permitted

See Also _open, _sopen, _umask, _stat structure

Chapter 3 Global Constants

File ReadlWrite Access Constants

Remarks

#include <stdio.h>

These constants specify the access type ("a", "r", or "w") requested for the file. Both
the translation mode ("b" or "t") and the commit-to-disk mode ("c" or "n") can be
specified with the type of access.

The access types are described below.

"a" Opens for writing at the end of the file (appending); creates the file first if it
does not exist. All write operations occur at the end of the file. Although the file
pointer can be repositioned using fseek or rewind, it is always moved back to the
end of the file before any write operation is carried out.

"a+" Same as above, but also allows reading.

"r" Opens for reading. If the file does not exist or cannot be found, the call to open
the file will fail.

"r+" Opens for both reading and writing. If the file does not exist or cannot be
found, the call to open the file will fail.

"w" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

"w+" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

When the "r+", "w+", or "a+" type is specified, both reading and writing are allowed
(the file is said to be open for "update"). However, when you switch between reading
and writing, there must be an intervening mush, fsetpos, fseek, or rewind operation.
The current position can be specified for the fsetpos or fseek operation.

See Also _fdopen, fopen, freopen, _fsopen, _popen

57

Run-Time Library Reference

File Translation Constants

Remarks

#include <stdio.h>

These constants specify the mode of translation ("h" or "t"). The mode is included
in the string specifying the type of access ("r", "w", "a", "r+", "w+", "a+").

The translation modes are as follows:

t Opens in text (translated) mode. In this mode, carriage-returnllinefeed (CR-LF)
combinations are translated into single linefeeds (LF) on input, and LF characters
are translated into CR-LF combinations on output. Also, CTRL+Z is interpreted as
an end-of-file character on input. In files opened for reading or reading/writing,
fopen checks for CTRL+Z at the end of the file and removes it, if possible. This is
done because using the fseek and ftell functions to move within a file ending with
CTRL+Z may cause fseek to behave improperly near the end of the file.

Note The t option is not part of the ANSI standard for fopen and freopen it is a Microsoft
extension and should not be used where ANSI portability is desired.

b Opens in binary (untranslated) mode. The above translations are suppressed.

If tor b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. For more information about using text and binary modes, see "Text
and Binary Mode File 110" on page 15 in Chapter 1.

See Also _fdopen, fopen, freopen, _fsopen

FILENAME MAX

Remarks

#include <stdio.h>

This is the maximum permissible length for filename.

See Also Path Field Limits

FOPEN_MAX, SYS OPEN - -

Remarks

58

#include <stdio.h>

This is the maximum number of files that can be opened simultaneously.
FOPEN_MAX is the ANSI-compatible name. _SYS_OPEN is provided for
compatibility with existing code.

Chapter 3 Global Constants

_FREEENTRY, USEDENTRY

Remarks

#include <malloc.h>

These constants represent values assigned by the _heapwalk routines to the _useflag
element of the _HEAPINFO structure. They indicate the status of the heap entry.

See Also _heapwalk

fseek, Iseek Constants

Remarks

#include <stdio.h>

The origin argument specifies the initial position and can be one of the manifest
constants shown below:

Constant

SEEK_END

SEEK_CUR

SEEK_SET

Meaning

End of file

Current position of file pointer

Beginning of file

See Also fseek, _Iseek, _lseeki64

Heap Constants

Remarks

#include <malloc.h>

These constants give the return value indicating status of the heap.

Constant Meaning

_HEAPBADBEGIN Initial header information was not found or was invalid.

_HEAPBADNODE Bad node was found, or heap is damaged.

_HEAPBADPTR _pentry field of _HEAPINFO structure does not contain
valid pointer into heap Cheapwalk routine only).

_HEAPEMPTY Heap has not been initialized.

59

Run-Time Library Reference

Constant

_HEAPEND

_HEAPOK

Meaning

End of heap was reached successfully Cheapwalk routine only).

Heap is consistent Cheapset and _heapchk routines only). No
errors so far; _HEAPINFO structure contains information about
next entry Cheapwalk routine only).

See Also _heapchk, _heapset, _heapwalk

_HEAP_MAXREQ

Remarks

#include <malloc.h>

The maximum size of a user request for memory that can possibly be granted.

See Also malloc, calloc

HUGE VAL

Remarks

#include <math.h>

HUGE_VAL is the largest representable double value. This value is returned by
many run-time math functions when an error occurs. For some functions,
-HUGE_VAL is returned.

LOCAL SIZE - -
Remarks

60

The compiler provides a symbol, __ LOCAL_SIZE, for use in the inline assembler
block of function prolog code. This symbol is used to allocate space for local variables
on the stack frame in your custom prolog code.

The compiler determines the value of __ LOCAL_SIZE. Its value is the total
number of bytes of all user-defined locals as well as compiler-generated temporary
variables.
__ LOCAL_SIZE can be used as an immediate operand; it cannot be used in an
expression. You must not change or redefine the value of this symbol. For example:

mov
mov

eax. LOCAL_SIZE
eax. [ebp - __ LOCAL_SIZE]

;Immediate operand
;Expression

Chapter 3 Global Constants

The following is a example of a naked function containing custom prolog and epilog
sequences using the __ LOCAL_SIZE symbol in the prolog sequence:

For more information, see "naked Functions" and "naked" in C Language Reference.

Locale Categories

Remarks

#include <locale.h>

Locale categories are manifest constants used by the localization routines to specify
which portion of a program's locale information will be used. The locale refers to the
locality (or country) for which certain aspects of your program can be customized.
Locale-dependent areas include, for example, the formatting of dates or the display
format for monetary values

Locale Category

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MAX

LC_MIN

LC_MONETARY

Parts of Program Affected

All locale-specific behavior (all categories)

Behavior of strcoll and strxfrm functions

Behavior of character-handling functions (except isdigit,
isxdigit, mbstowcs, and mbtowc, which are unaffected)

Same as LC_TIME

Same as LC_ALL

Monetary formatting information returned by the localeconv
function

Decimal-point character for formatted output routines (for
example, printf), data conversion routines, and nonmonetary
formatting information returned by localeconv function

Behavior of strftime function

See Also localeconv, setlocale, strcoll Functions, strftime, strxfrm

_locking Constants

Remarks

#include <syslIocking.h>

The mode argument in the call to the _locking function specifies the locking action
to be performed.

The mode argument must be one of the following manifest constants:

61

Run-Time Library Reference

_LK_LOCK Locks the specified bytes. If the bytes cannot be locked, the function
tries again after one second. If, after ten attempts, the bytes cannot be locked, the
function returns an error.

_LK_RLCK Same as _LK_LOCK.

_LK_NBLCK Locks the specified bytes. If bytes cannot be locked, the function
returns an error.

_LK_NBRLCK Same as _LK_NBLCK.

_LK_UNLCK Unlocks the specified bytes. (The bytes must have been previously
locked.)

See Also _locking

Math Error Constants

Remarks

#include <math.h>

The math error constants can be generated by the math routines of the run-time
library.

These errors, described as follows, correspond to the exception types defined in
MATH.H and are returned by the _matherr function when a math error occurs.

Constant

_DOMAIN

_OVERFLOW

_PLOSS

_SING

_TLOSS

_UNDERFLOW

Meaning

Argument to function is outside domain of function.

Result is too large to be represented in function's return type.

Partial loss of significance occurred.

Argument singularity: argument to function has illegal value. (For
example, value 0 is passed to function that requires nonzero value.)

Total loss of significance occurred.

Result is too small to be represented.

See Also _matherr

MB CUR MAX - -
#include <stdlih.h>

Context: ANSI multibyte- and wide-character conversion functions

62

Chapter 3 Global Constants

Remarks
The value ofMB_CUR_MAX is the maximum number of bytes in a multibyte
character for the current locale.

See Also mblen, mbstowcs, mbtowc, wchar _t, wcstombs, wctomb, Data Type

NULL
Remarks

NULL is the null-pointer value used with many pointer operations and functions.

Path Field Limits

Remarks

#include <stdlib.h>

These constants define the maximum length for the path and for the individual fields
within the path.

Constant

_MAX_DIR

_MAX_DRIVE

_MAX_EXT

_MAX_FNAME

_MAX_PATH

Meaning

Maximum length of directory component

Maximum length of drive component

Maximum length of extension component

Maximum length of filename component

Maximum length of full path

The sum of the fields should not exceed _MAX_PATH.

RAND MAX

Remarks

#include <stdlib.h>

The constant RAND_MAX is the maximum value that can be returned by the rand
function. RAND_MAX is defined as the value Ox7fff.

See Also rand

63

Run-Time Library Reference

setvbuf Constants

Remarks

#include <stdio.h>

These constants represent the type of buffer for setvbuf.

The possible values are given by the following manifest constants:

Constant Meaning

_IOLBF

_IONBF

See Also setbuf

Full buffering: Buffer specified in call to setvbuf is used and its size is
as specified in setvbuf call. If buffer pointer is NULL, automatically
allocated buffer of specified size is used.

Sanie as _IOFBF.

No buffer is used, regardless of arguments in call to setvbuf.

Sharing Constants

Remarks

64

#include <share.h>

The shflag argument determines the sharing mode, which consists of one or more
manifest constants. These can be combined with the oflag arguments (see "File
Constants" on page 56).

The constants and their meanings are listed below:

Constant

_SH_COMPAT

_SH_DENYRW

_SH_DENYWR

_SH_DENYRD

:....SH_DENYNO

Meaning

Sets compatibility mode

Denies read and write access to file

Denies write access to file

Denies read access to file

Permits read and write access

See Also _sopen, _fsopen

Chapter 3 Global Constants

signal Constants

Remarks

#include <signal.h>

The sig argument must be one of the manifest constants listed below (defined in
SIGNAL.H).

SIGABRT Abnormal termination. The default action terminates the calling
program with exit code 3.

SIGFPE Floating-point error, such as overflow, division by zero, or invalid
operation. The default action terminates the calling program. SIGFPE is the only
signal constant available when the _WINDOWS constant is defined. The
_WINDOWS constant is defined by CL options IGA, IGD, IGE, IGW, IGw, and
/Mq. The CL.EXE tool controls the Microsoft C and C++ compilers and linker.

SIGILL Illegal instruction. The default action terminates the calling program.

SIGINT CTRL+C interrupt. The default action issues INT 23H.

SIGSEGV Illegal storage access. The default action terminates the calling program.

SIGTERM Termination request sent to the program. The default action terminates
the calling program.

See Also signal, raise

signal Action Constants

Remarks

#include <signal.h>

The action taken when the interrupt signal is received depends on the value of June.

The June argument must be either a function address or one of the manifest constants
listed below and defined in SIGNAL.H.

SIG_DFL Uses system-default response. If the calling program uses stream 110,
buffers created by the run-time library are not flushed.

SIG_IGN Ignores interrupt signal. This value should never be given for SIGFPE,
since the floating-point state of the process is left undefined.

See Also signal

65

Run-Time Library Reference

_spawn Constants

Remarks

#include <process.h>

The mode argument determines the action taken by the calling process before and
during a spawn operation. The following values for mode are possible:

Constant

_P _NOWAIT or
_P_NOWAITO

Meaning

Overlays calling process with new process, destroying calling
process (same effect as _exec calls).

Suspends calling process until execution of new process is
complete (synchronous _spawn).

Continues to execute calling process concurrently with new process
(asynchronous _spawn, valid only in 32-bit Windows
applications) .

Continues to execute calling process; new process is run in
background with no access to console or keyboard. Calls to _cwait
against new process will fail. This is an asynchronous _spawn and
is valid only in 32-bit Windows applications.

See Also _spawn Functions

stat Structure st mode Field Constants - -
#include <sys/stat.h>

Remarks

66

These constants are used to indicate file type in the st_mode field of the _stat
structure.

The bit mask constants are described below:

Constant

_S_IFMT

_S_IFDIR

_S_IFCHR

_S_IFREG

_S_IREAD

_S_IWRITE

_S_IEXEC

Meaning

File type mask

Directory

Character special (indicates a device if set)

Regular

Read permission, owner

Write permission, owner

Execute/search permission, owner

See Also _stat, _fstat, Standard Types

Chapter 3 Global Constants

stdin, stdout, stderr

Remarks

FILE *stdin;
FILE *stdout;
FILE *stderr;

#include <stdio.h>

These are standard streams for input, output, and error output.

By default, standard input is read from the keyboard, while standard output and
standard error are printed to the screen.

The following stream pointers are available to access the standard streams:

Pointer

stdin

stdont

stderr

Stream

Standard input

Standard output

Standard error

These pointers can be used as arguments to functions. Some functions, such as
getchar and putchar, use stdin and stdout automatically.

These pointers are constants, and cannot be assigned new values. The freopen
function can be used to redirect the streams to disk files or to other devices. The
operating system allows you to redirect a program's standard input and output at the
command level.

See Also Stream I/O

TMP_MAX, L_tmpnam

Remarks

#include <stdio.h>

TMP _MAX is the maximum number of unique filenames that the tmpnam function
can generate. L_tmpnam is the length of temporary filenames generated by tmpnam.

67

Run-Time Library Reference

Translation Mode Constants

Remarks

#include <fcntI.h>

The _0 _BINARY and _0_ TEXT manifest constants determine the translation
mode for files Copen and _sopen) or the translation mode for streams Csetmode).

The allowed values are:

_O_TEXT Opens file in text (translated) mode. Carriage retum-linefeed (CR-LF)
combinations are translated into a single linefeed (LF) on input. Linefeed
characters are translated into CR-LF combinations on output. Also, CTRL+Z is
interpreted as an end-of-file character on input. In files opened for reading and
reading/writing, fopen checks for CTRL+Z at the end of the file and removes it, if
possible. This is done because using the fseek and ftell functions to move within a
file ending with CTRL+Z may cause fseek to behave improperly near the end of the
file.

_O_BINARY Opens file in binary (untranslated) mode. The above translations are
suppressed.

_O_RAW Same as _O_BINARY. Supported for C 2.0 compatibility.

For more information, see "Text and Binary Mode File 110" on page 15 in Chapter 1
and "File Translation Constants" on page 58.

See Also _open, _pipe, _sopen, _setmode

_WAIT_CHILD, WAIT GRANDCHILD - -

Remarks

68

#include <process.h>

The _cwait function can be used by any process to wait for any other process (if the
process ID is known). The action argument can be one of the following values:

Constant Meaning

See Also _cwait

Calling process waits until specified new process
terminates.

Calling process waits until specified new process, and all
processes created by that new process, terminate.

Chapter 3 Global Constants

32-bit Windows TimelDate Formats
Remarks

Example

The file time and the date are stored individually, using unsigned integers as bit
fields. File time and date are packed as follows:

Time

Bit Position:

Length:

Contents:

Value Range:

Date

Bit Position:

Length:

Contents:

Value Range:

(relative to
1980)

o 1 234

5

hours

0-23

o 1 2 3 456

7

year

0-119

1-12

56789A

6

minutes

0-59

7 8 9 A

4

month

1-31

BCD E F

5

2-second increments

0-29 in 2-second
intervals

BCD E F

5

day

The following code sample extracts the components of a date from a variable
wr_date containing a date packed in the format described above. You can use similar
methods to extract the time from a variable containing a packed time.

69

CHAPTER 4

Debug Version of the
C Run-Time Library

Visual C++ version 4.0 adds extensive debug support to the C run-time library,
letting you step directly into run-time functions when debugging an application. The
library also provides a variety of tools to keep track of heap allocations, locate
memory leaks, and track down other memory-related problems.

Much of the heap-checking technology included in the debug version of the C run­
time library has been moved from the Microsoft Foundation Class library. To
continue to use the technology, debug builds of MFC applications must now be linked
with a debug version of the run-time library.

The C run-time debug functions are available for Windows 95, Windows NT, and the
Power Macintosh. However, the 68K Macintosh platform is not supported.

The following sections of this chapter describe the new debug components of the C
run-time library and explain how to take advantage of the debugging services they
provide:

• Source Code for the Run-Time Functions

• C Run-Time Debug Libraries

• Debug Reporting Functions of the C Run-Time Library

• Using Macros for Verification and Reporting

• Memory Management and the Debug Heap

• Writing Your Own Debug Hook Functions

• Example Programs

Source Code for the Run-Time Functions
Visual C++ introduces source code availability for most of the C run-time library
functions. You can now use the debugger to step into the source code for the run-time
functions by linking your application with a debug version of the run-time library.

71

Run-Time Library Reference

During the debugging process, source code availability allows you to confirm that the
run-time functions are working as expected, check for bad parameters and memory
states, and examine your code for other errors.

Because the C run-time library has been designed to achieve the highest possible
performance, the release versions of the functions rarely verify parameters, confirm
internal states, or perform other checking that might slow program execution. As a
result, an incorrect call to a run-time function can result in serious problems
accompanied by too little information to resolve the situation. For example, passing a
bad pointer to the strcpy function usually results in a simple "General Protection
Fault" error message. The ability to step into the run-time source code provides you
with a method for controlling the type of verifications and how many to perform, as
well as the opportunity to trace through the execution of your application to resolve
specific problems.

The Setup program gives you the option of installing the C run-time library source
code on your hard disk. Even if you choose to leave the source files on the CD-ROM,
you can step into run-time functions while you are debugging, as long as the CD­
ROM is loaded in the drive.

The main definitions and macros that control the debugging process are contained in
the CRTDBG.H header file. Experienced programmers should examine this file to
understand how to take full advantage of the flexibility that the new debug libraries
offer.

Source code for the debug run-time functions is contained in source files whose
names begin with dbg. Source code for the other C run-time functions is contained in
files whose names reflect the function names. However, Microsoft considers some
run-time technology to be proprietary and does not provide source code for the
exception handling, floating point, and a few other routines. For a complete list of
these routines, see "Debug Routines" on page 6 in Chapter 1.

C Run-Time Debug Libraries

72

The following table lists the debug versions of the C run-time library files shipped
with Visual C++. For each library, a compiler option that makes it the default library
is identified, together with the environment variables that are automatically defined
by the compiler when that option is used. For a list of the release versions of these
libraries, see "e Run-Time Libraries" on page ix in the Introduction.

Chapter 4 Debug Version of the C Run-Time Library

Library Characteristics Option Defined

LmCD.Lm Single threaded, static link IMLd _DEBUG

LmCMTD.Lm Multithreaded, static link IMTd _DEBUG,_MT

MSVCRTD.LIB Multithreaded, dynamic link IMDd _DEBUG, _MT,
(import library for msvcrxOd.dllI) _DLL

1 In place of the "xO" in the DLL name, substitute the major version numeral of Visual C++ that you are
using. For example, if you are using Visual C++ version 4, then the library name would be
MSVCR40D.DLL.

The debug versions of the library functions differ from the release versions mainly in
that debug information was included when they were compiled (using the /Z7 or /Zi
compiler option), optimization was turned off, and source code is available. A few of
the debug library functions also contain asserts that verify parameter validity.

U sing one of these debug libraries is as simple as linking it to your application with
the IDEBUG:FULL linker option set. You can then step directly into almost any run­
time function call.

Debug Reporting Functions of the
C Run-Time Library

The run-time library includes three new debug reporting functions that provide
extensive flexibility for reporting warnings and errors during execution of a debug
build of an application. The main reporting function is _ CrtDbgReport. Two
configuration functions, _ CrtSetReportMode and _ CrtSetReportFile, can be used
at any point to specify the destinations to which different kinds of reports will be sent.
The following list summarizes the operation of these three functions:

_ CrtDbgReport Reports from within an application. The programmer determines
the destination(s) to which the report is sent by specifying its category
(_CRT_WARN, _CRT_ERROR, and _CRT_ASSERT). The report may also
include a message string, a source file name and line number, and one or more
arguments to be formatted into the message string.

_CrtSetReportMode Specifies the general destination(s) to which a given category
of report output should be sent. The three categories of report output are
_CRT_WARN, _CRT_ERROR, and _CRT_ASSERT. Possible destinations
include the debugger, a message window, and/or a file or stream.

_ CrtSetReportFile When _ CrtSetReportMode has specified that a given category
of report output will be directed to a file or stream, _ CrtSetReportFile identifies
that specific file or stream.

73

Run-Time Library Reference

74

For detailed information about the syntax and usage of these functions, see the
function descriptions at the end of this chapter.

Debug reports can be assigned to three different categories, depending on the urgency
of the messages they contain:

_ CRT_WARN Warnings, messages, and information not needing immediate
attention.

_CRT_ERROR Errors, unrecoverable problems, and information needing
immediate attention.

_CRT_ASSERT Assertion failure (an asserted expression evaluated as FALSE).

A different destination can be specified for each of these report categories. Usually
one destination is sufficient for a category, but each category can be sent to more than
one destination. Up to three of the following bit-flags can be combined in the
reportMode argument passed to _CrtReportMode to specify the destination(s) for a
given report category:

_CRTDBG_MODE_DEBUG Reports are sent to the debugger or debug monitor,
using the Win32 OutputDebugString API.

_ CRTDBG_MODE_FILE Reports are sent to a file (including the stderr and
stdout streams) using the Win32 WriteFile API.

_CRTDBG_MODE_ WNDW Reports are sent to a message window using the
Win32 MessageBox API.

To tum off a given category of report, pass _CrtReportMode a reportMode value of
zero.

Report destinations are handled somewhat differently on the Macintosh. If your
application will be targeting the Macintosh as well as systems running Windows
operating software, be sure to check the documentation for the Visual C++ Macintosh
Cross-Platform Edition to see how these destinations are implemented on the
Macintosh.

By default, errors and assertion failures are directed to a message window, since they
generally signal serious problems that you want to know about right away. Warnings
from Windows applications are sent to the debugger, and warnings from console
applications are directed to stderr. You only need to use the _CrtSetReport ••.
functions when you want to change these destinations. For example, the following
code causes assertion failures to be sent both to a message window and to stderr:

Chapter 4 Debug Version of the C Run-Time Library

_CrtSetReportMode(_CRT_ASSERT. _CRTDBG_MODE_FILE I
_CRTDBG_MODE_WNDW);

_CrtSetReportFile(_CRT_ASSERT. _CRTDBG_FILE_STDERR);

To send a debug report, you use _ CrtDbgReport and control the destination by
specifying the category of the report. If you need more flexibility, you can write your
own reporting function and hook it into the C run-time library reporting mechanism
using _ CrtSetReportHook, as described later in this chapter.

Whereas messages that go to a file or the debugger are generally single lines that can
include a filename and line number, the message window contains considerably more
information. It identifies the error and the program more fully, along with message
text, and can also display a file name and line number. Assert message windows
contain additional information particular to asserts.

The following is an example of an assert message box under Windows NT:

Debug Assertion Failed!

Prog ra m: D:\crt\test\crtdb g\crtdb g. exe
File: crtdbg.c
Line: 1004

Expression: black == white

For information on how your program can cause an assertion
failure. see the Visual C++ documentation on asserts.

(Press Retry to debug the application)

All message windows display AbortJRetrylIgnore buttons. Choosing Abort causes the
program to stop execution immediately, Ignore causes execution to continue, and
Retry invokes the debugger, provided that "just-in-time" debugging is enabled.
Choosing Ignore when an error condition exists often results in "undefined behavior."

U sing Macros for Verification and
Reporting

A common way of keeping track of what is going on in an application during the
debugging process is to use printf statements in code such as the following:

75

Run-Time Library Reference

76

Ifi fdef _DEBUG
if (someVar > MAX_SOMEVAR)

printf("OVERFLOW! In NameOfThisFunc(),
someVar=%d,

otherVar=%d.\n",
someVar, otherVar);

Ifendi f

The _ASSERT, _ASSERTE, _RPTn and _RPTFn macros defined in the
CRTDBG.H header file provide a variety of more concise and flexible ways to
accomplish the same task. These macros automatically disappear in your release
build when _DEBUG is not defined, so there is no need to enclose them in #ifdefs.
For debug builds, they provide a range of reporting options that can be directed to any
of the debugging destinations described above. The following table summarizes these
options:

Macro

_ASSERT

_ASSERTE

_RPTn
(where n is 0, 1,2,3, or 4)

_RPTFn
(where n is 0, 1,2,3, or 4)

Reporting Option

If an asserted expression evaluates to FALSE, the macro
reports the filename and line number of the _ASSERT,
under the _CRT_ASSERT report category.

Same as _ASSERT, except that it also reports a string
representation of the expression that was asserted to be
true but was evaluated to be false.

These five macros send a message string and from zero to
four arguments to the report category of your choice. In
the cases of macros _RPTI through _RPT4, the message
string serves as a printf-style formatting string for the
arguments.

Same as _RPTn , except that these macros also include in
each report the filename and line number at which the
macro was executed.

Asserts are used to check specific assumptions you make in your code. _ASSERTE is
a little more convenient to use because it reports the asserted expression that turned
out to be false. Often this tells you enough to identify the problem without going back
to your source code. A disadvantage, however, is that every expression asserted using
_ASSERTE must be included in the debug version of your application as a string
constant. If you use so many asserts that these string expressions take up a significant
amount of memory, you may prefer to use _ASSERT instead.

Examining the definitions of these macros in the CRTDBG.H header file can give
you a detailed understanding of how they work. When _DEBUG is defined, for
example, the _ASSERTE macro is defined essentially as follows:

Chapter 4 Debug Version of the C Run-Time Library

#define _ASSERTE(expr) \
do { \

if (!(expr) && (1 == _CrtDbgReport(\
_CRT_ASSERT. __ FILE __ . __ LINE __ . #expr))) \

_CrtDbgBreak(); \
while (0)

If expr evaluates to TRUE, execution continues uninterrupted, but if expr evaluates to
FALSE, _CrtDbgReport is called to report the assertion failure. If the destination is
a message window in which you choose Retry, _ CrtDbgReport returns 1 and
_ CrtDbgBreak calls the debugger.

A single call to _ASSERTE could be used to replace the printf code at the beginning
of this section:

_ASSERTE(sorneVar <= MAX_SOMEVAR);

If _CRT_ASSERT reports were being directed to message boxes (the default), or to
the debugger, then program execution would be interrupted when sorneVar exceeded
MAX_SOMEVAR.

Asserts can also be used as a simple debugging error handling mechanism for any
function that returns FALSE when it fails. For example, in the following code, the
assertion will fail if corruption is detected in the heap:

_ASSERTE(_CrtCheckMernory());

The following memory checking functions can be used in asserts of this kind to verify
pointers, memory ranges, and specific memory blocks:

_CrtIsValidHeapPointer Verifies that a given pointer points to memory in the local
heap; "local" here refers to the particular heap created and managed by this
instance of the C run-time library. A dynamic-link library (DLL) could have its
own instance of the library, and therefore its own heap, independent of your
application's local heap. Note that this routine catches not only null or out-of­
bounds addresses, but also pointers to static variables, stack variables, and any
other non-local memory.

_CrtIsValidPointer Verifies that a given memory range is valid for reading or
writing.

_ CrtIsMemoryBlock Verifies that a specified block of memory is in the "local"
heap and has a valid block type. This function can actually do more than check a
block's validity, however. If you pass it non-null values for the request number,
filename and/or line number, it sets the value in the block's header accordingly.

For more information on how these and other assertion checking routines can be used
during the debugging process, see "Debugging Assertions" in Chapter 17 of the
Visual C++ User's Guide.

The printf code at the start of this section reported actual values of s orne V a rand
ot her V a r to stdont. If these values were useful in the debugging process, one of the

77

Run-Time Library Reference

78

_RPTn or _RPTFn macros could be used to report them. The _RPTF2 macro, for
example, is defined essentially as follows in CRTDBG.H:

#define _RPTF2(rptno. rnsg. arg1. arg2) \
do { \

if (1 == _CrtDbgReport(rptno. __ FILE __ • \
__ LINE __ • rnsg. arg1. arg2)) \

_CrtDbgBreak(); \
} while (0)

The following call to _RPTF2 would report the values of s orne V a rand 0 the r V a r,
together with the filename and line number, every time the function that contained
the macro was executed:

_RPTF2(_CRT_WARN. "In NarneOfThisFunc(). sorneVar= %d.
otherVar= %d\n".

sorneVar. otherVar);

Of course, you may only be interested in knowing the values of sorneVar and
otherVar under the circumstance that sorneVar has exceeded its maximum permitted
value. By using an assert, as described above, you could halt program execution and
then use the debugger to examine the values of these variables. Alternatively, you
could use a variant of the original printf code, enclosing a conditional call to the
_RPTF2 macro in #ifdefs:

f/i fdef _DEBUG
if (sorneVar > MAX_SOMEVAR)

_RPTF2(_CRT_WARN.
"In NarneOfThisFunc(). sorneVar= %d. otherVar= %d\n".

sorneVar. otherVar);
f/endi f

Of course, if you find that a particular application needs a kind of debug reporting
that the macros supplied with the C run-time library do not provide, you can write a
macro designed specifically to fit your own requirements. In one of your header files,
for example, you could include code like the following to define a macro called
ALERT_IF2:

#ifndef _DEBUG /* For RELEASE builds */
#define ALERT_IF2(expr. rnsg. arg1. arg2) «void)0)
fIe 1 s e / * For DEB U G b u il d s * /
#define ALERT_IF2(expr. rnsg. arg1. arg2) \

do { \
if «expr) && \

(1 == _CrtDbgReport(_CRT_ERROR. \
__ FILE __ . __ LINE __ • rnsg. arg1. arg2))) \

_CrtDbgBreak(); \
} while (0)

f/endi f

One call to ALERT _IF2 could perform all the functions of the printf code at the start
of this section:

Chapter 4 Debug Version of the C Run-Time Library

ALERT_IF2(someVar > MAX_SOMEVAR. "OVERFLOW! In NameOfThisFunc().
sorneVar=%d. otherVar-%d.\n". sorneVar. otherVar);

This approach can be particularly useful as your debugging requirements evolve,
because a custom macro can easily be changed to report more or less information to
different destinations, depending on what is most convenient.

Memory Management and the Debug Heap
Two of the most common and intractable problems that programmers encounter are
overwriting the end of an allocated buffer and leaking memory (failing to free
allocations after they are no longer needed). The debug heap provides powerful tools
to solve memory allocation problems of this kind.

The debug versions of the heap functions call the standard or base versions used in
release builds. When you request a memory block, the debug heap manager allocates
from the base heap a slightly larger block of memory than requested and returns a
pointer to your portion of that block. For example, suppose your application contains
the call: rna 11 0 c (10). In a release build, malloc would call the base heap allocation
routine requesting an allocation of 10 bytes. In a debug build, however, malloc would
call_malloc_dbg, which would then call the base heap allocation routine requesting
an allocation of 10 bytes plus approximately 36 bytes of additional memory. All the
resulting memory blocks in the debug heap are connected in a single linked list,
ordered according to when they were allocated:

Memory blocks ---. Heap ---. Memory blocks
allocated later information allocated earlier

Buffer

Buffer

The additional memory allocated by the debug heap routines is used for bookkeeping
information, for pointers that link debug memory blocks together, and for small
buffers on either side of your data to catch overwrites of the allocated region.

Currently, the block header structure used to store the debug heap's bookkeeping
information is declared as follows in the DBGINT.H header file:

79

Run-Time Library Reference

typedef struct _CrtMemBlockHeader
{

II Pointer to the block allocated just before this one:
struct _CrtMemBlockHeader *pBlockHeaderNext;

II Pointer to the block allocated just after this one:
struct _CrtMemBlockHeader *pBlockHeaderPrev;
char *szFileName; II File name
int nLine; II Line number
size_t nDataSize; II Size of user block
int nBlockUse; II Type of block
long lRequest; II Allocation number

II Buffer just before (lower than) the user's memory:
unsigned char gap[nNoMansLandSize];

} _CrtMemBlockHeader;

1* In an actual memory block in the debug heap.
* this structure is followed by:
* unsigned char data[nDataSize];
* unsigned char anotherGap[nNoMansLandSize];
*1

The "N oMansLand" buffers on either side of the user data area of the block are
currently 4 bytes in size, and are filled with a known byte value used by the debug
heap routines to verify that the limits of the user's memory block have not been
overwritten. The debug heap also fills new memory blocks with a known value, and if
you elect to keep freed blocks in the heap's linked list as explained below, these freed
blocks are also filled with a known value. Currently, the actual byte values used are as
follows:

NoMansLand (OxFD) The "NoMansLand" buffers on either side of the memory
used by an application are currently filled with OxFD.

Freed blocks (OxDD) The freed blocks kept unused in the debug heap's linked list
when the _ CRTDBG_DELAY _FREE_MEM_DF flag is set are currently filled
withOxDD.

New objects (OxCD) New objects are filled with OxCD when they are allocated.

Types of Blocks on the Debug Heap

80

Every memory block in the debug heap is assigned to one of five allocation types.
These types are tracked and reported differently for purposes of leak detection and
state reporting. You can specify a block's type by allocating it using a direct call to
one of the debug heap allocation functions such as _malloc_dbg. The five types of
memory blocks in the debug heap (set in the nBlockUse member of the
_ CrtMemBloekHeader structure) are as follows:

_NORMAL_BLOCK A call to malloc or calloe creates a Normal block. If you
intend to use Normal blocks only, and have no need for Client blocks, you may
want to define _CRTDBG_MAP _ALLOC, which causes all heap allocation calls

Chapter 4 Debug Version of the C Run-Time Library

to be mapped to their debug equivalents in debug builds. This will allow filename
and line number information about each allocation call to be stored in the
corresponding block header.

_CRT_BLOCK The memory blocks allocated internally by many run-time library
functions are marked as Crt blocks, so that they can be handled separately. As a
result, leak detection and other operations need not be affected by them. An
allocation must never allocate, reallocate, or free any block of Crt type.

_CLIENT_BLOCK An application can keep special track of a given group of
allocations for debugging purposes by allocating them as this type, using explicit
calls to the debug heap functions. MFC, for example, allocates all CObjects as
Client blocks; other applications might keep different memory objects in Client
blocks. Subtypes of Client blocks can also be specified for greater tracking
granularity. A client-supplied hook function for dumping the objects stored in
Client blocks can be installed using _ CrtSetDumpClient, and will then be called
whenever a Client block is dumped by a debug function. Also,
_CrtDoForAIIClientObjects can be used to call a given function supplied by the
application for every· Client block in the debug heap.

_FREE_BLOCK Normally, blocks that are freed are removed from the list. To
check that freed memory is not still being written to, or to simulate low memory
conditions, you can choose to keep freed blocks on the linked list, marked as Free
and filled with a known byte value (currently OxDD).

_IGNORE_BLOCK It is possible to tum off the debug heap operations for a period
of time. During this time, memory blocks are kept on the list, but are marked as
Ignore blocks.

U sing the Debug Heap
To use the debug heap, link the debug build of your application with a debug version
of the C run-time library. All calls to heap functions such as malloc, free, calloc,
realloc, new and delete resolve to debug versions of those functions that operate in
the debug heap. When you free a memory block, the debug heap automatically checks
the integrity of the buffers on either side of your allocated area and issues an error
report if overwriting has occurred.

Many of the debug heap's features, however, must be accessed from within your code.
You can use a call to _CrtCheckMemory, for example, to check the heap's integrity
at any point. This function inspects every memory block in the heap, verifies that the
memory block header information is valid, and confirms that the buffers have not
been modified. You can control how the debug heap keeps track of allocations using
an internal flag, _crtDbgFlag, which can be read and set using the _ CrtSetDbgFlag
function. By changing this flag, you can instruct the debug heap to check for memory
leaks when the program exits, and report any leaks that are detected. Similarly, you
can specify that freed memory blocks not be removed from the linked list, to simulate

81

Run-Time Library Reference

82

low memory situations. When the heap is checked, these freed blocks are inspected in
their entirety to ensure that they have not been disturbed.

The _crtDbgFlag flag contains the following bit fields:

_CRTDBG_ALLOC_MEM_DF (On by default) Turns on debug allocation. When
this bit is off, allocations remain chained together but their block type is
_IGNORE_BLOCK.

_CRTDBG_DELAY_FREE_MEM_DF (Off by default) Prevents memory from
actually being freed, as for simulating low-memory conditions. When this bit is
on, freed blocks are kept in the debug heap's linked list but are marked as
_FREE_BLOCK and filled with a special byte value.

_CRTDBG_CHECK_ALWAYS_DF (Off by default) Causes _CrtCheckMemory
to be called at every allocation and deallocation. This slows execution, but catches
errors quickly.

_CRTDBG_CHECK_CRT_DF (Off by default) Causes blocks marked as type
_CRT_BLOCK to be included in leak detection and state difference operations.
When this bit is off, the memory used internally by the run-time library is ignored
during such operations.

_ CRTDBG_LEAK_ CHECK_DF (Off by default) Causes leak checking to be
performed at program exit via a call to _CrtDumpMemoryLeaks. An error report
is generated if the application has failed to free all the memory that it allocated.

To change one or more of these bit fields and create a new state for the flag, follow
these steps:

1. Call_CrtSetDbgFlag with the newFlag parameter set to
_CRTDBG_REPORT_FLAG to obtain the current _crtDbgFlag state and store
the returned value in a temporary variable.

2. Turn on any bits by OR-ing (bitwise I symbol) the temporary variable with the
corresponding bitmasks (represented in the application code by manifest
constants).

3. Turn off the other bits by AND-ing (bitwise & symbol) the variable with a NOT
(bitwise - symbol) of the appropriate bitmasks.

4. Call_CrtSetDbgFlag with the newFlag parameter set to the value stored in the
temporary variable to create the new state for _crtDbgFlag.

For example, the following lines of code turn on automatic leak detection and turn off
checking for blocks of type _CRT_BLOCK:

II Get current flag
int tmpFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

II Turn on leak-checking bit
tmpFlag 1= _CRTDBG_LEAK_CHECK_DF;

Chapter 4 Debug Version of the C Run-Time Library

II Turn off CRT block checking bit
tmpFlag &= -_CRTDBG_CHECK_CRT_DF;

II Set flag to the new value
_CrtSetDbgFlag(tmpFlag);

Heap State Reporting Functions
Several new functions report the contents of the debug heap at a given moment. To
capture a summary snapshot of the state of the heap at a given time, they use the
_CrtMemState structure defined in CRTDBG.H:

typedef struct _CrtMemState
{

II Pointer to the most recently allocated block:
struct CrtMemBlockHeader * pBlockHeader;

II A counter for each of the 5 types of block:
long lCounts[_MAX_BLOCKS];

II Total bytes allocated in each block type:
long lSizes[_MAX_BLOCKS];

II The most bytes allocated at a time up to now:
long lHighWaterCount;

II The total bytes allocated at present:
long lTotalCount;

} _CrtMemState;

This structure saves a pointer to the first (most recently allocated) block in the debug
heap's linked list. Then, in two arrays, it records how many of each type of memory
block CNORMAL_BLOCK, _CLIENT_BLOCK, _FREE_BLOCK, and so forth)
there are in the list, and the number of bytes allocated in each type of block. Finally,
it records the highest number of bytes allocated in the heap as a whole up to that
point, and the number of bytes currently allocated.

The following functions report the state and contents of the heap, and use the
information to help detect memory leaks and other problems:

Function

_ CrtMemCheckpoint

_ CrtMemDifference

_ CrtMemDumpStatistics

Description

Saves a snapshot of the heap in a _CrtMemState
structure supplied by the application.

Compares two memory state structures, saves the
difference between them in a third state structure, and
returns TRUE if the two states are different.

Dumps a given _CrtMemState structure. The structure
may contain a snapshot of the state of the debug heap at
a given moment, or the difference between two
snapshots. "Dumping" means reporting the data in a
form that a person can understand.

83

Run-Time Library Reference

Function Description

_CrtMemDumpAUObjectsSince Dumps information about all objects allocated since a
given snapshot was taken of the heap, or from the start
of execution. Every time it dumps a
_CLIENT_BLOCK block, it calls a hook function
supplied by the application, if one has been installed
using _ CrtSetDumpClient.

_ CrtDumpMemoryLeaks Determines whether any memory leaks occurred since
the start of program execution, and if so, it dumps all
allocated objects. Every time it dumps a
_ CLIENT_BLOCK block, it calls a hook function
supplied by the application, if one has been installed
using _ CrtSetDumpClient.

U sing the Debug Version Versus the Base Version

84

The run-time library now contains special debug versions of the heap allocation
functions that use the same names as the base versions and add the _dbg ending.
This section describes the differences in behavior between the debug version and the
base version in a debug build of an application. The information in this section is
presented using malloc and _maIJoc_dbg as the example, but is applicable to all of
the heap allocation functions discussed in this chapter.

Applications that contain existing calls to malloc do not need to convert their calls to
_maIJoc_dbg to obtain the debugging features. When _DEBUG is defined, all calls
to malloc are resolved to _malloc_dbg. However, explicitly calling _malloc_dbg
allows the application to perform additional debugging tasks: it can separately track
_CLIENT_BLOCK type allocations, and it can include the source file and line
number where the allocation request occurred in the bookkeeping information stored
in the debug header.

Because the base versions of the allocation functions are implemented as wrappers,
the source file name and line number of each heap allocation request is not available
by explicitly calling the base version. Applications that do not want to convert their
malloc calls to _maIJoc_dbg can obtain the source file information by defining the
_ CRTDBG_MAP _ALLOC environment variable. Defining this variable causes the
preprocessor to directly map all calls to malloc to _malloc_dbg, thereby providing
the additional information. To track particular types of allocations separately in client
blocks, _malloc_dbg must be called directly and the blockType parameter must be set
to _CLIENT_BLOCK.

When _DEBUG is not defined, calls to malloc are not disturbed, calls to
_malloc_dbg are resolved to malloc, the _CRTDBG_MAP _ALLOC environment
variable is ignored, and source file information pertaining to the allocation request is
not provided. Because malloc does not have a block type parameter, requests for
_CLIENT_BLOCK types are treated as standard allocations.

Chapter 4 Debug Version of the C Run-Time Library

Tracking Heap Allocation Requests
Although pinpointing the source file name and line number at which an assert or
reporting macro executes is often very useful in locating the cause of a problem, the
same is not as likely to be true of heap allocation functions. Whereas macros can be
inserted at many appropriate points in an application's logic tree, an allocation is
often buried in a special routine that is called from many different places at many
different times. The question is usually not what line of code made a bad allocation,
but rather which one of the thousands of allocations made by that line of code was
bad, and why.

The simplest way to identify the specific heap allocation call that went bad is to take
advantage of the unique allocation request number associated with each block in the
debug heap. When information about a block is reported by one of the dump
functions, this allocation request number is enclosed in curly brackets (for example,
"{ 36} ").

Once you know the allocation request number of an improperly allocated block, you
can pass this number to _ CrtSetBreakAlloc to create a breakpoint. Execution will
break just prior to allocating the block, and you can backtrack to determine what
routine was responsible for the bad call. To avoid recompiling, you can accomplish
the same thing in the debugger by setting _crtBreakAlloc to the allocation request
number you are interested in.

A somewhat more complicated approach is to create debug versions of your own
allocation routines, comparable to the _dbg versions of the heap allocation functions.
You can then pass source file and line number arguments through to the underlying
heap allocation routines, and you will immediately be able to see where a bad
allocation originated.

For example, suppose your application contains a commonly used routine something
like the following:

int addNewRecord(struct RecStruct * prevRecord.
int recType. int recAccess)

1* ... code omitted through actual allocation ... *1
if «newRec = malloc(recSize)) == NULL)
1* ... rest of routine omitted too ... *1

In a header file, you could add code such as the following:

IIi fdef _DEBUG
#define addNewRecord(p. t. a) \

addNewRecord(p. t. a. __ FILE __ • __ LINE __)
Ilendi f

85

Run-Time Library Reference

Next, you could change the allocation in your record-creation routine as follows:

int addNewRecord(struct RecStruct *prevRecord.

4Fifdef _DEBUG

4Fendif
)

int recType. int recAccess

• const char *srcFile. int srcLine

/* ... code omitted through actual allocation ... */
if «newRec = _malloc_dbg(recSize. _NORMAL_BLOCK.

srcFile. scrLine)) == NULL)
/* ... rest of routine omitted too ... */

Now the source file name and line number where addNewRecord was called will be
stored in each resulting block allocated in the debug heap, and will be reported when
that block is examined.

U sing the Debug Heap from C++
The debug versions of the C run-time library contain debug versions of the C++ new
and delete operators. Unless you intend to make special use of the
_CLIENT_BLOCK allocation type, be sure to define _CRTDBG_MAP _ALLOC
when you are using C++. This environment variable causes all instances of new in
your code to be mapped properly to the debug version of new so as to record source
file and line number information. If you intend to use the _CLIENT_BLOCK type,
do not define _ CRTDBG_MAP _ALLOC, but instead include code like the
following in an include file:

4fi fdef _DEBUG
inline void* __ cdecl operator new(unsigned int s)

{ return ::operator new(s. _CLIENT_BLOCK. __ FILE __ •
__ LINE __); }

4fendi f

The debug version of the delete operator works with all block types and should
require no changes in your program.

Writing Your Own Debug Hook Functions

86

You may need special features and tools when debugging a complex application. In
many cases, you can add exactly the capabilities you want by taking advantage of the
debug hooks in the C run-time library.

Chapter 4 Debug Version of the C Run-Time Library

Client Block Hook Functions
If you are interested in validating or reporting the contents of the data that you are
storing in _CLIENT_BLOCK blocks, you can write a function specifically for this
purpose. The function that you write must have a prototype similar to the following,
as defined in CRTDBG.H:

void YourClientDump(void *. size_t)

In other words, your hook function should accept a void pointer to the beginning of
the user's section of the allocation block, together with a size_t type value indicating
the size of the allocation, and return void. Other than that, its contents are up to you.

Once you have installed it using _ CrtSetDumpClient, your hook function will be
called every time a _ CLIENT_BLOCK block is dumped.

The pointer to your function that you pass to _CrtSetDumpClient is of type
_CRT_DUMP _CLIENT, as defined in CRTDBG.H:

typedef void (__ cdecl *_CRT_DUMP_CLIENT)
(void *. size_t);

Allocation Hook Functions
An allocation hook function, installed using _ CrtSetAllocHook, is called every time
memory is allocated, re-allocated, or freed. This type of hook can be used for many
different purposes. Use it to test how an application handles insufficient memory
situations, for example, or to examine allocation patterns, or to log allocation
information for later analysis. Be aware of the restriction described below about using
C run-time library functions in an allocation hook function.

An allocation hook function should have a prototype like the following:

int YourAllocHook(int nAllocType. void *pvData.
size_t nSize. int nBlockUse. long lRequest.
canst unsigned char * szFileName. int nLine

The pointer that you pass to _ CrtSetAllocHook is of type _CRT _ALLOC_HOOK,
as defined in CRTDBG.H:

typedef int (__ cdecl * _CRT_ALLOC_HOOK)
(int. void *. size_to into long. canst char *. int);

When the run-time library calls your hook, the nAllocType argument indicates what
allocation operation is about to be performed CHOOK_ALLOC,
_HOOK_REALLOC, or _HOOK_FREE). In the case of a free or a reallocation,
pvData contains a pointer to the user section of the block about to be freed, but in the
case of an allocation this pointer is null, since the allocation has not yet occurred.
The remaining arguments contain the size of the allocation in question, its block
type, the sequential request number associated with it, and a pointer to the filename

87

Run-Time Library Reference

and line number in which the allocation was made, if available. After the hook
function performs whatever analysis and other tasks its author wants, it must return
either TRUE, indicating that the allocation operation can continue, or FALSE,
indicating that the operation should fail. A simple hook of this type might check the
amount of memory allocated so far, and return FALSE if that amount exceeded a
small limit. The application would then experience the kind of allocation errors that
would normally only occur when available memory was very low. More complex
hooks might keep track of allocation patterns, analyze memory use, or report when
specific situations occur.

Using C Run-time Library Functions
in Allocation Hooks

A very important restriction on allocation hook functions is that they must explicitly
ignore _CRT_BLOCK blocks (the memory allocations made internally by C run­
time library functions) if they make any calls to C run-time library functions that
allocate internal memory. _CRT_BLOCK blocks can be ignored by including code
such as the following at the beginning of your allocation hook function:

if (nBlockUse == _CRT_BLOCK)
return(TRUE);

If your allocation hook does not ignore _CRT_BLOCK blocks, then any C run-time
library function called in your hook can trap the program in an endless loop. For
example, printf makes an internal allocation. If your hook code calls printf, then the
resulting allocation will cause your hook to be called again, which will call printf
again, and so on until the stack overflows. If you need to report _CRT_BLOCK
allocation operations, one way to circumvent this restriction is to use Windows API
functions for formatting and output rather than C run-time functions. Because the
Windows APIs do not use the C run-time library heap, they will not trap your
allocation hook in an endless loop.

If you examine the run-time library source files, you will see that the default
allocation hook function, CrtDefaultAUocHook (which simply returns TRUE), is
located in a separate file of its own, DBGHOOK.C. If you want your allocation hook
to be called even for the allocations made by the run-time startup code that is
executed before your application's main function, you can replace this default
function with one of your own, instead of using _ CrtSetAUocHook.

Report Hook Functions

88

A report hook function, installed using _ CrtSetReportHook, is called every time
_CrtDbgReport generates a debug report. You can use it, among other things, for

Chapter 4 Debug Version of the C Run-Time Library

filtering reports so as to focus on specific types of allocations. A report hook function
should have a prototype like the following:

int YourReportHook(int nRptType, char *szMsg, int *retVal):

The pointer that you pass to _ CrtSetReportHook is of type
_CRT_REPORT_HOOK, as defined in CRTDBG.H:

typedef int (__ cdecl *_CRT_REPORT_HOOK) (int, char *, int *):

When the run-time library calls your hook function, the nRptType argument contains
the category of the report (_CRT_WARN, _CRT_ERROR, or _CRT_ASSERT),
szMsg contains a pointer to a fully assembled report message string, and retVal

" specifies the value that should be returned by _ CrtDbgReport. If the hook handles
the message in question completely, so that no further reporting is required, it should
return FALSE. If it returns TRUE, then _CrtDbgReport will report the message in
the normal way.

Example Programs
Build these example programs as Win32 console applications. Your command line
should look like the following:

cl -D_DEBUG IMTd -Od -Zi -W3 t.c -link -verbose:lib -debug:full

In console applications such as the following examples, debugging is complicated by
the fact that errors do not interrupt execution of the program, as they normally would
when directed to a message window.

First Example Program
This simple program illustrates most of the basic debugging features of the C run­
time library, and the kind of debug output that results.

1***
* EXAMPLE 1 *
* This simple program illustrates the basic debugging features *
* of the C runtime libraries, and the kind of debug output *
* that these features generate. *
***1

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

89

Run-Time Library Reference

90

II This routine place comments at the head of a section of debug output
void OutputHeading(const char * explanation)
{

_RPTl(_CRT_WARN, "\n\n%s:\n**************************************\
************************************\n", explanation);
}

II The following macros set and clear, respectively, given bits
II of the C runtime library debug flag, as specified by a bitmask.
IIi fdef DEBUG
#define SET_CRT_DEBUG_FIELD(a) \

_CrtSetDbgFlag«a) I _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG»
#define CLEAR_CRT_DEBUG_FIELD(a) \

_CrtSetDbgFlag(~(a) & _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG»
lIe 1 s e
Ildefi ne
Ildefi ne
Ilendi f

SET_CRT_DEBUG_FIELD(a) «void) 0)
CLEAR_CRT_DEBUG_FIELD(a) «void) 0)

void main()
{

char *p1, *p2;
_CrtMemState sl, s2, s3;

II Send all reports to STDOUT
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

II Allocate 2 memory blocks and store a string in each
pI = malloc(34);
strcpy(pI, "This is the pI string (34 bytes).");

p2 = malloc(34);
strcpy(p2, "This is the p2 string (34 bytes).");

OutputHeading(
"Use _ASSERTE to check that the two strings are identical");

_ASSERTE(strcmp(pI, p2) == 0);

OutputHeading(
"Use a RPT macro to report the string contents as a warning");

_RPT2(_CRT_WARN, "pI points to '%s' and \np2 points to '%s'\n", pI, p2);

Chapter 4 Debug Version of the C Run-Time Library

OutputHeading(
"Use _CRTMemDumpAllObjectsSince to check the pI and p2 allocations");

_CrtMemDumpAllObjectsSince(NULL);

free(p2);

OutputHeading(
"Having freed p2. dump allocation information about pI only");

_CrtMemDumpAllObjectsSince(NULL);

II Store a memory checkpoint in the sl memory-state structure
_CrtMemCheckpoint(&sl);

II Allocate another block. pointed to by p2
p2 = malloc(38);
strcpy(p2. "This new p2 string occupies 38 bytes.");

II Store a 2nd memory checkpoint in s2
_CrtMemCheckpoint(&s2);

OutputHeading(
"Dump the changes that occurred between two memory checkpoints");

if (_CrtMemDifference(&s3. &sl. &s2))
_CrtMemDumpStatistics(&s3);

II Free p2 again and store a new memory checkpoint in s2
free(p2);
_CrtMemCheckpoint(&s2);

OutputHeading(
"Now the memory state at the two checkpoints is the same");

if (_CrtMemDifference(&s3. &sl. &s2))
_CrtMemDumpStatistics(&s3);

strcpy(pI. "This new pI string is over 34 bytes");
OutputHeading("Free pI after overwriting the end of the allocation");
free(pI);

II Set the debug-heap flag so that freed blocks are kept on the
II linked list. to catch any inadvertent use of freed memory
SET_CRT_DEBUG_FIELD(_CRTDBG_DELAY_FREE_MEM_DF);

pI = malloc(10);
free(pI);
strcpy(pl. "Oops");

OutputHeading("Perform a memory check after corrupting freed memory");
_CrtCheckMemory();

91

Run-Time Library Reference

Output

92

}

II Use explicit calls to _mal 1 oc_dbg to save file name and line number
II information. and also to allocate Client type blocks for tracking
pI = _malloc_dbg(40. _NORMAL_BLOCK. __ FILE __ • __ LINE __);
p2 = _malloc_dbg(40. _CLIENT_BLOCK. __ FILE __ . __ LINE __);
strcpy(pl. "pI points to a Normal allocation block");
strcpy(p2. "p2 points to a Client allocation block");

II You must use _free_dbg to free a Client block
OutputHeading(

"Using free() to free a Client block causes an assertion failure");
free(pI);
free(p2);

pI = malloc(10);
OutputHeading("Examine outstanding allocations (dump memory leaks)");
_CrtDumpMemoryLeaks();

II Set the debug-heap flag so that memory leaks are reported when
II the process terminates. Then. exit.
OutputHeading("Program exits without freeing a memory block");
SET_CRT_DEBUG_FIELD(_CRTDBG_LEAK_CHECK_DF);

Use _ASSERTE to check that the two strings are identical:
**
C:\DEV\EXAMPLEl.C(56) : Assertion failed: strcmp(pl. p2) == 0

Use a _RPT macro to report the string contents as a warning:
**
pI points to 'This is the pI string (34 bytes).' and
p2 points to 'This is the p2 string (34 bytes).'

Use _CRTMemDumpAllObjectsSince to check the pI and p2 allocations:
**
Dumping objects ->
{13} normal block at 0x00660B5C. 34 bytes long
Data: <This is the p2 s> 54 68 69 73 20 69 73 20 74 68 65 20 70 32 20 73

{12} normal block at 0x00660B10. 34 bytes long
Data: <This is the pI s> 54 68 69 73 20 69 73 20 74 68 65 20 70 31 20 73

Object dump complete.

Having freed p2. dump allocation information about pI only:
**
Dumping objects ->
{12} normal block at 0x00660B10. 34 bytes long
Data: <This is the pI s> 54 68 69 73 20 69 73 20 74 68 65 20 70 31 20 73

Object dump complete.

Chapter 4 Debug Version of the C Run-Time Library

Dump the changes that occurred between two memory checkpoints:
**
o bytes in 0 Free Blocks.
38 bytes in 1 Normal Blocks.
o bytes in 0 CRT Blocks.
o bytes in 0 IgnoreClient Blocks.
o bytes in 0 (null) Blocks.
Largest number used: 4 bytes.
Total allocations: 38 bytes.

Now the memory state at the two checkpoints is the same:
**

Free pI after overwriting the end of the allocation:
**
memory check error at 0x00660B32 = 0x73, should be 0xFD.
memory check error at 0x00660B33 = 0x00, should be 0xFD.
DAMAGE: after Normal block (#12) at 0x00660B10.

Perform a memory check after corrupting freed memory:
**
memory check error at 0x00660B10 0x4F, should be 0xDD.
memory check error at 0x00660Bll 0x6F, should be 0xDD.
memory check error at 0x00660B12 0x70, should be 0xDD.
memory check error at 0x00660B13 0x73, should be 0xDD.
memory check error at 0x00660B14 0x00, should be 0xDD.
DAMAGE: on top of Free block at 0x00660B10.
DAMAGED located at 0x00660B10 is 10 bytes long.

Using free() to free a Client block causes an assertion failure:
**
dbgheap.c(1039) : Assertion failed: pHead->nBlockUse == nBlockUse

Examine outstanding allocations (dump memory leaks):
**
Detected memory leaks!
Dumping objects ->
{18} normal block at 0x00660BE4, 10 bytes long

Data: < > CD CD CD CD CD CD CD CD CD CD
Object dump complete.

Program exits without freeing a memory block:
**
Detected memory leaks!
Dumping objects ->
{18} normal block at 0x00660BE4, 10 bytes long

Data: < > CD CD CD CD CD CD CD CD CD CD
Object dump complete.

93

Run-Time Library Reference

Second Example Program

94

This program illustrates several ways to use debugging hook functions with the new
debug versions of the C run-time library. To add some realism, it has a few elements
of an actual application, including two bugs.

The program stores birth date information in a linked list of Client blocks. A Client­
dump hook function validates the birthday data and reports the contents of the Client
blocks. An allocation hook function logs heap operations to a text file, and the report
hook function logs selected reports to the same text file.

Note that the allocation hook function explicitly excludes Crt blocks (the memory
allocated internally by the C run-time library) from its log. The hook function uses
fprintf to write to the log file, and fprintf allocates a CRT block. If CRT blocks were
not excluded in this case, an endless loop would overflow the stack: fprintf would
cause the hook function to be called, the hook would in tum call fprintf, which
would in tum cause the hook to be called again, and so forth.

To be able to report CRT -type blocks in your allocation hook, Windows API functions
could be used instead of C run-time functions. Since the Windows APIs do not use
the CRT heap, they would not trap the hook in an endless loop.

The debug heap catches two bugs and a data error in the second example. One bug is
that the birthday name field is not large enough to hold several of the test names. The
field should be larger, and strncpy should be used instead of strcpy. The second bug
is that the 'while' loop in the pri ntRecords function should not end until the
He a d P t r itself is equal to null. This bug results not only in an incomplete display of
birthdays, but also in a memory leak. Finally, Gauss' birthday should be April 30, not
April 32.

1***
* EXAMPLE 2
*

*
*

* This program illustrates several ways to use debugging hook *
* functions with the new debug versions of the C runtime *
* libraries. To add some realism, it has a few elements of an *
* actual application, including two bugs. *
* *
* The program stores birthdate information in a linked list *
* of Client blocks. A Client-dump hook function validates the *
* birthday data and reports the contents of the Client blocks. *
* An allocation hook function logs heap operations to a text *
* file, and the report hook function logs reports to the same *
* text fil e. *
* *

Chapter 4 Debug Version of the C Run-Time Library

*
*
*

NOTE: The allocation hook function explicitly excludes CRT
blocks (the memory allocated internally by the C
runtime library) from its log. It is important to
understand why! The hook function uses fprintf() to
write to the log file. and fprintf() allocates a CRT
block. If CRT blocks were not excluded in this case.
an endless loop would be created in which fprintf()
would cause the hook function to be called. and the
hook would in turn call fprintf(). which would cause
the hook to be called again. and so on. The moral is:

--> IF YOUR ALLOCATION HOOK USES ANY C RUNTIME FUNCTION
THAT ALLOCATES MEMORY. THE HOOK MUST IGNORE CRT-TYPE
ALLOCATION OPERATIONS!

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

HINT: If you want to be able to report CRT-type blocks in *
your allocation hook. use Windows API functions for *
formatting and output. instead of C runtime functions. *
Since the Windows APIs do not use the CRT heap. they *
will not trap your hook in an endless loop. *

*

BUGS: There are two bugs in the program below. which the
debug heap features identify in several ways. One bug
is that the birthDay.Name field is not large enough
to hold several of the test names. The field should
be larger. and strncpy() should be used in place of
strcpy(). The second bug is that the while() loop
in the printRecords() function should not end until
HeadPtr itself == NULL. This bug results not only in
an incomplete display of birthdays. but also in a
memory leak. In addition to these two bugs. Gauss'
birthday data is out of range (April 30. not 32).

*
*
*
*
*
*
*
*
*
*
*
*
*

***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <time.h>
#include <crtdbg.h>

1***
* DATA DECLARATIONS AND DEFINES *
***/

II The following arrays provide test data for the example program:

95

Run-Time Library Reference

96

const char * Names[]
{

"George Washington".
"Thomas Jefferson".
"Carl Friedrich Gauss".
"Ludwig van Beethoven".
"Thomas Carlyle"

const int Dates[]
{

1732. 2. 11.
1743. 4. 13.
1777 . 4. 32.
1795. 12. 4.
1770. 12. 16

#define TEST_RECS 5
II A generic sort of linked-list data structure. in this case for birthdays:
typedef struct BirthdayStruct
{

struct BirthdayStruct * NextRec;
int Year;
int Month;
int Day;
char Name[20];

birthDay;

birthDay * HeadPtr;
birthDay * TailPtr;

11defi ne FILE_IO_ERROR
11defi ne OUT_OF_MEMORY

11defi ne TRUE
11defi ne FALSE

0
1

7
0

II Macros for setting or clearing bits in the CRT debug flag
11i fdef _DEBUG
#define SET_CRT_DEBUG_FIELD(a) _CrtSetDbgFlag«a) I
_CrtSetDbgFlag(_CRTDBG_REPORT_FLAG»
#define CLEAR_CRT_DEBUG_FIELD(a) _CrtSetDbgFlag(~(a) &
_CrtSetDbgFlag(_CRTDBG_REPORT_FLAG»
11e 1 s e
#define SET_CRT_DEBUG_FIELD(a) «void) 0)
#define CLEAR_CRT_DEBUG_FIELD(a) «void) 0)
11endi f

Chapter 4 Debug Version of the C Run-Time Library

1***
* SPECIAL-PURPOSE ROUTINES *
***1

1* ERROR HANDLER

*1

Handling serious errors gracefully is a real test of craftsmanship.
This function is just a stub; it doesn't really handle errors.

void FatalError(int ErrType)
{

exit(1);
}

1* MEMORY ALLOCATION FUNCTION

*1

The createRecord function allocates memory for a new birthday record,
fills in the structure members. and then adds the record to a linked list.
In debug builds, it makes these allocations in Client blocks. If.memory
is not available, it calls the error handler.

void createRecordC
const int Year,
const int Month,
const int Day,
const char * Name

41i fdef _DEBUG
const unsigned char * szFileName, int nLine

41endi f

}

)

birthDay * ptr;
size_t n;

n = sizeof(struct BirthdayStruct);
ptr = (birthDay *) _malloc_dbg(n, _CLIENT_BLOCK, szFileName, nLine);
if(ptr == NULL)

FatalError(OUT_OF_MEMORY);
ptr->Year = Year;
ptr->Month = Month;
ptr->Day = Day;
strcpy(ptr->Name, Name);

ptr->NextRec = NULL;
if (HeadPtr == NULL II If this is the first record in the linked list

HeadPtr = ptr;
else

TailPtr->NextRec ptr;
Tail Ptr = ptr;

97

Run-Time Library Reference

98

1* BIRTHDAY DISPLAY FUNCTION

*1

This function traverses the linked list, displays the birthday data,
and then frees the memory blocks used to store the birthdays.

void printRecords(
{

}

birthDay * ptr;
char *months[] =

"", "January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December" };

if (HeadPtr == NULL)
return;

II Do nothing if list is empty

printf("\n\nThis is the birthday list:\n");
while (HeadPtr-)NextRec != NULL)
{

}

printf(" %s was born on %s %d, %d.\n",
HeadPtr-)Name, months[HeadPtr-)Month], HeadPtr-)Day, HeadPtr-)Year);

ptr = HeadPtr-)NextRec;
_free_dbg(HeadPtr, _CLIENT_BLOCK);
HeadPtr = ptr;

1***
* DEBUG C RUNTIME LIBRARY HOOK FUNCTIONS AND DEFINES *
***1

Hifdef _DEBUG
Hdefine createRecord(a, b, c, d) \

createRecord(a, b, c, d, __ FILE __ , __ LINE __)
FILE *logFile; II Used to log allocation information
const char lineStr[] = { "---------------------------------------\
- \n" };

1* CLIENT DUMP HOOK FUNCTION

*1

A hook function for dumping a Client block usually reports some
or all of the contents of the block in question. The function
below also checks the data in several ways, and reports corruption
or inconsistency as an assertion failure.

void __ cdecl MyDumpClientHook(
void * pUserData,
size_t nBytes
)

{

birthDay * bday;

bday = (birthDay *) pUserData;

Chapter 4 Debug Version of the C Run-Time Library

}

_RPT4(_CRT_WARN." The birthday of %s is %d/%d/%d.\n".
bday->Name. bday->Month. bday->Day. bday->Year);

_ASSERTE((bday->Day > 0) && (bday->Day < 32));
_ASSERTE((bday->Month > 0) && (bday->Month < 13));
_ASSERTE((bday->Year > 0) && (bday->Year < 1996));

1* ALLOCATION HOOK FUNCTION

An allocation hook function can have many. man~ different
uses. This one simply logs each allocation operation in a file.

*1
int cdecl MyAllocHook(

{

int
void
size
int
long
const
int
)

t

nAllocType.
* pvData.

nSize.
nBlockUse.
lRequest.

unsigned char * szFileName.
nL i ne

char *operation[]
char *blockType[]

{ "allocating". "re-allocating". "freeing" };
{ "Free". "Normal". "CRT". "Ignore". "Client" };

if nBlockUse == CRT_BLOCK
return(TRUE);

_ASSERT(
_ASSERT(

nAllocType > 0 &&
nBlockUse >= 0 &&

fprintf(10gFile.

II Ignore internal C runtime library allocations

nAllocType < 4));
nBlockUse < 5));

"Memory operation in Is. line %d: %s a %d-byte 'Is' block (/fo %ld)\n".
szFileName. nLine. operation[nAllocType]. nSize,
blockType[nBlockUse], lRequest);

if pvData!= NULL)
fpri ntf(1 ogFi 1 e, " at %X", pvData);

return(TRUE); II Allow the memory operation to proceed

1* REPORT HOOK FUNCTION

*1

Again, report hook functions can serve a very wide variety of purposes.
This one logs error and assertion failure debug reports in the
log file. along with 'Damage' reports about overwritten memory.

By setting the retVal parameter to zero, we are instructing _CrtDbgReport
to return zero, which causes execution to continue. If we want the function
to start the debugger. we should have _CrtDbgReport return one.

99

Run-Time Library Reference

100

int MyReportHook(
int nRptType,
char *szMsg,
int *retVal

{
)

char *RptTypes[] = { "Warning", "Error", "Assert" }:

if ((nRptType > 0) I I (strstr(szMsg, "DAMAGE"))
fprintf(10gFile, "%s: %s", RptTypes[nRptType], szMsg):

retVal = 0:

return(TRUE): II Allow the report to be made as usual

}

/fendif II End of /fifdef _DEBUG

1***
* MAIN FUNCTION *
***1

void main()
{

int i, j:

11i fdef _DEBUG
CrtMemState checkPtl:

char timeStr[10], dateStr[10]: II Used to set up log file

II Send all reports to STDOUT, since this example is a console app
_CrtSetReportMode(_CRT_WARN. _CRTDBG_MODE_FILE):
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT):
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE):
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT):
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE):
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT):

II Set the debug heap to report memory leaks when the process terminates,
II and to keep freed blocks in the linked list.
SET_CRT_DEBUG_FIELD(_CRTDBG_LEAK_CHECK_DF I CRTDBG_DELAY_FREE_MEM_DF):

II Open a log file for the hook functions to use
10gFile = fopen("MEM-LOG.TXT", "w"):
if (10gFile == NULL)

FatalError(FILE_IO_ERROR):
_strtime(timeStr):
_strdate(dateStr):
fprintf(logFile,

"Memory Allocation Log File for Example Program, run at %s on %s.\n",
timeStr, dateStr):

fputs(lineStr, 10gFile):

Output

Chapter 4 Debug Version of the C Run-Time Library

II Install the hook functions
_CrtSetDumpClient(MyDumpClientHook);
_CrtSetAllocHook(MyAllocHook);
_CrtSetReportHook(MyReportHook);

//=endi f II End of #ifdef _DEBUG

HeadPtr = NULL;

II Create a trial birthday record.
createRecord(1749. 3. 23. "Pierre de Laplace");

II Check the debug heap. and dump the new birthday record. --Note that
II debug C runtime library functions such as _CrtCheckMemory() and
II _CrtMemDumpAllObjectsSince() automatically disappear in a release build.
_CrtMemDumpAllObjectsSince(NULL);
_CrtCheckMemory();
_CrtMemCheckpoint(&checkPt1);

II Since everything has worked so far. create more records
for (i = 0. j = 0; i < TEST_RECS; i++. j+=3)

createRecord(Dates[j]. Dates[j+1]. Dates[j+2]. Names[i]);

II Examine the results
_CrtMemDumpAllObjectsSince(&checkPt1);
_CrtMemCheckpoint(&checkPt1);
_CrtMemDumpStatistics(&checkPt1);
_CrtCheckMemory();

II This fflush needs to be removed ...
fflush(10gFile);

II Now try displaying the records. which frees the memory being used
pri ntRecords ();

II OK. time to go. Did I forget to turn out any lights? I could check
II explicitly using _CrtDumpMemoryLeaks(). but I have set
II _CRTDBG_LEAK_CHECK_DF. so the C runtime library debug heap will
II automatically alert me at exit of any memory leaks.

#ifdef _DEBUG
fclose(10gFile);

#endif
}

Screen output:

Dumping objects -)
C:\DEV\EXAMPLE2.C(327) : {13} client block at 0x00661B38. subtype 0. 36 bytes long:

The birthday of Pierre de Laplace is 3/23/1749.
Object dump complete.
Dumping objects -)

101

Run-Time Library Reference

C:\DEV\EXAMPLE2.C(338) : {18} client block at 0x00661CB4, subtype
The birthday of Thomas Carlyle is 12/16/1770.

C:\DEV\EXAMPLE2.C(338) : {17} client block at 0x00661C68, subtype
The birthday of L~dwig van Beethoven is 12/4/1795.

C:\DEV\EXAMPLE2.C(338) : {16} client block at 0x00661CIC, subtype
The birthday of Carl Friedrich Gauss is 4/32/1777.

C:\DEV\EXAMPLE2.C(219) : Assertion failed: (bday-)Day) 0) && (
C:\DEV\EXAMPLE2.C(338) : {15} client block at 0x00661BD0, subtype

The birthday of Thomas Jefferson is 4/13/1743.
C:\DEV\EXAMPLE2.C(338) : {14} client block at 0x00661B84, subtype

The birthday of George Washington is 2/11/1732.
Object dump complete.
o bytes in 0 Free Blocks.
o bytes in 0 Normal Blocks.
6442 bytes in 12 CRT Blocks.
o bytes in 0 IgnoreClient Blocks.
216 bytes in 6 (null) Blocks.
Largest number used: 6658 bytes.
Total allocations: 6658 bytes.
memory check error at 0x00661C8C = 0x00, should be 0xFD.
DAMAGE: after (null) block (#17) at 0x00661C68.
(null) allocated at file C:\DEV\EXAMPLE2.C(338).
(null) located at 0x00661C68 is 36 bytes long.
memory check error at 0x00661C40 = 0x00, should be 0xFD.
DAMAGE: after (null) block (#16) at 0x00661CIC.
(null) allocated at file C:\DEV\EXAMPLE2.C(338).
(null) located at 0x00661CIC is 36 bytes long.
memory check error at 0x00661C40 = 0x00, should be 0xFD.
DAMAGE: after (null) block (#16) at 0x00661CIC.
memory check error at 0x00661C8C = 0x00, should be 0xFD.
DAMAGE: after (null) block (#17) at 0x00661C68.

This is the birthday list:
Pierre de Laplace was born on March 23, 1749.
George Washington was born on February 11, 1732.
Thomas Jefferson was born on April 13, 1743.
Carl Friedrich Gauss was born on April 32. 1777.
Ludwig van Beethoven was born on December 4, 1795.

Detected memory leaks!
Dumping objects -)

0. 36 bytes long:

0. 36 bytes long:

0, 36 bytes long:

bday-)Day < 32)

0. 36 bytes long:

0. 36 bytes long:

C:\DEV\EXAMPLE2.C(338) : {18} client block at 0x00661CB4, subtype 0. 36 bytes long:

102

The birthday of Thomas Carlyle is 12/16/1770.
Object dump complete.

Log file output:

Memory Allocation Log File for Example Program, run at 14:11:01 on 04/28/95.

Memory operation in C:\DEV\EXAMPLE2.C, line 327:
allocating a 36-byte 'Client' block (# 13)

Memory operation in C:\DEV\EXAMPLE2.C, line 338:
allocating a 36-byte 'Client' block (# 14)

Chapter 4 Debug Version of the C Run-Time Library

Memory operation in C:\DEV\EXAMPLE2.C, line 338:
allocating a 36-byte 'Client' block <II 15)

Memory operation in C:\DEV\EXAMPLE2.C, line 338:
allocating a 36-byte 'Client' block (fI 16)

Memory operation in C:\DEV\EXAMPLE2.C, line 338:
allocating a 36-byte 'Client' block <II 17)

Memory operation in C:\DEV\EXAMPLE2.C, line 338:
allocating a 36-byte 'Client' block (# 18)

Assert: C:\DEV\EXAMPLE2.C(219) : Assertion failed:
(bday->Day > 0) && bday->Day < 32

Warning: DAMAGE: after (null) block (#17) at 0x00661C68.
Warning: DAMAGE: after (null) block (#16) at 0x00661CIC.
Memory operation in (null), line 0: freeing a 0-byte 'Client' block (# 0)
at 661B38Memory operation in (null), line 0:

freeing a 0-byte 'Client' block (# 0)
at 661B84Memory operation in (null), line 0:

freeing a 0-byte 'Client' block <II 0)
at 661BD0Memory operation in (null) , line 0:

freeing a 0-byte 'Client' block <II 0)
at 661CICError: DAMAGE: after (null) block (#16) at 0x00661CIC.

Memory operation in (null), line 0: freeing a 0-byte 'Client' block (11 0)
at 661C68Error: DAMAGE: after (null) block <1/17) at 0x00661C68.

_ASSERT, ASSERTE Macros
Evaluate an expression and generate a debug report when the result is FALSE (debug
version only).

_ASSERT(booleanExpression);
_ASSERTE(booleanExpression);

Macro Required Header

_ASSERT <crtdbg.h>

_ASSERTE <crtdbg.h>

Optional Headers Compatibility

Win NT, Win 95,
PMac

Win NT, Win 95,
PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmCD.Lm

LmCMTD.Lm

MSVCRTD.LIB

MSVCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

103

Run-Time Library Reference

Although _ASSERT and _ASSERTE are macros and are obtained by including
CRTDBG.H, the application must link with one of the libraries listed above because
these macros call other run-time functions.

Return Value
None

Parameter

Remarks

104

booleanExpression Expression (including pointers) that evaluates to nonzero or 0

The _ASSERT and _ASSERTE macros provide an application with a clean and
simple mechanism for checking assumptions during the debugging process. They are
very flexible because they do not need to be enclosed in #ifdef statements to prevent
them from being called in a retail build of an application. This flexibility is achieved
by using the _DEBUG macro. _ASSERT and _ASSERTE are only available when
_DEBUG is defined. When _DEBUG is not defined, calls to these macros are
removed during preprocessing.

_ASSERT and _ASSERTE evaluate their booleanExpression argument and when
the result is FALSE (0), they print a diagnostic message and call_CrtDbgReport to
generate a debug report. The _ASSERT macro prints a simple diagnostic message,
while _ASSERTE includes a string representation of the failed expression in the
message. These macros do nothing when booleanExpression evaluates to nonzero.

Because the _ASSERTE macro specifies the failed expression in the generated
report, it enables users to identify the problem without referring to the application
source code. However, a disadvantage exists in that every expression evaluated by
_ASSERTE must be included in the debug version of your application as a string
constant. Therefore, if a large number of calls are made to _ASSERTE, these
expressions can take up a significant amount of space.

_CrtDbgReport generates the debug report and determines its destination(s), based
on the current report mode(s) and file defined for the _CRT_ASSERT report type.
By default, assertion failures and errors are directed to a debug message window. The
_ CrtSetReportMode and _ CrtSetReportFile functions are used to define the
destination(s) for each report type.

When the destination is a debug message window and the user chooses the Retry
button, _ CrtDbgReport returns 1, causing the _ASSERT and _ASSERTE macros to
start the debugger, provided that "just-in-time" (JIT) debugging is enabled. See page
75 for an example of an assert message box under Windows NT.

For more information about the reporting process, see the _ CrtDbgReport function
and the section "Debug Reporting Functions of the C Run-Time Library" on page 73.
For more information about resolving assertion failures and using these macros as a
debugging error handling mechanism, see "Using Macros for Verification and
Reporting" on page 75.

Example

Chapter 4 Debug Version of the C Run-Time Library

The _RPT, _RPTF debug macros are also available for generating a debug report,
but they do not evaluate an expression. The _RPT macros generate a simple report
and the _RPTF macros include the source file and line number where the report
macro was called, in the generated report. In addition to the _ASSERTE macros, the
ANSI assert routine can also be used to verify program logic. This routine is
available in both the debug and release versions of the libraries.

/*
* DBGMACRO.C
* In this program, calls are made to the _ASSERT and _ASSERTE
* macros to test the condition 'stringl == string2'. If the
* condition fails, these macros print a diagnostic message.
* The RPTn and _RPTFn group of macros are also exercised in
* this program, as an alternative to the printf function.
*/

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

int main()
{

char *pl, *p2;

/*
* The Reporting Mode and File must be specified
* before generating a debug report via an assert
* or report macro.
* This program sends all report types to STDOUT
*/

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFi 1 e(_CRT_WARN , _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/*
* Allocate and assign the pointer variables
*/

pI = malloc(l0);
strcpy(pl, "I am pI");
p2 = malloc(l0);
strcpy(p2, "I am p2");

105

Run-Time Library Reference

Output

106

/*
* Use the report macros as a debugging
* warning mechanism. similar to printf.
*
* Use the assert macros to check if the
* pI and p2 variables are equivalent.
*
* If the expression fails. _ASSERTE will
* include a string representation of the
* failed expression in the report.
* _ASSERT does not include the
* expression in the generated report.
*/

_RPT0(_CRT_WARN. n\n\n Use the assert macros to evaluate the expression pI
p2.\nn);

_RPTF2(_CRT_WARN. n\n Will _ASSERT find '%s' '%s' ?\nn, pI. p2);

}

_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, n\n\n Will _ASSERTE find '%s'
_ASSERTE(pl == p2);

_RPT2(_CRT_ERROR. n\n \n '%s' != '%s'\n", pI. p2);

free(p2);
free(pl) ;

return 0;

'%s' ?\nn, pI, p2);

Use the assert macros to evaluate the expression pI == p2.

dbgmacro.c(54)
dbgmacro.c(55)

dbgmacro. c (57)
dbgmacro.c(58)

Will _ASSERT find 'I am pI' == 'I am p2' ?
Assertion failed

Will _ASSERTE find 'I am pI'
Assertion failed: pI == p2

'I am p2' ?

'I am pI' != 'I am p2'

See Also _RPT, _RPTF

Chapter 4 Debug Version of the C Run-Time Library

_calloc_dbg
Allocates a number of memory blocks in the heap with additional space for a
debugging header and overwrite buffers (debug version only).

void * _calloc_dbg(size_t num, size_t size, int blockType, const char *filename,
int linenumber);

Routine Required Header Optional Headers Compatibility

<crtdbg.h> Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMID.LIB

MSYCRTD.LIB

MSYCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
Upon successful completion, this function either returns a pointer to the user portion
of the last allocated memory block, calls the new handler function, or returns NULL.
See the following Remarks section for a complete description of the return behavior.
See the calloc function for more information on how the new handler function is
used.

Parameters

Remarks

num Requested number of memory blocks

size Requested size of each memory block (bytes)

blockType Requested type of memory block: _ CLIENT_BLOCK or
_NORMAL_BLOCK

filename Pointer to name of source file that requested allocation operation or NULL

linen umber Line number in source file where allocation operation was requested or
NULL

The filename and linenumber parameters are only available when _calloc_dbg has
been called explicitly or the _CRTDBG_MAP _ALLOC environment variable has
been defined.

_calloc_dbg is a debug version of the calloc function. When _DEBUG is not
defined, calls to _calloc_dbg are removed during preprocessing. Both calloc and
_caUoc_dbg allocate num memory blocks in the base heap, but _calloc_dbg offers
several debugging features: buffers on either side of the user portion of the block to

107

Run-Time Library Reference

Example

108

test for leaks, a block type parameter to track specific allocation types, and
filenamellinenumber information to determine the origin of allocation requests.

_calloc_dbg allocates each memory block with slightly more space than the
requested size. The additional space is used by the debug heap manager to link the
debug memory blocks together and to provide the application with debug header
information and overwrite buffers. When the block is allocated, the user portion of
the block is filled with the value OxCD and each of the overwrite buffers are filled
withOxFD.

For information about how memory blocks are allocated, initialized, and managed in
the debug version of the base heap, see "Memory Management and the Debug Heap"
on page 79. For information about the allocation block types and how they are used,
see "Types of Blocks on the Debug Heap" on page 80. For information on the
differences between calling a standard heap function versus its debug version in a
debug build of an application, see "Using the Debug Version Versus the Base
Version" on page 84.

1*
* CALLOCD.C
* This program uses _calloc_dbg to allocate space for
* 40 long integers. It initializes each element to zero.
*1

#include <stdio.h>
#include <malloc.h>
#include <crtdbg.h>

void main(void)
{

long *bufferN, *bufferC;

1*
* Call _calloc_dbg to include the filename and line number
* of our allocation request in the header and also so we can
* allocate CLIENT type blocks specifically
*1

bufferN (long *)_calloc_dbg(40, sizeof(long), _NORMAL_BLOCK, __ FILE __ ,
__ LINE __);

bufferC (long *)_calloc_dbg(40, sizeof(long), _CLIENT_BLOCK, __ FILE __ ,
__ LINE __);

}

if(bufferN != NULL && bufferC != NULL)
printf("Allocated memory successfully\n");

else
printf("Problem allocating memory\n");

1*
* _free_dbg must be called to free CLIENT type blocks
*1

free(bufferN);
_free_dbg(bufferC, CLIENT_BLOCK);

Chapter 4 Debug Version of the C Run-Time Library

Output
Allocated memory successfully

See Also calloc, _malloc_dbg, _DEBUG

_CrtCheckMemory
Confirms the integrity of the memory blocks allocated in the debug heap (debug
version only).

int _ CrtCheckMemory(void);

Routine Required Header

_ CrtCheckMemory <crtdbg.h>

Optional Headers Compatibility

Win NT, Win 95,
PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

MSVCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value

Remarks

If successful, _ CrtCheckMemory returns TRUE; otherwise, the function returns
FALSE.

The _ CrtCheckMemory function validates memory allocated by the debug heap
manager by verifying the underlying base heap and inspecting every memory block.
If an error or memory inconsistency is encountered in the underlying base heap, the
debug header information, or the overwrite buffers, _ CrtCheckMemory generates a
debug report with information describing the error condition. When _DEBUG is not
defined, calls to _ CrtCheckMemory are removed during preprocessing.

The behavior of _ CrtCheckMemory can be controlled by setting the bit fields of the
_crtDbgFlag flag using the _CrtSetDbgFlag function. Turning the
_CRTDBG_CHECK_ALWAYS_DF bit field ON results in _CrtCheckMemory
being called every time a memory allocation operation is requested. Although this
method slows down execution, it is useful for catching errors quickly. Turning the
_CRTDBG_ALLOC_MEM_DF bit field OFF causes _CrtCheckMemory to not
verify the heap and immediately return TRUE.

109

Run-Time Library Reference

Example

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if corruption is detected in the heap:

_ASSERTE(_CrtCheckMemory());

For more information about how _ CrtCheckMemory can be used with other debug
functions, see "Heap State Reporting Functions" on page 83. For an overview of
memory management and the debug heap, see "Memory Management and the Debug
Heap" on page 79.

See "First Example Program" on page 89.

See Also _crtDbgFlag, _CrtSetDbgFlag

_CrtDbgReport
Generates a report with a debugging message and sends the report to three possible
destinations (debug version only).

int _CrtDbgReport(int reportType, const char *filename, int linenumber,
const char *moduleName, const char *format [, argument] ...);

Routine Required Header Optional Headers Compatibility

_ CrtDbgReport <crtdbg.h> Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmCD.Lm

LmCMTD.Lm

MSYCRTD.Lm

MSYCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value

110

For all report destinations, _CrtDbgReport returns -1 if an error occurs and 0 if no
errors are encountered. However, when the report destination is a debug message
window and the user chooses the Retry button, _ CrtDbgReport returns 1. If the user
chooses the Abort button in the debug message window, _ CrtDbgReport
immediately aborts and does not return a value.

The _ASSERT[E] and _RPT, _RPTF debug macros call _ CrtDbgReport to
generate their debug report. When _ CrtDbgReport returns 1, these macros start the
debugger, provided that "just-in-time" (JIT) debugging is enabled.

Chapter 4 Debug Version of the C Run-Time Library

Parameters

Remarks

reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT

filename Pointer to name of source file where assert/report occurred or NULL

linenumber Line number in source file where assert/report occured or NULL

moduleName Pointer to name of module (.EXE or .DLL) where assert/report
occurred

format Pointer to format-control string used to create the user message

argument Optional substitution arguments used by format

The _ CrtDbgReport function is similar to the printf function, as it can be used to
report warnings, errors, and assert information to the user during the debugging
process. However, this function is more flexible than printf because it does not need
to be enclosed in #ifdef statements to prevent it from being called in a retail build of
an application. This is achieved by using the _DEBUG flag: When _DEBUG is not
defined, calls to _ CrtDbgReport are removed during preprocessing.

_CrtDbgReport can send the debug report to three different destinations: a debug
report file, a debug monitor (the Visual c++ debugger), or a debug message window.
Two configuration functions, _ CrtSetReportMode and _ CrtSetReportFile, are used
to specify the destination(s) for each report type. These functions allow the reporting
destination(s) for each report type to be separately controlled. For example, it is
possible to specify that a reportType of _CRT_WARN only be sent to the debug
monitor, while a reportType of _CRT_ASSERT be sent to a debug message window
and a user-defined report file.

_ CrtDbgReport creates the user message for the debug report by substituting the
argument[n] arguments into the format string, using the same rules defined by the
printf function. _ CrtDbgReport then generates the debug report and determines the
destination(s), based on the current report modes and file defined for reportType.
When the report is sent to a debug message window, the filename, lineNumber, and
moduleName are included in the information displayed in the window.

The following table lists the available choices for the report mode(s) and file and the
reSUlting behavior of _CrtDbgReport. These options are defined as bit-flags in
CRTDBG.H.

111

Run-Time Library Reference

Example

112

Report Mode

CRTDBG­
MODE_DEBUG

CRTDBG­
MODE_WNDW

CRTDBG­
MODE_FILE

CRTDBG­
MODE_FILE

CRTDBG­
MODE_FILE

Report File _CrtDbgReport Behavior

Not applicable Writes message to Windows OutputDebugString
API.

Not applicable Calls Windows MessageBox API to create message
box to display the message along with Abort, Retry,
and Ignore buttons. If user selects Abort,
_CrtDbgReport immediately aborts. If user selects
Retry, it returns 1. If user selects Ignore, execution
continues and _CrtDbgReport returns O. Note that
choosing Ignore when an error condition exists often
results in "undefined behavior."

_HFILE Writes message to user-supplied HANDLE, using
the Windows WriteFile API, and does not verify
validity of file handle; the application is responsible
for opening the report file and passing a valid file
handle.

CRTDBG- Writes message to stderr.
FILE_STDERR

CRTDBG- Writes message to stdout.
FILE_STDOUT

The report may be sent to one, two, or three destinations, or no destination at all. For
more information about specifying the report mode(s) and report file, see the
_CrtSetReportMode and _CrtSetReportFile functions. For more information about
using the debug macros and reporting functions, see "Using Macros for Verification
and Reporting" on page 75 and "Debug Reporting Functions of the C Run-Time
Library" on page 73.

If your application needs more flexibility than that provided by _ CrtDbgReport, you
can write your own reporting function and hook it into the C run-time library
reporting mechanism by using the _ CrtSetReportHook function.

/*
* REPORT.C:
* In this program, calls are made to the _CrtSetReportMode,
* _CrtSetReportFile, and _CrtSetReportHook functions.
* The _ASSERT macros are called to evaluate their expression.
* When the condition fails, these macros print a diagnostic message
* and call _CrtDbgReport to generate a debug report and the
* client-defined reporting function is called as well.
* The _RPTn and _RPTFn group of macros are also exercised in
* this program, as an alternative to the printf function.
* When these macros are called, the client-defined reporting function
* takes care of all the reporting - _CrtDbgReport won't be called.
*/

Chapter 4 Debug Version of the C Run-Time Library

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

1*
* Define our own reporting function.
* We'll hook it into the debug reporting
* process later using _CrtSetReportHook.
*
* Define a global int to keep track of
* how many assertion failures occur.
*1

int gl_num_asserts=0;
int OurReportingFunction(int reportType, char *userMessage, int *retVal)
{

1*
* Tell the user our reporting function is being called.
* In other words - verify that the hook routine worked.
*1

fprintf("Inside the client-defined reporting function.\n", STDOUT);
ffl ush(STDOUT);

1*
* When the report type is for an ASSERT,
* we'll report some information, but we also
* want _CrtDbgReport to get called -
* so we'll return TRUE.
*
* When the report type is a WARNing or ERROR,
* we'll take care of all of the reporting. We don't
* want _CrtDbgReport to get called -
* so we'll return FALSE.
*1

if (reportType == _CRT_ASSERT)
{

gl_num_asserts++;
fprintf("This is the number of Assertion failures that have occurred: %d \n",

gl_num_asserts, STDOUT);
ffl ush(STDOUT);
fprintf("Returning TRUE from the client-defined reporting function.\n",

STDOUT) ;
ffl ush (STDOUT) ;
return(TRUE) ;

else {
fprintf("This is the debug user message: %s \n", userMessage, STDOUT);
fflush(STDOUT);
fprintf("Returning FALSE from the client-defined reporting function.\n",

STDOUT) ;
ffl us h (STDOUT) ;
return(FALSE);

113

Run-Time Library Reference

114

}

/*
* By setting retVal to zero, we are instructing _CrtDbgReport
* to continue with normal execution after generating the report.
* If we wanted _CrtDbgReport to start the debugger, we would set
* retVal to one.
*/

retVal = 0;

int maine)
{

cha r *pl, *p2;

/*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is called to generate
* a debug report, our function will get called first.
*/

_CrtSetReportHook(OurReportingFunction);

/*
* Define the report destination(s) for each type of report
* we are going to generate. In this case, we are going to
* generate a report for every report type: _CRT_WARN,
* _CRT_ERROR, and _CRT_ASSERT.
* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.
* This program sends all report types to STDOUT.
*/

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/*
* Allocate and assign the pOinter variables
*/

pI = malloc(10);
strcpy(pl, "I am pI");
p2 = malloc(10);
strcpy(p2, "I am p2");

/*
* Use the report macros as a debugging
* warning mechanism, similar to printf.
*
* Use the assert macros to check if the
* pI and p2 variables are equivalent.
*

Output

Chapter 4 Debug Version of the C Run-Time Library

* If the expression fails, _ASSERTE will
* include a string representation of the
* failed expression in the report.
*
* _ASSERT does not include the
* expression in the generated report.
*/

_RPT0(_CRT_WARN, n\n\n Use the assert macros to evaluate the expression pI ==

p2.\nn);
_RPTF2(_CRT_WARN, n\n Will _ASSERT find '%s' '%s' ?\nn. pI. p2);
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN. n\n\n Will _ASSERTE find '%s'
_ASSERTE(pl == p2);

_RPT2CCRT_ERROR. n\n \n '%s' 1= '%s' \nn, pI. p2);

free(p2);
free(pl);

return 0;

Inside the client-defined reporting function.

'%s' ?\nn. pI. p2);

This is the debug user message: Use the assert macros to evaluate the expression pI
p2
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(54) : Will _ASSERT find 'I am pI' 'I am
p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: I
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find 'I am pI' 'I am
p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: 2
Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pI == p2
Inside the client-defined reporting function.
Thi sis the debug user message: 'I am pI' 1= 'I am p2'
Returning FALSE from the client-defined reporting function.

See Also _ CrtSetReportMode, _ CrtSetReportFile, printf, _DEBUG

115

Run-Time Library Reference

_CrtDoForAllClientObjects
Calls an application-supplied function for all_CLIENT_BLOCK types in the heap
(debug version only).

void _CrtDoForAIIClientObjects(void (*pfn)(void *, void *), void *context);

Required Optional
Routine Header Headers Compatibility

_ CrtDoFor AllClientObjects <crtdbg.h> Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSYCRTD.LIB

MSYCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
None

Parameters

Remarks

116

void (*pfn)(void *, void *) Pointer to the application-supplied function to call

context Pointer to the application-supplied context to pass to the application­
supplied function

The _CrtDoForAIIClientObjects function searches the heap's linked list for
memory blocks with the _CLIENT_BLOCK type and calls the application-supplied
function when a block of this type is found. The found block and the context
parameter are passed as arguments to the application-supplied function. During
debugging, an application can track a specific group of allocations by explicitly
calling the debug heap functions to allocate the memory and specifying that the
blocks be assigned the _CLIENT_BLOCK block type. These blocks can then be
tracked separately and reported on differently during leak detection and memory state
reporting.

If the _CRTDBG_ALLOC_MEM_DF bit field of the _crtDbgFlag flag is not
turned on, _CrtDoForAIIClientObjects immediately returns. When _DEBUG is not
defined, calls to _ CrtDoFor AIIClientObjects are removed during preprocessing.

For more information about the _ CLIENT_BLOCK type and how it can be used by
other debug functions, see "Types of Blocks on the Debug Heap" on page 80. For
information about how memory blocks are allocated, initialized, and managed in the

Example

Chapter 4 Debug Version of the C Run-Time Library

debug version of the base heap, see "Memory Management and the Debug Heap" on
page 79.

/*
* DFACOBJS.C
* This program allocates some CLIENT type blocks of memory
* and then calls _CrtDoForAllClientObjects to print out the contents
* of each client block found on the heap.
*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <crtdbg.h>

/*
* My Memory Block linked-list data structure
*/

typedef struct MyMemoryBlockStruct
{

struct MyMemoryBlockStruct *NextPtr;
int blockType;
int allocNum;

aMemoryBlock;
aMemoryBlock *HeadPtr;
aMemoryBlock *TailPtr;

/*
* CreateMemoryBlock
* allocates a block of memory. fills in the data structure
* and adds the new block to the linked list
* Returns 1 if successful. otherwise 0
*/

int CreateMemoryBlock(
int allocNum.
int blockType
)

aMemoryBlock *blockPtr;
size_t size;

size = sizeof(struct MyMemoryBlockStruct);
if (blockType CLIENT_BLOCK)

blockPtr = (aMemoryBlock *) _malloc_dbg(size. _CLIENT_BLOCK. __ FILE __ •
__ LINE __);

else
blockPtr (aMemoryBlock *) _malloc_dbg(size. _NORMAL_BLOCK. __ FILE __ •

LINE);

if blockPtr
return(0);

NULL)

117

Run-Time Library Reference

118

}

blockPtr->allocNum = allocNum;
blockPtr->blockType = blockType;

blockPtr->NextPtr = NULL;
if (HeadPtr == NULL)

HeadPtr = blockPtr;
else

TailPtr->NextPtr = blockPtr;
TailPtr = blockPtr;
return (1) ;

/*
* RestoreMemoryToHeap
* restores all of the memory that we allocated on the heap
*/

void RestoreMemoryToHeap()
{

aMemoryBlock *blockPtr;

while (HeadPtr != NULL
{

}

blockPtr = HeadPtr->NextPtr;
if (blockPtr->blockType == _CLIENT_BLOCK

_free_dbg(HeadPtr, _CLIENT_BLOCK);
else

_free_dbg(HeadPtr, _NORMAL_BLOCK);

HeadPtr = blockPtr;

/*
* MyClientObjectHook
* A hook function for performing some action on all
* client blocks found on the heap - In this case, print
* out the value stored at each memory address.
*/

void __ cdecl MyClientObjectHook(
void * pUserData,

{

void * ignored
)

aMemoryBlock *blockPtr;
long allocReqNum;
int success;

blockPtr = (aMemoryBlock *) pUserData;

Chapter 4 Debug Version of the C Run-Time Library

1*
* Let's retrieve the actual object allocation order request number
* and see if it's different from the allocation number we stored in
* in our data structure.
*1

success = _CrtIsMemoryBlock«const void *) blockPtr.
(unsigned int) sizeof(struct MyMemoryBlockStruct). &allocReqNum.
NULL. NULL);

if (success)
printf("Block I%d \t Type: %d \t Allocation Number: %d\n". blockPtr-)allocNum,

blockPtr-)blockType. allocReqNum);
else
{

printf("ERROR: not a valid memory block.\n");
exit(1);

void main(void)
{

div_t div_result;
i nt i. success, tmpFl ag;

1*
* Set the _crtDbgFlag to turn debug type allocations.
* This will enable us to specify that blocks of type
* CLIENT_BLOCK can be allocated and tracked separately.
* Turn off checking for internal CRT blocks.
*/

tmpFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
tmpFlag 1= _CRTDBG_ALLOC_MEM_DF;
tmpFlag &= _CRTDBG_CHECK_CRT_DF;
_CrtSetDbgFlag(tmpFlag);

1*
* We're going to allocate 22 blocks and every other block is
* going to be of type _CLIENT_BLOCK.
* Blocks numbered 2. 4. 6. 8, 10, 12, 14. 16, 18, 20, and 22
* should all be CLIENT_BLOCKS.
*1

HeadPtr = NULL;
printf("Allocating the memory");
for (i=l; i < 23; i++)
{

div result = dive i, 2);
if div_result.rem) 0)

success CreateMemoryBlock(i. NORMAL_BLOCK);
else

success CreateMemoryBlock(i. _CLIENT_BLOCK);

119

Run-Time Library Reference

Output

}

if! success
{

}

printf(" ERROR.\n");
exit(1);

else
printf(".");

}

printf(" done.\n");

/*
* We're going to call _CrtDoForAllClientObjects to
* make sure that only blocks numbered 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22
* got allocated as _CLIENT_BLOCKS.
*/

_CrtDoForAllClientObjects(MyClientObjectHook, NULL);

/*
* Restore the memory to the heap
*/

RestoreMemoryToHeap();
exit(0);

The instruction at "0x00401153" referenced memory at "0x00000004". The memory could not
be "read".

See Also _ CrtSetDbgFlag

_CrtDumpMemoryLeaks

120

Dumps all of the memory blocks in the debug heap when a memory leak has occurred
(debug version only).

int _ CrtDumpMemoryLeaks(void);

Routine Required Header

_ CrtDumpMemoryLeaks <crtdbg.h>

Optional
Headers

Compatibility

Win NT, Win 95,
PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIDCD.LID

LIDCMTD.LIB

MSYCRTD.LIB

MSYCRxOD.DLL

Chapter 4 Debug Version of the C Run-Time Library

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value

Remarks

Example

_CrtDumpMemoryLeaks returns TRUE if a memory leak is found; otherwise, the
function returns FALSE.

The _ CrtDumpMemoryLeaks function determines whether a memory leak has
occurred since the start of program execution. When a leak is found, the debug
header information for all of the objects in the heap is dumped in a user-readable
form. When _DEBUG is not defined, calls to _ CrtDumpMemoryLeaks are
removed during preprocessing.

_CrtDumpMemoryLeaks is frequently called at the end of program execution to
verify that all memory allocated by the application has been freed. The function can
be called automatically at program termination by turning on the
_CRTDBG_ALLOC_MEM_DF bit field of the _crtDbgFlag flag using the
_ CrtSetDbgFlag function.

_CrtDumpMemoryLeaks calls _CrtMemCheckpoint to obtain the current state of
the heap and then scans the state for blocks that have not been freed. When an
unfreed block is encountered, _ CrtDumpMemoryLeaks calls
_ CrtMemDumpAIIObjectsSince to dump information for all of the objects allocated
in the heap from the start of program execution.

By default, internal C run-time blocks <-CRT_BLOCK) are not included in memory
dump operations. The _ CrtSetDbgFlag function can be used to turn on the
_CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include these blocks in the
leak detection process.

For more information about heap state functions and the _ CrtMemState structure,
see "Heap State Reporting Functions" on page 83. For information about how
memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see "Memory Management and the Debug Heap" on page 79.

See "First Example Program" on page 89.

121

Run-Time Library Reference

_Crtls ValidHeapPointer
Verifies that a specified pointer is in the local heap (debug version only).

int _CrtlsValidHeapPointer(const void *userData);

Routine Required Header Optional Compatibility
Headers

_ CrtlsV alidHeapPointer <crtdbg.h> Win NT, Win 95,
PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmCD.Lm

LmCMTD.LIB

MSYCRTD.LIB

MSYCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
_CrtlsValidHeapPointer returns TRUE if the specified pointer is in the local heap;
otherwise, the function returns FALSE.

Parameter

Remarks

122

userData Pointer for determining the heap location

The _CrtlsValidHeapPointer function is used to ensure that a specific memory
address is within the local heap. The "local" heap refers to the heap created and
managed by a particular instance of the C run-time library. If a dynamically linked
library (DLL) contains a static link to the run-time library, then it has its own
instance of the run-time heap, and therefore its own heap, independent of the
application's local heap. When _DEBUG is not defined, calls to
_CrtlsValidHeapPointer are removed during preprocessing.

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if the specified address is not
located within the local heap:

_ASSERTE(_CrtIsValidHeapPointer(userData));

For more information about how _CrtlsValidHeapPointer can be used with other
debug functions and macros, see "Using Macros for Verification and Reporting" on
page 75. For information about how memory blocks are allocated, initialized, and

Chapter 4 Debug Version of the C Run-Time Library

Example

managed in the debug version of the base heap, see "Memory Management and the
Debug Heap" on page 79.

See the example for _ Crtls ValidPointer.

_CrtIsMemoryBlock
Verifies that a specified memory block is in the local heap and that it has a valid
debug heap block type identifier (debug version only).

int _CrtIsMemoryBlock(const void *userData, unsigned int size, long *requestNumber,
char **filename, int *linenumber);

Routine Required Header

_ CrtIsMemoryBlock <crtdbg.h>

Optional Headers Compatibility

Win NT, Win 95,
PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSYCRTD.LIB

MSYCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
_CrtlsMemoryBlock returns TRUE if the specified memory block is located within
the local heap and has a valid debug heap block type identifier; otherwise, the
function returns FALSE.

Parameter

Remarks

userData Pointer to the beginning of the memory block to verify

size Size of the specified block (bytes)

requestNumber Pointer to the allocation number of the block or NULL

filename Pointer to name of source file that requested the block or NULL

linen umber Pointer to the line number in the source file or NULL

The _ CrtlsMemoryBlock function verifies that a specified memory block is located
within the application's local heap and that it has a valid block type identifier. This
function can also be used to obtain the object allocation order number and source file
namelline number where the memory block allocation was originally requested.

123

Run-Time Library Reference

Example

Passing non-NULL values for the requestNumber,jilename, and/or linen umber
parameters causes _ CrtlsMemoryBlock to set these parameters to the values in the
memory block's debug header, if it finds the block in the local heap. When _DEBUG
is not defined, calls to _ CrtlsMemoryBlock are removed during preprocessing.

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if the specified address is not
located within the local heap:

_ASSERTE(_CrtIsMemoryBlock(userData, size, &requestNumber, &filename,
&linenumber));

For more information about how _ CrtlsMemoryBlock can be used with other debug
functions and macros, see "Using Macros for Verification and Reporting" on page 75.
For information about how memory blocks are allocated, initialized, and managed in
the debug version of the base heap, see "Memory Management and the Debug Heap"
on page 79.

See the example for _CrtlsValidPointer.

CrtIs ValidPointer
Verifies that a specified memory range is valid for reading and writing (debug version
only).

int _CrtlsValidPointer(const void *address, unsigned int size, int access);

Routine

_ Crtls ValidPointer

Required
Header

<crtdbg.h>

Optional
Headers

Compatibility

Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.Lm

LIBCMTD.LIB

MSVCRTD.LIB

MSVCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value

124

_CrtlsValidPointer returns TRUE if the specified memory range is valid for the
specified operation(s); otherwise, the function returns FALSE.

Chapter 4 Debug Version of the C Run-Time Library

Parameter

Remarks

Example

address Points to the beginning of the memory range to test for validity

size Size of the specified memory range (bytes)

access Read/Write accessibility to determine for the memory range

The _CrtIsValidPointer function verifies that the memory range beginning at
address and extending for size bytes, is valid for the specified accessibility
operation(s). When access is set to TRUE, the memory range is verified for both
reading and writing. When address is FALSE, the memory range is only validated for
reading. When _DEBUG is not defined, calls to _CrtIsValidPointer are removed
during preprocessing.

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if the memory range is not valid for
both reading and writing operations:

_ASSERTE(_CrtIsValidPointer(address, size, TRUE));

For more information about how _CrtIsValidPointer can be used with other debug
functions and macros, see "Using Macros for Verification and Reporting" on page 75.
For information about how memory blocks are allocated, initialized, and managed in
the debug version of the base heap, see "Memory Management and the Debug Heap"
on page 79.

1*
* ISVALID.C
* This program allocates a block of memory using _malloc_dbg
* and then tests the validity of this memory by calling _CrtIsMemoryBlock,
* _CrtIsValidPointer, and _CrtIsValidHeapPointer.
*/

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

#define TRUE 1
#define FALSE 0

void maine void
{

char *my_pointer;

125

Run-Time Library Reference

Output

/*
* Call _malloc_dbg to include the filename and line number
* of our allocation request in the header information
*/

my_pointer = (char *)_malloc_dbg(sizeof(char) * 10, _NORMAL_BLOCK, __ FILE __ ,
__ LINE __);

) ;

}

/*
* Ensure that the memory got allocated correctly
*/

_CrtlsMemoryBlock«const void *)my_pointer, sizeof(char) * 10, NULL, NULL, NULL

/*
* Test for read/write accessibility
*/

if (_CrtlsValidPointer«const void *)my_pointer, sizeof(char) * 10, TRUE»
printf("my_pointer has read and write accessibility.\n");

else
printf("my_pointer only has read access.\n");

/*
* Make sure my_pointer is within the local heap
*/

if (_CrtlsValidHeapPointer«const void *)my_pointer»
printf("my_pointer is within the local heap.\n");

else
printf("my_pointer is not located within the local heap.\n");

free(my_pointer);

my_pointer has read and write accessibility.
my_pointer is within the local heap.

_CrtMemCheckpoint

126

Obtains the current state of the debug heap and stores in an application-supplied
_CrtMemState structure (debug version only).

void _CrtMemCheckpoint(_CrtMemState *state);

Routine

_CrtMemCheckpoint

Required
Header

<crtdbg.h>

Optional
Headers

Compatibility

Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Chapter 4 Debug Version of the C Run-Time Library

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSYCRTD.LIB

MSYCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
None

Parameter

Remarks

Example

state Pointer to _ CrtMemState structure to fill with the memory checkpoint

The _ CrtMemCheckpoint function creates a snapshot of the current state of the
debug heap at any given moment, which can be used by other heap state functions to
help detect memory leaks and other problems. When _DEBUG is not defined, calls
to _ CrtMemState are removed during preprocessing.

The application must pass a pointer to a previously allocated instance of the
_CrtMemState structure, defined in CRTDBG.H, in the state parameter. If
_ CrtMemCheckpoint encounters an error during the checkpoint creation, the
function generates a _CRT_WARN debug report describing the problem.

For more information about heap state functions and the _ CrtMemState structure,
see "Heap State Reporting Functions" on page 83. For information about how
memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see "Memory Management and the Debug Heap" on page 79.

See "First Example Program" on page 89.

CrtMemDifference
Compares two memory states and returns their differences (debug version only).

int _CrtMemDifference(_CrtMemState *stateDiff, const _CrtMemState *oldState,
const _CrtMemState *newState);

Routine Required Header

_ CrtMemDifference <crtdbg.h>

Optional Headers Compatibility

Win NT, Win 95,
PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

127

Run-Time Library Reference

Libraries

LmCD.Lm

LmCMTD.Lm

MSVCRTD.Lm

MSVCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
If the memory states are significantly different, _CrtMemDifference returns TRUE;
otherwise, the function returns FALSE.

Parameters

Remarks

128

stateDifJ Pointer to a _ CrtMemState structure that will be used to store the
differences between the two memory states (returned)

oldState Pointer to an earlier memory state C CrtMemState structure)

newState Pointer to a later memory state (_ CrtMemState structure)

The _ CrtMemDifference function compares oldState and newState and stores their
differences in stateDiff, which can then be used by the application to detect memory
leaks and other memory problems. When _DEBUG is not defined, calls to
_ CrtMemDifference are removed during preprocessing.

newState and oldState must each be a valid pointer to a _ CrtMemState structure,
defined in CRTDBG.H, that has been filled in by _CrtMemCheckpoint before
calling _ CrtMemDifference. stateDifJ must be a pointer to a previously allocated
instance of the _ CrtMemState structure.

_ CrtMemDifference compares the _ CrtMemState field values of the blocks in
oldState to those in newState and stores the result in stateDifJ. When the number of
allocated block types or total number of allocated blocks for each type differs between
the two memory states, the states are said to be significantly different. The difference
between the two states' high water count and total allocations is also stored in
stateDifJ.

By default, internal C run-time blocks CCRT_BLOCK) are not included in memory
state operations. The _ CrtSetDbgFlag function can be used to tum on the
_CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include these blocks in leak
detection and other memory state operations. Freed memory blocks
(_FREE_BLOCK) do not cause _ CrtMemDifference to return TRUE.

For more information about heap state functions and the _ CrtMemState structure,
see "Heap State Reporting Functions" on page 83. For information about how
memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see "Memory Management and the Debug Heap" on page 79.

Chapter 4 Debug Version of the C Run-Time Library

Example
See "First Example Program" on page 89.

See Also _crtDbgFlag

_CrtMemDumpAllObjectsSince
Dumps information about objects in the heap from the start of program execution or
from a specified heap state (debug version only).

void _CrtMemDumpAIIObjectsSince(const _CrtMemState *state);

Routine

_ CrtMemDumpAll­
ObjectsSince

Required
Header

<crtdbg.h>

Optional
Headers Compatibility

Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

MSVCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
None

Parameter

Remarks

state Pointer to the heap state to begin dumping from or NULL

The _CrtMemDumpAlIObjectsSince function dumps the debug header information
of objects allocated in the heap in a user-readable form. The dump information can be
used by the application to track allocations and detect memory problems. When
_DEBUG is not defined, calls to _ CrtMemDumpAlIObjectsSince are removed
during preprocessing.

_ CrtMemDumpAlIObjectsSince uses the value of the state parameter to determine
where to initiate the dump operation. To begin dumping from a specified heap state,
the state parameter must be a pointer to a _ CrtMemState structure that has been
filled in by _CrtMemCheckpoint before _CrtMemDumpAIIObjectsSince was
called. When state is NULL, the function begins the dump from the start of program
execution.

129

Run-Time Library Reference

Example

If the application has installed a dump hook function by calling
_ CrtSetDumpClient, then every time _ CrtMemDumpAlIObjectsSince dumps
infonnation about a _CLIENT_BLOCK type of block, it calls the application­
supplied dump function as well. By default, internal C run-time blocks
CCRT_BLOCK) are not included in memory dump operations. The
_ CrtSetDbgFlag function can be used to tum on the
_CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include these blocks. In
addition, blocks marked as freed or ignored CFREE_BLOCK,
_IGNORE_BLOCK) are not included in the memory dump.

For more infonnation about heap state functions and the _ CrtMemState structure,
see "Heap State Reporting Functions" on page 83. For information about how
memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see "Memory Management and the Debug Heap" on page 79.

See "Second Example Program" on page 94.

See Also _crtDbgFlag

_CrtMemDumpStatistics
Dumps the debug header infonnation for a specified heap state in a user-readable
fonn (debug version only).

void _ CrtMemDumpStatistics(const _ CrtMemState *state);

Routine Required Header Optional
Headers

_ CrtMemDumpStatistics <crtdbg.h>

Compatibility

Win NT, Win 95,
PMac

For additional compatibility infonnation, see "Compatibility" on page ix in the
Introduction.

Libraries

LmCD.Lffi

LmCMTD.Lm

MSVCRTD.Lm

MSVCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
None

Parameter
state Pointer to the heap state to dump

130

Chapter 4 Debug Version of the C Run-Time Library

Remarks

Example

The _ CrtMemDumpStatistics function dumps the debug header information for a
specified state of the heap in a user-readable form. The dump statistics can be used by
the application to track allocations and detect memory problems. The memory state
may contain a specific heap state, or the difference between two states. When
_DEBUG is not defined, calls to _ CrtMemDumpStatistics are removed during
preprocessing.

The state parameter must be a pointer to a _ CrtMemState structure that has been
filled in by _CrtMemCheckpoint or returned by _CrtMemDifference before
_ CrtMemDumpStatistics is called.

For more information about heap state functions and the _ CrtMemState structure,
see "Heap State Reporting Functions" on page 83. For information about how
memory blocks are allocated, initialized, and managed in the debug version of the
base heap, see "Memory Management and the Debug Heap" on page 79.

See "First Example Program" on page 89.

CrtSetAllocHook
Installs a client-defined allocation function by hooking it into the C run-time debug
memory allocation process (debug version only).

_CRT_ALLOC_HOOK _CrtSetAllocHook(_CRT_ALLOC_HOOK allocHook);

Routine Required Header

_ CrtSetAllocHook <crtdbg.h>

Optional Headers Compatibility

Win NT, Win 95,
PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

MSVCRxOD.DLL

Return Value

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

_ CrtSetAllocHook returns the previously defined allocation hook function.

Parameter
allocHook New client-defined allocation function to hook into the C run-time debug

memory allocation process

131

Run-Time Library Reference

Remarks

132

_CrtSetAllocHook allows an application to hook its own·allocation function into the
C run-time debug library memory allocation process. As a result, every call to a
debug allocation function to allocate, reallocate, or free a memory block triggers a
call to the application's hook function. _CrtSetAllocHook provides an application
with an easy method for testing how the application handles insufficient memory
situations, the ability to examine allocation patterns, and the opportunity to log
allocation information for later analysis. When _DEBUG is not defined, calls to
_ CrtSetAllocHook are removed during preprocessing.

The _CrtSetAllocHook function installs the new client-defined allocation function
specified in allocHook and returns the previously defined hook function. The
following example demonstrates how a client-defined allocation hook should be
prototyped:

int YourAllocHook(int allocType, void *userData, size_t size, int blockType,
long requestNumber, const unsigned char *filename, int lineNumber);

The a 11 0 c Ty p e argument specifies the type of allocation operation
(_HOOK_ALLOC, _HOOK_REALLOC, _HOOK_FREE) that triggered the call
to the allocation's hook function. When the triggering allocation type is
_HOOK_FREE, userData is a pointer to the user data section of the memory block
about to be freed. However, when the triggering allocation type is _HOOK_ALLOC
or _HOOK_REALLOC, use r D a t a is NULL because the memory block has not
been allocated yet.

s i z e specifies the size of the memory block in bytes, b 1 0 C k T y P e indicates the type
of the memory block, requestNumber is the object allocation order number of the
memory block, and if available, fi 1 ename and 1 i neNumber specify the source file
name and line number where the triggering allocation operation was initiated.

After the hook function has finished processing, it must return a Boolean value,
which tells the main C run-time allocation process how to continue. When the hook
function wants the main allocation process to continue as if the hook function had
never been called, then the hook function should return TRUE. This causes the
original triggering allocation operation to be executed. Using this implementation,
the hook function can gather and save allocation information for later analysis,
without interfering with the current allocation operation or state of the debug heap.

When the hook function wants the main allocation process to continue as if the
triggering allocation operation was called and it failed, then the hook function should
return TRUE. Using this implementation, the hook function can simulate a wide
range of memory conditions and debug heap states to test how the application
handles each situation.

For more information about how _ CrtSetAllocHook can be used with other memory
management functions or how to write your own client-defined hook functions, see
"Writing Your Own Debug Hook Functions" on page 86.

Chapter 4 Debug Version of the C Run-Time Library

Example
See "Second Example Program" on page 94.

CrtSetBreakAlloc
Sets a breakpoint on a specified object allocation order number (debug version only).

long _CrtSetBreakAlloc(long IBreakAlloc);

Routine

_ CrtSetBreakAlloc

Required
Header

<crtdbg.h>

Optional
Headers

Compatibility

Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmCD.Lm

LmCMTD.Lm

MSYCRTD.LIB

MSYCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
_ CrtSetBreakAlloc returns the previous object allocation order number that had a
breakpoint set.

Parameter

Remarks

lBreakAlioc Allocation order number, for which to set the breakpoint

_ CrtSetBreakAlloc allows an application to perform memory leak detection by
breaking at a specific point of memory allocation and tracing back to the origin of the
request. The function uses the sequential object allocation order number assigned to
the memory block when it was allocated in the heap. When _DEBUG is not defined,
calls to _ CrtSetBreakAlloc are removed during preprocessing.

The object allocation order number is stored in the lRequest field of the
_CrtMemBlockHeader structure, defined in CRTDBG.H. When information about a
memory block is reported by one of the debug dump functions, this number is
enclosed in curly brackets; for example, {36}.

For more information about how _ CrtSetBreakAlloc can be used with other memory
management functions, see "Tracking Heap Allocation Requests" on page 85.

133

Run-Time Library Reference

Example

Output

134

/*
*. SETBRKAL. C
* In this program, a call is made to the CrtSetBreakAlloc routine
* to verify that the debugger halts program execution when it reaches
* a specified allocation number.
*/

#include <malloc.h>
#include <crtdbg.h>

void maine)
{

}

long allocReqNum;
char *my_pointer;

/*
* Allocate "my_pointer" for the first
* time and ensure that it gets allocated correctly
*/

my_pointer = malloc(10);
_CrtIsMemoryBlock(my_pointer, 10, &allocReqNum, NULL, NULL);

/*
* Set a breakpoint on the allocation request
* number for "my_pointer"
*/

_CrtSetBreakAlloc(allocReqNum+2);
_crtBreakAlloc = allocReqNum+2;

/*
* Alternate freeing and reallocating "my_pointer"
* to verify that the debugger halts program execution
* when it reaches the allocation request
*/

free(my_pointer);
my_pointer = malloc(10);
free(my_pointer);
my_pointer = malloc(10);
free(my_pointer);

The exception Breakpoint
A breakpoint has been reached.
(0x0000003) occurred in the application at location 0x00401255.

Chapter 4 Debug Version of the C Run-Time Library

_CrtSetDbgFlag
Retrieves and/or modifies the state of the _crtDbgFlag flag to control the allocation
behavior of the debug heap manager (debug version only).

int _CrtSetDbgFlag(int newFlag);

Routine Required Header Optional Headers Compatibility

_ CrtSetDbgFlag <crtdbg.h> Win NT,
Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmCD.Lm

LmCMTD.Lm

MSYCRTD.LIB

MSYCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

_ CrtSetDbgFlag returns the previous state of _crtDbgFlag.

Parameter

Remarks

newFlag New state for the _crtDbgFlag

The _ CrtSetDbgFlag function allows the application to control how the debug heap
manager tracks memory allocations by modifying the bit fields of the _crtDbgFlag
flag. By setting the bits (turning on), the application can instruct the debug heap
manager to perform special debugging operations, including checking for memory
leaks when the application exits and reporting if any are found, simulating low
memory conditions by specifying that freed memory blocks should remain in the
heap's linked list, and verifying the integrity of the heap by inspecting each memory
block at every allocation request. When _DEBUG is not defined, calls to
_ CrtSetDbgFlag are removed during preprocessing.

The following table lists the bit fields for _crtDbgFlag and describes their behavior.
Because setting the bits results in increased diagnostic output and reduced program
execution speed, most of the bits are not set (turned off) by default. For more
information about these bit fields, see "Using the Debug Heap" on page 81.

135

Run-Time Library Reference

136

Bit field

_CRTDBG_ALLOC­
_MEM_DF

_CRTDBG_CHECK­
_ALWAYS_DF

_CRTDBG_CHECK­
_CRT_DF

_CRTDBG_DELAY­
_FREE_MEM_DF

_CRTDBG_LEAK­
_CHECK_DF

Default

ON

OFF

OFF

OFF

OFF

Description

ON: Enable debug heap allocations and use of
memory block type identifiers, such as
_CLIENT_BLOCK.
OFF: Add new allocations to heap's linked list, but
set block type to _IGNORE_BLOCK.

ON: Call_CrtCheckMemory at every allocation
and deallocation request.
OFF: _CrtCheckMemory must be called explicitly.

ON: Include _CRT_BLOCK types in leak detection
and memory state difference operations.
OFF: Memory used internally by the run-time library
is ignored by these operations.

ON: Keep freed memory blocks in the heap's linked
list, assign them the YREE_BLOCK type, and fill
them with the byte value OxDD.
OFF: Do not keep freed blocks in the heap's linked
list.

ON: Perform automatic leak checking at program
exit via a call to _CrtDumpMemoryLeaks and
generate an error report if the application failed to
free all the memory it allocated.
OFF: Do not automatically perform leak checking at
program exit.

newFlag is the new state to apply to the _crtDbgFlag and is a combination of the
values for each of the bit fields. To change one or more of these bit fields and create a
new state for the flag, follow these steps:

1. Call_CrtSetDbgFlag with newFlag equal to _CRTDBG_REPORT_FLAG to
obtain the current _crtDbgFlag state and store the returned value in a temporary
variable.

2. Tum on any bits by OR-ing the temporary variable with the corresponding
bitmasks (represented in the application code by manifest constants).

3. Tum off the other bits by AND-ing the variable with a bitwise NOT of the
appropriate bitmasks.

4. Call_CrtSetDbgFlag with newFlag equal to the value stored in the temporary
variable to set the new state for _crtDbgFlag.

The following lines of code demonstrate how to simulate low memory conditions by
keeping freed memory blocks in the heap's linked list and prevent
_ CrtCheckMemory from being called at every allocation request:

Chapter 4 Debug Version of the C Run-Time Library

II Get the current state of the flag
II and store it in a temporary variable
int tmpFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

II Turn On (OR) - Keep freed memory blocks in the
II heap's linked list and mark them as freed
tmpFlag 1= _CRTDBG_DELAY_FREE_MEM_DF;

II Turn Off (AND) - prevent _CrtCheckMemory from
II being called at every allocation request
tmpFlag &= ~_CRTDBG_CHECK_ALWAYS_DF;

/ II Set the new state for the flag
_CrtSetDbgFlag(tmpFlag);

Example

For an overview of memory management and the debug heap, see "Memory
Management and the Debug Heap" on page 79.

1*
* SETDFLAG. C
* This program concentrates on allocating and freeing memory
* blocks to test the functionality of the _crtDbgFlag flag ..
*1

#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

void main()
{

char *pl, *p2;
int tmpDbgFlag;

1*
* Set the debug-heap flag to keep freed blocks in the
* heap's linked list - This will allow us to catch any
* inadvertent use of freed memory
*1

tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
tmpDbgFlag 1= _CRTDBG_DELAY_FREE_MEM_DF;
tmpDbgFlag 1= _CRTDBG_LEAK_CHECK_DF;
_CrtSetDbgFlag(tmpDbgFlag);

1*
* Allocate 2 memory blocks and store a string in each
*1

pI = malloc(34);
p2 = malloc(38);
strcpy(pI, "pI points to a Normal allocation block");
strcpy(p2, "p2 points to a Client allocation block");

137

Run-Time Library Reference

Output

138

}

/*
* Free both memory blocks
*/

free(p2);
free(pI);

/*
* Set the debug-heap flag to no longer keep freed blocks in the
* heap's linked list and turn on Debug type allocations (CLIENT)
*/

tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
tmpDbgFlag 1= _CRTDBG_ALLOC_MEM_DF;
tmpDbgFlag &= _CRTDBG_DELAY_FREE_MEM_DF;
_CrtSetDbgFlag(tmpDbgFlag);

/*
* Explicitly call _malloc_dbg to obtain the filename and line number
* of our allocation request and also so we can allocate CLIENT type
* blocks specifically for tracking
*/

pI = _malloc_dbg(40. _NORMAL_BLOCK. __ FILE __ • LINE);
p2 = _malloc_dbg(40. _CLIENT_BLOCK. __ FILE __ • LINE);
strcpy(pl. "pI points to a Normal allocation block");
strcpy(p2. "p2 points to a Client allocation block");

/*
* _free_dbg must be called to free the CLIENT block
*/

_free_dbg(p2. CLIENT_BLOCK);
free(pI);

/*
* Allocate pI again and then exit - this will leave unfreed
* memory on the heap
*/

pI = malloc(10);

Debug Error!
Program: C:\code\setdflag.exe
DAMAGE: after Normal block (#31) at 0x002D06A8.
Press Retry to debug the application.

See Also _crtDbgFlag, _CrtCheckMemory

Chapter 4 Debug Version of the C Run-Time Library

_CrtSetDumpClient
Installs an application-defined function to dump _ CLIENT_BLOCK type memory
blocks (debug version only).

_CRT_DUMP _CLIENT _CrtSetDumpClient(_CRT_DUMP _CLIENT dump Client);

Routine

_ CrtSetDumpClient

Required
Header

<crtdbg.h>

Optional
Headers

Compatibility

Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

MSVCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
_ CrtSetDumpClient returns the previously defined client block dump function.

Parameter

Remarks

dump Client New client-defined memory dump function to hook into the C run-time
debug memory dump process

The _ CrtSetDumpClient function allows the application to hook its own function to
dump objects stored in _CLIENT_BLOCK memory blocks into the C run-time
debug memory dump process. As a result, every time a debug dump function such as
_CrtMemDumpAllObjectsSince or _CrtDumpMemoryLeaks dumps a
_CLIENT_BLOCK memory block, the application's dump function will be called as
well. _ CrtSetDumpClient provides an application with an easy method for detecting
memory leaks in and validating or reporting the contents of data stored in
_CLIENT_BLOCK blocks. When _DEBUG is not defined, calls to
_ CrtSetDumpClient are removed during preprocessing.

The _CrtSetDumpClient function installs the new application-defined dump
function specified in dumpClient and returns the previously defined dump function.
An example of a client block dump function is as follows:

void DumpClientFunction(void *userPortion, size_t blockSize);

The userPorti on argument is a pointer to the beginning of the user data portion of
the memory block and bl ockSi ze specifies the size of the allocated memory block in
bytes. The client block dump function must return void. The pointer to the client

139

Run-Time Library Reference

Example

dump function that is passed to _ CrtSetDumpClient is of type
_CRT_DUMP _CLIENT, as defined in CRTDBG.H:

typedef void < __ cdecl *_CRT_DUMP_CLIENT)(void *. size_t);

For an example of how to implement an application-defined dump function, see
"Second Example Program" on page 94. For more information about functions that
operate on _CLIENT_BLOCK type memory blocks, see "Client Block Hook
Functions" on page 87.

See "Second Example Program" on page 94.

_CrtSetReportFile
Identifies the file or stream to be used by _ CrtDbgReport as a destination for a
specific report type (debug version only).

_HFILE _CrtSetReportFile(int reportType, _HFILE reportFile);

Routine Required Header Optional Headers Compatibility

_ CrtSetReportFile <crtdbg.h> Win NT, Win 95,
PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSYCRTD.LIB

MSYCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
Upon successful completion, _CrtSetReportFile returns the previous report file
defined for the report type specified in reportType. If an error occurs, the report file
for reportType is not modified and_ CrtSetReportFile returns
_CRTDBG_HFILE_ERROR.

Parameters
reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT

reportFile New report file for reportType, see the following table

140

Remarks

Example

Chapter 4 Debug Version of the C Run-Time Library

_ CrtSetReportFile is used in conjunction with the _ CrtSetReportMode function to
define the destination(s) for a specific report type generated by _ CrtDbgReport.
When _ CrtSetReportMode has been called to assign the
_CRTDBG_MODE_FILE reporting mode for a specific report type,
_ CrtSetReportFile should then be called to define the specific file or stream to use
as the destination. When _DEBUG is not defined, calls to _ CrtSetReportFile are
removed during preprocessing.

The _CrtSetReportFile function assigns the new report file specified in reportFile to
the report type specified in reportType and returns the previously defined report file
for reportType. The following table lists the available choices for reportFile and the
resulting behavior of _CrtDbgReport. These options are defined as bit-flags in
CRTDBO.H.

Report File

_CRTDBG_FILE_STDERR

_CRTDBG_FILE_STDOUT

_CRTDBG_REPORT_FILE

_ CrtDbgReport Behavior

_CrtDbgReport writes the message to a user-supplied
HANDLE and does not verify the validity of the file
handle. The application is responsible for opening and
closing the report file and passing a valid file handle.

_CrtDbgReport writes message to stderr.

_CrtDbgReport writes message to stdont.

_ CrtDbgReport is not called and the report file for
reportType is not modified. _ CrtSetReportFile simply
returns the current report file for reportType.

When the report destination is a file, _ CrtSetReportMode is called to set the file
bit-flag and _CrtSetReportFile is called to define the specific file to use. The
following code fragment demonstrates this configuration:

_CrtSetReportMode(_CRT_ASSERT. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT. _CRTDBG_FILE_STDERR);

The report file used by each report type can be separately controlled. For example, it
is possible to specify that a reportType of _CRT_ERROR be reported to stderr,
while a reportType of _ CRT_ASSERT be reported to a user-defined file handle or
stream.

For more information about defining the report mode(s) and file for a specific report
type, see _ CrtDbgReport, _ CrtSetReportMode and the section "Debug Reporting
Functions of the C Run-Time Library" on page 73.

1*
* REPORT.C:
* In this program. calls are made to the _CrtSetReportMode,
* _CrtSetReportFile, and _CrtSetReportHook functions.
* The _ASSERT macros are called to evaluate their expression.
* When the condition fails, these macros print a diagnostic message

141

Run-Time Library Reference

142

* and call _CrtDbgReport to generate a debug report and the
* client-defined reporting function is called as well.
* The _RPTn and _RPTFn group of macros are also exercised in
* this program, as an alternative to the printf function.
* When these macros are called, the client-defined reporting function
* takes care of all the reporting - _CrtDbgReport won't be called.
*/

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

/*
* Define our own reporting function.
* We'll hook it into the debug reporting
* process later using _CrtSetReportHook.
*
* Define a global int to keep track of
* how many assertion failures occur.
*/

int gl_num_asserts=0;
int OurReportingFunction(int reportType, char *userMessage, int *retVal)
{

/*
* Tell the user our reporting function is being called.
* In other words - verify that the hook routine worked.
*/

fprintf("Inside the client-defined reporting function.\n", STDOUT);
ffl ush(STDOUT);

/*
* When the report type is for an ASSERT,
* we'll report some information, but we also
* want _CrtDbgReport to get called -
* so we'll return TRUE.
*
* When the report type is a WARNing or ERROR,
* we'll take care of all of the reporting. We don't
* want _CrtDbgReport to get called -
* so we'll return FALSE.
*/

if (reportType == _CRT_ASSERT)
{

gl_num_asserts++;
fprintf("This is the number of Assertion failures that have occurred: %d \n",

gl_num_asserts, STDOUT);
ffl us h (STDOUT) ;
fprintf("Returning TRUE from the client-defined reporting function.\n",

STDOUT) ;
fflush(STDOUT);
return(TRUE) ;

Chapter 4 Debug Version of the C Run-Time Library

else {
fprintf("This is the debug user message: %s \n". userMessage. STDOUT);
ffl ush(STDOUT);
fprintf("Returning FALSE from the client-defined reporting function.\n".

STDOUT) ;

}

/*

ffl us h (STDOUT) ;
return(FALSE);

* By setting retVal to zero, we are instructing _CrtDbgReport
* to continue with normal execution after generating the report.
* If we wanted _CrtDbgReport to start the debugger. we would set
* retVal to one.
*/

retVal = 0;

int maine)
{

char *pl. *p2;

/*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is called to generate
* a debug report. our function will get called first.
*/

_CrtSetReportHook(OurReportingFunction);

/*
* Define the report destination(s) for each type of report
* we are going to generate. In this case, we are going to
* generate a report for every report type: _CRT_WARN,
* _CRT_ERROR, and _CRT_ASSERT.
* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.
* This program sends all report types to STDOUT.
*/

_CrtSetReportMode(_CRT_WARN. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN. _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/*
* Allocate and assign the pointer variables
*/

pI = malloc(10);
strcpy(pl, "I am pI");
p2 = malloc(10);
strcpy(p2. "I am p2");

143

Run-Time Library Reference

Output

144

1*
* Use the report macros as a debugging
* warning mechanism, similar to printf.
*
* Use the assert macros to check if the
* pI and p2 variables are equivalent.
*
* If the expression fails, _ASSERTE will
* include a string representation of the
* failed expression in the report.
*
* _ASSERT does not include the
* expression in the generated report.
*/

_RPT0(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression pI
p2.\n");

_RPTF2(_CRT_WARN, "\n Will _ASSERT find 'Is' 'Is' ?\n", pI, p2);

}

_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find 'Is'
_ASSERTE(pl == p2);

_RPT2(_CRT_ERROR, "\n \n 'Is' != '%s'\n", pI, p2);

free(p2);
free(pl);

return 0;

Inside the client-defined reporting function.

'Is' ?\n", pI. p2);

This is the debug user message: Use the assert macros to evaluate the expression pI
p2
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(54) : Will _ASSERT find 'I am pI' 'I am
p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: I
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find 'I am pI' 'I am
p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: 2

Chapter 4 Debug Version of the C Run-Time Library

Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pI == p2
Inside the client-defined reporting function.
Thi sis the debug user message: 'I am pI' 1= 'I am p2'
Returning FALSE from the client-defined reporting function.

See Also _ CrtDbgReport

_CrtSetReportHook
Installs a client-defined reporting function by hooking it into the C run-time debug
reporting process (debug version only).

_CRT_REPORT_HOOK _CrtSetReportHook(_CRT_REPORT_HOOK reportHook);

Routine Required Header

_ CrtSetReportHook <crtdbg.h>

Optional Headers Compatibility

Win NT, Win 95,
PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

MSVCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
_CrtSetReportHook returns the previous client-defined reporting function.

Parameter

Remarks

reportHook New client-defined reporting function to hook into the C run-time
debug reporting process

_ CrtSetReportHook allows an application to use its own reporting function into the
C run-time debug library reporting process. As a result, whenever _CrtDbgReport is
called to generate a debug report, the application's reporting function is called first.
This functionality enables an application to perform operations such as filtering
debug reports so it can focus on specific allocation types or send a report to
destinations not available by using _CrtDbgReport. When _DEBUG is not defined,
calls to _CrtSetReportHook are removed during preprocessing.

145

Run-Time Library Reference

Example

146

The _CrtSetReportHook function installs the new client-defined reporting function
specified in reportHook and returns the previous client-defined hook. The following
example demonstrates how a client-defined report hook should be prototyped:

int YourReportHook(int reportType. char *message. int *returnValue);

where reportType is the debug report type <_CRT_WARN, _CRT_ERROR,
_CRT_ASSERT), message is the fully assembled debug user message to be
contained in the report, and returnVal ue is the value specified by the client-defined
reporting function that should be returned by _ CrtDbgReport. See the
_ CrtSetReportMode function for a complete description of the available report
types.

If the client-defined reporting function completely handles the debug message such
that no further reporting is required, then the function should return FALSE. When
the function returns TR VE, _ CrtDbgReport will be called to generate the debug
report using the current settings for the report type, mode, and file. In addition, by
specifying the _CrtDbgReport return value in returnVal ue, the application can also
control whether a debug break occurs. See _CrtSetReportMode,
_ CrtSetReportFile, and _ CrtDbgReport for a complete description of how the
debug report is configured and generated.

For more information about other hook-capable run-time functions and writing your
own client-defined hook functions, see "Writing Your Own Debug Hook Functions"
on page 86.

1*
* REPORT.C:
* In this program, calls are made to the _CrtSetReportMode,
* _CrtSetReportFile, and _CrtSetReportHook functions.
* The _ASSERT macros are called to evaluate their expression.
* When the condition fails. these macros print a diagnostic message
* and call _CrtDbgReport to generate a debug report and the
* client-defined reporting function is called as well.
* The _RPTn and _RPTFn group of macros are also exercised in
* this program, as an alternative to the printf function.
* When these macros are called. the client-defined reporting function
* takes care of all the reporting - _CrtDbgReport won't be called.
*1

#include <stdio.h)
#include <string.h)
#include <malloc.h)
#include <crtdbg.h)

1*
* Define our own reporting function.
* We'll hook it into the debug reporting
* process later using _CrtSetReportHook.
*

Chapter 4 Debug Version of the C Run-Time Library

* Define a global int to keep track of
* how many assertion failures occur.
*1

int gl_num_asserts=0;
int OurReportingFunction(int reportType. char *userMessage, int *retVal)
{

1*
* Tell the user our reporting function is being called.
* In other words - verify that the hook routine worked.
*1

fprintf("Inside the client-defined reporting function.\n", STDOUT);
ffl ush (STDOUT) ;

1*
* When the report type is for an ASSERT,
* we'll report some information, but we also
* want _CrtDbgReport to get called -
* so we'll return TRUE.
*
* When the report type is a WARNing or ERROR,
* we'll take care of all of the reporting. We don't
* want _CrtDbgReport to get called -
* so we'll return FALSE.
*1

if (reportType == _CRT_ASSERT)
{

gl_num_asserts++;
fprintf("This is the number of Assertion failures that have occurred: %d \n",

gl_num_asserts, STDOUT);
ffl ush(STDOUT);
fprintf("Returning TRUE from the client-defined reporting function.\n",

STDOUT) ;
ffl ush (STDOUT) ;
return(TRUE) ;

else {
fprintf("This is the debug user message: %s \n", userMessage, STDOUT);
ffl us h (STDOUT) ;
fprintf("Returning FALSE from the client-defined reporting function.\n",

STDOUT) ;

}

}

ffl us h (STDOUT) ;
return(FALSE) ;

1*
* By setting retVal to zero, we are instructing _CrtDbgReport
* to continue with normal execution after generating the report.
* If we wanted _CrtDbgReport to start the debugger, we would set
* retVal to one.
*1

retVal = 0;

147

Run-Time Library Reference

148

int main()
{

char *pl, *p2;

/*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is called to generate
* a debug report, our function will get called first.
*/

_CrtSetReportHook(OurReportingFunction);

/*
* Define the report destination(s) for each type of report
* we are going to generate. In this case, we are going to
* generate a report for every report type: _CRT_WARN,
* _CRT_ERROR, and _CRT_ASSERT.
* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.
* This program sends all report types to STDOUT.
*/

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFil e(_CRT_WARN , _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/* I

* Allocate and assign the pointer variables
*/

pI = mall oc(10);
strcpy(pl, "I am pI");
p2 = malloc(10);
strcpy(p2, "I am p2");

/*
* Use the report macros as a debugging
* warning mechanism, similar to printf.
*
* Use the assert macros to check if the
* pI and p2 variables are equivalent.
*
* If the expression fails, _ASSERTE will
* include a string representation of the
* failed expression in the report.
*
* _ASSERT does not include the
* expression in the generated report.
*/

_RPT0(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression pI
p2.\n");

_RPTF2(_CRT_WARN, "\n Will _ASSERT find '%s' '%s' ?\n", pI, p2);
_ASSERT(pl == p2);

Output

Chapter 4 Debug Version of the C Run-Time Library

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find '%s' == '%s' ?\n". pI, p2);
_ASSERTE(pl =- p2);

_RPT2(_CRT_ERROR. "\n \n '%s' != '%s'\n". pI, p2);

free(p2);
free(pl);

return 0;

Inside the client-defined reporting function.
This is the debug user message: Use the assert macros to evaluate the expression pl ==

p2
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(54) : Will _ASSERT find 'I am pl' 'I am
p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: 1
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find 'I am pl' == 'I am
p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: 2
Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pl == p2
Inside the client-defined reporting function.
Thi sis the debug user message: 'I am pl' != 'I am p2'
Returning FALSE from the client-defined reporting function.

_CrtSetReportMode
Specifies the general destination(s) for a specific report type generated by
_CrtDbgReport (debug version only).

int _CrtSetReportMode(int reportType, int reportMode);

Routine Required Header Optional Headers Compatibility

_ CrtSetReportMode <crtdbg.h> Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

149

Run-Time Library Reference

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSYCRTD.LIB

MSYCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
Upon successful completion, _ CrtSetReportMode returns the previous report
mode(s) for the report type specified in reportType. If an error occurs, the report
mode(s) for reportType are not modified and_CrtSetReportMode returns -1.

Parameters

Remarks

150

reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT

reportMode New report mode(s) for reportType, see the table in the Remarks section

_CrtSetReportMode is used in conjunction with the _CrtSetReportFile function to
define the destination(s) for a specific report type generated by _CrtDbgReport.1f
_ CrtSetReportMode and _ CrtSetReportFile are not called to define the reporting
methode s) for a specific report type, then _ CrtDbgReport generates the report type
using default destinations: Assertion failures and errors are directed to a debug
message window, warnings from Windows applications are sent to the debugger, and
warnings from console applications are directed to stderr. When _DEBUG is not
defined, calls to _ CrtSetReportMode are removed during preprocessing.

The following table lists the report types defined in CRTDBG.H.

Report Type Description

_CRT_WARN Warnings, messages, and information that does not need immediate
attention.

Errors, unrecoverable problems, and issues that require immediate
attention.

Assertion failures (asserted expressions that evaluate to FALSE).

The _ CrtSetReportMode function assigns the new report mode specified in
reportMode to the report type specified in reportType and returns the previously
defined report mode for reportType. The following table lists the available choices for
reportMode and the resulting behavior of _CrtDbgReport. These options are defined
as bit-flags in CRTDBG.H.

Example

Chapter 4 Debug Version of the C Run-Time Library

Report Mode

_CRTDBG_MODE_DEBUG

_CRTDBG_MODE_FILE

_ CrtDbgReport Behavior

Writes the message to an output debug string.

Writes the message to a user-supplied file handle.
_ CrtSetReportFile should be called to define the
specific file or stream to use as the destination.

Creates a message box to display the message along
with the Abort, Retry, and Ignore buttons.

It is not called, and the report mode for reportType
is not modified. _ CrtSetReportMode simply
returns the current report mode for reportType.

Each report type may be reported using one, two, or three modes, or no mode at all.
Therefore, it is possible to have more than one destination defined for a single report
type. For example, the following code fragment causes assertion failures to be sent to
both a debug message window and to stderr:

_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE I _CRTDBG_MODE_WNDW);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);

In addition, the reporting mode(s) for each report type can be separately controlled.
For example, it is possible to specify that a reportType of _CRT_WARN be sent to an
output debug string, while _CRT_ASSERT be displayed using a a debug message
window and sent to stderr, as illustrated above.

For more information about defining the report mode(s) and file for a specific report
type, see _ CrtDbgReport, _ CrtSetReportFile and the section "Debug Reporting
Functions of the C Run-Time Library" on page 73.

1*
* REPORT.C:
* In this program, calls are made to the _CrtSetReportMode,
* _CrtSetReportFile, and _CrtSetReportHook functions.
* The _ASSERT macros are called to evaluate their expression.
* When the condition fails, these macros print a diagnostic message
* and call _CrtDbgReport to generate a debug report and the
* client-defined reporting function is called as well.
* The _RPTn and _RPTFn group of macros are also exercised in
* this program, as an alternative to the printf function.
* When these macros are called, the client-defined reporting function
* takes care of all the reporting - _CrtDbgReport won't be called.
*1

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

151

Run-Time Library Reference

152

1*
* Define our own reporting function.
* We'll hook it into the debug reporting
* process later using _CrtSetReportHook.
*
* Define a global int to keep track of
* how many assertion failures occur.
*1

int gl_num_asserts=0;
int OurReportingFunction(int reportType, char *userMessage, int *retVal)
{

1*
* Tell the user our reporting function is being called.
* In other words - verify that the hook routine worked.
*1

fprintf("Inside the client-defined reporting function.\n", STDOUT);
ffl ush(STDOUT);

1*
* When the report type is for an ASSERT,
* we'll report some information, but we also
* want _CrtDbgReport to get called -
* so we'll return TRUE.
*
* When the report type is a WARNing or ERROR,
* we'll take care of all of the reporting. We don't
* want _CrtDbgReport to get called -
* so we'll return FALSE.
*1

if (reportType == _CRT_ASSERT)
{

gl_num_asserts++;
fprintf("This is the number of Assertion failures that have occurred: %d \n",

gl_num_asserts, STDOUT);
ffl us h (STDOUT) ;
fprintf("Returning TRUE from the client-defined reporting function.\n",

STDOUT) ;
ffl us h (STDOUT) ;
return(TRUE) ;

} else {
fprintf("This is the debug user message: %s \n", userMessage, STDOUT);
ffl us h (STDOUT) ;
fprintf("Returning FALSE from the client-defined reporting function.\n",

STDOUT) ;

}

ffl ush (STDOUT) ;
return(FALSE);

Chapter 4 Debug Version of the C Run-Time Library

1*
* By setting retVal to zero, we are instructing _CrtDbgReport
* to continue with normal execution after generating the report.
* If we wanted _CrtDbgReport to start the debugger, we would set
* retVal to one.
*1

retVal = 0;

int maine)
{

cha r *pl, *p2;

1*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is called to generate
* a debug report, our function will get called first.
*1

_CrtSetReportHook(OurReportingFunction);

1*
* Define the report destination(s) for each type of report
* we are going to generate. In this case, we are going to
* generate a report for every report type: _CRT_WARN,
* _CRT_ERROR, and _CRT_ASSERT.
* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.
* This program sends all report types to STDOUT.
*/

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_F1LE_STDOUT);

1*
* Allocate and assign the pointer variables
*/

pI = malloc(10);
strcpy(pl, "I am pI");
p2 = mall oc(10);
strcpy(p2, "I am p2");

/*
* Use the report macros as a debugging
* warning mechanism, similar to printf.
*
* Use the assert macros to check if the
* pI and p2 variables are equivalent.
*

153

Run-Time Library Reference

Output

154

* If the expression fails, _ASSERTE will
* include a string representation of the
* failed expression in the report.
*
* _ASSERT does not include the
* expression in the generated report.
*/

_RPT0C_CRT_WARN, "\n\n Use the assert macros to evaluate the expression pI
p2.\n");

_RPTF2C_CRT_WARN, "\n Will _ASSERT find '%s' '%s' ?\n", pI, p2);

}

_ASSERT(pl == p2);

_RPTF2 C_CRT _WARN, "\n\n Wi 11 _ASSERTE fi nd '%s'
_ASSERTECpl == p2);

_RPT2C_CRT_ERROR, "\n \n '%s' != '%s' \n", pI, p2);

freeCp2);
free C pI) ;

return 0;

Inside the client-defined reporting function.

'%s' ?\n", pI, p2);

This is the debug user message: Use the assert macros to evaluate the expression pI
p2
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(54) : Will _ASSERT find 'I am pI' 'I am
p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: I
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find 'I am pI'
p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: 2
Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pI == p2
Inside the client-defined reporting function.
Thi sis the debug user message: 'I am pI' != 'I am p2'
Returning FALSE from the client-defined reporting function.

'I am

Chapter 4 Debug Version of the C Run-Time Library

_expand_dbg
Resizes a specified block of memory in the heap by expanding or contracting the
block (debug version only).

void * _expand_dbg(void *userData, size_t newSize, int blockType, const char
*filename, int linenumber);

Routine Required Header Optional Headers Compatibility

<crtdbg.h> Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

MSVCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
Upon successful completion, _expand_dbg returns a pointer to the resized memory
block, otherwise it returns NULL.

Parameters

Remarks

userData Pointer to the previously allocated memory block

newSize Requested new size for block (bytes)

blockType Requested type for resized block: _ CLIENT_BLOCK or
_NORMAL_BLOCK

filename Pointer to name of source file that requested expand operation or NULL

linenumber Line number in source file where expand operation was requested or
NULL

The filename and linenumber parameters are only available when _expand_dbg has
been called explicitly or the _CRTDBG_MAP _ALLOC environment variable has
been defined.

The _expand_dbg function is a debug version of the _expand function. When
_DEBUG is not defined, calls to _expand_dbg are removed during preprocessing.
Both _expand and _expand_dbg resize a memory block in the base heap, but
_expand_dbg accomodates several debugging features: buffers on either side of the
user portion of the block to test for leaks, a block type parameter to track specific
allocation types, andfilenamellinenumber information to determine the origin of
allocation requests.

155

Run-Time Library Reference

Example

156

_expand_dbg resizes the specified memory block with slightly more space than the
requested newSize. newSize may be greater or less than the size of the originally
allocated memory block. The additional space is used by the debug heap manager to
link the debug memory blocks together and to provide the application with debug
header information and overwrite buffers. The resize is accomplished by either
expanding or contracting the original memory block. _expand_dbg does not move
the memory block, as does the _realloc_dbg function.

When newSize is greater than the original block size, the memory block is expanded.
During an expansion, if the memory block cannot be expanded to accommodate the
requested size, the block is expanded as much as possible. When newSize is less than
the original block size, the memory block is contracted until the new size is obtained.

For information about how memory blocks are allocated, initialized, and managed in
the debug version of the base heap, see "Memory Management and the Debug Heap"
on page 79. For information about the allocation block types and how they are used,
see "Types of Blocks on the Debug Heap" on page 80. For information on the
differences between calling a standard heap function versus its debug version in a
debug build of an application, see "Using the Debug Version Versus the Base
Version" on page 84.

/*
* EXPANDD.C
* This program allocates a block of memory using _malloc_dbg
* and then calls _msize_dbg to display the size of that block.
* Next. it uses _expand_dbg to expand the amount of
* memory used by the buffer and then calls _msize_dbg again to
* display the new amount of memory allocated to the buffer.
*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <crtdbg.h>

void main(void)
{

long *buffer;
size_t size;

/*
* Call _malloc_dbg to include the filename and line number
* of our allocation request in the header
*/

buffer = (long *)_malloc_dbg(40 * sizeof(long). _NORMAL_BLOCK. __ FILE __ •
__ LINE __);

if(buffer == NULL
exit(1);

Chapter 4 Debug Version of the C Run-Time Library

Output

1*
* Get the size of the buffer by calling _msize_dbg
*1

size = _msize_dbg(buffer, _NORMAL_BLOCK);
printf("Size of block after _malloc_dbg of 40 longs: %u\n", size);

1*
* Expand the buffer using _expand_dbg and show the new size
*1

buffer = _expand_dbg(buffer, size + (40 * sizeof(long», _NORMAL_BLOCK,
__ FILE __ , __ LINE __);

}

if(buffer == NULL
exit(1);

size = _msize_dbg(buffer, _NORMAL_BLOCK);
printf("Size of block after _expand_dbg of 40 more longs: %u\n", size);

free(buffer);
exit(0);

Size of block after _malloc_dbg of 40 longs: 160
Size of block after _expand_dbg of 40 more longs: 320

_free_dbg
Frees a block of memory in the heap (debug version only).

void _free_dbg(void *userData, int blockType);

Routine Required Header Optional Headers

<crtdbg.h>

Compatibility

Win NT, Win 95,
PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmCD.Lm

LmCMTD.Lm

MSYCRTD.Lm

MSYCRxOD.DLL

Return Value
None

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

157

Run-Time Library Reference

Parameters

Remarks

Example

userData Pointer to the allocated memory block to be freed

blockType Type of allocated memory block to be freed: _CLIENT_BLOCK,
_NORMAL_BLOCK, or _IGNORE_BLOCK

The _frec_dbg function is a debug version of the free function. When _DEBUG is
not defined, calls to _free_dbg are removed during preprocessing. Both free and
_free_dbg free a memory block in the base heap, but _free_dbg accomodates two
debugging features: the ability to keep freed blocks in the heap's linked list to
simulate low memory conditions and a block type parameter to free specific
allocation types.

_free_dbg performs a validity check on all specified files and block locations before
performing the free operation-the application is not expected to provide this
information. When a memory block is freed, the debug heap manager automatically
checks the integrity of the buffers on either side of the user portion and issues an
error report if overwriting has occurred. If the
_CRTDBG_DELAY_FREE_MEM_DF bit field of the _crtDbgFlag flag is set, the
freed block is filled with the value OxDD, assigned the _FREE_BLOCK block type,
and kept in the heap's linked list of memory blocks.

For information about how memory blocks are allocated, initialized, and managed in
the debug version of the base heap, see "Memory Management and the Debug Heap"
on page 79. For information about the allocation block types and how they are used,
see "Types of Blocks on the Debug Heap" on page 80. For information on the
differences between calling a standard heap function versus its debug version in a
debug build of an application, see "Using the Debug Version Versus the Base
Version" on page 84.

See "Second Example Program" on page 94.

_malloc_dbg

158

Allocates a block of memory in the heap with additional space for a debugging
header and overwrite buffers (debug version only).

void * _malloc_dbg(size_t size, int blockType, const char *filename,
int linenumber);

Routine Required Header Optional Headers Compatibility

<crtdbg.h> Win NT, Win 95, PMac

Chapter 4 Debug Version of the C Run-Time Library

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

MSVCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
Upon successful completion, this function either returns a pointer to the user portion
of the allocated memory block, calls the new handler function, or returns NULL. See
the following Remarks section for a complete description of the return behavior. See
the malloc function for more information on how the new handler function is used.

Parameters

Remarks

size Requested size of memory block (bytes)

blockType Requested type of memory block: _ CLIENT_BLOCK or
_NORMAL_BLOCK

filename Pointer to name of source file that requested allocation operation or NULL

linenumber Line number in source file where allocation operation was requested or
NULL

The filename and linen umber parameters are only available when _malloc_dbg has
been called explicitly or the _CRTDBG_MAP _ALLOC environment variable has
been defined.

_malloc_dbg is a debug version of the malloc function. When _DEBUG is not
defined, calls to _malloc_dbg are removed during preprocessing. Both malloc and
_malloc_dbg allocate a block of memory in the base heap, but _malloc_dbg offers
several debugging features: buffers on either side of the user portion of the block to
test for leaks, a block type parameter to track specific allocation types, and
filenamellinenumber information to determine the origin of allocation requests.

_malloc_dbg allocates the memory block with slightly more space than the requested
size. The additional space is used by the debug heap manager to link the debug
memory blocks together and to provide the application with debug header
information and overwrite buffers. When the block is allocated, the user portion of
the block is filled with the value OxCD and each of the overwrite buffers are filled
with OxFD.

For information about how memory blocks are allocated, initialized, and managed in
the debug version of the base heap, see "Memory Management and the Debug Heap"
on page 79. For information about the allocation block types and how they are used,
see "Types of Blocks on the Debug Heap" on page 80. For information on the

159

Run-Time Library Reference

Example

differences between calling a standard heap function versus its debug version in a
debug build of an application, see "Using the Debug Version Versus the Base
Version" on page 84.

See "First Example Program" on page 89.

_ffisize_dbg
Calculates the size of a block of memory in the heap (debug version only).

size_t _msize_dbg(void *userData, int blockType);

Routine Required Header Optional Headers Compatibility

<crtdbg.h> Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

MSVCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

Return Value
Upon successful completion, _msize_dbg returns the size (bytes) of the specified
memory block, otherwise it returns NULL.

Parameters

Remarks

160

userData Pointer to the memory block for which to determine the size

blockType Type of the specified memory block: _CLIENT_BLOCK or
_NORMAL_BLOCK

_msize_dbg is a debug version of the _msize function. When _DEBUG is not
defined, calls to _msize_dbg are removed during preprocessing. Both _msize and
_msize_dbg calculate the size of a memory block in the base heap, but _msize_dbg
adds two debugging features: It includes the buffers on either side of the user portion
of the memory block in the returned size, and it allows size calculations for specific
block types.

For information about how memory blocks are allocated, initialized, and managed in
the debug version of the base heap, see "Memory Management and the Debug Heap"
on page 79. For information about the allocation block types and how they are used,

Chapter 4 Debug Version of the C Run-Time Library

Example

see "Types of Blocks on the Debug Heap" on page 80. For information on the
differences between calling a standard heap function versus its debug version in a
debug build of an application, see "Using the Debug Version Versus the Base
Version" on page 84.

See the example for _realloc_dbg.

_realloc_dbg
Reallocates a specified block of memory in the heap by moving and/or resizing the
block (debug version only).

void * _realloc_dbg(void *userData, size_t newSize, int blockType, const char
*filename, int linen umber);

Routine Required
Header

<crtdbg.h>

Optional
Headers

Compatibility

Win NT, Win 95, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

MSVCRxOD.DLL

Return Value

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRxOD.DLL, debug version

Multithread DLL library, debug version

Upon successful completion, this function either returns a pointer to the user portion
of the reallocated memory block, calls the new handler function, or returns NULL.
See the following Remarks section for a complete description of the return behavior.
See the realloc function for more information on how the new handler function is
used.

Parameters
userData Pointer to the previously allocated memory block

newSize Requested size for reallocated block (bytes)

blockType Requested type for reallocated block: _CLIENT_BLOCK or
_NORMAL_BLOCK

161

Run-Time Library Reference

Remarks

Example

162

filename Pointer to name of source file that requested realloc operation or NULL

linenumber Line number in source file where realloc operation was requested or
NULL

The filename and linenumber parameters are only available when _realloc_dbg has
been called explicitly or the _CRTDBG_MAP _ALLOC environment variable has
been defined.

_realloc_dbg is a debug version of the realloc function. When _DEBUG is not
defined, calls to _realloc_dbg are removed during preprocessing. Both realloc and
_realloc_dbg reallocate a memory block in the base heap, but _realloc_dbg
accommodates several debugging features: buffers on either side of the user portion of
the block to test for leaks, a block type parameter to track specific allocation types,
and filenamellinenumber information to determine the origin of allocation requests.

_realloc_dbg reallocates the specified memory block with slightly more space than
the requested newSize. newSize may be greater or less than the size of the originally
allocated memory block. The additional space is used by the debug heap manager to
link the debug memory blocks together and to provide the application with debug
header information and overwrite buffers. The reallocation may result in moving the
original memory block to a different location in the heap, as well as changing the size
of the memory block. If the memory block is moved, the contents of the original block
are copied over.

For information about how memory blocks are allocated, initialized, and managed in
the debug version of the base heap, see "Memory Management and the Debug Heap"
on page 79. For information about the allocation block types and how they are used,
see "Types of Blocks on the Debug Heap" on page 80. For information on the
differences between calling a standard heap function versus its debug version in a
debug build of an application, see "Using the Debug Version Versus the Base
Version" on page 84.

1* REALLOCD. C
* This program allocates a block of memory using _malloc_dbg
* and then calls _msize_dbg to display the size of that block.
* Next, it uses _realloc_dbg to expand the amount of
* memory used by the buffer and then calls _msize_dbg again to
* display the new amount of memory allocated to the buffer.
*1

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <crtdbg.h>

void main(void) {
long *buffer;
size_t size;

Chapter 4 Debug Version of the C Run-Time Library

Output

1* Call _malloc_dbg to include the filename and line number
* of our allocation request in the header *1

buffer = (long *)_malloc_dbg(40 * sizeof(long). _NORMAL_BLOCK. __ FILE __ .
__ LINE __);

if(buffer == NULL
exit(1);

1* Get the size of the buffer by calling _msize_dbg *1
size = _msize_dbg(buffer. _NORMAL_BLOCK);
printf("Size of block after _malloc_dbg of 40 longs: %u\n". size);

1* Reallocate the buffer using _realloc_dbg and show the new size *1
buffer = _realloc_dbg(buffer. size + (40 * sizeof(long». _NORMAL_BLOCK.

__ FILE __ . __ LINE __);

}

if(buffer == NULL
exit(1);

size = _msize_dbg(buffer. _NORMAL_BLOCK);
printf("Size of block after _realloc_dbg of 40 more longs: %u\n". size);

free(buffer);
exit(0);

Size of block after _malloc_dbg of 40 longs: 160
Size of block after _real 1 oc_dbg of 40 more longs: 320

See Also _malloc_dbg

_RPT, RPTF Macros
Track an application's progress by generating a debug report (debug version only).

_RPTO(reportType,jormat);
_RPTl(reportType,jormat, argl);
_RPT2(reportType,jormat, argl, arg2);
_RPT3(reportType,jormat, argl, arg2, arg3);
_RPT4(reportType,jormat, argl, arg2, arg3, arg4);
_RPTFO(reportType,jormat);
_RPTFl(reportType,jormat, argl);
_RPTF2(reportType,jormat, argl, arg2);
_RPTF3(reportType,jormat, argl, arg2, arg3);
_RPTF4(reportType,jormat, argl, arg2, arg3, arg4);

Macro Required Header Optional Headers

_RPTMacros

_RPTF Macros

<crtdbg.h>

<crtdbg.h>

Compatibility

Win NT, Win 95, PMac

Win NT, Win 95, PMac

163

Run-Time Library Reference

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmCD.LIB

LmCMTD.Lm

MSYCRTD.Lm

MSYCRxOD.DLL

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRxOD.DLL, debug version

Multithread DLL library, debug version

Although these are macros and are obtained by including CRTDBG.H, the
application must link with one of the libraries listed above because these macros call
other run-time functions.

Return Value
None

Parameters

Remarks

164

reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT

format Format-control string used to create the user message

arg 1 N arne of first substitution argument used by format

arg2 Name of second substitution argument used by format

arg3 Name of third substitution argument used by format

arg4 Name of fourth substitution argument used by format

All of these macros take the reportType and format parameters. In addition, they
might also take argl through arg4, signified by the number appended to the macro
name. For example, _RPTO and _RPTFO take no additional arguments, _RPTI and
_RPTFI take argl, _RPT2 and _RPTF2 take argl and arg2, and so on.

The _RPT and _RPTF macros are similar to the printf function, as they can be used
to track an application's progress during the debugging process. However, these
macros are more flexible than printf because they do not need to be enclosed in
#ifdef statements to prevent them from being called in a retail build of an
application. This flexibility is achieved by using the _DEBUG macro. The _RPT and
_RPTF macros are only available when the _DEBUG flag is defined. When
_DEBUG is not defined, calls to these macros are removed during preprocessing.

The _RPT macros call the _ CrtDbgReport function to generate a debug report with
a user message. The _RPTF macros create a debug report with the source file and
line number where the report macro was called, in addition to the user message. The
user message is created by substituting the arg[n] arguments into the format string,
using the same rules defined by the printf function.

_CrtDbgReport generates the debug report and determines its destination(s), based
on the current report modes and file defined for reportType. The

Example

Chapter 4 Debug Version of the C Run-Time Library

_ CrtSetReportMode and _ CrtSetReportFile functions are used to define the
destination(s) for each report type.

When the destination is a debug message window and the user chooses the Retry
button, _ CrtDbgReport returns 1, causing these macros to start the debugger,
provided that "just-in-time" (JIT) debugging is enabled. For more information about
using these macros as a debugging error handling mechanism, see "Using Macros for
Verification and Reporting" on page 75.

Two other macros exist that generate a debug report. The _ASSERT macro generates
a report, but only when its expression argument evaluates to FALSE. _ASSERTE is
exactly like _ASSERT, but includes the failed expression in the generated report.

1*
* DBGMACRO.C
* In this program, calls are made to the _ASSERT and _ASSERTE
* macros to test the condition 'stringl == string2'. If the
* condition fails, these macros print a diagnostic message.
* The RPTn and _RPTFn group of macros are also exercised in
* this program, as an alternative to the printf function.
*1

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

int main()
{

char *pl, *p2;

1*
* The Reporting Mode and File must be specified
* before generating a debug report via an assert
* or report macro.
* This program sends all report types to STDOUT
*1

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

1*
* Allocate and assign the pointer variables
*1

pI = malloc(10);
strcpy(pl, "I am pI");
p2 = malloc(10);
strcpy(p2, "I am p2");

165

Run-Time Library Reference

Output

166

1*
* Use the report macros as a debugging
* warning mechanism, similar to printf.
*
* Use the assert macros to check if the
* pI and p2 variables are equivalent.
*
* If the expression fails, _ASSERTE will
* include a string representation of the
* failed expression in the report.
* _ASSERT does not include the
* expression in the generated report.
*1

_RPT0(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression pI
p2.\n");

_RPTF2(_CRT_WARN, "\n Will _ASSERT find 'Is' 'Is' ?\n", pI, p2);
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find 'Is'
_ASSERTE(pl == p2);

_RPT2(_CRT_ERROR, "\n \n 'Is' != '%s'\n", pI, p2);

free(p2);
free(pl) ;

return 0;

'Is' ?\n", pI, p2);

Use the assert macros to evaluate the expression pI == p2.

dbgmacro.c(54)
dbgmacro.c(55)

dbgmacro.c(57)
dbgmacro.c(58)

Will _ASSERT find 'I am pI' == 'I am p2' ?
Assertion failed

Will ASSERTE find 'I am pI'
Assertion failed: pI == p2

'I am p2' ?

'I am pI' != 'I am p2'

About the Alphabetic Reference
The following topics describe, in alphabetical order, the functions and macros in the
Microsoft run-time library. In some cases, related routines are clustered in the same
description. For example, the standard, wide-character, and multi byte versions of
strchr are discussed in the same place, as are the various forms of the exec functions.
Differences are noted where appropriate. To locate any function that does not appear
in the expected position within the alphabetic reference, choose Search from the Help
menu and type the name of the function you are looking for.

abort
Aborts the current process and returns an error code.

void abort(void);

Routine

abort

Required Header

<process.h> or
<stdlib.h>

Optional Headers Compatibility

ANSI, Win 95,
Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

abort does not return control to the calling process. By default, it terminates the
current process and returns an exit code of 3.

The abort routine prints the message "abnormal program term; nat; on" and then
calls raise(SIGABRT). The action taken in response to the SIGABRT signal
depends on what action has been defined for that signal in a prior call to the signal
function. The default SIGABRT action is for the calling process to terminate with
exit code 3, returning control to the calling process or operating system. abort does
not flush stream buffers or do atexit/ _onexit processing.

abort

167

abort

Example

Output

168

abort determines the destination of the message based on the type of application that
called the routine. Console applications always receive the message via stderr. In a
single or multithreaded Windows application, abort calls the Windows MessageBox
API to create a message box to display the message along with an OK button. When
the user selects OK, the program aborts immediately.

When the application is linked with a debug version of the run-time libraries, abort
creates a message box with three buttons: Abort, Retry, and Ignore. If the user selects
Abort, the program aborts immediately. If the user selects Retry, the debugger is
called and the user can debug the program if Just-In-Time (JIT) debugging is
enabled. If the user selects Ignore, abort continues with its normal execution:
creating the message box with the OK button. For more information, see Chapter 4,
"Debug Version of the C Run-Time Library."

/* ABORT.C: This program tries to open a
* file and aborts if the attempt fails.
*/

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

}

FILE *stream;

if((stream = fopen("NOSUCHF.ILE", "r" »
{

}

perror("Couldn't open file");
abort();

else
fclose(stream);

Couldn't open file: No such file or directory

abnormal program termination

NULL)

See Also _exec Functions, exit, raise, signal, _spawn Functions, _DEBUG

abs
Calculates the absolute value.

int abs(int n);

Routine

abs

Required Header

<stdlib.h> or
<math.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The abs function returns the absolute value of its parameter. There is no error return.

Parameter

Example

n Integer value

1* ABS.C: This program computes and displays
* the absolute values of several numbers.
*/

Iii ncl ude
Ilinclude
Ilinclude

<stdio.h>
<math.h>
<stdlib.h>

void main(void)
{

int ix = -4, iy;
long lx = -41567L, ly;
double dx = -3.141593, dy;

iy = abs(ix);
printf("The abs"olute value of %d is %d\n", ix, iy);

ly = labs(lx);
printf("The absolute value of %ld is %ld\n", lx, ly);

abs

169

_access, _ waccess

dy = fabs(dx);
printf("The absolute value of %f is %f\n", dx, dy);

}

Output
The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

See Also _cabs, fabs, labs

_access, waccess
Determine file-access permission.

int _access(const char *path, int mode);
int _waccess(const wchar_t *path, int mode);

Routine Required Header Optional Headers

_access <io.h> <errno.h>

_waccess <wchar.h> or <io.h> <errno.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns 0 if the file has the given mode. The function returns
-1 if the named file does not exist or is not accessible in the given mode; in this case,
errno is set as follows:

EACCES Access denied: file's permission setting does not allow specified access.

ENOENT Filename or path not found.

Parameters
path File or directory path

mode Permission setting

170

Remarks

Example

Output

When used with files, the _access function determines whether the specified file
exists and can be accessed as specified by the value of mode. When used with
directories, _access determines only whether the specified directory exists; in
Windows NT, all directories have read and write access.

mode Value

00

02

04

06

Checks File For

Existence only

Write permission

Read permission

Read and write permission

_ waccess is a wide-character version of _access; the path argument to _ waccess is a
wide-character string. _ waccess and _access behave identically otherwise.

/* ACCESS.C: This example uses _access to check the
* file named "ACCESS.C" to see if it exists and if
* writing is allowed.
*/

#include <io.h>
#include <stdio.h>
#include <stdlib.h>

void main(void
{

}

/* Check for existence */
if(Caccess("ACCESS.C", 0)) != -1)
{

}

printf("File ACCESS.C exists\n");
/* Check for write permission */
if((_access("ACCESS.C", 2)) != -1

printf("File ACCESS.C has write permission\n");

File ACCESS.C exists
File ACCESS.C has write permission

See Also _chmod, _fstat, _open, _stat

_access, _ waccess

171

acos

acos
Calculates the arccosine.

double acos(double x);

Routine Required Header

acos <math.h>

Optional Headers

<errno.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The acos function returns the arccosine of x in·the range 0 to 1t radians. If x is less
than -1 or greater than 1, acos returns an indefinite (same as a quiet NaN). You can
modify error handling with the _matherr routine.

Parameter

Example

172

x Value between -1 and 1 whose arccosine is to be calculated

/* ASINCOS.C: This program prompts for a value in the range
* -1 to 1. Input values outside this range will produce
* DOMAIN error messages.If a valid value is entered, the
* program prints the arcsine and the arccosine of that value.
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

void maine void
{

double x, y;

Output

printf("Enter a real number between -1 and 1: ");
scanf(''%If'', &x);
y = asin(x);
printf("Arcsine of %f - %f\n", x, y);
y = acos(x);
printf("Arccosine of %f - %f\n", x, y);

Enter a real number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of 0.326960 = 1.237711

See Also asin, atan, cos, _matherr, sin, tan

alloca
Allocates memory on the stack.

void * _alloca(size_t size);

Routine Required Header

_alloca· <malloc.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

The _alloca routine returns a void pointer to the allocated space, which is guaranteed
to be suitably aligned for storage of any type of object. To get a pointer to a type other
than char, use a type cast on the return value. A stack overflow exception is
generated if the space cannot be allocated.

Parameter
size Bytes to be allocated from stack

173

asctime, _ wasctime

Remarks
_alloea allocates size bytes from the program stack. The allocated space is
automatically freed when the calling function exits. Therefore, do not pass the pointer
value returned by _alloea as an argument to free.

See Also calloe, malloe, realloe

asctime, wasctime
Converts a tm time structure to a character string.

char *asctime(const struct tm *timeptr);
wchar_t * _wasetime(eonst struct tm *timeptr);

Routine

asctime

_wasctime

Required Header

<time.h>

<time.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95,
Win NT, Win32s, 68K,
PMac

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBc.Lm

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
asctime returns a pointer to the character string result; _ wasctime returns a pointer
to the wide-character string result. There is no error return value.

Parameter

Remarks

174

timeptr Time/date structure

The asctime function converts a time stored as a structure to a character string. The
timeptr value is usually obtained from a call to gmtime or localtime, which both
return a pointer to a tm structure, defined in TIME.H.

Example

timeptr Field

tm_hour

tm_isdst

tm_mday

tm_min

tm_mon

tm_sec

tm_wday

tm-yday

tm-year

Value

Hours since midnight (0-23)

Positive if daylight saving time is in effect; 0 if daylight saving time is
not in effect; negative if status of daylight saving time is unknown.

Day of month (1-31)

Minutes after hour (0-59)

Month (0-11; January = 0)

Seconds after minute (0-59)

Day of week (0-6; Sunday = 0)

Day of year (0-365; January 1 = 0)

Year (current year minus 1900)

The converted character string is also adjusted according to the local time zone
settings. See the time, _ftime, and localtime functions for information on
configuring the local time and the _tzset function for details about defining the time
zone environment and global variables.

The string result produced by asctime contains exactly 26 characters and has the
form Wed Jan 02 02: 03: 55 1980\n\0. A 24-hour clock is used. All fields have a
constant width. The newline character and the null character occupy the last two
positions of the string. asctime uses a single, statically allocated buffer to hold the
return string. Each call to this function destroys the result of the previous call.

_ wasctime is a wide-character version of _asctime. _ wasctime and _asctime behave
identically otherwise.

/* ASCTIME.C: This program places the system time
* in the long integer aclock, translates it into the
* structure newtime and then converts it to string
* form for output, using the asctime function.
*/

#include <time.h>
#include <stdio.h>

struct tm *newtime;
time_t aclock;

void maine void
{

time(&aclock); /* Get time in seconds */

newtime = localtime(&aclock); /* Convert time to struct */
/* tm form */

asctime, _ wasctime

175

asin

1* Print local time as a string *1
printf("The current date and time are: %s", asctime(newtime));

}

Output
The current date and time are: Sun May 01 20:27:01 1994

See Also ctime, _ftime, gmtime, localtime, time, _tzset

aSln
Calculates the arcsine.

double asin(double x);

Routine Required Header

asin <math.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The asin function returns the arcsine of x in the range -Te/2 to Te/2 radians. If x is less
than -lor greater than 1, asin returns an indefinite (same as a quiet NaN). You can
modify error handling with the _matherr routine.

Parameter
x Value whose arcsine is to be calculated

Example
See the example for acos.

See Also acos, atan, cos, _matherr, sin, tan

176

assert
Evaluates an expression and when the result is FALSE, prints a diagnostic message
and aborts the program.

void assert(int expression);

Routine Required Header

assert <assert.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameter

Remarks

expression Expression (including pointers) that evaluates to nonzero or 0

The ANSI assert macro is typically used to identify logic errors during program
development, by implementing the expression argument to evaluate to false only
when the program is operating incorrectly. After debugging is complete, assertion
checking can be turned off without modifying the source file by defining the identifier
NDEBUG. NDEBUG can be defined with a fD command-line option or with a
#define directive. If NDEBUG is defined with #define, the directive must appear
before ASSERT.H is included.

assert prints a diagnostic message when expression evaluates to false (0) and calls
abort to terminate program execution. No action is taken if expression is true
(nonzero). The diagnostic message includes the failed expression and the name of the
source file and line number where the assertion failed.

The destination of the diagnostic message depends on the type of application that
called the routine. Console applications always receive the message via stderr. In a
single- or multithreaded Windows application, assert calls the Windows
MessageBox API to create a message box to display the message along with an OK
button. When the user chooses OK, the program aborts immediately.

assert

177

assert

Example

178

When the application is linked with a debug version of the run-time libraries~ assert
creates a message box with three buttons: Abort~ Retry~ and Ignore. If the user selects
Abort~ the program aborts immediately. If the user selects Retry~ the debugger is
called and the user can debug the program if Just-In-Time (JIT) debugging is
enabled. If the user selects Ignore~ assert continues with its normal execution:
creating the message box with the OK button. Note that choosing Ignore when an
error condition exists can result in "undefined behavior." For more information~ see
Chapter 4~ "Debug Version of the C Run-Time Library."

The assert routine is available in both the release and debug versions of the C run­
time libraries. Two other assertion macros~ _ASSERT and _ASSERTE~ are also
available~ but only when the _DEBUG flag has been defined. For more information
about using these macros and the debug version of the C run-time library~ see Chapter
4~ "Debug Version of the C Run-Time Library."

/* ASSERT.C: In this program, the analyze_string function uses
* the assert function to test several conditions related to
* string and length. If any of the conditions fails, the program
* prints a message indicating what caused the failure.
*/

#include <stdio.h>
#include <assert.h>
#include <string.h>

void analyze_string(char *string); /* Prototype */

void maine void)
{

char testl[] - "abc", *test2 - NULL, test3[]

printf ("Analyzing string '%s'\n", testl
analyze_string(test!) ;

printf ("Analyzing string '%s'\n", test2
analyze_string(test2) ;

printf ("Analyzing string '%s'\n", test3
analyze_string(test3) ;

}

/* Tests a string to see if it is NULL, */
/* empty, or longer than 0 characters */
void analyze_string(char * string)
{

) ;

) ;

) ;

"". ,

assert(string !- NULL);
assert (*stri ng !- '\0');
assert(strlen(string) > 2);

/* Cannot be NULL */
/* Cannot be empty */
/* Length must exceed 2 */

}

Output
Analyzing string 'abc'
Analyzing string '(null)'
Assertion failed: string 1= NULL, file assert.c, line 24

abnormal program termination

SeeAlso abort, raise, signal, _ASSERT, _ASSERTE, _DEBUG

atan, atan2
Calculates the arctangent of x (atan) or the arctangent of y/x (atan2).

double atan(double x);
double atan2(double y, double x);

Routine Required Header

atan <math.h>

atan2 <math.h>

Optional Headers Compatibility

ANSI, Win 95,
Win NT, Win32s,
68K, PMac

ANSI, Win 95,
Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

atan returns the arctangent of x. atan2 returns the arctangent of y/x. If x is 0, atan
returns O. If both parameters of atan2 are 0, the function returns 0. You can modify
error handling by using the _matherr routine. atan returns a value in the range -rrJ2
to rrJ2 radians; atan2 returns a value in the range -1t to 1t radians, using the signs of
both parameters to determine the quadrant of the return value.

Parameters
x, y Any numbers

atan, atan2

179

atexit

Remarks

Example

Output

The atan function calculates the arctangent of x. atan2 calculates the arctangent of
y/x. atan2 is well defined for every point other than the origin, even if x equals 0 and
y does not equal O.

1* ATAN.C: This program calculates
* the arctangent of 1 and -1.
*1

#include <math.h>
#include <stdio.h>
#include <errno.h>

void main(void)
{

}

double xl. x2. y;

printf("Enter a real number: ");
scanf(''%If''. &x1);
Y = atan(xl);
printf("Arctangent of %f: %f\n". xl. y);
printf("Enter a second real number: ");
scanf(''%If''. &x2);
y = atan2(xl. x2);
printf("Arctangent of %f I %f: %f\n". xl. x2. y);

Enter a real number: -862.42
Arctangent of -862.420000: -1.569637
Enter a second real number: 78.5149
Arctangent of -862.420000 I 78.514900: -1.480006

See Also acos, asin, cos, _matherr, sin, tan

atexit

180

Processes the specified function at exit.

int atexit(void (_cdecl *func)(void));

Routine Required Header Optional Headers

atexit <stdlib.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

To generate an ANSI-compliant application, use the ANSI-standard atexit function
(rather than the similar _onexit function).

Return Value
atexit returns 0 if successful, or a nonzero value if an error occurs.

Parameter

Remarks

Example

June Function to be called

The atexit function is passed the address of a function (June) to be called when the
program terminates normally. Successive calls to atexit create a register of functions
that are executed in LIFO (last-in-first-out) order. The functions passed to atexit
cannot take parameters. atexit and _onexit use the heap to hold the register of
functions. Thus, the number of functions that can be registered is limited only by
heap memory.

/* ATEXIT.C: This program pushes four functions onto
* the stack of functions to be executed when atexit
* is called. When the program exits, these programs
* are executed on a "last in, first out" basis.
*/

#include <stdlib.h>
#include <stdio.h>

void fnl(void), fn2(void), fn3(void), fn4(void);

void maine void)
{

}

atexit(fnl);
atexit(fn2);
atexit(fn3);
atexit(fn4);
pri ntf("Thi sis executed fi rst. \n");

void fnl()
{

printf("next.\n");
}

atexit

181

atof, atoi, atol

Output

voi d fn2 ()
{

printf("executed");

void fn3()
{

printf("is");
}

void fn4()
{

printf("This");

This is executed first.
This is executed next.

See Also abort, exit, _onexit

atof, atoi, atol

182

Convert strings to double (ato1), integer (integer), or long (atol).

double atof(const char *string);
int atoi(const char *string);
long atol(const char *string);

Routine Required Header

atof <math.h> and
<stdlib.h>

atoi <stdlib.h>

atol <stdlib.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each function returns the double, int, or long value produced by interpreting the
input characters as a number. The return value is 0 (for atoi), OL (for atol), or 0.0
(for atof) if the input cannot be converted to a value of that type. The return value is
undefined in case of overflow.

Parameter

Remarks

Example

string String to be converted

These functions convert a character string to a double-precision floating-point value
(atof), an integer value (atoi), or a long integer value (atol). The input string is a
sequence of characters that can be interpreted as a numerical value of the specified
type. The output value is affected by the setting of the LC_NUMERIC category in
the current locale. For more information on the LC_NUMERIC category, see
setlocale.The longest string size that atof can handle is 100 characters. The function
stops reading the input string at the first character that it cannot recognize as part of
a number. This character may be the null character ('\0') terminating the string.

The string argument to atof has the following form:

[whitespace] [sign] [digits] [.digits] [{d I Die I E }[sign]digits]

A whitespace consists of space and/or tab characters, which are ignored; sign is either
plus (+) or minus (-); and digits are one or more decimal digits. If no digits appear
before the decimal point, at least one must appear after the decimal point. The
decimal digits may be followed by an exponent, which consists of an introductory
letter (d, D, e, or E) and an optionally signed decimal integer.

atoi and atol do not recognize decimal points or exponents. The string argument for
these functions has the form:

[whitespace] [sign] digits

where whitespace, sign, and digits are exactly as described above for atof.

1* ATOF.C: This program shows how numbers stored
* as strings can be converted to numeric values
* using the atof, atoi, and atol functions.
*1

#include <stdlib.h>
#include <stdia.h>

void main(void)
{

char *s; double x; int i; long 1;

ataf, atoi, atol

183

_beginthread, _beginthreadex

Output

s =" -2309.12E-15"; 1* Test of atof *1
x = atof(s);
printf("atof test: ASCII string: %s\tfloat: %e\n". s. x);

s = "7.8912654773d210"; 1* Test of atof */
x = atof(s);
printf("atof test: ASCII string: %s\tfloat: %e\n". s. x);

s =" -9885 pigs"; 1* Test of atoi *1
i = atoi (s);
printf("atoi test: ASCII string: %s\t\tinteger: %d\n". s.);

s = "98854 dollars"; 1* Test of atol *1
1 =atol(s);
printf("atol test: ASCII string: %s\t\tlong: %ld\n". s. 1);

atof test: ASCII string: -2309.12E-15 float: -2.309120e-012
atof test: ASCII string: 7.8912654773d210 float: 7.891265e+210
atoi test: ASCII string: -9885 pigs integer: -9885
atol test: ASCII string: 98854 dollars long: 98854

See Also _eevt, _fevt, _gevt, setloeale, strtod, westol, strtoul

_beginthread, _beginthreadex

184

Create a thread.

unsigned long _beginthread(void(*starCaddress)(void *), unsigned stack_size, void *arglist);
unsigned long _beginthreadex(void *security, unsigned stack_size, unsigned (* starCaddress)

(void *), void *arglist, unsigned initf/ag, unsigned *thrdaddr);

Routine

_beginthread

_beginthreadex

Required Header

<process.h>

<process.h>

Optional Headers Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

_beginthread, _beginthreadex

To use _beginthread or _beginthreadex, the application must link with one of the
multithreaded C run-time libraries.

Return Value
If successful, each of these functions returns a handle to the newly created thread.
_beginthread returns -Ion an error, in which case errno is set to EAGAIN if there
are too many threads, or to EINVAL if the argument is invalid or the stack size is
incorrect. _beginthreadex returns 0 on an error, in which case errno and doserrno
are set.

Parameters
/ starcaddress Start address of routine that begins execution of new thread

Remarks

stack_size Stack size for new thread or 0

arg list Argument list to be passed to new thread or NULL

security Security descriptor for new thread; must be NULL for Windows 95
applications

initfiag Initial state of new thread (running or suspended)

thrdaddr Address of new thread

The _beginthread function creates a thread that begins execution of a routine at
starcaddress. The routine at starcaddress should have no return value. When the
thread returns from that routine, it is terminated automatically.

_beginthreadex resembles the Win32 CreateThread API more closely than does
_beginthread. _beginthreadex differs from _beginthread in the following ways:

• _beginthreadex has three additional parameters: initfiag, security, threadaddr.
The new thread can be created in a suspended state, with a specified security
(Windows NT only), and can be accessed using thrdaddr, which is the thread
identifier.

• The routine at starcaddress passed to _beginthreadex must use the _stdcall
calling convention and must return a thread exit code.

• _beginthreadex returns 0 on failure, rather than -1.

• A thread created with _beginthreadex is terminated by a call to _endthreadex.

You can call_endthread or _endthreadex explicitly to terminate a thread; however,
_endthread or _endthreadex is called automatically when the thread returns from
the routine passed as a parameter. Terminating a thread with a call to endthread or
_endthreadex helps to ensure proper recovery of resources allocated for the thread.

_endthread automatically closes the thread handle (whereas _endthreadex does
not). Therefore, when using _beginthread and _endthread, do not explicitly close
the thread handle by calling the Win32 CloseHandle API. This behavior differs from
the Win32 ExitThread API.

185

_beginthread, _beginthreadex

Example

186

Note For an executable file linked with LlBCMILlB, do not call the Win32 ExitThread API;
this prevents the run-time system from reclaiming allocated resources. _endthread and
_endthreadex reclaim allocated thread resources and then call ExitThread.

The operating system handles the allocation of the stack when either _beginthread
or _beginthreadex is called; you do not need to pass the address of the thread stack
to either of these functions. In addition, the stack_size argument can be 0, in which
case the operating system uses the same value as the stack specified for the main
thread.

arglist is a parameter to be passed to the newly created thread. Typically it is the
address of a data item, such as a character string. arglist may be NULL if it is not
needed, but _beginthread and _beginthreadex must be provided with some value to
pass to the new thread. All threads are terminated if any thread calls abort, exit,
_exit, or ExitProcess.

1* BEGTHRD.C illustrates multiple threads using functions:
*
*
*
*

_beginthread _endthread

* This program requires the multithreaded library. For example,
* compile with the following command line:
* Cl IMT ID "_X86_" BEGTHRD.C
*

* If you are using the Visual C++ development environment, select the
* Multi-Threaded runtime library in the compiler Project Settings
* dialog box.
*
*1

#include <windows.h>
#include <process.h>
#include <stddef.h>
#include <stdlib.h>
#include <conio.h>

void Bounce(void *ch);

1* _beginthread, endthread *1

void CheckKey(void *dummy);

1* GetRandom returns a random integer between min and max. *1
#define GetRandom(min, max) «rand() % (int)«(max) + 1) - (min») + (min»

BOOl repeat = TRUE; 1* Global repeat flag and video variable *1
HANDLE hStdOut; 1* Handle for console window *1
CONSOlE_SCREEN_BUFFER_INFO csbi; 1* Console information structure *1

void main()

_beginthread,_beginthreadex

}

CHAR ch = 'A';

hStdOut - GetStdHandle(STD_OUTPUT_HANDlE);

/* Get display screen's text row and column information. */
GetConsoleScreenBufferlnfo(hStdOut, &csbi);

/* launch CheckKey thread to check for terminating keystroke. *1
_beginthread(CheckKey, 0, NUll);

/* loop until CheckKey terminates program. */
while(repeat)
{

/* On first loops, launch character threads. */
_beginthread(Bounce, 0, (void *) (ch++));

/* Wait one second between loops. */
Sleep(1000l);

/* CheckKey - Thread to wait for a keystroke, then clear repeat flag. */
void CheckKey(void *dummy)
{

_getch();
repeat = 0; /* endthread implied */

/* Bounce - Thread to create and and control a colored letter that moves
* around on the screen.
*
* Params: ch - the letter to be moved
*/

void Bounce(void *ch)
{

/* Generate letter and color attribute from thread argument. */
char blankcell = 0x20;
char blockcell = (char) ch;
BOOl first = TRUE;

COORD oldcoord, newcoord;
DWORD result;

/* Seed random number generator and get initial location. */
srand(_threadid);
newcoord.X = GetRandom(0, csbi.dwSize.X -);
newcoord.Y = GetRandom(0, csbi.dwSize.Y -);
while(repeat)

187

Bessel Functions

}

1* Pause between loops. *1
Sleep(100L);

1* Blank out our old position on the screen. and draw new letter. *1
if(first)

first = FALSE;
else
WriteConsoleOutputCharacter(hStdOut. &blankcell. 1. oldcoord. &result);
WriteConsoleOutputCharacter(hStdOut. &blockcell. 1. newcoord. &result);

1* Increment the coordinate for next placement of the block. *1
oldcoord.X newcoord.X;
oldcoord.Y newcoord.Y;
newcoord.X += GetRandom(-1. 1);
newcoord.Y += GetRandom(-1. 1);

1* Correct placement (and beep) if about to go off the screen. *1
if(newcoord.X < 0)

newcoord.X = 1;
else if(newcoord.X == csbi .dwSize.X

newcoord.X = csbi .dwSize.X - 2;
else if(newcoord.Y < 0)

newcoord.Y = 1;
else if(newcoord.Y == csbi .dwSize.Y

newcoord.Y = csbi .dwSize.Y - 2;

1* If not at a screen border. continue. otherwise beep. *1
else

continue;
Beep(«char) ch - 'A') * 100. 175);

1* endthread given to terminate *1
_endthread();

See Also _endthread, abort, exit

Bessel Functions

188

The Bessel functions are commonly used in the mathematics of electromagnetic wave
theory.

-.iO, -.it, -.in These routines return Bessel functions of the first kind: orders 0, 1,
and n, respectively.

-yO, -yt, -yn These routines return Bessel functions of the second kind: orders 0, 1,
and n, respectively.

Example

Output

1* BESSEL.C: This program illustrates Bessel functions,
* including: _j0 _j1 _jn -y0 -Y1 _yn
*1

#include <math.h>
#include <stdio.h>

void main(void)
{

}

double x = 2.387;
int n = 3, c;

printf("Bessel functions for x = %f:\n", x);
printf(" Kind\t\tOrder\tFunction\tResult\n\n");
printf(" First\t\t0\t_j0(x)\t%f\n", _j0(x));
printf(" First\t\t1\t_jl(x)\t%f\n", _jl(x));
for(c = 2; c < 5; c++)

printf(" First\t\t%d\t_jn(n, x)\t%f\n", c, _jn(c, x));
printf(" Second\t0\t-y0(x)\t%f\n", -y0(x));
printf(" Second\t1\t-y1(x)\t%f\n", _yl(x));
for(c = 2; c < 5; c++)

printf(" Second\t%d\t_yn(n, x)\t%f\n", c, _yn(c, x));

Bessel functions for x = 2.387000:
Kind Order Function Result

First 0 _j0(x) 0.009288
First 1 _jl(x) 0.522941
Fi rst 2 _jn(n, x) 0.428870
Fi rst 3 _jn(n, x) 0.195734
Fi rst 4 _jn(n, x) 0.063131
Second 0 -y0(x 0.511681
Second 1 _yl(x 0.094374
Second 2 _yn(n, x) -0.432608
Second 3 _yn(n, x) -0.819314
Second 4 _yn(n, x) -1. 626833

See Also _matherr

Bessel Functions: jO, jl, jn
Compute the Bessel function.

double -iO(double x);
double -il(double x);
double -in(int n, double x);

Bessel Functions

189

Bessel Functions

Routine Required Header

.JO <math.h>

.Jl <math.h>

.In <math.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these routines returns a Bessel function of x. You can modify error handling
by using _matherr.

Parameters

Remarks

x Floating-point value

n Integer order of Bessel function

The .JO, .Jl, and.Jn routines return Bessel functions of the first kind: orders 0, 1,
and n, respectively.

See Also _matherr

Bessel Functions: _yO, _yl, _yn

190

Compute the Bessel function.

double JO(double x);
double Jl(double x);
double JO(iot n, double x);

Routine Required Header Optional Headers

<math.h>

<math.h>

<math.h>

Compatibility

Win 95, Win NT, Win32s, 68K, PMac

Win 95, Win NT, Win32s, 68K, PMac

Win 95, Win NT, Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these routines returns a Bessel function of x. If x is negative, the routine sets
errno to EDOM, prints a _DOMAIN error message to stderr, and returns
_HUGE_VAL. You can modify error handling by using _matherr.

Parameters

Remarks

x Floating-point value

n Integer order of Bessel function

The -yO, -yl, and -yn routines return Bessel functions of the second kind: orders 0,
1, and n, respectively.

See Also _matherr

bsearch
Performs a binary search of a sorted array.

bsearch

void *bsearch(const void *key, const void *base, size_t num, size_t width, int (_cdecl *compare)
(const void *eleml, const void *elem2));

Routine

bsearch

Required Header

<stdlib.h> and
<search.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

191

bsearch

Return Value
bsearch returns a pointer to an occurrence of key in the array pointed to by base. If
key is not found, the function returns NULL. If the array is not in ascending sort
order or contains duplicate records with identical keys, the result is unpredictable.

Parameters

Remarks

Example

192

key Object to search for

base Pointer to base of search data

num Number of elements

width Width of elements

compare Function that compares two elements: eleml and elem2

eleml Pointer to the key for the search

elem2 Pointer to the array element to be compared with the key

The bsearch function performs a binary search of a sorted array of num elements,
each of width bytes in size. The base value is a pointer to the base of the array to be
searched, and key is the value being sought. The compare parameter is a pointer to a
user-supplied routine that compares two array elements and returns a value
specifying their relationship. bsearch calls the compare routine one or more times
during the search, passing pointers to two array elements on each call. The compare
routine compares the elements, then returns one of the following values:

Value Returned by compare Routine

<0

o
>0

Description

elemlless than elem2

eleml equal to elem2

eleml greater than elem2

/* BSEARCH.C: This program reads the command-line
* parameters, sorting them with qsort, and then
* uses bsearch to find the word "cat."
*/

#include <search.h>
#include <string.h>
#include <stdio.h>

int compare(char **argl, char **arg2); /* Declare a function for compare */

void main(int argc, char **argv)
{

char **result;
char *key = "cat";
i nt i;

Output

/* Sort using Quicksort algorithm: */
qsort((void *)argv. (size_t)argc. sizeof(char *). (int (*)(const
void*. const vOid*»compare);

for(i = 0; i < argc; ++i)
printf("Is ". argv[i]);

/* Output sorted list */

/* Find the word "cat" using a binary search algorithm: */
result = (char **)bsearch((char *) &key. (char *)argv. argc.

sizeof(char *). (int (*)(const void*. const
void*»compare);

i f(result)

}

printf("\n%s found at %Fp\n". *result. result);
else

pri ntf("\nCat not found! \n");

int compare(char **argl. char **arg2
{

}

/* Compare all of both strings: */
return _strcmpi(*argl. *arg2);

[C:\work]bsearch dog pig horse cat human rat cow goat
bsearch cat cow dog goat horse human pig rat
cat found at 002D0008

See Also _Ifind, _Isearch, qsort

cabs
Calculates the absolute value of a complex number.

double _cabs(struct _complex z);

Routine Required Header Optional Headers Compatibility

<math.h> Win 95, Win NT, Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

193

calloc

Return Value
_cabs returns the absolute value of its argument if successful. On overflow _cabs
returns HUGE_VAL and sets errno to ERANGE. You can change error handling
with _matherr.

Parameter

Remarks

Example

Output

z Complex number

The _cabs function calculates the absolute value of a complex number, which must be
a structure of type _complex. The structure z is composed of a real component x and
an imaginary component y. A call to _cabs produces a value equivalent to that of the
expression sqrt(z.x*z.x + z.y*z.y).

1* CABS.C: Using _cabs. this program calculates
* the absolute value of a complex number.
*1

#include <math.h>
#include <stdio.h>

void main(void)
{

}

struct _complex number = { 3.0. 4.0 };
double d;

d = _cabs(number);
printf("The absolute value of %f + %fi is %f\n".

number.x. number.y. d);

The absolute value of 3.000000 + 4.000000i is 5.000000

See Also abs, fabs, labs

calloc

194

Allocates an array in memory with elements initialized to O.

void *calloc(size_t num, size_t size);

Routine

calloc

Required Header

<stdlib.h> and
<malloc.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
calloc returns a pointer to the allocated space. The storage space pointed to by the
return value is guaranteed to be suitably aligned for storage of any type of object. To
get a pointer to a type other than void, use a type cast on the return value.

Parameters

Remarks

Example

num Number of elements

size Length in bytes of each element

The calloc function allocates storage space for an array of num elements, each of
length size bytes. Each element is initialized to O.

calloc calls malloc in order to use the c++ _set_new _mode function to set the new
handler mode. The new handler mode indicates whether, on failure, malloc is to call
the new handler routine as set by _set_new_handler. By default, malloc does not call
the new handler routine on failure to allocate memory. You can override this default
behavior so that, when calloc fails to allocate memory, malloc calls the new handler
routine in the same way that the new operator does when it fails for the same reason.
To override the default, call

early in your program, or link with NEWMODE.OBJ.

When the application is linked with a debug version of the C run-time libraries,
calloc resolves to _calloc_dbg. For more information about how the heap is managed
during the debugging process, see Chapter 4, "Debug Version of the C Run-Time
Library."

/* CALLOC.C: This program uses calloc to allocate space for
* 40 long integers. It initializes each element to zero.
*/

#include <stdio.h>
#include <malloc.h>

void main(void)
{

long *buffer;

calloc

195

ceil

Output

ceil

}

buffer = (long *)calloc(40. sizeof(long));
if(buffer != NULL)

printf("Allocated 40 long integers\n");
else

printf("Can't allocate memory\n");
free(buffer);

Allocated 40 long integers

See Also free, malloc, realloc

Calculates the ceiling of a value.

double ceil(double x);

Routine Required Header

ceil <math.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The ceil function returns a double value representing the smallest integer that is
greater than or equal to x. There is no error return.

Parameter
x Floating-point value

Example
See the example for floor.

See Also floor, fmod

196

_cexit, c exit
Perform cleanup operations and return without terminating the process.

void _cexit(void);
void _c_exit(void);

Routine Required Header

<process.h>

<process.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Remarks
The _cexit function calls, in last-in-first-out (LIFO) order, the functions registered by
atexit and _onexit. Then _cexit flushes all I/O buffers and closes all open streams
before returning. _c_exit is the same as _exit but returns to the calling process
without processing atexit or _onexit or flushing stream buffers. The behavior of exit,
_exit, _cexit, and _c_exit is as follows:

Function

exit

Behavior

Performs complete C library termination procedures, terminates process,
and exits with supplied status code

Performs "quick" C library termination procedures, terminates process, and
exits with supplied status code

Performs complete C library termination procedures and returns to caller,
but does not terminate process

Performs "quick" C library termination procedures and returns to caller, but
does not terminate process

See Also abort, atexit, _exec Functions, exit, _onexit, _spawn Functions, system

197

_cgets
Gets a character string from the console.

char * _cgets(char *buffer);

Routine Required Header Optional Headers

<conio.h>

Compatibility

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_cgets returns a pointer to the start of the string, at buffer[2]. There is no error
return.

Parameter

Remarks

Example

198

buffer Storage location for data

The _cgets function reads a string of characters from the console and stores the string
and its length in the location pointed to by buffer. The buffer parameter must be a
pointer to a character array. The first element of the array, buffer[O], must contain the
maximum length (in characters) of the string to be read. The array must contain
enough elements to hold the string, a terminating null character ('\0'), and two
additional bytes. The function reads characters until a carriagereturn-linefeed (CR­
LF) combination or the specified number of characters is read. The string is stored
starting at buffer[2]. If the function reads a CR-LF, it stores the null character ('\0').
_cgets then stores the actual length of the string in the second array element, buffer
[1]. Because all editing keys are active when _cgets is called, pressing F3 repeats the
last entry.

/* CGETS.C: This program creates a buffer and initializes
* the first byte to the size of the buffer: 2. Next. the
* program accepts an input string using _cgets and displays
* the size and text of that string.
*/

#include <conio.h>
#include <stdio.h>

Output

void main(void)
{

char buffer[82] = { 80}; 1* Maximum characters in 1st byte *1
char *result;

printf("Input line of text, followed by carriage return:\n");
result = _cgets(buffer); 1* Input a line of text *1
printf("\nLine length - %d\nText - %s\n", buffer[1], result);

Input line of text, followed by carriage return:
This is a line of text

Line length = 22
Text = This is a line of text.

See Also ~etch

_chdir, wchdir
Change the current working directory.

int _chdir(const char *dirname);
int _wchdir(const wchar_t *dirname);

Routine Required Header Optional Headers

<direct.h> <errno.h>

_wchdir <direct.h> or <wchar.h> <errno.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Each of these functions returns a value of 0 if successful. A return value of -1
indicates that the specified path could not be found, in which case errno is set to
ENOENT.

_chdir, _ wchdir

199

3hdir, _ wchdir

Parameter

Remarks

Example

Output

200

dirname Path of new working directory

The _chdir function changes the current working directory to the directory specified
by dirname. The dirname parameter must refer to an existing directory. This function
can change the current working directory on any drive and if a new drive letter is
specified in dirname, the default drive letter will be changed as well. For example, if
A is the default drive letter and \BIN is the current working directory, the following
call changes the current working directory for drive C and establishes C as the new
default drive:

_chdir("c:\\temp");

When you use the optional backslash character (\) in paths, you must place two
backslashes (\\) in a C string literal to represent a single backslash (\).

_ wchdir is a wide-character version of _chdir; the dirname argument to _ wchdir is a
wide-character string. _wchdir and _chdir behave identically otherwise.

1* CHGDIR.C: This program uses the _chdir function to verify
* that a given directory exists.
*1

#include <direct.h>
#include <stdio.h>
#include <stdlib.h>

void maine int argc, char *argv[]
{

}

if(_chdir(argv[l])
printf("Unable to locate the directory: %s\n", argv[l]);

else
system("dir *.wri");

Volume in drive C is CDRIVE
Volume Serial Number is 0E17-1702

Directory of C:\msdev

04/29/94 01:06p
04/29/94 01:06p

3,200 ERRATA.WRI
2,816 README.WRI
6,016 bytes

86,433,792 bytes free
2 File(s)

See Also _mkdir, _rmdir, system

chdrive
Changes the current working drive.

int _chdrive(int drive);

Routine Required Header

_chdrive <direct.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_chdrive returns a value of 0 if the working drive is successfully changed. A return
value of -1 indicates an error.

Parameter

Remarks

Example

drive Number of new working drive

The _chdrive function changes the current working drive to the drive specified by
drive. The drive parameter uses an integer to specify the new working drive (1=A,
2=B, and so forth). This function changes only the working drive; _chdir changes
the working directory.

See the example for _getdrive.

See Also _chdir, _fullpath, _getcwd, _getdrive, _mkdir, _rmdir, system

_chgsign
Reverses the sign of a double-precision floating-point argument.

double _chgsign(double x);

Routine Required Header Optional Headers Compatibility

_chgsign <float.h> Win 95, Win NT, Win32s, 68K, PMac

_chgsign

201

_chmod, _ wchmod

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_chgsign returns a value equal to its double-precision floating-point argument x, but
with its sign reversed. There is no error return.

Parameter
x Double-precision floating-point value to be changed

See Also fabs, _copysign

_chmod, _wchmod
Change the file-permission settings.

int _chmod(const char *filename, int pmode);
int _wchmod(const wchar_t *filename, int pmode);

Routine Required Header Optional Headers Compatibility

_chmod <io.h> <sys/types.h> , Win 95, Win NT,
<sys/stat.h>, <errno.h> Win32s, 68K, PMac

_wchmod <io.h> or <wchar.h> <sys/types.h> , Win NT
<sys/stat.h>, <errno.h>

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBc.Lm

LIBCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

202

Each of these functions returns 0 if the permission setting is successfully changed. A
return value of -1 indicates that the specified file could not be found, in which case
errno is set to ENOENT.

Parameters

Remarks

Example

filename N arne of existing file

pmode Permission setting for file

The _chmod function changes the permission setting of the file specified by filename.
The permission setting controls read and write access to the file. The integer
expression pmode contains one or both of the following manifest constants, defined
in SYS\STAT.H:

_S_IWRITE Writing permitted

_S_IREAD Reading permitted

_S_IREAD I _S_IWRITE Reading and writing permitted

Any other values for pmode are ignored. When both constants are given, they are
joined with the bitwise-OR operator (I). If write permission is not given, the file is
read-only. Note that all files are always readable; it is not possible to give write-only
permission. Thus the modes _S_IWRITE and _S_IREAD I _S_IWRITE are
equivalent.

_ wchmod is a wide-character version of _chmod; the filename argument to
_ wchmod is a wide-character string. _ wchmod and _chmod behave identically
otherwise.

/* CHMOD.C: This program uses _chmod to
* change the mode of a file to read-only.
* It then attempts to modify the file.
*/

#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>

void maine void
{

/* Make file read-only: */
if(_chmod ("CHMOD. e", _S_I READ -1)

perror("File not found\n");
else

printf("Mode changed to read-only\n");
system("echo /* End of fil e * / » CHMOD. C");

/* Change back to read/write: */
if(_chmod("CHMOD.C", _S_IWRITE -1)

perror("File not found\n");

3hmod, _ wchmod

203

_chsize

Output

}

else
printf("Mode changed to read/write\n");

system("echo /* End of file */ » CHMOD.C");

Mode changed to read-only
Access is denied
Mode changed to read/write

See Also _access, _creat, _fstat, _open, _stat

chsize
Changes the file size.

int _chsize(int handle, long size);

Routine Required Header Optional Headers Compatibility

_chsize <io.h> <errno.h> Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_chsize returns the value 0 if the file size is successfully changed. A return value of -1 indicates an

error: errno is set to EACCES if the specified file is locked against access, to EBADF if the
specified file is read-only or the handle is invalid, or to ENOSPC if no space is left on the device.

Parameters

Remarks

204

handle Handle referring to open file

size New length of file in bytes

The _chsize function extends or truncates the file associated with handle to the
length specified by size. The file must be open in a mode that permits writing. Null
characters ('\0') are appended if the file is extended. If the file is truncated, all data
from the end of the shortened file to the original length of the file is lost.

Example

Output

1* CHSIZE.C: This program uses _filelength to report the size
* of a file before and after modifying it with chsize.
*1

#include <io.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>

void maine void)
{

int fh, result;
unsigned int nbytes = BUFSIZ;

1* Open a file *1
if((fh = _open("data", _O_RDWR I _O_CREAT, S IREAD

I _S_IWRITE» != -1)

}

printf("File length before: %ld\n", _filelength(fh));
if((result = _chsize(fh, 329678)) == 0)

printf("Size successfully changed\n");
else

printf("Problem in changing the size\n");
printf("File length after: %ld\n", _filelength(fh));
_close(fh);

File length before: 0
Size successfully changed
File length after: 329678

See Also _close, _creat, _open

_clear87, _clearfp
Get and clear the floating-point status word.

unsigned int _c1ear87(void);
unsigned int _c1earfp(void);

Routine

_clearS7

_clearfp

Required Header

<float.h>

<float.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K,PMac

_clear87, 31earfp

205

_clear87, 31earfp

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

Example

206

The bits in the value returned indicate the floating-point status. See FLOAT.H for a
complete definition of the bits returned by _clear87. Many of the math library
functions modify the 8087/80287 status word, with unpredictable results. Return
values from _clear87 and _status87 become more reliable as fewer floating-point
operations are performed between known states of the floating-point status word.

The _clear87 function clears the exception flags in the floating-point status word,
sets the busy bit to 0, and returns the status word. The floating-point status word is a
combination of the 8087/80287 status word and other conditions detected by the
8087/80287 exception handler, such as floating-point stack overflow and underflow.

_clearfp is a platform-independent, portable version of the _clear87 routine. It is
identical to _clear87 on Intel® (x86) platforms and is also supported by the MIPS®
and ALPHA platforms. To ensure that your floating-point code is portable to MIPS or
ALPHA, use _clearfp. If you are only targeting x86 platforms, you can use either
_clear87 or _clearfp.

/* CLEAR87.C: This program creates various floating-point
* problems, then uses _clear87 to report on these pr9blems.
* Compile this program with Optimizations disabled (/Od).
* Otherwise the optimizer will remove the code associated with
* the unused floating-point values.
*1

#include <stdio.h>
#include <float.h>

void maine void)
{

double a = le-40, b;
float x, Y;

printf("Status: %.4x - clear\n", _clear87());

1* Store into y is inexact and underflows: */
y = a;
printf("Status: %.4x - inexact, underflow\n", _clear87());

Output

}

1* y is denormal: */
b = y;
printf("Status: %.4x - denormal\n", _clear8?());

Status: 0000 - clear
Status: 0003 - inexact, underflow
Status: 80000 - denormal

See Also _controIS7, _statusS7

clearerr
Resets the error indicator for a stream

void c1earerr(FILE * stream);

Routine Required Header

clearerr <stdio.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameter

Remarks

stream Pointer to FILE structure

The c1earerr function resets the error indicator and end-of-file indicator for stream.
Error indicators are not automatically cleared; once the error indicator for a specified
stream is set, operations on that stream continue to return an error value until
c1earerr, fseek, fsetpos, or rewind is called.

c1earerr

207

clock

Example

Output

/* CLEARERR.C: This program creates an error
* on the standard input stream. then clears
* it so that future reads won't fail.
*/

#include <stdio.h>

void maine void)
{

}

int c;
/* Create an error by writing to standard input. */
putc('c'. stdin);
if(ferror(stdin))
{

}

perror("Write error");
clearerr(stdin);

/* See if read causes an error. */
printf("Will input cause an error?");
c = getc(stdin);
if(ferror(stdin))
{

}

perror("Read error");
clearerr(stdin);

Write error: No error
Will input cause an error? n

See Also _eof, feof, ferror, perror

clock

208

Calculates the time used by the calling process.

c1ock_t c1ock(void);

Routine Required Header Optional Headers

clock <time.h>

Compatibility

ANSI, Win 95,
Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMf.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

Example

clock returns a time value in seconds. The returned value is the product of the
amount of time that has elapsed since the start of a process and the value of the
CLOCKS_PER_SEC constant. If the amount of elapsed time is unavailable, the
function returns -1, cast as a clock_t.

Note The amount of time that has elapsed since the start of the calling process is not
necessarily equal to the actual amount of processor time that that process has used.

The clock function tells how much processor time the calling process has used. The
time in seconds is approximated by dividing the clock return value by the value of the
CLOCKS_PER_SEC constant. In other words, clock returns the number of
processor timer ticks that have elapsed. A timer tick is approximately equal to
lICLOCKS_PER_SEC second. In versions of Microsoft C before 6.0, the
CLOCKS_PER_SEC constant was called CLK_TCK.

/* CLOCK.C: This example prompts for how long
* the program is to run and then continuously
* displays the elapsed time for that period.
*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void sleep(clock_t wait);

void main(void)
{

long i = 600000L;
clock_t start, finish;
double duration;

/* Delay for a specified time. */
printf("Delay for three seconds\n");
sleep((clock_t)3 * CLOCKS_PER_SEC);
printf("Done!\n");

clock

209

Output

}

/* Measure the duration of an event. */
printf("Time to do %ld empty loops is ", i);
start = clock();
while(i--)

finish = clock();
duration = (double)(finish - start) / CLOCKS_PER_SEC;
printf("%2.1f seconds\n", duration);

/* Pauses for a specified number of milliseconds. */
void sleep(clock_t wait)
{

}

clock_t goal;
goal = wait + clock();
while(goal> clock())

Delay for three seconds
Done!
Time to do 600000 empty loops is 0.1 seconds

See Also difftime, time

close

210

Closes a file.

int _c1ose(int handle);

Routine Required Header Optional Headers Compatibility

<io.h> <errno.h> Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LffiC.LIB

LffiCMT.Lffi

MSYCRT.Lffi

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_close returns 0 if the file was successfully closed. A return value of -1 indicates an
error, in which case errno is set to EBADF, indicating an invalid file-handle
parameter.

Parameter
handle Handle referring to open file

Remarks
The _close function closes the file associated with handle.

Example
See the example for _open.

See Also _chsize, _creat, _dup, _open, _unlink

commit
Flushes a file directly to disk.

int _commit(int handle);

Routine Required Header

<io.h>

Optional Headers

<errno.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_commit returns 0 if the file was successfully flushed to disk. A return value of -1
indicates an error, and errno is set to EBADF, indicating an invalid file-handle
parameter.

Parameter

Remarks

handle Handle referring to open file

The _commit function forces the operating system to write the file associated with
handle to disk. This call ensures that the specified file is flushed immediately, not at
the operating system's discretion.

211

Example

212

1* COMMIT.C illustrates low-level file 1/0 functions including:
*
*
*

close commit memset

* This is example code; to keep the code simple and readable
* return values are not checked.
*1

lfoinclude <io.h>
#include <stdio.h>
#include <fcntl.h>
#include <memory.h>
#include <errno.h>

#define MAXBUF 32

int log_receivable(int);

void main(void)
{

}

int fhandle;
fhandle = _open("TRANSACT.LOG", _a_APPEND

a BINARY
log_receivable(fhandle);
_close(fhandle);

int log_receivable(int fhandle)
{

_a_CREAl I
_O_RDWR);

1* The log_receivable function prompts for a name and a monetary
* amount and places both values into a buffer (buf). The _write
* function writes the values to the operating system and the
* commit function ensures that they are written to a disk file.
*1

i nt i;
char buf[MAXBUF];

memset(buf, '\0', MAXBUF);
1* Begin Transaction. *1
printf("Enter name: ");
gets(buf);
for(i = 1; buni] != '\0'; i++);
1* Write the value as a '\0' terminated string. *1
_write(fhandle, buf, i+1);
printf("\n");

memset(buf, '\0', MAXBUF);
printf("Enter amount: $");
gets(buf);
for(i = 1; buf[i] != '\0'; i++);

30ntro187, _controlfp

}

/* Write the value as a '\0' terminated string. */
_write(fhandle. buf. i+1);
printf("\n");

/* The commit function ensures that two important pieces of
* data are safely written to disk. The return value of the
* commit function is returned to the calling function.
*/

return _commit(fhandle);

See Also _creat, _open, _read, _write

_controI87, _controlfp
Get and set the floating-point control word.

unsigned int _controI87(unsigned int new, unsigned int mask);
unsigned int _controlfp(unsigned int new, unsigned int mask);

Routine Required Header

_control87 <float.h>

_controlfp <float.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The bits in the value returned indicate the floating-point control state. See FLOAT.H
for a complete definition of the bits returned by _controI87.

Parameters

Remarks

new New control-word bit values

mask Mask for new control-word bits to set

The _control87 function gets and sets the floating-point control word. The floating­
point control word allows the program to change the precision, rounding, and infinity

213

_controI87, 30ntrolfp

214

modes in the floating-point math package. You can also mask or unmask floating­
point exceptions using _controIS7. If the value for mask is equal to 0, _controlS7
gets the floating-point control word. If mask is nonzero, a new value for the control
word is set: For any bit that is on (equal to I) in mask, the corresponding bit in new is
used to update the control word. In other words,fpcntrl = (ifpcntrl & mask) I (new
& mask» wherefpcntrl is the floating-point control word.

Note The run-time libraries mask all floating-point exceptions by default.

_controlfp is a platform-independent, portable version of _controIS7. It is nearly
identical to the _controlS7 function on Intel (x86) platforms and is also supported by
the MIPS and ALPHA platforms. To ensure that your floating-point code is portable
to MIPS or ALPHA, use _controlfp. If you are targeting x86 platforms, use either
_controlS7 or _controlfp.

The only other difference between _controlS7 and _controlfp is that _controlfp does
not interfere with the DENORMAL OPERAND exception mask. The following
example demonstrates the difference:

_contro187(_EM_INVALID, _MCW_EM); II DENORMAL is unmasked by this call
_controlfp(_EM_INVALID, _MCW_EM); II DENORMAL exception mask remains unchanged

The possible values for the mask constant (mask) and new control values (new) are
shown in Table R.I. Use the portable constants listed below LMeW _EM,
_EM_INVALID, and so forth) as arguments to these functions, rather than supplying
the hexadecimal values explicitly.

Table R.1 Hexadecimal Values

Mask Hex Value

_MeW_EM OxOOO8001F
(Interrupt
exception)

_MeW _Ie (Infinity OxOOO40000
control)

Constant

_EM_INVALID

_EM_DENORMAL

_EM_ZERODIVIDE

_EM_OVERFLOW

_EM_UNDERFLOW

_EM_INEXACT

_IC_AFFINE

_IC_PROJECTIVE

Hex Value

OxOOOOOOlO
Ox00080000

Ox00000008

Ox00000004

Ox00000002

OxOOOOOOOl

Ox00040000

OxOOOOOOOO

Example

Table R.1 Hexadecimal Values (continued)

Mask Hex Value

_MCW_RC OxOOOOO300
(Rounding control)

_MCW_PC OxOOO30000
(Precision control)

Constant

-RC_CHOP

- RC_UP

_RC_DOWN

_RC_NEAR

_PC_24 (24 bits)

_PC_53 (53 bits)

_PC_64 (64 bits)

Hex Value

Ox00000300
Ox00000200
OxOOOOOIOO
OxOOOOOOOO

Ox00020000
OxOOOlOOOO
OxOOOOOOOO

/* CNTRL87.C: This program uses contro187 to output the control
* word, set the precision to 24 bits, and reset the status to
* the default.
*/

#include <stdio.h>
#include <float.h>

void maine void)
{

}

double a = 0.1:

/* Show original control word and do calculation. */
printf("Original: 0x%.4x\n", _contro187(0,0)):
printf("%1.1f * %1.1f = %.15e\n", a, a, a * a):

/* Set precision to 24 bits and recalculate. */
printf("24-bit: 0x%.4x\n", _contro187(_PC_24, MCW_PC)):
printf("%l.lf * %l.lf - %.15e\n", a, a, a * a):

/* Restore to default and recalculate. */
printf("Default: 0x%.4x\n",

_contro187(_CW_DEFAULT, 0xfffff)):
printf("%l.lf * %l.lf = %.15e\n", a, a, a * a):

_control87, _controlfp

215

3 0 Pysign

Output
Ori gi na 1: 0x9001 f
0.1 * 0.1 = 1.000000000000000e-002
24-bit: 0xa001f
0.1 * 0.1 = 9.999999776482582e-003
Default: 0x001f
0.1 * 0.1 = 1.000000000000000e-002

See Also _clear87, _status87

• _copyslgn
Return one value with the sign of another.

double _copysign(double x, double y);

Routine Required Header Optional Headers

_copysign <float.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_copysign returns its double-precision floating point argument x with the same sign
as its double-precision floating-point argument y. There is no error return.

Parameters
x Double-precision floating-point value to be changed

y Double-precision floating-point value

See Also fabs, _chgsign

cos,cosh

216

Calculate the cosine (cos) or hyperbolic cosine (cosh).

double cos(double x);
double cosh(double x);

Routine Required Header

cos <math.h>

cosh <math.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The cos and cosh functions return the cosine and hyperbolic cosine, respectively, of x.
If x is greater than or equal to 2 63 , or less than or equal to _263, a loss of significance
in the result of a call to cos occurs, in which case the function generates a _TLOSS
error and returns an indefinite (same as a quiet NaN).

If the result is too large in a cosh call, the function returns HUGE_VAL and sets
errno to ERANGE. You can modify error handling with _matherr.

Parameter
x Angle in radians

Example
See the example for sin.

See Also acos, asin, atan, _matherr, sin, tan

_cprintf
Formats and prints to the console.

int _cprintf(const char *format [, argument] ...);

Routine Required Header Optional Headers Compatibility

_cprintf <conio.h> Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

_cprintf

217

_cprintf

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_cprintf returns the number of characters printed.

Parameters

Remarks

Example

Output

218

format Format-control string

argument Optional parameters

The _cprintf function formats and prints a series of characters and values directly to
the console, using the _putch function to output characters. Each argument (if any) is
converted and output according to the corresponding format specification informat.
The format has the same form and function as the format parameter for the printf
function; for a description of the format and parameters, see printf. Unlike the
fprintf, printf, and sprintf functions, _cprintf does not translate linefeed characters
into carriage return-linefeed (CR-LF) combinations on output.

/* CPRINTF.C: This program displays
* some variables to the console.
*/

#include <conio.h>

void main(void
{

}

int i = -16, h 29;
unsigned u = 62511 ;
char c = 'A' ;
char s[] = "Test";

/* Note that console output does not translate \n as
* standard output does. Use \r\n instead.
*/

_cprintf("%d %.4x %u %c %s\r\n", i, h, u, c, s);

-16 001d 62511 A Test

See Also _cscanf, fprintf, printf, sprintf, vfprintf

_cputs
Puts a string to the console.

int _cputs(const char *string);

Routine Required Header Optional Headers Compatibility

<conio.h> Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, _cputs returns a O. If the function fails, it returns a nonzero value.

Parameter

Remarks

Example

string Output string

The _cputs function writes the null-terminated string pointed to by string directly to
the console. A carriage return-linefeed (CR-LF) combination is not automatically
appended to the string.

1* CPUTS.C: This program first displays
* a string to the console.
*/

#include <conio.h>

void main(void
{

1* String to print at console.
* Note the \r (return) character.
*1

char *buffer = "Hello world (courtesy of _cputs)!\r\n";

_cputs(buffer);
}

219

_creat, _ wcreat

Output
Hello world (courtesy of _cputs)!

See Also _putch

_creat, wcreat
Creates a new file.

int _create const char *filename, int pmode);
int _ wcreat(const wchar_t *filename, int pmode);

Routine Required Header Optional Headers Compatibility

_creat <io.h> <sys/types.h> , Win 95, Win NT,
<sys/stat.h>, <errno.h> Win32s, 68K, PMac

_wcreat <io.h> or <wchar.h> <sys/types.h> , Win NT
<sys/stat.h>, <errno.h>

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions, if successful, returns a handle to the created file. Otherwise
the function returns -1 and sets errno as follows.

errno Setting

EACCES

EMFILE

ENOENT

Description

Filename specifies an existing read-only file or specifies a directory
instead of a file

No more file handles are available

The specified file could not be found

Parameters
filename Name of new file

pmode Permission setting

220

Remarks

Example

The _creat function creates a new file or opens and truncates an existing one.
_ wcreat is a wide-character version of _creat; the filename argument to _ wcreat is a
wide-character string. _ wcreat and _creat behave identically otherwise.

If the file specified by filename does not exist, a new file is created with the given
permission setting and is opened for writing. If the file already exists and its
permission setting allows writing, _creat truncates the file to length 0, destroying the
previous contents, and opens it for writing. The permission setting, pmode, applies to
newly created files only. The new file receives the specified permission setting after it
is closed for the first time. The integer expression pmode contains one or both of the
manifest constants _S_IWRITE and _S_IREAD, defined in SYS\STAT.H. When
both constants are given, they are joined with the bitwise-OR operator (I). The
pmode parameter is set to one of the following values:

_S_IWRITE Writing permitted

_S_IREAD Reading permitted

_S_IREAD I_S_IWRITE Reading and writing permitted

If write permission is not given, the file is read-only. All files are always readable; it
is impossible to give write-only permission. Thus the modes _S_IWRITE and
_S_IREAD I_S_IWRITE are equivalent. Files opened using _creat are always
opened in compatibility mode (see _sopen) with _SH_DENYNO.

_creat applies the current file-permission mask to pmode before setting the
permissions (see _umask). _creat is provided primarily for compatibility with
previous libraries. A call to _open with _O_CREAT and _O_TRUNC in the oflag
parameter is equivalent to _creat and is preferable for new code.

1* CREAT.C: This program uses _creat to create
* the file (or truncate the existing file)
* named data and open it for writing.
*1

#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>

void maine void)
{

int fh;

fh = _create "data", _S_IREAD I S IWRITE);
if(fh == -1)

perror("Couldn't create data file");
else

_creat, _ wcreat

221

_cscanf

Output

{

}
}

printf("Created data file.\n");
_close(fh);

Created data file.

See Also _chmod, _chsize, _close, _dup, _open, _sopen, _umask

cscanf
Reads formatted data from the console.

int _cscanf(const char *format [, argument] ...);

Routine Required Header Optional Headers Compatibility

_cscanf <conio.h> Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.Lffi

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_cscanf returns the number of fields that were successfully converted and assigned.
The return value does not include fields that were read but not assigned. The return
value is EOF for an attempt to read at end of file. This can occur when keyboard
input is redirected at the operating-system command-line level. A return value of 0
means that no fields were assigned.

Parameters

Remarks

222

format Format-control string

argument Optional parameters

The _cscanf function reads data directly from the console into the locations given by
argument. The _getche function is used to read characters. Each optional parameter
must be a pointer to a variable with a type that corresponds to a type specifier in
format. The format controls the interpretation of the input fields and has the same

Example

Output

form and function as the format parameter for the scanf function; for a description of
format, see scanf. While _cscanf normally echoes the input character, it does not do
so if the last call was to _ungetch.

1* CSCANF.C: This program prompts for a string
* and uses cscanf to read in the response.
* Then cscanf returns the number of items
* matched, and the program displays that number.
*1

#include <stdio.h>
#include <conio.h>

void maine void)
{

int result, i[3];

_cprintf("Enter three integers: H);
result = _cscanf("Ii %i %i", &i[0], &i[I], &i[2]);
_cpri ntf("\r\nYou entered");
while(result--)

_cprintf("%i" i[result]);
_cprintf("\r\n");

Enter three integers: 1 2 3
You entered 3 2 1

See Also _cprintf, fscanf, scanf, sscanf

ctime, wctime
Convert a time value to a string and adjust for local time zone settings.

char *ctime(const time_t *timer);
wchar _t * _ wctime(const time_t *timer);

Routine Required Header Optional Headers

ctime <time.h>

<time.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

ctime, _ wctime

223

ctime, _ wctime

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the character string result. If time
represents a date before midnight, January 1, 1970, UTC, the function returns
NULL.

Parameter

Remarks

Example

224

timer Pointer to stored time

The ctime function converts a time value stored as a time_t structure into a character
string. The timer value is usually obtained from a call to time, which returns the
number of seconds elapsed since midnight (00:00:00), January 1, 1970, coordinated
universal time (UTC). The string result produced by ctime contains exactly 26
characters and has the form:

Wed Jan 02 02:03:55 1980\n\0

A 24-hour clock is used. All fields have a constant width. The newline character
('\n') and the null character ('\0') occupy the last two positions of the string.

The converted character string is also adjusted according to the local time zone
settings. See the time, _ftime, and localtime functions for information on
configuring the local time and the _tzset function for details about defining the time
zone environment and global variables.

A call to ctime modifies the single statically allocated buffer used by the gmtime and
localtime functions. Each call to one of these routines destroys the result of the
previous call. ctime shares a static buffer with the asctime function. Thus, a call to
ctime destroys the results of any previous call to asctime, locaitime, or gmtime.

_ wctime is a wide-character version of ctime; _ wctime returns a pointer to a wide­
character string. _ wctime and ctime behave identically otherwise.

/* CTIME.C: This program gets the current
* time in time_t form, then uses ctime to
* display the time in string form.
*/

#include <time.h>
#include <stdio.h>

Output

void main(void)
{

time_t ltime:

time (& It i me):
printf("The time is %s\n", ctime(<ime)):

The time is Fri Apr 29 12:25:12 1994

See Also asctime, _ftime, gmtime, localtime, time

cwait
Waits until another process terminates.

int _cwait(int *termstat, int procHandle, int action);

Routine Required Header Optional Headers Compatibility

<process.h> <errno.h> Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
When the specified process has "successfully" completed, _cwait returns the handle
of the specified process and sets termstat to the result code returned by the specified
process. Otherwise, _cwait returns -1 and sets errno as follows.

Value

ECHILD

EINVAL

Parameters

Description

No specified process exists, procHandle is invalid, or the call to the
GetExitCodeProcess or WaitForSingleObject API failed

action is invalid

termstat Pointer to a buffer where the result code of the specified process will be
stored, or NULL

procHandle Handle to the current process or thread

3wait

225

Remarks

Example

226

action NULL: Ignored by Windows NT and Windows 95 applications; for other
applications: action code to perform on procHandle

The _cwait function waits for the termination of the process ID of the specified
process that is provided by procHandle. The value of procHandle passed to _cwait
should be the value returned by the call to the _spawn function that created the
specified process. If the process ID terminates before _cwait is called, _cwait returns
immediately. _cwait can be used by any process to wait for any other known process
for which a valid handle (procHandle) exists.

termstat points to a buffer where the return code of the specified process will be
stored. The value of termstat indicates whether the specified process terminated
"normally" by calling the Windows NT ExitProcess API. ExitProcess is called
internally if the specified process calls exit or _exit, returns from main, or reaches
the end of main. See GetExitCodeProcess for more information regarding the value
passed back through termstat. If _cwait is called with a NULL value for termstat, the
return code of the specified process will not be stored.

The action parameter is ignored by Windows NT and Windows 95 because parent­
child relationships are not implemented in these environments. Therefore, the OS/2
wait function, which allows a parent process to wait for any of its immediate children
to terminate, is not available.

/* CWAIT.C: This program launches several processes and waits
* for a specified process to finish.
*/

#include <windows.h>
#include <process.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h)

/* Macro to get a random integer within a specified range */
#define getrandom(min, max) « rand() % (int)«(max) + 1) - (min ») + (min »

struct PROCESS
{

int nPid;
char name[40];

process[4] = { {0, "Ann"}, {0, "Beth"}, {0, "Carl"}, {0, "Dave"} };

Output

void maine int argc, char *argv[])
{

}

int termstat, c;

srand((unsigned)time(NULL»; /* Seed randomizer */
/* If no arguments, this is the calling process */
if(argc === 1)
(

/* Spawn processes in numeric order */
fore c == 0; c < 4; c++)(

}

_flushall();
process[c].nPid = spawnl(_P_NOWAIT, argv[0], argv[0],

process[c].name, NULL);

/* Wait for randomly specified process, and respond when done */
c = getrandom(0, 3);
pri ntf("Come here, %s. \n", process [c]. name);
_cwait(&termstat, process[c].nPid, _WAIT_CHILD);
printf("Thank you, %s.\n", process[c].name);

/* If there are arguments, this must be a spawned process */
else
{

/* Delay for a period determined by process number */
Sleep((argv[1][0] - 'A' + 1) * 1000L);
printf("Hi, Dad. It's %s.\n", argv[1]);

Hi, Dad. It's Ann.
Come here, Ann.
Thank you, Ann.
Hi, Dad. It's Beth.
Hi, Dad. It's Carl.
Hi. Dad. It's Dave.

See Also _spawn Functions

227

difftime

difftime
Finds the difference between two times.

double difftime(time_t timerl, time_t timerO);

Routine Required Header Optional Headers

difftime <time.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
difftime returns the elapsed time in seconds, from timerO to timerl. The value
returned is a double-precision floating-point number.

Parameters

Remarks

Example

228

timerl Ending time

timerO Beginning time

The difftime function computes the difference between the two supplied time values
timerO and timerl.

1* DIFFTIME.C: This program calculates the amount of time
* needed to do a floating-point multiply 10 million times.
*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void main(void)
{

time_t start, finish;
long loop;
double result, elapsed_time;

Output

div

printf("Multiplying 2 floating point numbers 10 million times ... \n");

time(&start);
fore loop = 0; loop < 10000000; loop++)

result = 3.63 * 5.27;
time(&finish);

elapsed_time = difftime(finish. start);
printf("\nProgram takes %6.0f seconds.\n". elapsed_time);

}

Multiplying 2 floats 10 million times ...

Program takes 2 seconds.

See Also time

Computes the quotient and the remainder of two integer values.

div_t div(int numer, int denom);

Routine Required Header Optional Headers Compatibility

div <stdlib.h> ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIDC.LID

LIDCMT.LID

MSYCRT.LID

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
div returns a structure of type div _t, comprising the quotient and the remainder. The
structure is defined in STDLIB.H.

Parameters
numer Numerator

denom Denominator

div

229

Remarks

Example

Output

The div function divides numer by denom, computing the quotient and the remainder.
The div _t structure contains int quot, the quotient, and int rem, the remainder. The
sign of the quotient is the same as that of the mathematical quotient. Its absolute
value is the largest integer that is less than the absolute value of the mathematical
quotient. If the denominator is 0, the program terminates with an error message.

1* DIV.C: This example takes two integers as command-line
* arguments and displays the results of the integer
* division. This program accepts two arguments on the
* command line following the program name, then calls
* div to divide the first argument by the second.
* Finally, it prints the structure members quot and rem.
*1

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void main(int argc, char *argv[])
{

}

int x,y;
div_t div_result;

x = atoi(argv[l]);
y atoi(argv[2]);

printf("x is %d, y is %d\n", x, y);
div_result = div(x, y);
printf("The quotient is %d, and the remainder is %d\n",

div_result.quot, div_result.rem);

x is 876, y is 13
The quotient is 67, and the remainder is 5

See Also ldiv

_dup,_dup2

230

Create a second handle for an open file Ldup), or reassign a file handle Ldup2).

int_dup(int handle);
int _dup2(int handle}, int handle2);

Routine Required Header Optional Headers Compatibility

<io.h>

<io.h>

Win 95, Win NT, Win32s, 68K, PMac

Win 95, Win NT, Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_dup returns a new file handle. _dup2 returns 0 to indicate success. If an error
occurs, each function returns -1 and sets errno to EBADF if the file handle is
invalid, or to EMFILE if no more file handles are available.

Parameters

Remarks

Example

handle, handle} Handles referring to open file

handle2 Any handle value

The _dup and _dup2 functions associate a second file handle with a currently open
file. These functions can be used to associate a predefined file handle, such as that for
stdout, with a different file. Operations on the file can be carried out using either file
handle. The type of access allowed for the file is unaffected by the creation of a new
handle. _dup returns the next available file handle for the given file. _dup2 forces
handle2 to refer to the same file as handle}. If handle2 is associated with an open file
at the time of the call, that file is closed.

Both _dup and _dup2 accept file handles as parameters. To pass a stream (FILE *)
to either of these functions, use _fileno. The fileno routine returns the file handle
currently associated with the given stream. The following example shows how to
associate stderr (defined as FILE * in STDIO.H) with a handle:

cstderr = _dup(_fileno(stderr));

/* DUP.C: This program uses the variable old to save
* the original stdout. It then opens a new file named
* new and forces stdout to refer to it. Finally. it
* restores stdout to its original state.
*/

ifinclude <io.h>
ifinclude <stdlib.h>
ifinclude <stdio.h>

231

Output

232

void maine void
{

}

int old;
FI LE *new;

old = _dupe 1);

if(old ==-1
{

/* "old" now refers to "stdout" */
/* Note: file handle 1 == "stdout" */

perror("_dup(1) fai 1 ure");
exit (1);

write(old, "This goes to stdout first\r\n", 27);
if((new = fopen("data", "w")) == NULL)
{

}

puts("Can't open file 'data'\n");
exit(1);

/* stdout now refers to fil e "data" * /
if(-1 == _dup2(_fileno(new), 1))
{

perror("Can't _dup2 stdout");
exit(1);

puts("This goes to file 'data'\r\n");

/* Flush stdout stream buffer so it goes to correct file */
fflush(stdout);
fclose(new);

/* Restore original stdout */
_dup2(old, 1);
puts("This goes to stdout\n");
puts("The file 'data' contains:");
system("type data");

This goes to stdout first
This goes to file 'data'

This goes to stdout

The file 'data' contains:

This goes to file 'data'

See Also _close, _creat, _open

ecvt
Converts a double number to a string.

char * _ecvt(double value, int count, int *dec, int *sign);

Function Required Header Optional Headers

<stdlib.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

/ For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lffi

MSYCRTxODLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_ecvt returns a pointer to the string of digits. There is no error return.

Parameters

Remarks

value Number to be converted

count Number of digits stored

dec Stored decimal-point position

sign Sign of converted number

The _ecvt function converts a floating-point number to a character string. The value
parameter is the floating-point number to be converted. This function stores up to
count digits of value as a string and appends a null character ('\0'). If the number of
digits in value exceeds count, the low-order digit is rounded. If there are fewer than
count digits, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign of
value can be obtained from dec and sign after the call. The dec parameter points to
an integer value giving the position of the decimal point with respect to the beginning
of the string. A ° or negative integer value indicates that the decimal point lies to the
left of the first digit. The sign parameter points to an integer that indicates the sign of
the converted number. If the integer value is 0, the number is positive. Otherwise, the
number is negative.

_ecvt and _fcvt use a single statically allocated buffer for the conversion. Each call to
one of these routines destroys the result of the previous call.

233

_endthread, _endthreadex

Example
/* ECVT.C: This program uses ecvt to convert a
* floating-point number to a character string.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

int
char

decimal,
*buffer;

sign;

int preclslon = 10;
double source = 3.1415926535;

buffer = _ecvt(source, preclslon, &decimal, &sign);
printf("source: %2.10f buffer: 'Is' decimal: %d sign: %d\n",

source, buffer, decimal, sign);
}

Output
source: 3.1415926535 buffer: '3141592654' decimal: 1

See Also atof, _fcvt, _gcvt

_endthread, _endthreadex
void _endthread(void);
void _endthreadex(unsigned retval);

Function

_endthread

_endthreadex

Required Header

<process.h>

<process.h>

Optional Headers

sign: 0

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Return Value
None

Parameter

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

re tva 1 Thread exit code

234

Remarks

Example

The _endthread and _endthreadex functions terminate a thread created by
_beginthread or _beginthreadex, respectively. You can call_endthread or
_endthreadex explicitly to terminate a thread; however, _endthread or
_endthreadex is called automatically when the thread returns from the routine
passed as a parameter to _beginthread or _beginthreadex. Terminating a thread
with 'a call to endthread or _endthreadex helps to ensure proper recovery of
resources allocated for the thread.

Note For an executable file linked with LlBCMT.LlB, do not call the Win32 ExitThread API;
this prevents the run-time system from reclaiming allocated resources. _ endthread and
_endthreadex reclaim allocated thread resources and then call ExitThread.

_endthread automatically closes the thread handle. (This behavior differs from the
Win32 ExitThread API.) Therefore, when you use _beginthread and _endthread,
do not explicitly close the thread handle by calling the Win32 CloseHandle API.

Like the Win32 ExitThread API, _endthreadex does not close the thread handle.
Therefore, when you use _beginthreadex and _endthreadex, you must close the
thread handle by calling the Win32 CloseHandle API.

See the example for _beginthread.

See Also _beginthread

eof
Tests for end-of-file.

int _eof(int handle);

Function Required Header Optional Headers Compatibility

<io.h> <errno.h> Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

235

Return Value
_eof returns 1 if the current position is end of file, or 0 if it is not. A return value of
-1 indicates an error; in this case, errno is set to EBADF, which indicates an invalid
file handle.

Parameter

Remarks

Example

Output

236

handle Handle referring to open file

The _eof function determines whether the end of the file associated with handle has
been reached.

1* EOF.C: This program reads data from a file
* ten bytes at a time until the end of the
* file is reached or an error is encountered.
*1

f/include <io.h>
f/include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
void main(void)
{

}

int fh, count, total = 0;
char buf[10];
if((fh = _open("eof.c", _O_RDONLY» - 1)
{

}

perror("Open failed");
exit(1);

1* Cycle until end of file reached: *1
while(!_eof(fh))
{

}

1* Attempt to read in 10 bytes: *1
if((count = _read(fh, buf, 10» -1)
{

}

perror("Read error");
break;

1* Total actual bytes read *1
total += count;

printf("Number of bytes read = %d\n", total);
_close(fh);

Number of bytes read = 754

See Also ciearerr, feof, ferror, perror

_exec, _ wexec Functions

_exec, wexec Functions

Remarks

Each of the functions in this family loads and executes a new process.

_execl, _ wexecl

_execle, _ wexecle

_execlp, _ wexeclp

_execlpe, _ wexeclpe

_execv, _wexecv

_execve, _ wexecve

_execvp, _ wexecvp

_execvpe, _ wexecvpe

The letter(s) at the end of the function name determine the variation.

_exec
Function
Suffix

e

p

v

Description

envp, array of pointers to environment settings, is passed to new process.

Command-line arguments are passed individually to _exec function. Typically
used when number of parameters to new process is known in advance.

PATH environment variable is used to find file to execute.

argv, array of pointers to command-line arguments, is passed to _exec. Typically
used when number of parameters to new process is variable.

Each of the _exec functions loads and execute a new process. All_exec functions use
the same operating-system function. The _exec functions automatically handle
multi byte-character string arguments as appropriate, recognizing multibyte-character
sequences according to the multibyte code page currently in use. The _ wexec
functions are wide-character versions of the _exec functions. The _ wexec functions
behave identically to their _exec family counterparts except that they do not handle
multibyte-character strings.

When a call to an _exec function is successful, the new process is placed in the
memory previously occupied by the calling process. Sufficient memory must be
available for loading and executing the new process.

The cmdname parameter specifies the file to be executed as the new process. It can
specify a full path (from the root), a partial path (from the current working directory),
or a filename. If cmdname does not have a filename extension or does not end with a
period (.), the _exec function searches for the named file. If the search is
unsuccessful, it tries the same base name with the .COM extension and then with the
.EXE, .BAT, and .CMD extensions. If cmdname has an extension, only that extension
is used in the search. If cmdname ends with a period, the _exec function searches for
cmdname with no extension. _execIp, _execIpe, _execvp, and _execvpe search for
cmdname (using the same procedures) in the directories specified by the PATH
environment variable. If cmdname contains a drive specifier or any slashes (that is, if

237

_exec, _ wexec Functions

238

it is a relative path), the _exec call searches only for the specified file; the path is not
searched.

Parameters are passed to the new process by giving one or more pointers to character
strings as parameters in the _exec call. These character strings form the parameter
list for the new process. The combined length of the inherited environment settings
and the strings forming the parameter list for the new process must not exceed 32K
bytes. The terminating null character (, \ 0 ') for each string is not included in the
count, but space characters (inserted automatically to separate the parameters) are
counted.

The argument pointers can be passed as separate parameters (in _execl, _execle,
_execlp, and _execlpe) or as an array of pointers (in _execv, _execve, _execvp, and
_execvpe). At least one parameter, argO, must be passed to the new process; this
parameter is argv[O] of the new process. Usually, this parameter is a copy of
cmdname. (A different value does not produce an error.)

The _execl, _execle, _execlp, and _execlpe calls are typically used when the number
of parameters is known in advance. The parameter argO is usually a pointer to
cmdname. The parameters argl through argn point to the character strings forming
the new parameter list. A null pointer must follow argn to mark the end of the
parameter list.

The _execv, _execve, _execvp, and _execvpe calls are useful when the number of
parameters to the new process is variable. Pointers to the parameters are passed as an

. array, argv. The parameter argv[O] is usually a pointer to cmdname. The parameters
argv[l] through argv[n] point to the character strings forming the new parameter list.
The parameter argv[n+ 1] must be a NULL pointer to mark the end of the parameter
list.

Files that are open when an _exec call is made remain open in the new process. In
_execl, _execlp, _execv, and _execvp calls, the new process inherits the environment
of the calling process. _execle, _execlpe, _execve, and _execvpe calls alter the
environment for the new process by passing a list of environment settings through the
envp parameter. envp is an array of character pointers, each element of which (except
for the final element) points to a null-terminated string defining an environment
variable. Such a string usually has the form NAME=value where NAME is the name
of an environment variable and value is the string value to which that variable is set.
(Note that value is not enclosed in double quotation marks.) The final element of the
envp array should be NULL. When envp itself is NULL, the new process inherits the
environment settings of the calling process.

A program executed with one of the _exec functions is always loaded into memory as
if the "maximum allocation" field in the program's .EXE file header were set to the
default value of OxFFFFH. You can use the EXEHDR utility to change the maximum
allocation field of a program; however, such a program invoked with one of the _exec
functions may behave differently from a program invoked directly from the
operating-system command line or with one of the _spawn functions.

Example

_exec, _ wexec Functions

The _exec calls do not preserve the translation modes of open files. If the new
process must use files inherited from the calling process, use the _setmode routine to
set the translation mode of these files to the desired mode. You must explicitly flush
(using mush or _flushall) or close any stream before the _exec function call. Signal
settings are not preserved in new processes that are created by calls to _exec routines.
The signal settings are reset to the default in the new process.

/* EXEC.C illustrates the different versions of exec including:
* _execl execle _execlp _execlpe
* execv execve _execvp _execvpe
*
* Although EXEC.C can exec any program. you can verify how
* different versions handle arguments and environment by
* compiling and specifying the sample program ARGS.C. See
* SPAWN.C for examples of the similar spawn functions.
*/

#include <stdio.h>
#include <conio.h>
#include <process.h>

char *my_env[] =
{

} ;

"THIS=environment will be".
"PASSED=to new process by".
"the EXEC=functions".
NULL

void maine)
{

char *args[4]. prog[80];
int ch;

/* Environment for exec?e */

printf("Enter name of program to exec: ");
gets(prog);
printf("1. execl 2. execle 3. _execlp 4. _execlpe\n");
printf(" 5. _execv 6. execve 7. _execvp 8. _execvpe\n");
printf("Type a number from 1 to 8 (or 0 to quit): ");
ch = _getche();
if((ch < '1') II (ch > '8'»

exit (1);
printf("\n\n");

/* Arguments for _execv? */
args[0] prog;
args[l] "exec??";
args[2] "two";
args[3] NULL;

239

_exec, _ wexec Functions

}

switch(ch
{

case '1':
_execl(prog, prog, "_execl", "two", NULL);
break;

case '2':
_execle(prog, prog, "_execle", "two", NULL, my_env);
break;

case '3':
_execlp(prog, prog, "_execlp", "two", NULL);
break;

case '4':
_execlpe(prog, prog, "_execlpe", "two", NULL, my_env);
break;

case '5':
_execv(prog, args);
break;

case '6':
_execve(prog, args, my_env);
break;

case '7':
_execvp(prog, args);
break;

case '8':
_execvpe(prog, args, my_env);
break;

default:
break;

}

/* This point is reached only if exec fails. */
printf("\nProcess was not execed.");
exit(0);

See Also abort, atexit, exit, _onexit, _spawn Functions, system

_execl, _ wexecl
Load and execute new child processes.

int _execl(const char *cmdname, const char *argO, ... const char *argn, NULL);
int _wexecl(const wchar_t *cmdname, const wchar_t *argO, ... const wchar_t *argn, NULL);

Function Required Header Optional Headers Compatibility

_execl <process.h> <errno.h> Win 95, Win NT,
Win32s

_wexecl <process.h> or <errno.h> Win NT
<wchar.h>

240

_exec, _ wexec Functions

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LID

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES

EMFILE

ENOENT

ENOEXEC

ENOMEM

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or the
available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

Remarks

cmdname Path of file to be executed

argO, ... argn List of pointers to parameters

Each of these functions loads and executes a new process, passing each command­
line argument as a separate parameter.

See Also abort, atexit, exit, _onexit, _spawn Functions, system

241

_exec, _ wexec Functions

_execle, _ wexecle
Load and execute new child processes.

int _execle(const char *cmdname, const char *argO, ... const char *argn, NULL, const char *const
*envp);

int _ wexecle(const wchar_t *cmdname, const wchar_t *argO, ... const wchar_t *argn, NULL, const
char *const *envp);

Function Required Header Optional Headers Compatibility

_execle <process.h> <errno.h> Win 95, Win NT,
Win32s

_wexecle <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES

EMFILE

ENOENT
ENOEXEC

ENOMEM

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or the
available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

242

cmdname Path of file to execute

argO, ... argn List of pointers to parameters

envp Array of pointers to environment settings

_exec, _ wexec Functions

Remarks
Each of these functions loads and executes a new process, passing each command­
line argument as a separate parameter and also passing an array of pointers to
environment settings.

See Also abort, atexit, exit, _onexit, _spawn Functions, system

_execlp, _ wexeclp
Load and execute new child processes.

int _execIp(const char *cmdname, const char *argO, ... const char *argn, NULL);
int _wexecIp(const wchar_t *cmdname, const wchar_t *argO, ... const wchar_t *argn, NULL);

Function Required Header Optional Headers Compatibility

_execlp

_wexeclp

<process.h> <errno.h> Win 95, Win NT, Win32s

Win NT <process.h> or <wchar.h> <errno.h>

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES

EMFILE

ENOENT

ENOEXEC

ENOMEM

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or the
available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

243

_exec, _ wexec Functions

Parameters

Remarks

cmdname Path of file to execute

argO, ... argn List of pointers to parameters

Each of these functions loads and executes a new process, passing each command­
line argument as a separate parameter and using the PATH environment variable to
find the file to execute.

See Also abort, atexit, exit, _onexit, _spawn Functions, system

_execlpe, _ wexeclpe
Load and execute new child processes.

int _execlpe(const char *cmdname, const char *argO, ... const char *argn, NULL, const char
*const *envp);

int _wexeclpe(const wchar_t *cmdname, const wchar_t *argO, ... const wchar_t *argn, NULL,
const wchar_t *const *envp);

Function Required Header Optional Headers Compatibility

_execlpe <process.h> <errno.h> Win 95, Win NT,
Win32s

_wexeclpe <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

244

If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES

EMFILE

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

_exec, _ wexec Functions

errno Value

ENOENT
ENOEXEC

ENOMEM

Description

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or the
available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

Remarks

cmdname Path of file to execute

argO, ... argn List of pointers to parameters

envp Array of pointers to environment settings

Each of these functions loads and executes a new process, passing each command­
line argument as a separate parameter and also passing an array of pointers to
environment settings. These functions use the PATH environment variable to find the
file to execute.

See Also abort, atexit, exit, _onexit, _spawn Functions, system

_execv, _ wexecv
Load and execute new child processes.

int _execv(const char *cmdname, const char *const *argv);
int _wexecv(const wchar_t *cmdname, const wchar_t *const *argv);

Function Required Header Optional Headers Compatibility

- execv <process.h> <errno.h> Win 95, Win NT,
Win32s

_wexecv <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

245

_exec, _ wexec Functions

Return Value
If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES

EMFILE

ENOENT

ENOEXEC

ENOMEM

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or the
available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

Remarks

246

cmdname Path of file to execute

argv Array of pointers to parameters

Each of these functions loads and executes a new process, passing an array of
pointers to command-line arguments.

See Also abort, atexit, exit, _onexit, _spawn Functions, system

Load and execute new child processes.

int _execve(const char *cmdname, const char *const *argv, const char *const *envp);
int _wexecve(const wchar_t *cmdname, const wchar_t *const *argv, const wchar_t *const *envp);

Function

_execve

_wexecve

Required Header

<process.h>

<process.h> or
<wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT, Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

_exec, _ wexec Functions

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES
EMFILE

ENOENT
ENOEXEC

ENOMEM

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to detennine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or the
available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

Remarks

cmdname Path of file to execute

argv Array of pointers to parameters

envp Array of pointers to environment settings

Each of these functions loads and executes a new process, passing an array of
pointers to command-line arguments and an array of pointers to environment
settings.

See Also abort, atexit, exit, _onexit, _spawn Functions, system

247

_exec, _ wexec Functions

_execvp, _ wexecvp
Load and execute new child processes.

int _execvp(const char *cmdname, const char *const *argv);
int _wexecvp(const wchar_t *cmdname, const wchar_t *const *argv);

Function

_execvp

_wexecvp

Required Header

<process.h>

<process.h> or
<wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT, Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

248

If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES

EMFILE

ENOENT

ENOEXEC

ENOMEM

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or the
available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

_exec, _ wexec Functions

Parameters

Remarks

cmdname Path of file to execute

argv Array of pointers to parameters

Each of these functions loads and executes a new process, passing an array of
pointers to command-line arguments and using the PATH environment variable to
find the file to execute.

See Also abort, atexit, exit, _onexit, _spawn Functions, system

Load and execute new child processes.

int _execvpe(const char *cmdname, const char *const *argv, const char *const *envp);
int _wexecvpe(const wchar_t *cmdname, const wchar_t *const *argv, const wchar_t *const

*envp);

Function Required Header Optional Headers Compatibility

_execvpe <process.h> <errno.h> Win 95, Win NT,
Win32s

_wexecvpe <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES

EMFILE

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

249

exit, _exit

errno Value

ENOENT

ENOEXEC

ENOMEM

Description

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or the
available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

Remarks

cmdname Path of file to execute

argv Array of pointers to parameters

envp Array of pointers to environment settings

Each of these functions loads and executes a new process, passing an array of
pointers to command-line arguments and an array of pointers to environment
settings. These functions use the PATH environment variable to find the file to
execute.

See Also abort, atexit, exit, _onexit, _spawn Functions, system

exit, exit

250

Terminate the calling process after cleanup (exit) or immediately Lexit).

void exit(int status);
void _exit(int status);

Function

exit

Required Header

<process.h> or
<stdlib.h>

<process.h> or
<stdlib.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameter

Remarks

Example

status Exit status

The exit and _exit functions terminate the calling process. exit calls, in last-in-first­
out (LIFO) order, the functions registered by atexit and _onexit, then flushes all file
buffers before terminating the process. _exit terminates the process without
processing atexit or _onexit or flushing stream buffers. The status value is typically
set to ° to indicate a normal exit and set to some other value to indicate an error.

Although the exit and _exit calls do not return a value, the low-order byte of status is
made available to the waiting calling process, if one exists, after the calling process
exits. The status value is available to the operating-system batch command
ERRORLEVEL and is represented by one of two constants: EXIT_SUCCESS,
which represents a value of 0, or EXIT_FAILURE, which represents a value of l.
The behavior of exit, _exit, _cexit, and _c_exit is as follows.

Function

exit

Description

Performs complete C library termination procedures, terminates the
process, and exits with the supplied status code.

Performs "quick" C library termination procedures, terminates the
process, and exits with the supplied status code.

Performs complete C library termination procedures and returns to the
caller, but does not terminate the process.

Performs "quick" C library termination procedures and returns to the
caller, but does not terminate the process.

1* EXITER.C: This program prompts the user for a yes
* or no and returns an exit code of 1 if the
* user answers Y or y; otherwise it returns 0. The
* error code could be tested in a batch file.
*/

#include <conio.h>
#include <stdlib.h>

void main(void)
{

int ch;

exit, _exit

251

exp

exp

}

_cputs("Yes or no? ");
ch = _getch();
_cputs("\r\n");
if(toupper(ch) 'Y')

exit (1);
else

exit(0);

See Also abort, atexit, _cexit, _exec Functions, _onexit, _spawn Functions, system

Calculates the exponential.

double exp(double x);

Function Required Header

exp <math.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The exp function returns the exponential value of the floating-point parameter, x, if
successful. On overflow, the function returns INF (infinite) and on underflow, exp
returns O.

Parameter

Example

252

x Floating-point value

/* EXP.C */

#include <math.h>
#include <stdio.h>

void maine void)
{

double x = 2.302585093. y;

y = exp(x);
printf("exp(%f) - %f\n". x. y);

Output
exp(2.302585) - 10.000000

See Also log

_expand
Changes the size of a memory block.

void * _expand(void *memblock, size_t size);

Function Required Header Optional Headers

_expand <ma1loc.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

_expand returns a void pointer to the reallocated memory block. _expand, unlike
realloc, cannot move a block to change its size. Thus, if there is sufficient memory
available to expand the block without moving it, the memblock parameter to _expand
is the same as the return value.

_expand returns NULL if there is insufficient memory available to expand the block
to the given size without moving it. The item pointed to by memblock is expanded as
much as possible in its current location.

The return value points to a storage space that is guaranteed to be suitably aligned for
storage of any type of object. To check the new size of the item, use _IDsize. To get a
pointer to a type other than void, use a type cast on the return value.

Parameters
memblock Pointer to previously allocated memory block

size New size in bytes

3 xpand

253

_expand

Remarks

Example

Output

254

The _expand function changes the size of a previously allocated memory block by
trying to expand or contract the block without moving its location in the heap. The
memblock parameter points to the beginning of the block. The size parameter gives
the new size of the block, in bytes. The contents of the block are unchanged up to the
shorter of the new and old sizes. memblock can also point to a block that has been
freed, as long as there has been no intervening call to ealloe, _expand, malloe, or
realloe. If memblock points to a freed block, the block remains free after a call to
_expand.

When the application is linked with a debug version of the C run-time libraries,
_expand resolves to _expand_dbg. For more information about how the heap is
managed during the debugging process, see Chapter 4, "Debug Version of the C Run­
Time Library."

/* EXPAND.C */

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void main(void)
{

}

char *bufchar;
printf("Allocate a 512 element buffer\n");
if((bufchar = (char *)calloc(512, sizeof(char))) NULL)

ex it (1);
printf("Allocated %d bytes at %Fp\n",

_msize(bufchar), (void *)bufchar);
if((bufchar = (char *)_expand(bufchar, 1024)) NULL)

printf("Can't expand");
else

printf("Expanded block to %d bytes at %Fp\n",
_msize(bufchar), (void *)bufchar);

/* Free memory */
free(bufchar);
exit(0);

Allocate a 512 element buffer
Allocated 512 bytes at 002C12BC
Expanded block to 1024 bytes at 002C12BC

See Also ealloe, free, malloe, _msize, realloe

fabs
Calculates the absolute value of the floating-point argument.

double fabs(double x);

Function Required Header Optional Headers

fabs <math.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
fabs returns the absolute value of its argument. There is no error return.

Parameter
x Floating-point value

Example
See the example for abs.

See Also abs, _cabs, labs

fclose, fcloseall
Closes a stream (fclose) or closes all open streams Cfcloseall).

int fclose(FILE *stream);
int _fcloseall(void);

Function Required Header

fclose <stdio.h>

_fcloseall <stdio.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

fclose, _fcloseall

255

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.Lffi

MSYCRT.Lffi

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
fclose returns 0 if the stream is successfully closed. _fcloseall returns the total
number of streams closed. Both functions return EOF to indicate an error.

Parameter

Remarks

Example

stream Pointer to FILE structure

The fclose function closes stream. _fcloseall closes all open streams except stdin,
stdout, stderr (and, in MS-DOS®, _stdaux and _stdprn). It also closes and deletes
any temporary files created by tmpfile. In both functions, all buffers associated with
the stream are flushed prior to closing. System-allocated buffers are released when
the stream is closed. Buffers assigned by the user with setbuf and setvbuf are not
automatically released.

See the example for fopen.

See Also _close, _fdopen, mush, fopen, freopen

fcvt

256

Converts a floating-point number to a string.

char * _fcvt(double value, int count, int *dec, int *sign);

Function Required Header Optional Headers

<stdlib.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_fevt returns a pointer to the string of digits. There is no error return.

Parameters

Remarks

Example

value Number to be converted

count Number of digits after decimal point

dec Pointer to stored decimal-point position

sign Pointer to stored sign indicator

The _fevt function converts a floating-point number to a null-terminated character
string. The value parameter is the floating-point number to be converted. _fevt stores
the digits of value as a string and appends a null character ('\0'). The count
parameter specifies the number of digits to be stored after the decimal point. Excess
digits are rounded off to count places. If there are fewer than count digits of
precision, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign of
value can be obtained from dec and sign after the call. The dec parameter points to
an integer value; this integer value gives the position of the decimal point with
respect to the beginning of the string. A zero or negative integer value indicates that
the decimal point lies to the left of the first digit. The parameter sign points to an
integer indicating the sign of value. The integer is set to 0 if value is positive and is
set to a nonzero number if value is negative.

_eevt and _fevt use a single statically allocated buffer for the conversion. Each call to
one of these routines destroys the results of the previous call.

/* FCVT.C: This program converts the constant
* 3.1415926535 to a string and sets the pointer
* *buffer to point to that string.
*/

#include <stdlib.h>
#include <stdio.h>

257

_fdopen, _ wfdopen

Output

void main(void)
{

}

int decimal, sign;
char *buffer;
double source = 3.1415926535;

buffer = _fcvt(source, 7, &decimal, &sign);
printf("source: %2.10f buffer: 'Is' decimal: %d sign: %d\n",

source, buffer, decimal, sign);

source: 3.1415926535 buffer: '31415927' decimal: 1 sign: 0

See Also atof, _ecvt, ~cvt

_fdopen,_vvfdopen
Associate a stream with a file that was previously opened for low-level 110.

FILE * _fdopen(int handle, const char *mode);
FILE * _wfdopen(int handle, const wchar_t *mode);

Function Required Header Optional Headers

_fdopen

_wfdopen

<stdio.h>

<stdio.h> or
<wchar.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the open stream. A null pointer value
indicates an error.

Parameters
handle Handle to open file

mode Type of file access

258

Remarks
The _fdopen function associates an va stream with the file identified by handle, thus
allowing a file opened for low-level va to be buffered and formatted. _wfdopen is a
wide-character version of _fdopen; the mode argument to _ wfdopen is a wide­
character string. _ wfdopen and _fdopen behave identically otherwise.

The mode character string specifies the type of file and file access.

The character string mode specifies the type of access requested for the file, as
follows:

"r" Opens for reading. If the file does not exist or cannot be found, the fopen call
fails.

"w" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

"a" Opens for writing at the end of the file (appending); creates the file first if it
doesn't exist.

"r+" Opens for both reading and writing. (The file must exist.)

"w+" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"a+" Opens for reading and appending; creates the file first if it doesn't exist.

When a file is opened with the "a" or "a+" access type, all write operations occur at
the end of the file. The file pointer can be repositioned using fseek or rewind, but is
always moved back to the end of the file before any write operation is carried out.
Thus, existing data cannot be overwritten. When the "r+", "w+", or "a+" access
type is specified, both reading and writing are allowed (the file is said to be open for
"update"). However, when you switch between reading and writing, there must be an
intervening mush, fsetpos, fseek, or rewind operation. The current position can be
specified for the fsetpos or fseek operation, if desired.

In addition to the above values, the following characters can be included in mode to
specify the translation mode for newline characters:

t Open in text (translated) mode. In this mode, carriage retum-linefeed (CR-LF)
combinations are translated into single linefeeds (LF) on input, and LF characters
are translated to CR-LF combinations on output. Also, CTRL+Z is interpreted as an
end-of-file character on input. In files opened for reading/writing, fopen checks
for a CTRL+Z at the end of the file and removes it, if possible. This is done because
using the fseek and ftell functions to move within a file that ends with a CTRL+Z

may cause fseek to behave improperly near the end of the file.

b Open in binary (untranslated) mode; the above translations are suppressed.

c Enable the commit flag for the associated filename so that the contents of the file
buffer are written directly to disk if either mush or _flushall is called.

_fdopen, _ wfdopen

259

jdopen, _ wfdopen

Example

260

n Reset the commit flag for the associatedfilename to "no-commit." This is the
default. It also overrides the global commit flag if you link your program with
COMMODE.OBJ. The global commit flag default is "no-commit" unless you
explicitly link your program with COMMODE.OBJ.

The t, C, and n mode options are Microsoft extensions for fopen and _fdopen and
should not be used where ANSI portability is desired.

1ft or b is not given in mode, the default translation mode is defined by the global
variable _fmode. If t or b is prefixed to the argument, the function fails and returns
NULL. For a discussion of text and binary modes, see "Text and Binary Mode File
110" on page 15.

Valid characters for the mode string used in fopen and _fdopen correspond to oflag
arguments used in _open and _sopen, as follows.

Characters in
mode String

a

a+

r

r+

w

w+

b

t

c

n

Equivalent Of/8g Value for _openCsopen

_O_WRONLY I_O_APPEND (usually _O_WRONLY I_O_CREAT
I_O_APPEND)

_O_RDWR I _O_APPEND (usually _O_RDWR I _O_APPEND I
_O_CREAT)

_O_RDONLY

_O_RDWR

0 WRONLY (usually _0_ WRONLY I_O_CREAT I_O_TRUNC)

_O_RDWR (usually _O_RDWR I_O_CREAT I_O_TRUNC)

_O_BINARY

_O_TEXT

None

None

/* _FDOPEN.C: This program opens a file using low­
* 1 evel I/O, then uses _fdopen to switch to stream
* access. It counts the lines in the file.
*/

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

void main(void

Output

{

}

FILE *stream;
int fh, count 0;
char i nbuf[128];

/* Open a file handle. */
if((fh = _open("_fdopen.c", 0 RDONLY» -1)

exit(1);

/* Change handle access to stream access. */
if((stream = _fdopen(fh, "r" » == NULL)

exit(1);

whi 1 e(fgets (i nbuf, 128, stream) 1= NULL)
count++;

/* After _fdopen, close with fclose, not close. */
fclose(stream);
printf("Lines in file: %d\n", count);

Lines in file: 32

See Also _dup, fclose, fopen, freopen, _open

feof
Tests for end-of-file on a stream.

int feof(FILE *stream);

Function Required Header

feof <stdio.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

feof

261

feaf

Return Value
The feof function returns a nonzero value after the first read operation that attempts
to read past the end of the file. It returns 0 if the current position is not end of file.
There is no error return.

Parameter

Remarks

Example

262

stream Pointer to FILE structure

The feof routine (implemented both as a function and as a macro) determines
whether the end of stream has been reached. When end of file is reached, read
operations return an end-of-file indicator until the stream is closed or until rewind',
fsetpos, fseek, or clearerr is called against it.

/* FEOF.C: This program uses feof to indicate when
* it reaches the end of the file FEOF.C. It also
* checks for errors with ferror.
*/

#include <stdio.h>
#include <stdlib.h>

void maine void)
{

int count, total 0;
char buffer[100];
FILE *stream;

if((stream = fopen("feof.c", "r"))
exit(1);

/* Cycle until end of file reached: */
whil e(! feof(stream))
{

/* Attempt to read in 10 bytes: */

NULL)

count = fread(buffer, sizeof(char), 100, stream);

}

}

if(ferror(stream)) {
perror("Read error");
break;

/* Total up actual bytes read */
total += count;

pri ntf("Number of bytes read = %d\n", tota 1);
fclose(stream);

Output
Number of bytes read = 745

See Also clearerr, _eof, ferror, perror

ferror
Tests for an error on a stream.

int ferror(FILE *stream);

Function Required Header

ferror <stdio.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If no error has occurred on stream, ferror returns O. Otherwise, it returns a nonzero
value.

Parameter

Remarks

Example

stream Pointer to FILE structure

The ferror routine (implemented both as a function and as a macro) tests for a
reading or writing error on the file associated with stream. If an error has occurred,
the error indicator for the stream remains set until the stream is closed or rewound, or
until clearerr is called against it.

See the example for feof.

See Also clearerr, _eof, feof, fopen, perror

ferror

263

fflush

fflush
Flushes a stream.

int mush(FILE *stream);

Function Required Header

fflush <stdio.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LffiC.LIB

LffiCMT.Lffi

MSYCRT.Lffi

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
mush returns 0 if the buffer was successfully flushed. The value 0 is also returned in
cases in which the specified stream has no buffer or is open for reading only. A return
value of EOF indicates an error.

Note If fflush returns EOF, data may have been lost due to a write failure. When setting up a
critical error handler, it is safest to turn buffering off with the setvbuf function or to use low­
level 1/0 routines such as _open, _close, and _write instead of the stream 1/0 functions.

Parameter

Remarks

264

stream Pointer to FILE structure

The mush function flushes a stream. If the file associated with stream is open for
output, mush writes to that file the contents of the buffer associated with the stream.
If the stream is open for input, mush clears the contents of the buffer. mush negates
the effect of any prior call to ungetc against stream. Also, mush(NULL) flushes all
streams opened for output. The stream remains open after the call. mush has no
effect on an unbuffered stream.

Buffers are normally maintained by the operating system, which determines the
optimal time to write the data automatically to disk: when a buffer is full, when a
stream is closed, or when a program terminates normally without closing the stream.
The commit-to-disk feature of the run-time library lets you ensure that critical data is
written directly to disk rather than to the operating-system buffers. Without rewriting
an existing program, you can enable this feature by linking the program's object files
with COMMODE.OBJ. In the resulting executable file, calls to _flushall write the

Example

Output

contents of all buffers to disk. Only _flushall and mush are affected by
COMMODE.OBJ.

For information about controlling the commit-to-disk feature, see "Stream 110" on
page 16, fopen, and _fdopen.

1* FFLUSH.C */

#include <stdio.h>
#include <conio.h>

void main(void
{

}

int integer;
char string[81];

/* Read each word as a string. */
printf("Enter a sentence of four words with scanf: ");
for(integer = 0; integer < 4; integer++)
{

scanf("%s", string);
printf("%s\n", string);

/* You must flush the input buffer before using gets. */
fflush(stdin);
printf("Enter the same sentence with gets: ");
gets(string);
printf("%s\n", string);

Enter a sentence of four words with scanf: This is a test
This
is
a
test
Enter the same sentence with gets: This is a test
This is a test

See Also fclose, _flushall, setvbuf

fflush

265

fgetc, fgetwc, jgetchar, jgetwchar

fgetc, fgetwc, _fgetchar, _fgetwchar
Read a character from a stream (fgetc, fgetwc) or stdin Cfgetchar, _fgetwchar).

int fgetc(FILE *stream);
wint_t fgetwc(FILE *stream);
int _fgetchar(void);
wint_t _fgetwchar(void);

Function Required Header

fgetc <stdio.h>

fgetwc <stdio.h> or <wchar.h>

_fgetchar <stdio.h>

_fgetwchar <stdio.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBc.Lm

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
fgetc and _fgetchar return the character read as an int or return EOF to indicate an
error or end of file. fgetwc and _fgetwchar return, as a wint_t, the wide character
that corresponds to the character read or return WEOF to indicate an error or end of
file. For all four functions, use feof or ferror to distinguish between an error and an
end-of-file condition. For fgetc and fgetwc, if a read error occurs, the error indicator
for the stream is set.

Parameter

Remarks

266

stream Pointer to FILE structure

Each of these functions reads a single character from the current position of a file; in
the case of fgetc and fgetwc, this is the file associated with stream. The function then
increments the associated file pointer (if defined) to point to the next character. If the
stream is at end of file, the end-of-file indicator for the stream is set. Routine-specific
remarks follow.

Example

fgetc, fgetwc, _fgetchar, _fgetwchar

Routine Remarks

fgetc Equivalent to getc, but implemented only as a function, rather than as a
function and a macro.

fgetwc Wide-character version of fgetc. Reads c as a multibyte character or a
wide character according to whether stream is opened in text mode or
binary mode.

_fgetchar Equivalent to fgetc(stdin). Also equivalent to getchar, but
implemented only as a function, rather than as a function and a macro.
Microsoft-specific; not ANSI-compatible.

_fgetwchar Wide-character version of _fgetchar. Reads c as a multibyte character or
a wide character according to whether stream is opened in text mode or
binary mode. Microsoft-specific; not ANSI-compatible.

For more infonnation about processing wide characters and multibyte characters in
text and binary modes, see "Unicode Stream I/O in Text and Binary Modes" on
page 15.

/* FGETC.C: This program uses getc to read the first
* 80 input characters (or until the end of input)
* and place them into a string named buffer.
*/

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

FILE *stream;
char buffer[81];
int i, ch;

/* Open file to read line from: */
if((stream = fopen("fgetc.c", "r"))

exit(0);
NULL)

/* Read in first 80 characters and place them in "buffer": */
ch fgetc(stream);
for(i=0; (i < 80) && (feof(stream) == 0); i++)
{

}

buffer[i] (char)ch;
ch = fgetc(stream);

267

fgetpos

Output

}

/* Add null to end string */
buffer[i] = '\0';
printf("%s\n", buffer);
fclose(stream);

/* FGETC.C: This program uses getc to read the first
* 80 input characters (or

See Also fputc, getc

fgetpos
Gets a stream's file-position indicator.

int fgetpos(FILE *stream, fpos_t *pas);

Function Required Header Optional Headers

fgetpos <stdio.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, fgetpos returns O. On failure, it returns a nonzero value and sets errno
to one of the following manifest constants (defined in STDIO.H): EBADF, which
means the specified stream is not a valid file handle or is not accessible, or EINV AL,
which means the stream value is invalid.

Parameters
stream Target stream

pas Position-indicator storage

268

Remarks

Example

The fgetpos function gets the current value of the stream argument's file-position
indicator and stores it in the object pointed to by pos. The fsetpos function can later
use information stored in pos to reset the stream argument's pointer to its position at
the time fgetpos was called. The pos value is stored in an internal format and is
intended for use only by fgetpos and fsetpos.

1* FGETPOS.C: This program opens a file and reads
* bytes at several different locations.
*1

#include <stdio.h>

void main(void)
{

}

FILE *stream;
fpos_t pos;
char buffer[20];

if((stream - fopen("fgetpos.c", "rb" »
printf("Trouble opening file\n");

else
{

NULL)

1* Read some data and then check the position. */
fread(buffer, sizeof(char), 10, stream);
if(fgetpos(stream, &pos) !- 0)

perror("fgetpos error");
else
{

fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %ld: %.10s\n", pos, buffer);

}

1* Set a new position and read more data */
pos = 140;
if(fsetpos(stream, &pos) != 0)

perror("fsetpos error");

fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %ld: %.10s\n", pos, buffer);
fclose(stream);
}

fgetpos

269

fgets, fgetws

Output
10 bytes at byte 10: . C: This p
10 bytes at byte 140:
{

FIL

See Also fsetpos

fgets, fgetws
Get a string from a stream.

char *fgets(char *string, int n, FILE *stream);
wchar_t *fgetws(wchar_t *string, int n, FILE *stream);

Function

fgets

fgetws

Required Header

<stdio.h>

<stdio.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lffi

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns string. NULL is returned to indicate an error or an
end-of-file condition. Use feof or ferror to determine whether an error occurred.

Parameters

Remarks

270

string Storage location for data

n Maximum number of characters to read

stream Pointer to FILE structure

The fgets function reads a string from the input stream argument and stores it in
string. fgets reads characters from the current stream position to and including the
first newline character, to the end of the stream, or until the number of characters
read is equal to n-l, whichever comes first. The result stored in string is appended
with a null character. The newline character, if read, is included in the string.

Example

Output

fgets is similar to the gets function; however, gets replaces the newline character
with NULL. fgetws is a wide-character version of fgets.

_filelength, _filelengthi64

fgetws reads the wide-character argument string as a multibyte-character string or a
wide-character string according to whether stream is opened in text mode or binary
mode, respectively. For more information about using text and binary modes in
Unicode and multibyte stream-lIO, see "Text and Binary Mode File lIO" and
"Unicode Stream lIO in Text and Binary Modes" on page 15.

1* FGETS.C: This program uses fgets to display
* a line from a file on the screen.
*1

#include <stdio.h>

void main(void)
{

}

FILE *stream;
char line[100];

i f((stream = fopen ("fgets. c", "r" » != NULL
{

if(fgets(line, 100, stream) == NULL)
printf("fgets error\n");

else
printf("%s", line);

fclose(stream);

1* FGETS.C: This program uses fgets to display

See Also fputs, gets, puts

_filelength, _filelengthi64
Get the length of a file.

long _filelength(int handle);
__ int64 _filelengthi64(int handle);

Function Required Header

_filelength <io.h>

_filelengthi64 <io.h>

Optional
Headers

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

271

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Both _filelength and _filelengthi64 return the file length, in bytes, of the target file
associated with handle. Both functions return a value of -lL to indicate an error, and
an invalid handle sets errno to EBADF.

Parameter
handle Target file handle

Example
See the example for _chsize.

See Also _chsize, _fileno, _fstat, _fstati64, _stat, _stati64

fileno
Gets the file handle associated with a stream.

int _fileno(FILE * stream);

Function Required Header Optional Headers

<stdio.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

272

_fileno returns the file handle. There is no error return. The result is undefined if
stream does not specify an open file.

Parameter

Remarks

Example

Output

stream Pointer to FILE structure

The _fileno routine returns the file handle currently associated with stream. This
routine is implemented both as a function and as a macro. For details on choosing
either implementation, see "Choosing Between Functions and Macros" on page xii.

/* FILENO.C: This program uses _fileno to obtain
* the file handle for some standard C streams.
*/

#include <stdio.h>

void main(void
{

printf("The fil e handle for stdin is %d\n", _fileno(
printf("The fil e handle for stdout is %d\n", _fileno(
pri ntf("The fil e handle for

The file handle for stdin is 0
The file handle for stdout is 1
The file handle for stderr is 2

stderr is %d\n", _fileno(

See Also _fdopen, _filelength, fopen, freopen

stdin)) :
stdout)) :
stderr)) :

_find, wfind Functions

Remarks

These functions search for and close searches for specified filenames.

• _findclose

• _findnext, _findnexti64, _ wfindnext, _ wfindnexti64

• _findfirst, _findfirsti64, _ wfindfirst, _ wfindfirsti64

The _findfirst function provides information about the first instance of a filename
that matches the file specified in the filespec argument. Any wildcard combination
supported by the host operating system can be used infilespec. File information is
returned in a _finddata_t structure, defined in IO.H. The _finddata_t structure
includes the following elements:

unsigned attrib File attribute

time_t time_create Time of file creation (-lL for FAT file systems)

_find, _ wfind Functions

273

_find, _ wfind Functions

274

time_t time_access Time of last file access (-lL for FAT file systems)

time_t time_write Time of last write to file

_fsize_t size Length of file in bytes

char nameLMAX_FNAME] Null-terminated name of matched file/directory,
without the path

In file systems that do not support the creation and last access times of a file, such as
the FAT system, the time_create and time_access fields are always -1L.

_MAX_FNAME is defined in STDLIB.H as 256 bytes.

You cannot specify target attributes (such as _A_RDONLY) by which to limit the
find operation. This attribute is returned in the attrib field of the _finddata_t
structure and can have the following values (defined in IO.H).

_A_ARCH Archive. Set whenever the file is changed, and cleared by the BACKUP
command. Value: Ox20

_A_HIDDEN Hidden file. Not normally seen with the DIR command, unless the
/ AH option is used. Returns information about normal files as well as files with
this attribute. Value: Ox02

_A_NORMAL Normal. File can be read or written to without restriction. Value:
OxOO

_A_RDONLY Read-only. File cannot be opened for writing, and a file with the
same name cannot be created. Value: OxO 1

_A_SUBDIR Subdirectory. Value: OxlO

_A_SYSTEM System file. Not normally seen with the DIR command, unless the / A
or /A:S option is used. Value: Ox04

_findnext finds the next name, if any, that matches the filespec argument specified in
a prior call to _findfirst. The file info argument should point to a structure initialized
by a previous call to _findfirst. If a match is found, the file info structure contents are
altered as described above. _findclose closes the specified search handle and releases
all associated resources. The handle returned by _findfirst must fIrst be passed to
_findclose, before modification operations such as deleting can be performed on the
directories that form the path passed to _findfirst.

The _find functions allow nested calls. For example, if the file found by a call to
_findfirst or _findnext is a subdirectory, a new search can be initiated with another
call to _findfirst or _findnext.

_ wfindfirst and _ wfindnext are wide-character versions of _findfirst and _findnext.
The structure argument of the wide-character versions has the _ wtinddata_tdata
type, which is defined in IO.H and in WCHAR.H. The fields of this data type are the
same as those of the _finddata_t data type, except that in _ wtinddata_t the name
field is of type wchar_t rather than type char. Otherwise _wfindfirst and

Example

_find, _ wfind Functions

_ wfindnext behave identically to _findfirst and _findnext. Functions _findfirsti64,
_findnexti64, _ wfindfirsti64, and _ wfindnexti64 also behave identically except they
use and return 64-bit file lengths.

1* FFIND.C: This program uses the 32-bit _find functions to print
* a list of all files (and their attributes) with a .C extension
* in the current directory.
*1

#include <stdio.h>
11i ncl ude <i o. h>
#include <time.h>

void maine void)
{

struct _finddata t c_file;
long hFile;

1* Find first .c file in current directory *1
if((hFile = _findfirst("*.c", &c_file » == -lL)

printf("No *.c files in current directory!\n");
else
{

printf("Listing of . c files\n\n") ;

pri ntf("\nRDO HID SYS ARC FILE DATE %25c SIZE\n",
pri ntf(" - - - - - - - - - - - - %25c ----\n", ,

pri ntf(c file.attrib & _A_ RDONLY ? " Y " N ") ;

pri ntf(c file.attrib & _A_SYSTEM ? " Y " N ") ; -
pri ntf(c file.attrib & _A_HIDDEN ? " Y " N ") ;

printf(c file.attrib & _A_ARCH) ? " Y " N ") ;

pri ntf(" %-12s %.24s %9ld\n",

, ,
,

) ;

c_file.name, ctime(&(c - fil e. time_write)) , c file.size) ;

1* Find the rest of the .c files *1
while(_findnext(hFile, &c_file) == 0
{

printf(c_file.attrib & _A_RDONLY
printf(c_file.attrib & _A_SYSTEM
printf(c_file.attrib & _A_HIDDEN
printf(c file.attrib & _A_ARCH)
printf(" %-12s %.24s %9ld\n",

? " Y
? " Y
? " Y
? " Y

"N ") ;
"N ") ;
"N ") ;
"N ") ;

) ;

c_file.name, ctime(&(c_file.time_write)), c_file.size);
}

_findclose(hFile);
}

275

_find, _ wfind Functions

Output
Listing of .c files

ROO HID SYS ARC FILE

N N N Y CWAIT .C
N N N Y SPRINTF.C
N N N Y CABS.C
N N N Y BEGTHRD.C

DATE

Tue Jun 01
Thu May 27
Thu May 27
Tue Jun 01

04:07:26 1993
04:59:18 1993
04:58:46 1993
04:00:48 1993

SIZE

1611
617
359

3726

_findclose
Closes the specified search handle and releases associated resources.

int _findclose(long handle);

Function Required Header Optional Headers Compatibility

_findclose <io.h> Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, _findclose returns O. Otherwise, it returns -1 and sets errno to
ENOENT, indicating that no more matching files could be found.

Parameter
handle Search handle returned by a previous call to _findfirst

_findfirst, _findfirsti64, _ wfindfirst, _ wfindfirsti64

276

Provides information about the first instance of a filename that matches the file
specified in the filespec argument.

long _findfirst(char *filespec, struct _finddata_t *fileinfo);
__ int64 _findfirsti64(char *filespec, struct _finddata_t *fileinfo);
long _wfindfirst(wchar_t *filespec, struct _wfinddata_t *fileinfo);
__ int64 _ wfindfirsti64(wchar_t *filespec, struct _ wfinddata_t *fileinfo);

_find, _ wfind Functions

Function Required Header Optional Headers Compatibility

_findfirst

_findfirsti64

_ wfindfirst

_ wfindfirsti64

<io.h>

<io.h>

<io.h> or <wchar.h>

<io.h> or <wchar.h>

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s

Win NT

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Single thread static library, retail version

Multithread static library, retail version

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, _flndflrst and _ wflndflrst return a unique search handle identifying
the file or group of files matching the filespec specification, which can be used in a
subsequent call to _flndnext or _ wflndnext, respectively, or to _flndcIose. Otherwise,
_flndflrst and _ wflndflrst return -1 and set errno to one of the following values:

ENOENT File specification that could not be matched

EINVAL Invalid filename specification

Parameters
filespec Target file specification (may include wildcards)

file info File information buffer

_findnext, _findnexti64, _ wfindnext, _ wfindnexti64
Find the next name, if any, that matches the filespec argument in a previous call to
_flndflrst, and then alters the file info structure contents accordingly.

int _flndnext(long handle, struct _flnddata_t *fileinfo);
__ int64 _flndnexti64(long handle, struct _flnddata_t *fileinfo);
int _wflndnext(long handle, struct _wflnddata_t *fileinfo);
__ int64 _ wflndnexti64(long handle, struct _ wflnddata_t *fileinfo);

Function Required Header Optional Headers Compatibility

_findnext <io.h>

_findnexti64 <io.h>

_ wfindnext <io.h> or <wchar.h>

_ wfindnexti64 <io.h> or <wchar.h>

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s

Win NT

Win NT

277

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lffi

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, _findnext and _ wflndnext return O. Otherwise, they return -1 and set
errno to ENOENT, indicating that no more matching files could be found.

Parameters
handle Search handle returned by a previous call to _findfirst

file info File information buffer

finite
Determines whether given double-precision floating point value is finite.

int _finite(double x);

Function Required Header Optional Headers Compatibility

<float.h> Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lffi

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_finite returns a nonzero value (TRUE) if its argument x is not infinite, that is, if
-INF < x < +INF. It returns 0 (FALSE) if the argument is infinite or a NaN.

Parameter
x Double-precision floating-point value

See Also _isnan, _fpclass

278

floor
Calculates the floor of a value.

double floor(double x);

Function Required Header

floor <math.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The floor function returns a floating-point value representing the largest integer that
is less than or equal to x.There is no error return.

Parameter

Example

x Floating-point value

/* FLOOR.C: This example displays the largest integers
* less than or equal to the floating-point values 2.8
* and -2.8. It then shows the smallest integers greater
* than or equal to 2.8 and -2.8.
*/

#include <math.h>
#include <stdio.h>

void main(void
{

double y;

y = floor(2.8);
printf("The floor of 2.8 is %f\n", y);
y = floor(-2.8);
printf("The floor of -2.8 is %f\n", y);

floor

279

_flushall

Output

}

y = ceil(2.8);
printf("The ceil of 2.8 is %f\n", Y);
Y = ceil(-2.8);
printf("The ceil of -2.8 is %f\n", Y);

The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

See Also ceil, fmod

flu shall
Flushes all streams; clears all buffers.

int _flushall(void);

Function Required Header

_flushall <stdio.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

280

_flushall returns the number of open streams (input and output). There is no error
return.

By default, the _flushall function writes to appropriate files the contents of all buffers
associated with open output streams. All buffers associated with open input streams
are cleared of their current contents. (These buffers are normally maintained by the
operating system, which determines the optimal time to write the data automatically
to disk: when a buffer is full, when a stream is closed, or when a program terminates
normally without closing streams.)

If a read follows a call to _flushall, new data is read from the input files into the
buffers. All streams remain open after the call to _flushall.

The commit-to-disk feature of the run-time library lets you ensure that critical data is
written directly to disk rather than to the operating system buffers. Without rewriting
an existing program, you can enable this feature by linking the program's object files
with COMMODE.OBJ. In the resulting executable file, calls to _tlushall write the
contents of all buffers to disk. Only _tlushall and mush are affected by
COMMODE.OBJ.

For information about controlling the commit-to-disk feature, see "Stream I/O" on
page 16, fopen, and _fdopeD.

Example

Output

/ /* FLUSHALL.C: This program uses _flushall
* to flush all open buffers.
*/

#include <stdio.h>

void maine void)
{

int numflushed;

numflushed = _flushall();
printf("There were %d streams flushed\n", numflushed);

There were 3 streams flushed

See Also _commit, fclose, mush, _flushall, setvbuf

fmod
Calculates the floating-point remainder.

double fmod(double x, double y);

Function Required Header Optional Headers

fmod <math.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

Single thread static library, retail version

Multithread static library, retail version

fmod

281

fopen, _ wfopen

Libraries

MSYCRT.LIB

MSYCRTxO.DLL

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
fmod returns the floating-point remainder of x / y. If the value of y is 0.0, fmod
returns a quiet NaN. For information about representation of a quiet NaN by the
printf family, see printf.

Parameters

Remarks

Example

Output

x, y Floating-point values

The fmod function calculates the floating-point remainder f of x / y such that
x = i * y + f, where i is an integer,fhas the same sign as x, and the absolute value off
is less than the absolute value of y.

/* FMOD.C: This program displays a
* floating-point remainder.
*/

#include <math.h>
#include <stdio.h>

void main(void)
{

}

double w = -10.0, x = 3.0, y = 0.0, z;

z = fmod(x, y);
printf("The remainder of %.2f / %.2f is %f\n", w, x, z);
printf("The remainder of %.2f / %.2f is %f\n", x, y, z);

The remainder of -10.00 / 3.00 is -1.000000

See Also ceil, fabs, floor

fopen, _wfopen
Open a file.

FILE *fopen(const char *filename, const char *mode);
FILE * _ wfopen(const wchar_t *filename, const wchar_t *mode);

282

Function Required Header

fopen <stdio.h>

<stdio.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

The C, n, and t mode options are Microsoft extensions for fopen and _fdopen and
should not be used where ANSI portability is desired.

Return Value
Each of these functions returns a file handle for the opened file. A return value of -1
indicates an error, in which case errno is set to one of the following values:

EACCES Tried to open read-only file for writing, or file's sharing mode does not
allow specified operations, or given path is directory

EEXIST _O_CREAT and _O_EXCL flags specified, butfilename already exists

EINV AL Invalid oflag or pmode argument

ENOENT File or path not found

Parameters

Remarks

filename Filename

mode Type of access permitted

The fopen function opens the file specified by filename. _ wfopen is a wide-character
version of fopen; the arguments to _ wfopen are wide-character strings. _ wfopen and
fopen behave identically otherwise.

The character string mode specifies the type of access requested for the file, as
follows:

"r" Opens for reading. If the file does not exist or cannot be found, the fopen call
fails.

"w" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

"a" Opens for writing at the end of the file (appending) without removing the EOF
marker before writing new data to the file; creates the file first if it doesn't exist.

fopen, _ wfopen

283

fopen, _ wfopen

284

"r+" Opens for both reading and writing. (The file must exist.)

"w+" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"a+" Opens for reading and appending; the appending operation includes the
removal of the EOF marker before new data is written to the file and the EOF
marker is restored after writing is complete; creates the file first if it doesn't exist.

When a file is opened with the "a" or "a+" access type, all write operations occur at
the end of the file. The file pointer can be repositioned using fseek or rewind, but is
always moved back to the end of the file before any write operation is carried out.
Thus, existing data cannot be overwritten.

The "a" mode does not remove the EOF marker before appending to the file. After
appending has occurred, the MS-DOS TYPE command only shows data up to the
original EOF marker and not any data appended to the file. The "a+" mode does
remove the EOF marker before appending to the file. After appending, the MS-DOS
TYPE command shows all data in the file. The "a+" mode is required for appending
to a stream file that is terminated with the CTRL+Z EOF marker.

When the "r+", "w+", or "a+" access type is specified, both reading and writing are
allowed (the file is said to be open for "update"). However, when you switch between
reading and writing, there must be an intervening mush, fsetpos, fseek, or rewind
operation. The current position can be specified for the fsetpos or fseek operation, if
desired.

In addition to the above values, the following characters can be included in mode to
specify the translation mode for newline characters:

t Open in text (translated) mode. In this mode, CTRL+Z is interpreted as an end-of­
file character on input. In files opened for reading/writing with "a+", fopen
checks for a CTRL+Z at the end of the file and removes it, if possible. This is done
because using fseek and ftell to move within a file that ends with a CTRL+Z, may
cause fseek to behave improperly near the end of the file.

Also, in text mode, carriage retum-linefeed combinations are translated into single
linefeeds on input, and linefeed characters are translated to carriage retum-linefeed
combinations on output. When a Unicode stream-lIO function operates in text mode
(the default), the source or destination stream is assumed to be a sequence of
multibyte characters. Therefore, the Unicode stream-input functions convert
multibyte characters to wide characters (as if by a call to the mbtowc function). For
the same reason, the Unicode stream-output functions convert wide characters to
multibyte characters (as if by a call to the wctomb function).

b Open in binary (untranslated) mode; translations involving carriage-return and
linefeed characters are suppressed.

Example

If t or b is not given in mode, the default translation mode is defined by the global
variable _fmode. If t or b is prefixed to the argument, the function fails and returns
NULL.

For more information about using text and binary modes in Unicode and multibyte
stream-II0, see "Text and Binary Mode File 110" and "Unicode Stream I/O in Text
and Binary Modes" on page 15.

c Enable the commit flag for the associated filename so that the contents of the file
buffer are written directly to disk if either mush or _flushall is called.

n Reset the commit flag for the associated filename to "no-commit." This is the
default. It also overrides the global commit flag if you link your program with
COMMODE.OBJ. The global commit flag default is "no-commit" unless you
explicitly link your program with COMMODE.OBJ.

Valid characters for the mode string used in fopen and _fdopen correspond to oflag
arguments used in _open and _sopen, as follows.

Characters in
mode String

a

a+

r

r+

w

w+

b

t

c

n

Equivalent of lag Value for _openCsopen

0 WRONLY I _O_APPEND (usually _0_ WRONLY I
_O_CREAT I_O_APPEND)

_O_RDWR I _O_APPEND (usually _O_RDWR I_O_APPEND I
_O_CREAT)

_O_RDONLY

_O_RDWR

_O_WRONLY (usually _O_WRONLY I_O_CREAT I_O_TRUNC)

_O_RDWR (usually _O_RDWR I_O_CREAT I_O_TRUNC)

_O_BINARY

_O_TEXT

None

None

1* FOPEN.C: This program opens files named "data"
* and "data2".It uses fclose to close "data" and
* _fcloseall to close all remaining files.
*1

#include <stdio.h>

FILE *stream, *stream2;

void main(void)
{

int numclosed;

fopen, _ wfopen

285

jpclass

Output

}

/* Open for read (will fail if file "data" does not exist) */
if((stream = fopen("data", "r")) == NULL)

printf("The file 'data' was not opened\n"):
else

pri ntf("The fi 1 e 'data' was opened\n"):

/* Open for write */
if((stream2 = fopen("data2", "w+")) == NULL)

pri ntf("The fil e 'data2' was not opened\n"):
else

printf("The file 'data2' was opened\n"):

/* Close stream */
if(fclose(stream

printf("The file 'data' was not closed\n"):

/* All other files are closed: */
numclosed = _fcloseall():
printf("Number of files closed by _fcloseall: %u\n", numclosed);

The file 'data' was opened
The file 'data2' was opened
Number of files closed by _fcloseall: 1

See Also fclose, _fdopen, ferror, _fileno, freopen, _open, _setmode

_fpclass

286

Returns status word containing information on floating-point class.

int _fpclass(double x);

Function Required Header Optional Headers Compatibility

_fpclass <float.h> Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_fpclass returns an integer value that indicates the floating-point class of its
argument x. The status word may have one of the following values, defined in
FLOAT.H.

Value

_FPCLASS_SNAN

_FPCLASS_QNAN

_FPCLASS_NINF

_FPCLASS_NN

_FPCLASS_ND

_FPCLASS_NZ

_FPCLASS_PZ

_FPCLASS_PD

_FPCLASS_PN

_FPCLASS_PINF

Parameter

Meaning

Signaling NaN

Quiet NaN

Negative infinity (-INF)

Negative normalized non-zero

Negative denormalized

Negative zero (-0)

Positive 0 (+0)

Positive denormalized

Positive normalized non-zero

Positive infinity (+INF)

x Double-precision floating-point value

See Also _isnan

_fpieee_flt
Invokes user-defined trap handler for IEEE floating-point exceptions.

int _fpieee_flt(unsigned long exc_code, struct _EXCEPTION_POINTERS *exc_info, int
handlerLFPIEEE_RECORD *»;

Function Required Header Optional Headers Compatibility

<fpieee.h> Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

287

Return Value
The return value of _fpieee_flt is the value returned by handler. As such, the IEEE
filter routine may be used in the except clause of a structured exception-handling
(SEH) mechanism.

Parameters

Remarks

Example

288

exc_code Exception code

exc_info Pointer to the Windows NT exception information structure

handler Pointer to user's IEEE trap-handler routine

The _fpieee_flt function invokes a user-defined trap handler for IEEE floating-point
exceptions and provides it with all relevant information. This routine serves as an
exception filter in the SEH mechanism, which invokes your own IEEE exception
handler when necessary.

The _FPIEEE_RECORD structure, defined in FPIEEE.H, contains information
pertaining to an IEEE floating-point exception. This structure is passed to the user­
defined trap handler by _fpieee_flt.

_FPIEEE_RECORD Field

unsigned int RoundingMode,
unsigned int Precision

unsigned int Operation

FPIEEE VALUE OperandI,
FPIEEE VALUE Operand2,
FPIEEE VALUE Result

Description

These fields contain information on the floating-point
environment at the time the exception occurred.

Indicates the type of operation that caused the trap. If
the type is a comparison CFpCodeCompare), you can
supply one of the special
FPIEEE COMP ARE_RESULT values (as defined
in FPIEEE.H) in the Result. Value field. The
conversion type CFpCodeConvert) indicates that the
trap occurred during a floating-point conversion
operation. You can look at the OperandI and Result
types to determine the type of conversion being
attempted.

These structures indicate the types and values of the
proposed result and operands:
OperandValid Flag indicating whether the
responding value is valid.
Format Data type of the corresponding value. The
format type may be returned even if the corresponding
value is not valid.
Value Result or operand data value.

1* FPIEEE.C: This program demonstrates the implementation of
* a user-defined floating-point exception handler using the
* _fpieee_flt function.
*1

#include <fpieee.h>
#include <excpt.h>
#include <float.h>

int fpieee_handler(FPIEEE_RECORD *):

int fpieee_handler(FPIEEE_RECORD *pieee
{

II user-defined ieee trap handler routine:
II there is one handler for all
II IEEE exceptions

II Assume the user wants all invalid
II operations to return 0.

if «pieee->Cause.InvalidOperation) &&
(pieee->Result.Format == _FpFormatFp32»

pieee->Result.Value.Fp32Value = 0.0F:

return EXCEPTION_CONTINUE_EXECUTION:
}

else
return EXCEPTION_EXECUTE_HANDLER:

#define EXC_MASK \
_EM_UNDERFLOW + \
_EM_OVERFLOW + \
_EM_ZERODIVIDE + \
_EM_INEXACT

void main(void
{

I I ...

_try {

}

II unmask invalid operation exception
_controlfp(_EXC_MASK, _MCW_EM):

II code that may generate
II fp exceptions goes here

_except _fpieee_flt(GetExceptionCode(),
GetExceptionInformation(),
fpieee_handler)){

II code that gets control

289

_fpreset

II if fpieee_handler returns
II EXCEPTION_EXECUTE_HANDLER goes here

}

II
}

See Also _controlS7

_fpreset
Resets the floating-point package.

void _fpreset(void);

Function Required Header

_fpreset <float.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lffi

LmCMT.Lffi

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Remarks

Example

290

The _fpreset function reinitializes the floating-point math package. _fpreset is
usually used with signal, system, or the _exec or _spawn functions. If a program
traps floating-point error signals (SIGFPE) with signal, it can safely recover from
floating-point errors by invoking _fpreset and using longjmp.

1* FPRESET.C: This program uses signal to set up a
* routine for handling floating-point errors.
*1

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <string.h>

#pragma warning(disable 4113) /* C4113 warning expected */

jmp_buf mark; /* Address for long jump to jump to */
/* Global error number */ int fperr;

void __ cdecl fphandler(int sig, int num);
void fpcheck(void);

/* Prototypes */

void main(void)
{

double n1, n2, r;
int jmpret;
/* Unmask all floating-point exceptions. */
-,contro187(0, _MCW_EM);

/* Set up floating-point error handler. The compiler
* will generate a warning because it expects

{

* signal-handling functions to take only one argument.
*/
if(signal(SIGFPE, fphandler) == SIG_ERR

fprintf(stderr, "Couldn't set SIGFPE\n");
abort(); }

/* Save stack environment for return in case of error. First
* time through, jmpret is 0, so true conditional is executed.
* If an error occurs, jmpret will be set to -1 and false
* conditional will be executed.
*/

jmpret = setjmp(mark);
if(jmpret == 0)
{

}

printf("Test for invalid operation - ");
printf("enter two numbers: ");
scanf("Ilf Ilf", &n1, &n2);
r = n1 / n2;
/* This won't be reached if error occurs. */
printf("\n\nI4.3g / 14.3g = 14.3g\n", n1, n2, r);

r = n1 * n2;
/* This won't be reached if error occurs. */
printf("\n\n%4.3g * 14.3g = 14.3g\n", n1, n2, r);

else
fpcheck();

/* fphandler handles SIGFPE (floating-point error) interrupt. Note
* that this prototype accepts two arguments and that the
* prototype for signal in the run-time library expects a signal
* handler to have only one argument.
*

_fpreset

291

_fpreset

Output

292

* The second argument in this signal handler allows processing of
* _FPE_INVALID, _FPE_OVERFLOW, _FPE_UNDERFLOW, and
* _FPE_ZERODIVIDE, all of which are Microsoft-specific symbols
* that augment the information provided by SIGFPE. The compiler
* will generate a warning, which is harmless and expected.

*1
void fphandler(int sig, int num)
{

}

1* Set global for outside check since we don't want
* to do 1/0 in the handler.
*1

fperr = num;
1* Initialize floating-point package. *1
_fpreset();
1* Restore calling environment and jump back to setjmp. Return
* -1 so that setjmp will return false for conditional test.
*1

longjmp(mark, -1);

void fpcheck(void
{

}

char fpstr[30];
switch(fperr)
{

case FPE_INVALID:
strcpy(fpstr, "Invalid number");
break;

case FPE_OVERFLOW:
strcpy(fpstr, "Overflow");

break;
case FPE_UNDERFLOW:

strcpy(fpstr, "Underflow");
break;

case FPE_ZERODIVIDE:
strcpy(fpstr, "Divide by zero");
break;

default:

}

strcpy(fpstr, "Other floating point error");
break;

printf("Error %d: %s\n", fperr, fpstr);

Test for invalid operation - enter two numbers: 5 0
Error 131: Divide by zero

See Also _exec Functions, signal, _spawn Functions, system

fprintf, fwprintf
Print formatted data to a stream.

int fprintf(FILE *stream, const char *format [, argument] ...);
int fwprintf(FILE *stream, const wchar_t *format [, argument] ...);

Function

fprintf

fwprintf

Required Header

<stdio.h>

<stdio.h> or
<wchar.h>

Optional Headers Compatibilily

ANSI, Win 95, Win NT,
68K, PMac

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
fprintf returns the number of bytes written. fwprintf returns the number of wide
characters written. Each of these functions returns a negative value instead when an
output error occurs.

Parameters

Remarks

stream Pointer to FILE structure

format Format-control string

argument Optional arguments

fprintf formats and prints a series of characters and values to the output stream. Each
function argument (if any) is converted and output according to the corresponding
format specification informat. For fprintf, the format argument has the same syntax
and use that it has in printf.

fwprintf is a wide-character version of fprintf; in fwprintf, format is a wide­
character string. These functions behave identically otherwise.

For more information, see printf.

fprintf, fwprintf

293

fputc, fputwc, Jputchar, _fputwchar

Example

Output

/* FPRINTF.C: This program uses fprintf to format various
* data and print it to the file named FPRINTF.OUT. It
* then displays FPRINTF.OUT on the screen using the system
* function to invoke the operating-system TYPE command.
*/

#include <stdio.h>
#include <process.h>

FILE *stream;

void main(void
{

}

int i = 10;
double fp = 1.5;
char s[] = "this is a string";
char c = '\n';

stream = fopen("fprintf.out". "w");
fprintf(stream. "%s%c". s. c);
fprintf(stream. "%d\n". i);
fprintf(stream. "%f\n". fp);
fclose(stream);
system("type fprintf.out");

this is a string
10
1.500000

See Also _cprintf, fscanf, sprintf

fputc, fputwc, _fputchar, _fputwchar

294

Writes a character to a stream (fputc, fputwc) or to stdout (_fputcbar, _fputwcbar).

int fputc(int c, FILE *stream);
wint_t fputwc(wint_t c, FILE *stream);
int _fputcbar(int c);
wint_t _fputwcbar(wint_t c);

Function Required Header Optional Headers Compatibility

fputc

fputwc

<stdio.h>

<stdio.h> or
<wchar.h>

ANSI, Win 95, Win NT, Win32s,
68K,PMac

ANSI, Win 95, Win NT, Win32s

fputc, fputwc, jputchar, _fputwchar

Function

_fputchar

_fputwchar

Required Header

<stdio.h>

<stdio.h> or
<wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s, 68K,
PMac

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the character written. For fputc and _fputcbar, a
return value of EOF indicates an error. For fputwc and _fputwcbar, a return value
of WEOF indicates an error.

Parameters

Remarks

c Character to be written

stream Pointer to FILE structure

Each of these functions writes the single character c to a file at the position indicated
by the associated file position indicator (if defined) and advances the indicator as
appropriate. In the case of fputc and fputwc, the file is associated with stream. If the
file cannot support positioning requests or was opened in append mode, the character
is appended to the end of the stream. Routine-specific remarks follow.

Routine

fputc

fputwc

_fputchar

_fputwchar

Remarks

Equivalent to putc, but implemented only as a function, rather than as a
function and a macro.

Wide-character version of fputc. Writes c as a multibyte character or a
wide character according to whether stream is opened in text mode or
binary mode.

Equivalent to fputc(stdout). Also equivalent to putchar, but
implemented only as a function, rather than as a function and a macro.
Microsoft-specific; not ANSI-compatible.

Wide-character version of _fputchar. Writes c as a multibyte character
or a wide character according to whether stream is opened in text mode
or binary mode. Microsoft-specific; not ANSI-compatible.

295

fputs, fputws

Example
1* FPUTC.C: This program uses fputc and _fputchar
* to send a character array to stdout.
*1

#include <stdio.h>

void maine void)
{

char strptrl[]
char strptr2[]
char *p;

"This is a test of fputc!!\n";
"This is a test of _fputchar! !\n";

1* Print line to stream using fputc. *1
p = strptrl;
while((*p != '\0') && fputc(*(p++), stdout

1* Print line to stream using _fputchar. *1
p = strptr2;

!= EOF)

while((*p != '\0') && _fputchar(*(p++)) != EOF)

}

See Also fgetc, putc

fputs, fputws

296

Write a string to a stream.

int fputs(const char *string, FILE *stream);
int fputws(const wchar_t *string, FILE *stream);

Function

fputs

fputws

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Optional
Headers

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a nonnegative value if it is successful. On an error,
fputs returns EOF, and fputws returns WEOF.

Parameters

Remarks

Example

Output

string Output string

stream Pointer to FILE structure

Each of these functions copies string to the output stream at the current position.
fputws copies the wide-character argument string to stream as a multibyte-character
string or a wide-character string according to whether stream is opened in text mode
or binary mode, respectively. Neither function copies the terminating null character.

/* FPUTS.C: This program uses fputs to write
* a single line to the stdout stream.
*/

#include <stdio.h>

void main(void)
{

fputs("Hello world from fputs.\n", stdout);

Hello world from fputs.

See Also fgets, gets, puts, _putws

fread
Reads data from a stream.

size_t fread(void *buffer, size_t size, size_t count, FILE *stream);

Function Required Header

fread <stdio.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

fread

297

fread

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
fread returns the number of full items actually read, which may be less than count if
an error occurs or if the end of the file is encountered before reaching count. Use the
feof or ferror function to distinguish a read error from an end-of-file condition. If
size or count is 0, fread returns 0 and the buffer contents are unchanged.

Parameters

Remarks

Example

298

buffer Storage location for data

size Item size in bytes

count Maximum number of items to be read

stream Pointer to FILE structure

The fread function reads up to count items of size bytes from the input stream and
stores them in buffer. The file pointer associated with stream (if there is one) is
increased by the number of bytes actually read. If the given stream is opened in text
mode, carriage return-linefeed pairs are replaced with single linefeed characters. The
replacement has no effect on the file pointer or the return value. The file-pointer
position is indeterminate if an error occurs. The value of a partially read item cannot
be determined.

1* FREAD.C: This program opens a file named FREAD.OUT and
* writes 25 characters to the file. It then tries to open
* FREAD.OUT and read in 25 characters. If the attempt succeeds,
* the program displays the number of actual items read.
*/

#include <stdio.h>

void main(void)
{

FILE *stream;
char list[30];
int i, numread, numwritten;

1* Open file in text mode: */
if((stream - fopen("fread.out", "w+t")) I- NULL)

Output

}

for (i = 0; i < 25; i++)
list[i] = (char)('z' - i);

1* Write 25 characters to stream *1
numwritten = fwrite(list. sizeof(char). 25. stream);
printf("Wrote %d items\n". numwritten);
fclose(stream);

}

else
printf("Problem opening the file\n");

if((stream = fopen("fread.out". "r+t" » !- NULL)
{

1* Attempt to read in 25 characters *1
numread = fread(list. sizeof(char). 25. stream):
printf("Number of items read = %d\n". numread);
printf("Contents of buffer = %.25s\n". list):
fclose(stream);

else
printf("File could not be opened\n");

Wrote 25 items
Number of items read = 25
Contents of buffer = zyxwvutsrqponmlkjihgfedcb

See Also fwrite, _read

free
Deallocates or frees a memory block.

void free(void *memblock);

Function

free

Required Header

<stdlib.h> and
<malloc.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

free

299

freopen, _ wfreopen

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameter

Remarks

Example

memblock Previously allocated memory block to be freed

The free function deallocates a memory block (memblock) that was previously
allocated by a call to calloc, malloc, or realloc. The number of freed bytes is
equivalent to the number of bytes requested when the block was allocated (or
reallocated, in the case of realloc). If memblock is NULL, the pointer is ignored and
free immediately returns. Attempting to free an invalid pointer (a pointer to a
memory block that was not allocated by calloc, malloc, or realloc) may affect
subsequent allocation requests and cause errors. After a memory block has been
freed, _heapmin minimizes the amount of free memory on the heap by coalescing the
unused regions and releasing them back to the operating system. Freed memory that
is not released to the operating system is restored to the free pool and is available for
allocation again.

When the application is linked with a debug version of the C run-time libraries, free
resolves to _free_dbg. For more information about how the heap is managed during
the debugging process, see Chapter 4, "Debug Version of the C Run-Time Library."

See the example for malloc.

See Also _alloca, calloc, malloc, realloc, _free_dbg, _heapmin

freopen, _wfreopen

300

Reassign a file pointer.

FILE *freopen(const char *path, const char *mode, FILE *stream);
FILE * _ wfreopen(const wchar_t *path, const wchar_t *mode, FILE *stream);

Function Required Header

freopen <stdio.h>

_ wfreopen <stdio.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the newly opened file. If an error occurs,
the original file is closed and the function returns a NULL pointer value.

Parameters

Remarks

path Path of new file

mode Type of access permitted

stream Pointer to FILE structure

The freopen function closes the file currently associated with stream and reassigns
stream to the file specified by path. _ wfreopen is a wide-character version of
_freopen; the path and mode arguments to _ wfreopen are wide-character strings.
_ wfreopen and _freopen behave identically otherwise.

freopen is typically used to redirect the pre-opened files stdin, stdout, and stderr to
files specified by the user. The new file associated with stream is opened with mode,
which is a character string specifying the type of access requested for the file, as
follows:

"r" Opens for reading. If the file does not exist or cannot be found, the freopen call
fails.

"w" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

"a" Opens for writing at the end of the file (appending) without removing the EOF
marker before writing new data to the file; creates the file first if it does not exist.

"r+" Opens for both reading and writing. (The file must exist.)

"w+" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"a+" Opens for reading and appending; the appending operation includes the
removal of the EOF marker before new data is written to the file and the EOF
marker is restored after writing is complete; creates the file first if it does not exist.

Use the "w" and "w+" types with care, as they can destroy existing files.

freopen, _ wfreopen

301

freopen, _ wfreopen

Example

302

When a file is opened with the "a" or "a+" access type, all write operations take
place at the end of the file. Although the file pointer can be repositioned using fseek
or rewind, the file pointer is always moved back to the end of the file before any
write operation is carried out. Thus, existing data cannot be overwritten.

The "a" mode does not remove the EOF marker before appending to the file. After
appending has occurred, the MS-DOS TYPE command only shows data up to the
original EOF marker and not any data appended to the file. The "a+" mode does
remove the EOF marker before appending to the file. After appending, the MS-DOS
TYPE command shows all data in the file. The "a+" mode is required for appending
to a stream file that is terminated with the CTRL+Z EOF marker.

When the "r+", "w+", or "a+" access type is specified, both reading and writing are
allowed (the file is said to be open for "update"). However, when you switch between
reading and writing, there must be an intervening fsetpos, fseek, or rewind
operation. The current position can be specified for the fsetpos or fseek operation, if
desired. In addition to the above values, one of the following characters may be
included in the mode string to specify the translation mode for new lines.

t Open in text (translated) mode; carriage retum-linefeed (CR-LF) combinations are
translated into single linefeed (LF) characters on input; LF characters are
translated to CR-LF combinations on output. Also, CTRL+Z is interpreted as an
end-of-file character on input. In files opened for reading or for writing and
reading with "a+", the run-time library checks for a CTRL+Z at the end of the file
and removes it, if possible. This is done because using fseek and ftell to move
within a file may cause fseek to behave improperly near the end of the file. The t
option is a Microsoft extension that should not be used where ANSI portability is
desired.

b Open in binary (untranslated) mode; the above translations are suppressed.

If t or b is not given in the mode string, the translation mode is defined by the default
mode variable _fmode.

For a discussion of text and binary modes, see ''Text and Binary Mode File I/O" on
page 15.

1* FREOPEN.C: This program reassigns stderr to the file
* named FREOPEN.OUT and writes a line to that file.
*1

#include <stdio.h>
#include <stdlib.h>

FILE *stream;

void main(void

Output

}

/* Reassign "stderr" to "freopen.out": */
stream = freopen("freopen.out", "w", stderr);

if(stream == NULL)
fprintf(stdout, "error on freopen\n");

else
{

}

fprintf(stream, "This will go to the file 'freopen.out'\n");
fprintf(stdout, "successfully reassigned\n");
fclose(stream);

system("type freopen.out");

successfully reassigned
This will go to the file 'freopen.out'

See Also fclose, _fdopen, _fileno, fopen, _open, _setmode

frexp
Gets the mantissa and exponent of a floating-point number.

double frexp(double x, int *expptr);

Function Required Header Optional Headers

frexp <math.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.LID

MSVCRT.LID

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

frexp returns the mantissa. If x is 0, the function returns 0 for both the mantissa and
the exponent. There is no error return.

frexp

303

fscanf, fwscanf

Parameters

Remarks

Example

Output

x Floating-point value

expptr Pointer to stored integer exponent

The frexp function breaks down the floating-point value (x) into a mantissa (m) and
an exponent (n), such that the absolute value of m is greater than or equal to 0.5 and
less than 1.0, and x = m*2n. The integer exponent n is stored at the location pointed
to by expptr.

/* FREXP.C: This program calculates frexp(16.4, &n)
* then displays y and n.
*/

#include <math.h>
#include <stdio.h>

void main(void
{

}

double x, y;
int n;

x = 16.4;
y = frexp(x, &n);
printf("frexp(%f, &n) = %f, n = %d\n", x, y, n);

frexp(16.400000, &n) = 0.512500, n 5

See Also Idexp, modf

fscanf, fwscanf

304

Read formatted data from a stream.

int fscanf(FILE *stream, const char *format [, argument] ...);
int fwscanf(FILE *stream, const wchar_t *format [, argument] ...);

Function Required Header

fscanf <stdio.h>

fwscanf <stdio.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the number of fields successfully converted and
assigned; the return value does not include fields that were read but not assigned. A
return value of 0 indicates that no fields were assigned. If an error occurs, or if the
end of the file stream is reached before the first conversion, the return value is EOF
for fscanf or WEOF for fwscanf.

Parameters

Remarks

Example

stream Pointer to FILE structure

format Format-control string

argument Optional arguments

The fscanf function reads data from the current position of stream into the locations
given by argument (if any). Each argument must be a pointer to a variable of a type
that corresponds to a type specifier in format. format controls the interpretation of the
input fields and has the same form and function as the format argument for scanf; see
scanf for a description of format. If copying takes place between strings that overlap,
the behavior is undefined.

fwscanf is a wide-character version of fscanf; the format argument to fwscanf is a
wide-character string. These functions behave identically otherwise.

For more information, see "scanf Format Specification Fields" on page 517.

/* FSCANF.C: This program writes formatted
* data to a file. It then uses fscanf to
* read the various data back from the file.
*/

#include <stdio.h>

FI LE *stream;

void main(void
{

long 1;
fl oat fp;
char s[81];
char c;

fscanf, fwscanf

305

fseek

Output

stream = fopen("fscanf.out", "w+");
if(stream == NULL)

printf("The file fscanf.out was not opened\n"):
else
{

}

fprintf(stream, "Is %ld %f%c", "a-string",
65000, 3.14159, 'x');

/* Set pointer to beginning of file: */
fseek(stream. 0L, SEEK_SET);

/* Read data back from file: */
fscanf(stream, "Is". s);
fscanf(stream, "%ld", &1);

fscanf(stream, "If", &fp);
fscanf(stream, "%c", &c);

/* Output data read: */
printf("%s\n", s);
printf("%ld\n", 1);
printf("%f\n", fp);
printf("%c\n", c);

fclose(stream);

a-string
65000
3.141590
x

See Also _cscanf, fprintf, scanf, sscanf

fseek

306

Moves the file pointer to a specified location.

int fseek(FILE *stream, long offset, int origin);

Function Required Header Optional Headers

fseek <stdio.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, fseek returns O. Otherwise, it returns a nonzero value. On devices
incapable of seeking, the return value is undefined.

Parameters

Remarks

stream Pointer to FILE structure

offset Number of bytes from origin

origin Initial position

The fseek function moves the file pointer (if any) associated with stream to a new
location that is offset bytes from origin. The next operation on the stream takes place
at the new location. On a stream open for update, the next operation can be either a
read or a write. The argument origin must be one of the following constants, defined
in STDIO.H:

SEEK_CUR Current position of file pointer

SEEK_END End of file

SEEK_SET Beginning of file

You can use fseek to reposition the pointer anywhere in a file. The pointer can also
be positioned beyond the end of the file. fseek clears the end-of-file indicator and
negates the effect of any prior ungetc calls against stream.

When a file is opened for appending data, the current file position is determined by
the last I/O operation, not by where the next write would occur. If no I/O operation
has yet occurred on a file opened for appending, the file position is the start of the
file.

For streams opened in text mode, fseek has limited use, because carriage return­
linefeed translations can cause fseek to produce unexpected results. The only fseek
operations guaranteed to work on streams opened in text mode are:

• Seeking with an offset of 0 relative to any of the origin values.

• Seeking from the beginning of the file with an offset value returned from a call to
ftell.

Also in text mode, CTRL+Z is interpreted as an end-of-file character on input. In files
opened for reading/writing, fopen and all related routines check for a CTRL+Z at the
end of the file and remove it if possible. This is done because using fseek and ftell to

fseek

307

fseek

Example

Output

308

move within a file that ends with a CTRL+Z may cause fseek to behave improperly
near the end of the file.

/* FSEEK.C: This program opens the file FSEEK.OUT and
* moves the pointer to the file's beginning.
*/

#include <stdio.h>

void main(void)
{

}

FILE *stream;
char line[81J;
int result;

stream = fopen("fseek.out", "w+");
if(stream == NULL)

printf("The file fseek.out was not opened\n");
else
{

}

fprintf(stream, "The fseek begins here: "
"This is the file 'fseek.out'.\n");

result = fseek(stream, 23L, SEEK_SET);
if(result)

perror("Fseek failed");
el se
{

}

printf("File painter is set to middle of first line.\n");
fgets(line, 80, stream);
printf("%s", line);

fclose(stream);

File pointer is set to middle of first line.
This is the file 'fseek.out'.

See Also ftell, _lseek, rewind

fsetpos
Sets the stream-position indicator.

int fsetpos(FILE * stream, const fpos_t *pas);

Function Required Header Optional Headers

fsetpos <stdio.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCR TxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, fsetpos returns o. On failure, the function returns a nonzero value and
sets errno to one of the following manifest constants (defined in ERRNO.H):
EBADF, which means the file is not accessible or the object that stream points to is
not a valid file handle; or EINVAL, which means an invalid stream value was
passed.

Parameters

Remarks

Example

stream Pointer to FILE structure

pas Position-indicator storage

The fsetpos function sets the file-position indicator for stream to the value of pas,
which is obtained in a prior call to fgetpos against stream. The function clears the
end-of-file indicator and undoes any effects of ungetc on stream. After calling
fsetpos, the next operation on stream may be either input or output.

See the example for fgetpos.

See Also fgetpos

fsetpos

309

_fsopen, _ wfsopen

_fsopen, _wfsopen
Open a stream with file sharing.

FILE * _fsopen(const char *filename, const char *mode, int shflag);
FILE * _wfsopen(const wchar_t *filename, const wchar_t *mode, int shflag);

Function Required Header

_fsopen <stdio.h>

_wfsopen <stdio.h> or <wchar.h>

1 For manifest constant for shflag parameter.

Optional Headers

<share.h>l

<share.h>l

Compatibility

Win 95, Win NT, Win32s,
68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the stream. A NULL pointer value
indicates an error.

Parameters

Remarks

310

filename Name of file to open

mode Type of access permitted

shflag Type of sharing allowed

The _fsopen function opens the file specified by filename as a stream and prepares
the file for subsequent shared reading or writing, as defined by the mode and shflag
arguments. _ wfsopen is a wide-character version of _fsopen; the filename and mode
arguments to _ wfsopen are wide-character strings. _ wfsopen and _fsopen behave
identically otherwise.

The character string mode specifies the type of access requested for the file, as
follows:

"r" Opens for reading. If the file does not exist or cannot be found, the _fsopen call
fails.

"w" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

"a" Opens for writing at the end of the file (appending); creates the file first if it
does not exist.

"r+" Opens for both reading and writing. (The file must exist.)

"w+" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"a+" Opens for reading and appending; creates the file first if it does not exist.

Use the "w" and "w+" types with care, as they can destroy existing files.

When a file is opened with the "a" or "a+" access type, all write operations occur at
the end of the file. The file pointer can be repositioned using fseek or rewind, but is
always moved back to the end of the file before any write operation is carried out.
Thus existing data cannot be overwritten. When the "r+", "w+", or "a+" access
type is specified, both reading and writing are allowed (the file is said to be open for
"update"). However, when switching between reading and writing, there must be an
intervening fsetpos, fseek, or rewind operation. The current position can be specified
for the fsetpos or fseek operation, if desired. In addition to the above values, one of
the following characters can be included in mode to specify the translation mode for
new lines:

t Opens a file in text (translated) mode. In this mode, carriage return-linefeed (CR­
LF) combinations are translated into single linefeeds (LF) on input and LF
characters are translated to CR-LF combinations on output. Also, CTRL+Z is
interpreted as an end-of-file character on input. In files opened for reading or
reading/writing, _fsopen checks for a CTRL+Z at the end of the file and removes it,
if possible. This is done because using fseek and ftell to move within a file that
ends with a CTRL+Z may cause fseek to behave improperly near the end of the file.

b Opens a file in binary (untranslated) mode; the above translations are suppressed.

If t or b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. If t or b is prefixed to the argument, the function fails and returns
NULL. For a discussion of text and binary modes, see "Text and Binary Mode File
I/O" on page 15.

The argument shflag is a constant expression consisting of one of the following
manifest constants, defined in SHARE.H:

_SH_COMPAT Sets Compatibility mode for 16-bit applications

_SH_DENYNO Permits read and write access

_SH_DENYRD Denies read access to file

_SH_DENYRW Denies read and write access to file

_SH_DENYWR Denies write access to file

_fsopen, _ wfsopen

311

_fstat, _fstati64

Example

Output

/* FSOPEN.C:
*/

#include <stdio.h>
#include <stdlib.h>
#include <share.h>

void main(void)
{

}

FILE *stream;

/* Open output file for writing. Using _fsopen allows us to
* ensure that no one else writes to the file while we are
* writing to it.
*/

if((stream - _fsopen("outfile", "wt", _SH_DENYWR » !- NULL
{

}

fprintf(stream, "No one else in the network can write"
"to this file until we are done.\n");

fclose(stream);

/* Now others can write to the file while we read it. */
system("type outfile");

No one else in the network can write to this file until we are done.

See Also fclose, _fdopen, ferror, _fileno, fopen, freopen, _open, Jetmode,
_sopen

_fstat, _fstati64

312

Get information about an open file.

int _fstat(int handle, struct _stat *buffer);
_int64 _fstati64(int handle, struct _stat *buffer);

Function

_fstati64

Required Header

<sys/stat.h> and
<sys/types.h>

<sys/stat.h> and
<sys/types.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LlB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_fstat and _fstati64 return 0 if the file-status information is obtained. A return value
of -1 indicates an error, in which case errno is set to EBADF, indicating an invalid
file handle.

Parameters

Remarks

Example

handle Handle of open file

buffer Pointer to structure to store results

The _fstat function obtains information about the open file associated with handle
and stores it in the structure pointed to by buffer. The _stat structure, defined in
SYS\STAT.H, contains the following fields:

st_atime Time of last file access.

st_ctime Time of creation of file.

sCdev If a device, handle; otherwise O.

sCmode Bit mask for file-mode information. The _S_IFCHR bit is set if handle
refers to a device. The _S_IFREG bit is set if handle refers to an ordinary file.
The read/write bits are set according to the file's permission mode. _S_IFCHR
and other constants are defined in SYS\STAT.H.

sCmtime Time of last modification of file.

st_nlink Always 1 on non-NTFS file systems.

st_rdev If a device, handle; otherwise o.
st_size Size of the file in bytes.

If handle refers to a device, the st_atime, st_ctime, and st_mtime and sCsize fields
are not meaningful.

Because STAT.H uses the _dev_t type, which is defined in TYPES.H, you must
include TYPES.H before STAT.H in your code.

1* FSTAT.C: This program uses _fstat to report
* the size of a file named F_STAT.OUT.
*1

_fstat, _fstati64

313

ftell

Output

1fi ncl ude <i o. h>
#include <fcntl.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void main(void
{

struct _stat buf;
int fh. result;
char buffer[] = "A line to output";

}

if((fh = _open("f_stat.out". _O_CREAT I _O_WRONLY
_O_TRUNC » == -1)

_write(fh. buffer. strlen(buffer));

1* Get data associated with "fh": */
result = _fstat(fh. &buf);

1* Check if statistics are valid: *1
if(result != 0)

printf("Bad file handle\n");
else
{

printf("Fi 1 e size %ld\n". buf.st_size);

pri ntf("Time modified Is". ctime(&buf.st_ctime));
}
_close(fh) ;

File size 0
Time modified Tue Mar 21 15:23:08 1995

See Also _access, _chmod, _filelength, _stat

ftell

314

Gets the current position of a file pointer.

long ftell(FILE * stream);

Function Required Header Optional Headers

ftell <stdio.h> <errno.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
ftell returns the current file position. The value returned by ftell may not reflect the
physical byte offset for streams opened in text mode, because text mode causes
carriage return-linefeed translation. Use ftell with fseek to return to file locations
correctly. On error, ftell returns -IL and errno is set to one of two constants, defined
in ERRNO.H. The EBADF constant means the stream argument is not a valid file­
handle value or does not refer to an open file. EINVAL means an invalid stream
argument was passed to the function. On devices incapable of seeking (such as
terminals and printers), or when stream does not refer to an open file, the return
value is undefined.

Parameter

Remarks

Example

stream Target FILE structure

The ftell function gets the current position of the file pointer (if any) associated with
stream. The position is expressed as an offset relative to the beginning of the stream.

Note that when a file is opened for appending data, the current file position is
determined by the last 110 operation, not by where the next write would occur. For
example, if a file is opened for an append and the last operation was a read, the file
position is the point where the next read operation would start, not where the next
write would start. (When a file is opened for appending, the file position is moved to
end of file before any write operation.) If no 110 operation has yet occurred on a file
opened for appending, the file position is the beginning of the file.

In text mode, CTRL+Z is interpreted as an end-of-file character on input. In files
opened for reading/writing, fopen and all related routines check for a CTRL+Z at the
end of the file and remove it if possible. This is done because using ftell and fseek to
move within a file that ends with a CTRL+Z may cause ftell to behave improperly near
the end of the file.

/* FTELL.C: This program opens a file named FTELL.C
* for reading and tries to read 100 characters. It
* then uses ftell to determine the position of the
* file pointer and displays this position.
*/

ftell

315

jtime

Output

#include <stdio.h>

FILE *stream;

void main(void
{

}

long position;
char list[100];
if((stream = fopen("ftell.c". "rb" » != NULL)
{

}

1* Move the pointer by reading data: */
fread(list. sizeof(char). 100. stream);
1* Get position after read: */
position = ftell(stream);
printf("Position after trying to read 100 bytes: %ld\n".

position);
fclose(stream);

Position after trying to read 100 bytes: 100

See Also fgetpos, fseek, _Iseek, _tell

ftime

316

Gets the current time.

void _ftime(struct _timeb *timeptr);

Function Required Header

<sys/types.h> and
<sys/timeb.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_ftime does not return a value, but fills in the fields of the structure pointed to by
timeptr.

Parameter

Remarks

Example

Output

timeptr Pointer to _timeb structure

The _ftime function gets the current local time and stores it in the structure pointed
to by timeptr. The _timeb structure is defined in SYS\TIMEB.H. It contains four
fields:

dstflag Nonzero if daylight savings time is currently in effect for the local time zone.
(See _tzset for an explanation of how daylight savings time is determined.)

millUm Fraction of a second in milliseconds.

time Time in seconds since midnight (00:00:00), January 1, 1970, coordinated
universal time (UTC).

timezone Difference in minutes, moving westward, between UTC and local time.
The value of timezone is set from the value of the global variable _timezone (see
_tzset).

1* FTIME.C: This program uses _ftime to obtain the current
* time and then stores this time in timebuffer.
*1

#include <stdio.h)
#include <sys/timeb.h>
#include <time.h>

void main(void)
{

}

struct _timeb timebuffer;
char *timeline;

ftime(&timebuffer);
timeline = ctime(& (timebuffer.time));

printf("The time is %.19s.%hu Is". timeline. timebuffer.millitm. &timeline[20]);

The time is Tue Mar 21 15:26:41.341 1995

See Also asctime, ctime, gmtime, localtime, time

317

_fullpath, _ wfullpath

_fullpath, _wfullpath
Create an absolute or full path name for the specified relative path name.

char * _fullpath(char *absPath, const char *relPath, size_t maxLength);
wchar_t * _wfullpath(wchar_t *absPath, const wchar_t *relPath, size_t maxLength);

Function Required Header Optional Headers Compatibility

_fullpath

_wfullpath

<stdlib.h>

<stdlib.h> or
<wchar.h>

Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.LIB

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to a buffer containing the absolute path
name (absPath). If there is an error (for example, if the value passed in relPath
includes a drive letter that is not valid or cannot be found, or if the length of the
created absolute path name (absPath) is greater than maxLength) the function returns
NULL.

Parameters

Remarks

318

absPath Pointer to a buffer containing the absolute or full path name

relPath Relative path name

maxLength Maximum length of the absolute path name buffer (absPath)

The _fullpath function expands the relative path name in relPath to its fully qualified
or "absolute" path, and stores this name in absPath. A relative path name specifies a
path to another location from the current location (such as the current working
directory: "."). An absolute path name is the expansion of a relative path name that
states the entire path required to reach the desired location from the root of the file
system. Unlike _makepath, _fullpath can be used to obtain the absolute path name
for relative paths (relPath) that include "./" or " . ./" in their names.

For example, to use C run-time routines, the application must include the header files
that contain the declarations for the routines. Each header file include statement

Example

references the location of the file in a relative manner (from the application's
working directory):

#include <stdlib.h>

when the absolute path (actual filesystem location) of the file may be:

\\machine\shareName\msvcSrc\crt\headerFiles\stdlib.h

_fullpath automatically handles multi byte-character string arguments as appropriate,
recognizing multi byte-character sequences according to the multi byte code page
currently in use. _ wfullpath is a wide-character version of _fullpath; the string
arguments to _ wfullpath are wide-character strings. _ wfullpath and _fullpath
behave identically except that _ wfullpath does not handle multibyte-character
strings.

If the absPath buffer is NULL, _fullpath calls malloc to allocate a buffer of size
_MAX_PATH and ignores the maxLength argument. It is the caller's responsibility
to deallocate this buffer (using free) as appropriate. If the relPath argument specifies
a disk drive, the current directory of this drive is combined with the path.

/* FULLPATH.C: This program demonstrates how _fullpath
* creates a full path from a partial path.
*/

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <direct.h>

void main(void
{

}

while(1)
{

printf("Enter partial path or ENTER to quit: ");
gets(part);
if(part[0] == 0)

break;

if(_fullpath(full, part, _MAX_PATH) != NULL
printf("Full path is: %s\n", full);

else
printf("Invalid path\n");

See Also _getcwd, _getdcwd, _makepath, _splitpath

_fullpath, _ wfullpath

319

futime
Sets modification time on an open file.

int _futime(int handle, struct _utimbuf *filetime);

Function Required Header Optional Headers

_futime <sys/utime.h> <errno.h>

Compatibility

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_futime returns 0 if successful. If an error occurs, this function returns -1 and ermo
is set to EBADF, indicating an invalid file handle.

Parameters

Remarks

Example

320

handle Handle to open file

file time Pointer to structure containing new modification date

The _futime routine sets the modification date and the access time on the open file
associated with handle. _futime is identical to _utime, except that its argument is the
handle to an open file, rather than the name of a file or a path to a file. The _utimbuf
structure contains fields for the new modification date and access time. Both fields
must contain valid values.

/* FUTIME.C: This program uses _futime to set the
* file-modification time to the current time.
*1

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
Ilinclude <io.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/utime.h>

Output

void main(void)
{

}

int hFile;

/* Show file time before and after. */
system("dir futime.c");

hFile = _open("futime.c". _O_RDWR);

if(_futime(hFile. NULL) == -1
perror("_futime failed\n");

else
printf("File time modified\n");

close (hFile);

system("dir futime.c");

Volume in drive C is CDRIVE
Volume Serial Number is 1D37-7A7A

Directory of C:\code

05/03/95 01:30p 601 futime.c
601 bytes

16.269.312 bytes free
1 File(s)

Volume in drive C is CDRIVE
Volume Serial Number is 1D37-7A7A

Directory of C:\code

05/03/95 01:36p
1 File(s)

File time modified

601 futime.c
601 bytes

16.269.312 bytes free

fwrite
Writes data to a stream.

size_t fwrite(const void *buffer, size_t size, size_t count, FILE *stream);

Function Required Header

fwrite <stdio.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

fwrite

321

~cvt

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
fwrite returns the number of full items actually written, which may be less than count
if an error occurs. Also, if an error occurs, the file-position indicator cannot be
determined.

Parameters

Remarks

Example

buffer Pointer to data to be written

size Item size in bytes

count Maximum number of items to be written

stream Pointer to FILE structure

The fwrite function writes up to count items, of size length each, from buffer to the
output stream. The file pointer associated with stream (if there is one) is incremented
by the number of bytes actually written. If stream is opened in text mode, each
carriage return is replaced with a carriage-return-linefeed pair. The replacement has
no effect on the return value.

See the example for fread.

See Also fread, _write

_gcvt

322

Converts a floating-point value to a string, which it stores in a buffer.

char * ~cvt(double value, int digits, char *buffer);

Routine Required Header

~cvt <stdlib.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_gcvt returns a pointer to the string of digits. There is no error return.

Parameters

Remarks

Example

value Value to be converted

digits Number of significant digits stored

buffer Storage location for result

The _gcvt function converts a floating-point value to a character string (which
includes a decimal point and a possible sign byte) and stores the string in buffer. The
buffer should be large enough to accommodate the converted value plus a terminating
null character, which is appended automatically. If a buffer size of digits + 1 is used,
the function overwrites the end of the buffer. This is because the converted string
includes a decimal point and can contain sign and exponent information. There is no
provision for overflow. _gcvt attempts to produce digits digits in decimal format. If it
cannot, it produces digits digits in exponential format. Trailing zeros may be
suppressed in the conversion.

1* GCVT.C: This program converts -3.1415e5
* to its string representation.
*1

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char buffer[50]:
double source = -3.1415e5:
_gcvt< source. 7, buffer):
printf("source: %f buffer: '%s'\n", source, buffer):
_gcvt(source, 7, buffer):
printf("source: %e buffer: '%s'\n", source, buffer);

~cvt

323

getc, getwc, getchar, getwchar

Output
source: -314150.000000 buffer: '-314150.'
source: -3.141500e+005 buffer: '-314150.'

See Also atof, _eevt, _fevt

getc, getwc, getchar, getwchar
Read a character from a stream (gete, getwe), or get a character from stdin (getehar,
getwehar).

int gete(FILE *stream);
wint_t getwe(FILE *stream);
int getchar(void);
wint_t getwehar(void);

Routine Required Header

getc <stdio.h>

getwc <stdio.h> or
<wchar.h>

getchar <stdio.h>

getwchar <stdio.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.LIB

LmCMT.Lm

MSVCRT.Lffi

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the character read. To indicate an read error or end­
of-file condition, gete and getehar return EOF, and getwe and getwehar return
WEOF. For gete and getehar, use ferror or feofto check for an error or for end of
file.

Parameter
stream Input stream

324

Remarks

Example

Output

getc, getwc, getchar, getwchar

Each of these routines reads a single character from a file at the current position and
increments the associated file pointer (if defined) to point to the next character. In the
case of getc and getwc, the file is associated with stream (see "Choosing Between
Functions and Macros" on page xii). Routine-specific remarks follow.

Routine

getc

getwc

getchar

getwchar

Remarks

Same as tg~tc, but implemented as a function and as a macro.

Wide-character version of getc. Reads a multibyte character or a wide character
according to whether stream is opened in text mode or binary mode.

Same as _fgetchar, but implemented as a function and as a macro.

Wide-character version of getchar. Reads a multibyte character or a wide
character according to whether stream is opened in text mode or binary mode.

/* GETC.C: This program uses getchar to read a single line
* of input from stdin, places this input in buffer, then
* terminates the string before printing it to the screen.
*/

#include <stdio.h>

void main(void)
{

char buffer[81];
int i, ch;

printf("Enter a line: ");

/* Read in single line from "stdin": */
for(·i = 0; (i < 80) && «ch = getchar(» != EOF)

&& (c h ! = '\ n '); i ++)
buffer[i] (char)ch;

/* Terminate string with null character: */
buffer[i] = '\0';
printf("%s\n", buffer);

Enter a line: This ;s a test
This is a test

See Also fgetc, _getch, putc, ungetc

325

~etch, ~etche

_getch, _getche
Get a character from the console without echo Cgetch) or with echo Cgetche).

int ~etch(void);
int _getche(void);

Routine Required Header

<conio.h>

_getcbe <conio.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

Example

326

Both _getch and _getche return the character read. There is no error return.

The _getch function reads a single character from the console without echoing.
_getche reads a single character from the console and echoes the character read.
Neither function can be used to read CTRL+C. When reading a function key or an
arrow key, _getch and _getche must be called twice; the first call returns ° or OxEO,
and the second call returns the actual key code.

/* GETCH.C: This program reads characters from
* the keyboard until it receives a 'V' or 'y'.
*/

#include <conio.h>
#include <ctype.h>

void main(void)
{

int ch;

_cputs("Type 'V' when finished typing keys: ");
do

Output

}

ch = _getch();
ch = toupper(ch);

} while(ch 1= 'V');

_putch(ch);
_putch('\r');
_putch('\n');

1* Carriage return *1
1* Line feed *1

Type 'V' when finished typing keys: Y

See Also _cgets, getc, _ungetch

_getcwd, _wgetcwd
Get the current working directory.

char * ~etcwd(char *buffer, int maxlen);
wchar_t * _wgetcwd(wchar_t *buffer, int maxlen);

Routine Required Header Optional Headers

~etcwd <direct.h>

_wgetcwd <direct.h> or <wchar.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.LIB

MSYCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Each of these functions returns a pointer to buffer. A NULL return value indicates an
error, and errno is set either to ENOMEM, indicating that there is insufficient
memory to allocate maxlen bytes (when a NULL argument is given as buffer), or to
ERANGE, indicating that the path is longer than maxlen characters.

Parameters
buffer Storage location for path

maxlen Maximum length of path

_getcwd, _ wgetcwd

327

~etcwd, _ wgetcwd

Remarks

Example

Output

328

The _getcwd function gets the full path of the current working directory for the
default drive and stores it at buffer. The integer argument maxlen specifies the
maximum length for the path. An error occurs if the length of the path (including the
terminating null character) exceeds maxlen. The buffer argument can be NULL; a
buffer of at least size maxlen (more only if necessary) will automatically be allocated,
using malloc, to store the path. This buffer can later be freed by calling free and
passing it the ~etcwd return value (a pointer to the allocated buffer).

_getcwd returns a string that represents the path of the current working directory. If
the current working directory is the root, the string ends with a backslash (\). If the
current working directory is a directory other than the root, the string ends with the
directory name and not with a backslash.

_ wgetcwd is a wide-character version of ~etcwd; the buffer argument and return
value of _ wgetcwd are wide-character strings. _ wgetcwd and ~etcwd behave
identically otherwise.

II GETCWD. C
/* This program places the name of the current directory in the
* buffer array, then displays the name of the current directory
* on the screen. Specifying a length of _MAX_PATH leaves room
* for the longest legal path name.
*/

#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

void main(void)
{

}

1* Get the current working directory: */
if(_getcwd(buffer, _MAX_PATH) == NULL

perror("_getcwd error");
else

printf("%s\n", buffer);

C:\code

See Also _chdir, _mkdir, _rmdir

~etdcwd, _ wgetdcwd

_getdcwd, _wgetdcwd
Get full path name of current working directory on the specified drive.

char * ~etdcwd(int drive, char *buffer, int maxlen);
wchar_t * _wgetdcwd(int drive, wchar_t *buffer, int maxlen);

Routine

_getdcwd

_wgetdcwd

Required Header

<direct.h>

<direct.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns buffer. A NULL return value indicates an error, and
errno is set either to ENOMEM, indicating that there is insufficient memory to
allocate maxlen bytes (when a NULL argument is given as buffer), or to ERANGE,
indicating that the path is longer than maxlen characters.

Parameters

Remarks

drive Disk drive

buffer Storage location for path

maxlen Maximum length of path

The _getdcwd function gets the full path of the current working directory on the
specified drive and stores it at buffer. An error occurs if the length of the path
(including the terminating null character) exceeds maxlen. The drive argument
specifies the drive (0 = default drive, 1 = A, 2 = B, and so on). The buffer argument
can be NULL; a buffer of at least size maxlen (more only if necessary) will
automatically be allocated, using malloc, to store the path. This buffer can later be
freed by calling free and passing it the _getdcwd return value (a pointer to the
allocated buffer).

~etdcwd returns a string that represents the path of the current working directory. If
the current working directory is set to the root, the string ends with a backslash (\).
If the current working directory is set to a directory other than the root, the string
ends with the name of the directory and not with a backslash.

329

~etdrive

Example

_ wgetdcwd is a wide-character version of _getdcwd; the buffer argument and return
value of _ wgetdcwd are wide-character strings. _ wgetdcwd and ~etdcwd behave
identically otherwise.

See the example for _getdrive.

See Also _chdir, ~etcwd, ~etdrive, _mkdir, _rmdir

_getdrive
Gets the current disk drive.

int _getdrive(void);

Routine Required Header

~etdrive <direct.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.LIB

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

hnport library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Example

330

~etdrive returns the current (default) drive (1=A, 2=B, and so on). There is no error
return.

1* GETDRIVE.C illustrates drive functions including:
* _getdrive chdrive _getdcwd
*/

#include <stdio.h>
#include <conio.h>
#include <direct.h>
#include <stdlib.h>
#include <ctype.h>

void main(void)

Output

int ch. drive. curdrive;
static char path[_MAX_PATH];

/* Save current drive. */
curdrive = _getdrive();

printf("Available drives are: \n");

/* If we can switch to the drive. it exists. */
fore drive = 1; drive <- 26; drive++)

if(l_chdrive(drive))
printf("%c: ". drive + 'A' - 1);

while(1)
{

}

printf("\nType drive letter to check or ESC to quit: ");
ch = _getch();
if(ch == 27)

break;
if(isalpha(ch))

_putch(ch);
if(_getdcwd(toupper(ch) - 'A' + 1. path. _MAX_PATH) 1= NULL

printf("\nCurrent directory on that drive is %s\n". path);

/* Restore original drive.*/
chdrive(curdrive);

pri ntf("\n");

Available drives are:
A: B: C: L: M: 0: U: V:
Type drive letter to check or ESC to quit: c
Current directory on that drive is C:\CODE

Type drive letter to check or ESC to quit: m
Current directory on that drive is M:\

Type drive letter to check or ESC to quit:

See Also _chdrive, ~etcwd, ~etdcwd

~etdrive

331

getenv, _ wgetenv

getenv, _wgetenv
Get a value from the current environment.

char *getenv(const char *varname);
wchar_t * _wgetenv(const wchar_t *varname);

Routine Required Header Optional Headers Compatibility

getenv <stdlib.h> ANSI, Win 95, Win NT,
Win32s, 68K, PMac

_wgetenv <stdlib.h> or Win 95, Win NT,
<wchar.h> Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBc.Lm

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the environment table entry containing
varname. It is not safe to modify the value of the environment variable using the
returned pointer. Use the _putenv function to modify the value of an environment
variable. The return value is NULL if varname is not found in the environment table.

Parameter

Remarks

332

varname Environment variable name

The getenv function searches the list of environment variables for varname. getenv is
not case sensitive in Windows NT and Windows 95. getenv and _putenv use the copy
of the environment pointed to by the global variable _environ to access the
environment. getenv operates only on the data structures accessible to the run-time
library and not on the environment "segment" created for the process by the
operating system. Therefore, programs that use the envp argument to main or wmain
may retrieve invalid information. For more information on wmain, see "Using
wmain" in C Language Reference.

_ wgetenv is a wide-character version of getenv; the argument and return value of
_ wgetenv are wide-character strings. The _ wenviron global variable is a wide­
character version of _environ.

Example

In an MBCS program (for example, in an SBCS ASCII program), _ wenviron is
initially NULL because the environment is composed of multibyte-character strings.
Then, on the first call to _wputenv, or on the first call to _wgetenv if an (MBCS)
environment already exists, a corresponding wide-character string environment is
created and is then pointed to by _ wenviron.

Similarly in a Unicode Cwmain) program, _environ is initially NULL because the
environment is composed of wide-character strings. Then, on the first call to
_putenv, or on the first call to getenv if a (Unicode) environment already exists, a
corresponding MBCS environment is created and is then pointed to by _environ.

When two copies of the environment (MBCS and Unicode) exist simultaneously in a
program, the run-time system must maintain both copies, resulting in slower
execution time. For example, whenever you call_putenv, a call to _ wputenv is also
executed automatically, so that the two environment strings correspond.

Caution In rare instances, when the run-time system is maintaining both a Unicode version
and a multibyte version of the environment, these two environment versions may not
correspond exactly. This is because, although any unique multibyte-character string maps to a
unique Unicode string, the mapping from a unique Unicode string to a multibyte-character
string is not necessarily unique. For more information, see "_environ, _wenviron" on page 42.

To check or change the value of the TZ environment variable, use getenv, _putenv
and _tzset as necessary. For more information about TZ, see _tzset and see
"_daylight, timezone, and _tzname" on page 40.

1* GETENV.C: This program uses getenv to retrieve
* the LIB environment variable and then uses
* _putenv to change it to a new value.
*1

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char *libvar;

1* Get the value of the LIB environment variable. *1
libvar - getenv("LIB");

if(libvar 1- NULL)
printf("Original LIB variable is: %s\n", libvar);

getenv, _ wgetenv

333

~etmbcp

Output

}

/* Attempt to change path. Note that this only affects the environment
* variable of the current process. The command processor's environment
* is not changed.
*/

_putenv("LIB=c:\\mylib;c:\\yourlib");

/* Get new value. */
libvar=getenv("LIB");

if(libvar != NULL)
printf("New LIB variable is: %s\n", libvar);

Original LIB variable is: C:\MSDEV
New LIB variable is: c:\mylib;c:\yourlib

See Also _putenv·

_getmhcp
int _getmhcp(void);

Routine Required Header Optional Headers Compatibility

~etmbcp <mbctype.h> Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

334

_getmbcp returns the current multibyte code page. A return value of 0 indicates that
a single byte code page is in use.

See Also _setmhcp

_get_ostbandle
Gets operating-system file handle associated with existing stream FILE pointer.

long ~et_osfbandle(intfilehandle);

Routine Required Header

~eCosfbandle <io.h>

Optional
Headers

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, ~et_osfbandle returns an operating-system file handle corresponding
tofilehandle. Otherwise, it returns -1 and sets errno to EBADF, indicating an
invalid file handle.

Parameter

Remarks

file handle User file handle

The ~et_osfbandle function returns filehandle if it is in range and if it is internally
marked as free.

See Also _close, _creat, _dup, _open

_getpid
Gets the process identification.

int _getpid(void);

Routine Required Header

_getpid <process.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

335

gets, getws

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.Lffi

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

Example

Output

_getpid returns the process ID obtained from the system. There is no error return.

The _getpid function obtains the process ID from the system. The process ID
uniquely identifies the calling process.

/* GETPIO.C: This program uses _getpid to obtain
* the process IO and then prints the IO.
*/

#include <stdio.h>
#include <process.h>

void main(void)
{

}

/* If run from command line, shows different IO for
* command line than for operating system shell.
*/

printf("\nProcess id: %d\n", _getpid());

Process i d: 193

See Also _mktemp

gets, getws

336

Get a line from the stdin stream.

char *gets(char *buffer);
wchar_t *getws(wchar_t *buffer);

Routine

gets

getws

Required Header

<stdio.h>

<stdio.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns its argument if successful. A NULL pointer indicates
an error or end-of-file condition. Use ferror or feof to determine which one has
occurred.

Parameter

Remarks

Example

. Output

buffer Storage location for input string

The gets function reads a line from the standard input stream stdin and stores it in
buffer. The line consists of all characters up to and including the first newline
character ('\n'). gets then replaces the newline character with a null character ('\0')
before returning the line. In contrast, the fgets function retains the newline character.
getws is a wide-character version of gets; its argument and return value are wide­
character strings.

1* GETS.C *1

#include <stdio.h>

void main(void)
{

char line[81];

printf("Input a string: ");
gets(line);
printf("The line entered was: %s\n", line);

Input a string: Hello!
The line entered was: Hello!

See Also fgets, fputs, puts

gets, getws

337

~etw

_getw
Gets an integer from a stream.

int _getw(FILE *stream);

Routine Required Header

~etw <stdio.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.LIB

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_getw returns the integer value read. A return value of EOF indicates either an error
or end of file. However, because the EOF value is also a legitimate integer value, use
feof or ferror to verify an end-of-file or error condition.

Parameter

Remarks

Example

338

stream Pointer to FILE structure

The _getw function reads the next binary value of type int from the file associated
with stream and increments the associated file pointer (if there is one) to point to the
next unread character. ~etw does not assume any special alignment of items in the
stream. Problems with porting may occur with ~etw because the size of the int type
and the ordering of bytes within the int type differ across systems.

/* GETW.C: This program uses _getw to read a word
* from a stream, then performs an error check.
*/

#include <stdio.h>
#include <stdlib.h>

void maine void)
{

FILE *stream;
i nt i;

Output

}

if((stream = fopen("getw.c", "rb")) == NULL)
printf("Couldn't open file\n");

else
{

/* Read a word from the stream: */
i = _getw(stream);

/* If there is an error ... */
if(ferror(stream))
{

pri ntf("_getw fail ed\n");
clearerr(stream);

else
printf("First data word in file: 0x%.4x\n",);

fclose(stream);

First data word in file: 0x47202a2f

See Also _putw

gmtime
Converts a time value to a structure.

struct tm *gmtime(const time_t *timer);

Routine Required Header Optional Headers

gmtime <time.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

gmtime returns a pointer to a structure of type tm. The fields of the returned
structure hold the evaluated value of the timer argument in UTC rather than in local
time. Each of the structure fields is of type int, as follows:

gmtime

339

gmtime

tm_sec Seconds after minute (0-59)

tm_min Minutes after hour (0-59)

tm_hour Hours since midnight (0-23)

tm_mday Day of month (1-31)

tm_mon Month (0-11; January = 0)

tm--year Year (current year minus 1900)

tm_ wday Day of week (0-6; Sunday = 0)

tm--yday Day of year (0-365; January 1 = 0)

tm_isdst Always 0 for gmtime

The gmtime, mktime, and localtime functions use the same single, statically
allocated structure to hold their results. Each call to one of these functions destroys
the result of any previous call. If timer represents a date before midnight, January 1,
1970, gmtime returns NULL. There is no error return.

Parameter

Remarks

Example

340

timer Pointer to stored time. The time is represented as seconds elapsed since
midnight (00:00:00), January 1, 1970, coordinated universal time (UTe).

The gmtime function breaks down the timer value and stores it in a statically
allocated structure of type tm, defined in TIME.H. The value of timer is usually
obtained from a call to the time function.

Note The target environment should try to determine whether daylight savings time is in effect.

/* GMTIME.C: This program uses gmtime to convert a long­
* integer representation of coordinated universal time
* to a structure named newtime. then uses asctime to
* convert this structure to an output string.
*/

#include <time.h>
#include <stdio.h>

void main(void)
{

struct tm *newtime;
long 1 time;

time(<ime);

Output

1* Obtain coordinated universal time: *1
newtime = gmtime(<ime);
printf("Coordinated universal time is %s\n",

asctime(newtime));

Coordinated universal time is Tue Mar 23 02:00:56 1993

See Also asctime, ctime, _ftime, locaitime, mktime, time

_he ap add
Adds memory to the heap.

int _heapadd(void *memblock, size_t size);

Routine Required Header Optional Headers Compatibility

_heapadd <malloc.h> <errno.h> 68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, _heapadd returns 0; otherwise, the function returns -1 and sets errno
toENOSYS.

Parameters

Remarks

memblock Pointer to heap memory

size Size in bytes of memory to add

The _heapadd function adds an unused piece of memory to the heap.

Note In Visual C++ Version 4.0, the underlying heap structure has been moved to the C run­
time libraries to support the new debugging features. As a result, _heapadd is no longer
supported on any Win32 platform and will immediately return -1 when called from an
application of this type.

See Also free, _heapchk, _heapmin, _heapset, _heapwalk, malloc, realloc

_heapadd

341

_heapchk

_heapchk
Runs consistency checks on the heap.

int _heapchk(void);

Routine Required Header

_heapchk <ma11oc.h>

Optional Headers Compatibility

<errno.h> Win NT, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LID

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

Example

342

_heapchk returns one of the following integer manifest constants defined in
MALLOC.H:

_HEAPBADBEGIN Initial header information is bad or cannot be found

_HEAPBADNODE Bad node has been found or heap is damaged

_HEAPBADPTR Pointer into heap is not valid

_HEAPEMPTY Heap has not been initialized

_HEAPOK Heap appears to be consistent

In addition, if an error occurs, _heapchk sets errno to ENOSYS.

The _heapchk function helps debug heap-related problems by checking for minimal
consistency of the heap.

Note In Visual C++ Version 4.0, the underlying heap structure has been moved to the C run­
time libraries to support the new debugging features. As a result, the only Win32 platform that
is supported by _heapchk is Windows NT. The function returns _HEAPOK and sets errno to
ENOSYS, when it is called by any other Win32 platform.

1* HEAPCHK.C: This program checks the heap for
* consistency and prints an appropriate message.
*/

#include <malloc.h>
#include <stdio.h>

Output

void main(void)
{

}

int heapstatus;
char *buffer;

/* Allocate and deallocate some memory */
if((buffer = (char *)malloc(100 » != NULL

free(buffer);

/* Check heap status */
heapstatus = _heapchk();
switch(heapstatus)
{

case _HEAPOK:
printf(" OK - heap is fine\n");
break;

case _HEAPEMPTY:
printf(" OK - heap is empty\n");
break;

case _HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;

case _HEAPBADNODE:

}

printf("ERROR - bad node in heap\n");
break;

OK - heap is fine

See Also _heapadd, _heapmin, _heapset, _heapwalk

_he apmi n
Releases unused heap memory to the operating system.

int _heapmin(void);

Routine Required Header Optional Headers

_heaprnin <malloc.h> <errno.h>

Compatibility

Win NT, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

_heapmin

343

_heapset

Libraries

LfflC.Lffl

LfflCMT.Lffl

MSYCRT.Lffl

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

If successful, _heapmin returns 0; otherwise, the function returns -1 and sets errno
toENOSYS.

The _heapmin function minimizes the heap by releasing unused heap memory to the
operating system.

Note In Visual C++ Version 4.0, the underlying heap structure has been moved to the C run­
time libraries to support the new debugging features. As a result, the only Win32 platform that
is supported by _heapmin is Windows NT. The function returns -1 and sets errno to
ENOSYS, when it is called by any other Win32 platform.

See Also free, _heapadd, _heapchk, _heapset, _heapwalk, malloc

_heap set
Checks heaps for minimal consistency and sets the free entries to a specified value.

int _heapset(unsigned intfill);

Routine Required Header Optional Headers Compatibility

_heapset <malloc.h> <errno.h> Win NT, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LfflC.Lffl

LfflCMT.Lffl

MSYCRT.Lffl

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

344

_beapset returns one of the following integer manifest constants defined in
MALLOC.H:

_HEAPBADBEGIN Initial header information invalid or not found

_HEAPBADNODE Heap damaged or bad node found

_HEAPEMPTY Heap not initialized

_HEAPOK Heap appears to be consistent

In addition, if an error occurs, _heapset sets errno to ENOSYS.

Parameter

Remarks

Example

fill Fill character

The _heapset function shows free memory locations or nodes that have been
unintentionally overwritten.

_heapset checks for minimal consistency on the heap, then sets each byte of the
heap's free entries to the/ill value. This known value shows which memory locations
of the heap contain free nodes and which contain data that were unintentionally
written to freed memory.

Note In Visual C++ Version 4.0, the underlying heap structure has been moved to the C run­
time libraries to support the new debugging features. As a result, the only Win32 platform that
is supported by _heapset is Windows NT. The function returns _HEAPOK and sets errno to
ENOSYS, when it is called by any other Win32 platform.

/* HEAPSET.C: This program checks the heap and
* fills in free entries with the character 'Z'.
*/

#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

void main(void)
{

int heapstatus;
char *buffer;

if((buffer = malloc(1» NULL) /* Make sure heap is */
exit(0); /* initialized */

heapstatus = _heapset('Z'); /* Fill in free entries */
switch(heapstatus)
{

case HEAPOK:
printf("OK - heap is fine\n");
break;

case HEAPEMPTY:
printf("OK - heap is empty\n");
break;

case HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;

_heapset

345

_heapwalk

Output

}

case _HEAPBADNODE:

}

printf("ERROR bad node in heap\n");
break;

free(buffer);

OK - heap is fine

See Also _heap add, _heapchk, _heapmin, _heapwalk

_heapwalk
Traverses the heap and returns information about the next entry.

int _heapwalk(_HEAPINFO *entryinfo);

Routine Required Header Optional Headers Compatibility

_heapwalk <malloc.h> <errno.h> Win NT, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBc.Lm

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

346

_heapwalk returns one of the following integer manifest constants defined in
MALLOC.H:

_HEAPBADBEGIN Initial header information invalid or not found

_HEAPBADNODE Heap damaged or bad node found

_HEAPBADPTR _pentry field of _HEAPINFO structure does not contain valid
pointer into heap

_HEAPEND End of heap reached successfully

_HEAPEMPTY Heap not initialized

_HEAPOK No errors so far; _HEAPINFO structure contains information about
next entry.

In addition, if an error occurs, _heapwalk sets errno to ENOSYS.

Parameter

Remarks

Example

entryinfo Buffer to contain heap information

The _heapwalk function helps debug heap-related problems in programs. The
function walks through the heap, traversing one entry per call, and returns a pointer
to a structure of type _HEAPINFO that contains information about the next heap
entry. The _HEAPINFO type, defined in MALLOC.H, contains the following
elements:

int * _pentry Heap entry pointer

size_t _size Size of heap entry

int _useflag Flag that indicates whether heap entry is in use

A call to _heapwalk that returns _HEAPOK stores the size of the entry in the _size
field and sets the _useflag field to either _FREEENTRY or _USEDENTRY (both
are constants defined in MALLOC.H). To obtain this information about the first entry
in the heap, pass _heapwalk a pointer to a _HEAPINFO structure whose _pentry
member is NULL.

Note In Visual C++ Version 4.0, the underlying heap structure has been moved to the C run­
time libraries to support the new debugging features. As a result, the only Win32 platform that
is supported by _heapwalk is Windows NT. The function returns _HEAPOK and sets errno to
ENOSYS, when it is called by any other Win32 platform.

/* HEAPWALK.C: This program "walks" the heap, starting
* at the beginning (_pentry = NULL). It prints out each
* heap entry's use, location, and size. It also prints
* out information about the overall state of the heap as
* soon as _heapwalk returns a value other than _HEAPOK.
*/

#include <stdio.h>
#include <malloc.h>

void heapdump(void);

void main(void)
{

char *buffer;

heapdump();
if((buffer = malloc(59 » != NULL)
{

}

heapdump();
free(buffer);

heapdump();

_heapwalk

347

_heapwalk

Output

348

void heapdump(void
{

}

_HEAPINFO hinfo;
int heapstatus;
hinfo._pentry = NULL;
while((heapstatus = _heapwalk(&hinfo)) == _HEAPOK)
{ printf("%6s block at %Fp of size %4.4X\n".

}

(hinfo._useflag == _USEDENTRY ? "USED" : "FREE").
hinfo._pentry. hinfo._size);

switch (heapstatus
{

case HEAPEMPTY: -
printf("OK - empty heap\n");
break;

case _HEAPEND:
printf("OK - end of heap\n");
break;

case _HEAPBADPTR:
printf("ERROR - bad pointer to heap\n");
break;

case _HEAPBADBEGIN:
pri ntf("ERROR - bad start of heap\n");
break;

case _HEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;

}

USED block at 002C0004 of size 0014
USED block at 002C001C of size 0054
USED block at 002C0074 of size 0024
USED block at 002C009C of size 0010
USED block at 002C00B0 of size 0018
USED block at 002C00CC of size 000C
USED block at 002C00DC of size 001C
USED block at 002C00FC of size 0010
USED block at 002C0110 of size 0014
USED block at 002C0128 of size 0010
USED block at 002C013C of size 0028
USED block at 002C0168 of size 0088
USED block at 002C01F4 of size 001C
USED block at 002C0214 of size 0014
USED block at 002C022C of size 0010
USED block at 002C0240 of size 0014
USED block at 002C0258 of size 0010
USED block at 002C026C of size 000C
USED block at 002C027C of size 0010
USED block at 002C0290 of size 0014
USED block at 002C02A8 of size 0010

USED block at 002C02BC of size 0010
USED block at 002C02D0 of size 1000
FREE block at 002C12D4 of size ED2C

OK - end of heap

See Also _heapadd, _heapchk, _heapmin, _heapset

_hypot
Calculates the hypotenuse.

double _hypot(double x, double y);

Routine Required Header

<math.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_hypot returns the length of the hypotenuse if successful or INF (infinity) on
overflow. The errno variable is set to ERANGE on overflow. You can modify error
handling with _matherr.

Parameters

Remarks

Example

x, y Floating-point values

The _hypot function calculates the length of the hypotenuse of a right triangle, given
the length of the two sides x and y. A call to _hypot is equivalent to the square root of
X2 + y2.

1* HVPOT.C: This program prints the
* hypotenuse of a right triangle.
*/

#include <math.h>
#include <stdio.h>

349

Output

void main(void)
{

double x = 3.0, y = 4.0;

printf("If a right triangle has sides %2.1f and %2.1f, "
"its hypotenuse is %2.1f\n", x, y, _hypot(x, Y);

}

If a right triangle has sides 3.0 and 4.0, its hypotenuse is 5.0

See Also _cabs, _matherr

_inp, _inpw, _inpd
Input a byte Linp), a word Linpw), or a double word (_inpd) from a port.

int _inp(unsigned short port);
unsigned short _inpw(unsigned short port);
unsigned long _inpd(unsigned short port);

Routine Required Header Optional Headers

_inp

_inpw

Jnpd

<conio.h>

<conio.h>

<conio.h>

Compatibility

Win 95, Win32s

Win 95, Win32s

Win 95, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The functions return the byte, word, or double word read from port. There is no error
return.

Parameter
port Port number

350

Remarks
The _inp, _inpw, and _inpd functions read a byte, a word, and a double word,
respectively, from the specified input port. The input value can be any unsigned short
integer in the range 0-65,535.

See Also _outp

IS, isw Routines

Remarks

v

isalnum, iswalnum

isalpha, iswalpha

__ isascii, iswascii

iscntrl, iswcntrl

__ iscsym, __ iscsymf

isdigit, iswdigit

isgraph, iswgraph

islower, iswlower

isprint, iswprint

ispunct, iswpunct

isspace, iswspace

isupper, iswupper

isxdigit, iswxdigit

iswctype

These routines test characters for specified conditions.

The is routines produce meaningful results for any integer argument from -1 (EOF)
to UCHAR_MAX (OxFF), inclusive. The expected argument type is int.

Warning For the is routines, passing an argument of type char may yield unpredictable
results. An SBCS or MBCS single-byte character of type char with a value greater than Ox7F is
negative. If a char is passed, the compiler may convert the value to a signed int or a signed
long. This value may be sign-extended by the compiler, with unexpected results.

The isw routines produce meaningful results for any integer value from -1 (WEOF)
to OxFFFF, inclusive. The winet data type is defined in WCHAR.H as an unsigned
short; it can hold any wide character or the wide-character end-of-file (WEOF)
value.

For each of the is routines, the result of the test for the specified condition depends on
the LC_CTYPE category setting of the current locale; see setlocale for more
infonnation. In the "C" locale, the test conditions for the is routines are as follows:

isalnum Alphanumeric (A-Z, a-z, or 0-9)

isalpha Alphabetic (A-Z or a-z)

__ is ascii ASCII character (OxOO-Ox7F)

iscntrI Control character (OxOO-OxlF or Ox7F)

__ iscsym Letter, underscore, or digit

is, isw Routines

351

is, isw Routines

352

__ iscsymf Letter or underscore

isdigit Decimal digit (0-9)

isgraph Printable character except space ()

islower Lowercase letter (a-z)

isprint Printable character including space (Ox20-0x7E)

ispunct Punctuation character

isspace White-space character (Ox09-0xOD or Ox20)

isupper Uppercase letter (A - Z)

isxdigit Hexadecimal digit (A-F, a-f, or 0-9)

For the isw routines, the result of the test for the specified condition is independent of
locale. The test conditions for the isw functions are as follows:

iswalnum iswalpha or iswdigit

iswalpha Any wide character that is one of an implementation-defined set for which
none of iswcntrl, iswdigit, iswpunct, or iswspace is true. iswalpha returns true
only for wide characters for which iswupper or iswlower is true.

iswascii Wide-character representation of ASCII character (OxOOOO-Ox007F).

iswcntrl Control wide character.

iswctype Character has property specified by the desc argument. For each valid
value of the desc argument of iswctype, there is an equivalent wide-character
classification routine, as shown in the following table:

Table R.2 Equivalence of iswctype(c, desc) to Other isw Testing Routines

Value of desc Argument iswctype(c, desc) Equivalent

_ALPHA

_ALPHA I _DIGIT

_CONTROL

_DIGIT

_ALPHA I _DIGIT I _PUNCT

_LOWER

_ALPHA I _BLANK I _DIGIT I _PUNCT

_PUNCT

_SPACE

_UPPER

_HEX

iswalpba(c)

iswalnum(c)

iswcntrl(c)

iswdigit(c)

iswgrapb(c)

iswlower(c)

iswprint(c)

iswpunct(c)

iswspace(c)

iswupper(c)

iswxdigit(c)

iswdigit Wide character corresponding to a decimal-digit character.

iswgraph Printable wide character except space wide character (L' I).

Example

iswlower Lowercase letter, or one of implementation-defined set of wide characters
for which none of iswcntrl, iswdigit, iswpunct, or iswspace is true. iswlower
returns true only for wide characters that correspond to lowercase letters.

iswprint Printable wide character, including space wide character (L' ').

iswpunct Printable wide character that is neither space wide character (L' ') nor
wide character for which iswalnum is true.

iswspace Wide character that corresponds to standard white-space character or is
one of implementation-defined set of wide characters for which iswalnum is false.
Standard white-space characters are: space (L' '), formfeed (L '\f'), newline
(L' \n '), carriage return (L' \r '), horizontal tab (L ' \ t '), and vertical tab (L' \v ').

iswupper Wide character that is uppercase or is one of an implementation-defined
set of wide characters for which none of iswcntrl, iswdigit, iswpunct, or iswspace
is true. iswupper returns true only for wide characters that correspond to
uppercase characters.

iswxdigit Wide character that corresponds to a hexadecimal-digit character.

1* ISFAM.C: This program tests all characters between 0x0
* and 0x7F, then displays each character with abbreviations
* for the character-type codes that apply. The output has
* been abridged to save space.

#include <stdio.h>
#include <ctype.h>

void main(void)
{

int ch;
for(ch = 0; ch <= 0x7F; ch++
{

printf("%.2x " ch) ; ,
printf(" %c", isprint(ch
pri ntf("%45", i5alnum(ch
pri ntf("%35", i5alpha(ch
printf("%3s", _isascii(
printf("%3s", i scntrl (ch

ch
)

pri ntf("%3s" , _iscsym(ch
printf("%3s", _iscsymf(ch
printf("%3s", isdigit(ch)

printf("%3s", isgraph(ch)

printf("%3s", islower(ch)

printf("%3s", ispunct(ch)

printf("%3s", isspace(ch)

printf("%3s", isprint(ch)

pri ntf("%3s" , ;supper(ch)

printf("%3s", isxdigit(ch
printf("\n") ;

}

? ch '\0 ') ;

? "AN" "") ;

? "An "") ;

? "AS" : "") ;

? "C" "") ;
) ? "CS " : "n) ;

) ? "CSF" : "") ;

? "0") ;

? "G") ;

? ilL") ;

? "PU") ;

? "S") ;

? "PR") ;

? "un) ;
) ? "X") ;

is, isw Routines

353

is, isw Routines

Output
00
01
02

20
21
22

30 0 AN
31 1 AN
32 2 AN

AS
AS
AS

AS CS
AS CS
AS CS

3f? AS
40 @ AS
41 A AN A AS CS CSF

7d }
7e
7f

AS
AS

G
G

o G
o G
o G

G
G
G

G
G

See Also setlocale, to Functions

S PR
PU PR
PU PR

PU
PU

PR
PR
PR

PR
PR

x
X
X

PR U X

PU
PU

PR
PR

isalnum, iswalnum

354

int isalnum(int c);
int iswalnum(wint_t c);

Each of these routines returns true if c is a particular representation of an
alphanumeric character.

Routine

isalnum

iswalnum

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Single thread static library, retail version

Multithread static library, retail version

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
isalnum returns a non-zero value if either isalpha or isdigit is true for c, that is, if c
is within the ranges A-Z, a-z, or 0-9. iswalnum returns a non-zero value if either
iswalpha or iswdigit is true for c. Each of these routines returns 0 if c does not
satisfy the test condition.

The result of the test condition for the isalnum function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswalnum, the result of the test condition is independent of locale.

Parameter
c Integer to test

isalpha, iswalpha
int isalpha(int c);
int iswalpha(wint_t c);

Each of these routines returns true if c is a particular representation of an alphabetic
character.

Routine

isalpha

iswalpha

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

isalpha returns a non-zero value if c is within the ranges A-Z or a-z. iswalpha
returns a non-zero value only for wide characters for which iswupper or iswlower is

is, isw Routines

355

is, isw Routines

true, that is, for any wide character that is one of an implementation-defined set for
which none of iswcntrl, iswdigit, iswpunct, or iswspace is true. Each of these
routines returns 0 if c does not satisfy the test condition.

The result of the test condition for the isalpba function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswalpha, the result of the test condition is independent of locale.

Parameter
c Integer to test

. .
__ lSaSCll, lSWaSCll

int __ isascii(int c);
int iswascii(wint_t c);

Each of these routines returns true if c is a particular representation of an ASCII
character.

Routine

__ isascii

iswascii

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LID

LIBCMT.LIB

MSVCRT.LID

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
__ isascii returns a non-zero value if c is an ASCII character (in the range OxOO­
Ox7F). iswascii returns a non-zero value if c is a wide-character representation of an
ASCII character. Each of these routines returns 0 if c does not satisfy the test
condition.

The result of the test condition for the __ isascii function depends on the
LC_CTYPE category setting of the current locale; see setlocale for more
information. For iswascii, the result of the test condition is independent of locale.

Parameter
c Integer to test

356

iscntrl, iswcntrl
int iscntrl(int c);
int iswcntrl(wint_t c);

Each of these routines returns true if c is a particular representation of a control
character.

Routine

iscntrl

iswcntrl

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Single thread static library, retail version

Multithread static library, retail version

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
iscntrl returns a non-zero value if c is a control character (OxOO-OxlF or Ox7F).
iswcntrl returns a non-zero value if c is a control wide character. Each of these
routines returns 0 if c does not satisfy the test condition.

The result of the test condition for the iscntrl function depends on the LC_ CTYPE
category setting of the current locale; see setlocale for more information. For
iswcntrl, the result of the test condition is independent of locale.

Parameter
c Integer to test

_ _ iscsym, __ iscsymf
int __ iscsym(int c);
int __ iscsymf(int c);

Routine Required Header

__ iscsym <ctype.h>

__ iscsymf <ctype.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

is, isw Routines

357

is, isw Routines

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
__ iscsym returns a non-zero value if c is a letter, underscore, or digit. __ iscsymf
returns a non-zero value if c is a letter or an underscore. Each of these routines
returns 0 if c does not satisfy the test condition.

The result of the test condition for the __ iscsym function depends on the
LC_CTYPE category setting of the current locale; see setlocale for more
information. For
__ iscsymf, the result of the test condition is independent of locale.

Parameter
c Integer to test

isdigit, iswdigit

358

int isdigit(int c);
int iswdigit(wint_t c);

Each of these routines returns true if c is a particular representation of a decimal­
digit character.

Routine

isdigit

iswdigit

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
isdigit returns a non-zero value if c is a decimal digit (0-9). iswdigit returns a non­
zero value if c is a wide character corresponding to a decimal-digit character. Each of
these routines returns 0 if c does not satisfy the test condition.

The result of the test condition for the isdigit function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswdigit, the result of the test condition is independent of locale.

Parameter
c Integer to test

isgraph, iswgraph
int isgraph(int c);
int iswgraph(wint_t c);

Each of these routines returns true if c is a particular representation of a printable
character other than a space.

Routine

isgraph

iswgraph

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

isgraph returns a non-zero value if c is a printable character other than a space.
iswgraph returns a non-zero value if c is a printable wide character other than a
wide-character space. Each of these routines returns 0 if c does not satisfy the test
condition.

The result of the test condition for the isgraph function depends on the LC_ CTYPE
category setting of the current locale; see setlocale for more information. For
iswgraph, the result of the test condition is independent of locale.

Parameter
c Integer to test

is, isw Routines

359

is, isw Routines

islower, iswlower
int islower(int c);
int iswlower(wint_t c);

Each of these routines returns true if c is a particular representation of a lowercase
character.

Routine

islower

iswlower

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
islower returns a non-zero value if c is a lowercase character (a-z). iswlower returns
a non-zero value if c is a wide character that corresponds to a lowercase letter, or if c
is one of an implementation-defined set of wide characters for which none of
iswcntrl, iswdigit, iswpunct, or iswspace is true. Each of these routines returns 0 if
c does not satisfy the test condition.

The result of the test condition for the islower function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswlower, the result of the test condition is independent of locale.

Parameter
c Integer to test

isprint, iswprint

360

int isprint(int c);
int iswprint(wint_t c);

Each of these routines returns true if c is a particular representation of a printable
character.

Routine

is print

iswprint

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Single thread static library, retail version

Multithread static library, retail version

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
isprint returns a nonzero value if c is a printable character, including the space
character (Ox20-0x7E). iswprint returns a nonzero value if c is a printable wide
character, including the space wide character. Each of these routines returns 0 if c
does not satisfy the test condition.

The result of the test condition for the isprint function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswprint, the result of the test condition is independent of locale.

Parameter
c Integer to test

ispunct, iswpunct
int ispunct(int c);
int iswpunct(wint_t c);

Each of these routines returns true if c is a particular representation of a punctuation
character.

Routine

ispunct

iswpunct

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

is, isw Routines

361

is, isw Routines

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
ispunct returns a non-zero value for any printable character that is not a space
character or a character for which isalnum is true. iswpunct returns a non-zero value
for any printable wide character that is neither the space wide character nor a wide
character for which iswalnum is true. Each of these routines returns 0 if c does not
satisfy the test condition.

The result of the test condition for the ispunct function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswpunct, the result of the test condition is independent of locale.

Parameter
c Integer to test

. .
lSSpaCe, lSWSpaCe

362

int isspace(int c);
int iswspace(wint_t c);

Each of these routines returns true if c is a particular representation of a space
character.

Routine

isspace

iswspace

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
isspace returns a non-zero value if c is a white-space character (Ox09-0xOD or
Ox20). iswspace returns a non-zero value if c is a wide character that corresponds to
a standard white-space character or is one of an implementation-defined set of wide
characters for which iswalnum is false. Each of these routines returns 0 if c does not
satisfy the test condition.

The result of the test condition for the isspace function depends on the LC_ CTYPE
category setting of the current locale; see setlocale for more information. For
iswspace, the result of the test condition is independent of locale.

Parameter
c Integer to test

. .
lSUpper, lSWUpper

int isupper(int c);
int iswupper(wint_t c);

Each of these routines returns true if c is a particular representation of an uppercase
letter.

Routine

isupper

iswupper

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIDC.LIB

LIDCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

isupper returns a non-zero value if c is an uppercase character (a-z). iswupper
returns a non-zero value if c is a wide character that corresponds to an uppercase
letter, or if c is one of an implementation-defined set of wide characters for which
none of iswcntrl, iswdigit, iswpunct, or iswspace is true. Each of these routines
returns 0 if c does not satisfy the test condition.

is, isw Routines

363

is, isw Routines

The result of the test condition for the isupper function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswupper, the result of the test condition is independent of locale.

Parameter
c Integer to test

iswctype
int iswctype(wint_t c, wctype_t desc);

iswctype tests c for the property specified by the desc argument. For each valid value
of desc, there is an equivalent wide-character classification routine.

Routine

iswctype

Required Header

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
iswctype returns a nonzero value if c has the property specified by desc, or 0 if it
does not. The result of the test condition is independent of locale.

Parameters
c Integer to test

desc Property to test for

isxdigit, iswxdigit

364

int isxdigit(int c);
int iswxdigit(wint_t c);

Each of these routines returns true if c is a particular representation of a hexadecimal
digit.

Routine

isxdigit

iswxdigit

Required Header

<ctype.h>

<ctype.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

isxdigit returns a non-zero value if c is a hexadecimal digit (A-F, a-f, or 0-9).
iswxdigit returns a non-zero value if c is a wide character that corresponds to a
hexadecimal digit character. Each of these routines returns 0 if c does not satisfy the
test condition.

The result of the test condition for the isxdigit function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For the "C"
locale, the iswxdigit function does not provide support for Unicode fullwidth
hexadecimal characters. The result of the test condition for iswxdigit is independent
of any other locale.

Parameter
c Integer to test

_isatty
int _isatty(int handle);

Routine Required Header

_isatty <io.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

365

isleadbyte

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_isatty returns a nonzero value handle is associated with a character device.
Otherwise, _isatty returns O.

Parameter

Remarks

Example

Output

handle Handle referring to device to be tested

The _isatty function determines whether handle is associated with a character device
(a terminal, console, printer, or serial port).

1* ISATTY.C: This program checks to see whether
* stdout has been redirected to a file.
*1

#include <stdio.h>
1foi ncl ude <i o. h>

void main(void
{

}

if(_isatty(_fileno(stdout)))
printf("stdout has not been redirected to a file\n");

else
printf("stdout has been redirected to a file\n");

stdout has been redirected to a file

isleadbyte

366

iot isleadbyte(iot c);

Routine Required Header

isieadbyte <ctype.h>

Optional Headers Compatibility

ANSI, Win 95,
Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
isleadbyte returns a nonzero value if the argument satisfies the test condition or 0 if
it does not. In the "C" locale and in single-byte-character set (SBCS) locales,
isleadbyte always returns O.

Parameter

Remarks

c Integer to test

The isleadbyte macro returns a nonzero value if its argument is the first byte of a
multi byte character. isleadbyte produces a meaningful result for any integer
argument from -1 (EOF) to UCBAR_MAX (OxFF), inclusive. The result of the test
depends upon the LC_CTYPE category setting of the current locale; see setlocale for
more information.

The expected argument type of isleadbyte is iot; if a signed character is passed, the
compiler may convert it to an integer by sign extension, yielding unpredictable
results.

See Also _ismbb Routines

ismbb Routines

Remarks

Each routine in the _ismbb family tests the given integer value c for a particular
condition.

_ismbbalnum

_ismbbalpba

_ismbbgrapb

_ismbbkalnum

_ismbbkana

_ismbbkprint

_ismbbkpunct

_ismbblead

_ismbbprint

_ismbbpunct

_ismbbtrail

Each routine in the _ismbb family tests the given integer value c for a particular
condition. The test result depends on the multi byte code page in effect. By default, the
multibyte code page is set to the system-default ANSI code page obtained from the

_ismbb Routines

367

_ismbb Routines

368

operating system at program startup. You can query or change the multibyte code
page in use with _getmbcp or _setmbcp, respectively.

The routines in the _ismbb family test the given integer c as follows.

Routine

_ismbbalnum

_ismbbalpha

_ismbbgraph

_ismbbkalnum

_ismbbkana

_ismbbkprint

_ismbbkpunct

_ismbblead

_ismbbprint

_ismbbpunct

_ismbbtrail

Byte Test Condition

isalnum II_ismbbkalnum

isalpha II _ismbbkalnum

Same as _ismbbprint, but _ismbbgraph does not include the space
character (Ox20).

Non-ASCII text symbol other than punctuation. For example, in code
page 932 only, _ismbbkalnum tests for katakana alphanumeric.

Katakana (OxAI-OxDF). Specific to code page 932.

Non-ASCII text or non-ASCII punctuation symbol. For example, in
code page 932 only, _ismbbkprint tests for katakana alphanumeric
or katakana punctuation (range: OxAI-OxDF).

Non-ASCII punctuation. For example, in code page 932 only,
_ismbbkpunct tests for katakana punctuation.

First byte of multibyte character. For example, in code page 932
only, valid ranges are Ox81-0x9F, OxEO-OxFC.

isprint II _ismbbkprint. ismbbprint includes the space character
(Ox20).

ispunct II _ismbbkpunct

Second byte of multibyte character. For example, in code page 932
only, valid ranges are Ox40-0x7E, Ox80-0xEC.

The following table shows the ORed values that compose the test conditions for these
routines. The manifest constants _BLANK, _DIGIT, _LOWER, _PUNCT, and
_UPPER are defined in CTYPE.H.

Non-ASCII
Routine BLANK DIGIT LOWER PUNCT UPPER Text - - -
_ismbbaInum x x x x

_ismbbalpha x x x

_ismbbgraph x x x x x

_ismbbkaInum x

_ismbbkprint x

_ismbbkpunct

_ismbbprint x x x x x x

_ismbbpunct x

Non-ASCII
Punct

x

x

x

x

x

The _ismbb routines are implemented both as functions and as macros. For details on
choosing either implementation, see "Choosing Between Functions and Macros" on
page xii.

See Also is, isw Functions, _mbbtombc, _mbctombb

_ismbbalnum
int _ismbbalnum(unsigned int c);

Routine Required Header Optional Headers

_ismbbalnum <mbctype.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Single thread static library, retail version

Multithread static library, retail version

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_ismbbalnum returns a nonzero value if the expression

isalnum II _ismbbkalnum

is true of c, or 0 if it is not.

Parameter
c Integer to be tested

_ismbbalpha
int _ismbbalpha(unsigned int c);

Routine Required Header Optional Headers

_ismbbalpba <mbctype.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

_ismbb Routines

369

_ismbb Routines

Libraries

LIDC.LID

LIDCMT.LID

MSVCRT.LID

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

_ismbbalpha returns a nonzero value if the expression

isalpha I I _ismbbkalnum

is true of c, or 0 if it is not.

Parameter
c Integer to be tested

_ismbbgraph
int _ismbbgraph (unsigned int c);

Routine Required Header Optional Headers

_ismbbgrapb <mbctype.h>

Compatibility

Win 95, Win NT,
Win32s, 68K,
PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LID

LIBCMT.LID

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_ismbbgraph returns a nonzero value if the expression

(_PUNCT I _UPPER I _LOWER I _DIGIT) I I _ismbbkprint

is true of c, or 0 if it is not.

Parameter
c Integer to be tested

370

_ismbbkalnum
int _ismbbkalnum(unsigned int c);

Routine Required Header

_ismbbkalnum <mbctype.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

_ismbbkalnum returns a nonzero value if the integer c is a non-ASCII text symbol
other than punctuation, or 0 if it is not.

Parameter
c Integer to be tested

_ismbbkana
int _ismbbkana(unsigned int c);

_ismbbkana tests for a katakana symbol and is specific to code page 932.

Routine Required Header

_ismbbkana <mbctype.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

_ismbb Routines

371

_ismbb Routines

Return Value
_ismbbkana returns a nonzero value if the integer c is a katakana symbol, or 0 if it is
not.

Parameter
c Integer to be tested

_ismbbkprint
int _ismbbkprint(unsigned int c);

Routine Required Header

_ismbbkprint <mbctype.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_ismbbkprint returns a nonzero value if the integer c is a non-ASCII text or non­
ASCII punctuation symbol, or 0 if it is not. For example, in code page 932 only,
_ismbbkprint tests for katakana alphanumeric or katakana punctuation (range:
OxAI-OxDF).

Parameter
c Integer to be tested

_ismbbkpunct

372

int _ismbbkpunct(unsigned int c);

Routine Required Header

_ismbbkpunct <mbctype.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

_ismbbkpunct returns a nonzero value if the integer c is a non-ASCII punctuation
symbol, or 0 if it is not. For example, in code page 932 only, _ismbbkpunct tests for
katakana punctuation.

Parameter
c Integer to be tested

_ismbblead
int _ismbblead(unsigned int c);

Routine

_ismbblead

Required Header

<mbctype.h> or
<mbstring.h>

1 For manifest constants for the test conditions.

Optional Headers

<ctype.h>,l <limits.h>,
<stdlib.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

_ismbblead returns a nonzero value if the integer c is the first byte of a multibyte
character. For example, in code page 932 only, valid ranges are Ox81-0x9F and
OxEO-OxFC.

Parameter
c Integer to be tested

_ismbb Routines

373

_ismbb Routines

_ismbbprint
int _ismbbprint(unsigned int c);

Routine Required Header

_ismbbprint <mbctype.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_ismbbprint returns a nonzero value if the expression

isprint II _ismbbkprint

is true of c, or 0 if it is not.

Parameter
c Integer to be tested

_ismbbpunct

374

int _ismbbpunct(unsigned int c);

Routine Required Header

_ismbbpunct <mbctype.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.LIB

. MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_ismbbpunct returns a nonzero value if the integer c is a non-ASCII punctuation
symbol.

Parameter
c Integer to be tested

_ismbbtrail
int _ismbbtrail(unsigned int c);

Routine

_ismbbtrail

Required Header

<mbctype.h> or
<mbstring.h>

1 For manifest constants for the test conditions.

Optional Headers

<ctype.h>,l <limits.h>,
<stdlib.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_ismbbtrail returns a nonzero value if the integer c is the second byte of a multibyte
character. For example, in code page 932 only, valid ranges are Ox40-0x7E and Ox80
-OxEC.

Parameter
c Integer to be tested

ismbc Routines
Each of the _ismbc routines tests a given multibyte character c for a particular
condition.

_ismbcalnum, _ismbcalpba,
_ismbcdigit

_ismbcgrapb, _ismbcprint,
_ismbcpunct, _ismbcspace

_ismbcbira, _ismbckata

_ismbclO, _ismbcU, _ismbcl2

_ismbclegal, _ismbcsymbol

_ismbclower, _ismbcupper

_ismbc Routines

375

_ismbc Routines

Remarks

376

The test result of each of the _ismbc routines depends on the multibyte code page in
effect. Multibyte code pages have single byte alphabetic characters. By default, the
multibyte code page is set to the system-default ANSI code page obtained from the
operating system at program startup. You can query or change the multibyte code
page in use with _getmbcp or _setmbcp, respectively.

Routine

_ismbcalnum

_ismbcalpba

_ismbcdigit

_ismbcgrapb

_ismbclegal

_ismbclower

_ismbcprint

_ismbcpunct

_ismbcspace

_ismbcsymbol

_ismbcupper

Test Condition

Alphanumeric

Alphabetic

Digit

Graphic

Valid multibyte
character

Lowercase
alphabetic

Printable

Punctuation

Whitespace

Multibyte symbol

Uppercase
alphabetic

Code Page 932 Example

Returns true if and only if c is a single-byte
representation of an ASCII English letter: See
examples for _ismbcdigit and _ismbcalpba.

Returns true if and only if c is a single-byte
representation of an ASCII English letter: See
examples for _ismbcupper and _ismbclower; or a
Katakana letter: OxA6<=c<=OxDF.

Returns true if and only if c is a single-byte
representation of an ASCII digit: Ox30<=c<=Ox39.

Returns true if and only if c is a single-byte
representation of any ASCII or Katakana printable
character except a white space (). See examples for
_ismbcdigit, _ismbcalpba, and _ismbcpunct.

Returns true if and only if the first byte of c is
within ranges Ox81-0x9F or OxEO-OxFC, while the
second byte is within ranges Ox40-0x7E or
Ox80-FC.

Returns true if and only if c is a single-byte
representation of an ASCII lowercase English letter:
Ox61<=c<=Ox7A.

Returns true if and only if c is a single-byte
representation of any ASCII or Katakana printable
character including a white space (): See examples
for _ismbcspace, _ismbcdigit, _ismbcalpba, and
_ismbcpunct.

Returns true if and only if c is a single-byte
representation of any ASCII or Katakana
punctuation character.

Returns true if and only if c is a whitespace
character: c=Ox20 or Ox09<=c<=OxOD.

Returns true if and only if Ox8141<=c<=Ox8IAC.

Returns true if and only if c is a single-byte
representation of an ASCII uppercase English letter:
Ox41 <=c<=Ox5A.

/

Code Page 932 Specific ~

The following routines are specific to code page 932.

Routine

_ismbchira

_ismbckata

_ismbclO

_ismbcll

_ismbcl2

Test Condition (Code Page 932 Only)

Double-byte Hiragana: Ox829F<=c<=Ox82Fl.

Double-byte Katakana: Ox8340<=c<=Ox8396.

1IS non-Kanji: Ox8140<=c<=Ox889E.

1IS level-I: Ox889F<=c<=Ox9872.

1IS level-2: Ox989F<=c<=OxEA9E.

/ _ismbcIO, _ismbcll, and _ismbcI2 check that the specified value c matches the test
conditions described in the preceding table, but do not check that c is a valid
multibyte character. If the lower byte is in the ranges OxOO-Ox3F, Ox7F, or OxFD­
OxFF, these functions return a nonzero value, indicating that the character satisfies
the test condition. Use _ismbbtrail to test whether the multibyte character is defined.

END Code Page 932 Specific

See Also is, isw Functions, _ismbb Functions

_ismbcalnum, _ismbcalpha, _ismbcdigit
int _ismbcalnum(unsigned int c);
int _ismbcalpba(unsigned int c);
int _ismbcdigit(unsigned int c);

Routine Required Header

_ismbcalnum <mbstring.h>

_ismbcalpha <mbstring.h>

_ismbcdigit <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

_ismbc Routines

377

_ismbc Routines

Return Value
Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, _ismbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter

Remarks

c Character to be tested

Each of these routines tests a given multibyte character for a given condition.

Routine Test Condition

_ismbcalnum Alphanumeric

_ismbcalpha Alphabetic

_ismbcdigit Digit

Code Page 932 Example

Returns true if and only if c is a single-byte
representation of an ASCII English letter: See
examples for _ismbcdigit and _ismbcalpha.

Returns true if and only if c is a single-byte
representation of an ASCII English letter:
Ox41<=c<=Ox5A or Ox61<=c<=Ox7A; or a
Katakana letter: OxA6<=c<=OxDF.

Returns true if and only if c is a single-byte
representation of an ASCII digit:
Ox30<=c<=Ox39.

See Also is, isw Functions, _ismbb Functions

_ismbcgraph, _ismbcprint, _ismbcpunct, _ismbcspace

378

int _ismbcgrapb(unsigned int c);
int _ismbcprint(unsigned int c);
int _ismbcpunct(unsigned int c);
int _ismbcspace(unsigned int c);

Routine Required Header

_ismbcgraph <mbstring.h>

_ismbcprint <mbstring.h>

_ismbcpunct <mbstring.h>

_ismbcspace <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, _ismbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter
c Character to be tested

Remarks
Each of these functions tests a given multibyte character for a given condition.

Routine Test Condition Code Page 932 Example

_ismbcgraph Graphic Returns true if and only if c is a single-byte
representation of any ASCII or Katakana
printable character except a white space ().

_ismbcprint Printable Returns true if and only if c is a single-byte
representation of any ASCII or Katakana
printable character including a white space ().

_ismbcpunct Punctuation Returns true if and only if c is a single-byte
representation of any ASCII or Katakana
punctuation character.

_ismbcspace Whitespace Returns true if and only if c is a whitespace
character: c=Ox20 or Ox09<=c<=OxOD.

See Also is, isw Functions, _ismbb Functions

_ismbchira, _ismbckata
Code Page 932 Specific ~

int _ismbchira(unsigned int c);
int _ismbckata(unsigned int c);

Routine Required Header

_ismbchira <mbstring.h>

_ismbckata <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

_ismbc Routines

379

_ismbc Routines

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, _ismbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter

Remarks

c Character to be tested

Each of these functions tests a given multibyte character for a given condition.

Routine

_ismbchira

_ismbckata

Test Condition (Code Page 932 Only)

Double-byte Hiragana: Ox829F<=c<=Ox82Fl.

Double-byte Katakana: Ox8340<=c<=Ox8396.

End Code Page 932 Specific

See Also is, isw Functions, _ismbb Functions

_ismbcIO, _ismbcll, _ismbc12

380

Code Page 932 Specific~

int _ismbclO(unsigned int c);
int _ismbcl1(unsigned int c);
int _ismbcl2(unsigned int c);

Routine Required Header

_ismbclO <mbstring.h>

_ismbcll <mbstring.h>

_ismbcl2 <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, _ismbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter

Remarks

c Character to be tested

Each of these functions tests a given multibyte character for a given condition.

Routine

_ismbclO

_ismbcll

_ismbcl2

Test Condition (Code Page 932 Only)

1IS non-Kanji: Ox8140<=c<=Ox889E.

1IS level-I: Ox889F<=c<=Ox9872.

1IS level-2: Ox989F<=c<=OxEA9E.

_ismbclO, _ismbcll, and _ismbcl2 check that the specified value c matches the test
conditions described above, but do not check that c is a valid multibyte character. If
the lower byte is in the ranges OxOO-Ox3F, Ox7F, or OxFD-OxFF, these functions
return a nonzero value, indicating that the character satisfies the test condition. Use
_ismbbtrail to test whether the multibyte character is defined.

End Code Page 932 Specific

See Also is, isw Functions, _ismbb Functions

_ismbclegal, _ismbcsymbol
int _ismbclegal(unsigned int c);
int _ismbcsymbol(unsigned int c);

Routine Required Header

_ismbclegal <mbstring.h>

_ismbcsymbol <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

_ismbc Routines

381

_ismbc Routines

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, _ismbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter

Remarks

c Character to be tested

Each of these functions tests a given multibyte character for a given condition.

Routine Test Condition

_ismbclegal Yalid multibyte

_ismbcsymbol Multibyte symbol

Code Page 932 Example

Returns true if and only if the first byte of c
is within ranges Ox81-0x9F or OxEO­
OxFC, while the second byte is within
ranges Ox40-0x7E or Ox80-FC.

Returns true if and only if
Ox8141 <=c<=Ox81AC.

See Also is, isw Functions, _ismbb Functions

_ismbclower, _ismbcupper

382

int _ismbclower(unsigned int c);
int _ismbcupper(unsigned int c);

Routine Required Header

_ismbclower <mbstring.h>

_ismbcupper <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

_ismbslead, _ismbstrail

Libraries

LmC.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, jsmbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter

Remarks

c Character to be tested

Each of these functions tests a given multibyte character for a given condition.

Routine Test Condition

jsmbclower Lowercase alphabetic

_ismbcupper Uppercase alphabetic

Code Page 932 Example

Returns true if and only if c is a single­
byte representation of an ASCII
lowercase English letter:
Ox61<=c<=Ox7A.

Returns true if and only if c is a single­
byte representation of an ASCII
uppercase English letter:
Ox41<=c<=Ox5A.

See Also is, isw Functions, _ismbb Functions

_ismbslead, ismbstrail
int _ismbslead(const unsigned char *string, const unsigned char *current);
int _ismbstrail(const unsigned char *string, const unsigned char *current);

Routine

_ismbslead

_ismbstrail

Required Header

<mbctype.h> or
<mbstring.h>

<mbctype.h> or
<mbstring.h>

1 For manifest constants for the test conditions.

Optional Headers

<ctype.h>,l <limits.h>,
<stdlib.h>

<ctype.h>,l <limits.h>,
<stdlib.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

383

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_ismbslead and _ismbstrail return -1 if the character is a lead or trail byte,
respectively. Otherwise they return zero.

Parameters

Remarks

•

string Pointer to start of string or previous known lead byte

current Pointer to position in string to be tested

The _ismbslead and _ismbstrail routines perform context-sensitive tests for
multibyte-character string lead and trail bytes; they determine whether a given
substring pointer points to a lead byte or a trail byte. _ismbslead and _ismbstrail are
slower than their _ismbblead and _ismbbtrail counterparts because they take the
string context into account.

See Also is, isw Functions, _ismbb Functions

lsnan
Checks given double-precision floating-point value for not a number (NaN).

int _isnan(double x);

Routine Required Header Optional Headers Compatibility

<float.h> Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

384

_isnan returns a nonzero value (TRUE) if the argument x is a NaN; otherwise it
returns 0 (FALSE).

Parameter

Remarks

x Double-precision floating-point value

The _isnan function tests a given double-precision floating-point value x, returning a
nonzero value if x is a NaN. A NaN is generated when the result of a floating-point
operation cannot be represented in Institute of Electrical and Electronics Engineers
(IEEE) format. For information about how a NaN is represented for output, see
printf.

See Also _tinite, _fpclass

_itoa, _itow
Convert an integer to a string.

char * _itoa(int value, char *string, int radix);
wchar_t * _itow(int value, wchar_t *string, int radix);

Routine Required Header Optional Headers

<stdlib.h>

<stdlib.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to string. There is no error return.

Parameters

Remarks

value Number to be converted

string String result

radix Base of value; must be in the range 2-36

The _itoa function converts the digits of the given value argument to a null­
terminated character string and stores the result (up to 17 bytes) in string. If radix

385

Example

Output

386

equals 10 and value is negative, the first character of the stored string is the minus
sign (-). _itow is a wide-character version of _itoa.

/* ITOA.C: This program converts integers of various
* sizes to strings in various radixes.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char buffer[20];
int i = 3445;
long 1 = -344115L;
unsigned long ul = 1234567890UL;

_ itoa (i , buffer, 10) ;

printf("String of integer %d (radix
_ itoa (i , buffer, 16) ;

10) : %s\n", i , buffer) ;

printf("String of integer %d (radix 16): 0x%s\n", i , buffer
_ itoa (i , buffer, 2) ;

printf("String of integer %d (radix 2) : %s\n", i • buffer

_ltoa (1, buffer. 16);
printf("String of long int %ld (radix 16): 0x%s\n", 1,

buffer);

_ul toa (ul, buffer, 16);

) ;

printf("String of unsigned long %lu (radix 16): 0x%s\n", ul,
buffer);

}

String of integer 3445 (radix 10): 3445
String of integer 3445 (radix 16): 0xd75
String of integer 3445 (radix 2): 110101110101
String of long i nt -344115 (radix 16): 0xfffabfcd
String of unsigned long 1234567890 (radix 16): 0x499602d2

See Also _Itoa, _ultoa

) ;

kbhit
Checks the console for keyboard input.

int _kbhit(void);

Routine Required Header

<conio.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

Example

_kbhit returns a nonzero value if a key has been pressed. Otherwise, it returns O.

The _kbhit function checks the console for a recent keystroke. If the function returns
a nonzero value, a keystroke is waiting in the buffer. The program can then call
_getch or _getche to get the keystroke.

/* KBHIT.C: This program loops until the user
* presses a key. If _kbhit returns nonzero, a
* keystroke is waiting in the buffer. The program
* can call _getch or _getche to get the keystroke.
*/

#include <conio.h>
#include <stdio.h>

void main(void)
{

/* Display message until key is pressed. */
while(!_kbhit())

_cputs("Hit me!! ");

/* Use _getch to throw key away. */
printf("\nKey struck was '%c'\n", _getch());
_getch();

387

labs

Output
Hit me!! Hit me!! Hit me!! Hit me!! Hit me!! Hit me!! Hit me!!
Key struck was 'q'

labs
Calculates the absolute value of a long integer.

long labs(long n);

Routine

labs

Required Header

<stdlib.h> and
<math.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The labs function returns the absolute value of its argument. There is no error return.

Parameter
n Long-integer value

Example
See the example for abs.

See Also abs, _cabs, fabs

388

ldexp
Computes a real number from the mantissa and exponent.

double Idexp(double x, int exp);

Routine Required Header Optional Headers

Idexp <math.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The Idexp function returns the value of x * 2exp if successful. On overflow (depending
on the sign of x), Idexp returns +/-HUGE_ VAL; the errno variable is set to
ERANGE.

Parameters

Example

x Floating-point value

exp Integer exponent

/* LDEXP.C */

#include <math.h>
#include <stdio.h>

void main(void)
{

double x = 4.0, y;
int p = 3;

y = ldexp(x, p);
printf("%2.lf times two to the power of %d is %2.1f\n", x, p, y);

Idexp

389

ldiv

Output
4.0 times two to the power of 3 is 32.0

See Also frexp, modf

ldiv
Computes the quotient and remainder of a long integer.

Idiv_t Idiv(long int numer, long int denom);

Routine Required Header Optional Headers

Idiv <stdlib.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Idiv returns a structure of type Idiv _t that comprises both the quotient and the
remainder.

Parameters

Remarks

390

numer Numerator

denom Denominator

The ldiv function divides numer by denom, computing the quotient and remainder.
The sign of the quotient is the same as that of the mathematical quotient. The
absolute value of the quotient is the largest integer that is less than the absolute value
of the mathematical quotient. If the denominator is 0, the program terminates with an
error message. ldiv is the same as diy, except that the arguments of Idiv and the
members of the returned structure are all of type long int.

The Idiv_t structure, defined in STDLIB.H, contains long int quot, the quotient, and
long int rem, the remainder.

Example

Output

/* LDIV.C: This program takes two long integers
* as command-line arguments and displays the
* results of the integer division.
*/

#include <stdlib.h>
#include <math.h>
#include <stdio.h>

void main(void)
{

long x = 5149627, y 234879;
ldiv_t div_result;

div_result = ldiv(x, y);
printf("For %ld / %ld, the quotient is ", x, y);
printf("%ld, and the remainder is %ld\n",

div_result.quot, div_result.rem);

For 5149627 / 234879, the quotient is 21, and the remainder is 217168

See Also div

lfind
Performs a linear search for the specified key.

void * _lfind(const void *key, const void *base, unsigned int *num, unsigned int width,
int L _cdecl *compare)(const void *eleml, const void *elem2));

Routine Required Header Optional Headers Compatibility

<search.h> Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

391

Return Value
If the key is found, _Ifind returns a pointer to the element of the array at base that
matches key. If the key is not found, _Ifind returns NULL.

Parameters

Remarks

Example

392

key Object to search for

base Pointer to base of search data

num Number of array elements

width Width of array elements

compare Pointer to comparison routine

eleml Pointer to key for search

elem2 Pointer to array element to be compared with key

The _Ifind function performs a linear search for the value key in an array of num
elements, each of width bytes in size. Unlike bsearch, _)find does not require the
array to be sorted. The base argument is a pointer to the base of the array to be
searched. The compare argument is a pointer to a user-supplied routine that compares
two array elements and then returns a value specifying their relationship. _Ifind calls
the compare routine one or more times during the search, passing pointers to two
array elements on each call. The compare routine must compare the elements then
return nonzero, meaning the elements are different, or 0, meaning the elements are
identical.

1* LFIND.C: This program uses lfind to search for
* the word "hello" in the command-line arguments.
*1

#include <search.h>
#include <string.h>
#include <stdio.h>

int compare(const void *argl, const void *arg2);

void main(unsigned int argc, char **argv
{

char **result;
char *key = "hello";

result = (char **)_lfind(&key, argv,
&argc, sizeof(char *), compare);

if(result
printf("Is found\n", *result);

else
printf("hello not found!\n");

Output

int compare(const void *argl. const void *arg2)
{

return(_stricmp(* (char**)argl. * (char**)arg2));
}

[C:\code]lfind Hello
Hello found

See Also bsearch, _Isearch, qsort

localeconv
Gets detailed information on locale settings.

struct Iconv *Iocaleconv(void);

Routine Required Header Optional Headers

localeconv <locale.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

localeconv returns a pointer to a filled-in object of type struct Iconv. The values
contained in the object can be overwritten by subsequent calls to localeconv and do
not directly modify the object. Calls to setlocale with category values of LC_ALL,
LC_MONETARY, or LC_NUMERIC overwrite the contents of the structure.

The localeconv function gets detailed information about numeric formatting for the
current locale. This information is stored in a structure of type Iconv. The Iconv
structure, defined in LOCALE.H, contains the following members:

char *decimal_point Decimal-point character for nonmonetary quantities.

char *thousands_sep Character that separates groups of digits to left of decimal
point for nonmonetary quantities.

char *grouping Size of each group of digits in nonmonetary quantities.

localeconv

393

localeconv

394

char *int_curr_symbol International currency symbol for current locale. First three
characters specify alphabetic international currency symbol as defined in the ISO
4217 Codes for the Representation of Currency and Funds standard. Fourth
character (immediately preceding null character) separates international currency
symbol from monetary quantity.

char *currency _symbol Local currency symbol for current locale.

char *mon_decimaCpoint Decimal-point character for monetary quantities.

char *mon_thousands_sep Separator for groups of digits to left of decimal place in
monetary quantities.

char *mon~rouping Size of each group of digits in monetary quantities.

char *positive_sign String denoting sign for nonnegative monetary quantities.

char *negative_sign String denoting sign for negative monetary quantities.

char int.Jrac_digits Number of digits to right of decimal point in internationally
formatted monetary quantities.

char frac_digits Number of digits to right of decimal point in formatted monetary
quantities.

char p_cs_precedes Set to 1 if currency symbol precedes value for nonnegative
formatted monetary quantity. Set to 0 if symbol follows value.

char p_sep_by _space Set to 1 if currency symb.ol is separated by space from value
for nonnegative formatted monetary quantity. Set to 0 if there is no space
separation.

char n_cs_precedes Set to 1 if currency symbol precedes value for negative
formatted monetary quantity. Set to 0 if symbol succeeds value.

char n_sep_by _space Set to 1 if currency symbol is separated by space from value
for negative formatted monetary quantity. Set to 0 if there is no space separation.

char p_sign_posn Position of positive sign in nonnegative formatted monetary
quantities.

char n_sign_posn Position of positive sign in negative formatted monetary
quantities.

The char * members of the structure are pointers to strings. Any of these (other than
char *decimaCpoint) that equals "" is either of zero length or is not supported in the
current locale. The char members of the structure are nonnegative numbers. Any of
these that equals CHAR_MAX is not supported in the current locale.

The elements of grouping and mon~rouping are interpreted according to the
following rules.

CHAR_MAX Do not perform any further grouping.

o Use previous element for each of remaining digits.

n Number of digits that make up current group. Next element is examined to
determine size of next group of digits before current group.

The values for iDt_curr_symbol are interpreted according to the following rules:

• The first three characters specify the alphabetic international currency symbol as
defined in the ISO 4217 Codesfor the Representation of Currency and Funds
standard .

• The fourth character (immediately preceding the null character) separates the
international currency symbol from the monetary quantity.

The values for p_cs_precedes and D_cs_precedes are interpreted according to the
following rules (the D_cs_precedes rule is in parentheses):

o Currency symbol follows value for nonnegative (negative) formatted monetary
value.

1 Currency symbol precedes value for nonnegative (negative) formatted monetary
value.

The values for p_sep_by _space and D_sep_by _space are interpreted according to the
following rules (the D_sep_by_space rule is in parentheses):

o Currency symbol is separated from value by space for nonnegative (negative)
formatted monetary value.

1 There is no space separation between currency symbol and value for nonnegative
(negative) formatted monetary value.

The values for p_SigD_posD and D_sigD_poSD are interpreted according to the
following rules:

o Parentheses surround quantity and currency symbol

1 Sign string precedes quantity and currency symbol

2 Sign string follows quantity and currency symbol

3 Sign string immediately precedes currency symbol

4 Sign string immediately follows currency symbol

See Also setlocale, strcoll Functions, strftime, strxfrm

localeconv

395

localtime

localtime
Converts a time value and corrects for the local time zone.

struct tm *Iocaltime(const time_t *timer);

Routine Required Header Optional Headers

localtime <time.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
localtime returns a pointer to the structure result. If the value in timer represents a
date before midnight, January 1, 1970, localtime returns NULL. The fields of the
structure type tm store the following values, each of which is an int:

tm_sec Seconds after minute (0-59)

tm_min Minutes after hour (0-59)

tm_hour Hours after midnight (0-23)

tm_mday Day of month (1-31)

tm_mon Month (0-11; January = 0)

tmJear Year (current year minus 1900)

tm_ wday Day of week (0-6; Sunday = 0)

tmJday Day of year (0-365; January 1 = 0)

tm_isdst Positive value if daylight saving time is in effect; 0 if daylight saving time
is not in effect; negative value if status of daylight saving time is unknown

Parameter

Remarks

396

timer Pointer to stored time

The localtime function converts a time stored as a time_t value and stores the result
in a structure of type tm. The long value timer represents the seconds elapsed since
midnight (00:00:00), January 1, 1970, coordinated universal time (UTC). This value
is usually obtained from the time function.

Example

Output

gmtime, mktime, and localtime all use a single statically allocated tm structure for
the conversion. Each call to one of these routines destroys the result of the previous
call.

localtime corrects for the local time zone if the user first sets the global environment
variable TZ. When TZ is set, three other environment variables Ltimezone,
_daylight, and _tzname) are automatically set as well. See _tzset for a description of
these variables. TZ is a Microsoft extension and not part of the ANSI standard
definition of localtime.

Note The target environment should try to determine whether daylight saving time is in effect.

/* LOCALTIM.C: This program uses time to get the current time
* and then uses localtime to convert this time to a structure
* representing the local time. The program converts the result
* from a 24-hour clock to a 12-hour clock and determines the
* proper extension (AM or PM).
*/

#include <stdio.h>
#include <string.h>
#include <time.h>

void main(void)
{

struct tm *newtime;
char am_pm[] = "AM";
time_t long_time;

time(&long_time); /* Get time as long integer. */

}

newtime = localtime(&long_time); /* Convert to local time. */

if(newtime->tm_hour > 12)
strcpy(am_pm, "PM");

if(newtime->tm_hour > 12)
newtime->tm_hour -= 12;

if(newtime->tm_hour == 0)
newtime->tm_hour = 12;

/* Set up extension. */

/* Convert from 24-hour */
/* to 12-hour clock. */
/*Set hour to 12 if midnight. */

printf("%.19s %s\n", asctime(newtime), am_pm);

Tue Mar 23 11:28:17 AM

See Also asctime, ctime, _ftime, gmtime, time, _tzset

localtime

397

_locking

_locking
Locks or unlocks bytes of a file.

int _locking(int handle, int mode, long nbytes);

Routine Required Header Optional Headers

_locking <io.h> and
<sysllocking.h>

<errno.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_locking returns 0 if successful. A return value of -1 indicates failure, in which case
errno is set to one of the following values:

EACCES Locking violation (file already locked or unlocked).

EBADF Invalid file handle.

EDEADLOCK Locking violation. Returned when the _LK_LOCK or
_LK_RLCK flag is specified and the file cannot be locked after 10 attempts.

EINVAL An invalid argument was given to _locking.

Parameters

Remarks

398

handle File handle

mode Locking action to perform

nbytes Number of bytes to lock

The _locking function locks or unlocks nbytes bytes of the file specified by handle.
Locking bytes in a file prevents access to those bytes by other processes. All locking
or unlocking begins at the current position of the file pointer and proceeds for the
next nbytes bytes. It is possible to lock bytes past end of file.

mode must be one of the following manifest constants, which are defined in
LOCKING.H:

Example

_LK_LOCK Locks the specified bytes. If the bytes cannot be locked, the program
immediately tries again after 1 second. If, after 10 attempts, the bytes cannot be
locked, the constant returns an error.

_LK_NBLCK Locks the specified bytes. If the bytes cannot be locked, the constant
returns an error.

_LK_NBRLCK Same as _LK_NBLCK.

_LK_RLCK Same as _LK_LOCK.

_LK_VNLCK Unlocks the specified bytes, which must have been previously
locked.

Multiple regions of a file that do not overlap can be locked. A region being unlocked
must have been previously locked. _locking does not merge adjacent regions; if two
locked regions are adjacent, each region must be unlocked separately. Regions should
be locked only briefly and should be unlocked before closing a file or exiting the
program.

1* LOCKING.C: This program opens a file with sharing. It locks
* some bytes before reading them, then unlocks them. Note that the
* program works correctly only if the file exists.
*1

iIi ncl ude <i o. h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/locking.h>
#include <share.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

void main(void)
{

int fh, numread;
char buffer[40];

1* Quit if can't open file or system doesn't
* support sharing.
*/

fh = _sopen("locking.c", _O_RDWR, _SH_DENYNO,
S IREAD I _S_IWRITE);

i f(fh == -1
exit(1);

1* Lock some bytes and read them. Then unlock. */
if(_locking(fh, LK_NBLCK, 30L) != -1)

_locking

399

log, log 10

Output

{

}

printf("No one can change these bytes while I'm reading them\n");
numread = _read(fh, buffer, 30);
printf("%d bytes read: %.30s\n", numread, buffer);
lseek(fh, 0L, SEEK_SET);

_locking(fh, LK_UNLCK, 30L);
printf("Now I'm done. Do what you will with them\n");

else
perror("Locking failed\n");

_close(fh);

No one can change these bytes while I'm reading them
30 bytes read: 1* LOCKING.C: This program ope
Now I'm done. Do what you will with them

See Also _creat, _open

log,logiO

400

Calculates logarithms.

double log(double x);
double loglO(double x);

Routine Required Header

log <math.h>

loglO <math.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The log functions return the logarithm of x if successful. If x is negative, these
functions return an indefinite (same as a quiet NaN). If x is 0, they return INF
(infinite). You can modify error handling by using the _matherr routine.

Parameter

Example

Output

x Value whose logarithm is to be found

1* LOG.C: This program uses log and 10g10
* to calculate the natural logarithm and
* the base-10 logarithm of 9,000.
*1

#include <math.h>
#include <stdio.h>

void main(void)
{

}

double x = 9000.0;
double y;

y = log(x);
printf("log(%.2f) = %f\n", x, Y);
Y = 10g10(x);
printf("10g10(%.2f) = %f\n", x, Y);

log(9000.00) = 9.104980
10g10(9000.00) = 3.954243

See Also exp, _matherr, pow

_10gb
Extracts exponential value of double-precision floating-point argument.

double _Iogb(double x);

Routine Required Header

<float.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

401

longjrnp

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_10gb returns the unbiased exponential value of x.

Parameter

Remarks

x Double-precision floating-point value

The _10gb function extracts the exponential value of its double-precision floating­
point argument x, as though x were represented with infinite range. If the argument x
is denormalized, it is treated as if it were normalized.

See Also frexp

longjmp
Restores stack environment and execution locale.

void longjmp(jmp_buf env, int value);

Routine Required Header Optional Headers

iongjmp <setjmp.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameters
env Variable in which environment is stored

value Value to be returned to setjmp call

402

Remarks

Example

The longjrnp function restores a stack environment and execution locale previously
saved in env by setjrnp. setjrnp and longjrnp provide a way to execute a nonlocal
goto; they are typically used to pass execution control to error-handling or recovery
code in a previously called routine without using the normal call and return
conventions.

A call to setjrnp causes the current stack environment to be saved in env. A
subsequent call to longjrnp restores the saved environment and returns control to the
point immediately following the corresponding setjrnp call. Execution resumes as if
value had just been returned by the setjrnp call. The values of all variables (except
register variables) that are accessible to the routine receiving control contain the
values they had when longjrnp was called. The values of register variables are
unpredictable. The value returned by setjrnp must be nonzero. If value is passed as 0,
the value 1 is substituted in the actual return.

Call1ongjrnp before the function that called setjrnp returns; otherwise the results are
unpredictable.

Observe the following restrictions when using longjrnp:

• Do not assume that the values of the register variables will remain the same. The
values of register variables in the routine calling setjrnp may not be restored to the
proper values after longjrnp is executed.

• Do not use longjrnp to transfer control out of an interrupt-handling routine unless
the interrupt is caused by a floating-point exception. In this case, a program may
return from an interrupt handler via longjmp if it first reinitializes the floating­
point math package by calling _fpreset.

• Be careful when using setjmp and longjmp in C++ programs. Because these
functions do not support C++ object semantics, it is safer to use the C++
exception-handling mechanism.

See the example for _fpreset.

See Also setjrnp

longjrnp

403

_IrotI, Irotr
Rotate bits to the left (_Irotl) or right Llrotr).

unsigned long _Irotl(unsigned long value, int shift);
unsigned long _Irotr(unsigned long value, int shift);

Routine Required Header Optional Headers

_lrotl <stdlib.h>

<stdlib.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSVCRT.Lffi

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Both functions return the rotated value. There is no error return.

Parameters

Remarks

Example

404

value Value to be rotated

shift Number of bits to shift value

The _Irotl and _Irotr functions rotate value by shift bits. _Irotl rotates the value left.
_Irotr rotates the value right. Both functions "wrap" bits rotated off one end of value
to the other end.

/* LROT.C */

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

}

unsigned long val = 0x0fac35791;
printf("0x%8.81x rotated left eight times is 0x%8.81x\n".

val. _lrotl(val. 8));
printf("0x%8.81x rotated right four times is 0x%8.81x\n".

val. _1 rotr(val. 4));

Output
0xfac35791 rotated left eight times is 0xc35791fa
0xfac35791 rotated right four times is 0xlfac3579

See Also _rotl, _rotr

lsearch
Performs a linear search for a value; adds to end of list if not found.

void * _Isearch(const void *key, void *base, unsigned int *num, unsigned int width,
int C _cdecl *compare)(const void *eleml, const void *elem2));

Routine Required Header Optional Headers Compatibility

_lsearch <search.h> Win9S, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If the key is found, _Isearch returns a pointer to the element of the array at base that
matches key. If the key is not found, _I search returns a pointer to the newly added
item at the end of the array.

Parameters

Remarks

key Object to search for

base Pointer to base of array to be searched

num Number of elements

width Width of each array element

compare Pointer to comparison routine

eleml Pointer to key for search

elem2 Pointer to array element to be compared with key

The _Isearch function performs a linear search for the value key in an array of num
elements, each of width bytes in size. Unlike bsearch, _Isearch does not require the

_lsearch

405

_lseek, _lseeki64

Example

array to be sorted. If key is not found, _Isearch adds it to the end of the array and
increments num.

The compare argument is a pointer to a user-supplied routine that compares two
array elements and returns a value specifying their relationship. _Isearch calls the
compare routine one or more times during the search, passing pointers to two array
elements on each call. compare must compare the elements, then return either
nonzero, meaning the elements are different, or 0, meaning the elements are
identical.

See the example for _Ifind.

See Also bsearch, _Ifind

_lseek, Iseeki64
Move a file pointer to the specified location.

long _Iseek(int handle, long offset, int origin);
__ int64 _lseeki64(int handle, __ int64 offset, int origin);

Routine Required Header Optional Headers

<io.h>

_lseeki64 <io.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

406

_Iseek returns the offset, in bytes, of the new position from the beginning of the file.
_lseeki64 returns the offset in a 64-bit integer. The function returns -lL to indicate
an error and sets errno either to EBADF, meaning the file handle is invalid, or to
EINV AL, meaning the value for origin is invalid or the position specified by offset is
before the beginning of the file. On devices incapable of seeking (such as terminals
and printers), the return value is undefined.

Parameters

Remarks

Example

handle Handle referring to open file

offset Number of bytes from origin

origin Initial position

The _Iseek function moves the file pointer associated with handle to a new location
that is offset bytes from origin. The next operation on the file occurs at the new
location. The origin argument must be one of the following constants, which are
defined in STDIO.H:

SEEK_SET Beginning of file

SEEK_CUR Current position of file pointer

SEEK_END End of file

You can use _Iseek to reposition the pointer anywhere in a file or beyond the end of
the file.

/* LSEEK.C: This program first opens a file named LSEEK.C.
* It then uses lseek to find the beginning of the file.
* to find the current position in the file. and to find
* the end of the file.
*/

t/include <io.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>

void main(void)
{

int fh;
long pos;
char buffer[10];

/* Position of file pointer */

fh = _open("lseek.c". _O_RDONLY);

/* Seek the beginning of the file: */
pos = _lseek(fh. 0L. SEEK_SET);
if(pos == -lL)

perror("_lseek to beginning failed");
else

printf("Position for beginning of file seek = %ld\n". pos);

/* Move file pointer a little */
_read(fh. buffer. 10);

_lseek, _lseeki64

407

Output

}

/* Find current position: */
pos = _lseek(fh, 0L, SEEK_CUR);
if (pos == -1 L)

perror("_lseek to current position failed");
else

printf("Position for current position seek - %ld\n", pos);

/* Set the end of the file: */
pos = _lseek(fh, 0L, SEEK_END);
if(pos == -1L)

perror("_lseek to end failed");
else

printf("Position for end of file seek = %ld\n", pos);

close(fh);

Position for beginning of file seek = 0
Position for current position seek = 10
Position for end of file seek = 1207

See Also fseek, _tell

_ltoa, Itow

408

Convert a long integer to a string.

char * _ltoa(long value, char *string, int radix);
wchar_t * _Itow(long value, wchar_t *string, int radix);

Routine Required Header Optional Headers

<stdlib.h>

<stdlib.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

_makepath, _ wmakepatb

Return Value
Each of these functions returns a pointer to string. There is no error return.

Parameters

Remarks

Example

value Number to be converted

string String result

radix Base of value

The _ltoa function converts the digits of value to a null-terminated character string
and stores the result (up to 33 bytes) in string. The radix argument specifies the base
of value, which must be in the range 2-36. If radix equals 10 and value is negative,
the first character of the stored string is the minus sign (-). _ltow is a wide-character
version of _ltoa; the second argument and return value of _Itow are wide-character
strings. Each of these functions is Microsoft-specific.

See the example for _itoa.

See Also _itoa, _oItoa

_makepath, _wmakepath
Create a path name from components.

void _makepath(char *path, const char *drive, const char *dir, const char *fname,
const char *ext);

void _wmakepath(wchar_t *path, const wchar_t *drive, const wchar_t *dir, const wchar_t
*fname, const wchar_t *ext);

Routine

_makepath

_wmakepath

Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

409

_makepath, _ wmakepath

Return Value
None

Parameters

Remarks

Example

410

path Full path buffer

drive Drive letter

dir Directory path

fname Filename

ext File extension

The _makepath function creates a single path and stores it in path. The path may
include a drive letter, directory path, filename, and filename extension. _ wmakepath
is a wide-character version of _makepath; the arguments to _ wmakepath are wide­
character strings. _ wmakepath and _makepath behave identically otherwise.

The following arguments point to buffers containing the path elements:

drive Contains a letter (A, B, and so on) corresponding to the desired drive and an
optional trailing colon. _makepath inserts the colon automatically in the
composite path if it is missing. If drive is a null character or an empty string, no
drive letter and colon appear in the composite path string.

dir Contains the path of directories, not including the drive designator or the actual
filename. The trailing slash is optional, and either a forward slash (I) or a
backslash (\) or both may be used in a single dir argument. If a trailing slash (lor
\) is not specified, it is inserted automatically. If dir is a null character or an empty
string, no slash is inserted in the composite path string.

fname Contains the base filename without any extensions. Iffname is NULL or
points to an empty string, no filename is inserted in the composite path string.

ext Contains the actual filename extension, with or without a leading period (.).
_makepath inserts the period automatically if it does not appear in ext. If ext is a
null character or an empty string, no period is inserted in the composite path
string.

The path argument must point to an empty buffer large enough to hold the complete
path. Although there are no size limits on any of the fields that constitute path, the
composite path must be no larger than the _MAX_PATH constant, defined in
STDLIB.H. _MAX_PATH may be larger than the current operating-system version
will handle.

/* MAKEPATH.C */

#include <stdlib.h>
#include <stdio.h>

Output

void maine void)
{

char path_buffer[_MAX_PATHJ;
char drive[_MAX_DRIVEJ;
char dir[_MAX_DIRJ;
char fname[_MAX_FNAMEJ;
char ext[_MAX_EXTJ;

_makepath(path_buffer, "c", "\\sample\\crt\\", "makepath", "c");
printf("Path created with _makepath: %s\n\n", path_buffer);
_splitpath(path_buffer, drive, dir, fname, ext);
printf("Path extracted with _splitpath:\n");
printf(" Drive: %s\n", drive);
printf(" Dir: %s\n", dir);
printf(" Filename: %s\n", fname);
printf(" Ext: %s\n", ext);

Path created with _makepath: c:\sample\crt\makepath.c

Path extracted with _splitpath:
Drive: c:
Dir: \sample\crt\
Filename: makepath
Ext: . c

See Also _fullpath, _splitpath

malloc
Allocates memory blocks.

void *malloc(size_t size);

Routine Required Header

malloc <stdlib.h> and <malloc.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

malloe

411

malloc

Return Value
malloe returns a void pointer to the allocated space, or NULL if there is insufficient
memory available. To return a pointer to a type other than void, use a type cast on the
return value. The storage space pointed to by the return value is guaranteed to be
suitably aligned for storage of any type of object. If size is 0, malloe allocates a zero­
length item in the heap and returns a valid pointer to that item. Always check the
return from malloe, even if the amount of memory requested is small.

Parameter

Remarks

412

size Bytes to allocate

The malloe function allocates a memory block of at least size bytes. The block may be
larger than size bytes because of space required for alignment and maintenance
information.

The startup code uses malloe to allocate storage for the _environ, envp, and argv
variables. The following functions and their wide-character counterparts also call
malloe:

calloc fscanf ~etw setvbuf

- exec functions fseek _popen _spawn functions

fgetc fsetpos printf _strdup

_fgetchar _fnllpath putc system

fgets fwrite putchar _tempnam

fprintf getc _putenv ungetc

fputc getchar puts vfprintf

Jputchar _getcwd _putw vprintf

fputs ~etdcwd scanf

fread gets _searchenv

The C++ _set_new _mode function sets the new handler mode for malloe. The new
handler mode indicates whether, on failure, malloe is to call the new handler routine
as set by _set_new _handler. By default, malloe does not call the new handler routine
on failure to allocate memory. You can override this default behavior so that, when
malloe fails to allocate memory, malloc calls the new handler routine in the same
way that the new operator does when it fails for the same reason. To override the
default, call

early in your program, or link with NEWMODE.OBJ.

When the application is linked with a debug version of the C run-time libraries,
malloe resolves to _malloe_dbg. For more information about how the heap is

Example

Output

managed during the debugging process, see Chapter 4, "Debug Version of the C Run­
Time Library."

1* MALLOC.C: This program allocates memory with
* malloc. then frees the memory with free.
*1

#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>

1* For _MAX_PATH definition *1

void maine void)
{

char *string;

1* Allocate space for a path name *1
string = malloc(_MAX_PATH);
if(string == NULL)

printf("Insufficient memory available\n");
else
{

printf("Memory space allocated for path name\n");
free(string);
pri ntf("Memory freed\n");

Memory space allocated for path name
Memory freed

See Also calloc, free, realloc

matherr
Handles math errors.

int _matherr(struct _exception *except);

Routine Required Header Optional Headers

_matherr <math.h>

Compatibility

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

_matherr

413

_matherr

Libraries

Lmc.LIB

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_matherr returns 0 to indicate an error or a non-zero value to indicate success. If
_matherr returns 0, an error message can be displayed, and errno is set to an
appropriate error value. If _matherr returns a nonzero value, no error message is
displayed, and errno remains unchanged.

Parameter

Remarks

414

except Pointer to structure containing error information

The _matherr function processes errors generated by the floating-point functions of
the math library. These functions call _matherr when an error is detected.

For special error handling, you can provide a different definition of _matherr. If you
use the dynamically linked version of the C run-time library (MSVCRTxO.DLL), you
can replace the default _matherr routine in a client executable with a user-defined
version. However, you cannot replace the default _matherr routine in a DLL client of
MSVCRTxO.DLL.

When an error occurs in a math routine, _matherr is called with a pointer to an
_exception type structure (defined in MATH.H) as an argument. The _exception
structure contains the following elements:

int type Exception type

char *name Name of function where error occurred

double argl, arg2 First and second (if any) arguments to function

double retval Value to be returned by function

The type specifies the type of math error. It is one of the following values, defined in
MATH.H:

_DOMAIN Argument domain error.

_SING Argument singularity.

_OVERFLOW Overflow range error.

_PLOSS Partial loss of significance.

_ TLOSS Total loss of significance.

_UNDERFLOW The result is too small to be represented. (This condition is not
currently supported.)

Example

The structure member name is a pointer to a null-terminated string containing the
name of the function that caused the error. The structure members argl and arg2
specify the values that caused the error. (If only one argument is given, it is stored in
argl.)

The default return value for the given error is retval. If you change the return value,
it must specify whether an error actually occurred.

/* MATHERR.C illustrates writing an error routine for math
* functions. The error function must be:
* _matherr
*/

#include <math.h>
#include <string.h>
#include <stdio.h>

void main()
{

/* Do several math operations that cause errors. The _matherr
* routine handles DOMAIN errors, but lets the system handle
* other errors normally.
*/

printf("loge -2.0) = %e\n", loge -2.0));
printf("10g10(-5.0) = %e\n", 10g10(-5.0));
printf("loge 0.0) = %e\n", loge 0.0));

/* Handle several math errors caused by passing a negative argument
* to log or 10g10 (_DOMAIN errors). When this happens, _matherr
* returns the natural or base-10 logarithm of the absolute value
* of the argument and suppresses the usual error message.
*/

int _matherr(struct _exception *except
{

/* Handle _DOMAIN errors for log or 10g10. */
if(except->type == _DOMAIN)
{

if(strcmp(except->name, "log") = 0)
{

}

except->retval = loge -(except->arg1));
printf("Special: using absolute value: Is: DOMAIN"

"error\n", except->name);
return 1;

else if(strcmp(except->name, "10g10") 0)

_matherr

415

Output

--

{

except->retval = 10g10(-(except->arg1));
printf("Special: using absolute value: Is: DOMAIN"

"error\n", except->name);

else
{

return 1;
}

printf("Normal: ");
return 0; /* Else use the default actions */

}
}

Special: using absolute value: log: DOMAIN error
log(-2.0) = 6.931472e-001
Special: using absolute value: 10g10: DOMAIN error
10g10(-5.0) = 6.989700e-001
Normal: log(0.0) = -1.#INF00e+000

max
Returns the larger of two values.

type __ max(type a, type b);

Routine Required Header

<stdlib.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
__ max returns the larger of its arguments.

Parameters
type Any numeric data type

a, b Values of any numeric type to be compared

416

Remarks

Example

The __ max macro compares two values and returns the value of the larger one. The
arguments can be of any numeric data type, signed or unsigned. Both arguments and
the return value must be of the same data type.

See the example for __ min.

See Also __ min

mbbtombc
unsigned short _mbbtombc(unsigned short c);

Routine Required Header

_mbbtombc <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If _mbbtombc successfully converts c, it returns a multibyte character; otherwise it
returns c.

Parameter

Remarks

c Single-byte character to convert.

The _mbbtombc function converts a given single-byte multibyte character to a
corresponding double-byte multibyte character. Characters must be within the range
Ox20-0x7E or OxAI-OxDF to be converted.

In earlier versions, _mbbtombc was called hantozen. For new code, use _mbbtombc
instead.

See Also _mbctombb

_mbbtombc

417

_mbbtype

_mhhtype
int _mbbtype(unsigned char c, int type);

Routine Required Header Optional Headers

_mbbtype <mbstring.h> <mbctype.h>l

1 For definitions of manifest constants used as return values.

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

418

_mbbtype returns the type of byte within a string. This decision is context-sensitive
as specified by the value of type, which provides the control test condition. type is the
type of the previous byte in the string. The manifest constants in the following table
are defined in MBCTYPE.H.

Value of type

Any value except
1

Any value except
1

Any value except
1

1

_mbbtype
Tests For

Valid single
byte or lead
byte

Valid single
byte or lead
byte

Valid single­
byte or lead
byte

Valid trail byte

Return Value

Valid trail byte _MBC_ILLEGAL

(-1)

c

Single byte (Ox20-Ox7E,
OxAI-OxDF)

Lead byte of multibyte
character (Ox81-0x9F,
OxEO-OxFC)

Invalid character (any
value except Ox20-Ox7E,
OxAI-OxDF,Ox81-
Ox9F, OxEO-OxFC

Trailing byte of multibyte
character (Ox40-0x7E,
Ox80-0xFC)

Invalid character (any
value except Ox20-Ox7E,
OxAI-OxDF,Ox81-
Ox9F,OxEO-OxFC

Parameters

Remarks

c Character to test

type Type of byte to test for

The _mbbtype function determines the type of a byte in a multibyte character. If the
value of type is any value except 1, _mbbtype tests for a valid single-byte or lead byte
of a multibyte character. If the value of type is 1, _mbbtype tests for a valid trail byte
of a multibyte character.

In earlier versions, _mbbtype was called chkctype. For new code, _mbbtype use
instead.

_mhccpy
void _mbccpy(unsigned char *dest, const unsigned char *src);

Routine Required Header Optional Headers Compatibility

_mbccpy <mbctype.h> Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LffiC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameters

Remarks

dest Copy destination

src Multibyte character to copy

The _mbccpy function copies one multibyte character from src to dest. If src does not
point to the lead byte of a multibyte character as determined by an implicit call to
_ismbblead, no copy is performed.

See Also _mbclen

_mbccpy

419

_mbcjistojms, _mbcjmstojis

_mbcjistojms, _mbcjmstojis
unsigned int _mbcjistojms(unsigned int c);
unsigned int _mbcjmstojis(unsigned int c);

Routine Required Header

_mbcjistojms <mbstring.h>

_mbcjmstojis <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_mbcjistojms and _mbcjmstojis return a converted character. Otherwise they
return O.

Parameter

Remarks

420

c Character to convert

The _mbcjistojms function converts a Japan Industry Standard (JIS) character to a
Microsoft Kanji (Shift JIS) character. The character is converted only if the lead and
trail bytes are in the range Ox21-0x7E.

The _mbcjmstojis function converts a Shift JIS character to a JIS character. The
character is converted only if the lead byte is in the range Ox81-0x9F or
OxEO-OxFC, and the trail byte is in the range Ox40-0x7E or Ox80-0xFC.

The value c should be a 16-bit value whose upper eight bits represent the lead byte of
the character to convert and whose lower eight bits represent the trail byte.

In earlier versions, _mbcjistojms and _mbcjmstojis were called jistojms and
jmstojis, repectively. _mbcjistojms and _mbcjmstojis should be used instead.

See Also _ismbb Routines

_mbclen, mblen
Get the length and determine the validity of a multi byte character.

size_t _mbclen(const unsigned char *c);
int mblen(const char *mbstr, size_t count);

Routine Required Header Optional Headers

<mbstring.h>

mblen <stdlib.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_mbclen returns 1 or 2, according to whether the multibyte character c is one or two
bytes long. There is no error return for _mbclen. If mbstr is not NULL, mblen
returns the length, in bytes, of the multibyte character. If mbstr is NULL, or if it
points to the wide-character null character, mblen returns O. If the object that mbstr
points to does not form a valid multibyte character within the first count characters,
mblen returns -1.

Parameters

Remarks

c Multibyte character

mbstr Address of multibyte-character byte sequence

count Number of bytes to check

The _mbclen function returns the length, in bytes, of the multibyte character c. If c
does not point to the lead byte of a multibyte character as determined by an implicit
call to _ismbblead, the result of _mbclen is unpredictable.

mblen returns the length in bytes of mbstr if it is a valid multibyte character. It
examines count or fewer bytes contained in mbstr, but not more than
MB_CUR_MAX bytes. mblen determines multibyte-character validity according to
the LC_CTYPE category setting of the current locale. For more information on the
LC _ CTYPE category, see setlocale.

_mbc1en, mblen

421

_mbctohira, _mbctokata

Example

Output

/* MBLEN.C illustrates the behavior of the mblen function
*/

#include <stdlib.h>
#include <stdio.h>

void main(void
{

}

int
char

i ;
*pmbc (char *)malloc(sizeof(char));

wchar_t wc L'a';

printf("Convert wide character to multibyte character:\n");
i = wetomb(pmbc, wc);
printf("\tCharacters converted: %u\n", i);
printf("\tMultibyte character: %x\n\n", pmbc);

i = mblen(pmbc, MB_CUR_MAX);
printf("Length in bytes of multibyte character %x: %u\n", pmbc,);

pmbc = NULL;
i = mblen(pmbe, MB_CUR_MAX);
printf("Length in bytes of NULL multibyte character %x: %u\n", pmbc,);

Convert wide character to multibyte character:
Characters converted: 1
Multibyte character: 2c02cc

Length in bytes of multibyte character 2c02cc: 1
Length in bytes of NULL multibyte character 0: 0

See Also _mbccpy, _mbslen

_mbctohira, _mbctokata

422

unsigned int _mbctohira(unsigned int c);
unsigned int _mbctokata(unsigned int c);

Routine Required Header Optional Headers

_mbctohira <mbstring.h>

_mbctokata <mbstring.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s,
68K,PMac

_mbctolower, _mbctoupper

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the converted character c, if possible. Otherwise it
returns the character c unchanged.

Parameter

Remarks

c Multibyte character to convert

The _mbctohira and _mbctohira functions test a character c and, if possible, apply
one of the following conversions.

Routine

_mbctohira

_mbctokata

Converts

Multibyte katakana to multi byte hiragana

Multibyte hiragana to multibyte katakana

In previous versions, _mbctohira was called jtohira and _mbctokata was called
jtokata. For new code, use the new names instead.

See Also _mbcjistojms, _mbctolower, _mbctombb

_mbctolower, _mbctoupper
unsigned int _mbctolower(unsigned int c);
unsigned int _mbctoupper(unsigned int c);

Routine Required Header Optional Headers

_mbctolower <mbstring.h>

_mbctoupper <mbstring.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

423

_mbctombb

Libraries

LIDC.LIB

LIDCMT.LID

MSYCRT.LID

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the converted character c, if possible. Otherwise it
returns the character c unchanged.

Parameter

Remarks

c Multibyte character to convert

The _mbctolower and _mbctoupper functions test a character c and, if possible,
apply one of the following conversions.

Routine

_mbctolower

_mbctoupper

Converts

Uppercase character to lowercase character

Lowercase character to uppercase character

In previous versions, _mbctolower was called jtolower, and _mbctoupper was
called jtoupper. For new code, use the new names instead.

See Also _mbbtombc, _mbcjistojms, _mbctohira, _mbctombb

mbctombb

424

unsigned int _mbctombb(unsigned int c);

Routine Required Header Optional Headers

_mbctombb <mbstring.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIDC.LIB

LIDCMT.LID

MSYCRT.LID

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, _mbctombb returns the single-byte character that corresponds to c;
otherwise it returns c.

Parameter

Remarks

c Multibyte character to convert.

The _mbctombb function converts a given multibyte character to a corresponding
single-byte multibyte character. Characters must correspond to single-byte characters
within the range Ox20-0x7E or OxAI-OxDF to be converted.

/ In previous versions, _mbctombb was called zentohan. Use _mbctombb instead.

See Also _mbbtombc, _mbcjistojms, _mbctohira, _mbctolower

_mhshtype
int _mbsbtype(const unsigned char *mbstr, size_t count);

Routine Required Header

_mhshtype <mbstring.h>

Optional Headers

<mbctype.h>l

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

1 For manifest constants used as return values.

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

_mbsbtype returns an integer value indicating the result of the test on the specified
byte. The manifest constants in the following table are defined in MBCTYPE.H.

Return Value Byte Type

Single-byte character. For example, in code page 932, _mhshtype
returns 0 if the specified byte is within the range Ox20-0x7E or
OxAI-OxDF.

Lead byte of multibyte character. For example, in code page 932,
_mhshtype returns 1 if the specified byte is within the range
Ox81-0x9F or OxEO-OxFC.

_mbsbtype

425

_mbsdec, _strdec, _ wcsdec

Return Value Byte Type

Trailing byte of multibyte character. For example, in code page
932, _mhshtype returns 2 if the specified byte is within the range
Ox40-0x7E or Ox80-0xFC.

Invalid character, or NULL byte found before the byte at offset
count in mbstr.

Parameters

Remarks

mbstr Address of a sequence of multibyte characters

count Byte offset from head of string

The _mhshtype function determines the type of a byte in a multibyte character string.
The function examines only the byte at offset count in mbstr, ignoring invalid
characters before the specified byte.

_mbsdec, _strdec, wcsdec
unsigned char * _mhsdec(const unsigned char * start, const unsigned char *current);

Routine Required Header Optional Headers Compatibility

_mhsdec <mbstring.h> <mbctype.h> Win 95, Win NT,
Win32s, 68K, PMac

_strdec <tchar.h> Win 95, Win NT,
Win32s, 68K, PMac

_wcsdec <tchar.h> Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

426

Each of these routines returns a pointer to the character that immediately precedes
current, or NULL if the value of start is greater than or equal to that of current. The
return value from _tcsdec is undefined; thus, when using _tcsdec, you must ensure
that you do not decrement the string pointer beyond start.

_mbsinc, _strine, _ wesine

Parameters

Remarks

start Pointer to first byte of any multibyte character in the source string; start must
precede current in the source string

current Pointer to first byte of any multibyte character in the source string; current
must follow start in the source string

The _mbsdec function returns a pointer to the first byte of the multibyte-character
that immediately precedes current in the string that contains start. _mbsdec
recognizes multi byte-character sequences according to the multibyte code page
currently in use.

The generic-text function _tcsdec, defined in TCHAR.H, maps to _mbsdec if
_MBCS has been defined, or to _wcsdec if _UNICODE has been defined. Otherwise
_tcsdec maps to _strdec. _strdec and _ wcsdec are single-byte character and wide­
character versions of _mbsdec. _strdec and _ wcsdec are provided only for this
mapping and should not be used otherwise.

For more information, see "Using Generic-Text Mappings" on page 25 and Appendix
B, "Generic-Text Mappings."

See Also _mbsinc, _mbsnextc, _mbsninc

_mbsine, _strine, weSlne
unsigned char * _mbsinc(const unsigned char *current);

Routine Required Header Optional Headers

_mhsine <mbstring.h>

_strine <tchar.h>

_wesine <tchar.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

427

_mbsnbcat

Return Value
Each of these routines returns a pointer to the character that immediately follows
current.

Parameter

Remarks

current Character pointer

The _mbsinc function returns a pointer to the fIrst byte of the multibyte character
that immediately follows current. _mbsine recognizes multibyte-character sequences
according to the multibyte code page currently in use.

The generic-text function _tesine, defined in TCHAR.H, maps to _mbsine if _MBCS
has been defined, or to _wesine if _UNICODE has been defined. Otherwise _tesine
maps to _strine. _strine and _ wesine are single-byte character and wide-character
versions of _mbsine. _strine and _ wesine are provided only for this mapping and
should not be used otherwise.

For more information, see "Using Generic-Text Mappings" on page 25 and Appendix
B, "Generic-Text Mappings."

See Also _mbsdee, _mbsnexte, _mbsnine

mbsnbcat
unsigned ehar * _mbsnbeat(unsigned ehar *dest, eonst unsigned ehar *src, size_t count);

Routine Required Header

_mbsnbcat <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIDc.Lm

LIDCMT.LID

MSYCRT.LID

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

428

_mbsnbcat returns a pointer to the destination string. No return value is reserved to
indicate an error.

Parameters

Remarks

dest Null-terminated multibyte-character destination string

src Null-terminated multibyte-character source string

count Number of bytes from src to append to dest

The _mbsnbcat function appends, at most, the first count bytes of src to dest. If the
byte immediately preceding the null character in dest is a lead byte, the initial byte of
src overwrites this lead byte. Otherwise the initial byte of src overwrites the
terminating null character of dest. If a null byte appears in src before count bytes are
appended, _mbsnbcat appends all bytes from src, up to the null character. If count is
greater than the length of src, the length of src is used in place of count. The
resulting string is terminated with a null character. If copying takes place between
strings that overlap, the behavior is undefined.

See Also _mbsnbcmp, _mbsnbcnt, _mbsnccnt, _mbsnbcpy, _mbsnbicmp,
_mbsnbset, strncat

_mbsnbcmp

_mbsnbcmp

int _mbsnbcmp(const unsigned char *stringl, const unsigned char string2, size_t count);

Routine Required Header

_mbsnbcmp <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

The return value indicates the relation of the substrings of string 1 and string.

Return Value

<0

o
>0

Description

string1 substring less than string2 substring

string1 substring identical to string2 substring

string 1 substring greater than string2 substring

429

_mbsnbcmp

On an error, _mbsnbcmp returns _NLSCMPERROR, which is defined in
STRING.H and MBSTRING.H.

Parameters

Remarks

Example

430

string1, string2 Strings to compare

count Number of bytes to compare

The _mbsnbcmp function lexicographically compares, at most, the first count bytes
in string1 and string2 and returns a value indicating the relationship between the
sUbstrings. _mbsnbcmp is a case-sensitive version of _mbsnbicmp. Unlike strcoll,
_mbsnbcmp is not affected by locale. _mbsnbcmp recognizes multibyte-character
sequences according to the current multibyte code page. For more information, see
"Code Pages" on page 22.

_mbsnbcmp is similar to _mbsncmp, except that _mbsnbcmp compares strings by
characters rather than by bytes.

/* STRNBCMP.C */
#include <mbstring.h>
#include <stdio.h>

char stri ngl[]
char string2[]

"The quick brown dog jumps over the lazy fox";
"The QUICK brown fox jumps over the lazy dog";

void main(void)
{

}

char tmp[20];
int result;
printf("Compare strings:\n\t\t%s\n\t\t%s\n\n", string1, string2);
printf("Function:\t_mbsnbcmp (first 10 characters only)\n");
result = _mbsncmp(string1, string2 , 10);
if(result> 0)

_mbscpy(tmp, "greater than");
else if(result < 0)

_mbscpy(tmp, "less than");
else

_mbscpy(tmp, "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n", tmp);
printf("Function:\t_mbsnicmp _mbsnicmp (first 10 characters only)\n");
result = _mbsnicmp(string1, string2, 10);
if(result > 0)

_mbscpy(tmp, "greater than");
else if(result < 0)

_mbscpy(tmp, "less than");
else

_mbscpy(tmp, "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n", tmp);

_mbsnbcnt, _mbsnccnt, _stmcnt, _ wcsncnt

Output
Compare strings:

The quick brown dog jumps over the lazy fox
The QUICK brown fox jumps over the lazy dog

Function: _mbsnbcmp (first 10 characters only)
String 1 is greater than string 2 Result:

Function:
Result:

_mbsnicmp (first 10 characters only)
String 1 is equal to string 2

See Also _mbsnbcat, Jllbsnbicmp, strncmp, _strnicmp

_mbsnbcnt, _mbsnccnt, _strncnt, wcsncnt
Return number of characters or bytes within a supplied count

size_t _mbsnbcnt(const unsigned char *string, size_t number);
size_t Jllbsnccnt(const unsigned char *string, size_t number);

Routine Required Header Optional Headers Compatibility

_mbsnbcnt <mbstring.h> Win 95, Win NT,
Win32s, 68K, PMac

_mbsnccnt <mb string. h> Win 95, Win NT,
Win32s, 68K, PMac

- strncnt <tchar.h> Win 95, Win NT,
Win32s, 68K, PMac

_wcsncnt <tchar.h> Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

_mbsnbcnt returns the number of bytes found in the first number of multibyte
characters of string. _mbsnccnt returns the number of characters found in the first
number of bytes of string. If a NULL character is encountered before the examination
of string has completed, they return the number of bytes or characters found before
the NULL character. If string consists of fewer than number characters or bytes, they

431

_mbsnbcnt, _mbsnccnt, _strncnt, _ wcsncnt

return the number of characters or bytes in the string. If number is less than zero,
they return O. In previous versions, these functions had a return value of type int
rather than size_t.

_strnent returns the number of characters in the first number bytes of the single-byte
string string. _ wesnent returns the number of bytes in the first number wide
characters of the wide-character string string.

Parameters

Remarks

Example

432

string String to be examined

number Number of characters or bytes to be examined in string

_mbsnbent counts the number of bytes found in the first number of multibyte
characters of string. _mbsnbent replaces mtob, and should be used in place of mtob.

_mbsncent counts the number of characters found in the first number of bytes of
string. If _mbsneent encounters a NULL in the second byte of a double-byte
character, the first byte is also considered to be NULL and is not included in the
returned count value. _mbsneent replaces btom, and should be used in place of
btom.

If _MBCS is defined, _mbsnbent is mapped to _tesnbent and _mbsnbent is mapped
to _tesneent. These two mapping routines provide generic-text support and are
defined in TCHAR.H. If _UNICODE is defined, both _mbsnbent and _mbsneent
are mapped to the _wesnent macro. When _MBCS and _UNICODE are not defined,
both _tcsnbent and _tesneent are mapped to the _strnent macro. _strnent is the
single-byte-character string version and _ wesnent is the wide-character-string
version of these mapping routines. _strnent and _ wesnent are provided only for
generic-text mapping and should not be used otherwise. For more information, see
"Using Generic-Text Mappings" on page 25 and see Appendix B, "Generic-Text
Mappings."

/* MBSNBCNT.C */

Ifi ncl ude
Ifi ncl ude

<mbstring.h>
<stdio.h>

void main(void)
{

}

unsigned char str[] = "This is a multibyte-character string.";
unsigned int char_count. byte_count;
char_count = _mbsnccnt(str. 10);
byte_count = _mbsnbcnt(str. 10);
if (byte_count - char_count)

printf("The first 10 characters contain %s multibyte characters". char_count);
else

printf("The first 10 characters are single-byte.");

_mbsnbcoll, _mbsnbicoll

Output
The first 10 characters are single-byte.

See Also _mbsnbcat

_mbsnbcoll, mbsnbicoll
int _mbsnbcoll(const unsigned char *stringl, const unsigned char string2, size_t count);
int _mbsnbicoll(const unsigned char *stringl, const unsigned char string2, size_t count);

Routine Required Header

_mbsnbcoll <mbstring.h>

_mbsnbicoll <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The return value indicates the relation of the substrings of stringl and string2.

Return Value

<0

o
>0

Description

string 1 substring less than string2 substring

string1 substring identical to string2 substring

string 1 substring greater than string2 substring

Each of these functions returns _NLSCMPERROR on an error. To use
_NLSCMPERROR, include either STRING.H or MBSTRING.H.

Parameters

Remarks

stringl, string2 Strings to compare

count Number of bytes to compare

Each of these functions collates, at most, the first count bytes in string1 and string2
and returns a value indicating the relationship between the resulting substrings of
stringl and string2. If the final byte in the substring of stringl or string2 is a lead

433

_mhsnbcpy

byte, it is not included in the comparison; these functions compare only complete
characters in the sUbstrings. _mbsnbicoll is a case-insensitive version of _mbsnbcoll.
Like _mbsnbcmp and _mbsnbicmp, _mbsnbcoll and _mbsnbicoll collate the two
multibyte-character strings according to the lexicographic order specified by the
multibyte code page currently in use. For more information, see "Code Pages" on
page 22.

For some code pages and corresponding character sets, the order of characters in the
character set may differ from the lexicographic character order. In the "C" locale, this
is not the case: the order of characters in the ASCII character set is the same as the
lexicographic order of the characters. However, in certain European code pages, for
example, the character 'a' (value Ox61) precedes the character 'a' (value OxE4) in the
character set, but the character 'a' precedes the character 'a' lexicographically. To
perform a lexicographic comparison of strings by bytes in such an instance, use
_mbsnbcoll rather than _mbsnbcmp; to check only for string equality, use
_mbsnbcmp.

Because the coli functions collate strings lexicographically for comparison, whereas
the cmp functions simply test for string equality, the coli functions are much slower
than the corresponding cmp versions. Therefore, the coli functions should be used
only when there is a difference between the character set order and the lexicographic
character order in the current code page and this difference is of interest for the
comparison.

See Also _mbsnbcat, _mbsnbcmp, _mbsnbicmp, strcoll Functions, strncmp,
_strnicmp

_mbsnbcpy

434

unsigned char * _mbsnbcpy(unsigned char *dest, const unsigned char *src, size_t count);

Routine Required Header

_mbsnbcpy <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_mbsnbcpy returns a pointer to the character string that is to be copied.

Parameters

Remarks

dest Destination for character string to be copied

src Character string to be copied

count Number of bytes to be copied

The _mbsnbcpy function copies count bytes from src to dest. If src is shorter than
dest, the string is padded with null characters. If dest is less than or equal to count it
is not terminated with a null character.

See Also _mbsnbcat, _mbsnbcmp, _mbsnbcnt, _mbsnccnt, Jllbsnbicmp,
_mbsnbset,_mbsncpy

_mbsnbicmp

_mbsnbicmp

int _mbsnbicmp(const unsigned char *stringl, const unsigned char *string2, size_t count);

Routine Required Header

_mhsnhicmp <mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

The return value indicates the relationship between the substrings.

Return Value

<0

o
>0

Description

string1 substring less than string2 substring

string 1 substring identical to string2 substring

string1 substring greater than string2 substring

On an error, _mbsnbcmp returns _NLSCMPERROR, which is defined in
STRING.H and MBSTRING.H.

435

_mbsnbset

Parameters

Remarks

Example

string], string2 Null-terminated strings to compare

count Number of bytes to compare

The _mbsnbicmp function lexicographically compares, at most, the first count bytes
of string] and string2. The comparison is performed without regard to case;
_mbsnhcmp is a case-sensitive version of _mbsnbicmp. The comparison ends if a
terminating null character is reached in either string before count characters are
compared. If the strings are equal when a terminating null character is reached in
either string before count characters are compared, the shorter string is lesser.

_mbsnhicmp is similar to _mbsnicmp, except that it compares strings by bytes
instead of by characters.

Two strings containing characters located between 'Z' and 'a' in the ASCII table
(, [', '\', ']', '''', '_', and ' ~ ') compare differently, depending on their case. For
example, the two strings "ABCDE" and "ABCD"" compare one way if the comparison is
lowercase ("abede" > "abed"") and the other way ("ABC DE" < "ABCD"") if it is
uppercase.

_mbsnhicmp recognizes multibyte-character sequences according to the multibyte
code page currently in use. It is not affected by the current locale setting.

See the example for _mbsnbcmp.

See Also _mbsnbcat, _mbsnbcmp, _stricmp, _strnicmp

mbsnbset

436

unsigned char * _mbsnbset(unsigned char *string, unsigned int c, size_t count);

Routine Required Header

_mbsnbset <rnbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.Lffi

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_mbsnbset returns a pointer to the altered string.

Parameters

Remarks

Example

Output

string String to be altered

c Single-byte or multibyte character setting

count Number of bytes to be set

The _mbsnbset function sets, at most, the first count bytes of string to c. If count is
greater than the length of string, the length of string is used instead of count. If c is a
multibyte character and cannot be set entirely into the last byte specified by count,
then the last byte will be padded with a blank character. _mbsnbset does not place a
terminating null at the end of string.

_mbsnbset is similar to _mbsnset, except that it sets count bytes rather than count
characters of c.

1* MBSNBSET.C *1

#include <mbstring.h>
#include <stdio.h>

void main(void)
{

}

char string[15] = "This is a test";
1* Set not more than 4 bytes of string to be *'s *1
printf("Before: %s\n". string);
_m b s nbs e t (s t r i n g. ' *'. 4);
printf("After: %s\n". string);

Before: This is a test
After: **** is a test

See Also _mbsnbcat, _mbsnset, _mbsset

_mbsnbset

437

_mbsnextc, _strnextc, _ wcsnextc

_mbsnextc, _strnextc, wcsnextc
unsigned int _mbsnextc(const unsigned char *string);

Routine Required Header Optional Headers Compatibility

_mbsnextc <mbstring.h> Win 95, Win NT,
Win32s, 68K, PMac

_strnextc <tchar.h> Win 95, Win NT,
Win32s, 68K, PMac

_wcsnextc <tchar.h> Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

libraries

LIBc.Lm

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the integer value of the next character in string.

Parameter

Remarks

438

string Source string

The _mbsnextc function returns the integer value of the next multi byte-character in
string, without advancing the string pointer. _mbsnextc recognizes multibyte­
character sequences according to the multibyte code page currently in use.

The generic-text function _tcsnextc, defined in TCHAR.H, maps to _mbsnextc if
_MBCS has been defined, or to _wcsnextc if _UNICODE has been defined.
Otherwise _tcsnextc maps to _strnextc. _strnextc and _ wcsnextc are single-byte­
character string and wide-character string versions of _mbsnextc. _ wcsnextc returns
the integer value of the next wide character in string; _strnextc returns the integer
value of the next single-byte character in string. _strnextc and _wcsnextc are
provided only for this mapping and should not be used otherwise. For more
information, see "Using Generic-Text Mappings" on page 25 and Appendix B,
"Generic-Text Mappings."

See Also _mbsdec, _mbsinc, _mbsninc

_mbsninc, _strninc, _ wcsninc

_mbsninc, _strninc, wcsnlnc
unsigned char * _mbsninc(const unsigned char *string, size_t count);

Routine Required Header Optional Headers Compatibility

_mbsninc <mbstring.h> Win 95, Win NT,
Win32s, 68K, PMac

_strninc <tchar.h> Win 95, Win NT,
Win32s, 68K, PMac

-wcsninc <tchar.h> Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these routines returns a pointer to string after string has been incremented by
count characters, or NULL if the supplied pointer is NULL. If count is greater than
or equal to the number of characters in string, the result is undefined.

Parameters

Remarks

string Source string

count Number of characters to increment string pointer

The _mbsninc function increments string by count multibyte characters. _mbsninc
recognizes multibyte-character sequences according to the multibyte code page
currently in use.

The generic-text function _tcsninc, defined in TCHAR.H, maps to _mbsninc if
_MBCS has been defined, or to _wcsninc if _UNICODE has been defined.
Otherwise _tcsninc maps to _strninc. _strninc and _ wcsninc are single-byte­
character string and wide-character string versions of _mbsninc. _ wcsninc and
_strninc are provided only for this mapping and should not be used otherwise. For
more information, see "Using Generic-Text Mappings" on page 25 and Appendix B,
"Generic-Text Mappings."

See Also _mbsdec, _mbsinc, _mbsnextc

439

_mhsspnp, _strspnp, _ wcsspnp

_mhsspnp, _strspnp, _wcsspnp
unsigned char * _mbsspnp(const unsigned char *string1,

const unsigned char *string2);

Routine Required Header Optional Headers

_mbsspnp <mbstring.h>

_strspnp <tchar.h>

_wcsspnp <tchar.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_strspnp, _ wcsspnp, and _mbsspnp return a pointer to the first character in string 1
that does not belong to the set of characters in string2. Each of these functions returns
NULL if string1 consists entirely of characters from string2. For each of these
routines, no return value is reserved to indicate an error.

Parameters

Remarks

440

string1 Null-terminated string to search

string2 Null-terminated character set

The _mbsspnp function returns a pointer to the multibyte character that is the first
character in string1 that does not belong to the set of characters in string2. _mbsspnp
recognizes multibyte-character sequences according to the multibyte code page
currently in use. The search does not include terminating null characters.

The generic-text function _tcsspnp, defined in TCHAR.H, maps to _mbsspnp if
_MBCS has been defined, or to _wcsspnp if _UNICODE has been defined.
Otherwise _tcsspnp maps to _strspnp. _strspnp and _ wcsspnp are single-byte
character and wide-character versions of _mbsspnp. _strspnp and _ wcsspnp behave
identically to _mbsspnp otherwise; they are provided only for this mapping and
should not be used for any other reason. For more information, see "Using Generic­
Text Mappings" on page 25 and Appendix B, "Generic-Text Mappings."

Example
See the example for strspn.

See Also strspn, strcspn, strncat, strncmp, strncpy, _strnicmp, strrchr

mbstowcs
Converts a sequence of multi byte characters to a corresponding sequence of wide
characters.

size_t mbstowcs(wchar_t *wcstr, const char *mbstr, size_t count);

Routine Required Header Optional Headers Compatibility

mbstowcs <stdlib.h> ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If mbstowcs successfully converts the source string, it returns the number of
converted multibyte characters. If the wcstr argument is NULL, the function returns
the required size of the destination string. If mbstowcs encounters an invalid
multibyte character, it returns -1. If the return value is count, the wide-character
string is not null-terminated.

Parameters

Remarks

wcstr The address of a sequence of wide characters

mbstr The address of a sequence of multibyte characters

count The number of multibyte characters to convert

The mbstowcs function converts count or fewer multibyte characters pointed to by
mbstr to a string of corresponding wide characters that are determined by the current
locale. It stores the resulting wide-character string at the address represented by
wcstr. The result is similiar to a series of calls to mbtowc. If mbstowcs encounters
the single-byte null character ('\0') either before or when count occurs, it converts the
null character to a wide-character null character (L'\O') and stops. Thus the wide­
character string at wcstr is null-terminated only if a null character is encountered

mbstowcs

441

mbstowcs

Example

Output

442

during conversion. If the sequences pointed to by wcstr and mbstr overlap, the
behavior is undefined.

If the wcstr argument is NULL, mbstowcs returns the required size of the destination
string.

/* MBSTOWCS.CPP illustrates the behavior of the mbstowcs function
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

}

i nt i;
char *pmbnull
char *pmbhello
wchar t *pwchello
wchar t *pwc

NULL;
(char *)malloc(MB_CUR_MAX);
L"Hi";
(wchar_t *)malloc(sizeof(wchar_t »;

printf("Convert to multibyte string:\n");
i = wcstombs(pmbhello, pwchello, MB_CUR_MAX);
printf("\tCharacters converted: %u\n", i);
printf("\tHex value of first");
printf(" multibyte character: %#.4x\n\n", pmbhello);

printf("Convert back to wide-character string:\n");
i = mbstowcs(pwc, pmbhello, MB_CUR_MAX);
printf("\tCharacters converted: %u\n",);
printf("\tHex value of first");
printf(" wide character: %#.4x\n\n", pwc);

Convert to multibyte string:
Characters converted: 1
Hex value of first multibyte character: 0x0ela

Convert back to wide-character string:
Characters converted: 1
Hex value of first wide character: 0x0ele

See Also mblen, mbtowc, wcstombs, wctomb

mbtowc
Convert a multibyte character to a corresponding wide character.

int mbtowc(wchar _t *wchar, const char *mbchar, size_t count);

Routine Required Header Optional Headers Compatibility

mbtowc <stdlib.h> ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If mbchar is not NULL and if the object that mbchar points to forms a valid
multibyte character, mbtowc returns the length in bytes of the multibyte character. If
mbchar is NULL or the object that it points to is a wide-character null character
(L '\0'), the function returns O. If the object that mbchar points to does not form a
valid multibyte character within the first count characters, it returns -1.

Parameters

Remarks

Example

wchar Address of a wide character (type wchar_t)

mbchar Address of a sequence of bytes (a multibyte character)

count Number of bytes to check

The mbtowc function converts count or fewer bytes pointed to by mbchar, if mbchar
is not NULL, to a corresponding wide character. mbtowc stores the resulting wide
character at wchar, if wchar is not NULL. mbtowc does not examine more than
MB_CUR_MAX bytes.

.
1* MBTOWC.CPP illustrates the behavior of the mbtowc function
*1

#include <stdlib.h>
#include <stdio.h>

mbtowc

443

mbtowc

Output

444

void maine void
{

}

i nt i ;
char *pmbc (char *)malloc(sizeof(char));
wchar_t wc L'a';
wchar t *pwcnull NULL;
wchar t *pwc (wchar_t *)malloc(sizeof(wchar_t));
printf("Convert a wide character to multibyte character:\n");
i = wctomb(pmbc. wc);
printf("\tCharacters converted: %u\n". i);
printf("\tMultibyte character: %x\n\n". pmbc);

printf("Convert multi byte character back to a wide"
"character:\n");

i = mbtowc(pwc. pmbc. MB_CUR_MAX);
pri ntf("\ tBytes converted: %u\n". i);
printf("\tWide character: %x\n\n". pwc);
printf("Attempt to convert when target is NULL\n");
printf(" returns the length of the multibyte character:\n");
i = mbtowc(pwcnull. pmbc. MB_CUR_MAX);
printf("\tLength of multibyte character: %u\n\n". i);

printf("Attempt to convert a NULL pointer to a");
printf(" wide character:\n");
pmbc = NULL;
i = mbtowc(pwc. pmbc. MB_CUR_MAX);
printf("\tBytes converted: %u\n". i);

Convert a wide character to multibyte character:
Characters converted: 1
Multibyte character: 2d02d4

Convert multibyte character back to a wide character:
Bytes converted: 1
Wide character: 2d02dc

Attempt to convert when target is NULL
returns the length of the multibyte character:

Length of multibyte character: 1

Attempt to convert a NULL pointer to a wide character:
Bytes converted: 0

See Also mblen, wcstombs, wctomb

_memccpy
Copies characters from a buffer.

void * _memccpy(void *dest, const void *src, int c, unsigned int count);

Routine

_memccpy

Required Header

<memory.h> or
<string.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If the character c is copied, _memccpy returns a pointer to the byte in dest that
immediately follows the character. If c is not copied, it returns NULL.

Parameters

Remarks

Example

dest Pointer to destination

src Pointer to source

c Last character to copy

count Number of characters

The _memccpy function copies 0 or more bytes of src to dest, halting when the
character c has been copied or when count bytes have been copied, whichever comes
first.

1* MEMCCPV.C *1

#include <memory.h>
#include <stdio.h>
#include <string.h>

char stringl[60] = "The quick brown dog jumps over the lazy fox":

_memccpy

445

memchr

Output

void main(void)
{

}

char buffer[6l];
char *pdest;

printf("Function:\t_memccpy 60 characters or to character 's'\n");
printf("Source:\t\t%s\n", stringl);
pdest = _memccpy(buffer, stringl, 's', 60);
*pdest = '\0';
printf("Result:\t\t%s\n", buffer);
printf("Length:\t\t%d characters\n\n", strlen(buffer));

Function: _memccpy 60 characters or to character's'
The quick brown dog jumps over the lazy fox
The quick brown dog jumps

Source:
Result:
Length: 25 characters

See Also memchr, memcmp, memcpy, memset

memchr
Finds characters in a buffer.

void *memchr(const void *buf, int c, size_t count);

Routine

memchr

Required Header

<memory.h> or
<string.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

446

If successful, memchr returns a pointer to the first location of c in buf Otherwise it
returns NULL.

Parameters

Remarks

Example

Output

buf Pointer to buffer

c Character to look for

count Number of characters to check

The memchr function looks for the first occurrence of c in the first count bytes of
buf It stops when it finds c or when it has checked the first count bytes.

/* MEMCHR.C */

#include <memory.h>
#include <stdio.h>

int ch = 'r' ;
char str[] = "lazy";
char stri ng [] = "The quick brown dog jumps over the lazy fox";
char fmtl[] 1 2 3 4 5";
char fmt2[] = "12345678901234567890123456789012345678901234567890";

void main(void
{

}

char *pdest;
i nt result;
printf("String to be searched:\n\t\t%s\n", string);
printf("\t\t%s\n\t\t%s\n\n", fmt1, fmt2);

printf("Search char:\t%c\n", ch);
pdest = memchr(string, ch, sizeof(string));
result = pdest - string + 1;
if(pdest != NULL)

printf("Result:\t\t%c found at position %d\n\n", ch, result);
else

printf("Result:\t\t%c not found\n");

String to be searched:
The quick brown dog jumps over the lazy fox

1 2 3 4 5
12345678901234567890123456789012345678901234567890

Search char: r
Result: r found at position 12

See Also _memccpy, memcmp, memcpy, memset, strchr

memchr

447

memcmp

memcmp
Compare characters in two buffers.

intmemcmp(const void *bufl, const void *buj2, size_t count);

Routine

memcmp

Required Header

<memory.h> or
<string.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.LIB

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The return value indicates the relationship between the buffers.

Return Value

<0

o
>0

Relationship of First count Bytes of buf1 and buf2

bufl less than buj2

bufl identical to buj2

bufl greater than buj2

Parameters

Remarks

Example

448

bufl First buffer

buj2 Second buffer

count Number of characters

The memcmp function compares the first count bytes of bufl and buj2 and returns a
value indicating their relationship.

/* MEMCMP.C: This program uses memcmp to compare
* the strings named first and second. If the first
* 19 bytes of the strings are equal. the program
* considers the strings to be equal.
*/

#include <string.h>
#include <stdio.h>

void main(void)

Output

}

char first[]
char second[]
int result;

"12345678901234567890";
"12345678901234567891";

printf("Compare '%.19s' to '%.19s':\n", first, second);
result = memcmp(first, second, 19);
if(result < 0)

printf("First is less than second.\n");
else if(result == 0)

printf("First is equal to second.\n");
else if(result> 0)

printf("First is greater than second.\n");
printf("Compare '%.20s' to '%.20s':\n", first, second);
result = memcmp(first, second, 20);
if(result < 0)

pri ntf("Fi rst is 1 ess than second. \n");
else if(result == 0)

printf("First is equal to second.\n");
else if(result> 0)

printf("First is greater than second.\n");

Compare '1234567890123456789' to '1234567890123456789':
First is equal to second.
Compare '12345678901234567890' to '12345678901234567891':
First is less than second.

See Also _memccpy, memchr, memcpy, memset, strcmp, strncmp

memcpy
Copies characters between buffers.

void *memcpy(void *dest, const void *src, size_t count);

Routine

memcpy

Required Header

<memory .h> or
<string.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

memcpy

449

memcpy

Libraries

LIDC.LID

LIDCMT.LID

MSYCRT.LID

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
memcpy returns the value of dest.

Parameters

Remarks

Example

450

dest New buffer

src Buffer to copy from

count Number of characters to copy

The memcpy function copies count bytes of src to dest. If the source and destination
overlap, this function does not ensure that the original source bytes in the overlapping
region are copied before being overwritten. Use memmove to handle overlapping
regions.

/* MEMCPY.C: Illustrate overlapping copy: memmove
* handles it correctly; memcpy does not.
*/

#include <memory.h>
#include <string.h>
#include <stdio.h>

cha r stri ng1[60]
char string2[60]

"The quick brown dog jumps over the lazy fox";
"The quick brown fox jumps over the lazy dog";

/* 1 2 3 4 5

* 12345678901234567890123456789012345678901234567890
*/

void main(void)
{

printf("Function:\tmemcpy without overlap\n");
printf("Source:\t\t%s\n", stringl + 40);
printf("Destination:\t%s\n", stringl + 16);
memcpy(string1 + 16, string1 + 40, 3);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

/* Restore string1 to original contents */
memcpy(string1 + 16, string2 + 40, 3);

Output

printf("Function:\tmemmove with overlap\n");
printf("Source:\t\t%s\n", string2 + 4);
printf("Destination:\t%s\n", string2 + 10);
memmove(string2 + 10, string2 + 4, 40);
printf("Result:\t\t%s\n", string2);
printf("Length:\t\t%d characters\n\n", strlen(string2));

printf("Function:\tmemcpy with overlap\n");
printf("Source:\t\t%s\n", string1 + 4);
printf("Destination:\t%s\n", string1 + 10);
memcpy(string1 + 10, string1 + 4, 40);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result :
Length:

Function:
Source:
Destination:
Result:
Length:

memcpy without overlap
fox

dog jumps over the lazy fox
The quick brown fox jumps over the lazy fox
43 characters

memmove with overlap
quick brown fox jumps over the lazy dog

brown fox jumps over the lazy dog
The quick quick brown fox jumps over the
49 characters

memcpy with overlap
quick brown dog jumps over the lazy fox

brown dog jumps over the lazy fox
The quick quick brown dog jumps over the
49 characters

1 azy dog

lazy fox

SeeAlso _memccpy, memchr, memcmp, memmove, memset, strcpy, strncpy

_memlcmp
Compares characters in two buffers (case-insensitive).

int _memicmp(const void *bufl, const void *buj2, unsigned int count);

Routine

_memicmp

Required Header

<memory .h> or
<string.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

_memicmp

451

_memicmp

Libraries

LmC.Lm

LffiCMT.Lffi

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The return value indicates the relationship between the buffers.

Return Value

<0

o
>0

Relationship of First count Bytes of buf1 and buf2

buflless than buj2

bufl identical to buj2

bufl greater than buj2

Parameters

Remarks

Example

452

bufl First buffer

buj2 Second buffer

count Number of characters

The _memicmp function compares the first count characters of the two buffers bufl
and buj2 byte by byte. The comparison is not case sensitive.

/* MEMICMP.C: This program uses _memicmp to compare
* the first 29 letters of the strings named first and
* second without regard to the case of the letters.
*/

#include <memory.h>
#include <stdio.h>
#include <string.h>

void main(void
{

int result;
char first[] = "Those Who Will Not Learn from History";
char second[] = "THOSE WHO WILL NOT LEARN FROM their mistakes";
/* Note that the 29th character is right here A */

printf("Compare '%.29s' to '%.29s'\n", first, second);
result = _memicmp(first, second, 29);
if(result < 0)

printf("First is less than second.\n");
else if(result == 0)

printf("First is equal to second.\n");}

Output

else if(result> 0)
printf("First is greater than second.\n");

}

Compare 'Those Who Will Not Learn from' to 'THOSE WHO WILL NOT LEARN FROM'
First is equal to second.

SeeAlso _memccpy, memchr, memcmp, memcpy, memset, _stricmp, _strnicmp

memmove
Moves one buffer to another.

void *memmove(void *dest, const void *src, size_t count);

Routine

memmove

Required Header

<string.h> or
<memory.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIDC.LID

LIDCMT.LID

MSVCRT.LID

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
memmove returns the value of dest.

Parameters

Remarks

Example

dest Destination object

src Source object

count Number of bytes of characters to copy

The memmove function copies count bytes of characters from src to dest. If some
regions of the source area and the destination overlap, memmove ensures that the
original source bytes in the overlapping region are copied before being overwritten.

See the example for memcpy.

See Also _memccpy, memcpy, strcpy, strncpy

memmove

453

memset

memset
Sets buffers to a specified character.

void *memset(void *dest, int c, size_t count);

Routine

memset

Required Header

<memory.h> or
<string.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
memset returns the value of dest.

Parameters

Remarks

Example

454

dest Pointer to destination

c Character to set

count Number of characters

The memset function sets the first count bytes of dest to the character c.

1* MEMSET.C: This program uses memset to
* set the first four bytes of buffer to "*"
*1

#include <memory.h>
#include <stdio.h>

void main(void)
{

}

char buffer[] = "This is a test of the memset function";

printf("Before: %s\n", buffer);
memset(buffer, '*', 4);
printf("After: %s\n", buffer);

Output
Before: This is a test of the memset function
After: **** is a test of the memset function

SeeAlso _memccpy, memchr, memcmp, memcpy, _strnset

mIn
Returns the smaller of two values.

type _ _ min(type a, type b);

Routine Required Header

<stdlib.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The smaller of the two arguments

Parameters

Remarks

Example

type Any numeric data type

a, b Values of any numeric type to be compared

The _ _ min macro compares two values and returns the value of the smaller one. The
arguments can be of any numeric data type, signed or unsigned. Both arguments and
the return value must be of the same data type.

1* MINMAX.C *1

#include <stdlib.h>
#include <stdio.h>

455

_mkdir, _ wmkdir

Output

void main(void
{

}

int a 10;
int b 21;

printf("The larger of %d and %d is %d\n",
printf("The smaller of %d and %d is %d\n",

The larger of 10 and 21 is 21
The smaller of 10 and 21 is 10

See Also __ max

a, b, __ max(a, b
a, b, __ min(a, b

) ;
) ;

_mkdir, wmkdir
Create a new directory.

int _mkdir(const char *dimame);
int _wmkdir(const wchar_t *dimame);

Routine Required Header

<direct.h>

<direct.h> or
<wchar.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

456

Each of these functions returns the value 0 if the new directory was created. On an
error the function returns -1 and sets errno as follows:

EACCES Directory was not created because dimame is the name of an existing file,
directory, or device

ENOENT Path was not found

Parameter

Remarks

Example

Output

dirname Path for new directory

The _mkdir function creates a new directory with the specified dirname. _mkdir can
create only one new directory per call, so only the last component of dirname can
name a new directory. _mkdir does not translate path delimiters. In Windows NT,
both the backslash (\) and the forward slash (I) are valid path delimiters in character
strings in run-time routines.

_ wmkdir is a wide-character version of _mkdir; the dirname argument to _ wmkdir
is a wide-character string. _ wmkdir and _mkdir behave identically otherwise.

/* MAKEDIR.C */

#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

void maine void)
{

}

if(_mkdir("\\testtmp") == 0)
{

}

printf("Directory '\\testtmp' was successfully created\n");
system("dir \\testtmp");
if(_rmdir("\\testtmp") == 0

printf("Directory '\\testtmp' was successfully removed\n");
else

printf("Problem removing directory '\\testtmp'\n");

else
printf("Problem creating directory '\\testtmp'\n");

Directory '\testtmp' was successfully created
Volume in drive C is CDRIVE
Volume Serial Number is 0E17-1702

Directory of C:\testtmp

05/03/94
05/03/94

12:30p
12:30p

<DIR>
<DIR>

2 File(s) o bytes
17.358.848 bytes free

Directory '\testtmp' was successfully removed

See Also _chdir, _rmdir

457

_mktemp, _ wmktemp

_mktemp, _wmktemp
Create a unique filename.

char * _mktemp(char *template);
wchar_t * _ wmktemp(wchar_t *template);

Routine Required Header Optional Headers

_mktemp <io.h>

_wmktemp <io.h> or <wchar.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIDC.LID

LIDCMT.LIB

MSYCRT.LID

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the modified template. The function
returns NULL if template is badly formed or no more unique names can be created
from the given template.

Parameter

Remarks

458

template Filename pattern

The _mktemp function creates a unique filename by modifying the template
argument. _mktemp automatically handles multibyte-character string arguments as
appropriate, recognizing multibyte-character sequences according to the multibyte
code page currently in use by the run-time system. _ wmktemp is a wide-character
version of _mktemp; the argument and return value of _ wmktemp are wide­
character strings. _ wmktemp and _mktemp behave identically otherwise, except that
_ wmktemp does not handle multibyte-character strings.

template has the form baseXXXXXX where base is the part of the new filename that
you supply and each X is a placeholder for a character supplied by _mktemp. Each
placeholder character in template must be an uppercase X. _mktemp preserves base
and replaces the first trailing X with an alphabetic character. _mktemp replaces the
following trailing XIS with a five-digit value; this value is a unique number
identifying the calling process, or in multi-threaded programs, the calling thread.

Example

_mktemp, _ wmktemp

Each successful call to _mktemp modifies template. In each subsequent call from the
same process or thread with the same template argument, _mktemp checks for
filenames that match names returned by _mktemp in previous calls. If no file exists
for a given name, _mktemp returns that name. If files exist for all previously
returned names, _mktemp creates a new name by replacing the alphabetic character
it used in the previously returned name with the next available lowercase letter, in
order, from 'a' through 'z'. For example, if base is

fn

and the five-digit value supplied by _mktemp is 12345, the first name returned is

fna12345

If this name is used to create file FNA12345 and this file still exists, the next name
returned on a call from the same process or thread with the same base for template
will be

fnb12345

If FNA12345 does not exist, the next name returned will again be

fna12345

_mktemp can create a maximum of 27 unique filenames for any given combination
of base and template values. Therefore, FNZ12345 is the last unique filename
_mktemp can create for the base and template values used in this example.

/* MKTEMP.C: The program uses _mktemp to create
* five unique filenames. It opens each filename
* to ensure that the next name is unique.
*/

1fi ncl ude <i o. h>
#include <string.h>
#include <stdio.h>

char *template = "fnXXXXXX";
char *result;
char names[5][9];

void maine void)
{

i nt i;
FI LE *fp;

fore i = 0; i < 5; i++)
{

strcpy(names[i]. template);
/* Attempt to find a unique filename: */
result = _mktemp(names[i]);
if(result == NULL)

printf("Problem creating the template");

459

mktime

Output

}
}

Unique
Unique
Unique
Unique
Unique

else
{

if((fp = fopen(result, "w" » !- NULL)
printf("Unique filename is %s\n", result);

else
printf("Cannot open %s\n", result);

fclose(fp);

filename is fna00141
filename is fnb00141
filename is fnc00141
fil ename is fnd00141
filename is fne00141

See Also fopen, _getmbcp, _getpid, _open, _setmbcp, _tempnam, tmpfile

mktime
Converts the local time to a calendar value.

time_t mktime(struct tm *timeptr);

Routine Required Header Optional Headers

mktime <time.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
mktime returns the specified calendar time encoded as a value of type time_t. If
timeptr references a date before midnight, January 1, 1970, or if the calendar time
cannot be represented, the function returns -1 cast to type time_t.

Parameter
timeptr Pointer to time structure

460

Remarks

Example

The mktime function converts the supplied time structure (possibly incomplete)
pointed to by timeptr into a fully defined structure with normalized values and then
converts it to a time_t calendar time value. For description of tm structure fields, see
asctime. The converted time has the same encoding as the values returned by the
time function. The original values of the tm_ wday and tm-yday components of the
timeptr structure are ignored, and the original values of the other components are not
restricted to their normal ranges.

mktime handles dates in any time zone from midnight, January 1, 1970, to midnight,
February 5, 2036. If successful, mktime sets the values of tm_ wday and tm-yday as
appropriate and sets the other components to represent the specified calendar time,
but with their values forced to the normal ranges; the final value of tm_mday is not
set until tm_moD and tm-year are determined. When specifying a tm structure time,
set the tm_isdst field to 0 to indicate that standard time is in effect, or to a value
greater than 0 to indicate that daylight savings time is in effect, or to a value less than
zero to have the C run-time library code compute whether standard time or daylight
savings time is in effect. tm_isdst is a required field. If not set, its value is undefined
and the return value from mktime is unpredictable. If timeptr points to a tm structure
returned by a previous call to asctime, gmtime, or localtime, the tm_isdst field
contains the correct value.

Note that gmtime and localtime use a single statically allocated buffer for the
conversion. If you supply this buffer to mktime, the previous contents are destroyed.

/* MKTIME.C: The example takes a number of days
* as input and returns the time, the current
* date, and the specified number of days.
*/

#include <time.h>
#include <stdio.h>

void main(void)
{

struct tm when;
time_t now, result;
int days;

time(&now);
when = *localtime(&now);
printf("Current time is %s\n", asctime(&when));
printf("How many days to look ahead: ");
scanf("%d", &days);

mktime

461

modf

Output

}

when.tm_mday = when.tm_mday + days;
if((result = mktime(&when » != (time_t)-l)

printf("In %d days the time will be %s\n",
days, asctime(&when));

else
perror("mktime failed");

Current time is Tue May 03 12:45:47 1994

How many days to look ahead: 29
In 29 days the time will be Wed Jun 01 12:45:47 1994

See Also asctime, gmtime, localtime, time

modf
Splits a floating-point value into fractional and integer parts.

double modf(double x, double *intptr);

Routine Required Header Optional Headers Compatibility

modf <math.h> ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
This function returns the signed fractional portion of x. There is no error return.

Parameters

Remarks

462

x Floating-point value

intptr Pointer to stored integer portion

The modf function breaks down the floating-point value x into fractional and integer
parts, each of which has the same sign as x. The signed fractional portion of x is
returned. The integer portion is stored as a floating-point value at intptr.

Example

Output

1* MODF.C *1

#include <math.h>
#include <stdio.h>

void main(void
{

double x, y, n;

x = -14.87654321;
y = modf(x, &n);

1* Divide x into its fractional *1
1* and integer parts *1

printf("For If, the fraction is %f and the integer is %.f\n",
x, y, n);

}

For -14.876543, the fraction is -0.876543 and the integer is -14

See Also frexp, Idexp

mSlze
Returns the size of a memory block allocated in the heap.

size_t _IDsize(void *memblock);

Routine Required Header Optional Headers

<malloc.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

_IDsize returns the size (in bytes) as an unsigned integer.

Parameter
memblock Pointer to memory block

463

_nextafter

Remarks

Example

The _msize function returns the size, in bytes, of the memory block allocated by a
call to calloc, malloe, or realloc.

When the application is linked with a debug version of the C run-time libraries,
_msize resolves to _msize_dbg. For more information about how the heap is
managed during the debugging process, see Chapter 4, "Debug Version of the C Run­
Time Library."

See the example for realloc.

See Also calloc, _expand, malloe, realloc

nextafter
Returns next representable neighbor.

double _nextafter(double x, double y);

Routine Required Header Optional Headers

_nextafter <float.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If x=y, _nextafter returns x, with no exception triggered. If either x or y is a quiet
NaN, then the return value is one or the other of the input NaNs.

Parameters

Remarks

464

x, y Double-precision floating-point values

The _nextafter function returns the closest representable neighbor of x in the
direction toward y.

See Also _isnan

offsetof
Retrieves the offset of a member from the beginning of its parent structure.

size_t ofTsetof(structName, memberName);

Routine Required Header Optional Headers Compatibility

offsetof <stddef.h> ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
ofTsetof returns the offset in bytes of the specified member from the beginning of its
parent data structure. It is undefined for bit fields.

Parameters

Remarks

structName Name of the parent data structure

memberName Name of the member in the parent data structure for which to
determine the offset

The ofTsetof macro returns the offset in bytes of memberName from the beginning of
the structure specified by structName. You can specify types with the struct keyword.

Note offsetof is not a function and cannot be described using a C prototype.

onexit
Registers a routine to be called at exit time.

_onexit_t _onexit(_onexit_tfunc);

Routine Required Header Optional Headers

<stdlib.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

_onexit

465

_onexit

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.LIB

LmCMT.LIB

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_onexit returns a pointer to the function if successful, or NULL if there is no space to
store the function pointer.

Parameter

Remarks

Example

466

June Pointer to function to be called at exit

The _onexit function is passed the address of a function (June) to be called when the
program terminates normally. Successive calls to _onexit create a register of
functions that are executed in LIFO (last-in-first-out) order. The functions passed to
_onexit cannot take parameters.

_onexit is a Microsoft extension. For ANSI portability use atexit.

1* ONEXIT.C */

#include <stdlib.h>
#include <stdio.h>

1* Prototypes */
int fnl(void), fn2(void), fn3(void), fn4 (void);

void main(void
{

}

_onexit(fnl);
_onexit (fn2);
_onexit (fn3);
_onexit(fn4);
printf("This is executed first.\n");

int fnl()
{

}

printf("next.\n");
return 0;

Output

int fn2()
{

}

printf("executed");
return 0;

int fn3()
{

}

printf("is");
return 0;

int fn4()
{

}

printf("This");
return 0;

This is executed first.
This is executed next.

See Also atexit, exit

_open, _wopen
Open a file.

int _open(const char *filename, int oflag [, int pmode]);
int _wopen(const wchar_t *filename, int oflag [, intpmode]);

Routine Required Header Optional Headers Compatibility

_open <io.h> <fcntl.h>, <sys/types.h>, Win 95, Win NT,
<sys/stat.h> Win32s, 68K, PMac

_wop en <io.h> or <wchar.h> <fcntl.h>, <sys/types.h>, Win NT
<sys/stat.h>

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

467

Return Value
Each of these functions returns a file handle for the opened file. A return value of -1
indicates an error, in which case errno is set to one of the following values:

EACCES Tried to open read-only file for writing, or file's sharing mode does not
allow specified operations, or given path is directory

EEXIST _O_CREAT and _O_EXCL flags specified, butfilename already exists

EINV AL Invalid oflag or pmode argument

EMFILE No more file handles available (too many open files)

ENOENT File or path not found

Parameters

Remarks

468

filename Filename

oflag Type of operations allowed

pmode Permission mode

The _open function opens the file specified by filename and prepares the file for
reading or writing, as specified by oflag. _ wopen is a wide-character version of
_open; the filename argument to _ wopen is a wide-character string. _ wopen and
_open behave identically otherwise.

oflag is an integer expression formed from one or more of the following manifest
constants or constant combinations defined in FCNTL.H:

_0 _APPEND Moves file pointer to end of file before every write operation.

_O_BINARY Opens file in binary (untranslated) mode. (See fopen for a
description of binary mode.)

0 CREAT Creates and opens new file for writing. Has no effect if file specified by
filename exists. pmode argument is required when _O_CREAT is specified.

_O_CREAT I_O_SHORT_LIVED Create file as temporary and if possible do not
flush to disk. pmode argument is required when _0_ CREAT is specified.

_O_CREAT I_O_TEMPORARY Create file as temporary; file is deleted when
last file handle is closed. pmode argument is required when _O_CREAT is
specified.

_O_CREAT I_O_EXCL Returns error value if file specified by filename exists.
Applies only when used with _0_ CREAT.

_0 _RANDOM Specifies primarily random access from disk

_O_RDONLY Opens file for reading only; cannot be specified with _O_RDWR or
_O_WRONLY.

_0 _RDWR Opens file for both reading and writing; you cannot specify this flag
with _O_RDONLY or _0_ WRONLY.

_O_SEQUENTIAL Specifies primarily sequential access from disk

_O_TEXT Opens file in text (translated) mode. (For more information, see "Text
and Binary Mode File 110" on page 15 and fopen on page 282.)

_O_TRUNC Opens file and truncates it to zero length; file must have write
permission. You cannot specify this flag with _O_RDONLY. _O_TRUNC used
with _O_CREAT opens an existing file or creates a new file.

V Warning The _O_TRUNC flag destroys the contents of the specified file.

Example

0 WRONLY Opens file for writing only; cannot be specified with _O_RDONLY
or_O_RDWR.

To specify the file access mode, you must specify either _O_RDONLY, _O_RDWR,
or _0_ WRONLY. There is no default value for the access mode.

When two or more manifest constants are used to form the oflag argument, the
constants are combined with the bitwise-OR operator (I). See "Text and Binary
Mode File I/O" on page 15 for a discussion of binary and text modes.

The pmode argument is required only when _0_ CREAT is specified. If the file
already exists, pmode is ignored. Otherwise, pmode specifies the file permission
settings, which are set when the new file is closed the first time. _open applies the
current file-permission mask to pmode before setting the permissions (for more
information, see _umask). pmode is an integer expression containing one or both of
the following manifest constants, defined in SYS\STAT.H:

_S_IREAD Reading only permitted

_S_IWRITE Writing permitted (effectively permits reading and writing)

_S_IREAD I_S_IWRITE Reading and writing permitted

When both constants are given, they are joined with the bitwise-OR operator (I). In
Windows NT, all files are readable, so write-only permission is not available; thus the
modes _S_IWRITE and _S_IREAD I _S_IWRITE are equivalent.

1* OPEN.C: This program uses _open to open a file
* named OPEN.C for input and a file named OPEN.OUT
* for output. The files are then closed.
*1

11 inc 1 u d e < f c n t 1 . h >
#include <sys/types.h>
#include <sys/stat.h>
11 inc 1 u d e < i 0 • h >
#include <stdio.h>

_open, _ wopen

469

Output

void maine void)
{

}

int fh1, fh2;

fh1 = _open("OPEN.C", _O_RDONLY);
if(fh1 == -1)

perror("open failed on input file");
else
{

}

printf("open succeeded on input file\n");
_close(fh1);

fh2 = _open("OPEN.OUT", _O_WRONLY I _O_CREAT, S IREAD
_S_IWRITE);

if(fh2 == -1)
perror("Open failed on output file");

else
{

}

printf("Open succeeded on output file\n");
_close(fh2);

Open succeeded on input file
Open succeeded on output file

See Also _chmod, _close, _creat, _dup, fopen, _sopen

_open_ostbandle

470

Associates a C run-time file handle with a existing operating-system file handle.

int _open_osfbandle (long osfhandle, intflags);

Routine Required Header Optional Headers

<io.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, _open_ostbandle returns a C run-time file handle. Otherwise, it
returns -1.

Parameters

Remarks

osfhandle Operating-system file handle

flags Types of operations allowed

The _open_osfbandle function allocates a C run-time file handle and sets it to point
to the operating-system file handle specified by osfhandle. The flags argument is an
integer expression formed from one or more of the manifest constants defined in
FCNTL.H. When two or more manifest constants are used to form the flags
argument, the constants are combined with the bitwise-OR operator (I).

The FCNTL.H file defines the following manifest constants:

_0 _APPEND Positions file pointer to end of file before every write operation.

_O_RDONLY Opens file for reading only

_O_TEXT Opens file in text (translated) mode

_outp, _outpw, _outpd
Output a by teLoutp) , a wordLoutpw), or a double word Loutpd) at a port.

int _outp(unsigned short port, int databyte);
unsigned short _outpw(unsigned short port, unsigned short dataword);
unsigned long _outpd(unsigned short port, unsigned long dataword);

Routine Required Header Optional Headers Compatibility

_outp

_outpw

_outpd

<conio.h>

<conio.h>

<conio.h>

Win 95, Win32s

Win 95, Win32s

Win 95, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

471

_pelose

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The functions return the data output. There is no error return.

Parameters

Remarks

port Port number

databyte, dataword Output values

The _outp, _outpw, and _outpd functions write a byte, a word, and a double word,
respectively, to the specified output port. The port argument can be any unsigned
integer in the range 0-65,535; databyte can be any integer in the range 0-255; and
dataword can be any value in the range of an integer, an unsigned short integer, and
an unsigned long integer, respectively.

_. pclose
Waits for new command processor and closes stream on associated pipe.

int _pcIose(FILE *stream);

Routine Required Header Optional Headers Compatibility

_pc1ose <stdio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_pclose returns the exit status of the terminating command processor, or -1 if an
error occurs. The format of the return value is the same as that for _cwait, except the
low-order and high-order bytes are swapped.

Parameter
stream Return value from previous call to _popen

472

Remarks
The _pclose function looks up the process ID of the command processor (CMD.EXE)
started by the associated _popen call, executes a _cwait call on the new command
processor, and closes the stream on the associated pipe.

See Also _pipe, _popen

perrOf, _WperrOf
/ Print an error message.

void perror(const char *string);
void _wperror(const wchar_t *string);

Routine Required Header Optional Headers Compatibility

perror <stdio.h> or ANSI, Win 95,
<stdlib.h> Win NT, 68K, PMac

_wp~rror <stdio.h> or Win 95, Win NT
<wchar.h>

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameter

Remarks

string String message to print

The perror function prints an error message to stderr. _ wperror is a wide-character
version of _perror; the string argument to _ wperror is a wide-character string.
_ wperror and _perror behave identically otherwise.

string is printed first, followed by a colon, then by the system error message for the
last library call that produced the error, and finally by a newline character. If string is
a null pointer or a pointer to a null string, perror prints only the system error
message.

perror, _ wperror

473

perror, _ wperror

Example

474

The error number is stored in the variable errno (defined in ERRNO.H). The system
error messages are accessed through the variable _sys_errlist, which is an array of
messages ordered by error number. perror prints the appropriate error message using
the errno value as an index to _sys_errlist. The value of the variable _sys_nerr is
defined as the maximum number of elements in the _sys_errlist array.

For accurate results, call perror immediately after a library routine returns with an
error. Otherwise, subsequent calls can overwrite the errno value.

In Windows NT and Windows 95, some errno values listed in ERRNO.H are unused.
These values are reserved for use by the UNIX operating system. See "_doserrno,
errno, _sys_errlist, and _sys_nerr" on page 41 for a listing of errno values used by
Windows NT and Windows 95. perror prints an empty string for any errno value not
used by these platforms.

1* PERROR.C: This program attempts to open a file named
* NOSUCHF.ILE. Because this file probably doesn't exist,
* an error message is displayed. The same message is
* created using perror, strerror, and _strerror.
*1

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
1finclude <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void maine void
{

}

int fh;

if((fh = _open("NOSUCHF.ILE", _O_RDONLY» -1)
{

}

1* Three ways to create error message: *1
perror("perror says open failed");
printf("strerror says open failed: %s\n", strerror(errno));
printf(strerror("_strerror says open failed"));

else
{

}

printf("open succeeded on input file\n");
_close(fh);

Output
perror says open failed: No such file or directory

strerror says open failed: No such file or directory
_strerror says open failed: No such file or directory

See Also clearerr, ferror, strerror

_pipe
Creates a pipe for reading and writing.

int _pipe(int *phandles, unsigned int psize, int textmode);

Routine Required Header Optional Headers

<io.h> <fcntl.h>,l <errno.h>2

1 For _O_BINARY and_O_TEXT definitions.

2 errno definitions.

Compatibility

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_pipe returns 0 if successful. It returns -1 to indicate an error, in which case errno is
set to one of two values: EMFILE, which indicates no more file handles available, or
ENFILE, which indicates a system file table overflow.

Parameters

Remarks

phandles[2] Array to hold read and write handles

psize Amount of memory to reserve

textmode File mode

The _pipe function creates a pipe. A pipe is an artificial 110 channel that a program
uses to pass information to other programs. A pipe is similar to a file in that it has a
file pointer, a file descriptor, or both, and can be read from or written to using the
standard library's input and output functions. However, a pipe does not represent a
specific file or device. Instead, it represents temporary storage in memory that is

_pipe

475

_pipe

Example

476

independent of the program's own memory and is controlled entirely by the operating
system.

_pipe is similar to _open but opens the pipe for reading and writing, returning two
file handles instead of one. The program can use both sides of the pipe or close the
one it does not need. For example, the command processor in Windows NT creates a
pipe when executing a command such as

PROGRAM! I PROGRAM2

The standard output handle of PROGRAMl is attached to the pipe's write handle.
The standard input handle of PROGRAM2 is attached to the pipe's read handle. This
eliminates the need for creating temporary files to pass information to other
programs.

The _pipe function returns two handles to the pipe in the phandles argument. The
element phandles[O] contains the read handle, and the element phandles[l] contains
the write handle. Pipe file handles are used in the same way as other file handles.
(The low-level input and output functions _read and _write can read from and write
to a pipe.) To detect the end-of-pipe condition, check for a _read request that returns ° as the number of bytes read.

The psize argument specifies the amount of memory, in bytes, to reserve for the pipe.
The textmode argument specifies the translation mode for the pipe. The manifest
constant _O_TEXT specifies a text translation, and the constant _O_BINARY
specifies binary translation. (See fopen for a description of text and binary modes.) If
the textmode argument is 0, _pipe uses the default translation mode specified by the
default-mode variable _fmode.

In multithreaded programs, no locking is performed. The handles returned are newly
opened and should not be referenced by any thread until after the _pipe call is
complete.

In Windows NT and Windows 95, a pipe is destroyed when all of its handles have
been closed. (If all read handles on the pipe have been closed, writing to the pipe
causes an error.) All read and write operations on the pipe wait until there is enough
data or enough buffer space to complete the I/O request.

1* PIPE.C: This program uses the _pipe function to pass streams of
* text to spawned processes.
*1

#include <stdlib.h>
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <math.h>

enum PIPES { READ, WRITE }; /* Constants 0 and 1 for READ and WRITE */
#define NUMPROBLEM 8

void main(int argc, char *argv[])
{

int hpipe[2];
char hstr[20];
int pid, problem, c;
int termstat;

1* If no arguments, this is the spawning process */
if(argc == 1)
{

setvbuf(stdout, NULL, _IONBF, 0);

/* Open a set of pipes */
if(_pipe(hpipe, 256, 0 BINARY -1)

exit(1);

/* Convert pipe read handle to string and pass as argument
* to spawned program. Program spawns itself (argv[0]).
*/

itoa(hpipe[READ], hstr, 10);
if((pid = spawnl(P_NOWAIT, argv[0], argv[0],

hstr, NULL)) == -1)
printf("Spawn failed");

/* Put problem in write pipe. Since spawned program is
* running simultaneously, first solutions may be done
* before last problem is given.
*/

for(problem = 1000; problem <= NUMPROBLEM * 1000; problem += 1000)
{

}

printf("Son, what is the square root of %d?\n", problem);
write(hpipe[WRITE], (char *)&problem, sizeof(int));

/* Wait until spawned program is done processing. */
_cwait(&termstat, pid, WAIT_CHILD);
if(termstat & 0x0)

printf("Child failed\n");

close(hpipe[READ]);
close(hpipe[WRITE]);

/* If there is an argument, this must be the spawned process. */
else

_pipe

477

_popen, _ wpopen

, Output

{

}
}

Son,
Son,
Son,
Son,
Son,
Son,
Son,
Son,
Dad,
Dad,
Dad,
Dad,
Dad,
Dad,
Dad,
Dad,

/* Convert passed string handle to integer handle. */
hpipe[READ] = atoi(argv[l]);

/* Read problem from pipe and calculate solution. */
for(c = 0; c < NUMPROBLEM; c++)
{

read(hpipe[READ], (char *)&problem, sizeof(int));
printf("Dad, the square root of %d is %3.2f.\n",

problem, sqrt((double)problem));

}

what is the square root of 1000?
what is the square root of 2000?
what is the square root of 3000?
what is the square root of 4000?
what ;s the square root of 5000?
what is the square root of 6000?
what ;s the square root of 7000?
what ;s the square root of 8000?
the square root of 1000 is 31. 62.
the square root of 2000 ;s 44.72.
the square root of 3000 ;s 54.77.
the square root of 4000 is 63.25.
the square root of 5000 ;s 70.71.
the square root of 6000 ;s 77.46.
the square root of 7000 is 83.67.
the square root of 8000 ; s 89.44.

See Also _open

'_popen, _wpopen

418

Creates a pipe and executes a command.

FILE * _popen(const char *command, const char *mode);
FILE * _wpopen(const wchar_t *command, const wchar_t *mode);

Routine Required Header Optional Headers Compatibility

_popen

_wpopen

<stdio.h>

<stdio.h> or <wchar.h>

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a stream associated with one end of the created pipe.
The other end of the pipe is associated with the spawned command's standard input
or standard output. The functions return NULL on an error.

Parameters

Remarks

Example

command Command to be executed

mode Mode of returned stream

The _popen function creates a pipe and asynchronously executes a spawned copy of
the command processor with the specified string command. The character string
mode specifies the type of access requested, as follows:

"r" The calling process can read the spawned command's standard output via the
returned stream.

"w" The calling process can write to the spawned command's standard input via
the returned stream.

"b" Open in binary mode.

"t" Open in text mode.

_ wpopen is a wide-character version of _popen; the path argument to _ wpopen is a
wide-character string. _ wpopen and _popen behave identically otherwise.

1* POPEN.C: This program uses _popen and _pclose to receive a
* stream of text from a system process.
*1

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

char psBuffer[128];
FILE *chkdsk;

_popen, _ wpopen

479

_popen, _ wpopen

Output

480

/* Run DIR so that it writes its output to a pipe. Open this
* pipe with read text attribute so that we can read it
* like a text file.
*/

if((chkdsk = _popen("dir *.c Ion /p", "rt" »
exit(1);

NULL)

/* Read pipe until end of file. End of file indicates that
* CHKDSK closed its standard out (probably meaning it
* terminated).
*/

while(Ifeof(chkdsk))
{

if(fgets(psBuffer, 128, chkdsk) 1= NULL)
printf(psBuffer);

}

/* Close pipe and print return value of CHKDSK. */
printf("\nProcess returned %d\n", _pclose(chkdsk));

}

Volume in drive C is CDRIVE
Volume Serial Number is 0E17-1702

Directory of C:\dolphin\crt\code\pcode

05/02/94 01:05a
05/02/94 01:05a
05/02/94 01:05a
05/02/94 01:05a
05/02/94 01:05a
05/02/94 01:05a
05/02/94 01:05a
05/02/94 01:05a

8 File(s)

Process returned 0

See Also _pclose, _pipe

805 perror.c
2,149 pipe.c

882 popen.c
206 pow.c

1, 514 pri ntf. c
454 putc.c
162 puts.c
654 putw.c

6,826 bytes
86,597,632 bytes free

pow
Calculates x raised to the power of y.

double pow(double x, double y);

Routine Required Header

pow <math.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm Single thread static library, retail version

LmCMT.LID Multithread static library, retail version

MSYCRT.Lm Import library for MSYCRTxO.DLL, retail version

MSYCRTxO.DLL Multithread DLL library, retail version

Return Value
pow returns the value of xy. No error message is printed on overflow or underflow.

Values of x and y

x < > 0 and y = 0.0

x = 0.0 and y = 0.0

x = 0.0 and y < 0

Return Value of pow

INF

Parameters

Remarks

Example

x Base

y Exponent

The pow function computes x raised to the power ofy.

pow does not recognize integral floating-point values greater than 264, such as
1.0E100.

/* pow.c
*
*/

#include <math.h>
#include <stdio.h>

pow

481

printf, wprintf

Output

void main(void)
{

double x = 2.0, y = 3.0, z;

z = pow(x, y);
printf(''%.If to the power of %.If is %.If\n'', x, y, z);

}

2.0 to the power of 3.0 is 8.0

See Also exp, log, sqrt

printf, wprintf
Print formatted output to the standard output stream.

int printf(const char *format [, argument] ...);
int wprintf(const wchar_t *format [, argument] ...);

Routine Required Header Optional Headers

printf <stdio.h>

wprintf <stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT,
68K,PMac

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.LIB

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the number of characters printed, or a negative value
if an error occurs.

Parameters

Remarks

482

format Format control

argument Optional arguments

The printf function formats and prints a series of characters and values to the
standard output stream, stdout. If arguments follow the format string, the format

Example

string must contain specifications that determine the output format for the arguments.
printf and fprintf behave identically except that printf writes output to stdont rather
than to a destination of type FILE.

wprintf is a wide-character version of printf; format is a wide-character string.
wprintf and printf behave identically otherwise.

The format argument consists of ordinary characters, escape sequences, and (if
arguments follow format) format specifications. The ordinary characters and escape
sequences are copied to stdont in order of their appearance. For example, the line

printf("Line one\n\t\tLine two\n");

produces the output

Line one
Line two

Format specifications always begin with a percent sign (%) and are read left to right.
When printf encounters the first format specification (if any), it converts the value of
the first argument after format and outputs it accordingly. The second format
specification causes the second argument to be converted and output, and so on. If
there are more arguments than there are format specifications, the extra arguments
are ignored. The results are undefined if there are not enough arguments for all the
format specifications.

/* PRINTF.C: This program uses the printf and wprintf functions
* to produce formatted output.
*/

#include <stdio.h>

void maine void)
{

char ch = 'h'. *string "computer";
int count = -9234;
double fp = 251.7366;
wchar_t wch = L'w'. *wstring L"Unicode";

/* Display integers. */
printf("Integer formats:\n"

"\tDecimal: %d Justified: %.6d Unsigned: %u\n".
count. count. count. count);

printf("Decimal %d as:\n\tHex: %Xh C hex: 0x%x Octal: %o\n".
count. count. count. count);

/* Display in different radixes. */
printf("Digits 10 equal :\n\tHex: %i Octal: %i Decimal: %i\n".

0x10. 010. 10);

/* Display characters. */

printf, wprintf

483

printf, wprintf

Output

484

}

printf("Characters in field (1):\n%10c%5hc%5C%5lc\n", ch, ch, wch, wch);
wprintf(L"Characters in field (2):\n%10C%5hc%5c%5lc\n", ch, ch, wch, wch);

/* Display strings. */

printf("Strings in field (1):\n%25s\n%25.4hs\n\t%S%25.3ls\n",
string, string, wstring, wstring);
wprintf(L"Strings in field (2):\n%25S\n%25.4hs\n\t%s%25.3ls\n",

string, string, wstring, wstring);

/* Display real numbers. */
printf("Real numbers:\n\t%f %.2f %e %E\n", fp, fp, fp, fp);

/* Display pointer. */
printf("\nAddress as:\t%p\n", &count);

/* Count characters printed. */
printf("\nDisplay to here:\n");
printf("1234567890123456%n78901234567890\n", &count);
printf("\tNumber displayed: %d\n\n", count);

Integer formats:
Decimal: -9234 Justified: -009234 Unsigned: 4294958062

Decimal -9234 as:
Hex: FFFFDBEEh C hex: 0xffffdbee Octal: 37777755756

Digits 10 equal:
Hex: 16 Octal: 8 Decimal: 10

Characters in field (1):
h h w w

Characters in field (2):
h h w w

Strings in field (1):
computer

comp
Unicode

Strings in field (2):
computer

comp
Unicode

Real numbers:

Uni

Uni

251.736600 251.74 2.517366e+002 2.517366E+002

Address as: 0012FFAC

Display to here:
123456789012345678901234567890

Number displayed: 16

See Also fopen, fprintf, scanf, sprintf, vprintf Functions

printf Format Specification Fields
A format specification, which consists of optional and required fields, has the
following form:

% [flags] [width] [.precision] [{h III L}]type

Each field of the format specification is a single character or a number signifying a
particular format option. The simplest format specification contains only the percent
sign and a type character (for example, %5). If a percent sign is followed by a
character that has no meaning as a format field, the character is copied to stdont. For
example, to print a percent-sign character, use %%.

The optional fields, which appear before the type character, control other aspects of
the formatting, as follows:

type Required character that determines whether the associated argument is
interpreted as a character, a string, or a number (see Table R.3).

flags Optional character or characters that control justification of output and
printing of signs, blanks, decimal points, and octal and hexadecimal prefixes (see
Table RA). More than one flag can appear in a format specification.

width Optional number that specifies the minimum number of characters output.

precision Optional number that specifies the maximum number of characters
printed for all or part of the output field, or the minimum number of digits printed
for integer values (see Table R.5).

hili L Optional prefixes to type-that specify the size of argument (see Table R.6).

printf Type Field Characters
The type character is the only required format field ; it appears after any optional
format fields. The type character determines whether the associated argument is
interpreted as a character, string, or number The types c, C, s, and S are Microsoft
extensions and are not ANSI-compatible.

Table R.3 printf Type Field Characters

Character

c

C

d

Type

int orwinCt

int orwinCt

int

int

Output Format

When used with printf functions, specifies a single-byte
character; when used with wprintf functions, specifies a wide
character.

When used with printf functions, specifies a wide character;
when used with wprintf functions, specifies a single-byte
character.

Signed decimal integer.

Signed decimal integer.

printf, wprintf

485

printf, wprintf

486

Table R.3 printf Type Field Characters (continued)

Character Type Output Format

o

u

x

x
e

E

f

g

G

n

p

s

s

int

int

int

int

double

double

double

double

double

Pointer to integer

Pointer to void

String

String

Unsigned octal integer.

Unsigned decimal integer.

Unsigned hexadecimal integer, using "abcdef."

Unsigned hexadecimal integer, using "ABCDEF."

Signed value having the form [-]d.dddd e [sign]ddd where
d is a single decimal digit, dddd is one or more decimal
digits, ddd is exactly three decimal digits, and sign is + or

Identical to the e format except that E rather than e
introduces the exponent.

Signed value having the form [-]dddd.dddd, where dddd is
one or more decimal digits. The number of digits before
the decimal point depends on the magnitude of the
number, and the number of digits after the decimal point
depends on the requested precision.

Signed value printed in f or e format, whichever is more
compact for the given value and precision. The e format is
used only when the exponent of the value is less than -4 or
greater than or equal to the precision argument. Trailing
zeros are truncated, and the decimal point appears only if
one or more digits follow it.

Identical to the g format, except that E, rather than e,
introduces the exponent (where appropriate).

Number of characters successfully written so far to the
stream or buffer; this value is stored in the integer whose
address is given as the argument.

Prints the address pointed to by the argument in the form
xxxx:yyyy where xxxx is the segment and yyyy is the offset,
and the digits x and y are uppercase hexadecimal digits.

When used with printf functions, specifies a single-byte­
character string; when used with wprintf functions,
specifies a wide-character string. Characters are printed up
to the first null character or until the precision value is
reached.

When used with printf functions, specifies a wide­
character string; when used with wprintf functions,
specifies a single-byte-character string. Characters are
printed up to the first null character or until the precision
value is reached.

printf Flag Directives
The first optional field of the format specification is flags. A flag directive is a
character that justifies output and prints signs, blanks, decimal points, and octal and
hexadecimal prefixes. More than one flag directive may appear in a format
specification.

Table R.4 Flag Characters

Flag

+

o

blank (' ')

Meaning

Left align the result within the given field
width.

Prefix the output value with a sign (+ or -)
if the output value is of a signed type.

If width is prefixed with 0, zeros are added
until the minimum width is reached. If 0
and - appear, the 0 is ignored. If 0 is
specified with an integer format (i, U, x,
X, 0, d) the 0 is ignored.

Prefix the output value with a blank if the
output value is signed and positive; the
blank is ignored if both the blank and +
flags appear.

When used with the 0, x, or X format, the
flag prefixes any nonzero output value
with 0, Ox, or OX, respectively.

When used with the e, E, or f format, the #
flag forces the output value to contain a
decimal point in all cases.

When used with the g or G format, the #
flag forces the output value to contain a
decimal point in all cases and prevents the
truncation of trailing zeros.

Ignored when used with c, d, i, U, or s.

printf Width Specification

Default

Right align.

Sign appears only for negative
signed values (-).

No padding.

No blank appears.

No blank appears.

Decimal point appears only if
digits follow it.

Decimal point appears only if
digits follow it. Trailing zeros
are truncated.

The second optional field of the format specification is the width specification. The
width argument is a nonnegative decimal integer controlling the minimum number of
characters printed. If the number of characters in the output value is less than the
specified width, blanks are added to the left or the right of the values-depending on
whether the - flag (for left alignment) is specified-until the minimum width is
reached. If width is prefixed with 0, zeros are added until the minimum width is
reached (not useful for left-aligned numbers).

printf, wprintf

487

printf, wprintf

The width specification never causes a value to be truncated. If the number of
characters in the output value is greater than the specified width, or if width is not
given, all characters of the value are printed (subject to the precision specification).

If the width specification is an asterisk (*), an int argument from the argument list
supplies the value. The width argument must precede the value being formatted in the
argument list. A nonexistent or small field width does not cause the truncation of a
field; if the result of a conversion is wider than the field width, the field expands to
contain the conversion result.

printf Precision Specification

488

The third optional field of the format specification is the precision specification. It
specifies a nonnegative decimal integer, preceded by a period (.), which specifies the
number of characters to be printed, the number of decimal places, or the number of
significant digits (see Table R.S). Unlike the width specification, the precision
specification can cause either truncation of the output value or rounding of a floating­
point value. If precision is specified as ° and the value to be converted is 0, the result
is no characters output, as shown below:

printf("%.0d", 0); /* No characters output */

If the precision specification is an asterisk (*), an int argument from the argument
list supplies the value. The precision argument must precede the value being
formatted in the argument list.

The type determines the interpretation of precision and the default when precision is
omitted, as shown in Table R.S.

Table R.5 How Precision Values Affect Type

Type Meaning

C, C The precision has no effect.

d, i, u, 0, x, X The precision specifies the
minimum number of digits to be
printed. If the number of digits in
the argument is less than precision,
the output value is padded on the
left with zeros. The value is not
truncated when the number of digits
exceeds precision.

e, E The precision specifies the number
of digits to be printed after the
decimal point. The last printed digit
is rounded.

Default

Character is printed.

Default precision is 1.

Default precision is 6; if precision is
o or the period (.) appears without a
number following it, no decimal
point is printed.

Table R.S How Precision Values Affect Type (continued)

Type

f

g,G

s,s

Meaning

The precision value specifies the
number of digits after the decimal
point. If a decimal point appears, at
least one digit appears before it. The
value is rounded to the appropriate
number of digits.

The precision specifies the maximum
number of significant digits printed.

The precision specifies the maximum
number of characters to be printed.
Characters in excess of precision are
not printed.

Default

Default precision is 6; if precision
is 0, or if the period (.) appears
without a number following it, no
decimal point is printed.

Six significant digits are printed,
with any trailing zeros truncated.

Characters are printed until a null
character is encountered.

If the argument corresponding to a floating-point specifier is infinite, indefinite, or
NaN, printf gives the following output.

Value

+ infinity

- infinity

Indefinite (same as quiet NaN)

NAN

Output

1.#INFrandom-digits

-1.#INFrandom-digits

digit.#lNDrandom-digits

digit. #NAN random-digits

printf Size and Distance Specification
The optional prefixes to type, h, I, and L, specify the "size" of argument (long or
short, single-byte character or wide character, depending upon the type specifier that
they modify). These type-specifier prefixes are used with type characters in printf
functions or wprintf functions to specify interpretation of arguments, as shown in the
following table. These prefixes are Microsoft extensions and are not ANSI­
compatible.

Table R.6 Size Prefixes for printf and wprintf Format-Type Specifiers

To Specify Use Prefix

long int

long unsigned int

short int

short unsigned int

Single-byte character with printf functions

Single-byte character with wprintf functions

Wide character with printf functions

I

h

h

h

h

I

With Type Specifier

d, i, 0, x, or X

u

d, i, 0, x, or X

u

core

core

core

printf, wprintf

489

pute, putwc, putchar, putwchar

Table R.6 Size Prefixes for printf and wprintf Format-Type Specifiers (continued)

To Specify Use Prefix With Type Specifier

Wide character with wprintf functions

Single-byte-character string with printf functions h

Single-byte-character string with wprintf functions h

Wide-character string with printf functions

Wide-character string with wprintf functions

eorC

sorS

sorS

sorS

s orS

Thus to print single-byte or wide-characters with printf functions and wprintf
functions, use format specifiers as follows.

To Print Character As Use Function With Format Specifier

single byte printf e, he, orhC

single byte wprintf C, he, orhC

wide wprintf e, Ie, or IC

wide printf C, Ie, or IC

To print strings with printf functions and wprintf functions, use the prefixes h and I
analogously with format type-specifiers sand S.

pute, putwc, putchar, putwchar

490

Writes a character to a stream (putc, putwc) or to stdout (putchar, putwchar).

int putc(int c, FILE *stream);
wint_t putwc(wint_t c, FILE * stream);
int putchar(int c);
wint_t putwchar(wint_t c);

Routine Required Header Optional Headers

pute <stdio.h>

putwe <stdio.h> or
<wchar.h>

putehar <stdio.h>

putwehar <stdio.h> or
<wchar.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

pute, putwe, putehar, putwehar

Libraries

LmC.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the character written. To indicate an error or end-of­
file condition, putc and putchar return EOF; putwc and putwchar return WEOF.
For all four routines, use ferror or feof to check for an error or end of file.

Parameters

Remarks

Example

Output

c Character to be written

stream Pointer to FILE structure

The putc routine writes the single character c to the output stream at the current
position. Any integer can be passed to putc, but only the lower 8 bits are written. The
putchar routine is identical to putc(c, stdout). For each routine, if a read error
occurs, the error indicator for the stream is set. putc and putchar are similar to fputc
and _fputchar, respectively, but are implemented both as functions and as macros
(see "Choosing Between Functions and Macros" on page xii). putwc and putwchar
are wide-character versions of putc and putchar, respectively.

1* PUTC.C: This program uses putc to write buffer
* to a stream. If an error occurs, the program
* stops before writing the entire buffer.
*/

#include <stdio.h>

void maine void)
{

}

FILE *stream;
char *p, buffer[]
int ch;

"This is the line of output\n";

/* Make standard out the stream and write to it. */
stream = stdout;
fore p = buffer; (ch 1= EOF) && (*p 1= '\0'); p++)

ch = putc(*p, stream);

This is the line of output

See Also fputc, getc

491

_putch

_putch
Writes a character to the console.

int _putch(int c);

Routine Required Header Optional Headers Compatibility

_putch <conio.h> Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The function returns c if successful, and EOF if not.

Parameter
c Character to be output

Remarks
The _putch function writes the character c directly (without buffering) to the console.

Example
See the example for ~etch.

See Also _cprintf, _getch

_putenv, _wputenv

492

Creates new environment variables; modifies or removes existing ones.

int _putenv(const char *envstring);
int _wputenv(const wchar_t *envstring);

Routine Required Header Optional Headers

_putenv <stdlib.h>

_wputenv <stdlib.h> or <wchar.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRTxO.DLL, retail version

MSVCRTxO.DLL Multithread DLL library, retail version

Return Value
_putenv and _ wputenv return 0 if successful, or -1 in the case of an error.

Parameter

Remarks

envstring Environment-string definition

The _putenv function adds new environment variables or modifies the values of
existing environment variables. Environment variables define the environment in
which a process executes (for example, the default search path for libraries to be
linked with a program). _ wputenv is a wide-character version of _putenv; the
envstring argument to _ wputenv is a wide-character string.

The envstring argument must be a pointer to a string of the form vamame=string,
where varname is the name of the environment variable to be added or modified and
:;tring is the variable's value. If varname is already part of the environment, its value
is replaced by string; otherwise, the new varname variable and its string value are
added to the environment. You can remove a variable from the environment by
specifying an empty string-in other words, by specifying only varname=.

_putenv and _ wputenv affect only the environment that is local to the current
process; you cannot use them to modify the command-level environment. That is,
these functions operate only on data structures accessible to the run-time library and
not on the environment "segment" created for a process by the operating system.
When the current process terminates, the environment reverts to the level of the
calling process (in most cases, the operating-system level). However, the modified
environment can be passed to any new processes created by _spawn, _exec, or
system, and these new processes get any new items added by _putenv and _ wputenv.

With regard to environment entries, observe the following cautions:

• Do not change an environment entry directly; instead, use _putenv or _ wputenv
to change it. To modify the return value of _putenv or _ wputenv without affecting
the environment table, use _strdup or strcpy to make a copy of the string.

• Never free a pointer to an environment entry, because the environment variable
will then point to freed space. A similar problem can occur if you pass _putenv or
_ wputenv a pointer to a local variable, then exit the function in which the variable
is declared.

_putenv, _wputenv

493

puts, _putws

Example

getenv and _putenv use the global variable _environ to access the environment table;
_ wgetenv and _ wputenv use _ wenviron. _putenv and _ wputenv may change the
value of _environ and _ wenviron, thus invalidating the envp argument to main and
the_wenvp argument to wmain. Therefore, it is safer to use _environ or _ wenviron to
access the environment information. For more information about the relation of
_putenv and _ wputenv to global variables, see "_environ, _ wenviron" on page 42.

See the example for getenv.

See Also getenv, _searchenv

puts, _putws
Write a string to stdout.

int puts(const char *string);
int _putws(const wchar_t * string);

Routine Required Header

puts <stdio.h>

_putws <stdio.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
68K,PMac

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRTxO.DLL, retail version

MSVCRTxO.DLL Multithread DLL library, retail version

Return Value
Each of these returns a nonnegative value if successful. If puts fails it returns EOF; if
_putws fails it returns WEOF.

Parameter

Remarks

494

string Output string

The puts function writes string to the standard output stream stdout, replacing the
string's terminating null character ('\0') with a newline character ('\n') in the output
stream.

Example

Output

/* PUTS.C: This program uses puts
* to write a string to stdout.
*/

#include <stdio.h>

void main(void
{

puts("Hello world from puts!");

Hello world from puts!

See Also fputs, gets

_putw
Writes an integer to a stream.

int _putw(int binint, FILE * stream);

Routine Required Header Optional Headers

<stdio.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBc.Lm Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSYCRT.LIB Import library for MSYCRTxO.DLL, retail version

MSYCRTxO.DLL Multithread DLL library, retail version

Return Value
_putw returns the value written. A return value of EOF may indicate an error.
Because EOF is also a legitimate integer value, use ferror to verify an error.

Parameters
binint Binary integer to be output

stream Pointer to FILE structure

_putw

495

_putw

Remarks

Example

Output

496

The _putw function writes a binary value of type int to the current position of stream.
_putw does not affect the alignment of items in the stream, nor does it assume any
special alignment. _putw is primarily for compatibility with previous libraries.
Portability problems may occur with _putw because the size of an int and the
ordering of bytes within an int differ across systems.

/* PUTW.C: This program uses _putw to write a
* word to a stream, then performs an error check.
*/

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

FILE *stream;
unsigned u;
if((stream = fopen("data.out", "wb" »

exit(1);
NULL)

}

for(u = 0; u « 10; u++)
{

_putw(u + 0x2132, stdout);
_putw(u + 0x2132, stream);
if(ferror(stream))
{

}

printf("_putw failed");
clearerr(stream);
exit(1);

printf("\nWrote ten words\n");
fclose(stream);

Wrote ten words

See Also _getw

/* Write word to stream. */
/* Make error check. */

qsort

qsort
Performs a quick sort.

void qsort(void *base, size_t num, size_t width, int (_cdecl *compare)(const void *eleml, const
void *elem2));

Routine

qsort

Required Header

<stdlib.h> and
<search.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameters

Remarks

base Start of target array

num Array size in elements

width Element size in bytes

compare Comparison function

eleml Pointer to the key for the search

elem2 Pointer to the array element to be compared with the key

The qsort function implements a quick-sort algorithm to sort an array of num
elements, each of width bytes. The argument base is a pointer to the base of the array
to be sorted. qsort overwrites this array with the sorted elements. The argument
compare is a pointer to a user-supplied routine that compares two array elements and
returns a value specifying their relationship. qsort calls the compare routine one or
more times during the sort, passing pointers to two array elements on each call:

compare((void *) eleml, (void *) elem2);

The routine must compare the elements, then return one of the following values:

497

qsort

Example

Output

498

Return Value Description

<0

o
>0

eleml less than elem2

eleml equivalent to elem2

eleml greater than elem2

The array is sorted in increasing order, as defined by the comparison function. To sort
an array in decreasing order, reverse the sense of "greater than" and "less than" in
the comparison function.

/* QSORT.C: This program reads the command-line
* parameters and uses qsort to sort them. It
* then displays the sorted arguments.
*/

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int compare(const void *argl. const void *arg2);

void main(int argc. char **argv)
{

}

i nt i;
/* Eliminate argv[0] from sort: */
argv++;
argc--;

/* Sort remalnlng args using Quicksort algorithm: */
qsort((void *)argv. (size_t)argc. sizeof(char *). compare);

/* Output sorted list: */
for(i = 0; i < argc; ++i)

printf("Is ". argv[i]);
pri ntf("\n");

int compare(const void *argl. const void *arg2)
{

/* Compare all of both strings: */
return _stricmp(* (char**) argl. * (char**) arg2);

}

[C:\code]qsort every good boy deserves favor
boy deserves every favor good

See Also bsearch, _Isearch

_query_new_handler
Returns address of current new handler routine.

Routine Required Header Optional Headers Compatibility

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

_query _new _handler returns the address of the current new handler routine as set
by _set_new _handler.

The C++ _query _new _handler function returns the address of the current exception­
handling function set by the C++ _set_new _handler function. _set_new _handler is
used to specify an exception-handling function that is to gain control if the new
operator fails to allocate memory. For more information, see the discussions of the
operator new and operator delete functions in C++ Language Reference.

See Also free

_query_new_mode
Returns an integer indicating new handler mode set by _set_new _mode for malloe.

int _query_new _mode(void);

Routine Required Header Optional Headers Compatibility

<new.h> Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

499

raise

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

•

_query _new _mode returns the current new handler mode, namely 0 or 1, for malloc.
A return value of 1 indicates that, on failure to allocate memory, malloc calls the new
handler routine; a return value of 0 indicates that it does not.

The C++ _query _new _mode function returns an integer that indicates the new
handler mode that is set by the C++ _set_new _mode function for malloc. The new
handler mode indicates whether, on failure to allocate memory, malloc is to call the
new handler routine as set by _set_new_handler. By default, malloc does not call the
new handler routine on failure. You can use _set_new_mode to override this
behavior so that on failure malloc calls the new handler routine in the same way that
the new operator does when it fails to allocate memory. For more information, see the
operator delete and operator new functions in C++ Language Reference.

See Also calloc, free, malloc, realloc, _query _new_handler, _set_new _handler,
_set_new _mode

raIse

500

Sends a signal to the executing program.

int raise(int sig);

Routine Required Header Optional Headers

raise <signal.h>

')

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, raise returns O. Otherwise, it returns a nonzero value.

Parameter

Remarks

sig Signal to be raised

The raise function sends sig to the executing program. If a previous call to signal has
installed a signal-handling function for sig, raise executes that function. If no
handler function has been installed, the default action associated with the signal
value sig is taken, as follows.

Signal

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

Meaning Default

Abnormal termination Tenninates the calling program with exit
code 3

Floating-point error Terminates the calling program

Illegal instruction Terminates the calling program

CTRL+C interrupt Terminates the calling program

Illegal storage access Tenninates the calling program

Termination request sent to Ignores the signal
the program

See Also abort, signal

rand
Generates a pseudorandom number.

int rand(void);

Routine Required Header

rand <stdlib.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

rand

501

rand

Return Value

Remarks

Example

Output

502

rand returns a pseudorandom number, as described above. There is no error return.

The rand function returns a pseudorandom integer in the range 0 to RAND_MAX.
Use the srand function to seed the pseudorandom-number generator before calling
rand.

/* RAND.C: This program seeds the random-number generator
* with the time, then displays 10 random integers.
*/

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void maine void)
{

}

i nt i;

/* Seed the random-number generator with current time so that
* the numbers will be different every time we run.
*/

srand((unsigned)time(NULL));

/* Display 10 numbers. */
fore i = 0; i < 10;i++)

printf(" %6d\n", rand());

6929
8026

21987
30734
20587

6699
22034
25051
7988

10104

See Also srand

read
Reads data from a file.

int _read(int handle, void *buffer, unsigned int count);

Routine Required Header Optional Headers

<io.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_read returns the number of bytes read, which may be less than count if there are
fewer than count bytes left in the file or if the file was opened in text mode, in which
case each carriage return-linefeed (CR-LF) pair is replaced with a single linefeed
character. Only the single linefeed character is counted in the return value. The
replacement does not affect the file pointer.

If the function tries to read at end of file, it returns O. If the handle is invalid, or the
file is not open for reading, or the file is locked, the function returns -1 and sets
errno to EBADF.

Parameters

Remarks

handle Handle referring to open file

buffer Storage location for data

count Maximum number of bytes

The _read function reads a maximum of count bytes into buffer from the file
associated with handle. The read operation begins at the current position of the file
pointer associated with the given file. After the read operation, the file pointer points
to the next unread character.

If the file was opened in text mode, the read terminates when _read encounters a
CTRL+Z character, which is treated as an end-of-file indicator. Use _Iseek to clear the
end-of-file indicator.

503

realloc

Example

Output

/* READ.C: This program opens a file named
* READ.C and tries to read 60.000 bytes from
* that file using _read. It then displays the
* actual number of bytes read from READ.C.
*/

#include <fcntl.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

/* Needed only for _O_RDWR definition */

char buffer[60000];

void main(void)
{

}

int fh;
unsigned int nbytes = 60000. bytesread;

/* Open file for input: */
if((fh = _open("read.c". _O_RDONLY » == -1)
{

perror("open failed on input file");
exit(1);

/* Read in input: */
if((bytesread = _read(fh. buffer. nbytes)) <= 0)

perror("Problem reading file");
else

printf("Read %u bytes from file\n". bytesread);

_close(fh);

Read 775 bytes from file

See Also _creat, fread, _open, _write

realloc

504

Reallocate memory blocks.

void *realloc(void *memblock, size_t size);

Routine

realloc

Required Header

<stdlib.h> and
<malloc.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxODLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
realloc returns a void pointer to the reallocated (and possibly moved) memory block.
The return value is NULL if the size is zero and the buffer argument is not NULL, or
if there is not enough available memory to expand the block to the given size. In the
first case, the original block is freed. In the second, the original block is unchanged.
The return value points to a storage space that is guaranteed to be suitably aligned for
storage of any type of object. To get a pointer to a type other than void, use a type cast
on the return value.

Parameters

Remarks

memblock Pointer to previously allocated memory block

size New size in bytes

The realloc function changes the size of an allocated memory block. The memblock
argument points to the beginning of the memory block. If memblock is NULL,
realloc behaves the same way as malloc and allocates a new block of size bytes. If
memblock is not NULL, it should be a pointer returned by a previous call to calloc,
malloc, or realloc.

The size argument gives the new size of the block, in bytes. The contents of the block
are unchanged up to the shorter of the new and old sizes, although the new block can
be in a different location. Because the new block can be in a new memory location,
the pointer returned by realloc is not guaranteed to be the pointer passed through the
memblock argument.

realloc calls malloc in order to use the C++ _set_new _mode function to set the new
handler mode. The new handler mode indicates whether, on failure, malloc is to call
the new handler routine as set by _set_new_handler. By default, malloc does not call
the new handler routine on failure to allocate memory. You can override this default
behavior so that, when realloc fails to allocate memory, malloc calls the new handler
routine in the same way that the new operator does when it fails for the same reason.
To override the default, call

early in your program, or link with NEWMODE.OBJ.

realloc

505

realloc

Example

Output

506

When the application is linked with a debug version of the C run-time libraries,
realloc resolves to _realloc_dbg. For more information about how the heap is
managed during the debugging process, see Chapter 4, "Debug Version of the C Run­
Time Library."

/* REALLOC.C: This program allocates a block of memory for
* buffer and then uses _msize to display the size of that
* block. Next, it uses realloc to expand the amount of
* memory used by buffer and then calls _msize again to
* display the new amount of memory allocated to buffer.
*/

#include <stdi~.h>
#include <malloc.h>
#include <stdlib.h>

void main(void)
{

}

long *buffer;
size_t size;

if((buffer = (long *)malloc(1000 * sizeof(long») NULL)
exit(1);

size = _msize(buffer);
printf("Size of block after malloc of 1000 longs: %u\n", size);
/* Reallocate and show new size: */
if((buffer = realloc(buffer, size + (1000 * sizeof(long » »

== NULL)
exit(1);

size = _msize(buffer);
printf("Size of block after realloc of 1000 more longs: %u\n",

size);
free(buffer);
exit(0);

Size of block after malloc of 1000 longs: 4000
Size of block after realloc of 1000 more longs: 8000

See Also calloc, free, malloc

remove, _wremove
Delete a file.

int remove(const char *path);
int _wremove(const wchar_t *path);

Routine Required Header

remove <stdio.h> or <io.h>

_wremove <stdio.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns 0 if the file is successfully deleted. Otherwise, it
returns -1 and sets errno either to EACCES to indicate that the path specifies a
read-only file, or to ENOENT to indicate that the filename or path was not found or
that the path specifies a directory.

Parameter

Remarks

Example

path Path of file to be removed

The remove function deletes the file specified by path. _ wremove is a wide-character
version of _remove; the path argument to _ wremove is a wide-character string.
_ wremove and _remove behave identically otherwise.

1* REMOVE.C: This program uses remove to delete REMOVE.OBJ. */

#include <stdio.h>

void maine void)
{

}

if(remove("remove.obj") == -1)
perror("Could not delete 'REMOVE.OBJ'");

else
printf("Deleted 'REMOVE.OBJ'\n");

remove, _ wremove

507

rename, _ wrename

Output
Deleted 'REMOVE.OBJ'

See Also _unlink

rename, wrename
Rename a file or directory.

int rename(const char *oldname, const char *newname);
int _wrename(const wchar_t *oldname, const wchar_t *newname);

Routine Required Header

rename <io.h> or <stdio.h>

_wrename <stdio.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns 0 if it is successful. On an error, the function returns
a nonzero value and sets errno to one of the following values:

EACCES File or directory specified by newname already exists or could not be
created (invalid path); or oldname is a directory and newname specifies a different
path.

ENOENT File or path specified by oldname not found.

Parameters

Remarks

508

oldname Pointer to old name

newname Pointer to new name

The rename function renames the file or directory specified by oldname to the name
given by newname. The old name must be the path of an existing file or directory.
The new name must not be the name of an existing file or directory. You can use
rename to move a file from one directory or device to another by giving a different

Example

Output

path in the newname argument. However, you cannot use rename to move a
directory. Directories can be renamed, but not moved.

_ wrename is a wide-character version of _rename; the arguments to _ wrename are
wide-character strings. _ wrename and _rename behave identically otherwise.

1* RENAMER.C: This program attempts to rename a file
* named RENAMER.OBJ to RENAMER.JBO. For this operation
* to succeed, a file named RENAMER.OBJ must exist and
* a file named RENAMER.JBO must not exist.
*1

#include <stdio.h)

void maine void
{

}

int result;
char old[] "RENAMER.OBJ", new[]

1* Attempt to rename file: *1
result = rename(old, new);
i f(result 1= 0)

"RENAMER.JBO";

printf("Could not rename '%s'\n", old);
else

printf("File 'Is' renamed to '%s'\n", old, new);

File 'RENAMER.OBJ' renamed to 'RENAMER.JBO'

rewind
Repositions the file pointer to the beginning of a file.

void rewind(FILE *stream);

Routine Required Header Optional Headers

rewind <stdio.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

rewind

509

rewind

Libraries

LIBC.Lm

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameter

Remarks

Example

510

stream Pointer to FILE structure

The rewind function repositions the file pointer associated with stream to the
beginning of the file. A call to rewind is similar to

(void) fseek(stream, OL, SEEK_SET);

However, unlike fseek, rewind clears the error indicators for the stream as well as
the end-of-file indicator. Also, unlike fseek, rewind does not return a value to
indicate whether the pointer was successfully moved.

To clear the keyboard buffer, use rewind with the stream stdin, which is associated
with the keyboard by default.

/* REWIND.C: This program first opens a file named
* REWIND.OUT for input and output and writes two
* integers to the file. Next. it uses rewind to
* reposition the file pointer to the beginning of
* the file and reads the data back in.
*/

#include <stdio.h>

void main(void)
{

FILE *stream;
int datal. data2;
datal 1;
data2 = -37;

if((stream = fopen("rewind.out". "w+" » !- NULL)

Output

fprintf(stream, "%d %d", datal, data2);
printf("The values written are: %d and %d\n", datal, data2);
rewind(stream);
fscanf(stream, "%d %d", &datal, &data2);
printf("The values read are: %d and %d\n", datal, data2);
fclose(stream);

The values written are: land -37
The values read are: land -37

_rmdir, wrmdir
Delete a directory.

int _rmdir(const char *dirname);
int _rmdir(const wchar_t *dirname);

Routine Required Header

<direct.h>

_wrmdir <direct.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Each of these functions returns 0 if the directory is successfully deleted. A return
value of -1 indicates an error, and errno is set to one of the following values:

ENOTEMPTY Given path is not a directory; directory is not empty; or directory is
either current working directory or root directory.

ENOENT Path is invalid.

Parameter
dirname Path of directory to be removed

_rmdir, _ wrmdir

511

Remarks

Example

The _rmdir function deletes the directory specified by dirname. The directory must
be empty, and it must not be the current working directory or the root directory.

_ wrmdir is a wide-character version of _rmdir; the dirname argument to _ wrmdir
is a wide-character string. _ wrmdir and _rmdir behave identically otherwise.

See the example for _mkdir.

See Also _chdir, _mkdir

_rmtmp
Removes temporary files.

int _rmtmp(void);

Routine Required Header

<stdio.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LID

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

Example

512

_rmtmp returns the number of temporary files closed and deleted.

The _rmtmp function cleans up all temporary files in the current directory. The
function removes only those files created by tmpfile; use it only in the same directory
in which the temporary files were created.

See the example for tmpfile.

See Also _flushall, tmpfile, tmpnam

_rotl, rotr
Rotate bits to the left Crotl) or right Crotr).

unsigned int _rotl(unsigned int value, int shift);
unsigned int _rotr(unsigned int value, int shift);

Routine Required Header Optional Headers

<stdlib.h>

<stdlib.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Both functions return the rotated value. There is no error return.

Parameters

Remarks

Example

value Value to be rotated

shift Number of bits to shift

The _rotl and _rotr functions rotate the unsigned value by shift bits. _rotl rotates the
value left. _rotr rotates the value right. Both functions "wrap" bits rotated off one end
of value to the other end.

/* ROT.C: This program uses rotr and rotl with
* different shift values to rotate an integer.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)

513

Output

unsigned val = 0x0fd93;
printf("0x%4.4x rotated left three times is 0x%4.4x\n",

val, _rotH val, 3));
printf("0x%4.4x rotated right four times is 0x%4.4x\n",

val, _rotr(val, 4));

0xfd93 rotated left three times is 0x7ec98
0xfd93 rotated right four times is 0x30000fd9

See Also _Irotl

scalb
Scales argument by a power of 2.

double _scalb(double x, long exp);

Routine Required Header

<float.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_scalb returns an exponential value if successful. On overflow (depending on the sign
of x), _scalb returns +/-HUGE_ VAL; the errno variable is set to ERANGE.

Parameters
x Double-precision floating-point value

exp Long integer exponent

Remarks
The _scalb function calculates the value of x * 2exp.

See Also Idexp

514

scanf, wscanf
Read formatted data from the standard input stream.

int scanf(const char *format [,argument] ...);
int wscanf(const wchar_t *format [,argument] ...);

Routine

scanf

wscanf

Required Header

<stdio.h>

<stdio.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Both scanf and wscanf return the number of fields successfully converted and
assigned; the return value does not include fields that were read but not assigned. A
return value of 0 indicates that no fields were assigned. The return value is EOF for
an error or if the end-of-file character or the end-of-string character is encountered in
the first attempt to read a character.

Parameters

Remarks

format Format control string

argument Optional arguments

The scanf function reads data from the standard input stream stdin and writes the
data into the location given by argument. Each argument must be a pointer to a
variable of a type that corresponds to a type specifier informat. If copying takes place
between strings that overlap, the behavior is undefined.

wscanf is a wide-character version of scanf; the format argument to wscanf is a
wide-character string. wscanf and scanf behave identically otherwise.

scanf, wscanf

515

scanf, wscanf

Example

Output

516

/* SCANF.C: This program uses the scanf and wscanf functions
* to read formatted input.
*/

#include <stdio.h>

void maine void)
{

int i, result;
float fp;
char c, s[81];
wchar t we, ws[81];

printf("\n\nEnter an int, a float, two chars and two strings\n");

result = scanf("%d %f %c %C %s %S", &i, &fp, &c, &wc, s, ws);
printf("\nThe number of fields input is %d\n", result);
printf("The contents are: %d %f %c %C %s %S\n", i, fp, c, we, s, ws);

wprintf(L"\n\nEnter an int, a float, two chars and two strings\n");

result = wscanf(L"%d %f %hc %lc %S %ls", &i, &fp, &c, &wc, s, ws);
wprintf(L"\nThe number of fields input is %d\n", result);
wprintf(L"The contents are: %d %f %C %c %hs %s\n", i, fp, c, we, s, ws);

Enter an int, a float, two chars and two strings
71
98.6
h
z
Byte characters

The number of fields input is 6
The contents are: 71 98.599998 h z Byte characters

Enter an int, a float, two chars and two strings
36
92.3
y
n
Wide characters

The number of fields input is 6
The contents are: 456 92.300003 y n Wide characters

See Also fscanf, printf, sprintf, sscanf

scanf Format Specification Fields
A format specification has the following form:

% [*] [width] [{b III L}] type

The format argument specifies the interpretation of the input and can contain one or
more of the following:

White-space characters: blank (' '); tab (' \t'); or newline (' \n '). A white-space
character causes scanf to read, but not store, all consecutive white-space characters in
the input up to the next non-white-space character. One White-space character in the
format matches any number (including 0) and combination of white-space characters
in the input.

• Non-white-space characters, except for the percent sign (%). A non-white-space
character causes scanf to read, but not store, a matching non-white-space
character. If the next character in stdin does not match, scanf terminates.

• Format specifications, introduced by the percent sign (%). A format specification
causes scanf to read and convert characters in the input into values of a specified
type. The value is assigned to an argument in the argument list.

The format is read from left to right. Characters outside format specifications are
expected to match the sequence of characters in stdin; the matching characters in
stdin are scanned but not stored. If a character in stdin conflicts with the format
specification, scanf terminates, and the character is left in stdin as if it had not been
read.

When the first format specification is encountered, the value of the first input field is
converted according to this specification and stored in the location that is specified by
the first argument. The second format specification causes the second input field to be
converted and stored in the second argument, and so on through the end of the format
string.

An input field is defined as all characters up to the first white-space character (space,
tab, or newline), or up to the first character that cannot be converted according to the
format specification, or until the field width (if specified) is reached. If there are too
many arguments for the given specifications, the extra arguments are evaluated but
ignored. The results are unpredictable if there are not enough arguments for the
format specification.

Each field of the format specification is a single character or a number signifying a
particular format option. The type character, which appears after the last optional
format field, determines whether the input field is interpreted as a character, a string,
or a number.

The simplest format specification contains only the percent sign and a type character
(for example, %s). If a percent sign (%) is followed by a character that has no
meaning as a format-control character, that character and the following characters

scanf, wscanf

517

scanf, wscanf

(up to the next percent sign) are treated as an ordinary sequence of characters, that is,
a sequence of characters that must match the input. For example, to specify that a
percent-sign character is to be input, use %%.

An asterisk (*) following the percent sign suppresses assignment of the next input
field, which is interpreted as a field of the specified type. The field is scanned but not
stored.

scanf Width Specification

518

width is a positive decimal integer controlling the maximum number of characters to
be read from stdin. No more than width characters are converted and stored at the
corresponding argument. Fewer than width characters may be read if a white-space
character (space, tab, or newline) or a character that cannot be converted according to
the given format occurs before width is reached.

The optional prefixes h, I, and L indicate the "size" of the argument (long or short,
single-byte character or wide character, depending upon the type character that they
modify). These format -specification characters are used with type characters in scanf
or wscanf functions to specify interpretation of arguments as shown in the Table R.7.
The type prefixes h, I, and L are Microsoft extensions and are not ANSI-compatible.
The type characters and their meanings are described in Table R.8.

Table R.7 Size Prefixes for scanf and wscanf Format-Type Specifiers

To Specify Use Prefix With Type Specifier

double

long int

long unsigned int

short int

short unsigned int

Single-byte character with scanf

Single-byte character with wscanf

Wide character with scanf

Wide character with wscanf

Single-byte-character string with scanf

Single-byte-character string with wscanf

Wide-character string with scanf

Wide-character string with wscanf

h

h

h

h

h

h

e, E, f, g, or G

d, i, 0, x, or X

u

d, i, 0, x, or X

u

core

core

core

c, ore

sorS

sorS

sorS

s orS

Following are examples of the use of hand 1 with scanffunctions and wscanf
functions:

scanf("%15", &x);
wscanf("%lC", &x);

II Read a wide-character string
II Read a single-byte character

To read strings not delimited by space characters, a set of characters in brackets ([])
can be substituted for the s (string) type character. The corresponding input field is
read up to the first character that does not appear in the bracketed character set. If the
first character in the set is a caret (A), the effect is reversed: The input field is read up
to the first character that does appear in the rest of the character set.

Note that %[a-z] and %[z-a] are interpreted as equivalent to %[abcde ••. z]. This is a
common scanf function extension, but note that the ANSI standard does not
require it.

To store a string without storing a terminating null character ('\0'), use the
specification % nc where n is a decimal integer. In this case, the c type character
indicates that the argument is a pointer to a character array. The next n characters are
read from the input stream into the specified location, and no null character ('\0') is
appended. If n is not specified, its default value is 1.

The scanf function scans each input field, character by character. It may stop reading
a particular input field before it reaches a space character for a variety of reasons:

• The specified width has been reached.

• The next character cannot be converted as specified.

• The next character conflicts with a character in the control string that it is
supposed to match.

• The next character fails to appear in a given character set.

For whatever reason, when the scanf function stops reading an input field, the next
input field is considered to begin at the first unread character. The conflicting
character, if there is one, is considered unread and is the first character of the next
input field or the first character in subsequent read operations on stdin.

scanf Type Field Characters
The type character is the only required format field; it appears after any optional
format fields. The type character determines whether the associated argument is
interpreted as a character, string, or number.

scanf, wscanf

519

scanf, wscanf

Table R.B Type Characters for scanf functions

Character

c

c

d

o

u

x

e, E, f, g, G

n

520

Type of Input Expected

When used with scanf functions, specifies
single-byte character; when used with
wscanf functions, specifies wide character.
White-space characters that are ordinarily
skipped are read when c is specified. To
read next non-white-space single-byte
character, use % Is; to read next non-white­
space wide character, use % 1 ws.

When used with scanf functions, specifies
wide character; when used with wscanf
functions, specifies single-byte character.
White-space characters that are ordinarily
skipped are read when C is specified. To
read next non-white-space single-byte
character, use % Is; to read next non-white­
space wide character, use %lws.

Decimal integer.

Decimal, hexadecimal, or octal integer.

Octal integer.

Unsigned decimal integer.

Hexadecimal integer.

Floating-point value consisting of optional
sign (+ or -), series of one or more decimal
digits containing decimal point, and
optional exponent ("e" or "E") followed by
an optionally signed integer value.

No input read from stream or buffer.

Type of Argument

Pointer to char when
used with scanf functions,
pointer to wchar_t when
used with wscanf
functions.

Pointer to wchar_t when
used with scanf functions,
pointer to char when used
with wscanf functions.

Pointer to int.

Pointer to int.

Pointer to int.

Pointer to unsigned int.

Pointer to int.

Pointer to float.

Pointer to int, into which
is stored number of
characters successfully
read from stream or buffer
up to that point in current
call to scanf functions or
wscanf functions.

Table R.B Type Characters for scanf functions (continued)

Character Type of Input Expected Type of Argument

s

s

String, up to first white-space character
(space, tab or newline). To read strings not
delimited by space characters, use set of
square brackets ([]), as discussed following
Table R.7.

String, up to first white-space character
(space, tab or newline). To read strings not
delimited by space characters, use set of
square brackets ([]), as discussed preceding
this table.

When used with scanf
functions, signifies single­
byte character array; when
used with wseanf
functions, signifies wide­
character array. In either
case, character array must
be large enough for input
field plus terminating null
character, which is
automatically appended.

When used with scanf
functions, signifies wide­
character array; when
used with wseanf
functions, signifies single­
byte-character array. In
either case, character
array must be large
enough for input field
plus terminating null
character, which is
automatically appended.

The types c, C, s, and S are Microsoft extensions and are not ANSI -compatible.

Thus, to read single-byte or wide characters with scanf functions and wscanf
functions, use format specifiers as follows.

To Read Character As Use This Function With These Format Specifiers

single byte seanf functions e, he, orhC

single byte wseanf functions C, he, orhC

wide wseanf functions e, Ie, or Ie

wide seanf functions C, Ie, orlC

To scan strings with scanf functions, and wscanf functions, use the prefixes h and I
analogously with format type-specifiers sand S.

scanf, wscanf

521

_searchenv, _ wsearchenv

_searchenv, _wsearchenv
Searches for a file using environment paths.

void _searchenv(const char *filename, const char *varname, char *pathname);
void _ wsearchenv(const wchar_t *filename, const wchar_t *varname, wchar_t *pathname);

Routine Required Header

_searchenv <stdlib.h>

_ wsearchenv <stdlib.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.LIB

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameters

Remarks

522

filename Name of file to search for

varname Environment to search

pathname Buffer to store complete path

The _searchenv routine searches for the target file in the specified domain. The
varname variable can be any environment or user-defined variable that specifies a list
of directory paths, such as PATH, LIB, and INCLUDE. _searchenv is case
sensitive, so varname should match the case of the environment variable.

The routine searches first for the file in the current working directory. If it does not
find the file, it looks next through the directories specified by the environment
variable. If the target file is in one of those directories, the newly created path is
copied into pathname. If the filename file is not found, pathname contains an empty,
null-terminated string.

The pathname buffer must be large enough to accomodate the full length of the
constructed path name. Otherwise, _searchenv will overwite the pathname buffer
resulting in unexpected behavior. This condition can be avoided by ensuring that the
length of the constructed path name does not exceed the size of the pathname buffer,

Example

Output

by calculating the maximum sum of the filename and varname lengths before calling
_searchenv.

_ wsearchenv is a wide-character version of _searchenv; the arguments to
_ wsearchenv are wide-character strings. _ wsearchenv and _searchenv behave
identically otherwise.

1* SEARCHEN.C: This program searches for a file in
* a directory specified by an environment variable.
*1

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

}

char pathbuffer[_MAX_PATH];
char searchfile[] - "CL.EXE";
char envvar[] - "PATH";

1* Search for file in PATH environment variable: *1
_searchenv(searchfile. envvar. pathbuffer);
i f(*pathbuffer !- '\0')

printf("Path for Is: %s\n". searchfile. pathbuffer);
else

printf("Is not found\n". searchfile);

Path for CL.EXE: C:\msvcnt\c32\bin\CL.EXE

See Also getenv, _putenv

setbuf
Controls stream buffering.

void setbuf(FILE *stream, char *buffer);

Routine Required Header Optional Headers

setbuf <stdio.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

setbuf

523

setbuf

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameters

Remarks

Example

524

stream Pointer to FILE structure

buffer User-allocated buffer

The setbuf function controls buffering for stream. The stream argument must refer to
an open file that has not been read or written. If the buffer argument is NULL, the
stream is unbuffered. If not, the buffer must point to a character array of length
BUFSIZ, where BUFSIZ is the buffer size as defined in STDIO.H. The user­
specified buffer, instead of the default system-allocated buffer for the given stream, is
used for 110 buffering. The stderr stream is unbuffered by default, but you can use
setbuf to assign buffers to stderr.

setbuf has been replaced by setvbuf, which is the preferred routine for new code.
setbuf is retained for compatibility with existing code.

/* SETBUF.C: This program first opens files named DATA! and
* DATA2. Then it uses setbuf to give DATAl a user-assigned
* buffer and to change DATA2 so that it has no buffer.
*/

#include <stdio.h>

void maine void)
{

char buf[BUFSIZ];
FILE *stream!, *stream2;

if(«stream!
«stream2

fopen("data!", "a" » != NULl) &&
fopen("data2", "w" » != NULl))

{

/* "stream!" uses user-assigned buffer: */
setbuf(stream!, buf);
printf("stream! set to user-defined buffer at: %Fp\n", buf);

Output

/* "stream2" is unbuffered */
setbuf(stream2, NULL);
printf("stream2 buffering disabled\n");
_fcl oseall ();

stream1 set to user-defined buffer at: 0013FDA0
stream2 buffering disabled

See Also fclose, mush, fopen, setvbuf

setjmp
Saves the current state of the program.

int setjmp(jmp_buf env);

Routine Required Header

setjrnp <setjmp.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
setjmp returns ° after saving the stack environment. If setjmp returns as a result of a
longjmp call, it returns the value argument of longjmp, or if the value argument of
longjmp is 0, setjmp returns 1. There is no error return.

Parameter

Remarks

env Variable in which environment is stored

The setjmp function saves a stack environment, which you can subsequently restore
using longjmp. When used together, setjmp and longjmp provide a way to execute a
"non-local goto." They are typically used to pass execution control to error-handling
or recovery code in a previously called routine without using the normal calling or
return conventions.

setjrnp

525

setlocale, _ wsetlocale

Example

A call to setjrnp saves the current stack environment in env. A subsequent call to
longjrnp restores the saved environment and returns control to the point just after the
corresponding setjrnp call. All variables (except register variables) accessible to the
routine receiving control contain the values they had when longjrnp was called.

setjrnp and longjrnp do not support C++ object semantics. In C++ programs, use the
C++ exception-handling mechanism.

See the example for _fpreset.

See Also longjrnp

setlocale, _wsetlocale
Define the locale.

char *setlocale(int category, const char *locale);
wchar_t * _wsetlocale(int category, const wchar_t *locale);

Routine Required Header

setlocale <locale.h>

_ wsetlocale <locale.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

526

If a valid locale and category are given, the function returns a pointer to the string
associated with the specified locale and category. If the locale or category is invalid,
the function returns a null pointer and the current locale settings of the program are
not changed.

For example, the call

setlocale(LC_ALL, "English");

sets all categories, returning only the string Engl i sh_USA.1252. If all categories are
not explicitly set by a call to setlocale, the function returns a string indicating the
current setting of each of the categories, separated by semicolons. If the locale

argument is a null pointer, setloeale returns a pointer to the string associated with the
category of the program's locale; the program's current locale setting is not changed.

The null pointer is a special directive that tells setloeale to query rather than set the
international environment. For example, the sequence of calls

II Set all categories and return "English_USA.1252"
setlocale(LC_ALL, "English");
II Set only the LC_MONETARY category and return "French France.1252"
setlocale(LC_MONETARY, "French");
setlocale(LC_ALL, NULL);

returns

LC_COLLATE=English_USA.1252;
LC_CTYPE=English_USA.1252;
LC_MONETARY=French_France.1252;
LC_NUMERIC=English_USA.1252;
LC_TIME=English_USA.1252

which is the string associated with the LC_ALL category.

You can use the string pointer returned by setloeale in subsequent calls to restore that
part of the program's locale information, assuming that your program does not alter
the pointer or the string. Later calls to setloeale overwrite the string; you can use
_strdup to save a specific locale string.

Parameters

Remarks

category Category affected by locale

locale Locale name

Use the setloeale function to set, change, or query some or all of the current program
locale information specified by locale and category. "Locale" refers to the locality
(country and language) for which you can customize certain aspects of your program.
Some locale-dependent categories include the formatting of dates and the display
format for monetary values.

_ wsetloeale is a wide-character version of setloeale; the locale argument and return
value of _ wsetloeale are wide-character strings. _ wsetloeale and setloeale behave
identically otherwise.

The category argument specifies the parts of a program's locale information that are
affected. The macros used for category and the parts of the program they affect are as
follows:

LC_ALL All categories, as listed below

LC_ COLLATE The streoll, _strieoll, weseoll, _ wesieoll, and strxfrm functions

LC_CTYPE The character-handling functions (except isdigit, isxdigit, mbstowcs,
and mbtowe, which are unaffected)

setlocale, _ wsetlocale

527

setlocale, _ wsetlocale

528

LC_MONETARY Monetary-formatting information returned by the localeconv
function

LC_NUMERIC Decimal-point character for the formatted output routines (such as
print!), for the data-conversion routines, and for the nonmonetary-formatting
information returned by localeconv

LC_TIME The strftime and wcsftime functions

The locale argument is a pointer to a string that specifies the name of the locale. If
locale points to an empty string, the locale is the implementation-defined native
environment. A value of "C" specifies the minimal ANSI conforming environment
for C translation. The "C" locale assumes that all char data types are 1 byte and that
their value is always less than 256. The "c" locale is the only locale supported in
Microsoft Visual C++ version 1.0 and earlier versions of Microsoft C/C++. Microsoft
Visual C++ version 4.0 supports all the locales listed in Appendix A, "Language and
Country Strings." At program startup, the equivalent of the following statement is
executed:

setlocale(LC_ALL, "C");

The locale argument takes the following form:

locale :: "lang[_country[.code_page]]"
I ".code_page"
I ""
I NULL

The set of available languages, countries, and code pages includes all those supported
by the Win32 NLS API. The set of language and country codes supported by setlocale
is listed in Appendix A, "Language and Country Strings."

If locale is a null pointer, setlocale queries, rather than sets, the international
environment, and returns a pointer to the string associated with the specified
category. The program's current locale setting is not changed. For example,

setlocale(LC_ALL, NULL);

returns the string associated with category.

The following examples pertain to the LC_ALL category. Either of the strings
".OCP" and ".ACP" can be used in place of a code page number to specify use of the
system default OEM code page and system-default ANSI code page, respectively.

setl ocal e(LC_ALL, ""); Sets the locale to the default, which is the system-
default ANSI code page obtained from the operating system.

set 1 0 cal e (L C_A L L, ". 0 C P"); Explicitly sets the locale to the current OEM code
page obtained from the operating system.

setlocale(LC_ALL, ".ACP"); SetsthelocaletotheANSIcodepageobtained
from the operating system.

Example

setlocale(LC_ALL. "[lang_ctry]"); Sets the locale to the language and
country indicated, using the default code page obtained from the host operating
system.

setlocale(LC_ALL. "[lang_ctry.cp]"); Sets the locale to the language,
country, and code page indicated in the [lang_ctry.cp] string. You can use various
combinations of language, country, and code page. For example:

setlocale(LC_ALL. "French_Canada.1252");
II Set code page to French Canada ANSI default
setlocale(LC_ALL. "French_Canada.ACP");
II Set code page to French Canada OEM default
setlocale(LC_ALL. "French_Canada.OCP");

set 1 0 cal e (L C _A L L. "[1 an g] "); Sets the locale to the country indicated, using
the default country for the language specified, and the system-default ANSI code
page for that country as obtained from the host operating system. For example, the
following two calls to setlocale are functionally equivalent:

setlocale(LC_ALL. "English");
setlocale(LC_ALL. "English_United States.1252");

setl oca 1 e(LC_ALL. "[. code_page]"); Sets the code page to the value indicated,
using the default country and language (as defined by the host operating system)
for the specified code page.

The category must be either LC_ALL or LC_CTYPE to effect a change of code
page. For example, if the default country and language of the host operating system
are "United States" and "English," the following two calls to setlocale are
functionally equivalent:

setlocale(LC_ALL. ".1252");
setl oca 1 e (LC_ALL. "Engl i sh_Uni ted States .1252") ;

For more information see the setlocale pragma in Preprocessor Reference.

1* LOCALE.C: Sets the current locale to "Germany" using the
* setlocale function and demonstrates its effect on the strftime
* function.
*1

#include <stdio.h>
#include <locale.h>
#include <time.h>

void main(void)
{

time_t ltime;
struct tm *thetime;
unsigned char str[100];

setlocale, _ wsetlocale

529

_setmbcp

Output

}

setlocale(LC_ALL, "German");
time (<ime);
thetime = gmtime(<ime);

/* %#x is the long date representation, appropriate to
* the current locale
*/

if (!strftime«char *)str, 100, "%lfx",
(const struct tm *)thetime»

printf("strftime failed!\n");
else

printf("In German locale, strftime returns '%s'\n",
str);

/* Set the locale back to the default environment */
setlocale(LC_ALL, "C");
time (<ime);
thetime = gmtime(<ime);

if (!strftime«char *)str, 100, "%#x",
(const struct tm *)thetime»

printf("strftime failed!\n");
else

printf("In 'C' locale, strftime returns '%s'\n",
str);

In German locale, strftime returns 'Donnerstag, 22. April 1993'
In 'C' locale, strftime returns 'Thursday, April 22, 1993'

See Also localeconv, mblen, _mbstrlen, mbstowcs, mbtowc, strcoll Functions,
strftime, strxfrm, wcstombs, wctomb

_setmbcp

530

Sets a new multibyte code page.

int _setmbcp(int codepage);

Routine Required Header

_setmhcp <mbctype.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_setmbcp returns 0 if the code page is set successfully. If an invalid code page value
is supplied for codepage, the function returns -1 and the code page setting is
unchanged.

Parameter

Remarks

codepage New code page setting for locale-independent multibyte routines

The _setmbcp function specifies a new multibyte code page. By default, the run-time
system automatically sets the multibyte code page to the system-default ANSI code
page. The multibyte code page setting affects all multibyte routines that are not
locale-dependent. However, it is possible to instruct _setmbcp to use the code page
defined for the current locale (see the following list of manifest constants and
associated behavior results). For a list of the multibyte routines that are dependent on
the locale code page rather than the multibyte code page, see "Interpretation of
Multibyte-Character Sequences" on page 23.

The multi byte code page also affects multi byte-character processing by the following
run-time library routines:

_exec functions

_fullpath

_makepath

_mktemp

_spawn functions

_splitpath

_stat

_tempnam

tmpnam

In addition, all run-time library routines that receive multibyte-character argv or envp
program arguments as parameters (such as the _exec and _spawn families) process
these strings according to the multibyte code page. Hence these routines are also
affected by a call to _setmbcp that changes the multibyte code page.

The codepage argument can be set to any of the following values:

• _MB_CP _ANSI Use ANSI code page obtained from operating system at
program startup

• _MB_CP _LOCALE Use the current locale's code page obtained from a
previous call to setlocale

• _MB_CP _OEM Use OEM code page obtained from operating system at
program startup

• _MB_CP _SBCS Use single-byte code page. When the code page is set to
_MB_CP _SBCS, a routine such as _ismbblead always returns false.

_setmbcp

531

_setmode

• Any other valid code page value, regardless of whether the value is an ANSI,
OEM, or other operating-sytem-supported code page.

See Also ~etmbcp, setlocale

setmode
Sets the file translation mode.

int _setmode (int handle, int mode);

Routine Required Header

_setmode <io.h>

Optional Headers

<fcntl.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility infonnation, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.Lm

LIBCMT.LIB

MSYCRT.LID

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, _setmode returns the previous translation mode. A return value of -1
indicates an error, in which case errno is set to either EBADF, indicating an invalid
file handle, or EINVAL, indicating an invalid mode argument (neither _O_TEXT
nor _O_BINARY).

Parameters

Remarks

532

handle File handle

mode New translation mode

The _setmode function sets to mode the translation mode of the file given by handle.
The mode must be one of two manifest constants, _O_TEXT or _O_BINARY.
_O_TEXT sets text (translated) mode. Carriage return-linefeed (CR-LF)
combinations are translated into a single linefeed character on input. Linefeed
characters are translated into CR-LF combinations on output. _O_BINARY sets
binary (untranslated) mode, in which these translations are suppressed.

_setmode is typically used to modify the default translation mode of stdin and
stdoot, but you can use it on any file. If you apply _setmode to the file handle for a
stream, call _setmode before performing any input or output operations on the
stream.

Example

Output

/* SETMODE.C: This program uses setmode to change
* stdin from text mode to binary mode.
*/

#include <stdio.h>
#include <fcntl.h>
ftinclude <io.h>

void main(void
{

int result:

/* Set "stdin" to have binary mode: */
result = _setmode(_fileno(stdin), _O_BINARY):
if(result == -1)

perror("Cannot set mode"):
else

printf("'stdin' successfully changed to binary mode\n"):

'stdin' successfully changed to binary mode

See Also _creat, fopen, _open

set new handler - -
Transfer control to your error-handling mechanism if the new operator fails to
allocate memory.

_PNH _set_new _handler(_PNH pNewHandler);

Routine Required Header Optional Headers

<new.h>

Compatibility

Win 95, Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

533

Return Value
_set_new _handler returns a pointer to the previous exception handling function
registered by _set_new_handler, so that the previous function can be restored later.
If no previous function has been set, the return value may be used to restore the
default behavior; this value may be NULL.

Parameter

Remarks

534

pNewHandler Pointer to the application-supplied memory handling function

Call the C++ _set_new _handler function to specify an exception-handling function
that is to gain control if the new operator fails to allocate memory. If new fails, the
run-time system automatically calls the exception-handling function that was passed
as an argument to _set_new _handler. _PNH, defined in NEW.H, is a pointer to a
function that returns type int and takes an argument of type size_t. Use size_t to
specify the amount of space to be allocated.

_set_new _handler is essentially a garbage-collection scheme. The run-time system
retries allocation each time your function returns a nonzero value and fails if your
function returns O.

An occurrence of one of the _set_new _handler functions in a program registers the
exception-handling function specified in the argument list with the run-time system:

#include <new.h>
int handle_program_memory_depletion(size_t)
{

II Your code
}

void main(void
{

}

_set_new_handler(handle_program_memory_depletion);
int *pi = new int[BIG_NUMBER];

You can save the function address that was last passed to the _set_new_handler
function and reinstate it later:

_PNH old_handler = _set_new_handler(my_handler);
II Code that requires my_handler
_set_new_handler(old_handler)
II Code that requires old_handler

In a multithreaded environment, handlers are maintained separately for each process
and thread. Each new process lacks installed handlers. Each new thread gets a copy
of the new handlers of the calling thread. Thus, each process and thread is in charge
of its own free-store error handling.

The C++ _set_new _mode function sets the new handler mode for malloc. The new
handler mode indicates whether, on failure, malloc is to call the new handler routine
as set by _set_new_handler. By default, malloc does not call the new handler routine

Example

on failure to allocate memory. You can override this default behavior so that, when
malloc fails to allocate memory, malloc calls the new handler routine in the same
way that the new operator does when it fails for the same reason. To override the
default, call

_set_new_mode(1)

early in your program, or link with NEWMODE.OBJ.

For more information, see the discussion of the new and delete operators in Chapter
4 of C++ Language Reference.

1* HANDLER.CPP: This program uses set_new_handler to
* print an error message if the new operator fails.
*1

#include <stdio.h>
#include <new.h>

1* Allocate memory in chunks of size MemBlock. */
const size_t MemBlock = 1024;

1* Allocate a memory block for the printf function to use in case
* of memory allocation failure; the printf function uses malloc.
* The failsafe memory block must be visible globally because the
* handle_program_memory_depletion function can take one
* argument only.
*1

char * failsafe = new char[128];

1* Declare a customized function to handle memory-allocation failure.
* Pass this function as an argument to set_new_handler.
*1

int handle_program_memory_depletion(size_t);

void main(void)
{

}

II Register existence of a new memory handler.
_set_new_handler(handle_program_memory_depletion);
size_t *pmemdump = new size_t[MemBlock];
for(; pmemdump != 0; pmemdump = new size_t[MemBlock]);

int handle_program_memory_depletion(size t size
{

}

II Release character buffer memory.
delete failsafe;
printf("Allocation failed, ");
printf("%u bytes not available.\n". size);
II Tell new to stop allocation attempts.
return 0;

535

Output
Allocation failed %0 bytes not available.

See Also canoe, free, reanoe

set new mode - -
Sets a new handler mode for manoe.

int _seCnew _mode(int newhandlermode);

Routine Required Header Optional Headers Compatibility

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_set_new _mode returns the previous handler mode set for manoe. A return value of
1 indicates that, on failure to allocate memory, manoe previously called the new
handler routine; a return value of 0 indicates that it did not. If the newhandlermode
argument does not equal 0 or 1, _set_new _mode returns -1.

Parameter

Remarks

536

newhandlermode New handler mode for manoe; valid value is 0 or 1

The C++ _set_new _mode function sets the new handler mode for manoe. The new
handler mode indicates whether, on failure, manoe is to call the new handler routine
as set by _set_new_handler, set_new_handler. By default, manoe does not call the
new handler routine on failure to allocate memory. You can override this default
behavior so that, when manoe fails to allocate memory, malloe calls the new handler
routine in the same way that the new operator does when it fails for the same reason.
For more information, see the new and delete operators in Chapter 4 of c++
Language Reference. To override the default, call

early in your program, or link with NEWMODE.OBJ.

See Also calloc, free, realloc, _query _new_handler, _query _new_mode

set se translator - -
Handles Win32 exceptions (C structured exceptions) as C++ typed exceptions.

typedef void (* _se_translator_function)(unsigned int, struct _EXCEPTION_POINTERS*);
_se_translator_function _set_se_translator(_se_translator_function se_transJunc);

Routine Required Header Optional Headers Compatibility

_seese_translator <eh.h> Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_set_se_translator returns a pointer to the previous translator function registered by
_set_se_translator, so that the previous function can be restored later. If no previous
function has been set, the return value may be used to restore the default behavior;
this value may be NULL.

Parameter

Remarks

se_transJunc Pointer to a C structured exception translator function that you write

The _set_se_translator function provides a way to handle Win32 exceptions (C
structured exceptions) as C++ typed exceptions. To allow each C exception to be
handled by a C++ catch handler, first define a C exception "wrapper" class that can
be used, or derived from, in order to attribute a specific class type to a C exception.
To use this class, install a custom C exception translator function that is called by the
internal exception-handling mechanism each time a C exception is raised. Within
your translator function, you can throw any typed exception that can be caught by a
matching C++ catch handler.

To specify a custom translation function, call _set_se_translator with the name of
your translation function as its argument. The translator function that you write is

537

Example

538

called once for each function invocation on the stack that has try blocks. There is no
default translator function.

In a multithreaded environment, translator functions are maintained separately for
each thread. Each new thread gets a copy of the new translator function of the calling
thread. Thus, each thread is in charge of its own translation handling.

The se_transJunc function that you write must take an unsigned integer and a
pointer to a Win32 _EXCEPTION_POINTERS structure as arguments. The
arguments are the return values of calls to the Win32 API GetExceptionCode and
GetExceptionInformation functions, respectively.

/* SETRANS.CPP
*/

#include <stdio.h>
#include <windows.h>
#include <eh.h>

void SEFunc();
void trans_func(unsigned int, EXCEPTION_POINTERS*);

class SE_Exception
{

private:
unsigned int nSE;

public:

} ;

SE_Exception() {}
SE_Exception(unsigned int n) : nSE(n) {}
-SE_Exception() {}
unsigned int getSeNumber() { return nSE; }

void maine void)
{

}

try
{

}

_set_se_translator(trans_func);
SEFunc();

catch(SE_Exception e)
{

printf("Caught a _try exception with SE_Exception.\n");
}

void SEFunc()
{

}

int x, y=0;
x = 5 / y;

_finally

Output

printf("In finally\n");
}

}

void trans_func(unsigned int u, EXCEPTION_POINTERS* pExp)
{

}

printf("In trans_func.\n");
throw SE_Exception();

In finally.
In trans_func.
Caught a __ try exception with SE_Exception.

See Also set_terminate, set_unexpected, terminate, unexpected

set terminate
Installs your own termination routine to be called by terminate.

typedef void (*terminate_function)O;
terminate_function set_terminate(terminate_function termJunc);

Routine Required Header

seCterminate <eh.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

set_terminate returns a pointer to the previous function registered by set_terminate,
so that the previous function can be restored later. If no previous function has been
set, the return value may be used to restore the default behavior; this value may be
NULL.

Parameter
termJunc Pointer to a terminate function that you write

secterminate

539

secunexpected

Remarks

Example

The seCterminate function installs termJune as the function called by terminate.
set_terminate is used with C++ exception handling and may be called at any point in
your program before the exception is thrown. terminate calls abort by default. You
can change this default by writing your own termination function and calling
set_terminate with the name of your function as its argument. terminate calls the
last function given as an argument to set_terminate. After performing any desired
cleanup tasks, termJune should exit the program. If it does not exit (if it returns to
its caller), abort is called.

In a multithreaded environment, termination functions are maintained separately for
each thread. Each new thread gets a copy of the new termination function of the
calling thread. Thus, each thread is in charge of its own termination handling.

The terminate_function type is defined in EH.H as a pointer to a user-defined
termination function, termJune, that returns void. Your custom function termJune
can take no arguments and should not return to its caller. If it does, abort is called.
An exception may not be thrown from within termJune.

See the example for terminate.

See Also abort, set_unexpected, terminate, unexpected

set_unexpected

540

Installs your own termination function to be called by unexpected.

typedef void (*unexpected_function)();
unexpected_function set_unexpected(unexpected_function unexp June);

Routine Required Header

seCunexpected <eh.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_set_unexpected returns a pointer to the previous termination function registered by
_seCunexpected, so that the previous function can be restored later. If no previous
function has been set, the return value may be used to restore the default behavior;
this value may be NULL.

Parameter

Remarks

unexp June Pointer to a function that you write to replace the unexpected function

The set_unexpected function installs unexp June as the function called by
unexpected. unexpected is not used in the current C++ exception-handling
implementation. The unexpected_function type is defined in EH.H as a pointer to a
user-defined unexpected function, unexpJune, that returns void. Your custom
unexp June function should not return to its caller.

By default, unexpected calls terminate. You can change this default behavior by
writing your own termination function and calling set_unexpected with the name of
your function as its argument. unexpected calls the last function given as an
argument to set_unexpected.

Unlike the custom termination function installed by a call to set_terminate, an
exception can be thrown from within unexpJune.

In a multithreaded environment, termination functions are maintained separately for
each thread. Each new thread gets a copy of the new termination function of the
calling thread. Thus, each thread is in charge of its own unexpected termination
handling.

In the current Microsoft implementation of C++ exception handling, unexpected
calls terminate by default and is never called by the exception-handling run-time
library. There is no particular advantage to calling unexpected rather than
terminate.

See Also abort, set_terminate, terminate, unexpected

setvbuf
Controls stream buffering and buffer size.

int setvbuf(FILE *stream, char *buffer, int mode, size_t size);

Routine Required Header

setvbuf <stdio.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

setvbuf

541

setvbuf

Libraries

LIBc.Lm

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
setvbuf returns 0 if successful, or a nonzero value if an illegal type or buffer size is
specified.

Parameters

Remarks

Example

542

stream Pointer to FILE structure

buffer User-allocated buffer

mode Mode of buffering

size Buffer size in bytes. Allowable range: 2 < size < 32768. Internally, the value
supplied for size is rounded down to the nearest multiple of 2.

The setvbuf function allows the program to control both buffering and buffer size for
stream. stream must refer to an open file that has not undergone an 110 operation
since it was opened. The array pointed to by buffer is used as the buffer, unless it is
NULL, in which case setvbuf uses an automatically allocated buffer of length
size12 * 2 bytes.

The mode must be _IOFBF, _IOLBF, or _IONBF. If mode is _IOFBF or _IOLBF,
then size is used as the size of the buffer. If mode is _IONBF, the stream is
unbuffered and size and buffer are ignored. Values for mode and their meanings are:

_IOFBF Full buffering; that is, buffer is used as the buffer and size is used as the
size of the buffer. If buffer is NULL, an automatically allocated buffer size bytes
long is used.

_IOLBF With MS-DOS, the same as _IOFBF.

_IONBF No buffer is used, regardless of buffer or size.

1* SETVBUF.C: This program opens two streams: stream1
* and stream2. It then uses setvbuf to give stream1 a
* user-defined buffer of 1024 bytes and stream2 no buffer.
*/

#include <stdio.h>

void main(void)
{

char buf[1024];
FILE *stream1, *stream2;

Output

if(«streaml - fopen("datal", "a")) !- NULL) &&
«stream2 - fopen("data2", "w")) !- NULL))

{

}

if(setvbuf(streaml, buf, _IOFBF. sizeof(buf)!- 0)
printf("Incorrect type or size of buffer for streaml\n");

else
printf("'streaml' now has a buffer of 1024 bytes\n");

if(setvbuf(stream2, NULL, _IONBF, 0) != 0)
printf("Incorrect type or size of buffer for stream2\n");

else
printf("'stream2' now has no buffer\n");

_fcl oseall ();

'streaml' now has a buffer of 1024 bytes
'stream2' now has no buffer

See Also fclose, mush, fopen, setbuf

signal
Sets interrupt signal handling.

void (*signal(int sig, void (_cdecl *func) (int sig [, int subcode] ») (int sig);

Routine Required Header Optional Headers Compatibility

signal <signal.h> ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

signal returns the previous value offunc associated with the given signal. For
example, if the previous value offunc was SIG_IGN, the return value is also
SIG_IGN. A return value of SIG_ERR indicates an error, in which case errno is set
toEINVAL.

signal

543

signal

Parameters

Remarks

544

sig Signal value

June Function to be executed

subeode Optional subcode to the signal number

The signal function allows a process to choose one of several ways to handle an
interrupt signal from the operating system. The sig argument is the interrupt to which
signal responds; it must be one of the following manifest constants, defined in
SIGNAL.H.

sigValue Description

SIGABRT Abnormal termination

SIGFPE Floating-point error

SIGILL Illegal instruction

SIGINT CTRL+C signal

SIGSEGV Illegal storage access

SIGTERM Termination request

By default, signal terminates the calling program with exit code 3, regardless of the
value of sig.

Note SIGINT is not supported for any Win32 application including Windows NT
and Windows 95. When a CTRL+C interrupt occurs, Win32 operating systems
generate a new thread to specifically handle that interrupt. This can cause a single­
thread application such as UNIX, to become multithreaded, resulting in unexpected
behavior.

The June argument is an address to a signal handler that you write, or one of the
manifest constants SIG_DFL or SIG_IGN, also defined in SIGNAL.H. If June is a
function, it is installed as the signal handler for the given signal. The signal
handler's prototype requires one formal argument, sig, of type into The operating
system provides the actual argument through sig when an interrupt occurs; the
argument is the signal that generated the interrupt. Thus you can use the six manifest
constants (listed in the preceding table) inside your signal handler to determine
which interrupt occurred and take appropriate action. For example, you can call
signal twice to assign the same handler to two different signals, then test the sig
argument inside the handler to take different actions based on the signal received.

If you are testing for floating-point exceptions (SIGFPE) , June points to a function
that takes an optional second argument that is one of several manifest constants
defined in FLOAT.H of the form FPE_xxx. When a SIGFPE signal occurs, you can
test the value of the second argument to determine the type of floating-point
exception and then take appropriate action. This argument and its possible values are
Microsoft extensions.

For floating-point exceptions, the value of june is not reset upon receiving the signal.
To recover from floating-point exceptions, use setjmp with longjmp. If the function
returns, the calling process resumes execution with the floating-point state of the
process left undefined.

If the signal handler returns, the calling process resumes execution immediately
following the point at which it received the interrupt signal. This is true regardless of
the type of signal or operating mode.

Before the specified function is executed, the value offune is set to SIG_DFL. The
next interrupt signal is treated as described for SIG_DFL, unless an intervening call
to signal specifies otherwise. This feature lets you reset signals in the called function.

Because signal-handler routines are usually called asynchronously when an interrupt
occurs, your signal-handler function may get control when a run-time operation is
incomplete and in an unknown state. The list below summarizes restrictions that
determine which functions you can use in your signal-handler routine.

• Do not issue low-level or STDIO.H I/O routines (such as printf and fread).

• Do not call heap routines or any routine that uses the heap routines (such as
malloc, _strdup, and _putenv). See malloc for more information.

• Do not use any function that generates a system call (e.g., _getcwd, time).

• Do not use longjmp unless the interrupt is caused by a floating-point exception
(i.e., sig is SIGFPE). In this case, first reinitialize the floating-point package with
a call to _fpreset.

• Do not use any overlay routines.

A program must contain floating-point code if it is to trap the SIGFPE exception
with the function. If your program does not have floating:-point code and requires the
run-time library's signal-handling code, simply declare a volatile double and
initialize it to zero:

volatile double d = 0.0f;

The SIGILL, SIGSEGV, and SIGTERM signals are not generated under Windows
NT. They are included for ANSI compatibility. Thus you can set signal handlers for
these signals with signal, and you can also explicitly generate these signals by calling
raise.

Signal settings are not preserved in spawned processes created by calls to _exec or
_spawn functions. The signal settings are reset to the default in the new process.

See Also abort, _exec Functions, exit, _fpreset, _spawn Functions

signal

545

sin, sinh

sin, sinh
Calculate sines and hyperbolic sines.

double sin(double x);
double sinh(double x);

Routine Required Header

sin <math.h>

sinh <math.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBc.Lm

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
sin returns the sine of x. If x is greater than or equal to 263, or less than or equal to
_263, a loss of significance in the result occurs, in which case the function generates a
_TLOSS error and returns an indefinite (same as a quiet NaN).

sinh returns the hyperbolic sine of x. If the result is too large, sinh sets errno to
ERANGE and returns ±HUGE_ VAL. You can modify error handling with
_matherr.

Parameter

Example

546

x Angle in radians

/* SINCOS.C: This program displays the sine. hyperbolic
* sine. cosine. and hyperbolic cosine of pi / 2.
*/

#include <math.h>
#include <stdio.h>

void maine void)
{

double pi = 3.1415926535;
double x. y;

Output

x = pi / 2;
y = sine x);
printf("sine %f) = %f\n". x. y);
y = sinh(x);
printf("sinh(%f) = %f\n".x. y);
y = cas(x);
printf("cas(%f) = %f\n". x. y);
y = cash(x);
printf("cash(%f) = %f\n".x. y);

sine 1.570796) = 1.000000
sinh(1.570796) = 2.301299
cas(1.570796) = 0.000000
cash(1.570796) = 2.509178

See Also acos, asin, atan, cos, tan

_snprintf, _snwprintf
Write formatted data to a string.

int _snprintf(char *buffer, size_t count, const char *format [, argument] ...);

_snprintf, _snwprintf

int _snwprintf(wchar_t *buffer, size_t count, const wchar_t *format [, argument] ...);

Routine Required Header

_snprintf <stdio.h>

_snwprintf <stdio.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

_snprintf returns the number of bytes stored in buffer, not counting the terminating
null character. If the number of bytes required to store the data exceeds count, then
count bytes of data are stored in buffer and a negative value is returned. _snwprintf
returns the number of wide characters stored in buffer, not counting the terminating
null wide character. If the storage required to store the data exceeds count wide

547

_sopen, _ wsopen

characters, then count wide characters are stored in buffer and a negative value is
returned.

Parameters

Remarks

Example

buffer Storage location for output

count Maximum number of characters to store

format Format-control string

argument Optional arguments

The _snprintf function formats and stores count or fewer characters and values
(including a terminating null character, which is always appended unless count is
zero) in buffer. Each argument (if any) is converted and output according to the
corresponding format specification informat. The format consists of ordinary
characters and has the same form and function as the format argument for printf. If
copying occurs between strings that overlap, the behavior is undefined.

_snwprintf is a wide-character version of _snprintf; the pointer arguments to
_snwprintf are wide-character strings. Detection of encoding errors in _snwprintf
may differ from that in _snprintf. _snwprintf, like swprintf, writes output to a string
rather than to a destination of type FILE.

See the example for sprintf.

See Also sprintf, fprintf, printf, scanf, sscanf, vprintf Functions

_sopen, _wsopen

548

Open a file for sharing.

int _sopen(const char *filename, int oflag, int shflag [, int pmode]);
int _wsopen(const wchar_t *filename, int oflag, int shflag [, int pmode]);

Routine Required Header Optional Headers Compatibility

_sopen <io.h> <fcntl.h>, <sys/types.h>, Win 95, Win NT,
<sys/stat.h>, <share.h> Win32s, 68K, PMac

_wsopen <io.h> or <fcntl.h>, <sys/types.h>, Win NT
<wchar.h> <sys/stat.h>, <share.h>

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a file handle for the opened file. A return value of -1
indicates an error, in which case errno is set to one of the following values:

EACCES Given path is a directory, or file is read-only, but an open-for-writing
operation was attempted.

EEXIST _O_CREAT and _O_EXCL flags were specified, but filename already
exists.

EINV AL Invalid oflag or shflag argument.

EMFILE No more file handles available.

ENOENT File or path not found.

Parameters

Remarks

filename Filename

oflag Type of operations allowed

shflag Type of sharing allowed

pmode Permission setting

The _sopen function opens the file specified by filename and prepares the file for
shared reading or writing, as defined by oflag and shflag. _wsopen is a wide­
character version of _sopen; the filename argument to _ wsopen is a wide-character
string. _ wsopen and _sopen behave identically otherwise.

The integer expression oflag is formed by combining one or more of the following
manifest constants, defined in the file FCNTL.H. When two or more constants form
the argument oflag, they are combined with the bitwise-OR operator (I).

_0 _APPEND ~epositions file pointer to end of file before every write operation.

_O_BINARY Opens file in binary (untranslated) mode. (See fopen for a
description of binary mode.)

_O_CREAT Creates and opens new file for writing. Has no effect if file specified by
filename exists. The pmode argument is required when _O_CREAT is specified.

_O_CREAT I_O_SHORT_LIVED Create file as temporary and if possible do not
flush to disk. The pmode argument is required when _O_CREAT is specified.

_sopen, _ wsopen

549

_sopen, _ wsopen

550

_O_CREAT I_O_TEMPORARY Create file as temporary; file is deleted when
last file handle is closed. The pmode argument is required when _O_CREAT is
specified.

_O_CREAT I_O_EXCL Returns error value if file specified by filename exists.
Applies only when used with _0_ CREAT.

_0 _RANDOM Specifies primarily random access from disk

_O_RDONLY Opens file for reading only; cannot be specified with _O_RDWR or
_O_WRONLY.

_O_RDWR Opens file for both reading and writing; cannot be specified with
_O_RDONLY or _O_WRONLY.

_O_SEQUENTIAL Specifies primarily sequential access from disk

_O_TEXT Opens file in text (translated) mode. (For more information, see "Text
and Binary Mode File lIO" on page 15 and Copen.)

_O_TRUNC Opens file and truncates it to zero length; the file must have write
permission. You cannot specify this flag with _O_RDONLY. _O_TRUNC used
with _O_CREAT opens an existing file or creates a new file.

Warning The _0_ TRUNC flag destroys the contents of the specified file.

0 WRONLY Opens file for writing only; cannot be specified with _O_RDONLY
or_O_RDWR.

To specify the file access mode, you must specify either _O_RDONLY, _O_RDWR,
or _0_ WRONLY. There is no default value for the access mode.

The argument shflag is a constant expression consisting of one of the following
manifest constants, defined in SHARE.H.

_SH_DENYRW Denies read and write access to file

_SH_DENYWR Denies write access to file

_SH_DENYRD Denies read access to file

_SH_DENYNO Permits read and write access

The pmode argument is required only when you specify _O_CREAT. If the file does
not exist, pmode specifies the file's permission settings, which are set when the new
file is closed the first time. Otherwise pmode is ignored. pmode is an integer
expression that contains one or both of the manifest constants _S_IWRITE and
_S_IREAD, defined in SYS\STAT.H. When both constants are given, they are
combined with the bitwise-OR operator. The meaning of pmode is as follows:

_S_IWRITE Writing permitted

_S_IREAD Reading permitted

_S_IREAD I _S_IWRITE Reading and writing permitted

Example

_spawn, _ wspawn Functions

If write permission is not given, the file is read-only. Under Windows NT and
Windows 95, all files are readable; it is not possible to give write-only permission.
Thus the modes _S_IWRITE and _S_IREAD '_S_IWRITE are equivalent.

_sopen applies the current file-permission mask to pmode before setting the
permissions (see _umask).

See the example for _locking.

See Also _close, _creat, fopen, _fsopen, _open

_spawn, _wspawn Functions

Remarks

Each of the _spawn functions creates and executes a new process.

_spawnl, _ wspawnl

_spawnle, _ wspawnle

_spawnlp, _ wspawnlp

_spawnlpe, _ wspawnlpe

_spawnv, _ wspawnv

_spavnnve,_wspawnve

_spavnnvp, _ wspawnvp

_spawnvpe, _ wspawnvpe

The letter(s) at the end of the function name determine the variation.

_spawn
Function
Suffix

e

p

v

Description

envp, array of pointers to environment settings, is passed to new process.

Command-line arguments are passed individually to _spawn function.
This suffix is typically used when number of parameters to new process is
known in advance

PATH environment variable is used to find file to execute.

argv, array of pointers to command-line arguments, is passed to _spawn
function. This suffix is typically used when number of parameters to new
process is variable.

The _spawn functions each create and execute a new process. They automatically
handle multibyte-character string arguments as appropriate, recognizing multibyte­
character sequences according to the multibyte code page currently in use. The
_ wspawn functions are wide-character versions of the _spawn functions; they do not
handle multibyte-character strings. Otherwise, the _ wspawn functions behave
identically to their _spawn counterparts.

551

_spawn, _ wspawn Functions

552

Enough memory must be available for loading and executing the new process. The
mode argument determines the action taken by the calling process before and during
_spawn. The following values for mode are defined in PROCESS.R:

_P _OVERLAY Overlays calling process with new process, destroying the calling
process (same effect as _exec calls).

_P _WAIT Suspends calling process until execution of new process is complete
(synchronous _spawn).

_P _NOWAIT or _P _NOW AlTO Continues to execute calling process concurrently
with new process (asynchronous _spawn).

_P _DETACH Continues to execute the calling process; new process is run in the
background with no access to the console or keyboard. Calls to _cwait against the
new process will fail (asynchronous _spawn).

The cmdname argument specifies the file that is executed as the new process and can
specify a full path (from the root), a partial path (from the current working directory),
or just a filename. If cmdname does not have a filename extension or does not end
with a period (.), the _spawn function first tries the .COM extension, then the .EXE
extension, the .BAT extension, and finally the .CMD extension.

If cmdname has an extension, only that extension is used. If cmdname ends with a
period, the _spawn call searches for cmdname with no extension. The _spawnlp,
_spawnlpe, _spawnvp, and _spawnvpe functions search for cmdname (using the
same procedures) in the directories specified by the PATH environment variable.

If cmdname contains a drive specifier or any slashes (that is, if it is a relative path),
the _spawn call searches only for the specified file; no path searching is done.

Note To ensure proper overlay initialization and termination, do not use the setjmp or
longjmp function to enter or leave an overlay routine.

Arguments for the Spawned Process
To pass arguments to the new process, give one or more pointers to character strings
as arguments in the _spawn call. These character strings form the argument list for
the spawned process. The combined length of the strings forming the argument list
for the new process must not exceed 1024 bytes. The terminating null character
(, \0 ') for each string is not included in the count, but space characters (automatically
inserted to separate arguments) are included.

You can pass argument pointers as separate arguments (in _spawnJ, _spawnle,
_spawnlp, and _spawnlpe) or as an array of pointers (in _spawnv, _spawnve,
_spawnvp, and _spawnvpe). You must pass at least one argument, argO or argv[O] ,
to the spawned process. By convention, this argument is the name of the program as
you would type it on the command line. A different value does not produce an error.

The _spawnl, _spawnle, _spawnJp, and _spawnlpe calls are typically used in cases
where the number of arguments is known in advance. The argO argument is usually a

_spawn, _ wspawn Functions

pointer to cmdname. The arguments arg 1 through argn are pointers to the character
strings forming the new argument list. Following argn, there must be a NULL
pointer to mark the end of the argument list.

The _spawnv, _spawnve, _spawnvp, and _spawnvpe calls are useful when there is a
variable number of arguments to the new process. Pointers to the arguments are
passed as an array, argv. The argument argv[O] is usually a pointer to a path in real
mode or to the program name in protected mode, and argv[l] through argv[n] are
pointers to the character strings forming the new argument list. The argument
argv[n + 1] must be a NULL pointer to mark the end of the argument list.

Environment of the Spawned Process
Files that are open when a _spawn call is made remain open in the new process. In
the _spawnl, _spawnlp, _spawnv, and _spawnvp calls, the new process inherits the
environment of the calling process. You can use the _spawnle, _spawnlpe,
_spawnve, and _spawnvpe calls to alter the environment for the new process by
passing a list of environment settings through the envp argument. The argument envp
is an array of character pointers, each element (except the final element) of which
points to a null-terminated string defining an environment variable. Such a string
usually has the form NAME=value where NAME is the name of an environment
variable and value is the string value to which that variable is set. (Note that value is
not enclosed in double quotation marks.) The final element of the envp array should
be NULL. When envp itself is NULL, the spawned process inherits the environment
settings of the parent process.

The _spawn functions can pass all information about open files, including the
translation mode, to the new process. This information is passed in real mode
through the C_FILE_INFO entry in the environment. The startup code normally
processes this entry and then deletes it from the environment. However, if a _spawn
function spawns a non-C process, this entry remains in the environment. Printing the
environment shows graphics characters in the definition string for this entry because
the environment information is passed in binary form in real mode. It should not
have any other effect on normal operations. In protected mode, the environment
information is passed in text form and therefore contains no graphics characters.

You must explicitly flush (using mush or _flushall) or close any stream before
calling a _spawn function.

You can control whether the open file information of a process is passed to its
spawned processes. The external variable _fileinfo (declared in STDLIB.H) controls
the passing of C_FILE_INFO information. If _fileinfo is ° (the default), the
C_FILE_INFO information is not passed to the new processes. If _fileinfo is not 0,
C_FILE_INFO is passed to new processes. You can modify the default value of
_fileinfo in one of two ways: link the supplied object file, FILEINFO.OBJ, into the
program, or set the _fileinfo variable to a nonzero value directly in the C program.

553

_spawn, _ wspawn Functions

Example

554

New processes created by calls to _spawn routines do not preserve signal settings.
Instead, the spawned process resets signal settings to the default.

1* SPAWN.C: This program accepts a number in the range
* 1-8 from the command line. Based on the number it receives,
* it executes one of the eight different procedures that
* spawn the process named child. For some of these procedures,
* the CHILD.EXE file must be in the same directory; for
* others, it only has to be in the same path.
*1

#include <stdio.h>
#include <process.h>

char *my_env[] =
{

} ;

"THIS=environment will be",
"PASSED=to child.exe by the",
"_SPAWNLE=and",
"_SPAWNLPE=and",
"_SPAWNVE=and",
"_SPAWNVPE=functions",
NULL

void maine int argc, char *argv[])
{

char *args[4];

1* Set up parameters to be sent: */
args[0] "child";
args[l] "spawn??";
args[2] "two";
args[3] NULL;

if (argc <= 2)
{

printf("SYNTAX: SPAWN <1-8> <childprogram>\n");
exit(1);

}

switch (argv[I][0])
{

case '1':

1* Based on first letter of argument *1

_spawnl(_P_WAIT, argv[2], argv[2], "_spawnl", "two", NULL);
break;

case '2':
_spawnle(_P_WAIT, argv[2], argv[2], "_spawnle", "two",

NULL, my_env);
break;

_spawn, _ wspawn Functions

Output

case '3':
_spawnlp(_P_WAIT, argv[2], argv[2], "_spawnlp", "two", NULL);
break;

case '4':
_spawnlpe(_P_WAIT, argv[2], argv[2], "_spawnlpe", "two",

NULL, my_env);
break;

case '5':
_spawnv(_P_OVERLAY, argv[2], args);
break;

case '6':
_spawnve(_P_OVERLAY, argv[2], args, my_env);
break;

case '7':
_spawnvp(_P_OVERLAY, argv[2], args);
break;

case '8':
_spawnvpe(_P_OVERLAY, argv[2], args, my_env);
break;

default :

}

printf("SYNTAX: SPAWN <1-8> <childprogram>\n");
exit(1);

printf("from SPAWNl\n");

SYNTAX: SPAWN <1-8> <childprogram>

See Also abort, atexit, _exec Functions, exit, _flushall, ~etmbcp, _onexit,
_setmbcp, system

_spawnl, _ wspawnl
Create and execute a new process.

int _spawnl(int mode, const char *cmdname, const char *argO, const char *arg 1, ... const char
*argn, NULL);

int _wspawnl(int mode, const wchar_t *cmdname, const wchar_t *argO, const wchar_t *argl, ...
const wchar_t *argn, NULL);

Routine

_spawnl

_wspawnl

Required Header

<process.h>

<stdio.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

555

_spawn, _ wspawn Functions

Libraries

Lmc.LIB

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The return value from a synchronous _spawnl or _ wspawnl LP _WAIT specified for
mode) is the exit status of the new process. The return value from an asynchronous
_spawnI or _wspawnl (_P _NOWAIT or _P _NOW AlTO specified for mode) is the
process handle. The exit status is 0 if the process terminated normally. You can set
the exit status to a nonzero value if the spawned process specifically calls the exit
routine with a nonzero argument. If the new process did not explicitly set a positive
exit status, a positive exit status indicates an abnormal exit with an abort or an
interrupt. A return value of -1 indicates an error (the new process is not started). In
this case, errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

Parameters

Remarks

mode Execution mode for calling process

cmdname Path of file to be executed

argO, ... argn List of pointers to arguments

Each of these functions creates and executes a new process, passing each command­
line argument as a separate parameter.

See Also abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

_spawnle, _ wspawnle

556

Create and execute a new process.

int _spawnle(int mode, const char *cmdname, const char *argO, const char *argl, ... const char
*argn, NULL, const char *const *envp);

int _wspawnle(int mode, const wchar_t *cmdname, const wchar_t *argO, const wchar_t *argl, ...
const wchar_t *argn, NULL, const wchar_t *const *envp);

_spawn, _ wspawn Functions

Routine

_spawnle

_wspawnle

Required Header

<process.h>

<stdio.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The return value from a synchronous _spawnle or _wspawnJe LP _WAIT specified
for mode) is the exit status of the new process. The return value from an
asynchronous _spawnle or _ wspawnJe LP _NOWAIT or _P _NOW AlTO specified
for mode) is the process handle. The exit status is 0 if the process terminated
normally. You can set the exit status to a nonzero value if the spawned process
specifically calls the exit routine with a nonzero argument. If the new process did not
explicitly set a positive exit status, a positive exit status indicates an abnormal exit
with an abort or an interrupt. A return value of -1 indicates an error (the new process
is not started). In this case, errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

Parameters

Remarks

mode Execution mode for calling process

cmdname Path of file to be executed

argO, ... argn List of pointers to arguments

envp Array of pointers to environment settings

Each of these functions creates and executes a new process, passing each command­
line argument as a separate parameter and also passing an array of pointers to
environment settings.

See Also abort, atexit, _exec Functions, exit, _flushall, ~etmbcp, _onexit,
_setmbcp, system

557

_spawn, _ wspawn Functions

_spawnlp, _ wspawnlp
Create and execute a new process.

int _spawnlp(int mode, const char *cmdname, const char *argO, const char *argl, ... const char
*argn, NULL);

int _wspawnlp(int mode, const wchar_t *cmdname, const wchar_t *argO, const wchar_t *argl, ...
const wchar_t *argn, NULL);

Routine

_spawnlp

_wspawnlp

Required Header

<process.h>

<stdio.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The return value from a synchronous _spawnJp or _ wspawnlp LP _ WAIT specified
for mode) is the exit status of the new process. The return value from an
asynchronous _spawnlp or _wspawnlp (_P _NOWAIT or _P _NOW AlTO specified
for mode) is the process handle. The exit status is 0 if the process terminated
normally. You can set the exit status to a nonzero value if the spawned process
specifically calls the exit routine with a nonzero argument. If the new process did not
explicitly set a positive exit status, a positive exit status indicates an abnormal exit
with an abort or an interrupt. A return value of -1 indicates an error (the new process
is not started). In this case, errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

Parameters
mode Execution mode for calling process

cmdname Path of file to be executed

argO, ... argn List of pointers to arguments

558

Remarks

_spawn, _ wspawn Functions

Each of these functions creates and executes a new process, passing each command­
line argument as a separate parameter and using the PATH environment variable to
find the file to execute.

See Also abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

_spawnlpe, _ wspawnlpe
Create and execute a new process.

int _spawnlpe(int mode, const char *cmdname, const char *argO, const char *arg 1, ... const char
*argn, NULL, const char *const *envp);

int _wspawnlpe(int mode, const wchar_t *cmdname, const wchar_t *argO, const wchar_t *argl, ...
const wchar_t *argn, NULL, const wchar_t *const *envp);

Routine

_spawnlpe

_wspawnlpe

Required Header

<process.h>

<stdio.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

The return value from a synchronous _spawnlpe or _ wspawnlpe (_P _ WAIT
specified for mode) is the exit status of the new process. The return value from an
asynchronous _spawnlpe or _ wspawnlpe CP _NOWAIT or _P _NOW AlTO
specified for mode) is the process handle. The exit status is 0 if the process
terminated normally. You can set the exit status to a nonzero value if the spawned
process specifically calls the exit routine with a nonzero argument. If the new process
did not explicitly set a positive exit status, a positive exit status indicates an abnormal
exit with an abort or an interrupt. A return value of -1 indicates an error (the new
process is not started). In this case, errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

559

_spawn, _ wspawn Functions

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

Parameters

Remarks

mode Execution mode for calling process

cmdname Path of file to be executed

argO, ... argn List of pointers to arguments

envp Array of pointers to environment settings

Each of these functions creates and executes a new process, passing each command­
line argument as a separate parameter and also passing an array of pointers to
environment settings. These functions use the PATH environment variable to find the
file to execute.

See Also abort, atexit, _exec Functions, exit, _flushaIl, ~etmbcp, _onexit,
_setmbcp, system

_spawnv, _ wspawnv
Create and execute a new process.

int _spawnv(int mode, const char *cmdname, const char *const *argv);
int _ wspawnv(int mode, const wchar_t *cmdname, const wchar_t *const *argv);

Routine

_spawnv

_wspawnv

Required Header

<stdio.h> or <process.h>

<stdio.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

560

The return value from a synchronous _spawnv or _ wspawnv <_P _WAIT specified
for mode) is the exit status of the new process. The return value from an
asynchronous _spawnv or _ wspawnv LP _NOWAIT or _P _NOW AlTO specified
for mode) is the process handle. The exit status is 0 if the process terminated
normally. You can set the exit status to a nonzero value if the spawned process

_spawn, _ wspawn Functions

specifically calls the exit routine with a nonzero argument. If the new process did not
explicitly set a positive exit status, a positive exit status indicates an abnormal exit
with an abort or an interrupt. A return value of -1 indicates an error (the new process
is not started). In this case, errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINV AL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

Parameters

Remarks

mode Execution mode for calling process

cmdname Path of file to be executed

argv Array of pointers to arguments

Each of these functions creates and executes a new process, passing an array of
pointers to command-line arguments.

See Also abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

_spawnve, _ wspawnve
Create and execute a new process.

int _spawnve(int mode, const char *cmdname, const char *const *argv, const char *const *envp);
int _wspawnve(int mode, const wchar_t *cmdname, const wchar_t *const *argv, const wchar_t

*const * envp);

Routine

_spawnve

_wspawnve

Required Header

<stdio.h> or <process.h>

<stdio.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LID

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

561

_spawn, _ wspawn Functions

Return Value
The return value from a synchronous _spawnve or _ wspawnve LP _WAIT specified
for mode) is the exit status of the new process. The return value from an
asynchronous _spawnve or _ wspawnve LP _NOWAIT or _P _NOW AlTO specified
for mode) is the process handle. The exit status is 0 if the process terminated
normally. You can set the exit status to a nonzero value if the spawned process
specifically calls the exit routine with a nonzero argument. If the new process did not
explicitly set a positive exit status, a positive exit status indicates an abnormal exit
with an abort or an interrupt. A return value of -1 indicates an error (the new process
is not started). In this case, errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

Parameters

Remarks

mode Execution mode for calling process

cmdname Path of file to be executed

argv Array of pointers to arguments

envp Array of pointers to environment settings

Each of these functions creates and executes a new process, passing an array of
pointers to command-line arguments and an array of pointers to environment
settings.

See Also abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

_spawnvp, _ wspawnvp

562

Create and execute a new process.

int _spawnvp(int mode, const char *cmdname, const char *const *argv);
int _ wspawnvp(int mode, const wchar_t *cmdname, const wchar_t *const *argv);

Routine Required Header

_spawnvp <stdio.h> or <process.h>

_ wspawnvp <stdio.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

_spawn, _ wspawn Functions

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The return value from a synchronous _spawnvp or _ wspawnvp CP _WAIT specified
for mode) is the exit status of the new process. The return value from an
asynchronous _spawnvp or _ wspawnvp CP _NOWAIT or _P _NOW AlTO specified
for mode) is the process handle. The exit status is 0 if the process terminated
normally. You can set the exit status to a nonzero value if the spawned process
specifically calls the exit routine with a nonzero argument. If the new process did not
explicitly set a positive exit status, a positive exit status indicates an abnormal exit
with an abort or an interrupt. A return value of -1 indicates an error (the new process
is not started). In this case, errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINV AL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

Parameters

Remarks

mode Execution mode for calling process

cmdname Path of file to be executed

argv Array of pointers to arguments

Each of these functions creates and executes a new process, passing an array of
pointers to command-line arguments and using the the PATH environment variable
to find the file to execute.

See Also abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

563

_spawn, _ wspawn Functions

_spawnvpe, _ wspawnvpe
Create and execute a new process.

iot _spawnvpe(iot mode, const char *cmdname, const char *const *argv, const char *const
*envp);

iot _wspawnvpe(iot mode, const wchar_t *cmdname, const wchar_t *const *argv, coost wchar_t
*const *envp);

Routine

_spawnvpe

_wspawnvpe

Required Header

<stdio.h> or <process.h>

<stdio.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

564

The return value from a synchronous _spawnvpe or _ wspawnvpe (_P _WAIT
specified for mode) is the exit status of the new process. The return value from an
asynchronous _spawnvpe or _ wspawnvpe CP _NOWAIT or _P _NOW AlTO
specified for mode) is the process handle. The exit status is 0 if the process
terminated normally. You can set the exit status to a nonzero value if the spawned
process specifically calls the exit routine with a nonzero argument. If the new process
did not explicitly set a positive exit status, a positive exit status indicates an abnormal
exit with an abort or an interrupt. A return value of -1 indicates an error (the new
process is not started). In this case, erroo is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINV AL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

_splitpath, _ wsplitpath

Parameters

Remarks

mode Execution mode for calling process

cmdname Path of file to be executed

argv Array of pointers to arguments

envp Array of pointers to environment settings

Each of these functions creates and executes a new process, passing an array of
pointers to command-line arguments and an array of pointers to environment
settings. These functions use the PATH environment variable to find the file to
execute.

See Also abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

_splitpath, _wsplitpath
Break a path name into components.

void _splitpath(const char *path, char *drive, char *dir, char *fname, char *ext);
void _wsplitpath(const wchar_t *path, wchar_t *drive, wchar_t *dir, wchar_t *fname, wchar_t

*ext);

Routine Required Header

_splitpath <stdlib.h>

_ wsplitpath <stdlib.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.LIB

MSYCRTxO.DLL

Return Value
None

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

565

sprintf, swprintf

Parameters

Remarks

Example

path Full path

drive Optional drive letter, followed by a colon (:)

dir Optional directory path, including trailing slash. Forward slashes (I),
backslashes (\), or both may be used.

fname Base filename (no extension)

ext Optional filename extension, including leading period (.)

The _splitpath function breaks a path into its four components. _splitpath
automatically handles multibyte-character string arguments as appropriate,
recognizing multibyte-character sequences according to the multibyte code page
currently in use. _ wsplitpath is a wide-character version of _splitpath; the
arguments to _ wsplitpath are wide-character strings. These functions behave
identically otherwise.

Each argument is stored in a buffer; the manifest constants _MAX_DRIVE,
_MAX_DIR, _MAX_FNAME, and _MAX_EXT (defined in STDLIB.H) specify
the maximum size necessary for each buffer. The other arguments point to buffers
used to store the path elements. After a call to _splitpath is executed, these
arguments contain empty strings for components not found in path. You can pass a
NULL pointer to _splitpath for any component you don't need.

See the example for _makepath.

See Also _fullpath, _getmbcp, _makepath, _setmbcp

sprintf, swprintf

566

Write formatted data to a string.

int sprintf(char *buffer, const char *format [, argument] ...);
int swprintf(wchar_t *buffer, const wchar_t *format [, argument] ...);

Routine Required Header

sprintf <stdio.h>

swprintf <stdio.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
sprintf returns the number of bytes stored in buffer, not counting the terminating null
character. swprintf returns the number of wide characters stored in buffer, not
counting the terminating null wide character.

Parameters

Remarks

Example

buffer Storage location for output

format Format-control string

argument Optional arguments

For more information, see "printf Format Specification Fields" on page 485.

The sprintf function formats and stores a series of characters and values in buffer.
Each argument (if any) is converted and output according to the corresponding
format specification informat. The format consists of ordinary characters and has the
same form and function as the format argument for printf. A null character is
appended after the last character written. If copying occurs between strings that
overlap, the behavior is undefined.

swprintf is a wide-character version of sprintf; the pointer arguments to swprintf
are wide-character strings. Detection of encoding errors in swprintf may differ from
that in sprintf. swprintf and fwprintf behave identically except that swprintf writes
output to a string rather than to a destination of type FILE.

/* SPRINTF.C: This program uses sprintf to format various
* data and place them in the string named buffer.
*/

#include <stdio.h>

void main(void)
{

char buffer[200]. s[]
i nt ; = 35. j;
float fp = 1.7320534f;

"computer". c '1 ' ;

sprintf, swprintf

567

sqrt

Output

sqrt

/* Format and print various data: */
j spri ntf(buffer, "\tString: %s\n", s) ;

j +- spri ntf(buffer + j, "\tCharacter: %c\n", c) ;
j +- spri ntf(buffer + j, "\tInteger: %d\n", i) ;

j +- spri ntf(buffer + j, "\tReal: %f\n", fp) ;

printf("Output:\n%s\ncharacter count = %d\n", buffer,);
}

Output:
String: computer
Cha racter: 1
Integer: 35
Real: 1.732053

character count - 71

See Also _snprintf, fprintf, printf, scanf, sscanf, vprintf Functions

Calculates the square root.

double sqrt(double x);

Routine Required Header

sqrt <math.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.LIB

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The sqrt function returns the square-root of x. If x is negative, sqrt returns an
indefinite (same as a quiet NaN). You can modify error handling with _matherr.

Parameter
x Nonnegative floating-point value

568

Example

Output

/* SQRT.C: This program calculates a square root. */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

void main(void)
(

double question = 45.35, answer;

answer = sqrt(question);
if(question < 0)

printf("Error: sqrt returns %.2f\n, answer");
else

printf("The square root of %.2f is %.2f\n", question, answer);

The square root of 45.35 is 6.73

See Also exp, log, pow

srand
Sets a random starting point.

void srand(unsigned int seed);

Routine Required Header

srand <stdlib.h>

Optional Headers Compatibility

ANSI j Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Return Value
None

Parameter

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

seed Seed for random-number generation

srand

569

sscanf, swscanf

Remarks

Example

The srand function sets the starting point for generating a series of pseudorandom
integers. To reinitialize the generator, use 1 as the seed argument. Any other value
for seed sets the generator to a random starting point. rand retrieves the
pseudorandom numbers that are generated. Calling rand before any call to srand
generates the same sequence as calling srand with seed passed as 1.

See the example for rand.

See Also rand

sscanf, swscanf
Read formatted data from a string.

int sscanf(const char *buffer, const char *format [, argument] ...);
int swscanf(const wchar_t *buffer, const wchar_t *format [, argument] ...);

Routine

sscanf

swscanf

Required Header

<stdio.h>

<stdio.h> or
<wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the number of fields successfully converted and
assigned; the return value does not include fields that were read but not assigned. A
return value of 0 indicates that no fields were assigned. The return value is EOF for
an error or if the end of the string is reached before the first conversion.

Parameters

570

buffer Stored data

format Format-control string

argument Optional arguments

Remarks

Example

Output

For more information, see "scanf Format Specification Fields" on page 517.

The sscanf function reads data from buffer into the location given by each argument.
Every argument must be a pointer to a variable with a type that corresponds to a type
specifier informat. The format argument controls the interpretation of the input
fields and has the same form and function as the format argument for the scanf
function; see scanf for a complete description of format. If copying takes place
between strings that overlap, the behavior is undefined.

swscanf is a wide-character version of sscanf; the arguments to swscanf are wide­
character strings. sscanf does not handle multibyte hexidecimal characters. swscanf
does not handle Unicode fullwidth hexadecimal or "compatibility zone" characters.
Otherwise, swscanf and sscanf behave identically.

1* SSCANF.C: This program uses sscanf to read data items
* from a string named tokenstring, then displays them.
*/

#include <stdio.h>

void main(void)
{

char
char

tokenstring[]
s[81];

char c;
i nt i ;
float fp;

"15 12 14 ... ";

/* Input various data from tokenstring:
sscanf(tokenstring, "%5", s) ;

sscanf(tokenstring, n%c", &c) ;

sscanf(tokenstring, n%d", &i) ;

sscanf(tokenstring, n%f", &fp) ;

read */ /* Output the data
printf("String
printf("Character
printf("Integer:
printf("Real:

= %s\n", s);
= %c\n", c);
= %d\n", i);
= %f\n", fp);

String
Character
Integer:
Real:

15
1
15
15.000000

See Also fscanf, scanf, sprintf, _snprintf

*/

sscanf, swscanf

571

_stat, _ wstat, _stati64, _ wstati64

_stat, _wstat, _stati64, wstati64
Get status information on a file.

int _stat(const char *path, struct _stat *buffer);
__ int64 _stati64(const char *path, struct _stat *buffer);
int _wstat(const wchar_t *path, struct _stat *buffer);
__ int64 _ wstati64(const wchar_t *path, struct _stat *buffer);

Routine Required Header Optional Headers Compatibility

- stat <sys/types.h> followed by <errno.h> Win 95, Win NT,
<sys/stat.h> Win32s, 68K, PMac

- wstat <sys/types.h> followed by <errno.h> Win NT
<sys/stat.h> or <wchar.h>

- stati64 <sys/types.h> followed by <errno.h> Win 95, Win NT,
<sys/stat.h> Win32s

_wstati64 <sys/types.h> followed by <errno.h> Win NT
<sys/stat.h> or <wchar.h>

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns 0 if the file-status information is obtained. A return
value of -1 indicates an error, in which case errno is set to ENOENT, indicating
that the filename or path could not be found.

Parameters

Remarks

572

path Path of existing file

buffer Pointer to structure that stores results

The _stat function obtains information about the file or directory specified by path
and stores it in the structure pointed to by buffer. _stat automatically handles
multibyte-character string arguments as appropriate, recognizing multibyte-character
sequences according to the multibyte code page currently in use.

Example

_stat, _ wstat, _stati64, _ wstati64

_ wstat is a wide-character version of _stat; the path argument to _ wstat is a wide­
character string. _ wstat and _stat behave identically except that _ wstat does not
handle multibyte-character strings.

The _stat structure, defined in SYS\STAT.H, includes the following fields.

gid Numeric identifier of group that owns file (UNIX-specific)

st_atime Time of last access of file.

st_ctime Time of creation of file.

sCdev Drive number of the disk containing the file (same as st_rdev).

sCino Number of the information node (the inode) for the file (UNIX-specific). On
UNIX file systems, the inode describes the file date and time stamps, permissions,
and content. When files are soft-linked to one another, they share the same inode.
The inode, and therefore st_ino, has no meaning in the FAT, HPFS, or NTFS file
systems.

sCmode Bit mask for file-mode information. The _S_IFDIR bit is set if path
specifies a directory; the _S_IFREG bit is set if path specifies an ordinary file or a
device. User read/write bits are set according to the file's permission mode; user
execute bits are set according to the filename extension.

st_mtime Time of last modification of file.

st_nlink Always 1 on non-NTFS file systems.

st_rdev Drive number of the disk containing the file (same as st_dev).

st_size Size of the file in bytes; a 64-bit integer for _stati64 and _ wstati64

uid Numeric identifier of user who owns file (UNIX-specific)

If path refers to a device, the size, time, _dey, and _rdev fields in the _stat structure
are meaningless. Because STAT.H uses the _dey _t type that is defined in TYPES.H,
you must include TYPES.H before STAT.H in your code.

/* STAT.C: This program uses the _stat function to
* report information about the file named STAT.C.
*/

#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>

void main(void
{

struct stat buf;
int result;
char buffer[] = "A line to output";

573

_status87, _statusfp

Output

}

/* Get data associated with "stat.c": */
result - _state "stat.c", &buf):

/* Check if statistics are valid: */
if(result !- 0)

perror("Problem getting information");
else
{

/* Output some of the statistics: */
printf("File size %ld\n", buf.st_size):
printf("Drive %c:\n", buf.st_dev + 'A'):
printf("Time modified %s", ctime(&buf.st_atime)):

}

File size 745
Drive C:
Time modified Tue May 03 00:00:00 1994

See Also _access, _fstat, ~etmbcp, _setmbcp

_status 87 , _statusfp

574

Get the floating point status word.

unsigned int _status87(void);
unsigned int _statusfp(void);

Routine

_status87

_statusfp

Required Header

<float.h>

<float.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.LIB

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

Example

The bits in the value returned indicate the floating-point status. See the FLOAT.H
include file for a complete definition of the bits returned by _status87.

Many math library functions modify the 8087/80287 status word, with unpredictable
results. Return values from _clear87 and _status87 are more reliable if fewer
floating-point operations are performed between known states of the floating-point
status word.

The _status87 function gets the floating-point status word. The status word is a
combination of the 8087/80287/80387 status word and other conditions detected by
the 8087/80287/80387 exception handler, such as floating-point stack overflow and
underflow. Unmasked exceptions are checked for before returning the contents of the
status word. This means that the caller is informed of pending exceptions.

_statusfp is a platform-independent, portable version of _status87. It is identical to
_status87 on Intel (x86) platforms and is also supported by the MIPS platform. To
ensure that your floating-point code is portable to MIPS, use _statusfp. If you are
only targeting x86 platforms, use either _status87 or _statusfp.

1* STATUS87.C: This program creates various floating-point errors and
* then uses _status87 to display messages indicating these problems.
* Compile this program with optimizations disabled (/Od). Otherwise,
* the optimizer removes the code related to the unused floating-
* point values.
*1

#include <stdio.h>
#include <float.h>

void main(void)
{

}

double a = le-40, b;
float x, y;

printf("Status = %.4x - clear\n",_status87());

1* Assignment into y is inexact & underflows: *1
y = a;
printf("Status = %.4x - inexact, underflow\n", _status87());

1* y is denormal: *1
b = y;
printf("Status = %.4x - inexact underflow, denormal\n",

_status87());

1* Clear user 8087: *1
_clear87();

_status87, _statusfp

575

strcat, wcscat, _mbscat

Output
Status = 0000 - clear
Status 0003 - inexact, underflow
Status = 80003 - inexact underflow, denormal

See Also _clearS7, _controlS7

strcat, wcscat, mbscat
Append a string.

char *strcat(char *stringl, const char *string2);
wchar_t *wcscat(wchar_t *stringl, const wchar_t *string2);
unsigned char * _mhscat(unsigned char *stringl, const unsigned char *string2);

Routine

strcat

wcscat

_mbscat

Required Header

<string.h>

<string.h> or
<wchar.h>

<mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the destination string (stringl). No return value is
reserved to indicate an error.

Parameters

Remarks

576

stringl Null-terminated destination string

string2 Null-terminated source string

The strcat function appends string2 to string 1 and terminates the resulting string
with a null character. The initial character of string2 overwrites the terminating null
character of stringl. No overflow checking is performed when strings are copied or

strehr, wesehr, _mbsehr

Example

appended. The behavior of strcat is undefined if the source and destination strings
overlap.

wcscat and _mbscat are wide-character and multibyte-character versions of strcat.
The arguments and return value of wcscat are wide-character strings; those of
_mbscat are multibyte-character strings. These three functions behave identically
otherwise.

See the example for strcpy.

See Also strncat, strncmp, strncpy, _strnicmp, strrchr, strspn

strchr, wcschr, _mbschr
Find a character in a string.

char *strchr(const char *string, int c);
wchar_t *wcschr(const wchar_t *string, wint_t c);
unsigned char * _mbschr(const unsigned char *string, unsigned int c);

Routine

strchr

wcschr

_mhschr

Required Header

<string.h>

<string.h> or
<wchar.h>

<mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Each of these functions returns a pointer to the first occurrence of c in string, or
NULL if c is not found.

Parameters
string Null-terminated source string

c Character to be located

577

strchr, wcschr, _mbschr

Remarks

Example

578

The strchr function finds the first occurrence of c in string, or it returns NULL if c is
not found. The null-terminating character is included in the search.

wcschr and _mbschr are wide-character and multibyte-character versions of strchr.
The arguments and return value of wcschr are wide-character strings; those of
_mbschr are multibyte-character strings. _mbschr recognizes multibyte-character
sequences according to the multibyte code page currently in use. These three
functions behave identically otherwise.

/* STRCHR.C: This program illustrates searching for a character
* with strchr (search forward) or strrchr (search backward).
*/

#include <string.h>
#include <stdio.h>

i nt ch = 'r';

char string[] = "The quick brown dog jumps over the lazy fox";
char fmt1[] 1 2 3 4 5";
char fmt2[] = "12345678901234567890123456789012345678901234567890";

void main(void
{

}

char *pdest;
int result;

printf("String to be searched: \n\t\t%s\n", string);
printf("\t\t%s\n\t\t%s\n\n". fmt1, fmt2);
printf("Search char:\t%c\n". ch);

/* Search forward. */
pdest = strchr(string. ch);
result = pdest - string + 1;
if(pdest 1= NULL)

printf("Result:\tfirst %c found at position %d\n\n",
ch, resul t);

else
pri ntf("Resul t: \ tIc not found\n");

/* Search backward. */
pdest = strrchr(string, ch);
result = pdest - string + 1;
if(pdest 1= NULL)

printf("Result:\tlast %c found at position %d\n\n", ch, result);
else

printf("Result:\t%c not found\n");

strcmp, wcscmp, _mbscmp

Output
String to be searched:

The quick brown dog jumps over the lazy fox
1 2 3 4 5

12345678901234567890123456789012345678901234567890

Search char: r
Result: first r found at position 12

Result: last r found at position 30

See Also strcspn, strncat, strncmp, strncpy, _strnicmp, strpbrk, strrchr, strstr

strcmp, wcscmp, _mbscmp
Compare strings.

int strcmp(const char *stringl, const char *string2);
int wcscmp(const wchar_t *stringl, const wchar_t *string2);
int _mbscmp(const unsigned char *stringl, const unsigned char *string2);

Routine

strcmp

wcscmp

_mhscmp

Required Header

<string.h>

<string.h> or
<wchar.h>

<mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

The return value for each of these functions indicates the lexicographic relation of
stringl to string2.

579

strcmp, wcscmp, _mbscmp

Value Relationship of string1 to string2

< 0 string 1 less than string2

o string1 identical to string2

> 0 string 1 greater than string2

On an error, _mhscmp returns _NLSCMPERROR, which is defined in STRING.H
and MBSTRING.H.

Parameters

Remarks

580

string], string2 Null-terminated strings to compare

The strcmp function compares string] and string2 lexicographically and returns a
value indicating their relationship. wcscmp and _mhscmp are wide-character and
multibyte-character versions of strcmp. The arguments and return value of wcscmp
are wide-character strings; those of _mhscmp are multibyte-character strings.
_mhscmp recognizes multibyte-character sequences according to the current
multibyte code page and returns _NLSCMPERROR on an error. (For more
information, see "Code Pages" on page 22.) These three functions behave identically
otherwise.

The strcmp functions differ from the strcoll functions in that strcmp comparisons
are not affected by locale, whereas the manner of strcoll comparisons is determined
by the LC_COLLATE category of the current locale. For more information on the
LC_COLLATE category, see setlocale.

In the "C" locale, the order of characters in the character set (ASCII character set) is
the same as the lexicographic character order. However, in other locales, the order of
characters in the character set may differ from the lexicographic order. For example,
in certain European locales, the character 'a' (value Ox61) precedes the character 'a'
(value OxE4) in the character set, but the character 'a' precedes the character 'a'
lexicographically.

In locales for which the character set and the lexicographic character order differ, use
strcoll rather than strcmp for lexicographic comparison of strings according to the
LC_COLLATE category setting of the current locale. Thus, to perform a
lexicographic comparison of the locale in the above example, use strcoll rather than
strcmp. Alternatively, you can use strxfrm on the original strings, then use strcmp
on the resulting strings.

_stricmp, _ wcsicmp, and _mhsicmp compare strings by first converting them to
their lowercase forms.Two strings containing characters located between 'Z' and 'a' in
the ASCII table (,[" '\', ,]" 'A', '_', and "') compare differently, depending on their
case. For example, the two strings "ABCDE" and "ABCD"" compare one way if the
comparison is lowercase ("abede" > "abed"") and the other way ("ABCDE" <
" AB CD" ") if the comparison is uppercase.

Example

Output

strcmp, wcscmp, _mhscmp

1* STRCMP.C *1

#include <string.h>
#include <stdio.h>

char stringl[]
char string2[]

"The quick brown dog jumps over the lazy fox";
"The QUICK brown dog jumps over the lazy fox";

void maine void)
{

}

char tmp[20];
i nt result;
1* Case sensitive *1
printf("Compare strings:\n\t%s\n\t%s\n\n". stringl. string2);
result = strcmp(stringl. string2);
if(result> 0)

strcpy(tmp. "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp. "equal to");
printf("\tstrcmp: String 1 is %s string 2\n". tmp);
1* Case insensitive (could use equivalent _stricmp) *1
result = _stricmp(stringl. string2);
if(result> 0)

strcpy(tmp. "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp. "equal to");
printf("\t_stricmp: String 1 is %s string 2\n". tmp);

Compare strings:
The quick brown dog jumps over the lazy fox
The QUICK brown dog jumps over the lazy fox

strcmp:
_stricmp:

String 1 is greater than string 2
String 1 is equal to string 2

See Also memcmp, _memicmp, strcoll Functions, _stricmp, strncmp, _strnicmp,
strrchr, strspn, strxfrm

581

strcoll Functions

strcoll Functions

Remarks

582

Each of the strcoll and wcscoll functions compares two strings according to the
LC_ COLLATE category setting of the locale code page currently in use. Each of the
_mbscoll functions compares two strings according to the multibyte code page
currently in use. Use the coli functions for string comparisons when there is a
difference between the character set order and the lexicographic character order in
the current code page and this difference is of interest for the comparison. Use the
corresponding cmp functions to test only for string equality.

strcoll Functions

SBCS

strcoll

_stricoll

_strncoll

_strnicoll

Unicode

wcscoll

_wcsicoll

_wcsncoll

_wcsnicoll

MBCS

_mbscoll

_mbsicoll

_mbsncoll

_mbsnicoll

Description

Collate two strings

Collate two strings (case insensitive)

Collate first count characters of two
strings

Collate first count characters of two
strings (case-insensitive)

The single-byte character (SBCS) versions of these functions (strcoll, stricoll,
_strncoll, and _strnicoll) compare string] and string2 according to the
LC_COLLATE category setting of the current locale. These functions differ from
the corresponding strcmp functions in that the strcoll functions use locale code page
information that provides collating sequences. For string comparisons in locales in
which the character set order and the lexicographic character order differ, the strcoll
functions should be used rather than the corresponding strcmp functions. For more
information on LC_COLLATE, see setlocale.

For some code pages and corresponding character sets, the order of characters in the
character set may differ from the lexicographic character order. In the "C" locale, this
is not the case: the order of characters in the ASCII character set is the same as the
lexicographic order of the characters. However, in certain European code pages, for
example, the character 'a' (value Ox61) precedes the character 'a' (value OxE4) in the
character set, but the character 'a' precedes the character 'a' lexicographically. To
perform a lexicographic comparison in such an instance, use strcoll rather than
strcmp. Alternatively, you can use strxfrm on the original strings, then use strcmp
on the resulting strings.

strcoll, stricoll, _strncoll, and _strnicoll automatically handle multibyte-character
strings according to the locale code page currently in use, as do their wide-character
(Unicode) counterparts. The multibyte-character (MBCS) versions of these functions,
however, collate strings on a character basis according to the multibyte code page
currently in use.

Because the coli functions collate strings lexicographically for comparison, whereas
the cmp functions simply test for string equality, the coli functions are much slower
than the corresponding cmp versions. Therefore, the coli functions should be used
only when there is a difference between the character set order and the lexicographic
character order in the current code page and this difference is of interest for the string
comparison.

See Also localeconv, _mbsnbcoll, setlocale, strcmp, strncmp, _strnicmp, strxfrm

strcoll, wcscoll, _mbscoll
Compare strings using locale-specific information.

int strcoll(const char *stringl, const char *string2);
int wcscoll(const wchar_t *stringl, const wchar_t *string2);
int _mbscoll(const unsigned char *stringl, const unsigned char *string2);

Routine Required Header

strcoll <string.h>

weseoll <wchar.h>, <string.h>

_mbseoll <mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Each of these functions returns a value indicating the relationship of string 1 to
string2, as follows.

Return Value

<0

o
>0

Relationship of string1 to string2

stringlless than string2

string 1 identical to string2

string 1 greater than string2

Each of these functions returns _NLSCMPERROR on an error. To use
_NLSCMPERROR, include either STRING.H or MBSTRING.H. wcscoll can fail if

strcoll Functions

583

strcoll Functions

either string 1 or string2 contains wide-character codes outside the domain of the
collating sequence. When an error occurs, wcscoll may set errno to EINV AL. To
check for an error on a call to wcscoll, set errno to 0 and then check errno after
calling wcscoll.

Parameters

Remarks

stringl, string2 Null-terminated strings to compare

Each of these functions performs a case-sensitive comparison of stringl and string2
according to the code page currently in use. These functions should be used only
when there is a difference between the character set order and the lexicographic
character order in the current code page and this difference is of interest for the string
comparison.

See Also localeconv, _mbsnbcoll, setlocale, strcmp, _stricmp, strncmp,
_strnicmp, strxfrm

_stricoll, _ wcsicoll, _mbsicoll
Compare strings using locale-specific information.

int _stricoll(const char *stringl, const char *string2);
int _wcsicoll(const wchar_t *stringl, const wchar_t *string2);
int _mhsicoll(const unsigned char *stringl, const unsigned char *string2);

Routine

_stricoll

_wcsicoll

_mbsicoll

Required Header

<string.h>

<wchar.h>, <string.h>

<mbstring.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

584

Each of these functions returns a value indicating the relationship of string 1 to
string2, as follows.

Return Value

<0

o
>0

Relationship of string1 to string2

stringlless than string2

stringl identical to string2

stringl greater than string2

Each of these functions returns _NLSCMPERROR. To use _NLSCMPERROR,
include either STRING.H or MBSTRING.H. _wcsicoll can fail if either stringl or
string2 contains wide-character codes outside the domain of the collating sequence.
When an error occurs, _wcsicoll may set errno to EINVAL. To check for an error on
a call to _ wcsicoll, set errno to 0 and then check errno after calling _ wcsicoll.

Parameters

Remarks

stringl, string2 Null-terminated strings to compare

Each of these functions performs a case-insensitive comparison of stringl and string2
according to the code page currently in use. These functions should be used only
when there is a difference between the character set order and the lexicographic
character order in the current code page and this difference is of interest for the string
comparison.

See Also localeconv, _mbsnbcoll, setlocale, strcmp, _stricmp, strncmp,
_strnicmp, strxfrm

_stmcoll, _ wcsncoll, _mbsncoll
Compare strings using locale-specific information.

int _strncoll(const char *stringl, const char *string2, size_t count);
int _wcsncoll(const wchar_t *stringl, const wchar_t *string2, size_t count);

strcoll Functions

int _mbsncoll(const unsigned char *stringl, const unsigned char *string2, size_t count);

Routine

_strncoll

_wcsncoll

_mbsncoll

Required Header

<string.h>

<wchar.h> or <string.h>

<mhstring.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K, PMac

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

585

strcoll Functions

Libraries

LmC.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a value indicating the relationship of the substrings of
stringl and string2, as follows.

Return Value

<0

o
>0

Relationship of string1 to string2

string 1 less than string2

string 1 identical to string2

string1 greater than string2

Each of these functions returns _NLSCMPERROR. To use _NLSCMPERROR,
include either STRING.H or MBSTRING.H. _wcsncoll can fail if either stringl or
string2 contains wide-character codes outside the domain of the collating sequence.
When an error occurs, _wcsncoll may set errno to EINVAL. To check for an error
on a call to _ wcsncoll, set errno to 0 and then check errno after calling _ wcsncoll.

Parameters

Remarks

stringl, string2 Null-terminated strings to compare

count Number of characters to compare

Each of these functions performs a case-sensitive comparison of the first count
characters in string 1 and string2 according to the code page currently in use. These
functions should be used only when there is a difference between the character set
order and the lexicographic character order in the current code page and this
difference is of interest for the string comparison.

See Also localeconv, _mbsnbcoll, setlocale, strcmp, _stricmp, strncmp,
_strnicmp, strxfrm

_stmicoll, _ wcsnicoll, _mbsnicoll
Compare strings using locale-specific information.

int _strnicoll(const char *stringl, const char *string2, size_t count);
int _wcsnicoll(const wchar_t *stringl, const wchar_t *string2 ,size_t count);
int _mbsnicoll(const unsigned char *stringl, const unsigned char *string2, size_t count);

586

Routine

_strnicoll

_wcsnicoll

_mbsnicoll

Required Header

<string.h>

<wchar.h> or <string.h>

<mbstring.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a value indicating the relationship of the substrings of
string] and string2, as follows.

Return Value

<0

o
>0

Relationship of string1 to string2

string] less than string2

string] identical to string2

string] greater than string2

Each of these functions returns _NLSCMPERROR. To use _NLSCMPERROR,
include either STRING.H or MBSTRING.H. _wcsnicoll can fail if either string] or
string2 contains wide-character codes outside the domain of the collating sequence.
When an error occurs, _wcsnicoll may set errno to EINVAL. To check for an error
on a call to _ wcsnicoll, set errno to 0 and then check errno after calling _ wcsnicoll.

Parameters

Remarks

string], string2 Null-terminated strings to compare

count Number of characters to compare

Each of these functions performs a case-insensitive comparison of the first count
characters in string] and string2 according to the code page currently in use. These
functions should be used only when there is a difference between the character set
order and the lexicographic character order in the current code page and this
difference is of interest for the string comparison.

See Also localeconv, _mbsnbcoll, setlocale, strcmp, _stricmp, strncmp,
_strnicmp, strxfrm

strcoll Functions

587

strcpy, wcscpy, _mbscpy

strcpy, wcscpy, _mbscpy
Copy a string.

char *strcpy(char *string1, const char *string2);
wchar_t *wcscpy(wchar_t *stringl, const wchar_t *string2);
unsigned char * _mhscpy(unsigned char *string1, const unsigned char *string2);

Routine Required Header

strcpy <string.h>

wcscpy <string.h> or <wchar.h>

_mhscpy <mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LID

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the destination string. No return value is reserved to
indicate an error.

Parameters

Remarks

588

string 1 Destination string

string2 Null-terminated source string

The strcpy function copies string2, including the terminating null character, to the
location specified by string 1. No overflow checking is performed when strings are
copied or appended. The behavior of strcpy is undefined if the source and destination
strings overlap.

wcscpy and _mhscpy are wide-character and multibyte-character versions of strcpy.
The arguments and return value of wcscpy are wide-character strings; those of
_mhscpy are multibyte-character strings. These three functions behave identically
otherwise.

Example

Output

1* STRCPV.C: This program uses strcpy
* and strcat to build a phrase.
*1

#include <string.h>
#include <stdio.h>

void main(void)
{

char string[80];
strcpy(stri ng, "Hell 0 worl d from");
strcat(stri ng, "strcpy ");
strcat(string, "and");
strcat(stri ng, "strcat!");
printf("String = %s\n". string);

String = Hello world from strcpy and strcat!

strcspn, wcscspn, _mbscspn

See Also strcat, strcmp, strncat, strncmp, strncpy, _strnicmp, strrchr, strspn

strcspn, wcscspn, _mbscspn
Find a substring in a string.

size_t strcspn(const char *stringl, const char *string2);
size_t wcscspn(const wchar_t *stringl, const wchar_t *string2);
size_t _mhscspn(const unsigned char *stringl, const unsigned char *string2);

Routine Required Header

strcspn <string.h>

wcscspn <string.h> or <wchar.h>

_mbscspn <mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

589

strcspn, wcscspn, _mbscspn

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns an integer value specifying the length of the initial
segment of string1 that consists entirely of characters not in string2. If string1 begins
with a character that is in string2, the function returns O. No return value is reserved
to indicate an error.

Parameters

Remarks

Example

Output

590

string1 Null-terminated searched string

string2 Null-terminated character set

The strcspn function returns the index of the first occurrence of a character in
string1 that belongs to the set of characters in string2. Terminating null characters
are not included in the search.

wcscspn and _mhscspn are wide-character and multibyte-character versions of
strcspn. The arguments of wcscspn are wide-character strings; those of _mhscspn
are multibyte-character strings. These three functions behave identically otherwise.

/* STRCSPN.C */

#include <string.h>
#include <stdio.h>

void maine void)
{

char string[]
int pos;

"xyzabc";

pos = strcspn(string, "abc");

}

printf("First a, b or c in %s is at character %d\n",
string, pos);

First a, b or c in xyzabc is at character 3

See Also strncat, strncmp, strncpy, _strnicmp, strrchr, strspn

_strdate, wstrdate
Copy a date to a buffer.

char * _strdate(char *datestr);
wchar_t * _wstrdate(wchar_t *datestr);

Routine Required Header Optional Headers

_strdate <time.h>

_wstrdate <time.h> or <wchar.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the resulting character string datestr.

Parameter

Remarks

Example

datestr A pointer to a buffer containing the formatted date string

The _strdate function copies a date to the buffer pointed to by datestr, formatted
mmlddlyy, where mm is two digits representing the month, dd is two digits
representing the day, and yy is the last two digits of the year. For example, the string
12/05/99 represents December 5, 1999. The buffer must be at least 9 bytes long.

_ wstrdate is a wide-character version of _strdate; the argument and return value of
_ wstrdate are wide-character strings. These functions behave identically otherwise.

See the example for the time function.

See Also asctime, ctime, gmtime, localtime, mktime, time, _tzset

_strdate, _ wstrdate

591

_strdup, _ wcsdup, _mbsdup

_strdup, _wcsdup, _mbsdup
Duplicate strings.

char * _strdup(const char *string);
wchar_t * _wcsdup(const wchar_t *string);
unsigned char * _mhsdup(const unsigned char *string);

Routine

_strdup

_wcsdup

_mbsdup

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the storage location for the copied string
or NULL if storage cannot be allocated.

Parameter

Remarks

592

string Null-terminated source string

The _strdup function calls malloc to allocate storage space for a copy of string and
then copies string to the allocated space.

_ wcsdup and _mhsdup are wide-character and multibyte-character versions of
_strdup. The arguments and return value of _ wcsdup are wide-character strings;
those of _mhsdup are multibyte-character strings. These three functions behave
identically otherwise.

Because _strdup calls malloc to allocate storage space for the copy of string, it is
good practice always to release this memory by calling the free routine on the pointer
returned by the call to _strdup.

Example

Output

1* STRDUP.C *1

#include <string.h)
#include <stdio.h)

void main(void)
{

char buffer[] = "This is the buffer text";
char *newstring;
printf("Original: %s\n", buffer);
newstring = _strdup(buffer);
printf("Copy: %s\n", newstring);
free(newstring);

Original: This is the buffer text
Copy: This is the buffer text

See Also memset, strcat, strcmp, strncat, strncmp, strncpy, _strnicmp, strrchr,
strspn

strerror, strerror
Get a system error message (strerror) or prints a user-supplied error message
Cstrerror) .

char *strerror(int errnum);
char * _strerror(const char * string);

Routine Required Header Optional Headers

strerror <string.h>

_strerror <string.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT, Win32s;
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

strerror, _strerror

593

strerror, _strerror

Return Value
strerror and _strerror return a pointer to the error-message string. Subsequent calls
to strerror or _strerror can overwrite the string.

Parameters

Remarks

Example

594

errnum Error number

string User-supplied message

The strerror function maps errnum to an error-message string, returning a pointer to
the string. Neither strerror nor _strerror actually prints the message: For that, you
need to call an output function such as fprintf:

; f « _access ("datafil e". 2 » == -1)
fprintf(stderr. strerror(NULL));

If string is passed as NULL, _strerror returns a pointer to a string containing the
system error message for the last library call that produced an error. The error­
message string is terminated by the newline character ('\n'). If string is not equal to
NULL, then _strerror returns a pointer to a string containing (in order) your string
message, a colon, a space, the system error message for the last library call producing
an error, and a newline character. Your string message can be, at most, 94 bytes long.

The actual error number for _strerror is stored in the variable errno. The system
error messages are accessed through the variable _sys_errlist, which is an array of
messages ordered by error number. _strerror accesses the appropriate error message
by using the errno value as an index to the variable _sys_errlist. The value of the
variable _sys_nerr is defined as the maximum number of elements in the
_sys_errlist array. To produce accurate results, call_strerror immediately after a
library routine returns with an error. Otherwise, subsequent calls to strerror or
_strerror can overwrite the errno value.

_strerror is not part of the ANSI definition but is instead a Microsoft extension to it.
Do not use it where portability is desired; for ANSI compatibility, use strerror
instead.

See the example for perror.

See Also clearerr, ferror, perror

strftime, we sf time

strftime, wcsftime
Format a time string.

size_t strftime(char *string, size_t maxsize, const char *format, const struct tm *timeptr);
size_t wcsftime(wchar_t *string, size_t maxsize, const wchar_t *format, const struct tm *timeptr);

Routine Required Header

strftime <time.h>

wcsftime <time.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
strftime returns the number of characters placed in string if the total number of
reSUlting characters, including the terminating null, is not more than maxsize.
wcsftime returns the corresponding number of wide characters. Otherwise, the
functions return 0, and the contents of string is indeterminate.

Parameters

Remarks

string Output string

maxsize Maximum length of string

format Format-control string

timeptr tm data structure

The strftime and wcsftime functions format the tm time value in timeptr according
to the suppliedformat argument and store the result in the buffer string. At most,
maxsize characters are placed in the string. For a description of the fields in the
timeptr structure, see asctime. wcsftime is .the wide-character equivalent of strftime;
its string-pointer argument points to a wide-character string. These functions behave
identically otherwise.

Note Prior to this version of Visual C++, the documentation described the format parameter
of wcsftime as having the datatype const wcharJ *, but the actual implementation of the

595

strftime, wcsftime

596

format datatype was const char *. In this version, the implementation of the format datatype
has been updated to reflect the previous and current documentation, that is: const wchar_t *.

The format argument consists of one or more codes; as in printf, the formatting
codes are preceded by a percent sign (%). Characters that do not begin with % are
copied unchanged to string. The LC_TIME category of the current locale affects the
output formatting of strftime. (For more information on LC_TIME, see setlocale.)
The formatting codes for strftime are listed below:

% a Abbreviated weekday name

% A Full weekday name

% b Abbreviated month name

% B Full month name

% c Date and time representation appropriate for locale

%d Day of month as decimal number (01-31)

%H Hour in 24-hour format (00-23)

%1 Hour in 12-hour format (01-12)

%j Day of year as decimal number (001-366)

%m Month as decimal number (01-12)

%M Minute as decimal number (00-59)

%p Current locale's A.M.IP.M. indicator for 12-hour clock

%S Second as decimal number (00-59)

% U Week of year as decimal number, with Sunday as first day of week (00-51)

% w Weekday as decimal number (0-6; Sunday is 0)

% W Week of year as decimal number, with Monday as first day of week (00-51)

% x Date representation for current locale

% X Time representation for current locale

%y Year without century, as decimal number (00-99)

% Y Year with century, as decimal number

% Z, % Z Time-zone name or abbreviation; no characters if time zone is unknown

% % Percent sign

As in the printf function, the # flag may prefix any formatting code. In that case, the
meaning of the format code is changed as follows.

_stricmp, _ wcsicmp, _mbsicmp

Example

Format Code

%#a, %#A, %#b, %#B, %#p,
%#X, %#z, %#Z, %#%

%#c

%#x

%#d, %#H, %#1, %#j, %#m,
%#M, %#S, %#U, %#w,
%#W, %#y, %#y

See the example for time.

Meaning

flag is ignored.

Long date and time representation, appropriate for
current locale. For example: "Tuesday, March 14,
1995, 12:41:29".

Long date representation, appropriate to current
locale. For example: "Tuesday, March 14, 1995".

Remove leading zeros (if any).

See Also localeconv, setiocale, strcoll, _stricoll, strxfrm

_stricmp, _wcsicmp, _mbsicmp
Perform a lowercase comparison of strings.

int _stricmp(const char *stringl, const char *string2);
int _wcsicmp(const wchar_t *stringl, const wchar_t *string2);
int _mbsicmp(const unsigned char *stringl, const unsigned char_t *string2);

Routine

_stricmp

_wcsicmp

_mbsicmp

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

The return value indicates the relation of stringl to string2 as follows.

597

_stricmp, _ wcsicmp, _mbsicmp

Return Value

<0

o
>0

Description

stringlless than string2

string 1 identical to string2

string 1 greater than string2

On an error, _mbsicmp returns _NLSCMPERROR, which is defined in STRING.H
and MBSTRING.H.

Parameters

Remarks

Example

598

string 1, string2 Null-terminated strings to compare

The _stricmp function lexicographically compares lowercase versions of string 1 and
string2 and returns a value indicating their relationship. _stricmp differs from
_stricoll in that the _stricmp comparison is not affected by locale, whereas the
_stricoll comparison is according to the LC_COLLATE category of the current
locale. For more information on the LC_COLLATE category, see setlocale.

The _strcmpi function is equivalent to _stricmp and is provided for backward
compatibility only.

_ wcsicmp and _mbsicmp are wide-character and multibyte-character versions of
_stricmp. The arguments and return value of _ wcsicmp are wide-character strings;
those of _mbsicmp are multibyte-character strings. _mbsicmp recognizes multibyte­
character sequences according to the current multibyte code page and returns
_NLSCMPERROR on an error. (For more information, see "Code Pages" on page
22.) These three functions behave identically otherwise.

_ wcsicmp and wcscmp behave identically except that wcscmp does not convert its
arguments to lowercase before comparing them. _mbsicmp and _mbscmp behave
identically except that _mbscmp does not convert its arguments to lowercase before
comparing them.

See the example for strcmp.

See Also memcmp, _memicmp, strcmp, strcoll Functions, strncmp, _strnicmp,
strrchr, _strset, strspn

strlen, wcslen, _mbslen, _mbstrlen

strlen, weslen, _mbslen, mbstrlen
Get the length of a string.

size_t strlen(eonst char *string);
size_t weslen(eonst wehar_t *string);
size_t _mbslen(eonst unsigned char *string);
size_t _mbstrlen(eonst char *string);

Routine Required Header Optional Headers

strlen <string.h>

weslen <string.h> or <wchar.h>

_mbslen <stdlib.h>

_mbstrlen <stdlib.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT, Win32s,
68K, PMac

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns the number of characters in string, excluding the
terminal NULL. No return value is reserved to indicate an error.

Parameter

Remarks

string Null-terminated string

Each of these functions returns the number of characters in string, not including the
terminating null character. weslen is a wide-character version of strlen; the argument
of weslen is a wide-character string. weslen and strlen behave identically otherwise.

_mbslen and _mbstrlen return the number of multibyte characters in a multibyte­
character string. _mbslen recognizes multibyte-character sequences according to the
multi byte code page currently in use; it does not test for multibyte-character validity.
_mbstrlen tests for multibyte-character validity and recognizes multibyte-character
sequences according to the LC_CTYPE category setting of the current locale. For
more information about the LC_CTYPE category, see setloeale.

599

_strlwr, _ wcslwr, _mbslwr

Example

Output

/* STRLEN.C */

#include <string.h>
#include <stdio.h>
#include <conio.h>
#include <dos.h>

void main(void)
{

}

char buffer[61] = "How long am I?";
int len;
len = strlen(buffer);
printf("'Is' is %d characters long\n", buffer, len);

'How long am I?' ;s 14 characters long

See Also setlocale, strcat, strcmp, strcoll Functions, strcpy, strrchr, _strset,
strspn

_strlwr, _wcslwr, mbslwr

600

Convert a string to lowercase.

char * _strlwr(char *string);
wchar_t * _wcslwr(wchar_t *string);
unsigned char * _mhslwr(unsigned char * string);

Routine

_strlwr

_wcslwr

_mbslwr

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LID

LIBCMT.LID

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

_strlwr, _wcslwr, _mbslwr

Return Value
Each of these functions returns a pointer to the converted string. Because the
modification is done in place, the pointer returned is the same as the pointer passed
as the input argument. No return value is reserved to indicate an error.

Parameter

Remarks

Example

Output

string Null-terminated string to convert to lowercase

The _strlwr function converts any uppercase letters in string to lowercase as
determined by the LC_ CTYPE category setting of the current locale. Other
characters are not affected. For more information on LC_CTYPE, see setlocale.

The _ wcslwr and _mbslwr functions are wide-character and multibyte-character
versions of _strlwr. The argument and return value of _wcslwr are wide-character
strings; those of _mbslwr are multibyte-character strings. These three functions
behave identically otherwise.

/* STRLWR.C: This program uses strlwr and _strupr to create
* uppercase and lowercase copies of a mixed-case string.
*/

#include <string.h>
#include <stdio.h>

void main(void)
{

char string[100] = "The String to End All Strings!";
char *copy!, *copy2;
copy! = _strlwr(_strdup(string);
copy2 = _strupr(_strdup(string);
printf("Mixed: %s\n", string);
printf("Lower: %s\n", copy!);
printf("Upper: %s\n", copy2);

Mixed: The String to End All Strings!
Lower: the string to end all strings!
Upper: THE STRING TO END ALL STRINGS!

See Also _strupr

601

strncat, wcsncat, _mbsncat

strncat, wcsncat, mbsncat
Append characters of a string.

char *strncat(char *string1, const char *string2, size_t count);
wchar_t *wcsncat(wchar_t *string1, const wchar_t *string2, size_t count);
unsigned char * _mhsncat(unsigned char *string1, const unsigned char *string2, size_t count);

Routine Required Header

strncat <string.h>

wcsncat <string.h> or <wchar.h>

_mbsncat <mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.LIB

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the destination string. No return value is
reserved to indicate an error.

Parameters

Remarks

602

string 1 Null-terminated destination string

string2 Null-terminated source string

count Number of characters to append

The strncat function appends, at most, the first count characters of string2 to string 1.
The initial character of string2 overwrites the terminating null character of string1. If
a null character appears in string2 before count characters are appended, strncat
appends all characters from string2, up to the null character. If count is greater than
the length of string2, the length of string2 is used in place of count. The resulting
string is terminated with a null character. If copying takes place between strings that
overlap, the behavior is undefined.

Example

Output

strncmp, wcsncmp, _mbsncmp

wcsncat and _mbsncat are wide-character and multi byte-character versions of
strncat. The string arguments and return value of wcsncat are wide-character
strings; those of _mbsncat are multibyte-character strings. These three functions
behave identically otherwise.

/* STRNCAT.C */

#include <string.h>
#include <stdio.h>

void main(void)
{

char string[80] = "This is the initial string!";
char suffix[] = " extra text to add to the string ... ";
/* Combine strings with no more than 19 characters of suffix: */
printf("Before: %s\n", string);
strncat(string, suffix, 19);
printf("After: %s\n", string);

Before: This is the initial string!
After: This is the initial string! extra text to add

See Also _mbsnbcat, strcat, strcmp, strcpy, strncmp, strncpy, _strnicmp,
strrchr, _strset, strspn

stmcmp, wcsncmp, _mbsncmp
Compare characters of two strings.

int strncmp(const char *stringl, const char *string2, size_t count);
int wcsncmp(const wchar_t *stringl, const wchar_t *string2, size_t count);
int _mbsncmp(const unsigned char *stringl, const unsigned char string2, size_t count);

Routine Required Header

strncmp <string.h>

wcsncmp <string.h> or <wchar.h>

_mbsncmp <mhstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

603

stmcmp, wcsncmp, _mhsncmp

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
The return value indicates the relation of the substrings of string] and string2 as
follows.

Return Value

<0

o
>0

Description

string 1 substring less than string2 substring

string 1 substring identical to string2 substring

string1 substring greater than string2 substring

On an error, _mbsncmp returns _NLSCMPERROR, which is defined in STRING.H
and MBSTRING.H.

Parameters

Remarks

Example

604

string], string2 Strings to compare

count Number of characters to compare

The strncmp function lexicographically compares, at most, the first count characters
in string] and string2 and returns a value indicating the relationship between the
substrings. strncmp is a case-sensitive version of _strnicmp. Unlike strcoll, strncmp
is not affected by locale. For more information on the LC_COLLATE category, see
setlocale.

wcsncmp and _mbsncmp are wide-character and multibyte-character versions of
strncmp. The arguments and return value of wcsncmp are wide-character strings;
those of _mhsncmp are multibyte-character strings. _mhsncmp recognizes
multibyte-character sequences according to the current multibyte code page and
returns _NLSCMPERROR on an error. For more information, see "Code Pages" on
page 22. These three functions behave identically otherwise. wcsncmp and
_mhsncmp are case-sensitive versions of _ wcsnicmp and _mhsnicmp.

1* STRNCMP.C */
#include <string.h)
#include <stdio.h>

char stringl[]
char string2[]

"The quick brown dog jumps over the lazy fox";
"The QUICK brown fox jumps over the lazy dog";

strncpy, wcsncpy, _mbsncpy

Output

void main(void)
{

}

char tmp[20];
int result;
printf("Compare strings:\n\t\t%s\n\t\t%s\n\n", stringl, string2);
printf("Function:\tstrncmp (first 10 characters only)\n");
result = strncmp(stringl, string2 , 10);
if(result> 0)

strcpy(tmp. "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp. "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n", tmp);
printf("Function:\tstrnicmp _strnicmp (first 10 characters only)\n");
result = _strnicmp(stringl, string2, 10);
if(result > 0)

strcpy(tmp, "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp, "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n". tmp);

Compare strings:
The quick brown dog jumps over the lazy fox
The QUICK brown fox jumps over the lazy dog

Function:
Result:

Function:
Result:

strncmp (first 10 characters only)
String 1 is greater than string 2

_strnicmp (first 10 characters only)
String 1 is equal to string 2

See Also _mbsnbcmp, _mbsnbicmp, strcmp, strcoll Functions, _strnicmp,
strrchr, _strset, strspn

stmcpy, wcsncpy, _mbsncpy
Copy characters of one string to another.

char *strncpy(char *stringl, const char *string2, size_t count);
wchar_t *wcsncpy(wchar_t *stringl, const wchar_t *string2, size_t count);
unsigned char * _mbsncpy(unsigned char *stringl, const unsigned char *string2, size_t count);

605

stmcpy, wcsncpy, _mbsncpy

Routine

strncpy

wcsncpy

_mbsncpy

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.LIB

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns stringl. No return value is reserved to indicate an
error.

Parameters

Remarks

Example

606

string 1 Destination string

string2 Source string

count Number of characters to be copied

The strncpy function copies the initial count characters of string2 to stringl and
returns stringl. If count is less than or equal to the length of string2, a null character
is not appended automatically to the copied string. If count is greater than the length
of string2, the destination string is padded with null characters up to length count.
The behavior of strncpy is undefined if the source and destination strings overlap.

wcsncpy and _mbsncpy are wide-character and multibyte-character versions of
strncpy. The arguments and return value of wcsncpy and _mbsncpy vary
accordingly. These three functions behave identically otherwise.

/* STRNCPY.C */

#include <string.h>
#include <stdio.h>

void main(void)

_strnicmp, _ wcsnicmp, _mbsnicmp

Output

char string[100] = "Cats are nice usually";
printf ("Before: %s\n", string);
strncpy(string, "Dogs", 4);
strncpy(string + 9, "mean", 4);
printf ("After: %s\n", string);

Before: Cats are nice usually
After: Dogs are mean usually

See Also _mbsnbcpy, strcat, strcmp, strcpy, strncat, strncmp, _strnicmp,
strrchr, _strset, strspn

_stmicmp, _wcsnicmp, _mhsnicmp
Compare characters of two strings without regard to case.

int _strnicmp(const char *stringl, const char *string2, size_t count);
int _wcsnicmp(const wchar_t *stringl, const wchar_t *string2, size_t count);
int _mbsnicmp(const unsigned char * string 1, const unsigned char * string2, size_t count);

Routine

_strnicmp

_wcsnicmp

_mbsnicmp

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

The return value indicates the relationship between the substrings as follows.

607

_strnicmp, _ wcsnicmp, _mbsnicmp

Return Value

<0

o
>0

Description

string] substring less than string2 substring

string] substring identical to string2 substring

string] substring greater than string2 substring

On an error, _mbsnicmp returns _NLSCMPERROR, which is defined in
STRING.H and MBSTRING.H.

Parameters

Remarks

Example

608

string}, string2 Null-terminated strings to compare

count Number of characters to compare

The _strnicmp function lexicographically compares, at most, the first count
characters of string} and string2. The comparison is performed without regard to
case; _strnicmp is a case-insensitive version of strncmp. The comparison ends if a
terminating null character is reached in either string before count characters are
compared. If the strings are equal when a terminating null character is reached in
either string before count characters are compared, the shorter string is lesser.

Two strings containing characters located between 'Z' and 'a' in the ASCII table
(, [" '\', ']', 'A', '_', and ''''') compare differently, depending on their case. For
example, the two strings "ABCDE" and "ABCDA" compare one way if the comparison is
lowercase (" abcde" > "abcd A") and the other way ("ABC DE" < "ABCDA") if it is
uppercase.

_ wcsnicmp and _mbsnicmp are wide-character and multibyte-character versions of
_strnicmp. The arguments and return value of _ wcsnicmp are wide-character
strings; those of _mbsnicmp are multibyte-character strings. _mbsnicmp recognizes
multibyte-character sequences according to the current multibyte code page and
returns _NLSCMPERROR on an error. For more information, see "Code Pages" on
page 22. These three functions behave identically otherwise. These functions are not
affected by the current locale setting.

See the example for strncmp.

See Also strcat, strcmp, strcpy, strncat, strncmp, strncpy, strrchr, _strset,
strspn

_stmset, _ wcsnset, _mbsnset

_strnset, _wcsnset, mbsnset
Initialize characters of a string to a given format.

char * _strnset(char *string, int c, size_t count);
wchar_t * _wcsnset(wchar_t *string, wchar_t c, size_t count);
unsigned char * _mbsnset(unsigned char *string, unsigned int c, size_t count);

Routine

_strnset

_wcsnset

_mbsnset

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K, PMac

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the altered string.

Parameters

Remarks

string String to be altered

c Character setting

count Number of characters to be set

The _strnset function sets, at most, the first count characters of string to c (converted
to char). If count is greater than the length of string, the length of string is used
instead of count.

_ wcsnset and _mbsnset are wide-character and multi byte-character versions of
_strnset. The string arguments and return value of _ wcsnset are wide-character
strings; those of _mbsnset are multibyte-character strings. These three functions
behave identically otherwise.

609

strpbrk, wcspbrk, _mbspbrk

Example

Output

1* STRNSET. C *1

#include <string.h>
#include <stdio.h>

void main(void)
{

char string[15] = "This is a test";
1* Set not more than 4 characters of string to be *'s *1
printf("Before: %s\n". string);
_strnset(stri ng. '*'. 4);
printf("After: %s\n". string);

Before: This is a test
After: **** is a test

See Also strcat, strcmp, strcpy, _strset

strpbrk, wcspbrk, _mbspbrk

610

Scan strings for characters in specified character sets.

char *strpbrk(const char *stringl, const char *string2);
wchar_t *wcspbrk(const wchar_t *stringl, const wchar_t *string2);
unsigned char * _mbspbrk(const unsigned char*stringl, const unsigned char *string2);

Routine Required Header

strpbrk <string.h>

wcspbrk <string.h> or <wchar.h>

_mbspbrk <mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

strpbrk, wcspbrk, _mbspbrk

Return Value
Each of these functions returns a pointer to the first occurrence of any character from
string2 in string 1, or a NULL pointer if the two string arguments have no characters
in common.

Parameters

Remarks

Example

Output

string 1 Null-terminated, searched string

string2 Null-terminated character set

The strpbrk function returns a pointer to the first occurrence of a character in
string1 that belongs to the set of characters in string2. The search does not include
the terminating null character.

wcspbrk and _mbspbrk are wide-character and multibyte-character versions of
strpbrk. The arguments and return value of wcspbrk are wide-character strings;
those of _mbspbrk are multibyte-character strings. These three functions behave
identically otherwise. _mbspbrk is similar to _mbscspn except that _mbspbrk
returns a pointer rather than a value of type size_t.

/* STRPBRK.C */

#include <string.h>
#include <stdio.h>

void maine void)
{

}

1 :

2 :

3:

4:

char string[100] = "The 3 men and 2 boys ate 5 pigs\n";
char *result;
1* Return pointer to first 'a' or 'b' in "string" */
printf("1: %s\n", string);
result = strpbrk(string, "0123456789");
printf("2: %s\n", result++);
result = strpbrk(result, "0123456789");
printf("3: %s\n", result++);
result = strpbrk(result, "0123456789");
printf("4: %s\n", result);

The 3 men and 2 boys ate 5 pigs

3 men and 2 boys ate 5 pigs

2 boys ate 5 pigs

5 pigs

See Also strcspn, strchr, strrchr

611

strrchr, wcsrchr, _mbsrchr

strrchr, wcsrchr, mbsrchr
Scan a string for the last occurrence of a character.

char *strrchr(const char *string, int c);
char *wcsrchr(const wchar_t *string, int c);
int _mbsrchr(const unsigned char *string, unsigned int c);

Routine

strrchr

wcsrchr

_mbsrchr

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the last occurrence of c in string, or
NULL if c is not found.

Parameters

Remarks

Example

612

string Null-terminated string to search

c Character to be located

The strrchr function finds the last occurrence of c (converted to char) in string. The
search includes the terminating null character.

wcsrchr and _mbsrchr are wide-character and multibyte-character versions of
strrchr. The arguments and return value of wcsrchr are wide-character strings; those
of _mbsrchr are multibyte-character strings. These three functions behave identically
otherwise.

See the example for strchr.

See Also strchr, strcspn, _strnicmp, strpbrk, strspn

_strrev, _wcsrev, _mbsrev

_strrev, _wcsrev, mbsrev
Reverse characters of a string.

char * _strrev(char *string);
wchar_t * _wcsrev(wchar_t *string);
unsigned char * _mbsrev(unsigned char * string);

Routine

_strrev

_wcsrev

_mbsrev

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K, PMac

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the altered string. No return value is
reserved to indicate an error.

Parameter

Remarks

Example

string Null-terminated string to reverse

The _strrev function reverses the order of the characters in string. The terminating
null character remains in place. _ wcsrev and _mbsrev are wide-character and
multibyte-character versions of _strrev. The arguments and return value of _ wcsrev
are wide-character strings; those of _mbsrev are multibyte-character strings. For
_mbsrev, the order of bytes in each multibyte character in string is not changed.
These three functions behave identically otherwise.

/* STRREV.C: This program checks an input string to
* see whether it ;s a palindrome: that is, whether
* it reads the same forward and backward.
*/

613

_strset, _ wcsset, _mbsset

Output

#include <string.h>
#include <stdio.h>

void main(void)
{

}

char string[100];
int result;

printf("Input a string and I will tell you if it is a palindrome:\n");
gets(string);

/* Reverse string and compare (ignore case): */
result = _stricmp(string. _strrev(_strdup(string)));
if(result == 0)

printf("The string \"%s\" is a palindrome\n\n". string);
else

printf("The string \"%s\" is not a palindrome\n\n". string);

Input a string and I will tell you if it is a palindrome:
Able was I ere I saw Elba
The string "Able was I ere I saw Elba" is a palindrome

See Also strcpy, _strset

_strset, _wesset, mbsset

614

Set characters of a string to a character.

char * _strset(char *string, int c);
wchar_t * _wcsset(wchar_t *string, wchar_t c);
unsigned char * _mbsset(unsigned char *string, unsigned int c);

Routine

_strset

_wcsset

_mbsset

Required Header

<string.h>

<string.h> or <wchar.h>

<mhstring.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

_strset, _ wcsset, _mbsset

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the altered string. No return value is
reserved to indicate an error.

Parameters

Remarks

Example

Output

string Null-terminated string to be set

c Character setting

The _strset function sets all the characters of string to c (converted to char), except
the terminating null character. _ wcsset and _mbsset are wide-character and
multibyte-character versions of _strset. The data types of the arguments and return
values vary accordingly. These three functions behave identically otherwise.

/* STRSET.C */

#include <string.h>
#include <stdio.h>

void main(void)
{

char string[] = "Fill the string with something";
printf("Before: %s\n", string);
_strset(string, '*');
printf("After: %s\n", string);

Before: Fill the string with something
After: ******************************

See Also _mbsnbset, memset, strcat, strcmp, strcpy, _strnset

615

strspn, wcsspn, _mbsspn

strspn, wcsspn, _mbsspn
Find the first substring.

size_t strspn(const char *stringl, const char *string2);
size_t wcsspn(const wchar_t *stringl, const wchar_t *string2);
size_t _mbsspn(const unsigned char *stringl, const unsigned char *string2);

Routine Required Header

strspn <string.h>

wcsspn <string.h> or <wchar.h>

_mbsspn <mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.LIB

LmCMT.Lm

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
strspn, wcsspn, and _mbsspn return an integer value specifying the length of the
substring in stringl that consists entirely of characters in string2. If string 1 begins
with a character not in string2, the function returns O. No return value is reserved to
indicate an error. For each of these routines, no return value is reserved to indicate an
error.

Parameters

Remarks

616

stringl Null-terminated string to search

string2 Null-terminated character set

The strspn function returns the index of the first character in string 1 that does not
belong to the set of characters in string2. The search does not include terminating
null characters.

wcsspn and _mbsspn are wide-character and multibyte-character versions of strspn.
The arguments of wcsspn are wide-character strings; those of _mbsspn are
multibyte-character strings. These three functions behave identically otherwise.

Example

Output

/* STRSPN.C: This program uses strspn to determine
* the length of the segment in the string "cabbage"
* consisting of a's, b's, and c's. In other words,
* it finds the first non-abc letter.
*/

#include <string.h>
#include <stdio.h>

void main(void)
{

}

char string[] = "cabbage";
int result;
result = strspn(string, "abc");
printf("The portion of '%s' containing only a, b, or c "

"is %d bytes long\n", string, result);

The portion of 'cabbage' containing only a, b, or c is 5 bytes long

See Also _mbsspnp, strcspn, strncat, strncmp, strncpy, _strnicmp, strrchr

strstr, wcsstr, mbsstr
Find a substring.

char *strstr(const char *stringl, const char *string2);
wchar_t *wcsstr(const wchar_t *stringl, const wchar_t *string2);

strstr, wcsstr, _mbsstr

unsigned char * _mbsstr(const unsigned char *stringl, const unsigned char *string2);

Routine

strstr

wcsstr

_mbsstr

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

617

strstr, wcsstr, _mbsstr

Libraries

Lmc.Lffi

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the first occurrence of string2 in string 1,
or NULL if string2 does not appear in string1. If string2 points to a string of zero
length, the function returns string 1.

Parameters

Remarks

Example

618

string1 Null-terminated string to search

string2 Null-terminated string to search for

The strstr function returns a pointer to the first occurrence of string2 in string1. The
search does not include terminating null characters. wcsstr and _mbsstr are wide­
character and multibyte-character versions of strstr. The arguments and return value
of wcsstr are wide-character strings; those of _mbsstr are multibyte-character
strings. These three functions behave identically otherwise.

/* STRSTR.C */

#include <string.h>
#include <stdio.h>

char str[] = "lazy";
char string[] "The quick brown dog jumps over the lazy fox";
char fmtl[] 1 2 3 4 5";
char fmt2[] = "12345678901234567890123456789012345678901234567890";

void main(void
{

}

char *pdest;
int result;
printf("String to be searched:\n\t%s\n", string);
printf("\t%s\n\t%s\n\n", fmt1, fmt2);
pdest = strstr(string, str);
result = pdest - string + 1;
i f(pdest != NU LL)

printf("%s found at position %d\n\n", str, result);
else

printf("%s not found\n", str);

Output
String to be searched:

The quick brown dog jumps over the lazy fox
1 2 3 4 5

12345678901234567890123456789012345678901234567890

lazy found at position 36

See Also strcspn, strcmp, strpbrk, strrchr, strspn

_strtime, _wstrtime
Copy the time to a buffer.

char * _strtime(char *timestr);
wchar_t * _wstrtime(wchar_t *timestr);

Routine Required Header Optional Headers

_strtime <time.h>

_wstrtime <time.h> or <wchar.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the resulting character string timestr.

Parameter

Remarks

timestr Time string

The _strtime function copies the current local time into the buffer pointed to by
timestr. The time is formatted as hh:mm:ss where hh is two digits representing the
hour in 24-hour notation, mm is two digits representing the minutes past the hour,
and ss is two digits representing seconds. For example, the string 18: 23: 44
represents 23 minutes and 44 seconds past 6 P.M. The buffer must be at least 9 bytes
long.

_strtime, _ wstrtime

619

strtod, strtol, strtoul Functions

Example

Output

_ wstrtime is a wide-character version of _strtime; the argument and return value of
_ wstrtime are wide-character strings. These functions behave identically otherwise.

1* STRTIME. C *1

#include <time.h>
#include <stdio.h>

void main(void
{

}

char dbuffer [9J;
char tbuffer [9J;
_strdate(dbuffer);
printf("The current date is %s \n", dbuffer);
_strtime(tbuffer);
printf("The current time is %s \n", tbuffer);

The current date is 03/23/93
The current time is 13:40:40

See Also asctime, ctime, gmtime, loealtime, mktime, time, _tzset

strtod, strtol, strtoul Functions
Convert a string to a double precision value (strtod, westod), a long-integer value
(strtol, westol), or an unsigned long-integer value (strtoul, westoul).

strtod, westod

strtol, westol

strtoul, westoul

Return Value

620

strtod returns the value of the floating-point number, except when the representation
would cause an overflow, in which case the function returns +/-HUGE_ VAL. The
sign of HUGE_VAL matches the sign of the value that cannot be represented. strtod
returns 0 if no conversion can be performed or an underflow occurs.

strtol returns the value represented in the string nptr, except when the representation
would cause an overflow, in which case it returns LONG_MAX or LONG_MIN.
strtoul returns the converted value, if any, or ULONG_MAX on overflow. Each of
these functions returns 0 if no conversion can be performed.

westod, westol, and westoul return values analogously to strtod, strtol, and strtoul,
respectively.

strtod, strtol, strtoul Functions

For all six functions in this group, errno is set to ERANGE if overflow or underflow
occurs.

Parameters

Remarks

nptr Null-terminated string to convert

endptr Pointer to character that stops scan

base Number base to use

The strtod, strtol, and strtoul functions convert nptr to a double-precision value, a
long-integer value, or an unsigned long-integer value, respectively.

The input string nptr is a sequence of characters that can be interpreted as a
numerical value of the specified type. Each function stops reading the string nptr at
the first character it cannot recognize as part of a number. This may be the
terminating null character. For strtol or strtoul, this terminating character can also
be the first numeric character greater than or equal to base.

For all six functions in the strtod group, the current locale's LC_NUMERIC
category setting determines recognition of the radix character in nptr; for more
information, see setlocale. If endptr is not NULL, a pointer to the character that
stopped the scan is stored at the location pointed to by endptr. If no conversion can be
performed (no valid digits were found or an invalid base was specified), the value of
nptr is stored at the location pointed to by endptr.

strtod expects nptr to point to a string of the following form:

[whites pace] [sign] [digits] [.digits] [{d I Die I EHsign]digits]

A whites pace may consist of space or tab characters, which are ignored; sign is either
plus (+) or minus (-); and digits are one or more decimal digits. If no digits appear
before the radix character, at least one must appear after the radix character. The
decimal digits can be followed by an exponent, which consists of an introductory
letter (d, D, e, or E) and an optionally signed integer. If neither an exponent part nor
a radix character appears, a radix character is assumed to follow the last digit in the
string. The first character that does not fit this form stops the scan.

The strtol and strtoul functions expect nptr to point to a string of the following form:

[whitespace] [{ + I -}] [0 [{ x I X }]] [digits]

If base is between 2 and 36, then it is used as the base of the number. If base is 0, the
initial characters of the string pointed to by nptr are used to determine the base. If the
first character is 0 and the second character is not 'x' or 'X' , the string is
interpreted as an octal integer; otherwise, it is interpreted as a decimal number. If the
first character is '0' and the second character is 'x' or 'X', the string is interpreted
as a hexadecimal integer. If the first character is 'I ' through '9', the string is
interpreted as a decimal integer. The letters 'a' through 'z' (or ' A' through 'Z')
are assigned the values 10 through 35; only letters whose assigned values are less

621

strtod, strtol, strtoul Functions

Example

Output

622

than base are permitted. strtoul allows a plus (+) or minus (-) sign prefix; a leading
minus sign indicates that the return value is negated.

westod, westol, and westonl are wide-character versions of strtod, strtol, and
strtonl, respectively; the nptr argument to each of these wide-character functions is a
wide-character string. Otherwise, each of these wide-character functions behaves
identically to its single-byte-character counterpart.

/* STRTOD.C: This program uses strtod to convert a
* string to a double-precision value; strtol to
* convert a string to long integer values; and strtoul
* to convert a string to unsigned long-integer values.
*/

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

}

char *string, *stopstring;
double x;
long 1 ;
int base;
unsigned long ul;
string = "3.1415926This stopped it";
x = strtod(string, &stopstring);
printf("string = %s\n", string);
printf(" strtod = %f\n", x);
printf(" Stopped scan at: %s\n\n", stopstring);
string = "-10110134932This stopped it";
1 = strtol(string, &stopstring, 10);
printf("string = %s", string);
pri ntf(" strtol = %1 d", 1);
printf(" Stopped scan at: %s", stopstring);
string = "10110134932";
printf("string = %s\n", string);
/* Convert string using base 2, 4, and 8: */
fore base = 2; base <= 8; base *= 2)
{

}

/* Convert the string: */
ul = strtoul(string, &stopstring, base);
printf(" strtol = %ld (base %d)\n", ul, base);
printf(" Stopped scan at: %s\n", stopstring);

string = 3.1415926This stopped it
strtod = 3.141593
Stopped scan at: This stopped it

strtod, wcstod

string = -10110134932This stopped it strtol
stopped itstring = 10110134932

-2147483647 Stopped scan at: This

strtol = 45 (base 2)
Stopped scan at: 34932
strtol = 4423 (base 4)
Stopped scan at: 4932
strtol = 2134108 (base 8)
Stopped scan at: 932

See Also atof, localeconv, setlocale

strtod, wcstod
Convert strings to a double-precision value.

double strtod(const char *nptr, char **endptr);
double wcstod(const wchar_t *nptr, wchar_t **endptr);

Each of these functions converts the input string nptr to a double.

Routine Required Header

strtod <stdlib.h>

wcstod <stdlib.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

strtod returns the value of the floating-point number, except when the representation
would cause an overflow, in which case the function returns +/-HUGE_ VAL. The
sign of HUGE_VAL matches the sign of the value that cannot be represented. strtod
returns 0 if no conversion can be performed or an underflow occurs.

wcstod returns values analogously to strtod. For both functions, errno is set to
ERANGE if overflow or underflow occurs.

623

strtod, wcstod

Parameters

Remarks

Example

Output

624

nptr Null-terminated string to convert

endptr Pointer to character that stops scan

The strtod function converts nptr to a double-precision value. strtod stops reading
the string nptr at the first character it cannot recognize as part of a number. This may
be the terminating null character. wcstod is a wide-character version of strtod; its
nptr argument is a wide-character string. Otherwise these functions behave
identically.

The LC_NUMERIC category setting of the current locale determines recognition of
the radix character in nptr; for more information, see setlocale. If endptr is not
NULL, a pointer to the character that stopped the scan is stored at the location
pointed to by endptr. If no conversion can be performed (no valid digits were found
or an invalid base was specified), the value of nptr is stored at the location pointed to
byendptr.

strtod expects nptr to point to a string of the following form:

[whites pace] [sign] [digits] [.digits] [{d I Die I E}[sign]digits]

A whites pace may consist of space and tab characters, which are ignored; sign is
either plus (+) or minus (-); and digits are 'one or more decimal digits. If no digits
appear before the radix character, at least one must appear after the radix character.
The decimal digits can be followed by an exponent, which consists of an introductory
letter (d, D, e, or E) and an optionally signed integer. If neither an exponent part nor
a radix character appears, a radix character is assumed to follow the last digit in the
string. The first character that does not fit this form stops the scan.

See the example for strtod on page 622.

string = 3.1415926This stopped it
strtod = 3.141593
Stopped scan at: This stopped it

string = -10110134932This stopped it strtol
stopped itstring = 10110134932

strtol = 45 (base 2)
Stopped scan at: 34932
strtol = 4423 (base 4)
Stopped scan at: 4932
strtol = 2134108 (base 8)
Stopped scan at: 932

See Also strtol, strtoul, atof, localeconv, setlocale

-2147483647 Stopped scan at: This

strtol, wcstol
Convert strings to a long-integer value.

long strtol(const char *nptr, char **endptr, int base);
long wcstol(const wchar_t *nptr, wchar_t **endptr, int base);

Routine Required Header

strtol <stdlib.h>

wcstol <stdlib.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIDC.LID

LIDCMT.LID

MSYCRT.LID

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
strtol returns the value represented in the string nptr, except when the representation
would cause an overflow, in which case it returns LONG_MAX or LONG_MIN.
strtol returns 0 if no conversion can be performed. wcstol returns values analogously
to strtol. For both functions, errno is set to ERANGE if overflow or underflow
occurs.

Parameters

Remarks

nptr Null-terminated string to convert

endptr Pointer to character that stops scan

base Number base to use

The strtol function converts nptr to a long. strtol stops reading the string nptr at the
first character it cannot recognize as part of a number. This may be the terminating
null character, or it may be the first numeric character greater than or equal to base.

wcstol is a wide-character version of strtol; its nptr argument is a wide-character
string. Otherwise these functions behave identically.

The current locale's LC_NUMERIC category setting determines recognition of the
radix character in nptr; for more information, see setlocale. If endptr is not NULL, a
pointer to the character that stopped the scan is stored at the location pointed to by

strtol, wcstol

625

strtoul, wcstoul

Example

endptr. If no conversion can be performed (no valid digits were found or an invalid
base was specified), the value of nptr is stored at the location pointed to by endptr.

strtol expects nptr to point to a string of the following form:

[whites pace] [{ + I-}] [0 [{ x I X }]] [digits]

A whites pace may consist of space and tab characters, which are ignored; digits are
one or more decimal digits. The first character that does not fit this form stops the
scan. If base is between 2 and 36, then it is used as the base of the number. If base is
0, the initial characters of the string pointed to by nptr are used to determine the base.
If the first character is 0 and the second character is not 'x' or 'X', the string is
interpreted as an octal integer; otherwise, it is interpreted as a decimal number. If the
first character is '0' and the second character is 'x' or 'X', the string is interpreted as a
hexadecimal integer. If the first character is '1' through '9', the string is interpreted as
a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are assigned the
values 10 through 35; only letters whose assigned values are less than base are
permitted.

See the example for strtod on page 622.

See Also strtod, strtoul, atof, localeconv, setlocale

strtoul, westoul

626

Convert strings to an unsigned long-integer value.

unsigned long strtoul(const char *nptr, char **endptr, int base);
unsigned long wcstoul(const wcbar_t *nptr, wchar_t **endptr, int base);

Routine Required Header

strtoul <stdlib.h>

wcstoul <stdlib.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
strtoul returns the converted value, if any, or ULONG_MAX on overflow. strtoul
returns 0 if no conversion can be performed. westoul returns values analogously to
strtoul. For both functions, errno is set to ERANGE if overflow or underflow
occurs.

Parameters

Remarks

Example

nptr Null-terminated string to convert

endptr Pointer to character that stops scan

base Number base to use

Each of these functions converts the input string nptr to an unsigned long.

strtoul stops reading the string nptr at the first character it cannot recognize as part
of a number. This may be the terminating null character, or it may be the first
numeric character greater than or equal to base. The LC_NUMERIC category
setting of the current locale determines recognition of the radix character in nptr; for
more information, see setloeale. If endptr is not NULL, a pointer to the character
that stopped the scan is stored at the location pointed to by endptr. If no conversion
can be performed (no valid digits were found or an invalid base was specified), the
value of nptr is stored at the location pointed to by endptr.

westoul is a wide-character version of strtoul; its nptr argument is a wide-character
string. Otherwise these functions behave identically.

strtoul expects nptr to point to a string of the following form:

[whitespace] [{+ I-}] [0 [{ x I X}]] [digits]

A whitespace may consist of space and tab characters, which are ignored; digits are
one or more decimal digits. The first character that does not fit this form stops the
scan. If base is between 2 and 36, then it is used as the base of the number. If base is
0, the initial characters of the string pointed to by nptr are used to determine the base.
If the first character is 0 and the second character is not 'x' or 'X', the string is
interpreted as an octal integer; otherwise, it is interpreted as a decimal number. If the
first character is '0' and the second character is 'x' or 'X', the string is interpreted as a
hexadecimal integer. If the first character is 'I' through '9', the string is interpreted as
a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are assigned the
values 10 through 35; only letters whose assigned values are less than base are
permitted. strtoul allows a plus (+) or minus (-) sign prefix; a leading minus sign
indicates that the return value is negated.

See the example for strtod on page 622.

See Also strtod, strtol, atof, loealeeonv, setloeale

strtoul, westoul

627

strtok, wcstok, _mbstok

strtok, wcstok, mbstok
Find the next token in a string.

char *strtok(char *string1, const char *string2);
wchar_t *wcstok(wchar_t *string1, const wchar_t *string2);
unsigned char * _mbstok(unsigned char*string1, const unsigned char *string2);

Routine Required Header Optional Headers Compatibility

strtok <string.h> ANSI, Win 95, Win NT,
Win32s, 68K, PMac

wcstok <string.h> or <wchar.h> ANSI, Win 95, Win NT,
Win32s

_mbstok <mbstring.h> Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.LIB

LmCMT.Lm

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
All of these functions return a pointer to the next token found in string 1. They return
NULL when no more tokens are found. Each call modifies string 1 by substituting a
NULL character for each delimiter that is encountered.

Parameters

Remarks

628

string 1 String containing token(s)

string2 Set of delimiter characters

The strtok function finds the next token in string1. The set of characters in string2
specifies possible delimiters of the token to be found in string 1 on the current call.
wcstok and _mbstok are wide-character and multibyte-character versions of strtok.
The arguments and return value of wcstok are wide-character strings; those of
_mbstok are multibyte-character strings. These three functions behave identically
otherwise.

On the first call to strtok, the function skips leading delimiters and returns a pointer
to the first token in string 1 , terminating the token with a null character. More tokens
can be broken out of the remainder of string 1 by a series of calls to strtok. Each call
to strtok modifies string 1 by inserting a null character after the token returned by

v

Example

Output

strtok, wcstok, _mbstok

that call. To read the next token from string} , call strtok with a NULL value for the
string} argument. The NULL string] argument causes strtok to search for the next
token in the modified string}. The string2 argument can take any value from one call
to the next so that the set of delimiters may vary.

Warning Each of these functions use a static variable for parsing the string into tokens. If
multiple or simultaneous calls are made to the same function, a high potential for data
corruption and inaccurate results exists. Therefore, do not attempt to call the same function
simultaneously for different strings and be aware of calling one of these functions from within a
loop where another routine may be called that uses the same function.

/* STRTOK.C: In this program, a loop uses strtok
* to print all the tokens (separated by commas
* or blanks) in the string named "string".
*/

#include <string.h>
#include <stdio.h>

char string[] "A string\tof "tokens\nand some more tokens";
char seps[] ",\t\n";
char *token;

void main(void
{

}

printf("%s\n\nTokens:\n", string);
1* Establish string and get the first token: */
token = strtok(string, seps);
while(token != NULL)
{

}

/* Whil e there a re tokens in "stri ng" * /
printf(" %s\n", token);
/* Get next token: */
token = strtok(NULL, seps);

A string of "tokens
and some more tokens

Tokens:
A
string
of
tokens

629

_strupr, _wcsupr, _mhsupr

and
some
more
tokens

See Also strcspn, strspn, setlocale

_strupr, _wcsupr, _mbsupr
Convert a string to uppercase.

char * _strupr(char * string);
wchar_t * _wcsupr(wchar_t *string);
unsigned char * _mhsupr(unsigned char *string);

Routine

_strupr

_wcsupr

_mbsupr

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT, Win32s

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
These functions return a pointer to the altered string. Because the modification is
done in place, the pointer returned is the same as the pointer passed as the input
argument. No return value is reserved to indicate an error.

Parameter

Remarks

630

string String to capitalize

The _strupr function converts, in place, each lowercase letter in string to uppercase.
The conversion is determined by the LC_CTYPE category setting of the current
locale. Other characters are not affected. For more information on LC_CTYPE, see
setlocale.

Example

_ wcsupr and _mbsupr are wide-character and multi byte-character versions of
_strupr. The argument and return value of _wcsupr are wide-character strings; those
of _mbsupr are multi byte-character strings. These three functions behave identically
otherwise.

See the example for _strlwr.

See Also _strlwr

strxfrm, wcsxfrm
Transform a string based on locale-specific information.

size_t strxfrm(char *stringl, const char *string2, size_t count);
size_t wcsxfrm(wchar_t *stringl, const wchar_t *string2, size_t count);

Routine Required Header

strxfrm <string.h>

wcsxfrm <string.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Each of these functions returns the length of the transformed string, not counting the
terminating null character. If the return value is greater than or equal to count, the
content of string 1 is unpredictable. On an error, each of the functions sets errno and
returns (size_t) -1.

Parameters
string 1 Destination string

string2 Source string

count Maximum number of characters to place in string 1

strxfrm, wcsxfrm

631

strxmn, wcsxfrm

Remarks

632

The strxfrm function transforms the string pointed to by string2 into a new collated
form that is stored in stringl. No more than count characters, including the null
character, are transformed and placed into the resulting string. The transformation is
made using the current locale's LC_COLLATE category setting. For more
information on LC_COLLATE, see setlocale.

After the transformation, a call to strcmp with the two transformed strings yields
results identical to those of a call to strcoll applied to the original two strings. As
with strcoll and stricoll, strxfrm automatically handles multibyte-character strings
as appropriate.

wcsxfrm is a wide-character version of strxfrm; the string arguments of wcsxfrm are
wide-character pointers. For wcsxfrm, after the string transformation, a call to
wcscmp with the two transformed strings yields results identical to those of a call to
wcscoll applied to the original two strings. wcsxfrm and strxfrm behave identically
otherwise.

In the "C" locale, the order of the characters in the character set (ASCII character
set) is the same as the lexicographic order of the characters. However, in other
locales, the order of characters in the character set may differ from the lexicographic
character order. For example, in certain European locales, the character' a' (value
Ox61) precedes the character 'a' (value OxE4) in the character set, but the character 'a'
precedes the character 'a' lexicographically.

In locales for which the character set and the lexicographic character order differ, use
strxfrm on the original strings and then strcmp on the resulting strings to produce a
lexicographic string comparison according to the current locale's LC_COLLATE
category setting. Thus, to compare two strings lexicographically in the above locale,
use strxfrm on the original strings, then strcmp on the resulting strings.
Alternatively, you can use strcoll rather than strcmp on the original strings.

The value of the following expression is the size of the array needed to hold the
strxfrm transformation of the source string:

1 + strxfrm(NULL. string. 0)

In the "C" locale only, strxfrm is equivalent to the following:

strncpy(_stringl. _string2. _count);
return(strlen(_stringl));

See Also localeconv, setlocale, strcmp, strncmp, strcoll Functions

swab
Swaps bytes.

void _swab(char *src, char *dest, int n);

Routine Required Header Optional Headers

<stdlib.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Parameters

Remarks

Example

src Data to be copied and swapped

dest Storage location for swapped data

n Number of bytes to be copied and swapped

The _swab function copies n bytes from src, swaps each pair of adjacent bytes, and
stores the result at dest. The integer n should be an even number to allow for
swapping. _swab is typically used to prepare binary data for transfer to a machine
that uses a different byte order.

1* SWAB.C illustrates:
* swab
*1

#include <stdlib.h>
#include <stdio.h>

cha r from[] = "BADCFEHGJ I LKNMPORQTSVUXWZY";
char toE] =•....•. ";

void main()

633

system, _ wsystem

Output

{

}

printf("Before:\t%s\n\t%s\n\n", from, to);
_swab(from, to, sizeof(from));
printf("After:\t%s\n\t%s\n\n", from, to);

Before: BADCFEHGJILKNMPOROTSVUXWZY

After: BADCFEHGJILKNMPOROTSVUXWZY
ABCDEFGHIJKLMNOPORSTUVWXYZ

system, _wsystem
Execute a command.

int system(const char *command);
int _wsystem(const wchar_t *command);

Routine

system

_wsystem

Required Header

<process.h> or <stdlib.h>

<process.h> or <stdlib.h>
or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LID

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

634

If command is NULL and the command interpreter is found, the function returns a
nonzero value. If the command interpreter is not found, it returns 0 and sets errno to
ENOENT. If command is not NULL, system returns the value that is returned by the
command interpreter. It returns the value 0 only if the command interpreter returns
the value O. A return value of -1 indicates an error, and errno is set to one of the
following values:

E2BIG Argument list (which is system-dependent) is too big.

ENOENT Command interpreter cannot be found.

ENOEXEC Command-interpreter file has invalid format and is not executable.

ENOMEM Not enough memory is available to execute command; or available
memory has been corrupted; or invalid block exists, indicating that process
making call was not allocated properly.

Parameter

Remarks

Example

Output

command Command to be executed

The system function passes command to the command interpreter, which executes the
string as an operating-system command. system refers to the COMSPEC and PATH
environment variables that locate the command-interpreter file (the file named
CMD.EXE in Windows NT). If command is NULL, the function simply checks to see
whether the command interpreter exists.

You must explicitly flush (using mush or _flushall) or close any stream before
calling system.

_ wsystem is a wide-character version of _system; the command argument to
_ wsystem is a wide-character string. These functions behave identically otherwise.

1* SYSTEM.C: This program uses
* system to TYPE its source file.
*/

#include <process.h>

void main(void)
{

system("type system.c");
}

1* SYSTEM.C: This program uses
* system to TYPE its source file.
*/

#include <process.h>
void main(void)
{

system("type system.c");
}

See Also _exec Functions, exit, _flushall, _spawn Functions

system, _ wsystem

635

tan, tanh

tan, tanh
Calculate the tangent (tan) or hyperbolic tangent (tanh).

double tan(double x);
double tanh(double x);

Routine Required Header Optional Headers

tan <math.h>

tanh <math.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
tan returns the tangent of x. If x is greater than or equal to 263 , or less than or equal to
_263, a loss of significance in the result occurs, in which case the function generates a
_TLOSS error and returns an indefinite (same as a quiet NaN). You can modify error
handling with _matherr.

tanh returns the hyperbolic tangent of x. There is no error return.

Parameter

Example

636

x Angle in radians

1* TAN.C: This program displays the tangent of pi I 4
* and the hyperbolic tangent of the result.
*1

#include <math.h>
#include <stdio.h>

void main(void)
{

double pi = 3.1415926535;
double x. y;

Output

}

x = tan (pi / 4);
y = tanh(x);
printf("tan(%f) = %f\n", x, y);
printf("tanh(%f) = %f\n", y, x);

tan(1.000000) = 0.761594
tanh(0.761594) = 1.000000

See Also acos, asin, atan, cos, sin

_tell, _telli64
Get the position of the file pointer.

long _tell(int handle);
__ int64 _te1li64(int handle);

Routine Required Header

<io.h>

<io.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.Lm

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
A return value of -lL indicates an error, and errno is set to EBADF to indicate an
invalid file-handle argument. On devices incapable of seeking, the return value is
undefined.

Parameter

Remarks

handle Handle referring to open file

The _tell function gets the current position of the file pointer (if any) associated with
the handle argument. The position is expressed as the number of bytes from the

637

_tempnam, _ wtempnam, tmpnam, _ wtmpnam

Example

Output

beginning of the file. For the _telli64 function, this value is expressed as a 64-bit
integer.

/* TELL.C: This program uses _tell to tell the
* file pointer position after a file read.
*/

#include <io.h>
#include <stdio.h>
#include <fcntl.h>

void main(void
{

}

int fh;
char buffer[500];

if((fh - _open("tell .c", _O_RDONLY)) 1- -1)
{

if(_read(fh, buffer, 500) > 0)
printf("Current file position is: %d\n", _tell(fh));

_close(fh);

Current file position is: 434

See Also ftell, _Iseek

_tempnam, _wtempnam, tmpnam,
_wtmpnam

638

Create temporary filenames.

char * _tempnam(char *dir, char *prefix);
wchar_t * _ wtempnam(wchar_t *dir, wchar_t *prefix);
char *tmpnam(char * string);
wchar_t * _wtmpnam(wchar_t *string);

Routine Required Header Optional Headers

_tempnam <stdio.h>

_wtempnam <stdio.h> or <wchar.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

_tempnam, _ wtempnam, tmpnam, _ wtmpnam

Routine Required Header

tmpnam <stdio.h>

_wtmpnam <stdio.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lffi

LmCMT.Lm

MSYCRT.Lffi

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to the name generated, unless it is
impossible to create this name or the name is not unique. If the name cannot be
created or if a file with that name already exists, tmpnam and _tempnam return
NULL. _tempnam and _ wtempnam also return NULL if the file search fails.

Note The pointer returned by tmpnam points to an internal static buffer. free does not need
to be called to deallocate this pointer.

Parameters

Remarks

prefix Filename prefix

dir Target directory to be used if TMP not defined

string Pointer to temporary name

The tmpnam function generates a temporary filename that can be used to open a
temporary file without overwriting an existing file.

This name is stored in string. If string is NULL, then tmpnam leaves the result in an
internal static buffer. Thus any subsequent calls destroy this value. If string is not
NULL, it is assumed to point to an array of at least L_tmpnam bytes (the value of
L_tmpnam is defined in STOIO.H). The function generates unique filenames for up
to TMP _MAX calls.

The character string that tmpnam creates consists of the path prefix, defined by the
entry P _tmpdir in the file STOIO.H, followed by a sequence consisting of the digit
characters '0' through '9'; the numerical value of this string is in the range 1-65,535.
Changing the definitions of L_tmpnam or P _tmpdir in STOIO.H does not change
the operation of tmpnam.

_tempnam creates a temporary filename for use in another directory. This filename is
different from that of any existing file. The prefix argument is the prefix to the

639

_tempnam, _ wtempnam, tmpnam, _ wtmpnam

Example

640

filename. _tempnam uses malloc to allocate space for the filename; the program is
responsible for freeing this space when it is no longer needed. _tempnam looks for
the file with the given name in the following directories, listed in order of
precedence.

Directory Used

Directory specified by TMP

dir argument to _tempnam

P _tmpdir in STDIO.H

Current working directory

Conditions

TMP environment variable is set, and directory
specified by TMP exists.

TMP environment variable is not set, or directory
specified by TMP does not exist.

dir argument is NULL, or dir is name of nonexistent
directory.

P _tmpdir does not exist.

_tempnam and tmpnam automatically handle multibyte-character string arguments
as appropriate, recognizing multibyte-character sequences according to the OEM
code page obtained from the operating system. _ wtempnam is a wide-character
version of _tempnam; the arguments and return value of _ wtempnam are wide­
character strings. _ wtempnam and _tempnam behave identically except that
_ wtempnam does not handle multibyte-character strings. _ wtmpnam is a wide­
character version of tmpnam; the argument and return value of _ wtmpnam are
wide-character strings. _ wtmpnam and tmpnam behave identically except that
_ wtmpnam does not handle multibyte-character strings.

/* TEMPNAM.C: This program uses tmpnam to create a unique
* filename in the current working directory, then uses
* _tempnam to create a unique filename with a prefix of stq.
*/

#include <stdio.h)

void main(void
{

char *name!, *name2;

/* Create a temporary filename for the current working directory: */
i f((name! = tmpnam(NULL)) != NULL)

printf("Is is safe to use as a temporary file.\n", name!);
else

printf("Cannot create a unique filename\n");

/* Create a temporary filename in temporary directory with the
* prefix "stq". The actual destination directory may vary
* depending on the state of the TMP environment variable and
* the global variable P_tmpdir.
*/

Output

}

i f((name2 = _tempnam("c: \ \ tmp", "stq")) != NULL)
printf("%s is safe to use as a temporary file.\n", name2);

else
printf("Cannot create a unique filename\n");

\s5d. is safe to use as a temporary file.
C:\temp\stq2 is safe to use as a temporary file.

See Also _getmbcp, malloc, _setmbcp, tmpfile

terminate
Calls abort or a function you specify using set_terminate.

void terminate(void);

Routine Required Header Optional Headers

terminate <eh.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

Remarks
The terminate function is used with C++ exception handling and is called in the
following cases:

• A matching catch handler cannot be found for a thrown C++ exception.

• An exception is thrown by a destructor function during stack unwind.

• The stack is corrupted after throwing an exception.

terminate calls abort by default. You can change this default by writing your own
termination function and calling set_terminate with the name of your function as its
argument. terminate calls the last function given as an argument to set_terminate.

terminate

641

terminate

Example

Output

642

1* TERMINAT.CPP:
*1

1J:include <eh.h>
#include <process.h>
#include <iostream.h>

void term_func();

void main()
{

int i = 10. j = 0. result;
set_terminate(term_func);
try
{

if(j == 0)
throw "Divide by zero!";

else
result = i/j;

}

catch(int)
{

cout « "Caught some integer exception.\n";
}

cout « "This should never print.\n";

void term_func()
{

cout « "term_funcO was call ed by termi nate(). \n";

II ... cleanup tasks performed here

II If this function does not exit. abort is called.

exit(-l);
}

term_func() was called by terminate().

See Also abort, _set_se_translator, set_terminate, set_unexpected, unexpected

time
Gets the system time.

time_t time(time_t *timer);

Routine Required Header

time <time.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
time returns the time in elapsed seconds. There is no error return.

Parameter

Remarks

Example

timer Storage location for time

The time function returns the number of seconds elapsed since midnight (00:00:00),
January 1, 1970, coordinated universal time, according to the system clock. The
return value is stored in the location given by timer. This parameter may be NULL,
in which case the return value is not stored.

1* TIMES.C illustrates various time and date functions including:
* time ftime ctime asctime
* localtime gmtime mktime tzset
* strtime strdate strftime
*
* Also the global variable:
* tzname
*/

#include <time.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/timeb.h>
#include <string.h>

time

643

time

644

void maine)
{

char tmpbuf[12B], ampm[] "AM";
time_t ltime;
struct _timeb tstruct;
struct tm *today, *gmt, xmas = { 0, 0, 12, 25, II, 93 };

/* Set time zone from TZ environment variable. If TZ is not set,
* operating system default is used, otherwise PSTBPDT is used
* (Pacific standard time, daylight savings).
*/

_tzset() ;

/* Display operating system-style date and time. */
_strtime(tmpbuf);
printf("OS time:\t\t\t\tXs\n", tmpbuf);
_strdate(tmpbuf);
printf("OS date:\t\t\t\tXs\n", tmpbuf);

/* Get UNIX-style time and display as number and string. */
time(<ime);
printf("Time in seconds since UTC 1/1/70:\tXld\n", ltime);
printf("UNIX time and date:\t\t\tXs",ctime(<ime));

/* Display UTC. */
gmt = gmtime(<ime);
printf("Coordinated universal time:\t\tXs", asctime(gmt));

/* Convert to time structure and adjust for PM if necessary. */
today = localtime(<ime);
if(today->tm_hour > 12)
{

strcpy(ampm, "PM");
today->tm_hour -= 12;

}

if(today->tm_hour == 0) /* Adjust if midnight hour. */
today->tm_hour = 12;

/* Note how pointer addition is used to skip the first 11
* characters and printf is used to trim off terminating
* characters.
*/

printf("12-hour time:\t\t\t\tX.Bs Xs\n",
asctime(today) + II, ampm);

/* Print additional time information. */
_ftime(&tstruct);
printf("Plus milliseconds:\t\t\tXu\n", tstruct.millitm);
printf("Zone difference in seconds from UTC:\tXu\n",

tstruct.timezone);
printf("Time zone name:\t\t\t\tXs\n", _tzname[0]);
printf("Daylight savings:\t\t\tXs\n",

tstruct.dstflag ? "YES" : "NO");

Output

1* Make time for noon on Christmas, 1993. *1
if(mktime(&xmas) !- (time_t)-l)

printf("Christmas\t\t\t\t%s\n", asctime(&xmas);

1* Use time structure to build a customized time string. *1
today - localtime(<ime);

1* Use strftime to build a customized time string. *1
strftime(tmpbuf, 128,

"Today is %A, day %d of %B in the year %Y.\n", today);
printf(tmpbuf);

}

as time:
as date:
Time in seconds since UTC 1/1/70:
UNIX time and date:
Coordinated universal time:
12-hour time:
Plus milliseconds:
Zone difference in seconds from UTC:
Ti me zone name:
Daylight savings:
Christmas

21:51:03
05/03/94
768027063
Tue May 03 21:51:03 1994
Wed May 04 04:51:03 1994
09:51:03 PM
279
480

YES
Sat Dec 25 12:00:00 1993

Today is Tuesday, day 03 of May in the year 1994.

See Also asctime, _ftime, gmtime, localtime, _utime

tmpfile
Creates a temporary file.

FILE *tmpfile(void);

Routine Required Header

tmpfile <stdio.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

tmpfile

645

tmpfile

Libraries

Lmc.Lm

LmCMT.Lffi

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

Remarks

Example

Output

646

If successful, tmpfile returns a stream pointer. Otherwise, it returns a NULL pointer.

The tmpfile function creates a temporary file and returns a pointer to that stream. If
the file cannot be opened, tmpfile returns a NULL pointer. This temporary file is
automatically deleted when the file is closed, when the program terminates normally,
or when _rmtmp is called, assuming that the current working directory does not
change. The temporary file is opened in w+b (binary read/write) mode.

/* TMPFILE.C: This program uses tmpfile to create a
* temporary file, then deletes this file with _rmtmp.
*/

#include <stdio.h>

void maine void)
{

}

FILE *stream;
char tempstring[]
i nt i;

"String to be written";

/* Create temporary files. */
fore i = 1; i <= 3; i++)
{

}

if((stream = tmpfile(» == NULL)
perror("Could not open new temporary file\n");

else
printf("Temporary file %d was created\n", i);

/* Remove temporary files. */
printf("%d temporary files deleted\n", _rmtmp());

Temporary file 1 was created
Temporary file 2 was created
Temporary file 3 was created
3 temporary files deleted

See Also _rmtmp, _tempnam

to Functions

Remarks

Each of the to functions and its associated macro, if any, converts a single character
to another character.

__ toascii toupper, _toupper, towupper

tolower, _tolower, towlower

The to functions and macro conversions are as follows.

Routine Macro Description

__ toascii __ toascii Converts c to ASCII character

tolower tolower Converts c to lowercase if appropriate

_tolower _tolower Converts c to lowercase

towlower None Converts c to corresponding wide.:character lowercase
letter

toupper toupper Converts c to uppercase if appropriate

_toupper _toupper Converts c to uppercase

towupper None Converts c to corresponding wide-character uppercase
letter

To use the function versions of the to routines that are also defined as macros, either
remove the macro definitions with #Undef directives or do not include CTYPE.H. If
you use the /Za compiler option, the compiler uses the function version of toupper or
tolower. Declarations of the toupper and tolower functions are in STDLIB.H.

The __ toascii routine sets all but the low-order 7 bits of c to 0, so that the converted
value represents a character in the ASCII character set. If c already represents an
ASCII character, c is unchanged.

The tolower and toupper routines:

• Are dependent on the LC_CTYPE category of the current locale (tolower calls
isupper and toupper calls islower).

• Convert c if c represents a convertible letter of the appropriate case in the current
locale and the opposite case exists for that locale. Otherwise, c is unchanged.

The _tolower and _toupper routines:

• Are locale-independent, much faster versions of tolower and toupper.

• Can be used only when isascii(c) and either isupper(c) or islower(c), respectively,
are true.

• Have undefined results if c is not an ASCII letter of the appropriate case for
converting.

to Functions

647

to Functions

Example

Output

648

The towlower and towupper functions return a converted copy of c if and only if
both of the following conditions are true. Otherwise, c is unchanged.

• c is a wide character of the appropriate case (that is, for which iswupper or
iswlower, respectively, is true).

• There is a corresponding wide character of the target case (that is, for which
iswlower or iswupper, respectively, is true).

1* TOUPPER.C: This program uses toupper and tolower to
* analyze all characters between 0x0 and 0x7F. It also
* applies _toupper and _tolower to any code in this
* range for which these functions make sense.
*/

#include <conio.h>
#include <ctype.h>
#include <string.h>

char msg[] = "Some of THESE letters are Capitals\r\n";
char *p;

void maine void)
{

}

_cputs(msg);

/* Reverse case of message. */
fore p = msg; p < msg + strlen(msg); p++)
{

}

if(islower(*p))
_putch(_toupper(*p));

else if(isupper(*p))
_putch(_tolower(*p));

else
_putch(*p);

Some of THESE letters are Capitals
sOME OF these LETTERS ARE cAPITALS

See Also is Routines

__ toascii
Converts characters.

iot __ toascii(iot c);

Routine Required Header Optional Headers Compatibility

__ toascii <ctype.h> Win 95, Win NT, Win32s,
68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
__ toascii converts a copy of c if possible, and returns the result. There is no return
value reserved to indicate an error.

Parameter

Remarks

c Character to convert

The __ toascii routine converts the given character to an ASCII character.

See Also is Routines, to Functions

tolower, _tolower, towlower
Convert character to lowercase.

iot tolower(iot c);
iot _tolower(iot c);
iot towlower(wiot_t c);

Routine

tolower

_tolower

towlower

Required Header

<stdlib.h> and
<ctype.h>

<ctype.h>

<ctype.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT, Win32s,
68K,PMac

ANSI, Win 95, Win NT,
Win32s

to Functions

649

to Functions

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.LID

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these routines converts a copy of c, if possible, and returns the result. There
is no return value reserved to indicate an error.

Parameter

Remarks

c Character to convert

Each of these routines converts a given uppercase letter to a lowercase letter if
possible and appropriate.

See Also is Routines, to Functions

toupper _toupper, towupper

650

Convert character to uppercase.

int toupper(int c);
int _toupper(int c);
int towupper(wint_t c);

Routine

toupper

_toupper

towupper

Required Header

<stdlib.h> and
<ctype.h>

<ctype.h>

<ctype.h> or <wchar.h>

Optional Headers Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

Win 95, Win NT, Win32s,
68K,PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these routines converts a copy of c, if possible, and returns the result.

If c is a wide character for which iswlower is true and there is a corresponding wide
character for which iswupper is true, towupper returns the corresponding wide
character; otherwise, towupper returns c unchanged.

There is no return value reserved to indicate an error.

Parameter

Remarks

c Character to convert

Each of these routines converts a given lowercase letter to an uppercase letter if
possible and appropriate.

See Also is Routines, to Functions

tzset
Sets time environment variables.

void _tzset(void);

Routine Required Header Optional Headers Compatibility

<time.h> Win 95, Win NT, Win32s,
68K,PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Return Value
None

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

651

Remarks

652

The _tzset function uses the current setting of the environment variable TZ to assign
values to three global variables: _daylight, _timezone, and _tzname. These variables
are used by the _ftime and localtime functions to make corrections from coordinated
universal time (UTC) to local time, and by the time function to compute UTC from
system time. Use the following syntax to set the TZ environment variable:

set TZ=tzn[+ I-]hh[:mm[:ss]][dzn]

tzn Three-letter time-zone name, such as PST. You must specify the correct offset
fromUTC.

hh Difference in hours between UTC and local time. Optionally signed.

mm Minutes. Separated from hh by a colon (:).

ss Seconds. Separated from mm by a colon (:).

dzn Three-letter daylight-saving-time zone such as PDT. If daylight saving time is
never in effect in the locality, set TZ without a value for dzn.

For example, to set the TZ environment variable to correspond to the current time
zone in Germany, you can use one of the following statements:

set TZ=GSTIGDT
set TZ=GST+IGDT

These strings use GST to indicate German standard time, assume that Germany is
one hour ahead of UTC, and assume that daylight saving time is in effect.

If the TZ value is not set, _tzset attempts to use the time zone information specified
by the operating system. Under Windows NT and Windows 95, this information is
specified in the Control Panel's DatelTime application. If _tzset cannot obtain this
information, it uses PST8PDT by default, which signifies the Pacific time zone.

Based on the TZ environment variable value, the following values are assigned to the
global variables _daylight, _timezone, and _tzname when _tzset is called:

Global Variable

_daylight

_timezone

_tzname[O]

_tzname[1]

Description

Nonzero value if a daylight-saving-time zone is
specified in TZ setting; otherwise, 0

Difference in seconds between UTe and local
time.

String value of time-zone name from TZ
environmental variable; empty if TZ has not
been set

String value of daylight-saving-time zone; empty
if daylight-saving-time zone is omitted from TZ
environmental variable

Default Value

1

28800 (28800
seconds equals 8
hours)

PST

PDT

Example

Output

The default values shown in the preceding table for _daylight and the _tzname array
correspond to "PST8PDT." If the DST zone is omitted from the TZ environmental
variable, the value of _daylight is 0 and the _ftime, gmtime, and local time functions
return 0 for their DST flags. For more information, see "_daylight, _timezone, and
_tzname" on page 40.

/* TZSET.C: This program first sets up the time zone by
* placing the variable named TZ-EST5 in the environment
* table. It then uses _tzset to set the global variables
* named _daylight, _timezone, and _tzname.
*/

#include <time.h>
#include <stdlib.h>
#include <stdio.h>

void main(void
{

}

if(_putenv ("TZ=EST5EDT") == -1)
{

}

printf("Unable to set TZ\n");
exit(1);

else
{

_tzset();
printf("_daylight = %d\n", _daylight);
printf("_timezone = %ld\n", _timezone);
printf("_tzname[0] = %s\n", _tzname[0]);

exit(0);

_daylight = 1
timezone = 18000

_tzname[0] = EST

See Also asctime, _ftime, gmtime, locaitime, time, _utime

653

_ultoa, ultow
Convert an unsigned long integer to a string.

char * _ultoa(unsigned long value, char *string, int radix);
wchar_t * _ultow(unsigned long value, wchar_t *string, int radix);

Routine Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LmC.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns a pointer to string. There is no error return.

Parameters

Remarks

Example

654

value Number to be converted

string String result

radix Base of value

The _u1toa function converts value to a null-terminated character string and stores
the result (up to 33 bytes) in string. No overflow checking is performed. radix
specifies the base of value; radix must be in the range 2-36. _u1tow is a wide­
character version of _ultoa.

See the example for _itoa.

See Also _itoa, _Itoa

umask
Sets the default file-permission mask.

int _umask(int pmode);

Routine Required Header

<io.h> and <sys/stat.h>
and <sys/types.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_umask returns the previous value of pmode. There is no error return.

Parameter

Remarks

pmode Default permission setting

The _umask function sets the file-permission mask of the current process to the mode
specified by pmode. The file-permission mask modifies the permission setting of new
files created by _creat, _open, or _sopen. If a bit in the mask is 1, the corresponding
bit in the file's requested permission value is set to ° (disallowed). If a bit in the mask
is 0, the corresponding bit is left unchanged. The permission setting for a new file is
not set until the file is closed for the first time.

The argument pmode is a constant expression containing one or both of the manifest
constants _S_IREAD and _S_IWRITE, defined in SYS\STAT.H. When both
constants are given, they are joined with the bitwise-OR operator (I). If the pmode
argument is _S_IREAD, reading is not allowed (the file is write-only). If the pmode
argument is _S_IWRITE, writing is not allowed (the file is read-only). For example,
if the write bit is set in the mask, any new files will be read-only. Note that with
MS-DOS, Windows NT, and Windows 95, all files are readable; it is not possible to
give write-only permission. Therefore, setting the read bit with _umask has no effect
on the file's modes.

655

unexpected

Example

Output

1* UMASK.C: This program uses umask to set
* the file-permission mask so that all future
* files will be created as read-only files.
* It also displays the old mask.
*1

#include <syslstat.h>
#include <sys/types.h>
ifi ncl ude <i o. h>
#include <stdio.h>

void main(void
{

int oldmask;

1* Create read-only files: *1
oldmask = _umask(_S_IWRITE);
printf("Oldmask = 0x%.4x\n", oldmask);

Oldmask = 0x0000

See Also _chmod, _creat, _mkdir, _open

unexpected
Calls terminate or function you specify using set_unexpected.

void unexpected(void);

Routine Required Header Optional Headers Compatibility

unexpected <eh.h> ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
None

656

Remarks
The unexpected routine is not used with the current implemenation of C++ exception
handling. unexpected calls terminate by default. You can change this default
behavior by writing a custom termination function and calling set_unexpected with
the name of your function as its argument. unexpected calls the last function given as
an argument to set_unexpected.

See Also abort, _set_se_translator, set_terminate, set_unexpected, terminate

ungetc, ungetwc
Pushes a character back onto the stream.

int ungetc(int c, FILE *stream);
wint_t ungetwc(wint_t c, FILE *stream);

Routine Required Header Optional Headers

ungetc <stdio.h>

ungetwc <stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT,
Win32s, 68K, PMac

ANSI, Win 95, Win NT,
Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, each of these functions returns the character argument c. If c cannot be
pushed back or if no character has been read, the input stream is unchanged and
ungetc returns EOF; ungetwc returns WEOF.

Parameters

Remarks

c Character to be pushed

stream Pointer to FILE structure

The ungetc function pushes the character c back onto stream and clears the end-of­
file indicator. The stream must be open for reading. A subsequent read operation on
stream starts with c. An attempt to push EOF onto the stream using ungetc is
ignored.

ungetc, ungetwc

657

ungetc, ungetwc

Example

Output

658

Characters placed on the stream by ungetc may be erased if mush, fseek, fsetpos, or
rewind is called before the character is read from the stream. The file-position
indicator will have the value it had before the characters were pushed back. The
external storage corresponding to the stream is unchanged. On a successful ungetc
call against a text stream, the file-position indicator is unspecified until all the
pushed-back characters are read or discarded. On each successful ungetc call against
a binary stream, the file-position indicator is decremented; if its value was 0 before a
call, the value is undefined after the call.

Results are unpredictable if ungetc is called twice without a read or file-positioning
operation between the two calls. After a call to fscanf, a call to ungetc may fail
unless another read operation (such as getc) has been performed. This is because
fscanf itself calls ungetc.

ungetwc is a wide-character version of ungetc. However, on each successful ungetwc
call against a text or binary stream, the value of the file-position indicator is
unspecified until all pushed-back characters are read or discarded.

/* UNGETC.C: This program first converts a character
* representation of an unsigned integer to an integer. If
* the program encounters a character that is not a digit.
* the program uses ungetc to replace it in the stream.
*/

#include <stdio.h>
#include <ctype.h>

void main(void)
{

}

int ch;
int result = 0;

printf("Enter an integer: ");

/* Read in and convert number: */
while(«ch = getchar()) != EOF) &&

result = result * 10 + ch - '0';
if(ch != EOF)

ungetc(ch. stdin);
printf("Number = %d\nNextcharacter

result. getchar());

Enter an integer: 521a
Number = 521
Nextcharacter in stream = 'a'

See Also getc, putc

isdigit(ch))
/* Use digit. */

/* Put nondigit back. */
in stream = '%c'".

_ungetch
Pushes back the last charcter read from the console.

int _ungetch(int c);

Routine Required Header Optional Headers

_ungetch <conio.h>

Compatibility

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_ungetch returns the character c if it is successful. A return value of EOF indicates
an error.

Parameter

Remarks

Example

c Character to be pushed

The _ungetch function pushes the character c back to the console, causing c to be the
next character read by _getch or _getche. _ungetch fails if it is called more than
once before the next read. The c argument may not be EOF.

1* UNGETCH.C: In this program. a white-space delimited
* token is read from the keyboard. When the program
* encounters a delimiter. it uses _ungetch to replace
* the character in the keyboard buffer.
*1

#include <conio.h>
#include <ctype.h>
#include <stdio.h>

void main(void)

_ungetch

659

_unlink, _ wunlink

Output

char buffer[100];
int count = 0;
int ch;
ch = _getche();
while(isspace(ch) 1* Skip preceding white space. *1

ch = _getche();
while(count < 99) 1* Gather token. *1
{

if(isspace(ch 1* End of token. *1
break;

buffer[count++] (char)ch;
ch = _getche();

_ungetch(ch); 1* Put back delimiter. *1
buffer[count] = '\0'; 1* Null terminate the token. *1
printf("\ntoken = %s\n", buffer);

White
token = White

See Also _cscanf, _getch

_unlink, _wunlink

660

Delete a file.

int _unlink(const char *filename);
int _wunlink(const wchar_t *filename);

Routine Required Header Optional Headers

<io.h> and <stdio.h>

<io.h> or <wchar.h>

Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns 0 if successful. Otherwise, the function returns -1 and
sets errno to EACCES, which means the path specifies a read-only file, or to
ENOENT, which means the file or path is not found or the path specified a directory.

Parameter

Remarks

Example

Output

filename Name of file to remove

The _unlink function deletes the file specified by filename. _ wunlink is a wide­
character version of _unlink; the filename argument to _ wunlink is a wide-character
string. These functions behave identically otherwise.

1* UNLINK.C: This program uses unlink to delete UNLINK.OBJ. *1

#include <stdio.h>

void maine void
{

}

if(_unlink("unlink.obj") == -1)
perror("Could not delete 'UNLINK.OBJ'");

else
printf("Deleted 'UNLINK.OBJ'\n");

Deleted 'UNLINK.OBJ'

See Also _close, remove

_utime, wutime
Set the file modification time.

int _utime(unsigned char *filename, struct _utimbuf *times);
int _wutime(wchar_t *filename, struct _utimbuf *times);

Routine Required Headers

<sys/utime.h>

<utime.h> or <wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT, Win32s,
68K,PMac

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

_utime, _ wutime

661

_utime, _ wutime

Libraries

LIBC.Lffi

LIBCMT.LIB

MSYCRT.Lffi

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
Each of these functions returns 0 if the file-modification time was changed. A return
value of -1 indicates an error, in which case errno is set to one of the following
values:

EACCES Path specifies directory or read-only file

EINVAL Invalid times argument

EMFILE Too many open files (the file must be opened to change its modification
time)

ENOENT Path or filename not found

Parameters

Remarks

662

filename Path or filename

times Pointer to stored time values

The _utime function sets the modification time for the file specified by filename. The
process must have write access to the file in order to change the time. Under
Windows NT and Windows 95, you can change the access time and the modication
time in the _utimbuf structure. If times is a NULL pointer, the modification time is
set to the current local time. Otherwise, times must point to a structure of type
_utimbuf, defined in SYS\UTIME.H.

The _utimbuf structure stores file access and modification times used by _utime to
change file-modification dates. The structure has the following fields, which are both
of type time_t:

actime Time of file access

modtime Time of file modification

_utime is identical to _futime except that the filename argument of _utime is a
filename or a path to a file, rather than a handle to an open file.

_ wutime is a wide-character version of _utime; the filename argument to _ wutime is
a wide-character string. These functions behave identically otherwise.

Example

Output

/* UTIME.C: This program uses _utime to set the
* file-modification time to the current time.
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/utime.h>

void main(void
{

}

/* Show file time before and after. */
system("dir utime.c");
if(_utime("utime.c". NULL) == -1

perror("_utime failed\n");
else

printf("File time modified\n");
system("dir utime.c");

Volume in drive C is ALDONS
Volume Serial Number is 0E17-1702

Directory of C:\dolphin\crt\code

05/03/94 10:00p 451 utime.c
1 File(s) 451 bytes

83.320.832 bytes free
Volume in drive C is ALDONS
Volume Serial Number is 0E17-1702

Directory of C:\dolphin\crt\code

05/03/94 10:00p
1 Fil e (s)

File time modified

451 utime.c
451 bytes

83.320.832 bytes free

See Also asctime, ctime, _fstat, _ftime, _futime, gmtime, locaitime, _stat, time

_utime, _ wutime

663

va_arg, va_end, va_start
Access variable-argument lists.

type va_arg(va_list arg-ptr, type);
void va_end(va_list arg-ptr);
void va_start(va_list arg-ptr); (UNIX version)
void va_start(va_list arg-ptr, prev -param); (ANSI version)

Routine Required Header Optional Headers Compatibility

va_arg <stdio.h> and <stdarg.h> <varargs.h>l ANSI, Win 95, Win NT,
Win32s, 68K, PMac

va_end <stdio.h> and <stdarg.h> <varargs.h>l ANSI, Win 95, Win NT,
Win32s, 68K, PMac

va_start <stdio.h> and <stdarg.h> <varargs.h>1 ANSI, Win 95, Win NT,
Win32s, 68K, PMac

1 Required for UNIX V compatibility.

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIDC.LID

LIDCMT.LID

MSYCRT.LID

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
va_arg returns the current argument; va_start and va_end do not return values.

Parameters

Remarks

664

type Type of argument to be retrieved

arg-ptr Pointer to list of arguments

prev-param Parameter preceding first optional argument (ANSI only)

The va_arg, va_end, and va_start macros provide a portable way to access the
arguments to a function when the function takes a variable number of arguments.
Two versions of the macros are available: The macros defined in STDARG.H
conform to the ANSI C standard, and the macros defined in VARARGS.H are
compatible with the UNIX System V definition. The macros are:

va_alist Name of parameter to called function (UNIX version only)

va_arg Macro to retrieve current argument

va_del Declaration of va_alist (UNIX version only)

va_end Macro to reset arg-JJtr

va_list typedef for pointer to list of arguments defined in STDIO.H

va_start Macro to set arg-JJtr to beginning of list of optional arguments (UNIX
version only)

Both versions of the macros assume that the function takes a fixed number of
required arguments, followed by a variable number of optional arguments. The
required arguments are declared as ordinary parameters to the function and can be
accessed through the parameter names. The optional arguments are accessed through
the macros in STDARG.H or VARARGS.H, which set a pointer to the first optional
argument in the argument list, retrieve arguments from the list, and reset the pointer
when argument processing is completed.

The ANSI C standard macros, defined in STDARG.H, are used as follows:

• All required arguments to the function are declared as parameters in the usual
way. va_del is not used with the STDARG.H macros.

• va_start sets arg-JJtr to the first optional argument in the list of arguments passed
to the function. The argument arg-JJtr must have va_list type. The argument
prev -JJaram is the name of the required parameter immediately preceding the first
optional argument in the argument list. If prev -JJaram is declared with the register
storage class, the macro's behavior is undefined. va_start must be used before
va_arg is used for the first time.

• va_arg retrieves a value of type from the location given by arg-JJtr and increments
arg-JJtr to point to the next argument in the list, using the size of type to
determine where the next argument starts. va_arg can be used any number of
times within the function to retrieve arguments from the list.

• After all arguments have been retrieved, va_end resets the pointer to NULL.

The UNIX System V macros, defined in VARARGS.H, operate somewhat differently:

• Any required arguments to the function can be declared as parameters in the usual
way.

• The last (or only) parameter to the function represents the list of optional
arguments. This parameter must be named va_alist (not to be confused with
va_list, which is defined as the type of va_alist).

• va_del appears after the function definition and before the opening left brace of
the function. This· macro is defined as a complete declaration of the va_alist
parameter, including the terminating semicolon; therefore, no semicolon should
follow va_del.

665

Example

666

• Within the function, va_start sets arg-ptr to the beginning of the list of optional
arguments passed to the function. va_start must be used before va_arg is used for
the first time. The argument arg-ptr must have va_list type.

• va_arg retrieves a value of type from the location given by arg-ptr and increments
arg-ptr to point to the next argument in the list, using the size of type to
determine where the next argument starts. va_arg can be used any number of
times within the function to retrieve the arguments from the list.

• After all arguments have been retrieved, va_end resets the pointer to NULL.

1* VA.C: The program below illustrates paSSing a variable
* number of arguments using the following macros:
* va_start va_arg va_end
* va_list va_dcl (UNIX only)
*1

#include <stdio.h>
Ildefine ANSI
#ifdef ANSI
#include <stdarg.h>
int average(int first.
#else
#include <varargs.h>
int average(va_list);
#endif

void main(void
{

1* Comment out for UNIX version
1* ANSI compatible version

. ..);

1* UNIX compatible version

1* Call with 3 integers (-1 is used as terminator). *1
printf("Average is: %d\n". average(2. 3. 4. -1));

1* Call with 4 integers. *1
printf("Average is: %d\n". average(5. 7. 9. 11. -1));

1* Call with just -1 terminator. *1
printf("Average is: %d\n". average(-1));

}

1* Returns the average of a variable list of integers. *1
#ifdef ANSI 1* ANSI compatible version *1
int average(int first •...)
{

int count = 0. sum = 0. i = first;
va_list marker;

*1
*1

*1

va_start(marker. first);
while(i != -1)

1* Initialize variable arguments. *1

Output

sum += i;
count++;
i = va_arg(marker, int);

va_end(marker);
return(sum? (sum / count)

}

/* Reset variable arguments.
o);

*/

#else /* UNIX compatible version must use old-style definition. */
int average(va_alist
va_del
{

int i, count, sum;
va_list marker;

va_start(marker);
for(sum = count 0; (i

sum += i;
va_end(marker);
return(sum? (sum / count)

}

#endif

Average is: 3
Average is: 8
Average is: 0

See Also vfprintf

/* Initialize variable arguments. */
va_arg(marker, int» != -1; count++)

/* Reset variable arguments.
o);

*/

vprintf Functions

Remarks

Each of the vprintf functions takes a pointer to an argument list, then formats and
writes the given data to a particular destination.

vfprintf, vfwprintf

vprintf, vwprintf

_ vsnprintf, _ vsnwprintf

vsprintf, vswprintf

The vprintf functions are similar to their counterpart functions as listed in the
following table. However, each vprintf function accepts a pointer to an argument list,
whereas each of the counterpart functions accepts an argument list.

These functions format data for output to destinations as follows.

vprintf Functions

667

vprintf Functions

Function Counterpart Function Output Destination

vfprintf fprintf stream

vfwprintf fwprintf stream

vprintf printf stdont

vwprintf wprintf stdont

vsprintf sprintf memory pointed to by buffer

vswprintf swprintf memory pointed to by buffer

_vsnprintf _snprintf memory pointed to by buffer

_ vsnwprintf _snwprintf memory pointed to by buffer

The argptr argument has type va_list, which is defined in VARARGS.H and
STDARG.H. The argptr variable must be initialized by va_start, and may be
reinitialized by subsequent va_arg calls; argptr then points to the beginning of a list
of arguments that are converted and transmitted for output according to the
corresponding specifications in the format argument. format has the same form and
function as the format argument for printf. None of these functions invokes va_end.
For a more complete description of each vprintf function, see the description of its
counterpart function as listed in the preceding table.

_ vsnprintf differs from vsprintf in that it writes no more than count bytes to buffer.

vfwprintf, _ vsnwprintf, vswprintf, and vwprintf are wide-character versions of
vfprintf, _ vsnprintf, vsprintf, and vprintf, respectively; in each of these wide­
character functions, buffer andformat are wide-character strings. Otherwise, each
wide-character function behaves identically to its SBCS counterpart function.

For vsprintf, vswprintf, _ vsnprintf and _ vsnwprintf, if copying occurs between
strings that overlap, the behavior is undefined.

See Also fprintf, printf, sprintf, va_arg

vfprintf, vfwprintf

668

Write formatted output using a pointer to a list of arguments.

int vfprintf(FILE *stream, const char *format, va_list argptr);
int vfwprintf(FILE *stream, const wchar_t *format, va_list argptr);

Routine Required Header

vfprintf <stdio.h> and
<stdarg.h>

vfwprintf <stdio.h> or <wchar.h>,
and <stdarg.h>

1 Required for UNIX V compatibility.

Optional Headers

<varargs.h>l

<varargs.h>l

Compatibility

ANSI, Win 95, Win NT,
68K,PMac

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
vfprintf and vfwprintf return the number of characters written, not including the
terminating null character, or a negative value if an output error occurs.

Parameters

Remarks

stream Pointer to FILE structure

format Format specification

argptr Pointer to list of arguments

For more information, see "printf Format Specification Fields" on page 485.

Each of these functions takes a pointer to an argument list, then formats and writes
the given data to stream.

See Also fprintf, printf, sprintf, va_arg

vprintf, vwprintf
Write formatted output using a pointer to a list of arguments.

int vprintf(const char *format, va_list argptr);
int vwprintf(const wchar_t *format, va_list argptr);

Routine Required Header Optional Headers

vprintf <stdio.h> and <stdarg.h> <varargs.h>l

vwprintf <stdio.h> or <wchar.h>, <varargs.h>l
and <stdarg.h>

1 Required for UNIX V compatibility.

Compatibility

ANSI, Win 95, Win NT,
68K,PMac

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

vprintf Functions

669

vprintf Functions

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
vprintf and vwprintf return the number of characters written, not including the
terminating null character, or a negative value if an output error occurs.

Parameters

Remarks

format Format specification

argptr Pointer to list of arguments

Each of these functions takes a pointer to an argument list, then formats and writes
the given data to stdout.

See Also fprintf, printf, sprintf, va_arg

_ vsnprintf, _ vsnwprintf

670

Write formatted output using a pointer to a list of arguments.

int _ vsnprintf(char *buffer, size_t count, const char *format, va_list argptr);
int _ vsnwprintf(wchar_t *buffer, size_t count, const wchar_t *format, va_list argptr);

Routine Required Header Optional Headers Compatibility

_vsnprintf <stdio.h> and <stdarg.h> <varargs.h>l Win 95, Win NT,
Win32s, 68K, PMac

_ vsnwprintf <stdio.h> or <wchar.h>, <varargs.h>l Win 95, Win NT,
and <stdarg.h> Win32s

1 Required for UNIX V compatibility.

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
_ vsnprintf and _ vsnwprintf return the number of characters written, not including
the terminating null character, or a negative value if an output error occurs. For
_ vsnprintf, if the number of bytes to write exceeds buffer, then count bytes are
written and -1 is returned.

Parameters

Remarks

buffer Storage location for output

count Maximum number of bytes to write

format Format specification

argptr Pointer to list of arguments

Each of these functions takes a pointer to an argument list, then formats and writes
the given data to the memory pointed to by buffer.

See Also fprintf, printf, sprintf, va_arg

vsprintf, vswprintf
Write formatted output using a pointer to a list of arguments.

int vsprintf(char *buffer, const char *format, va_list argptr);
int vswprintf(wchar_t *buffer, size_t count, const wchar_t *format, va_list argptr);

Routine Required Header Optional Headers Compatibility

vsprintf <stdio.h> and <stdarg.h> <varargs.h>1 ANSI, Win 95, Win NT,
Win32s, 68K, PMac

vswprintf <stdio.h> or <wchar.h>, <varargs.h>l ANSI, Win 95, Win NT,
and <stdarg.h> Win32s

1 Required for UNIX V compatibility.

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

vprintf Functions

671

wcstombs

Return Value
vsprintf and vswprintf return the number of characters written, not including the
terminating null character, or a negative value if an output error occurs. For
vswprintf, a negative value is also returned if count or more wide characters are
requested to be written.

Parameters

Remarks

buffer Storage location for output

format Format specification

argptr Pointer to list of arguments

count Maximum number of bytes to write

Each of these functions takes a pointer to an argument list, then formats and writes
the given data to the memory pointed to by buffer.

See Also fprintf, printf, sprintf, va_arg

wcstombs
Converts a sequence of wide characters to a corresponding sequence of multi byte
characters.

size_t wcstombs(char *mbstr, coost wchar_t *wcstr, size_t count);

Routine Required Header Optional Headers Compatibility

wcstombs <stdlib.h> ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value

672

If wcstombs successfully converts the multibyte string, it returns the number of bytes
written into the multibyte output string, excluding the terminating NULL (if any). If
the mbstr argument is NULL, wcstombs returns the required size of the destination
string. If wcstombs encounters a wide character it cannot be convert to a multibyte
character, it returns -1 cast to type size_t.

Parameters

Remarks

Example

mbstr The address of a sequence of multibyte characters

wcstr The address of a sequence of wide characters

count The maximum number of bytes that can be stored in the multibyte output
string

The wcstombs function converts the wide-character string pointed to by wcstr to the
corresponding multibyte characters and stores the results in the mbstr array. The
count parameter indicates the maximum number of bytes that can be stored in the
multibyte output string (that is, the size of mbstr). In general, it is not known how
many bytes will be required when converting a wide-character string. Some wide
characters will require only one byte in the output string; others require two. If there
are two bytes in the multibyte output string for every wide character in the input
string (including the wide character NULL), the result is guaranteed to fit.

If wcstombs encounters the wide-character null character (L' \0') either before or
when count occurs, it converts it to an 8-bit 0 and stops. Thus, the multibyte
character string at mbstr is null-terminated only if wcstombs encounters a wide­
character null character during conversion. If the sequences pointed to by wcstr and
mbstr overlap, the behavior of wcstombs is undefined.

If the mbstr argument is NULL, wcstombs returns the required size of the
destination string.

/* WCSTOMBS.C illustrates the behavior of the wcstombs function. */

#include <stdio.h>
#include <stdlib.h>

void main(void
{

i nt i ;
char *pmbbuf
wchar t *pwchello

(char *)malloc(MB_CUR_MAX);
L"Hello. world.";

printf("Convert wide-character string:\n");
i = wcstombs(pmbbuf. pwchello. MB_CUR_MAX);
printf("\tCharacters converted: %u\n". i);
printf("\tMultibyte character: %s\n\n". pmbbuf);

wcstombs

673

wctomb

Output
Convert wide-character string:

Characters converted: 1
Multibyte character: H

See Also mblen, mbstowcs, mbtowc, wctomb

wctomb
Converts a wide character to the corresponding multibyte character.

int wctomb(char *mbchar, wchar_t wchar);

Routine Required Header Optional Headers Compatibility

wctomb <stdlib.h> ANSI, Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

Lmc.Lm

LmCMT.Lm

MSYCRT.Lm

MSYCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If wctomb converts the wide character to a multibyte character, it returns the number
of bytes (which is never greater than MB _CUR_MAX) in the wide character. If
wchar is the wide-character null character (L'\O'), wctomb returns 1. If the
conversion is not possible in the current locale, wctomb returns -1.

Parameters

Remarks

674

mbchar The address of a multibyte character

wchar A wide character

The wctomb function converts its wchar argument to the corresponding multibyte
character and stores the result at mbchar. You can call the function from any point in
any program.

Example

Output

/* WCTOMB.CPP illustrates the behavior of the wctomb function */

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

}

i nt i;
wchar_t wc = L'a';
char *pmbnull = NULL;
char *pmb = (char *)malloc(sizeof(char));

printf("Convert a wide character:\n");
i = wctomb(pmb, wc);
printf("\tCharacters converted: %u\n", i);
printf("\tMultibyte character: %.ls\n\n", pmb);

printf("Attempt to convert when target is NULL:\n");
i = wctomb(pmbnull, wc);
printf("\tCharacters converted: %u\n", i);
printf("\tMultibyte character: %.ls\n", pmbnull);

Convert a wide character:
Characters converted: 1
Multibyte character: a

Attempt to convert when target is NULL:
Characters converted: 0
Multibyte character: (

See Also mblen, mbstowcs, mbtowc, wcstombs

write
Writes data to a file.

int _ write(int handle, const void *buffer, unsigned int count);

Routine Required Header

_write <io.h>

Optional Headers Compatibility

Win 95, Win NT,
Win32s, 68K, PMac

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

675

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

Return Value
If successful, _write returns the number of bytes actually written. If the actual space
remaining on the disk is less than the size of the buffer the function is trying to write
to the disk, _write fails and does not flush any of the buffer's contents to the disk. A
return value of -1 indicates an error. In this case, errno is set to one of two values:
EBADF, which means the file handle is invalid or the file is not opened for writing,
or ENOSPC, which means there is not enough space left on the device for the
operation.

If the file is opened in text mode, each linefeed character is replaced with a carriage
return -linefeed pair in the output. The replacement does not affect the return value.

Parameters

Remarks

Example

676

handle Handle of file into which data is written

buffer Data to be written

count Number of bytes

The _write function writes count bytes from buffer into the file associated with
handle. The write operation begins at the current position of the file pointer (if any)
associated with the given file. If the file is open for appending, the operation begins
at the current end of the file. After the write operation, the file pointer is increased by
the number of bytes actually written.

When writing to files opened in text mode, _write treats a CTRL+Z character as the
logical end-of-file. When writing to a device, _write treats a CTRL+Z character in the
buffer as an output terminator.

1* WRITE.C: This program opens a file for output
* and uses _write to write some bytes to the file.
*1

Ifinclude <io.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

char buffer[] = "This is a test of '_write' function";

Output

void maine void)
{

int fh:
unsigned byteswritten;

if((fh = _open("write.o", _O_RDWR I _O_CREAT,
_S_IREAD I _S_IWRITE » != -1

if« byteswritten = _write(fh, buffer, sizeof(buffer ») -1)
perror("Write fa il ed"):

else
printf("Wrote %u bytes to file\n", byteswritten):

_close(fh):

Wrote 36 bytes to file

See Also fwrite, _open, _read

_wtoi, wtol
Converts a wide-character string to an integer Lwtoi) or to a long integer Lwtol).

int _wtoi(const wchar_t *string);
long _wtol(const wchar_t *string);

Routine

_wtoi

_wtol

Required Header

<stdlib.h> or <wchar.h>

<stdlib.h> or <wchar.h>

Optional Headers Compatibility

Win 95, Win NT, Win32s

Win 95, Win NT, Win32s

For additional compatibility information, see "Compatibility" on page ix in the
Introduction.

Libraries

LffiC.Lffi

LffiCMT.Lffi

MSVCRT.LIB

MSVCRTxO.DLL

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRTxO.DLL, retail version

Multithread DLL library, retail version

_ wtoi, _ wtol

677

_wtoi, _wtol

Return Value
Each function returns the int or long value produced by interpreting the input
characters as a number. If the input cannot be converted to a value of the appropriate
type, _ wtoi returns 0 and _ wtol returns OL. The return value is undefined in case of
overflow.

Parameter

Remarks

Example

678

string String to be converted

The _ wtoi function converts a wide-character string to an integer value. _ wtol
converts a wide-character string to a long integer value. The input string is a
sequence of characters that can be interpreted as a numerical value of the specified
type. The output value is affected by the setting of the LC_NUMERIC category of
the current locale. (For more information on the LC_NUMERIC category, see
setloeale.The function stops reading the input string at the first character that it
cannot recognize as part of a number. This character may be the null character (L'\O')
terminating the string.

The string argument for these functions has the form

[whites pace] [sign]digits

A whitespace consists of space and/or tab characters, which are ignored. sign is either
plus (+) or minus (-). digits is one or more decimal digits. _ wtoi and _ wtol do not
recognize decimal points or exponents.

See the example for atoi.

See Also atoi, _eevt, _fevt, _gevt

APPENDIX A

Language and Country Strings

Language and Country Strings
The locale argument to the setlocale function takes the following form:

locale "lang[_country[.code_pageJJ"
I ".code_page"
I ""
I NULL

This appendix lists the language strings and country strings available to setlocale.
All country and language codes currently supported by the Win32 NLS API are
supported by setlocale. For information on code pages, see "Code Pages" on page 23
in Chapter 1.

Language Strings
The following language strings are recognized by setlocale. Any language not
supported by the operating system is not accepted by setlocale. The three-letter
language-string codes are only valid in Windows NT and Windows 95.

Primary
Language Sublanguage Language String

Chinese Chinese "chinese"

Chinese Chinese (simplified) "chinese-simplified" or "chs"

Chinese Chinese (traditional) "chinese-traditional" or "cht"

Czech Czech "csy" or "czech"

Danish Danish "dan"or "danish"

Dutch Dutch (Belgian) "belgian", "dutch-belgian", or "nIb"

Dutch Dutch (default) "dutch" or "nId"

English English (Australian) "australian", "ena", or "english-aus"

679

Run-Time Library Reference

680

Primary
Language

English

English

English

English

English

Finnish

French

French

French

French

German

German

German

Greek

Hungarian

Icelandic

Italian

Italian

Japanese

Korean

Norwegian

Norwegian

Norwegian

Polish

Portuguese

Portuguese

Russian

Slovak

Spanish

Spanish

Spanish

Swedish

Turkish

Sublanguage

English (Canadian)

English (default)

English (New Zealand)

English (UK)

English (USA)

Finnish

French (Belgian)

French (Canadian)

French (default)

French (Swiss)

German (Austrian)

German (default)

German (Swiss)

Greek

Hungarian

Icelandic

Italian (default)

Italian (Swiss)

Japanese

Korean

Norwegian (Bokmal)

Norwegian (default)

Norwegian (Nynorsk)

Polish

Portuguese (Brazilian)

Portuguese (default)

Russian (default)

Slovak

Spanish (default)

Spanish (Mexican)

Spanish (Modem)

Swedish

Turkish

Language String

"canadian", "enc", or "english-can"

"english"

"english-nz" or "enz"

"eng", "english-uk", or "uk"

"american", "american english",
"american-english", "english-american",
"english-us", "english-usa", "enu", "us",
or "usa"

"fin" or "finnish"

"frb" or "french-belgian"

"frc" or "french-canadian"

"fra" or "french"

"french-swiss" or "frs"

"dea" or "german-austrian"

"deu" or "german"

"des", "german-swiss", or "swiss"

"ell" or "greek"

"hun" or "hungarian"

"icelandic" or "isl"

"ita" or "italian"

"italian-swiss" or "its"

"japanese" or "jpn"

"kor" or "korean"

"nor" or "norwegian-bokrnal"

"norwegian"

"non" or "norwegian-nynorsk"

"plk" or "polish"

"portuguese-brazilian" or "ptb"

"portuguese" or "ptg"

"rus" or "russian"

"sky" or "slovak"

"esp" or "spanish"

"esm" or "spanish-mexican"

"esn" or "spanish-modem"

"sve" or "swedish"

"trk" or "turkish"

Appendix A Language and Country Strings

Country Strings
The following is a list of country strings recognized by setlocale. Strings for
countries that are not supported by the operating system are not accepted by
setlocale. Three-letter country-name codes are from ISOIIEC (International
Organization for Standardization, International Electrotechnical Commission)
specification 3166.

Country Country String

Australia "aus" or "australia"

Austria "austria" or "aut"

Belgium "bel" or "belgium"

Brazil "bra" or "brazil"

Canada "can" or "canada"

Czech Republic "cze" or "czech"

Denmark "denmark" or "dnk"

Finland "fin" or "finland"

France "fra" or "france"

Germany "deu" or "germany"

Greece "grc" or "greece"

Hong Kong "hkg", "hong kong", or "hong-kong"

Hungary "hun" or "hungary"

Iceland "iceland" or "isl"

Ireland "ireland" or "irl"

Italy "ita" or "italy"

Japan "japan" or "jpn"

Mexico "mex" or "mexico"

Netherlands "nld", "holland", or "netherlands"

New Zealand "new zealand", "new-zealand", "nz", or "nzl"

Norway "nor" or "norway"

People's Republic of China "china", "chn", "pr china", or "pr-china"

Poland "pol" or "poland"

Portugal "prt" or "portugal"

Russia "rus" or "russia"

Singapore "sgp" or "singapore"

Slovak Repubic "svk" or "slovak"

South Korea "kor", "korea", "south korea", or "south-korea"

Spain "esp" or "spain"

Sweden "swe" or "sweden"

681

Run-Time Library Reference

682

Country

Switzerland

Taiwan

Turkey

United Kingdom

United States of America

Country String

"che" or "switzerland"

"taiwan" or "twn"

"tur" or "turkey"

"britain", "england", "gbr", "great britain", "uk", "united
kingdom", or "united-kingdom"

"america", "united states", "united-states", "us", or "usa"

APPENDIX B

Generic-Text Mappings

To simplify writing code for international markets, generic-text mappings are defined
in TCHAR.H for:

• Data types

• Constants and global variables

• Routine mappings

For more information, see "Using Generic-Text Mappings" on page 25 in Chapter 1.
Generic-text mappings are Microsoft extensions that are not ANSI-compatible.

Data Type Mappings
These data-type mappings are defined in TCHAR.H and depend on whether the
constant _UNICODE or _MBCS has been defined in your program.

Generic-Text Data Type Mappings

Generic-Text SBCS l UNICODE, -MBCS -UNICODE
Data Type Name _MBCS Not Defined) Defined Defined

_TCHAR char char wchar_t

- TINT int int winet

- TSCHAR signed char signed char wchar_t

_TUCHAR unsigned char unsigned char wchar_t

- TXCHAR char unsigned char wchar_t

_T or _TEXT No effect (removed by No effect L (converts following
preprocessor) (removed by character or string to its

preprocessor) Unicode counterpart)

683

Run-Time Library Reference

Constant and Global Variable Mappings
These generic-text constant, global variable, and standard-type mappings are defined
in TCHAR.H and depend on whether the constant _UNICODE or _MBCS has been
defined in your program.

Generic-Text Constant and Global Variable Mappings

Generic-Text - SBCS lUNICODE,
Object Name _MBCS Not Defined) -MBCS Defined -UNICODE Defined

TEOF EOF EOF WEOF -

_tenviron _environ _environ _wenviron

_tfinddata_t _finddata_t _finddata_t _ wflnddata_t

Routine Mappings

684

The following generic-text routine mappings are defined in TCHAR.H. _tccpy and
_tdeo map to functions in the MBCS model; they are mapped to macros or inline
functions in the SBCS and Unicode models for completeness.

Generic-Text Routine Mappings

Generic-Text SBCS lUNICODE,
Routine Name _MBCS Not Defined) _MBCS Defined _UNICODE Defined

_fgettc fgetc fgetc fgetwc

_fgettchar fgetchar fgetchar _fgetwchar

_fgetts fgets fgets fgetws

_fputtc fputc fputc fputwc

_fputtchar fputchar fputchar _fputwchar

_fputts fputs fputs fputws

_ftprintf fprintf fprintf fwprintf

_ftscanf fscanf fscanf fwscanf

_gettc getc getc getwc

_gettchar getchar getchar getwchar

_getts gets gets getws

_istalnum isalnum _ismbcalnum iswalnum

_istalpha isalpha _ismbcalpha iswalpha

_istascii _isascii _isascii iswascii

_istcntrl iscntrl iscntrl iswcntrl

_istdigit isdigit _ismbcdigit iswdigit

Generic-Text Routine Mappings (continued)

Generic-Text
Routine Name

_istgraph

_istlead

_istleadbyte

_istlegal

_istlower

_istprint

_istpunct

_istspace

_istupper

_istxdigit

_itot

_Itot

_puttc

_puttchar

_putts

_tmain

_sntprintf

_stprintf

_stscanf

_taccess

_tasctime

_tccpy

_tchmod

_tcreat

_tcscat

_tcschr

_tcsclen

_tcscmp

_tcscoll

_tcscpy

_tcscspn

SBCS lUNICODE,
_ MBCS Not Defined)

isgraph

Always returns false

Always returns false

Always returns true

islower

isprint

ispunct

isspace

isupper

isxdigit

_itoa

_ltoa

putc

putchar

puts

main

_snprintf

sprintf

sscanf

_access

asctime

Maps to macro or inline
function

_chdir

Maps to macro or inline
function

_chmod

_creat

strcat

strchr

strlen

strcmp

strcoll

strcpy

strcspn

_MBCS Defined

_ismbcgraph

_ismbblead

isleadbyte

_ismbclegal

_ismbclower

_ismbcprint

_ismbcpunct

_ismbcspace

_ismbcupper

isxdigit

_itoa

_Itoa

putc

putchar

puts

main

_snprintf

sprintf

sscanf

_access

asctime

_mbccpy

_chmod

_creat

_mbscat

_mbschr

_mbslen

_mbscmp

_mbscoll

_mbscpy

_mbscspn

Appendix B Generic Text Mappings

_UNICODE Defined

iswgraph

Always returns false

Always returns false

Always returns true

iswlower

iswprint

iswpunct

iswspace

iswupper

iswxdigit

_itow

_ltow

putwc

putwchar

putws

wmain

_snwprintf

swprintf

swscanf

_waccess

_wasctime

Maps to macro or inline
function

_wchdir

Maps to macro or inline
function

_wchmod

_wcreat

wcscat

wcschr

wcslen

wcscmp

wcscoll

wcscpy

wcscspn

685

Run-Time Library Reference

Generic-Text Routine Mappings (continued)

686

Generic-Text
Routine Name

_tcsdec

_tcsdup

_tcsftime

_tcsicmp

_tcsicoll

_tcsinc

_tcslen

_tcslwr

_tcsnbcnt

_tcsncat

_tcsnccat

_tcsncmp

_tcsnccmp

_tcsnccnt

_tcsnccpy

_tcsncicmp

_tcsncpy

_tcsncset

_tcsnextc

_tcsnicmp

_tcsnicoll

_tcsninc

_tcsnccnt

_tcsnset

_tcspbrk

_tcsspnp

_tcsrchr

_tcsrev

_tcsset

_tcsspn

_tcsstr

_tcstod

_tcstok

_testol

_testoul

SBCS lUNICODE,
_MBCS Not Defined)

_strdec

_strdup

strftime

_stricmp

_stricoll

_strinc

strlen

_strlwr

_strncnt

strncat

strncat

strncmp

strncmp

_strncnt

strncpy

_strnicmp

strncpy

_strnset

_strnextc

_strnicmp

_strnicoll

_strninc

_strncnt

_strnset

strpbrk

_strspnp

strrchr

_strrev

_strset

strspn

strstr

strtod

strtok

strtol

strtoul

_MBCS Defined

_mbsdec

_mbsdup

strftime

_mbsicmp

_stricoll

_mbsinc

_mbslen

_mbslwr

_mbsnbcnt

_mbsnbcat

_mbsncat

_mbsnbcmp

_mbsncmp

_mbsnccnt

_mbsncpy

_mbsnicmp

_mbsnbcpy

_mbsnset

_mbsnextc

_mbsnicmp

_strnicoll

_mbsninc

_mbsnccnt

_mbsnbset

_mbspbrk

_mbsspnp

_mbsrchr

_mbsrev

_mbsset

_mbsspn

_mbsstr

strtod

_mbstok

strtol

strtoul

_UNICODE Defined

_wcsdec

_wcsdup

wcsftime

_wcsicmp

_wcsicoll

_wcsinc

wcslen

_wcslwr

_wcnscnt

wcsncat

wcsncat

wcsncmp

wcsncmp

_wcsncnt

wcsncpy

_wcsnicmp

wcsncpy

_wcsnset

_wcsnextc

_wcsnicmp

_wcsnicoll

_wcsninc

_wcsncnt

_wcsnset

wcspbrk

_wcsspnp

wcsrchr

_wcsrev

_wcsset

wcsspn

wcsstr

wcstod

wcstok

wcstol

wcstoul

Generic-Text Routine Mappings (continued)

Generic-Text
Routine Name

_tcsupr

_tcsxfrm

_tctime

_texecl

_texecle

_texeclp

_texeclpe

_texecv

_texecve

_texecvp

_texecvpe

_tfdopen

_tfindfirst

_tfindnext

_tfopen

_tfreopen

_tfsopen

_tfullpath

_tgetcwd

_tgetenv

_tmain

_tmakepath

_tmkdir

_tmktemp

_tperror

_topen

_totlower

_totupper

_tpopen

_tprintf

_tremove

_trename

_trmdir

_tsearchenv

_tscanf

SBCS lUNICODE,
_ MBCS Not Defined)

_strupr

strxfrm

ctime

_execl

_execle

_execlp

_execlpe

_execv

_execve

_execvp

_execvpe

_fdopen

_findfirst

_findnext

fopen

freopen

_fsopen

_fullpath

_getcwd

getenv

main

_makepath

_mkdir

_mktemp

perror

_open

tolower

toupper

_popen

printf

remove

rename

_rmdir

_searchenv

scanf

_MBCS Defined

_mbsupr

strxfrm

ctime

_execl

_execle

_execlp

_execlpe

_execve

_execvp

_execvpe

_fdopen

_findfirst

_findnext

fopen

freopen

_fsopen

_fnllpatb

~etcwd

getenv

main

_makepath

_mkdir

_mktemp

perror

_open

_mbctolower

_mbctoupper

_popen

printf

remove

rename

_rmdir

_searchenv

scanf

Appendix B Generic Text Mappings

_UNICODE Defined

_wcsupr

wcsxfrm

_wctime

_wexecl

_wexecle

_wexeclp

_wexeclpe

_wexecv

_wexecve

_wexecvp

_wexecvpe

_wfdopen

_ wfindfirst

_wfindnext

_wfopen

_wfreopen

_wfsopen

_wfnllpath

_wgetcwd

_wgetenv

wmain

_wmakepath

_wmkdir

_wmktemp

_wperror

_wopen

towlower

towupper

_wpopen

wprintf

_wremove

_wrename

_wrmdir

_ wsearchenv

wscanf

687

Run-Time Library Reference

Generic-Text Routine Mappings (continued)

688

Generic-Text
Routine Name

_tsetlocale

_tsopen

_tspawnl

_tspawnle

_tspawnlp

_tspawnlpe

_tspawnv

_tspawnve

_tspawnvp

_tspawnvpe

_tsplitpath

_tstat

_tstrdate

_tstrtime

_tsystem

_ttempnam

_ttmpnam

_ttoi

_ttol

_tutime

_tWinMain

_ultot

_ungettc

_vftprintf

_ vsntprintf

_vstprintf

_vtprintf

SBCS l UNICODE,
_MBCS Not Defined)

setlocale

_sopen

_spawnl

_spawnle

_spawnlp

_spawnlpe

_spawnv

_spawnve

_spawnvp

_spawnvpe

_splitpath

_stat

_strdate

_strtime

system

_tempnam

tmpnam

atoi

atol

_utime

WinMain

_ultoa

ungetc

vfprintf

_vsnprintf

vsprintf

vprintf

_MBCS Defined

setlocale

_sopen

_spawnl

_spawnle

_spawnlp

_spawnlpe

_spawnv

_spawnve

_spawnvp

_spawnvpe

_splitpath

_stat

_strdate

_strtime

system

_tempnam

tmpnam

atoi

atol

_utime

WinMain

_ultoa

ungetc

vfprintf

_vsnprintf

vsprintf

vprintf

_UNICODE Defined

_ wsetlocale

_wsopen

_wspawnl

_wspawnle

_wspawnlp

_wspawnlpe

_wspawnv

_wspawnve

_tspawnvp

_tspawnvpe

_ wsplitpath

_wstat

_wstrdate

_wstrtime

_wsystem

_wtempnam

_wtmpnam

_wtoi

_wtol

_wutime

wWinMain

_ultow

ungetwc

vfwprintf

_ vsnwprintf

vswprintf

vwprintf

A
abort function 167
Aborting

abort function 167
assert macro 177

abs function 169
Absolute paths, converting relative paths to with

fullpath function 318
Absolute values, calculating

abs function 169
floating-point 255
labs function 388

Accessing variable-argument lists, va_arg, va_end, and
va_start functions 664

acos function 172
Adding memory to heaps, _heapadd function 341
_alloca function 173
Allocating memory See Memory allocation
Allocation hook functions 87
Allocation hooks, using C run-time library functions

in 88
_amblksize variable 39
ANSI C compatibility ix
ANSI C compliance x
ANSI code pages 22
API compatibility ix
Appending

bytes of strings, _mbsnbcat function 428
characters of strings, stmcat, wcsncat, _mbsncat

functions 602
strings, strcat, wcscat, _mbscat functions 576

Arccosines, calculating, _acos function 172
Arcsines, calculating, asin function 176
Arctangents, calculating, atan function 179
Argument lists, routines for accessing variable

length 1
Argument-list routines 1

Index

Arguments
floating-point, calculating absolute value, fabs

function 255
type checking of xiii
variable, accessing lists, va_arg, va_end, and

va_start functions 664
Arrays

searching, bsearch function 191
sorting, qsort function 497

asctime function 174
asin function 176
_ASSERT and_ASSERTE macros 103
assert macro 177
atan function 179
atan2 function 179
atexit function 180

B
Backward compatibility, structure names xi
Base version vs. Debug version 84
_beginthread function 184
_beginthreadex function 184
Bessel functions 188
_bexpand function 253
Binary and text file-translation modes 15
Bits, rotating

_lrotl and _lrotr functions 404
_rod and _rotr functions 513

Blocks, types of on Debug heap 80
Buffer-manipulation routines

described 2
(list) 2

Buffers
committing contents to disk 18
controlling and setting size, setvbuf function 541
moving one to another, memmove function 453
setting to specified character, memset function 454
stream control, setbuf function 523

Byte classification
isleadbyte macro 366
routines (list) 2

689

690

Byte-conversion routines, (list) 4
Bytes

c

appending from strings, _mbsnbcat function 428
converting individual 4
locking or unlocking, _locking function 398
reading from input port, _inp and _inpw

functions 351
swapping, _swab function 633
testing individual 2
writing to output port, _outp and _outpw

functions 471

C Run-Time Retail Libraries ix
C++, using debug heap from 86
_c_exit function 197
_cabs function 193
_cabsl function 193
Calculating

absolute value 481
arguments, abs function 169
complex numbers, _cabs and _cabsl

functions 193
floating-point arguments, fabs function 255
long integers, labs function 388

arccosines, acos function 172
arcsines, asin function 176
arctangents, atan function 179
ceilings of values, ceil and ceill functions 196
cosines, cos functions 216
exponentials, exp and expl functions 252
floating-point remainders, fmod function 281
floors of values, floor function 279
hypotenuses, _hypot function 349
logarithms, log functions 400
square roots, sqrt function 568
tangents, tan functions 636
time used by calling process, clock function 208

calloc function 194
_calloc_dbg 107
Case sensitivity, operating systems xi
ceil function 196
ceill function 196
_cexit function 197
_cgets function 198
Changing

current drives, _chdir function 201
file size, _chsize function 204

Changing (continued)
file-permission settings, _chmod, _ wchmod

functions 202
memory block size, _expand functions 253

Character classification routines (list) 3
Character devices, checking, _isatty function 365
Character sets

described 22
scanning strings for characters, strpbrk, wcspbrk,

_mbspbrk routines 610
Character strings, getting from console, _cgets

function 198
Characters

appending from strings, stmcat, wcsncat, _mbsncat
functions 602

comparing
from two strings, _mbsnbcmp 429
from two strings, stmcmp, wcsncmp, _mbsncmp

functions 603
in two buffers (case-insensitive characters),

_memicmp function 451
in two buffers, memcmp function 448
of two strings, _stmicmp, _ wcsnicmp,

_mbsnicmp functions 435,607
converting

multibyte to wide 443
series of wide to multibyte, wcstombs

function 672
_toascii, tolower, toupper functions 647
wide to multibyte, wctomb function 674

copying
between buffers, memcpy function 449
from buffers, _memccpy function 445

copying from strings, stmcpy, wcsncpy, _mbsncpy
functions 605

finding
in buffers, memchr function 446
in strings, strchr, wcschr, _mbschr

functions 577
next in strings, _mbsnextc,_stmextc, _ wcsnextc

routines 438
formatting and printing to console, _cprintf

function 217
getting from console, ~etch and ~etche

functions 326
multibyte

comparing 440
converting to wide, mbstowcs function 441
converting 417,420-424

Characters (continued)
multibyte (continued)

copying 419,434
counting 431
determining type in string 425
determining type 418
finding length 421
getting length and determining validity, mblen

function 421
of strings, initializing to given characters

_mbsnbset function 436
_stmset, _ wcsnset, _mbsnset functions 609

printing to output stream, printf, wprintf
functions 482

pushing back
last read from console, _ungetch function 659
onto streams, ungetc and ungetwc functions 657

reading from streams
fgetc and jgetchar functions 266
fgetc, fgetwc, jgetchar, and jgetwchar

functions 266
getc and getchar functions and macros 324

reversing in strings, _strrev, _ wcsrev, _mbsrev
functions 613

scanning strings
for last occurrence of, strrchr, wcsrchr, _mbsrchr

routines 612
for specified character sets, strpbrk, wcspbrk,

_mbspbrk routines 610
setting

buffers to specified, memset function 454
in strings to, _strset, _ wcsset, _mbsset

functions 614
testing individual 3
writing

to console, _putch function 492
to streams, fputc, fputwc,_fputchar, and

jputwchar functions 294
_chdrive function 201
Checking

character device, _isatty function 365
console for keyboard input, _kbhit function 386
heaps, _heapset function 344

3hgsign function 202
Child processes, defined 33
_chmod function 202
_chsize function 204
Cleanup operations during a process, _cexit and

_c_exit functions 197

Index

_clear87/_clearfp functions 205
clearerr function 207
Clearing floating-point status word, _clear87 I _clearfp

functions 205
Client block hook functions 87
clock function 208
clock_t standard type 46
_close function 210
Closing

files, _close function 210
streams, fclose and _fcloseall functions 255

Code page information, using for string
comparisons 582

Code pages
ANSI 22
current, for multibyte functions, ~etmbcp

function 334
definition of 22
described 2
representation of 22
setting, for multibyte functions, _setmbcp

function 530
system-default 22
types of 22

Command-line options xi
Commands, executing, system, _ wsystem

functions 634
_commit function 211
Comparing

characters in two buffers
memcmp function 448
_memicmp function 451

characters of two strings
case-insensive,_stmicmp, _ wcsnicmp,

_mbsnicmp functions 435,607
_mbsnbcmp function 429
stmcmp, wcsncmp, _mbsncmp functions 603

multibyte characters 440
strings

based on locale-specific information, strxfrm
functions 631

lowercase, _stricmp, _ wcsicmp, _mbsicmp
functions 597

null-terminated, strcmp, wcscmp, _mbscmp
functions 579

using code page information, strcoll
functions 582

691

Index

692

Compatibility
backward, of structure names xi
described x
header files, with UNIX x
OLDNAMES.Lffi xi
UNIX, XENIX, POSIX ix
Win32API ix
Win32s API ix

_complex standard type 46
Computing

Bessel functions 188
quotients and remainders

from long integers, ldiv and ldiv _t functions 390
of two integer values, div function 229

real numbers from mantissa and exponent, ldexp
function 389

Consistency checking of heaps, _heapchk function 342
Console

and port 110 functions 15
checking for keyboard input, _kbhit function 386
getting character string from, _cgets function 198
getting characters from, ~etch and ~etche

functions 326
110 routines 20
putting strings to, _cputs function 219
reading data from, _cscanf function 222
writing characters to, _putch function 492

Control flags
_CRTDBG_MAP _ALLOC 45
_crtDbgFlag 46
_DEBUG 46
using 39

_ control87 / _ controlfp functions 213
Controlling stream buffering and buffer size, setvbuf

function 541
Converting

characters to ASCII, lowercase or uppercase,
_toascii, tolower, toupper functions 647

double-precision numbers to strings, _ecvt
function 233

floating-point
numbers to strings, _fcvt function 256
numbers to strings, ~cvt function 322

integers
long, to strings, _ltoa and _ltow functions 408
to strings, _itoa and _itow functions 385
unsigned long, to strings, _ultoa and _ultow

functions 654

Converting (continued)
multibyte characters

described 417,420-424
to wide characters, mbstowcs function 441

single multibytye to wide characters, mbtowc
function 443

strings
to double-precision or long-integer numbers,

strtod functions 620
to lowercase, _strlwr, _ wcslwr, _mbslwr

functions 600
to uppercase, _strupr, _wcsupr, _mbsupr

functions 630
time

local to calendar, mktime function 460
structures to character strings, asctime,

_ wasctime functions 174
to character strings, ctime, _ wctime

functions 223
values to structures, gmtime function 339
values with zone correction, localtime

function 396
wide to multibyte characters

character sequence, wctomb function 674
single character, wcstombs function 672

wide-character strings
to integer, _wtoi function 677
to long integer, _ wtol function 677

Copying
characters

between buffers, memcpy function 449
from buffers, _memccpy function 445
ofstrings,strncpy, wcsncpy,_mbsncpy

functions 605
dates to buffers, _strdate, _ wstrdate functions 591
multibyte characters 419, 434
strings, strcpy, wcscpy, _mbscpy functions 588
time to buffers, _strtime, _wstrtime functions 619

_copysign function 216
cos function 216
cosh function 216
Cosines, calculating, _cos functions 216
Counting multibyte characters 431
_cprintf function 217
_cpumode variable 44
_cputs function 219
_creat function 220

Creating
directories, _mkdir, wmkdir functions 456
environment variables, _putenv, _wputenv

functions 492
file handles, _dup and _dup2 functions 230
filenames

temporary, _tempnam, _wtempnam, tmpnam,
_wtmpnam functions 638

unique, _mktemp, _ wmktemp functions 458
files

_creat, _ wcreat functions 220
temporary, tmpfile function 645

new process, _spawn, _ wspawn functions 551
path names, _makepath, _ wmakepath

functions 409
pipes for reading, writing, _pipe function 475
threads, _beginthread, _beginthreadex

functions 184
_ CrtBreak:Alloc 85
_CrtCheckMemory 109
_CRTDBG_MAP _ALLOC flag 45
_crtDbgFlag flag 46
_CrtDbgReport 73, 110
_CrtDoForAllClientObjects 116
_CrtDumpMemoryLeaks 83,120
_CrtIsMemoryBlock 123
_ CrtIs ValidHeapPointer 122
_CrtIsValidPointer 124
_CrtMemCheckpoint 83, 126
_CrtMemDifference 83, 127
_CrtMemDumpAllObjectsSince 83, 129
_CrtMemDumpStatistics 83, 130
_CrtSetAllocHook 87, 131
_CrtSetBreakAlloc 85, 133
_CrtSetDbgFlag 135
_CrtSetDumpClient 139
_CrtSetReportFile 73, 140
_CrtSetReportHook 88, 145
_CrtSetReportMode 73, 149
3scanf function 222
ctime function 223
Current disk drives, getting, _getdrive function 330
Current working directories, getting

~etcwd, _ wgetcwd functions 327
~etdcwd, _wgetdcwd functions 329

_cwait function 225

D
Data

reading
from files, _read, function 503
from streams, fread function 297

writing to streams, fwrite function 321
Data-conversion routines 4
Date, copying to buffers, _strdate, _ wstrdate

functions 591
daylight variable 40
_daylight variable 40
Deallocating memory blocks, free function 299
Debug C Run-time Library 71
_DEBUG flag 46
Debug Functions 6
Debug heap

memory management and 79
types of blocks on 80
using from C++ 86
using the 81

Debug Heap Manager, enable memory allocation
tracking flag 46

Debug hook functions, writing custom 86
Debug libraries, C Run-Time 72
Debug Macros

_ASSERT and _ASSERTE 103
described 6
_RPT and _RPTF 163

Debug Reporting
_ASSERT and _ASSERTE macros 103
_RPT and _RPTF macro groups 163

Debug reporting functions 73
Debug Version of the C Run-time Library

described 71
vs. Base version 84

Debugging
described 6
flag to turn on the debugging process 46
heap-related problems

_heapchk function 342
_heapset function 344
_heapwalk function 346

memory allocation

Index

and tracking using the debug heap, _crtDbgFlag
flag 46

using debug versions of the heap functions,
_CRTDBG_MAP _ALLOC flag 45

693

Index

694

Debugging (continued)
overview 71
using debug versions of the run-time functions,

_DEBUG flag 46
Decrementing string pointers, _mbsdec, _strdec,

_ wcsdec routines 426
#define directive xiii
Defining locales, setlocale, _wsetlocale function 526
Deleting files

specified by filename, remove, _ wremove
functions 507

specified by path, _unlink, _ wunlink functions 660
_dev_t standard type 46
difftime function 228
Directives, #define xiii
Directories

creating, _mkdir, _ wmkdir functions 456
current

getting paths, ~etdcwd, _ wgetdcwd
functions 329

getting, ~etcwd, _wgetcwd functions 327
removing, 3mdir, _wrmdir functions 511
renaming, rename, _ wrename functions 508
subdirectory conventions x

Directory-control routines 9
Disk drives, getting current, ~etdrive function 330
div function 229
div_t standard type 46
Dividing integers, div function 229
_doserrno variable 41
Drives

changing current, _chdir function 201
getting current, ~etdrive function 330

_dup function 230
_dup2 function 230
Duplicating strings, _strdup, _ wcsdup, _mbsdup

functions 592
Dynamic Libraries ix

E
_ecvt function 233
_endthread function 234
_endthreadex function 234
environ variable 42
Environment

control routines 32-34
creating variables, _putenv, _ wputenv

functions 492

Environment (continued)
table, getting value from, getenv, _wgetenv

functions 332
time, setting, _tzset function 651

_eof function 235
ermo

values and meanings (list) 41
variable 41

Error handling
for maUoc failures, _seenew _mode function 536
math routines 41
math, _matherr function 413
stream 110 9

Error messages
getting and printing, strerror and _strerror

functions 593
printing, perror, _wperror functions 473

Errors, testing on streams, ferror function 263
Example programs 89
Exception handler

querying for new operator failure,
_query _new _handler function 499

setting for new operator failure, _seenew _handler
function 533

Exception handling
mixing C and C++ exceptions, seese_translator

function 537
_seese_translator function 537
_seeterminate function 539
seeunexpected function 540
terminate function 641
unexpected function 656

_exception standard type 46
Exception-handling routines 10
_exec functions 237
_execlfunction 237
_exec1e function 237
_exec1p function 237
_exec1pe function 237
Executing

commands, system, _ wsystem functions 634
new process, _spawn, _wspawn functions 551

_execv function 237
_execve function 237
_execvp function 237
_execvpe function 237

Exit
processing function at, atexit function 180
registering function to be called at, _onexit

function 465
exp function 252
_expand function 253
_expand_dbg 155
expl function 252
Exponent and mantissa

getting, _10gb function 401
getting, frexp function 303
splitting floating-point values, modf function 462

Exponential functions, calculating powers
exp and expl functions 252
pow function 481
_scalb function 514

F
fabs function 255
fclose function 255
jcloseall function 255
jcvt function 256
jdopen function 258
ferror function 263
_fexpand function 253
fflush function 263
fgetc function 266
jgetchar function 266
fgetpos function 268
fgets and fgetws function 270
fgets function 270
fgetwc function 266
jgetwchar function 266
File handles

allocating, _open_osfhandle function 470
creating, reassigning, _dup and _dup2

functions 230
getting, _fileno function 272
getting, ~ecosfhandle function 335
low-level I/O (list) 19
predefined 19

File modification time, setting, _futime function 320
File pointers

getting current position, ftell function 314
getting position associated with handle, _tell

function 637

Index

File pointers (continued)
moving

associated with handle, _lseek function 406
fseek function 306

reassigning, freopen, _ wfreopen functions 300
repositioning, rewind function 509

FILE standard type 46
File-handling routines 10
File-open functions, overriding _fmode default with 15
File-permission settings, changing, _chmod, _ wchmod

functions 202
File-position indicators

getting from streams, fgetpos function 268
setting, fsetpos function 309

File-translation modes
for stdin, stdout, stderr 15
overriding default 15
text and binary 15

_fileinfo variable 43
FILEINFO.oBJ file 43
_filelength function 271
Filenames

creating
temporary, _tempnam, _ wtempnam, tmpnam,

_wtmpnam functions 638
unique, _mktemp, _ wmktemp functions 458

operating system conventions xi
_fileno function 272
Files

changing size, _chsize function 204
closing, _close function 210
creating, _creat, _ wcreat functions 220
deleting

specified by filename, remove, _ wremove
functions 507

specified by path, _unlink, _ wunlink
functions 660

end-of-file testing 9
flushing to disks, _commit function 211
handling routines 10
length, _filelength function 271
locking bytes in, _locking function 398
open information about, _fstat function 312
opening

fopen, _ wfopen functions 282
for file sharing, _sopen, _ wsopen functions 548
for sharing, _fsopen function 310
_open, _wopen functions 467

pointers See File pointers

695

Index

696

Files (continued)
reading data from, _read function 503
renaming, rename, _ wrename functions 508
searching for, using environment paths, _searchenv,

_ wsearchenv functions 522
setting

modification time, _utime, _ wutime
functions 661

permission masks, _umask function 655
translation mode, _setmode function 532

status information about, _stat, _ wstat
functions 572

temporary
creating, tmpfile function 645
removing, _rmtmp function 512

testing for end of file, _eof function 235
writing data to, _write function 675

_find functions 273
_findclose function 273
_finddata_t standard type 46
_finddata_t structure 273
_findfirst function 273
Finding

characters
in buffers, memchr function 446
in strings, strchr, wcschr, _mbschr

functions 577
next token in string, strtok, wcstok, _mbstok

functions 628
string length, strlen, wcslen, _mbslen, _mbstrlen

functions 599
substrings

strcspn, wcscspn, _mbscspn functions 589
strstr, wcsstr, _mbsstr functions 617

_findnext function 273
Flags, control See Control flags
Floating-point

arguments, calculating absolute value, fabs
function 255

class status word, _fpclass function 287
control word, getting and setting,

30ntrol87 / _controlfp functions 213
exceptions, trap handlers for, jpieee_flt

function 287
functions 11
numbers

converting to strings, _fcvt function 256
getting mantissa and exponent, frexp

function 303

Floating-point (continued)
operations, NaN results of 384
package, reinitializing, _fpreset function 290
precision

default internal 12
setting internal 12

remainders, calculating, fmod function 281
status word

getting and clearing, _clear87 Lclearfp
functions 205

getting, _status87/statusfp functions 574
support

for printf function family 11
for scanf function family 11

values
converting to strings, J;cvt function 322
splitting into mantissa and exponent, modf

function 462
floor function 279
_flushall function 280
Flushing

files to disks, _commit function 211
streams

fflush function 263
_flushall function 280

fmod function 281
_fmode global variable 15
_fmode variable 44
fopen function 282
Formatted data

reading from input stream, scanf and wscanf
functions 515

reading from streams, fscanf and fwscanf
functions 304

_fpclass function 287
_fpieee_flt function 287
_FPIEEE_RECORD standard type 46
fpos_t standard type 46
_fpreset function 290
fprintf function 293
fputc function 294
_fputchar function 294
fputs function 296
fputwc function 294
_fputwchar function 294
fputws function 296
fread function 297
free function 299
_free_dbg 157

freopen function 300
frexp function 303
fscanf function 304
fseek function 306
fsetpos function 309
jsopen function 310
_fstat function 312
ftell function 314
jtime function 316
_fullpath function 318
Function pointers xiii
Functions

See also Routines
allocation hook 87
arguments, type checking of xiii
buffer-manipulation (list) 2
byte classification (list) 2
character classification(list) 3
client block hook 87
debug hook

writing custom 86
Debug reporting 73
defined xii
described by category 1-4, 11-14
difference from macros xii
floating-point support 11
110, types of 15
long double (list) 14
math

described 11
(list) 11-12

registering to be called on exit, _onexit
function 465

report hook 88
reporting

heap state 83
time variables (list) 40
using C run-time library in allocation hooks 88

_futime function 320
fwprintf function 293
fwrite function 321
fwscanf function 304

G
~cvtfunction 322
Generating pseudorandom number, rand function 501

Generic-text mappings
examples 26-29
for data types 26
of _TCHAR, with _MCBS defined 29
_tmain, example of 27-29
with _MBCS constant 26-29
with _UNICODE constant 26-29
with _UNICODE, _MBCS not defined 26-29

Generic-text routines, relation to Unicode 25
~eCosthandle function 335
getc function and macro 324
~etch function 326
getchar function and macro 324
~etche function 326
~etcwd function 327
~etdcwd function 329
~etdrive function 330
getenv function 332
~etmbcp function 334
~etpid function 335
gets function 336
~etw function 338
getwc function and macro 324
getwchar function and macro 324
getws function 336
Global variables

_amblksize 39-40
_C_FILE_INFO 43
_daylight 40
_dosermo 41
environ 42
environment 42
ermo 41
error codes 41
_fileinfo 43
_fmode 15, 44
Open file information 43
_osmode 44
_osver 44
sys_errlist 41
sys_nerr 41
timezone 40
_timezone 40
tzname 40
_tzname 40
using 39
_winmajor 44

Index

697

Index

698

Global variables (continued)
_ winminor 44
_winver 44

gmtime function 339

H
Handler modes, returning new, _query _new_mode 499
Handlers, mode See Handler modes
Header files, UNIX compatibility with x
Heap allocation requests, tracking 85
Heap state reporting functions 83
_heapadd function 341
_heapchk function 342
_HEAPINFO standard type 46
_heapmin function 343
Heaps

checking, _heap set function 344
consistency checks, _heapchk function 342
debugging

_heapchk function 342
jIeapset function 344
_heapwalk function 346

memory allocation mapping flag 45
memory granularity variable 39
minimizing, _heapmin function 343

_heap set function 344
_heapwalk function 346
Hiragana characters 422
_hypot function 349
Hypotenuses, calculating, _hypot function 349
_hypotl function 349

110 functions
stream buffering 16
text and binary modes 15
types 15

110 routines
committing buffer contents to disk 18
console 20
low-level routines 19
port 20
reading and writing operations 18
searching and sorting routines (list) 34
stream buffering 18
system calls 37

Import Libraries ix

Incrementing string pointers
by specified number of characters, _mbsninc,

_strninc, _ wcsninc routines 439
_mbsinc, _strinc, _ wcsinc routines 427

Indefinite
output from printf function 489

Initializing characters of strings to given characters
_mbsnbset function 436
_strnset, _ wcsnset, _mbsnset functions 609

_inp function 351
_inpw function 351
Integers

calculating absolute value of long integers, labs
function 388

converting
long, to strings, _ltoa and _ltow functions 408
to strings, _itoa and _itow functions 385
unsigned long, to strings, _ultoa and _ultow

functions 654
getting from stream, ~etw function 338
returning, indicating new handler mode,

_query _new_mode 499
writing to streams, _putw function 495

Internationalization routines 20
Interrupts, setting signal handling, signal function 543
_isatty function 365
isleadbyte macro 366
_isnan function 384
_itoa function 385
_itow function 385

J
jO function 188
jOl function 188
j 1 function 188
j 11 function 188
Japan Industry Standard characters 420
JlS multibyte characters 420
jmp_buf standard type 46
jn function 188
jnl function 188

K
Katakana characters 422
_kbhit function 386
Keyboard, checking console for input, _kbhit

function 386

L
labs function 388
lconv standard type 46
Idexp function 389
ldiv function 390
Idiv_t standard type 46
Idiv _t structure 390
Lead bytes, checking for, isleadbyte macro 366
Leading underscores, meaning of x
Length of multibyte characters, finding 421
_lfind function 391
Libraries

C Run-Time debug 72
described ix
linking ix

Library routines, basic information ix-xiii, 9
Linear searching

arrays, for keys, _lfind function 391
_lsearch function 405

Lines, getting from streams, gets, getws functions 336
Loading new process and executing, _exec, _ wexec

functions 237
Locale code page information, using for string

comparisons 582
Locale code pages 22
Locale, definition of 21
Locale-dependent routines 21
localeconv function 393
Locales

defining, setIocale, _ wsetIocale function 526
settings, getting information on, localeconv

function 393
localtime function 396
Locking bytes in file, _locking function 398
_locking function 398
log functions 400
log 1 0 function 400
Logarithms, calculating, log functions 400
_10gb function 401
Long integers, converting to strings, _ltoa and _ltow

functions 408
longjmp function 402
Low-level I/O functions 15
_lrotI function 404
_lrotr function 404
_1 search function 405
_lseek function 406
_ltoa function 408

M
Macintosh Compatibility x
Macros

argument access (list) 1
arguments, type checking of xiii
benefits over functions xiii
defined xii
locale 3,20
MB_CUR_MAX 3, 20
using for verification and reporting 75

_makepath function 409
malloc function

described 411

Index

failures of using _seCnew _mode function for 536
_malloc_dbg 158
Mantissa and exponent

getting, frexp function 303
splitting floating-point values, modf function 462

Mappings
generic-text

described 26
for routines 26

of data types using generic text 26
Masks, file-permission-setting, _umask function 655
Math

error handling, _matherr function 413
functions 11

_matherr function 413
_max macro 416
Maximum, returning larger of two values, _max

macro 416
MB_CUR_MAXmacro 3,20
MB_LEN_MAX macro 3, 20
mbbtombc function 417
mbbtype function 418
mbccpy function 419
mbcjistojms function 420
mbcjmstojis function 420
mbclen function 421
mbctohira function 422
mbctokana function 422
mbctolower function 423
mbctombb function 424
mbctoupper function 423
mblen function 421
mbsbtype function 425
_mbscat function 576
_mbschr function 577

699

Index

700

_mbscmp function 579
_mbscoll function 582
_mbscpy function 588
_mbscspn function 589
_mbsdec function 426
_mbsdup function 592
_mbsicmp function 597
_mbsicoll function 582
_mbsinc function 427
_mbslen function 599
_mbslwr function 600
_mbsnbcat function 428
_mbsnbcmp function 429
mbsnbcnt function 431
mbsnbcpy function 434
_mbsnbset function 436
_mbsncat function 602
mbsnccnt function 431
_mbsncmp function 603
_mbsncoll function 582
_mbsncpy function 605
_mbsnextc function 438
_mbsnicmp function 435,607
_mbsnicoll function 582
_mbsninc function 439
_mbsnset function 609
_mbspbrk function 610
_mbsrchr function 612
_mbsrev function 613
_mbsset function 614
_mbsspn function 616
mbsspnp function 440
_mbsspnp function 616
mbsstr function 617
_mbstok function 628
mbstowcs function 441
_mbstrlen function 599
_mbsupr function 630
mbtowc function 443
_memccpy function 445
memchr function 446
memcmp function 448
memcpy function 449
_memicmp function 451
memmove function 453

Memory
adding to heaps, _heap add function 341
blocks

changing size, _expand functions 253
returning size allocated in heap, _msize

function 463
. deallocating blocks, free function 299

deallocating, free function 299
heaps, minimizing, _heapmin function 343

Memory allocation
arrays, calloc function 194
controlling heap granularity, _amblksize

variable 39
malloc function 411
_msize function 463
routines 31
stacks, _alloca function 173

Memory management, Debug heap and 79
memset function 454
Microsoft-specific naming conventions x
_min macro 455
Minimizing heaps, _heapmin function 343
Minimum, returning smaller of two values, _min

macro 455
_mkdir function 456
_mktemp function 458
mktime function 460
modffunction 462
Moving

buffers, memmove function 453
file pointers, _I seek function 406

_msize function 463
_msize_dbg 160
Multibyte characters

comparing 440
converting 417,420,422-424
copying 419,434
counting 431
determining type 418
finding length 421

Multibyte code page information, using for string
comparisons 582

Multibyte code pages 22
Multibyte functions

code page settings, _getmbcp function 334
setting code pages for, _setmbcp function 530

Multibyte strings
copying 434
determining type of characters 425

Multibyte-character functions
_mbscoll function 582
_mbsicmp function 597
_mbsicoll function 582
_mbsncoll function 582
_mbsnicoll function 582
_mbstok function 628

Multibyte-character routines
byte conversion 4
_mbscat funtion 576
_mbschr function 577
_mbscmp function 579
_mbscpy function 588
_mbscspn function 589
_mbsdec function 426
_mbsdup function 592
_mbsinc function 427
_mbslen, _mbstrlen functions 599
_mbslwr function 600
_mbsnbcat function 428
_mbsnbcmp function 429
_mbsncat function 602
_mbsncmp function 603
_mbsncpy function 605
_mbsnextc function 438
_mbsnicmp function 435,607
_mbsninc function 439
_mbspbrk function 610
_mbsrchr function 612
_mbsset function 614
_mbsspn, _mbsspnp functions 616
_ wcsnset function 609
_ wcsrev function 613
wcsstr function 617
_ wcsupr function 630

Multibyte-character strings
with _exec functions 237
with _mktemp function 458
with _spawn and _ wspawn functions 551
with _splitpath and _ wsplitpath functions 565
with _stat function 572
with _tempnam and tmpnam functions 638

Multithread Libraries ix

Index

N
Naming conventions, Microsoft-specific x
NaN

definition of 384
output from printf function 489

New operator failure
querying exception handler for,

_query _new _handler function 499
setting exception handler for, _seCnew _handler

function 533
New processes

See also Spawned processes
loading and executing, _exec, _ wexec

functions 237
NEWMODE.OBJ, linking with, for malloc

failures 536
_nexpand function 253
_nextafter function 464
Numbers

o

converting double to strings, _ecvt function 233
pseudorandom, generating, rand function 501
real, computing from mantissa and exponent,

function 389

_ofet standard type 46
offsetof macro 465
OLDNAMES.LIB, compatibility xi
_onexit function 465
_onexiCt standard type 46
Open files, information about, _fstat function 312
_open function 467
_open_osfuandle function 470
Opening files

fopen, _ wfopen functions 282
for file sharing, _sopen, _ wsopen functions 548
_open, _wopen functions 467

Operating systems
case sensitivity xi
file and paths xi
files and paths x
specifying versions 44
variable mode 44

_osver variable 44
_outp function 471
_outpd function 471

701

Index

702

_outpw function 471
Overview of the Debug Version of the C Run-time

Library 71

p
Parameters

See also Arguments
type checking of xiii

Parent process defined 33
Paths

breaking into components, _splitpath, _ wsplitpath
functions 565

converting from relative to absolute, _fullpath
function 318

creating, Jllakepath, _ wmakepath functions 409
delimiters x
getting current directory

_getcwd, _wgetcwd functions 327
_getdcwd, _ wgetdcwd functions 329

operating system conventions x
_pelose function 472
perror function 473
PID See ~etpid function
_pipe function 475
Pipes

closing streams, _pelose 472
creating for reading, writing, _pipe function 475

_PNH standard type 46
_popen function 478
Porting

Macintosh applications x
programs to UNIX x

Ports, 110 routines 20
POSIX compatibility ix, x
POSIX, filenames xi
pow function 481
Power Macintosh and 68K Macintosh x
Powers, calculating, pow function 481
printf function

flag directives (list) 487
output, indefinite (quiet NaN) 489
precision specification 488
size, distance specification 489
type characters (list) 485
use 482
width specification 487

Printf function family, floating-point support for 11

Printing
characters, values to output streams, printf,

wprintf 482
data to stream, fprintf and fwprintf functions 293
error messages

perror, _wperror functions 473
strerror and _strerror functions 593

to console, _cprintf function 217
Process control routines 32-34
Process identification number, getting, _getpid

function 335
Processes

identification, ~etpid function 335
new, loading and executing, _exec, _ wexec

functions 237
Processing at exit, atexit function 180
Programs

aborting, assert, abort routines 177
example 89
executing, sending signal to, raise function 500
saving current state, setjmp function 525

ptrdifCt standard type 46
_putch function 492
_putenv function 492
puts function 494
Putting strings to the console, _cputs function 219
_putw function 495
_putws function 494

Q
qsort function 497
_query _new _handler function 499
_query _new_mode 499
Quick-sort algorithm, qsort function 497
Quiet NaN, output from printf function 489
Quotients, computing, ldiv function 390

R
raise function 500
rand function 501
Random number generation, rand function 501
Random starting point, setting, srand function 569
_read function 503

Reading
bytes or words from port, _inp and _inpw

functions 351
characters from streams, getc, getwc, getchar, and

getwchar functions and macros 324
console data, _cscanf function 222
file data, _read function 503
formatted data

from input stream, scanf and wscanf
functions 515

from strings, sscanf functions 570
realloc function 504
_realloc_dbg 161
Registering function to be called on exit, _onexit

function 465
Remainders, computing, ldiv function 390
remove function 507
Removing

directories, Jmdir, _wrmdir functions 511
files

remove, _ wremove functions 507
temporary, _rmtmp function 512

rename function 508
Renaming

directories, rename, _ wrename functions 508
files, rename, _ wrename functions 508

Report hook functions 88
Reporting

using macros for 75
Reporting functions

Debug 73
heap state 83

Repositioning file pointers, rewind function 509
Resetting stream error indicator, clearerr function 207
Restoring stack environment and execution locale,

longjmp function 402
Reversing characters in strings, _strrev, _ wcsrev,

_mbsrev functions 613
rewind function 509
_rmdir function 511
_rmtmp function 512
Rotating bits

_lrotI and _lrotr functions 404
_rotI and _rotr functions 513

_rotI function 513
_rotr function 513
Routine mappings, using generic-text macros for 26

Routines
See also Functions; Macros
argument access (list) 1
argument-list 1
arguments, type checking of xiii
buffer-manipulation (list) 2
byte classification (list) 2
byte-conversion (list) 4
character classification(list) 3
choosing functions or macros xii
console and port liD (list) 20
data-conversion (list) 4
described by category 1-4,9-20,31-37
directory control (list) 9
exception-handling

(list) 10
using 10

file-handling
(list) 10
using 10

for accessing variable-length argument lists
generic-text 25
liD, predefined stream pointers 18
internationalization (list) 20
locale-dependent 21
long double, (list) 14
low-level liD (list) 19
math (list) 12
memory allocation (list) 31
multibyte-character, byte conversion 4
process and environment (list) 32-33
_spawn and _exec forms (list) 34
stream liD, (list) 16
string manipulation (list) 35
time, current (list) 37
wide-character

generic-text function name mappings to 25
(list) 25

Windows NT interface (list) 37
_RPT and _RPTF macros 163
_RPTO 163
_RPTI 163
_RPT2 163
_RPT3 163
_RPT4 163
_RPTFO 163
_RPTFI 163
_RPTF2 163
_RPTF3 163

Index

703

Index

704

_RPTF4 163
Run-Time functions, source code for 71

s
Saving current state of program, setjmp function 525
_scalb function 514
scanffunction 515
Scanning strings

for characters in specified character sets, strpbrk,
wcspbrk, _mbspbrk routines 610

for last occurrence of characters, strrchr, wcsrchr,
_mbsrchr routines 612

scanf function family, floating-point support for 11
_searchenv function 522
Searching

and sorting routines (list) 34
arrays

for keys, _lfind function 391
for values, _lsearch function 405
with binary search, bsearch function 191

for files using environment paths, _searchenv,
_ wsearchenv functions 522

Sending signal to executing programs, raise
function 500

_seenew _handler function 533
_seenew _mode function 536
_seese_translator function 537
_seeterminate function 539
seeunexpected function 540
setbuf function 523
setjmp function 525
setlocale function 526
_setmbcp function 530
_setmode function 532
Setting

buffers to specified character, memset function 454
characters of strings to character, _strset, _wcsset,

_mbsset functions 614
code pages, for multibyte functions, _setmbcp

function 530
file default permission mask, _umask function 655
file translation mode, _setmode function 532
floating point control word, _control87 / _controlfp

functions 213
interrupt, signal handling, signal function 543
locales, setlocale, _ wsetlocale function 526

setvbuf function 541
Shift JIS multibyte characters 420

sig_atomic_t standard type 46
signal function 543
Signaling executing programs, raise function 500
sin function 546
Sines, calculating, sin function 546
Single-thread Libraries ix
sinh function 546
size_t standard type 46
_snprintf function 566
_snwprintf function 566
_sopen function 548
Sorting, qsort function 497
Source code for run-time functions 71
_spawn functions 551
Spawned processes, creating and executing, _spawn,

_ wspawn functions 551
_spawnl function 551
_spawnle function 551
_spawnlp function 551
_spawnlpe function 551
_spawnv function 551
_spawnve function 551
_spawnvp function 551
_spawnvpe function 551
_splitpath function 565
Splitting floating-point values into mantissa and

exponent, modf function 462
sprintf function 566
sqrt function 568
Square roots, calculating, sqrt function 568
srand function 569
sscanf function 570
Stacks

memory allocation, _alloca function 173
restoring environment, longjmp function 402

Standard error stream, stderr 18
Standard input stream, stdin 18
Standard output stream, stdout 18
Standard streams See File handles, predefined
Standard types

c1ock_t structure 46
_complex structure 46
_dev_t short or unsigned int 46
div _t, ldiv _t structures 46
_exception structure 46
FILE structure 46
_finddata_t, _ wfinddata_t structures 46
_FPIEEE_RECORD structure 46
fpos_t long integer 46

Standard types (continued)
_HEAPINFO structure 46
jmp_buf array 46
1conv structure 46
(list) 46, 48
_ofLt long integer 46
_onexiet pointer 46
_PNH pointer to function 46
ptrdifLt integer 46
sig_atomic_t integer 46
size_t unsigned integer 46
_stat structure 46
time_t long integer 46
_timeb structure 46
tm structure 46
using 39
_utimbuf structure 46
va_list array 46
wchar_t internal wide-character type 46
wctype_t integer 46
winet integer 46

Starting point, setting random, srand function 569
_stat function 572
_stat standard type 46
Static Libraries ix
Status information, getting on files, _stat, _ wstat

functions 572
Status word, floating-point

class, _fpclass function 287
getting, _status87/statusfp functions 574

_status87/statusfp functions 574
stdin, stdout, stderr, file-translation modes for 15
strcat function 576
strchr function 577
strcmp function 579
strcoll functions 582
strcpy function 588
strcspn function 589
_strdate function 591
_strdec routine 426
_strdup function 592
Stream I/O

buffering 16, 18
buffers, default size 16
controlling, setbuf function 523
error handling 9
error testing 9
functions 15-16
predefined pointers 18

Index

Stream I/O (continued)
routines (list) 16
transferring data 18

Stream pointers, predefined 18
Streams

associating with files, _fdopen, _ wfdopen
functions 258

buffer control
setbuf function 523
setvbuf function 541

closing
fclose and _fcloseall functions 255
routines 18

flushing
fflush function 263
_flushall function 280

getting
associated file handle, _fileno function 272
file-position indicator, fgetpos function 268
integer from, ~etw function 338
line from, gets, getws functions 336
string from, fgets and fgetws functions 270
string from, fgets function 270

printing
data to, fprintf and fwprintf functions 293
formatted output to, printf, wprintf 482

pushing characters back onto, ungetc and ungetwc
functions 657

reading characters from
fgetc and jgetchar functions 266
fgetc, fgetwc, jgetchar, and _fgetwchar

functions 266
getc, getwc, getchar, and getwchar functions and

macros 324
reading data from, fread function 297
reading formatted data from, fscanf and fwscanf

functions 304
resetting error indicator, clearerr function 207
returning, associated with end of pipe, _popen,

_wpopen 478
setting position indicators, fsetpos function 309
stdin, stdout, stderr 15
testing for errors, ferror function 263
writing

characters to, fputc, fputwc,_fputchar, and
_fputwchar functions 294

data to, fwrite function 321
integers to, _putw function 495
strings to, fputs and fputws functions 296

705

Index

706

strerror function 593
_strerror function 593
strftime function 595
_stricmp function 597
_stricoll function 582
_strinc routine 427
String manipulation routines 35
String pointers

decrementing, _mbsdec, _strdec, _ wcsdec
routines 426

incrementing
by specified number of characters, _mbsninc,

_strninc, _ wcsninc routines 439
_mbsinc, _strinc, _ wcsinc routines 427

Strings
appending

bytes of, _mbsnbcat function 428
characters of, stmcat, wcsncat, _mbsncat

functions 602
strcat, wcscat, _mbscat functions 576

comparing
based on locale-specific information, strxfrm

functions 631
characters, _mbsnbcmp function 429
characters, case-insensitive, _stmicmp,

_ wcsnicmp, _mbsnicmp functions 435, 607
characters, stmcmp, wcsncmp, _mbsncmp

functions 603
lowercase, _stricmp, _ wcsicmp, _mbsicmp

functions 597
strcmp, wcscmp, _mbscmp functions 579
strcoll functions 582

converting
double-precision to, _ecvt function 233
long integers to, _ltoa and _ltow functions 408
to double-precision or long-integer numbers,

strtod functions 620
to lowercase, _strlwr, _wcslwr, _mbslwr

functions 600
to uppercase, _strupr, _wcsupr, _mbsupr

functions 630
copying

characters of, strncpy, wcsncpy, _mbsncpy
functions 605

strcpy, wcscpy, _mbscpy functions 588
duplicating, _strdup, _ wcsdup, _mbsdup

functions 592

Strings (continued)
finding

characters in, strchr, wcschr, _mbschr
functions 577

next characters in, _mbsnextc, _stmextc,
_ wcsnextc routines 438

next token in, strtok, wcstok, _mbstok
functions 628

specified substrings in, strspn, _strspnp, wcsspn,
_wcsspnp, _mbsspn, _mbsspnp routines 616

substring in, strcspn, wcscspn, _mbscspn
functions 589

substrings in, strstr, wcsstr, _mbsstr
functions 617

getting
character strings from console, _cgets

function 198
from streams, fgets and fgetws functions 270
from streams, fgets function 270

Initializing
characters of, to given characters, _mbsnbset

functions 436
characters of, to given characters, _stmset,

_ wcsnset, _mbsnset functions 609
length, strlen, wcslen, _mbslen, _mbstrlen

functions 599
multibyte

comparing 440
copying 434
counting 431
determining type 425

putting to console, _cputs function 219
reading formatted data from, sscanf functions 570
reversing characters in, _strrev, _ wcsrev, _mbsrev

functions 613
scanning

for characters in specified character sets, strpbrk,
wcspbrk, _mbspbrk routines 610

for last occurrence of characters, strrchr,
wcsrchr, _mbsrchr routines 612

setting characters of to character, _strset, _ wcsset,
_mbsset functions 614

time, formatting, strftime, wcsftime functions 595
writing

formatted data to, sprintf functions 566
to output, puts, _putws functions 494
to streams, fputs and fputws functions 296

strlen function 599
_strlwr function 600

strncat function 602
strncmp function 603
strncnt function 431
_strncoll function 582
strncpy function 605
_stmextc routine 438
_stmicmp function 435, 607
_strnicoll function 582
_stminc routine 439
_stmset function 609
strpbrk function 610
strrchr function 612
_strrev function 613
_strset function 614
strspn function 616
strspnp function 440
_strspnp routine 616
strstr function 617
_strtime function 619
strtod function 620
strtok function 628
strtolfunction 620
_strtold function 620
strtoul function 620
Structure names, backward compatibility of xi
_strupr function 630
strxfrm function 631
Substrings, finding in strings

strspn, _strspnp, wcsspn, _ wcsspnp, _mbsspn,
_mbsspnp routines 616

strstr, wcsstr, _mbsstr functions 617
_swab function 633
Swapping bytes, _swab function 633
swprintf function 566
swscanf function 570
sys_errlist variable 41
sys_nerr variable 41
System call routines 37
system function 634
System time, getting, time function 643
System-default code page 22

T
Tangents, calculating, tan functions 636
_TCHAR data type, example of using 26-29
TCHAR, using, with _MCBS defined 29
_tell function 637
_tempnam function 638

Index

terminate function 641
Terminating

atexit function 180
threads, _endthread, _endthreadex functions 234

Testing
end of file

_eof function 235
on given stream 9

streams for errors, ferror function 263
Text and binary file-translation modes 15
Threads

creating, _beginthread, _beginthreadex
functions 184

terminating, _endthread, _endthreadex
functions 234

Time
calculating calling process, clock function 208
converting

local to calendar, mktime function 460
to character strings, ctime, _ wctime

functions 223
values and correcting for zone, localtime

function 396
values to structures, gmtime function 339

copying to buffers, _strtime, _ wstrtime
functions 619

current, getting, _ftime function 316
environment variables, setting, _tzset function 651
finding difference between two times, difftime

function 228
formatting strings, strftime, wcsftime functions 595
routines 37
setting

file modification, _futime function 320
file modification, _utime, _ wutime

functions 661
structures, converting to character strings, asctime,

_wasctime functions 174
system, getting, time function 643

time function 643
Time-zone variables 40
time_t standard type 46
_timeb standard type 46
_timezone variable 40
tm standard type 46
_tmain, generic-text mappings of (example) 27-29
tmpfile function 645
tmpnam function 638
_toascii function 647

707

Index

708

Tokens, finding next in string, strtok, wcstok, mbstok
functions 628

tolower, _tolower functions 647
toupper, _toupper functions 647
Tracking heap allcation requests 85
Trap handlers, for floating-point exceptions, _fpieee_flt

function 287
Triangles, calculating hypotenuse, ~ypot function 349
Type checking of arguments xiii
Types, standard See Standard types
tzname variable 40
_tzname variable 40
_tzset function 651

u
_ultoa function 654
_ultow function 654
_umask function 655
Underscores, leading, meaning of x
unexpected function 656
ungetc function 657
_ungetch function 659
ungetwc function 657
Unicode, generic-text function name mappings for use

with 25
UNIX

case sensitivity xi
compatibility ix-x
header files, compatibility with x
naming conventions xi
path delimiters x

_unlink function 660
Uppercase, converting strings to, _strupr, _wcsupr,

_mbsupr functions 630
_utimbuf standard type 46
_utime function 661

v
va_arg function 664
va_end function 664
va_list standard type 46
va_start function 664
Values

calculating
ceilings, ceil and ceill functions 196
floors, floor function 279

Values (continued)
getting environment table, getenv, _wgetenv

functions 332
printing to output stream, printf, wprintf

functions 482
returning

maximum, _max macro 416
smaller of two, _min macro 455

searching for, _1 search function 405
Variable-length argument lists, routines for

accessing 1
Variables, global See Global variables
Verification, using macros for 75
Versions, compatibility with previous xi
vfprintf function 667
vfwprintf function 667
vprintf function 667
_ vsnprintf function 667
_ vsnwprintf function 667
vsprintf function 667
vswprintf function 667
vwprintf function 667

w
_ wasctime function 174
wchar_t standard type 46
_ wchmod function 202
_ wcreat function 220
wcscat function 576
wcschr function 577
wcscmp function 579
wcscoll function 582
wcscpy function 588
wcscspn function 589
_ wcsdec routine 426
_ wcsdup function 592
wcsftime function 595
_ wcsicmp function 597
_ wcsicoll function 582
_ wcsinc routine 427
wcslen function 599
_ wcslwr function 600
wcsnbcnt function 431
wcsncat function 602
wcsncmp function 603
_wcsncoll function 582
wcsncpy function 605
_ wcsnextc routine 438

_wcsnicmp function 435,607
_ wcsnicoll function 582
_ wcsninc routine 439
_ wcsnset function 609
wcspbrk function 610
wcsrchr function 612
_ wcsrev function 613
_ wcsset function 614
wcsspn function 616
_ wcsspnp routine 616
wcsstr function 617
wcstod function 620
wcstok function 628
wcstol function 620
wcstombs function 672
wcstoul function 620
_ wcsupr function 630
wcsxfnn function 631
_ wctime function 223
wctomb function 674
wctype_t standard type 46
_wexec functions 237
_wexecl function 237
_ wexecle function 237
_wexeclp function 237
_ wexeclpe function 237
_wexecv function 237
_ wexecve function 237
_wexecvp function 237
_ wexecvpe function 237
_wfdopen function 258
_ wfinddata_t standard type 46
_ wfopen function 282
_ wfreopen function 300
_ wgetcwd function 327
_ wgetdcwd function 329
_wgetenv function 332
Wide character functions

fgetwc function 266
_fgetwchar function 266

Wide-character functions
_snwprintf 566
swprintf 566
swscanf 570
towlower 647
towupper 647
vfwprintf 667
_ vsnwprintf 667
vswprintf 667

Wide-character functions (continued)
vwprintf 667
wcschr 577
wcscmp 579
wcscoll 582
wcsftime 595
_ wcsicmp function 597
_wcsicoll 582
_wcsncoll 582
_wcsnicoll 582
wcstod function 620
wcstok function 628
wcstol function 620
wcstombs 672
wcstoul function 620
wcsxfnn function 631
wctomb 674
wscanf function 515

Wide-character routines
fputwc, _fputwchar functions 294
fputws function 296
fwprintf 293
fwscanf function 304
generic-text function name mapping to 25
(list) 25
_ wasctime 174
_wchmod 202
_wcreat 220
wcscat 576
wcscpy 588
wcscspn 589
_wcsdup 592
wcslen function 599
_ wcslwr function 600
wcsncat function 602
wcsncmp function 603
wcsncpy function 605
_wcsnicmp function 435,607
_ wcsnset function 609
wcspbrk function 610
wcsrchr function 612
_ wcsrev function 613
_ wcsset function 614
wcsspn, _wcsspnp 616
wcsstr function 617
_ wcsupr function 630
_wctime 223
_ wexec family 237
_wfdopen 258

Index

709

Index

710

Wide-character routines (continued)
_wfopen 282
_wfreopen function 300
_ wfullpath function 318
_wgetcwd 327
_wgetdcwd 329
_wgetenv 332
_ wmakepath 409
_wmkdir 456
_ wmktemp function 458
_wopen 467
_ wperror 473
_wpopen 478
_ wputenv 492
_ wremove 507
_wrename 508
_wrmdir 511
_ wsearchenv 522
_ wsetlocale 526
_wsopen 548
_wspawn family 551
_ wsplitpath 565
_wstat 572
_wstrdate 591
_ wstrtime 619
_ wsystem 634
_ wtempnam, _ wtmpnam 638
_ wunlink 660
_wutime 661

Wide-character strings, converting
to integer, _ wtoi function 677
to long integer, _ wtol function 677

Win32 API compatibility ix
Win32s API compatibility ix
Windows NT interface routines (list) 37
_ winmajor variable 44
_ winminor variable 44
_ winver variable 44
winet standard type 46
_ wmain, generic-text mapping to (example) 27, 28
_ wmakepath function 409
_ wmkdir function 456
_wmktemp function 458
_ wopen function 467
Words

inputting from port, _inp and _inpw functions 351
writing at port, _outp and _outpw functions 471

Working directories, getting, getcwd, _ wgetcwd,
getdcwd, _wgetdcwd functions 327

_ wperror function 473
_wpopen function 478
wprintf function 482
_ wputenv function 492
_ wremove function 507
_ wrename function 508
_write function 675
Writing

bytes at port, _outp and _outpw functions 471
characters

to console, _putch function 492
to streams, fputc, fputwc,_fputchar, and

_fputwchar functions 294
data

to files, _write function 675
to strings, sprintf functions 566

formatted output to argument lists, vprintf
functions 667

integers to streams, _putw function 495
strings

to output, puts, _putws functions 494
to the console, _cputs function 219

_ wrmdir function 511
wscanf function 515
_ wsearchenv function 522
_wsetlocale function 526
_ wsopen function 548
_ wspawn functions 551
_wspawnl function 551
_ wspawnle function 551
_wspawnlp function 551
_ wspawnlpe function 551
_ wspawnv function 551
_wspawnve function 551
_wspawnvp function 551
_wspawnvpe function 551
_ wsplitpath function 565
_ wstat function 572
_wstrdate function 591
_ wstrtime function 619
_ wsystem function 634
_wtempnam function 638
_ wtmpnam function 638
_ wtoi function 677
_ wtol function 677
_ wunlink function 660
_ wutime function 661

x
XENIX compatibility ix-x
_yO function 188
_yOl function 188
_yl function 188
_yll function 188
_yn function 188
_ynl function 188

Index

711

Contributors to Run-Time Library Reference

Samuel Dawson, Index Editor

Linda Robinson, Production

Kerry Lehto, Editor

Marilyn Johnstone, Writer

Seth Manheim, Writer

Beth-Anne Harvey, Writer

David Adam Edelstein, Art Director

The Microsoft® Visual
C++ TM development
system offers an

exciting new way to
create Windows™-based applications.

Now you can combine the power of object-
oriented programming with the efficiency of the C

language. The application framework approach in Visual C++ version 1.5-
centering on the Microsoft Foundation Class Library version 2.5-enables
programmers to simplify and streamline the process of creating robust,
professional applications for Windows.

INSIDE VISUAL C++ takes you one step at a time through the process of creating
real-world applications for Windows-the Visual C++ way. Using ample
source code examples, this book explores MFC 2.5, App Studio, and the
product's nifty "wizards"-AppWizard and ClassWizard-in action. The book
also provides a good explanation of application framework theory, along with
tips for exploiting hidden features of the MFC library.

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP .
. Call1·800·MSPRESS for more information or to place a credit card order.* Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399, or fax + 1-206-936-7329.

Microsoft Press

This six-volume collection is the complete printed product documentation for Microsoft Visual C++ version 4/ the development system for Win32®.
In book form, this information is portable and easy to access and browse, a comprehensive alternative to the substantial online help system in Visual C++.
Although the volumes are numbered as a set, you have the convenience and savings of buying only the volumes you need, when you need them.

Volume 1: MICROSOFT VISUAL C++ USER'S GUIDE
You'll get vital information on the Visual C++ development environment in this four-part
tutorial. It provides detailed information on wizards, the Component Gallery, and the Microsoft
Developer Studio with its integrated debugger and code browser - all essential instruments
for building and using prebuilt applications in Visual C++. A comprehensive reference for
all the command-line tools is included.

Volume 2: MICROSOFT VISUAL C++ PROGRAMMING WITH MFC
This comprehensive tutorial gives you valuable information for programming with the
Microsoft Foundation Class library (MFC), and Microsoft Win32, plus details on building
OLE Controls. You/II find out how MFC works with an in-depth overview and a valuable
compilation of over 300 articles on MFC programming. Win32 topics cover exception handling,
templates, DLLs, and multithreading with a Visual C++ perspective.

Volume 3: MICROSOFT FOUNDATION CLASS LIBRARY REFERENCE, PART 1
Volume 4: MICROSOFT FOUNDATION CLASS LIBRARY REFERENCE, PART 2
This two-volume reference is your Rosetta stone to Visual C++, providing a thorough introduction to MFC, a class library overview, and the alphabetical
listing of all the classes used in MFC. In-depth class descriptions summarize members by category and list member functions, operators, and data members.
Entries for member functions include return values, parameters, related classes, important comments, and source code examples. Valuable information on
macros and globals, structures, styles, callbacks, and message maps is included at the end of Volume 4.

Volume S: MICROSOFT VISUAL C++ RUN-TIME LIBRARY REFERENCE
Combining the information of two books, this volume contains complete descriptions and alphabrticallistings of all the functions and parameters in both
the run-time and iostream class libraries, and includes helpful source code examples. You'll also get full details on the Z 7 new debug run-time functions.

Volume 6: MICROSOFT VISUAL C++ LANGUAGE REFERENCE
Three books in one, the C and C++ references in this volume guide you through the two languages: terminologies and concepts, programming structures,
functions, declarations, and expressions. The C++ section also covers Run-Time Type Information (RTII) and Namespaces, important new language features
added to this version of Visual C++. The final section of this valuable resource discusses the
preprocessor and translation phases, integral to C and C++ programming, and includes an alphabetical
listing of preprocessor directives. IS B N 1- 5 5 6 15 - 92 4 - 2

U.S.A . .
U.K.
Canada

$24.95
£22.99
$33.95

[Recommellded) Micl'OSott"Press 9 78

90000

