COMPATIBLE
32-Bit Application

The Six-Volume Documentation Collection
for Microsoft Visual (++ Version 4 for Win32e
Volume Two — A comprehensive guide to progrémming

using Microsoft Foundation Class Library version 4 and Win32,
plus building OLE controls with Visual C++

Microsoft Press

Programming with MFC

‘Microsoft’ Visual C++

Development System for Windows“é 95 and Windows NT™
Version 4 '

Microsoft Corporation

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way :
Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ programmer’s references / Microsoft Corporation.
-- 2nd ed.
p. cm.

Includes index.

v. 1. Microsoft Visual C++ user’s guide -- v. 2. Programming with
MEC -- v. 3. Microsoft foundation class library reference, part 1 --

v. 4. Microsoft foundation class library reference, part 2 -- v.
5. Microsoft Visual C++ run-time library reference -- v.
6. Microsoft Visual C/C++ language reference.

ISBN 1-55615-915-3 (v. 1). -- ISBN 1-55615-921-8 (v. 2). -- ISBN
1-55615-922-6 (v. 3). - ISBN 1-55615-923-4 (v. 4). -- ISBN
1-55615-924-2 (v. 5). -- ISBN 1-55615-925-0 (v. 6)

1. C++ (Computer program language) 2. Microsoft Visual C++.

I. Microsoft Corporation.

QA76.73.C153M53 1995

005.13'3--dc20 95-35604
CIP

Printed and bound in the United States of America.
123456789 QMQM 098765

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

Macintosh is a registered trademark of Apple Computer, Inc. dBASE, dBASE II, dBASE III, dBASE 1V, and
Paradox are registered trademarks of Borland International, Inc. Btrieve is a registered trademark of Btrieve
Technologies, Inc. Intel is a registered trademark of Intel Corporation. FoxPro, Microsoft, Microsoft Press,
MS, MS-DOS, Visual Basic, Win32, Win32s, Windows, and XENIX are registered trademarks and Visual
C++, Visual FoxPro, and Windows NT are trademarks of Microsoft Corporation in the U.S. and/or other
countries. MIPS is a registered trademark of MIPS Computer Systems, Inc. Motorola is a registered trade-
mark of Motorola, Inc. ORACLE is a registered trademark of Oracle Corporation. SYBASE is a registered
trademark of Sybase, Inc. Unicode is a trademark of Unicode, Inc. Paintbrush is a trademark of Wordstar
Atlanta Technology Center. UNIX is a registered trademark in the U.S. and other countries, licensed
exclusively through X/Open Company, Ltd.

Acquisitions Editor: Eric Stroo
Project Editor: Brenda L. Matteson

Part

Contents

Introduction xxi

1 Overview of the MFC Library

Chapter 1 Using the Classes to Write Applications for Windows 3
The Framework 5
SDI and MDI 5
Documents, Views, and the Framework 5
AppWizard, ClassWizard, and the Resource Editors 7
Building on the Framework 9
How the Framework Calls Your Code 17
CWinApp: The Application Class 18
Special CWinApp Services 21
Document Templates 22
Document Template Creation 23
Document/View Creation 24
Relationships Among MFC Objects 24
Creating New Documents, Windows, and Views 25
Windows of Your Own with CWnd 28
Window Objects 29
Derived Window Classes 30
Creating Windows 31
Registering Window “Classes” 31
General Creation Sequence 32
Destroying Window Objects 32
Working with Window Objects 33
Device Contexts 33
Graphic Objects 34

Contents

Chapter 2 Working with Messages and Commands 37
Messages and Commands in the Framework 37
Messages 38
Message Handlers 38
Message Categories 38
Mapping Messages 40
User-Interface Objects and Command IDs 40
Command Targets 42
How the Framework Calls a Handler 42
Message Sending and Receiving 42
How Noncommand Messages Reach Their Handlers 43
Command Routing 43
How the Framework Searches Message Maps 46
Where to Find Message Maps 46
Derived Message Maps 47
Message-Map Ranges 49
Declaring Handler Functions 50
Standard Windows Messages 50
Commands and Control Notifications 51
How to Manage Commands and Messages with ClassWizard 52
How to Update User-Interface Objects 52
‘When Update Handlers Are Called 53
The ON_UPDATE_COMMAND_UI Macro 54
The CCmdUI Class 54
How to Display Command Information in the Status Bar 54

Chapter 3 Working with Frame Windows, Documents, and Views 57
Frame Windows 57
Window Classes 359
The Frame-Window Classes Created by AppWizard 59
Using Frame Windows 59
Documents and Views 64
Document and View Classes Created by AppWizard 65
Using Documents and Views 65
Special View Classes 76
Printing and Print Preview 77
Printing the Document 77
Previewing the Printed Document 78

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars 79
Dialog Boxes 79
Dialog-Box Components in the Framework 80
Modal and Modeless Dialog Boxes 80
Property Sheets and Property Pages 81
Creating the Dialog Resource 81
Creating a Dialog Class with ClassWizard 82
Life Cycle of a Dialog Box 83
Dialog Data Exchange and Validation 85
Type-Safe Access to Controls in a Dialog Box 87
Mapping Windows Messages to Your Class 89
Common Dialog Classes 90
Controls 90
Controls and Dialog Boxes 92
Making and Using Controls 92
Control Bars 94
Toolbars — An Overview 95
Status Bars 96
Dialog Bars 97

Chapter 5 Working with OLE 99

Overview of OLE 100

Features of the OLE Classes 101

Requirements for Using the OLE Classes 102
Distributing Your OLE Application 102
Getting Started with the MFC OLE Classes 102

Chapter 6 Developing OLE Controls 105
Implementing an OLE Control 106

Installing OLE Control Classes and Tools 107
Getting Started with OLE Controls 108

Chapter 7 Working with Databases 109
When Should You Use the Database Classes? 110
What Are the Database Classes? 110

Which Classes: DAO or ODBC? 110

Installing MFC Database Support 111

Contents

Contents

Chapter 8 Using the General-Purpose Classes 113
CObject Services 113
Object Diagnostics 114
Run-Time Class Information 114
Object Persistence 115
The File Classes 116
The Collection Classes 117
Lists 117
Arrays 117
Maps 118
The CString Class 118
The CTime and CTimeSpan Classes 118
Diagnostic Services in MFC 119
Diagnostics for Memory 119
Diagnostic Output 120
Assertions 120
Handling Exceptions 120

Part 2 MFC Encyclopedia

Using the Encyclopedia 125
Activation 127
Activation: Verbs 127
Administrator, ODBC 128
Application Framework 128
AppWizard 128
AppWizard: Files Created 131
AppWizard: Database Support 134
AppWizard: Database Options 137
AppWizard: Database Source Files and Resources 139
AppWizard: OLE Support 141
AppWizard: Creating an OLE Visual Editing Application 142
Asynchronous Access 144
Automation 144
Automation Clients 145
Automation Clients: Using Type Libraries 146
Automation Servers 147
Automation Servers: Object-Lifetime Issues 148
Binary Large Object 149

vi

Contents

BLOB 149
Catalog Information 150
ClassWizard 150
ClassWizard: Special-Format Comment Sections 152
ClassWizard: Tips and Troubleshooting 155
ClassWizard: Database Support 158
ClassWizard: Creating a Recordset Class 160
ClassWizard: Binding Recordset Fields to Table Columns 163
ClassWizard: Creating a Database Form 165
ClassWizard: Mapping Form Controls to Recordset Fields 167
ClassWizard: Foreign Objects 169
ClassWizard: OLE Automation Support 170
ClassWizard: Adding Automation Properties and Methods 172
ClassWizard: Accessing Automation Servers 174
Client, OLE Automation 174
Clipboard 175
Clipboard: Using the Windows Clipboard 176
Clipboard: Copying and Pasting Data 178
Clipboard: Adding Other Formats 179
CObject Class 180
CObject Class: Deriving a Class from CObject 180
CObject Class: Specifying Levels of Functionality 182
CObject Class: Accessing Run-Time Class Information 184
CObject Class: Dynamic Object Creation 186
Collections 186
Collections: Choosing a Collection Class 188
Collections: Template-Based Classes 190
Collections: How to Make a Type-Safe Collection 193
Collections: Accessing All Members of a Collection 197
Collections: Deleting All Objects in a CObject Collection 199
Collections: Creating Stack and Queue Collections 202
Column 203
Commit 203
COMMON .RES Sample Resources 204
Connection Points 204
Connect String 207
Containers 207
Containers: Implementing a Container 208
Containers: Client Items 209

vil

Contents

viii

Containers: Client-Item Notifications 210
Containers: Client-Item States 211
Containers: Compound Files 212
Containers: User-Interface Issues 214
Containers: Advanced Features 215
Current Record 216
DAO and MFC 217
Data Access Objects (DAO) 221
DAO: WhereIs 221
DAO: Writing a Database Application 225
DAO: Database Application Deéign Options 227
DAO: Steps in Writing MFC DAO Applications 229
DAO: Database Tasks 230
DAO: Creating, Opening, and Closihg DAO Objects 232
DAO: Creating DAO Objects 233
DAO: Opening DAO Objects 234
DAO: Closing DAO Objects 236
DAO: Accessing Implicit MFC DAO Objects 237
DAO: General Performance Tips 238
DAO Collections 243
DAO: Obtaining Information About DAO Objects 245
DAO Database 248 ‘
DAO Database: Using Workspaces and Databases 251
DAO External: Working with External Data Sources 252
DAO External: Attaching External Tables 255
DAO External: Opening External Databases Directly 257
DAO External: Creating an External Table 258
DAO External: Refreshing and Removing Links 258
DAO External: Improving Performance with External Data Sources 259
DAO Queries 261
DAO Queries: SQL for DAO 263
DAO Queries: Filtering and Parameterizing Queries 263
DAO Querydef 267 v
DAO Querydef: Using Querydefs 269
DAO Querydef: Action Queries and SQL Pass-Through Queries 273
DAO Record Field Exchange (DFX) 275
DAO Record Field Exchange: Using DFX 276
DAO Record Field Exchange: Working with the Wizard Code 277
DAO Record Field Exchange: Using the DFX Functions 281

Contents

DAO Record Field Exchange: How DFX Works 283
DAO Record Field Exchange: Double Buffering Records 288
DAO Recordset 290
DAO Recordset: Architecture 295
DAO Recordset: Creating Recordsets 297
DAO Recordset: Recordset Navigation 300
DAO Recordset: Recordset Operations 302
DAO Recordset: Bookmarks and Record Positions 305
DAO Recordset: Seeking and Finding 308
DAO Recordset: Binding Records Dynamically 311
DAO Recordset: Caching Multiple Records for Performance 314
DAO Tabledef 317
DAOQ Tabledef: Using Tabledefs 319
DAO Tabledef: Examining a Database Schema at Run Time 321
DAO Workspace 322
DAO Workspace: Explicitly Opening the Default Workspace 325
DAO Workspace: The Database Engine 326
DAO Workspace: Accessing Properties of the Database Engine 328
DAO Workspace: Managing Transactions 329
DAO Workspace: Opening a Separate Transaction Space 332
Database 334
Database Overview 334
Data Objects and Data Sources (OLE) 339
Data Objects and Data Sources: Creation and Destruction 340
Data Objects and Data Sources: Manipulation 342
Data Source (ODBC) 344
Data Source: Managing Connections (ODBC) 345
Data Source: Determining the Schema of the Data Source (ODBC) 347
Date and Time 348 k
Date and Time: General-Purpose Classes 348
Date and Time: SYSTEMTIME Support 350
Date and Time: OLE Automation Support 350
DBCS 353
DBMS 353
Debugging 353
Debugging OLE Applications 354
Debugging OLE Applications: Containers 355
Debugging OLE Applications: Servers 355
Debugging OLE Applications: Tools 356

Contents

Diagnostics 357
Diagnostics: Debugging Features 358
Diagnostics: Dumping Object Contents 359
Diagnostics: The TRACE Macro 360
Diagnostics: The ASSERT Macro 361
Diagnostics: Checking Object Validity 362
Diagnostics: Detecting Memory Leaks 365
Diagnostics: Dumping All Objects 368
Diagnostics: Tracking Memory Allocations 371
Dialog Boxes in OLE 371
Document/View Architecture 373
Drag and Drop (OLE) 373
Drag and Drop: Implementing a Drop Source 374
Drag and Drop: Implementing a Drop Target 374
Drag and Drop: Customizing 375
Driver Manager, ODBC 376
Driver, ODBC 376
Drop Source 376
Drop Target 376
Dynamic-Link Libraries (DLLs) 377
DLLs: Using the Shared AFXDLL Version of MFC 379
DLLs: Building and Using an Extension DLL 380
DLLs: Building and Using the Static Link Version of the Regular DLL 382
DLLs: Building and Using the Shared Version of the Regular DLL. 383
DLLs: Programming Tips 385
DLLs: Naming Conventions 387
DLLs: Redistribution 388
Dynaset 391
Embedded OLE Item 395
Events 395
Events: Adding Stock Events to an OLE Control 396
Events: Adding Custom Events to an OLE Control 398
Exceptions 402
Exceptions: Changes to Exception Macros in Version 3.0 404
Exceptions: Catching and Deleting Exceptions 406
Exceptions: Converting from MFC Exception Macros 407
Exceptions: Using MFC Macros and C++ Exceptions 410
Exceptions: Examining Exception Contents 412
Exceptions: Freeing Objects in Exceptions 412

Contents

Exceptions: Throwing Exceptions from Your Own Functions 415
Exceptions: Exceptions in Constructors 416
Exceptions: Database Exceptions 416
Exceptions: OLE Exceptions 419
Frequently Asked Questions (FAQ) About MFC 421
FAQ: Updating the Text of a Status-Bar Pane 421
FAQ: The User Interface Guidelines for Microsoft Windows 424
FAQ: Changing the Styles of a Window Created by MFC 424
FAQ: Background Processing in an MFC Application 426
FAQ: Programmatically Configuring an ODBC Data Source 428
FAQ: Programmatically Creating a Table in an ODBC Data Source 431
Field 433
Files 433
Find 436
Forms 436
Framework 436
Help 437
Help: F1 and SHIFT+F1 Help 441
Help: OLE Support for Help 442
Help: Message-Map Support 443
Help: The Help Project File 446
Help: The MAKEHM and MAKEHELP.BAT Tools 447
Help: CPropertySheet and CPropertyPage 450
Help: Authoring Help Topics 451
In-Place Activation 457
In-Place Editing 457
Library Versions 458
Linked OLE Item 460
Mail API 461
MAPI 461
MAPI Support in MFC 461
Managing the State Data of MFC Modules 463
MBCS 466
Memory Management 466
Memory Management: Frame Allocation 466
Memory Management: Heap Allocation 467
Memory Management: Allocation on the Frame and on the Heap 468
Memory Management: Resizable Memory Blocks 470
Menus and Resources 470

Xi

Contents

Menus and Resources: Container Additions 471
Menus and Resources: Server Additions 473
Menus and Resources: Menu Merging 475
Message Map 477
Message Map: Ranges of Messages 478
Methods 482
Methods: Adding Stock Methods to an OLE Control 483
Methods: Adding Custom Methods to an OLE Control 484
Methods: Returning Error Codes From a Method 486
MFC 486
MFC: Changes from MFC Versions 3.0 and 3.1 488
MFC: Windows 95 Support 490
MFC: Win32 Features in MFC 493
MFC: OLE Control Container Support 494
MEC: Data Access Objects (DAO) Support 495
MFC: OLE and Other Enhancements in MFC Version 4.0 495
MFC: Changes from MFC Versions 2.0 and 2.5 497
MEFC: Changes from MFC Version 2.0 32-Bit Edition 499
MEC: Features No Longer Available 500
MFC: 32-Bit Programming Issues 501
MEC: Porting MFC Applications to 32-Bit 502
MFC: Porting Tips 504
MEFC: Using Database Classes with Documents and Views 506
MEFC: Using Database Classes Without Documents and Views 508
MFC: Using the MFC Source Files 512
Multithreading 516
Multithreading: Creating User-Interface Threads 517
Multithreading: Creating Worker Threads 518
Multithreading: How to Use the Synchronization Classes 520
Multithreading: Terminating Threads 522
Multithreading: Programming Tips 523
Muitithreading: When to Use the Synchronization Classes 525
ODBC 527 :
ODBC: The ODBC Cursor Library 529
ODBC: Configuring an ODBC Data Source 531
ODBC: Calling ODBC API Functions Directly 531
ODBC Administrator 532
ODBC Driver List 533
ODBC and MFC 534

xii

Contents

OLE Control Containers 538

OLE Control Containers: Using AppWizard to Create a Container Application
539

OLE Control Containers: Manually Enabling OLE Control Containment 540

OLE Control Containers: Inserting a Control into a Control Container
Application 540

OLE Control Containers: Connecting an OLE Control to a Member Variable 541
OLE Control Containers: Handling Events from an OLE Control 541
OLE Control Containers: Viewing and Modifying Control Properties 542

OLE Control Containers: Programming OLE Controls in an OLE Control
Container 543

OLE Control Containers: Using Controls in a Non-Dialog Container 547
OLE Controls 550

OLE Controls:
OLE Controls:
OLE Controls:

Painting an OLE Control 554
Property Pages 557
Adding Another Custom Property Page 560

OLE Controls:
OLE Controls:
OLE Controls:
OLE Controls:
OLE Controls:
OLE Controls:
OLE Controls:
OLE Controls:
OLE Controls:
OLE Controls:
OLE Controls:

Using Stock Property Pages 563

Using Fonts in an OLE Control 565

Using Pictures in an OLE Control 572

Advanced Topics 576

Distributing OLE Controls 580

Licensing an OLE Control 582

Localizing an OLE Control 588

Serializing 592

Subclassing a Windows Control 594

Using Data Binding in an OLE Control 599

Adding an OLE Control to an Existing CDK Project 602
OLE Controls: VBX Control Migration 606
OLE Controls: Converting a CDK Project to a Visual C++ Project 613

OLE ControlWizard 614
OLE ControlWizard: How ControlWizard Works
OLE ControlWizard: Files Created 619

OLE Overview 623
OLE Overview: Linking and Embedding 624
OLE Overview: Containers and Servers 625
OLE Overview: Implementation Strategies 626
OLE Overview: Microsoft Foundation Class Library Implementation 627

Porting 629

Print Preview 629

615

Xiii

Contents

Xiv

Printing 629
Printing: How Default Printing Is Done 630
Printing: Multipage Documents 631
Printing: Headers and Footers 636
Printing: Allocating GDI Resources 637
Printing: The Print Preview Architecture 638
Properties 640
Properties: Adding Stock Properties 640
Properties: Adding Custom Properties 643
Properties: Advanced Implementation 645
Properties: Accessing Ambient Properties 647
Property Sheets 649
Property Sheets: Exchanging Data 651
Property Sheets: Creating a Modeless Property Sheet 652
Property Sheets: Handling the Apply Button 653
Record 655
Record Field Exchange (RFX) 655
Record Field Exchange: Using RFX 656
Record Field Exchange: Working with the Wizard Code 657
Record Field Exchange: Using the RFX Functions 660
Record Field Exchange: How RFX Works 661
Recordset (ODBC) 666
Recordset: Architecture (ODBC) 668
Recordset: Declaring a Class for a Table (ODBC) 670
Recordset: Creating and Closing Recordsets (ODBC) 671
Recordset: Scrolling (ODBC) 673
Recordset: Filtering Records (ODBC) 675
Recordset: Sorting Records (ODBC) 677
Recordset: Parameterizing a Recordset (ODBC) 678
Recordset: Adding, Updating, and Deleting Records (ODBC) 682
Recordset: Adding Records in Bulk (ODBC) 686
Recordset: Locking Records (ODBC) 686
Recordset: Performing a Join (ODBC) 687
Recordset: Declaring a Class for a Predefined Query (ODBC) 691
Recordset: Requerying a Recordset (ODBC) 694
Recordset: Dynamically Binding Data Columns (ODBC) 695
Recordset: Working with Large Data Items (ODBC) 702

Recordset: Obtaining SUMs and Other Aggregate Results (ODBC) 703

Recordset: How Recordsets Select Records (ODBC) 705

Contents

Recordset: How Recordsets Update Records (ODBC) 708
Recordset: How AddNew, Edit, and Delete Work (ODBC) 710
Recordset: More About Updates (ODBC) 714
Record Views 718
Record Views: Supporting Navigation in a Record View 721
Record Views: Using a Record View 722
Record Views: Filling a List Box from a Second Recordset 724
Registration 725
Result Set 727
RFX 727
Rollback 728
Schema 729 .
Serialization (Object Persistence) 729
Serialization: Making a Serializable Class 730
Serialization: Serializing an Object 733
Serialization: Serialization vs. Database Input/Output 739
Servers 741
Servers: Implementing a Server 742
Servers: Implementing Server Documents 743
Servers: Implementing In-Place Frame Windows 744
Servers: Server Items 745
Servers: User-Interface Issues 747
Snapshot 747
SQL 748
SQL: Customizing Your Recordset’s SQL Statement (ODBC) 750
SQL: SQL and C++ Data Types (ODBC) 754
SQL: Making Direct SQL Calls (ODBC) 755
Stored Procedure 756
Strings 756
Strings: Basic CString Operations 758
Strings: CString Semantics 760
Strings: CString Operations Relating to C-Style Strings 761
Strings: CString Exception Cleanup 763
Strings: CString Argument Passing 763
Strings: Unicode and Multibyte Character Set (MBCS) Support 765
Structured Query Language 767
Table 768
Test Container 768
Toolbars 770

xv

Contents

xvi

Toolbars: Fundamentals - 771
Toolbars: Docking and Floating 774
Toolbars: Tool Tips 776
Toolbars: Working with the Toolbar Control 777
Toolbars: Using Your Old Toolbars 778
Tools for MFC Programming 778
Trackers 781 _
Trackers: Implementing Trackers in Your OLE Application 781
Transaction (ODBC) 785
Transaction: Performing a Transaction in a Recordset (ODBC) 786
Transaction: How Transactions Affect Updates (ODBC) 788
Type Library 789
Unicode 789
Verbs, OLE 790
Visual Editing 790
Windows Sockets in MFC: Overview 791
Windows Sockets: Background 793
Windows Sockets: Stream Sockets 795
Windows Sockets: Datagram Sockets 796
Windows Sockets: Using Sockets with Archives 797
Windows Sockets: Sequence of Operations 799 '
Windows Sockets: Example of Sockets Using Archives 801
Windows Sockets: How Sockets with Archives Work 803
Windows Sockets: Using Class CAsyncSocket 806
Windows Sockets: Deriving from Socket Classes 808
Windows Sockets: Socket Notifications 809
Windows Sockets: Blocking 811
Windows Sockets: Byte Ordering 812
Windows Sockets: Converting Strings 816
Windows Sockets: Ports and Socket Addresses 816
Wizards 817

Index 819

Contents

Figures and Tables

Figures

Figure 1.1 Objects in a Running SDI Application 7
Figure 1.2 Sequence of Execution 18

Figure 1.3 The Message Loop 21

Figure 1.4 An MDI Application with Two Document Types 23
Figure 1.5 Sequence in Creating a Document 26

Figure 1.6 Sequence in Creating a Frame Window 27
Figure 1.7 Sequence in Creating a View 28

Figure 1.8 Window Object and Windows Window 29
Figure 2.1 Commands in the Framework 40

Figure 2.2 Command Updating in the Framework 41
Figure 2.3 A View Hierarchy 47

Figure 3.1 Frame Window and View 58

Figure 3.2 MDI Frame Windows and Children 61

Figure 3.3 Document and View 64

Figure 3.4 Multiple-View User Interfaces 74

Figure 4.1 Dialog Data Exchange 86

Figure 4.2 Bitmap Buttons 92

Figure 4.3 A Status Bar 96

Figure 4.4 A Dialog Bar 97

Figure 1. AppWizard’s Database Options 135

Figure 1 DDX and Foreign Objects 159

Figure 1 Specifying Information for a New Class 162
Figure 2 Selecting a Data Source in ClassWizard 162
Figure 3 Selecting a Database Table in ClassWizard 162
Figure 1 Adding a Data Member to the Recordset 165
Figure 1 DDX for Foreign Objects 169

Figure 1 An Implemented Connection Point 205

Figure 2 A Connection Point Implemented with MFC 206
Figure 1 The OLE Events Tab 395

Figure 1 An MFC Status Bar 421

Figure 1 Preparing Help Files 441

Figure 1 The Main Contents Screen in PEN.RTF 453
Figure 2 The Pen Menu Topic in the PEN.RTF File 454
Figure 3 The Pen Widths and Thick Line Topics in the PEN.RTF File 455
Figure 1 State Data of a Single Module (Application) 463

xvii

Contents

xviii

Figure 2 State Data of Multiple Modules 464
Figure 1 The Add Method Dialog Box 485
Figure 1 Interaction Between an OLE Control Container and an OLE Control 550

Figure 2 Communication Between an OLE Control Container and an
OLE Control 551

Figure 3 Windows Message Processing in an OLE Control (When Active) 552
Figure 1 A Properties Dialog Box 558

Figure 1 Implementing Multiple Font Object Interfaces 570

Figure 1 Verification of a Licensed OLE Control During Development 583
Figure 2 Verification of a Licensed OLE Control During Execution 584
Figure 1 Conceptual Diagram of a Data Bound Control 599

Figure 2 The Data Binding Dialog Box 600

Figure 1 The Project Options Dialog Box 617

Figure 2 The Control Options Dialog Box 618

Figure 3 The Edit Names Dialog Box 618

Figure 1 The Printing Loop 633

Figure 1 Dialog Data Exchange and Record Field Exchange 719

Figure 1 CArchive, CSocketFile, and CSocket 804

Tables

Table 1.1 Where to Find More Information 4

Table 1.2 Sequence for Building an Application with the Framework 9
Table 1.3 Creating OLE Applications 13

Table 1.4 Creating OLE Controls 14

Table 1.5 Creating Database Applications 15

Table 1.7 Gaining Access to Other Objects in Your Application 25
Table 1.8 Classes for Windows GDI Objects 34

Table 2.1 Standard Command Route 44

Table 2.2 Message-Map Entry Macros 48

Table 3.1 New View Classes 69

Table 4.1 Dialog-Related Tasks 82

Table 4.2 Dialog Creation 83

Table 4.3 Commonly Overridden Member Functions of Class CDialog 89
Table 4.4 Common Dialog Classes 90

Table 4.5 Standard Control Window Classes 90

Table 4.6 Additional Control Classes 91

Table 1 Recordset Class Creation Summary 160

Table 1 Mapping Record View Controls to a Recordset 167

Table 1 Macros Used for Serialization and Run-Time Information 181

Table 1
Table 2
Table 1
Table 2
Table 1
Table 2
Table 1
Table 2
Table 1
Table 1
Table 2
Table 3

Contents

Collection Template Classes 187

Nontemplate Collection Classes 187

Collection Shape Features 189

Characteristics of MFC Collection Classes 189

MEC Classes and Corresponding DAO Objects 218

How MFC Manages DAO Objects Not Mapped to Classes 218
Articles About Common Database Tasks 230

Meaning of Create for DAO Objects 234

Meaning of Open for DAO Objects 235

Class Member Functions for Accessing Collections 246
Classes for Obtaining Information About Collections 246
Constants for Specifying the Levels of Information You Want 248

Table 1 QueryDef States and Their Meanings 272

Table 1
Table 1
Table 1
Table 2
Table 3
Table 1
Table 1
Table 2
Table 1
Table 1
Table 2
Table 3
Table 1
Table 2
Table 1
Table 2
Table 3
Table 1
Table 1
Table 1
Table 1
Table 1
Table 2
Table 1
Table 1
Table 1

Using DFX: You and the Framework 276

Data Types and DFX Functions 282

Sequence of DFX Operations During Recordset Open 285
Sequence of DFX Operations During Scrolling 285
Sequence of DFX Operations During AddNew and Edit 287
Characteristics of Recordset Types 291

Using Seek vs. Using Find 308

The Find Family of Functions 310

‘Workspace Member Functions for Database Engine Access 328
Choosing Between MFC’s DAO and ODBC Classes 336
Further Reading About DAO and ODBC in MFC 338

MEFC Database Documentation 338

AFXDLL Naming Convention 387

Static Link Regular DLL Naming Conventions 388
MEC/Other Files 389

32-bit ODBC Files 389

SQL Server ODBC Files 390

Stock Events 397

AppWizard-Supplied Help Files 439

Help-Related Command IDs 444

Preferred Resource ID Naming Conventions 448

Library Naming Conventions 459

Static Library Versions 459

AppWizard Options for Documents and Views 509
Functions to Override When Creating a User-Interface Thread 517
Property Page Functions 560

Xix

Contents

XX

Table 1
Table 1
Table 1
Table 1
Table 2
Table 1
Table 1
Table 2
Table 3
Table 1
Table 1
Table 1
Table 1
Table 1
Table 1
Table 1
Table 1
Table 1
Table 1
Table 2
Table 1
Table 1
Table 2

OLE Control Error Codes 578

Redistributable Files 582

Reflected Windows Messages 597

CView’s Overridable Functions for Printing 632

Page Number Information Stored in CPrintInfo 634

Using RFX: You and the Framework 656

Sequence of RFX Operations During Recordset Open 663
Sequence of RFX Operations During Scrolling 663
Sequence of RFX Operations During AddNew and Edit 665
Recordset Read/Update Options 682

How and When You Can Affect a Recordset 705

Recordset Updating: You and the Framework 709

Working with a Record View: You and the Framework 720
Server Characteristics 741

Some Common SQL Keywords 749

The IpszSQL Parameter and the SQL String Constructed 752
ANSI SQL Data Types Mapped to C++ Data Types 754
Container Styles and State of the OLE Item 782

How CommitTrans Affects Updates 788

How Rollback Affects Transactions 789

Setting Up Communication Between a Server and a Client 800
Big- and Little-Endian Byte Ordering 813

Windows Sockets Byte-Order Conversion Functions 815

Introduction

This book contains information on programming with the Microsoft® Foundation
Class Library (MFC). The class library is a set of C++ classes that encapsulate the
functionality of applications written for the Microsoft Windowse operating system.
This version of MFC supports programming for Win32e platforms, including
Microsoft Windows NT™ and Windows 95.

Part 1, meant to be read sequentially, is an overview of the class library, designed to
help you understand the major components of an MFC application and how they
work together. Part 1 explains the following topics:

¢ The key components of an MFC application:
¢ An application object, which represents your application

e Document template objects, which create document, frame window, and view
objects

¢ Document objects, which store data and serialize it to persistent storage

e View objects, which display a document’s data and manage the user’s
interaction with the data

¢ Frame window objects, which contain views

e Thread objects, which let you program multiple threads of execution using
MEFC classes

¢ Dialog boxes, controls, and control bars, such as toolbars and status bars.
e OLE visual editing and OLE Automation.
e OLE controls and the classes and tools used to develop them.

e Database support using Open Database Connectivity (ODBC) and Data Access
Objects (DAO).

¢ Useful general-purpose classes, such as strings, collections, exceptions, and
date/time objects.

Part 2, designed for random access, presents an encyclopedia—an alphabetical
collection of articles on programming with MFC. You can use these articles to follow
many different threads of information. For an overview of how the articles work with

Xxi

Programming with MFC

each other, see the first article Using the Encyclopedia. Articles that begin
particularly important threads include:

¢ MFC

e OLE Overview

e Database Overview
¢ OLE Controls

Document Conventions

XXii

This book uses the following typographic conventions:

Example Description

STDIO.H Uppercase letters indicate filenames, registers, and terms
used at the operating-system command level

char, _setcolor, __far Bold type indicates C and C++ keywords, operators, and
library routines. Within discussions of syntax, bold type
indicates that the text must be entered exactly as shown.

Many constants, functions, and keywords begin with either
a single or double underscore. These are required as part
of the name. For example, the compiler recognizes the

__ cplusplus manifest constant only when the leading
double underscore is included.

expression Words in italics indicate placeholders for information you
must supply, such as a filename. Italic type is also used
occasionally for emphasis in the text.

[[option]] Items inside double square brackets are optional.

ffpragma pack {112} Braces and a vertical bar indicate a choice among two or
more items. You must choose one of these items unless
double square brackets (][J|) surround the braces.

#include <io.h> This font is used for examples, user input, program output,
and error messages in text.

CL [[option...] file... Three dots (an ellipsis) following an item indicate that
more items having the same form may appear.

while () A column or row of three dots tells you that part of an

{ example program has been intentionally omitted.

Example

Introduction

Description

CTRL+ENTER

“argument”

"C string"

Dynamic-Link Library (DLL)

Microsoft Specific —

END Microsoft Specific

Small capital letters are used to indicate the names of keys
on the keyboard. When you see a plus sign (+) between
two key names, you should hold down the first key while
pressing the second.

The carriage-return key, sometimes marked as a bent
arrow on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is
defined in text.

Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language have
theform » » and ' ‘' rather than “” and ‘’.

The first time an acronym is used, it is usually spelled
out.

Some features documented in this book have special
usage constraints. A heading identifying the nature of
the exception, followed by an arrow, marks the
beginning of these exception features.

END followed by the exception heading marks the end of
text about a feature which has a usage constraint.

xxiii

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

PART 1

Overview of the MFC Library

Using the Classes to Write Applications for Windows 3
Working with Messages and Commands 37

Working with Frame Windows, Documents, and Views 57
Working with Dialog Boxes, Controls, and Control Bars 79
Working with OLE 99

Developing OLE Controls 105

Working with Databases 109

Using the General-Purpose Classes 113

CHAPTER

Using the Classes to Write

1

Applications for Windows

Taken together, the classes in the Microsoft Foundation Class Library (MFC) make
up an “application framework”—the framework on which you build an application
for Windows. At a very general level, the framework defines the skeleton of an
application and supplies standard user-interface implementations that can be placed
onto the skeleton. Your job as programmer is to fill in the rest of the skeleton—those
things that are specific to your application. You can get a head start by using
AppWizard to create the files for a very thorough starter application. You use the
Microsoft Visual C++™ resource editors to design your user-interface elements
visually, ClassWizard to connect those elements to code, and the class library to
implement your application-specific logic.

Version 3.0 and later of the MFC framework supports 32-bit programming for Win32
platforms, including Microsoft Windows 95 and Microsoft Windows NT version 3.51
and later. MFC Win32 support includes multithreading.

This chapter presents a broad overview of the application framework. It also explores
the major objects that make up your application and how they are created. Among the
topics covered in this chapter are the following:

e The framework
¢ Division of labor between the framework and your code
e The application class, which encapsulates application-level functionality

e How document templates create and manage documents and their associated views
and frame windows

o (Class CWnd, the root base class of all windows

e Graphic objects, such as pens and brushes

Subsequent chapters continue the framework story, covering:

e Chapter 2, Working with Messages and Commands

¢ Chapter 3, Working with Frame Windows, Documents, and Views
e Chapter 4, Working with Dialog Boxes, Controls, and Control Bars
e Chapter 5, Working with OLE

Programming with MFC

Besides giving you a considerable head start in writing applications for Windows,
MFC also makes it much easier to write applications that specifically use OLE.
You can make your application an OLE Visual Editing container, an OLE Visual
Editing server, or both, and you can add OLE Automation so that other
applications can use objects from your application or even drive it remotely.

* Chapter 6, Developing OLE Controls

The OLE control development kit (CDK) is now fully integrated with the
framework. This chapter supplies an overview of OLE control development with
MEC.

¢ Chapter 7, Working with Databases

MEFC also supplies a set of database classes that simplify writing data-access
applications. Using the database classes, you can connect to databases via an Open
Database Connectivity (ODBC) driver, select records from tables, and display
record information in an on-screen form.

e Chapter 8, Using the General-Purpose Classes
In addition, MFC is fully enabled for writing applications that use Unicode™ and
multibyte character sets (MBCS), specifically double-byte character sets (DBCS).

For a step-by-step tutorial in which you build an application with the framework, read
Tutorials, Chapters 2 through 11. The following table directs you to other documents:

Table 1.1 Where to Find More Information

Topic Book Chapters

Classes mentioned in this Class Library Reference Alphabetic reference
book

AppWizard Visual C++ User’s Guide Chapter 1
ClassWizard and WizardBar Visual C++ User’s Guide Chapter 14

Development environment
Tutorials

Diagnostics, exceptions

Macros and globals
Resources

OLE programming
OLE controls programming

Database programming
(ODBC and DAO)

Visual C++ User’s Guide
Tutorials

Programming with MFC
(this book)

Class Library Reference
Visual C++ User’s Guide
Programming with MFC

Programming with MFC

Programming with MFC

Chapters 1-22
Chapters 2—-35

Part 2 (see Diagnostics and
Exceptions)

Alphabetic reference
Chapters 5-12

Chapter 5 and Part 2 (see
OLE Overview)

Chapter 6 and Part 2 (see
OLE Controls)

Chapter 7 and Part 2 (see
Database Overview)

Chapter 1 Using the Classes to Write Applications for Windows

The Framework

Your work with the framework is based largely on a few major classes and several
Visual C++ tools. Some of the classes encapsulate a large portion of the Win32
application programming interface (API). Other classes encapsulate application
concepts such as documents, views, and the application itself. Still others encapsulate
OLE features and ODBC and DAO data-access functionality.

SDI and MDI

MFC makes it easy to work with both single document interface (SDI) and multiple
document interface (MDI) applications.

SDI applications allow only one open document frame window at a time. MDI
applications allow multiple document frame windows to be open in the same instance
of an application. An MDI application has a window within which multiple MDI
child windows, which are frame windows themselves, can be opened, each containing
a separate document. In some applications, the child windows can be of different
types, such as chart windows and spreadsheet windows. In that case, the menu bar
can change as MDI child windows of different types are activated.

Note Under Windows 95, applications will increasingly be SDI as the operating system
moves towards a “document-centered” view.

Documents, Views, and the Framework

At the heart of the framework are the concepts of document and view. A document is
a data object with which the user interacts in an editing session. It is created by the
New or Open command on the File menu and is typically saved in a file. A view is a
window object through which the user interacts with a document.

The key objects in a running application are:

e The document(s)
Your document class (derived from CDocument) specifies your application’s data.

If you want OLE functionality in your application, derive your document class
from COleDocument or one of its derived classes, depending on the type of
functionality you need.

o The view(s)

Your view class (derived from CView) is the user’s “window on the data.” The
view class specifies how the user sees your document’s data and interacts with it.
In some cases, you may want a document to have multiple views of the data.

If you need scrolling, derive from CScrollView. If your view has a user interface
that is laid out in a dialog-template resource, derive from CFormView. For simple
text data, use or derive from CEditView. For a form-based data-access

Programming with MFC

application, such as a data-entry program, derive from CRecordView (for ODBC)
or CDaoRecordView (for DAQ). Also available are classes CTreeView,
CListView, and CRichEditView.

e The frame windows

Views are displayed inside “document frame windows.” In an SDI application, the
document frame window is also the “main frame window” for the application. In
an MDI application, document windows are child windows displayed inside a
main frame window. Your derived main frame-window class specifies the styles
and other characteristics of the frame windows that contain your views. Derive
from CFrameWnd to customize the document frame window for SDI
applications. Derive from CMDIFrameWnd to customize the main frame window
for MDI applications. Also derive a class from CMDIChildWnd to customize
each of the distinct kinds of MDI document frame windows that your application
supports.

¢ The document template(s)

A document template orchestrates the creation of documents, views, and frame
windows. A particular document-template class, derived from class
CDocTemplate, creates and manages all open documents of one type.
Applications that support more than one type of document have multiple
document templates. Use class CSingleDocTemplate for SDI applications, or use
class CMultiDocTemplate for MDI applications.

e The application object

Your application class (derived from CWinApp) controls all of the objects above
and specifies application behavior such as initialization and cleanup. The
application’s one and only application object creates and manages the document
templates for any document types the application supports.

¢ Thread objects

If your application creates separate threads of execution—for example, to perform
calculations in the background—you’ll use classes derived from CWinThread.
CWinApp itself is derived from CWinThread and represents the primary thread
of execution (or the main process) in your application. You can also use MFC in
secondary threads.

In a running application, these objects cooperatively respond to user actions, bound
together by commands and other messages. A single application object manages one
or more document templates. Each document template creates and manages one or
more documents (depending on whether the application is SDI or MDI). The user
views and manipulates a document through a view contained inside a frame window.
Figure 1.1 shows the relationships among these objects for an SDI application.

Chapter 1 Using the Classes to Write Applications for Windows

Figure 1.1 Objects in a Running SDI Application

[Application Object |

| Document Template |

Main Frame Window

Toolbar
Arrows show directions L J
of communication flow. > View

>

| StatusBar |

The rest of this chapter explains how the framework tools, AppWizard, ClassWizard,
WizardBar, and the resource editors, create these objects, how they work together,
and how you use them in your programming. Documents, views, and frame windows
are discussed in more detail in Chapter 3, Working with Frame Windows,
Documents, and Views.

AppWizard, ClassWizard, and the Resource Editors

Visual C++ includes two wizards and the WizardBar for use in MFC programming,
along with many integrated resource editors. For OLE controls programming, the
ControlWizard serves a purpose much like that of AppWizard. While you can write
MFC applications without most of these tools, the tools greatly simplify and speed
your work.

Use AppWizard to Create an MFC Application

Use AppWizard to create an MFC project in Visual C++—which can include OLE
and database support. Files in the project contain your application, document, view,
and frame-window classes; standard resources, including menus and an optional
toolbar; other required Windows files; and optional .RTF files containing standard
Windows Help topics.

Use ClassWizard to Manage Classes and Windows
Messages

ClassWizard helps you create handler functions for Windows messages and
commands; create and manage classes; create class member variables; create OLE
Automation methods and properties; create database classes; and more.

Programming with MFC

Tip ClassWizard also helps you to override virtual functions in the MFC classes. Select the
class and select the virtual function to override. The rest of the process is similar to message
handling, as described in the following paragraphs.

Applications running under Windows are “message driven.” User actions and other
events that occur in the running program cause Windows to send messages to the
windows in the program. For example, if the user clicks the mouse in a window,
Windows sends a WM_LBUTTONDOWN message when the left mouse button is
pressed and a WM_LBUTTONUP message when the button is released. Windows
also sends WM_COMMAND messages when the user selects commands from the
menu bar. ‘

In the framework, various objects—documents, views, frame windows, document
templates, the application object—can “handle” messages. Such an object provides a
“handler function” as one of its member functions, and the framework maps the
incoming message to its handler.

A large part of your programming task is choosing which messages to map to which
objects and then implementing that mapping. To do so, you use ClassWizard.

ClassWizard will create empty message-handler member functions, and you use the
source code editor to implement the body of the handler.

Quick access to frequently used features of ClassWizard are available at the top of
your source code files in the WizardBar, built into the frame window that displays
your source code file.

Use the Resource Editors to Create and Edit Resources

Use the Visual C++ resource editors to create and edit menus, dialog boxes, custom
controls, accelerator keys, bitmaps, icons, cursors, strings, and version resources.
ClassWizard works with the editors: for example, when you create a dialog-template
resource, you can run ClassWizard to connect the resource to a dialog class. As of
Visual C++ version 4.0, a toolbar editor makes creating toolbars much easier.

To help you even more, the Microsoft Foundation Class Library provides a file called
COMMON.RES, which contains “clip art” resources that you can copy from
COMMON.RES and paste into your own resource file. COMMON.RES includes
toolbar buttons, common cursors, icons, and more. You can use, modify, and
redistribute these resources in your application. For more information about
COMMON.RES, see the article COMMON.RES Sample Resources.

For more information about the tools and how they work together, see the article
Tools for MFC Programming.

Chapter 1 Using the Classes to Write Applications for Windows

Building on the Framework

Your role in configuring an application with the framework is to supply the
application-specific source code and to connect the components by defining what
messages and commands they respond to. You use the C++ language and standard
C++ techniques to derive your own application-specific classes from those supplied
by the class library and to override and augment the base class’s behavior.

Table 1.2 shows what you do in relation to what the framework does. Table 1.3 shows
your role and the framework’s role in creating OLE applications. Table 1.4 shows
your role and the framework’s role in creating OLE controls. Table 1.5 shows the
same kind of information for working with databases. For the most part, you can
follow these tables as a sequence of steps for creating an MFC application, although
some of the steps are alternative options. For example, most applications use one type
of view class from the several types dvailable.

Table 1.2 Sequence for Building an Application with the Framework

Task . You do The framework does

Create a skeleton Run AppWizard. Specify the =~ AppWizard creates the files

application. options you want in the for a skeleton application,
options pages. Options including source files for
include making the your application, document,
application an OLE server, view, and frame windows; a
container, or both; adding resource file; a project file
OLE Automation; and (.MAK); and others—all
making the application tailored to your
database-aware. specifications.

See what the framework and ~ Build the skeleton The running skeleton

AppWizard offer without application and run it in application derives many

adding a line of your own Visual C++. ! standard File, Edit, View,

code. and Help menu commands

from the framework. For
MDI applications, you also
get a fully functional
Window menu, and the
framework manages creation,
arrangement, and destruction
of MDI child windows.

Programming with MFC

Table 1.2 Sequence for Building an Application with the Framework (cont.)

Task

You do

The framework does

Construct your application’s
user interface.

Map menus to handler
functions.

Write your handler code.

Map toolbar buttons to
commands.

Test your handler functions.

Use the Visual C++ resource
editors to visually edit the a7

Create menus.
Define accelerators.
Create dialog boxes.

Create and edit bitmaps,
icons, and cursors.

- Edit the toolbar created for

you by AppWizard.

Create and edit other
resources.

You can also test the dialog
boxes in the dialog editor.

Use ClassWizard or
WizardBar to connect menus
and accelerators to handler
functions in your code.

Use ClassWizard or the
Class View in the Project
Workspace window to jump
directly to the code in the
source code editor. Fill in the
code for your handler
functions.

Map each button on your
toolbar to a menu or
accelerator command by
assigning the button the
appropriate command ID.

Rebuild the program and use
the built-in debugging tools
to test that your handlers
work correctly.

The default resource file
created by AppWizard
supplies many of the
resources you need. Visual
C++ lets you edit existing
resources and add new
resources, easily and
visually.

ClassWizard or WizardBar
inserts message-map entries
and empty function templates
in the source files you
specify and manages many
manual coding tasks.

ClassWizard brings up the
editor, scrolls to the empty
function template, and
positions the cursor for you.

The framework controls the
drawing, enabling, disabling,
checking, and other visual
aspects of the toolbar
buttons.

You can step or trace through
the code to see how your
handlers are called. If you’ve
filled out the handler code,
the handlers carry out
commands. The framework
will automatically disable
menu items and toolbar
buttons that are not handled.

Chapter 1 Using the Classes to Write Applications for Windows

Table 1.2 Sequence for Building an Application with the Framework (cont.)

Task

You do

The framework does

Initialize, validate,
and retrieve dialog-
box data.

Create additional
classes.

Add ready-to-use
components to your
application.

Implement your
document class.

Implement Open,
Save, and Save As
commands.

Design dialog-template resources
with the dialog editor. Then use
ClassWizard to create a dialog
class and the code that handles
the dialog box.

You can also define how the
dialog box’s controls are to be
initialized and validated. Use
ClassWizard to add member
variables to the dialog class and
map them to dialog controls.
Specify validation rules to be
applied to each control as the
user enters data. Provide your
own custom validations if you
wish.

Use ClassWizard to create
additional document, view, and
frame-window classes beyond
those created automatically by
AppWizard. You can create
additional database recordset
classes, dialog classes, and so
on.

Use Component Gallery to add a
variety of components.

Implement your application-
specific document class(es). Add
member variables to hold data
structures. Add member
functions to provide an interface
to the data.

Write code for the document’s
Serialize member function.

The framework manages the
dialog box and facilitates
retrieving information entered by
the user.

The framework manages dialog-
box initialization and validation.
If the user enters invalid
information, the framework
displays a message box and lets
the user reenter the data.

ClassWizard adds these classes
to your source files and helps you
define their connections to any
commands they handle.

These components are easy to
integrate into your application
and save you a great deal of
work.

The framework already knows
how to interact with document
data files. It can open and close
document files, read and write
the document’s data, and handle
other user interfaces. You can
focus on how the document’s
data is manipulated.

The framework displays dialog
boxes for the Open, Save, and
Save As commands on the File
menu. It writes and reads back a
document using the data format
specified in your Serialize
member function.

11

Programming with MFC

Table 1.2 Sequence for Building an Application with the Framework (cont.)

Task

You do

The framework does

Implement your view class.

Enhance default printing.

Add scrolling.

Create form views.

Create database forms.

Create a simple text editor.

12

Implement one or more view
classes corresponding to your
documents. Implement the
view’s member functions
that you mapped to the user
interface with ClassWizard.
A variety of CView-derived
classes are available,
including CListView and
CTreeView.

If you need to support
multipage printing, override
view member functions.

If you need to support
scrolling, derive your view
class(es) from CScrollView.

If you want to base your
views on dialog-template
resources, derive your view
class(es) from CFormView.

If you want a form-based
data-access application,
derive your view class from
CRecordView (for ODBC
programming) or
CDaoRecordView (for DAO
programming).

If you want your view to be a
simple text editor, derive
your view class(es) from
CEditView.

The framework manages
most of the relationship
between a document and its
view. The view’s member
functions access the view’s
document to render its image
on the screen or printed page
and to update the document’s
data structures in response to
user editing commands.

The framework supports the
Print, Print Setup, and Print
Preview commands on the
File menu. You must tell it
how to break your document
into multiple pages.

The view automatically adds
scroll bars when the view
window becomes too small.

The view uses the dialog-
template resource to display
controls. The user can tab
from control to control in the
view.

The view works like a form
view, but its controls are
connected to the fields of a
CRecordset or
CDaoRecordset object
representing a database
table. MFC moves data
between the controls and the
recordset for you.

The view provides editing

functions, Clipboard support,
and file input/output.

Chapter 1 Using the Classes to Write Applications for Windows

Table 1.2 Sequence for Building an Application with the Framework (cont.)

Task

You do

The framework does

Add splitter windows,

Build, test, and debug your
application.

If you want to support
window splitting, add a
CSplitterWnd object to your
SDI frame window or MDI
child window and hook it up
in the window’s
OnCreateClient member
function.

Use the facilities of Visual
C++ to build, test, and debug
your application.

The framework supplies
splitter-box controls next to
the scroll bars and manages
splitting your view into
multiple panes. If the user
splits a window, the
framework creates and
attaches additional view
objects to the document.

Visual C++ lets you adjust
compile, link, and other
options. And it lets you
browse your source code and
class structure.

Table 1.3 shows your role and the framework’s role in creating OLE applications.
These represent options available rather than a sequence of steps to perform.

Table 1.3 Creating OLE Applications

Task You do The framework does
Create an OLE server. Run AppWizard. Choose The framework generates a
OLE Full Server or OLE skeleton application with

Create an OLE container
application from scratch.

Create an application that
supports OLE Automation
from scratch.

Mini-server in the OLE
options.

(From an existing
application, emulate Step 7
in the Scribble tutorial.)

Run AppWizard. Choose
OLE Container in the OLE
options. In ClassWizard,
jump to the source code
editor. Fill in code for your
OLE handler functions.

Run AppWizard. Choose
Automation Support in the
OLE options. Use
ClassWizard to expose
methods and properties in
your application for
automation.

OLE server capability
enabled. All of the OLE
capability can be transferred
to your existing application
with only slight modification.

The framework generates a
skeleton application that can
insert OLE objects created
by OLE server applications.

The framework generates a
skeleton application that can
be activated and automated
by other applications.

13

Programming with MFC

Table 1.4 shows your role and the framework’s role in creating OLE controls.
Table 1.4 Creating OLE Controls

Task You do The framework does
Create an OLE control Run a custom AppWizard, AppWizard creates the files for
framework. called OLE ControlWizard, to an OLE control with basic

See what the control
and OLE
ControlWizard offer

without adding a line of

your own code.

Implement the control’s
methods and properties.

Construct the control’s
property page(s).

Test the control’s
events, methods, and
properties.

14

create your control. Specify the
options you want in the options
pages. Options include number
of controls in the project,
licensing, subclassing, and an
‘About Box’ method.

Build the OLE control and test
it with Test Container.

Implement your control-specific
methods and properties by
adding member functions to
provide an exposed interface to
the control’s data. Add member
variables to hold data structures
and use event handlers to fire
events when you determine.

Use the Visual C++ resource
editors to visually edit the
control’s property page
interface:

Create additional property
pages.

Create and edit bitmaps, icons,
and cursors.

You can also test the property
page(s) in the dialog editor.

Rebuild the control and use
Test Container to test that your
handlers work correctly.

functionality, including source
files for your application,
control, and property page(s); a
resource file; a project file
(.MAK); and others—all
tailored to your specifications.

The running control has the
ability to be resized and moved.
It also has an About Box
method (if chosen) that can be
invoked.

The framework has already
defined a map to support the
control’s events, properties, and
methods, leaving you to focus
on how the properties and
methods are implemented. The
default property page is
viewable and a default About
Box method is supplied.

The default resource file
created by AppWizard supplies
many of the resources you need.
Visual C++ lets you edit
existing resources and add new
resources, easily and visually.

You can invoke the control’s
methods and manipulate its
properties through the property
page interface or through Test
Container. In addition, use Test
Container to track events fired
from the control and
notifications received by the
control’s container.

Chapter 1 Using the Classes to Write Applications for Windows

Table 1.5 shows your role and the framework’s role in writing database applications.

Table 1.5 Creating Database Applications

Task You do The framework does

Decide whether to use the See DAO or ODBC in The framework supplies two

MFC DAO classes or the Programming with MFC. For sets of database classes, one

MFC ODBC classes. general information, see the based on Data Access

article Database Overview. Objects (DAO) and the

Microsoft Jet database
engine, and the other based
on ODBC.

Create your skeleton
application with database
options.

Design your database
form(s).

Create additional record
view and recordset classes as
needed.

Create recordset objects as
needed in your code. Use
each recordset to manipulate
records.

Or create an explicit
CDatabase or
CDaoDatabase object in
your code for each database
you want to open.

Run AppWizard. Select
options on the database
options page. If you choose
one of the options that
creates a record view, also
specify a data source and
table name(s) and/or query
name(s).

Use the Visual C++ dialog
editor to place controls on
the dialog template resources
for your record view classes.

Use ClassWizard to create
the classes and the dialog
editor to design the views.

Your recordsets are based on
the classes derived from
CRecordset or
CDaoRecordset with the
wizards. If you’re using
DAO, you can also use
CDaoRecordset objects
without deriving a class of
your own.

Base your recordset objects
on the database objects.

AppWizard creates files and
specifies the necessary
includes. Depending on
whether you specify DAO or
ODBC and which other
options you specify, the files
can include a recordset class.

AppWizard creates an empty
dialog template resource for
you to fill in.

ClassWizard creates
additional files for your new
classes.

The framework uses record
field exchange (DFX for
DAO, RFX for ODBC) to
exchange data between the
database and your
recordset’s field data
members. If you’re using a
record view, dialog data
exchange (DDX) exchanges
data between the recordset
and the controls on the
record view.

The database object provides
an interface to the data
source.

15

Programming with MFC

Table 1.5 Creating Database Applications (cont.)

Task You do The framework does

In DAO, access a Use a CDaoWorkspace The workspace lets you

“workspace.” object to: manage one or more open
access DAQ’s default databases in a single
workspace. transaction space.

In DAO, work with tables
and perform data definition
language (DDL) tasks.

In DAO, work with stored
queries.

Bind data columns to your
recordset dynamically.

16

manage a separate
transaction space.

access the Microsoft Jet
database engine.

Use a CDaoTableDef object
to:

create a recordset.
add a table.

attach to an external data
source, such as ODBC.

examine table structure.

add or delete fields and
indexes and set other table
properties.

Use a CDaoQueryDef object
to:

create a recordset.

store a query.

execute an action query or an
SQL pass-through query.

In DAO, use a
CDaoRecordset object
directly to set or get field and
parameter values. See the
article DAO Recordset:
Binding Records
Dynamically. In ODBC, add
code to your derived
recordset class to manage the
binding. See the article
Recordset: Dynamically
Binding Data Columns
(ODBC).

Chapter 1 Using the Classes to Write Applications for Windows

Table 1.5 Creating Database Applications (cont,)

Task You do The framework does
Work with data in external In most cases with DAO, use

data sources, such as ODBC CDaoTableDef objects to

data sources (for which you attach tables from the

need an ODBC driver, under external data source rather

either ODBC or DAO). A than opening the data source

non-external data source is directly.

one you can open directly
with the Microsoft Jet
database engine.

As you can see, AppWizard, the Visual C++ resource editors, ClassWizard,
WizardBar and the framework do a lot of work for you and make managing your code
much easier. The bulk of your application-specific code is in your document and view
classes. For a tour of this process with real applications, see Tuforials:

e Chapters 2 through 11 show you how to use the basic MFC framework.

e Chapters 12 through 19 teach OLE programming techniques.

e Chapters 20 through 29 explain OLE control development.

e Chapters 30 through 33 explain ODBC database programming techniques.
e Chapter 34 explains DAO database programming.

e Chapter 35 explains how to obtain the Windows 95 logo.

While it is possible to do these tasks by hand or using other tools, your savings in
time, energy, and errors suggest that using the tools and framework is greatly to your
benefit.

How the Framework Calls Your Code

It is crucial to understand the relationship between your source code and the code in
the framework. When your application runs, most of the flow of control resides in the
framework’s code. The framework manages the message loop that gets messages
from Windows as the user chooses commands and edits data in a view. Events that
the framework can handle by itself don’t rely on your code at all. For example, the
framework knows how to close windows and how to exit the application in response
to user commands. As it handles these tasks, the framework uses message handlers
and C++ virtual functions to give you opportunities to respond to these events as well.
But your code is not in the driver’s seat, the framework is.

Your code is called by the framework for application-specific events. For example,
when the user chooses a menu command, the framework routes the command along a
sequence of C++ objects: the current view and frame window, the document
associated with the view, the document’s document template, and the application
object. If one of these objects can handle the command, it does so, calling the

17

Programming with MFC

appropriate message-handler function. For any given command, the code called may
be yours or it may be the framework’s.

This arrangement is somewhat familiar to programmers experienced with traditional
programming for Windows or event-driven programming.

In the next few topics, you’ll see what the framework does as it initializes and runs
the application and then cleans up as the application terminates. You’ll also get a
clearer picture of where the code you write fits in.

CWinApp: The Application Class

The main application class encapsulates the initialization, running, and termination
of an application for Windows. An application built on the framework must have one
(and only one) object of a class derived from CWinApp. This object is constructed
before windows are created.

Note Your application class constitutes your application’s primary thread of execution. Using
Win32 API functions, you can also create secondary threads of execution. These threads can
use the MFC library. For more information, see the article Multithreading.

Like any program for Windows, your framework application has a WinMain
function. In a framework application, however, you don’t write WinMain. It is
supplied by the class library and is called when the application starts up. WinMain
performs standard services such as registering window classes. Then it calls member
functions of the application object to initialize and run the application.

To initialize the application, WinMain calls your application object’s
InitApplication and InitInstance member functions. To run the application’s
message loop, WinMain calls the Run member function. On termination, WinMain
calls the application object’s ExitInstance member function. Figure 1.2 shows the
sequence of execution in a framework application.

Figure 1.2 Sequence of Execution

WinMain Standard function supplied by framework
calls
|—> InitInstance Initializes current instance of the application
calls
L—» Run Runs the message loop and Onidle
calls

|—> ExitInstance Cleans up after the application

18

Chapter 1 Using the Classes to Write Applications for Windows

Note Names shown in bold type indicate elements supplied by the Microsoft Foundation
Class Library and Visual C++. Names shown in monospaced type indicate elements that you
create or override.

CWinApp and AppWizard

When it creates a skeleton application, AppWizard declares an application class
derived from CWinApp. AppWizard also generates an implementation file that
contains the following items:

» A message map for the application class

e An empty class constructor

e A variable that declares the one and only object of the class

¢ A standard implementation of your InitInstance member function

The application class is placed in the project header and main source files. The
names of the class and files created are based on the project name you supply in

AppWizard. The easiest way to view the code for these classes is through the Class
View in the Project Workspace window.

The standard implementations and message map supplied are adequate for many
purposes, but you can modify them as needed. The most interesting of these
implementations is the InitInstance member function. Typically you will add code
to the skeletal implementation of InitInstance.

Overridable CWinApp Member Functions
CWinApp provides several key overridable member functions:
¢ InitInstance

e Run

¢ ExitInstance

¢ Onldle

The only CWinApp member function that you must override is InitInstance.

Initinstance Member Function

Windows allows you to run more than one copy, or “instance,” of the same
application. WinMain calls InitInstance every time a new instance of the application
starts.

The standard InitInstance implementation created by AppWizard performs the
following tasks:

e As its central action, creates the document templates that, in turn, create
documents, views, and frame windows. For a description of this process, see
Document Templates.

19

Programming with MFC

20

e Loads standard file options from an .INI file or the Windows registry, including
the names of the most recently used files.

e Registers one or more document templates.
o For an MDI application, creates a main frame window.

¢ Processes the command line to open a document specified on the command line or
to open a new, empty document.

You can add your own initialization code or modify the code written by the wizard.

Run Member Function

A framework application spends most of its time in the Run member function of class
CWinApp. After initialization, WinMain calls Run to process the message loop.

Run cycles through a message loop, checking the message queue for available
messages. If a message is available, Run dispatches it for action. If no messages are
available—often the case—Run calls Onldle to do any idle-time processing that you
or the framework may need done. If there are no messages and no idle processing to
do, the application waits until something happens. When the application terminates,
Run calls ExitInstance. Figure 1.3 shows the sequence of actions in the message
loop. ’

Message dispatching depends on the kind of message. For more information, see
Chapter 2, Working with Messages and Commands.

Exitinstance Member Function

The ExitInstance member function of class CWinApp is called each time a copy of
your application terminates, usually as a result of the user quitting the application.
Override ExitInstance if you need special cleanup processing, such as freeing
graphics device interface (GDI) resources or deallocating memory used during
program execution. Cleanup of standard items such as documents and views,
however, is provided by the framework, with other overridable functions for doing
special cleanup specific to those objects.

Onldle Member Function

When no Windows messages are being processed, the framework calls the CWinApp
member function Onldle (described in the Class Library Reference). Override
Onldle to perform background tasks. The default version updates the state of user-
interface objects such as toolbar buttons and performs cleanup of temporary objects
created by the framework in the course of its operations. Figure 1.3 illustrates how
the message loop calls Onldle when there are no messages in the queue.

Chapter 1 Using the Classes to Write Applications for Windows

Figure 1.3 The Message Loop

Get/Translate/Dispatch

Idle

Sleep until
message

]

Special CWinApp Services

Besides running the message loop and giving you an opportunity to initialize the
application and clean up after it, CWinApp provides several other services.

Shell Registration

By default, AppWizard makes it possible for the user to open data files that your
application has created by double-clicking them in the Windows File Manager. If
your application is an MDI application and you specify an extension for the files your
application creates, AppWizard adds calls to the EnableShellOpen and
RegisterShellFileTypes member functions of CWinApp to the InitInstance
override that it writes for you.

RegisterShellFileTypes registers your application’s document types with File
Manager. The function adds entries to the registration database that Windows
maintains. The entries register each document type, associate a file extension with

21

Programming with MEC

the file type, specify a command line to open the application, and specify a dynamic
data exchange (DDE) command to open a document of that type.

EnableShellOpen completes the process by allowing your application to receive
DDE commands from File Manager to open the file chosen by the user.

This automatic registration support in CWinApp eliminates the need to ship an
.REG file with your application or to do special installation work.

File Manager Drag and Drop

Windows versions 3.1 and later allow the user to drag filenames from the file view
window in the File Manager and drop them into a window in your application. You
might, for example, allow the user to drag one or more filenames into an MDI
application’s main window, where the application could retrieve the filenames and
open MDI child windows for those files.

To enable file drag and drop in your application, AppWizard writes a call to the
CWnd member function DragAcceptFiles for your main frame window in your
InitInstance. You can remove that call if you do not want to implement the drag-
and-drop feature.

Note You can also implement more general drag-and-drop capabilities—dragging data
between or within documents—using OLE. For information, see the article Drag and Drop
(OLE).

Keeping Track of the Most Recently Used Documents

As the user opens and closes files, the application object keeps track of the four most
recently used files. The names of these files are added to the File menu and updated
when they change. The framework stores these filenames in an .INI file with the
same name as your project and reads them from the file when your application starts
up. The InitInstance override that AppWizard creates for you includes a call to the
CWinApp member function LoadStdProfileSettings, which loads information from
the .INI file, including the most recently used filenames.

Document Templates

22

To manage the complex process of creating documents with their associated views
and frame windows, the framework uses two document template classes:
CSingleDocTemplate for SDI applications and CMultiDocTemplate for MDI
applications. A CSingleDocTemplate can create and store one document of one type
at a time. A CMultiDocTemplate keeps a list of many open documents of one type.

Some applications support multiple document types. For example, an application
might support text documents and graphics documents. In such an application, when
the user chooses the New command on the File menu, a dialog box shows a list of
possible new document types to open. For each supported document type, the

Chapter 1 Using the Classes to Write Applications for Windows

application uses a distinct document template object. Figure 1.4 illustrates the
configuration of an MDI application that supports two document types. The figure
shows several open documents.

Figure 1.4 An MDI Application with Two Document Types

| Application Object |
CMyApp
[DocTemplate A | | DocTemplate B |
CMultiDocTemplate CMultiDocTemplate
[Doc1] [Doc2| [Doc3 | [Doc 1 | Open documents

CMyDocA CMyDocA CMyDocA CMyDocB
. / \ /

| Instances of one class l Instance of a different class

Document templates are created and maintained by the application object. One of the
key tasks performed during your application’s InitInstance function is to construct
one or more document templates of the appropriate kind. This feature is described in
Document Template Creation. The application object stores a pointer to each
document template in its template list and provides an interface for adding document
templates.

If you need to support two or more document types, you must add an extra call to
AddDocTemplate for each document type.

Document Template Creation

‘While creating a new document in response to a New or Open command from the
File menu, the document template also creates a new frame window through which to
view the document.

The document-template constructor specifies what types of documents, windows, and
views the template will be able to create. This is determined by the arguments you
pass to the document-template constructor. The following code illustrates creation of
a CMultiDocTemplate for a sample application:

AddDocTemplate(new CMultiDocTemplate(IDR_SCRIBTYPE,
RUNTIME_CLASS(CScribDoc),
RUNTIME_CLASS(CMDIChildWnd),
RUNTIME_CLASS(CScribView)));

The pointer to a new CMultiDocTemplate object is used as an argument to
AddDocTemplate. Arguments to the CMultiDocTemplate constructor include the
resource ID associated with the document type’s menus and accelerators, and three

uses of the RUNTIME_CLASS macro. RUNTIME _CLASS returns the
CRuntimeClass object for the C-++ class named as its argument. The three

23

Programming with MFC

CRuntimeClass objects passed to the document-template constructor supply the
information needed to create new objects of the specified classes during the document
creation process. The example shows creation of a document template that creates
cScribDoc objects with CScribView objects attached. The views are framed by
standard MDI child frame windows.

Document/View Creation

The framework supplies implementations of the New and Open commands (among
others) on the File menu. Creation of a new document and its associated view and
frame window is a cooperative effort among the application object, a document
template, the newly created document, and the newly created frame window. Table
1.6 summarizes which objects create what.

Table 1.6 Object Creators

Creator Creates
Application object Document template
Document template Document
Document template Frame window
Frame window k View

Relationships Among MFC Objects

24

To help put the document/view creation process in perspective, first consider a
running program: a document, the frame window used to contain the view, and the
view associated with the document.

e A document keeps a list of the views of that document and a pointer to the
document template that created the document.

e A view keeps a pointer to its document and is a child of its parent frame window.
¢ A document frame window keeps a pointer to its current active view.

o A document template keeps a list of its open documents.

e The application keeps a list of its document templates.

e Windows keeps track of all open windows so it can send messages to them.

Chapter 1 Using the Classes to Write Applications for Windows

These relationships are established during document/view creation. Table 1.7 shows
how objects in a running program can access other objects. Any object can obtain a
pointer to the application object by calling the global function AfxGetApp.

Table 1.7 Gaining Access to Other Objects in Your Application

From object How to access other objects

Document Use GetFirstViewPosition and
GetNextView to access the document’s view
list.

Call GetDocTemplate to get the document
template.

View Call GetDocument to get the document.

Call GetParentFrame to get the frame
window.

Document frame window Call GetActiveView to get the current view.

Call GetActiveDocument to get the
document attached to the current view.

MDI frame window Call MDIGetActive to get the currently
active CMDIChildWnd.

Typically, a frame window has one view, but sometimes, as in splitter windows, the
same frame window contains multiple views. The frame window keeps a pointer to
the currently active view; the pointer is updated any time another view is activated.

Note A pointer to the main frame window is stored in the m_pMainWnd member variable of
the application object. A call to OnFileNew in your override of the Initinstance member
function of CWinApp sets m_pMainWnd for you. If you don’t call OnFileNew, you must set
the variable’s value in Initinstance yourself. (SDI OLE server applications may not set the
variable if /Embedding is on the command line.) Note that m_pMainWnd is now a member of
class CWinThread rather than CWinApp. ‘

Creating New Documents, Windows, and Views

Figures 1.5, 1.6, and 1.7 give an overview of the creation process for documents,
views, and frame windows. Later chapters that focus on the participating objects
provide further details.

Upon completion of this process, the cooperating objects exist and store pointers to
each other. Figures 1.5, 1.6, and 1.7 show the sequence in which objects are created.
You can follow the sequence from figure to figure.

25

Programming with MFC

Figure 1.5 Sequence in Creating a Document

Application

ID_FILE_OPEN
command

26

—>

CWinApp:: CWinApp::
OnFileOpen OnFileNew |¢— 1 D—cggulﬁgn_dN EW
handler called handler called
\ 4
Get filename One
from user document Get document

Use file extension
to select
document
template

template?

type from user

Document template
selected at this point
(MDl or SDI)

Chapter 1 Using the Classes to Write Applications for Windows

Figure 1.6 Sequence in Creating a Frame Window

Document Template: OpenDocumentFile

Construct
document object:
CMyDoc

\ 4

Construct frame
window object:
CMainFrame

h 4

Frame Creat?rg%%ument

Create Windows window
with CFrameWnd::Create

Y

Handle WM_CREATE message.
CMainFrame::0nCreatecalls |
CFrameWnd::OnCreateClientto |\
create client area ‘.‘

Construct view object
CMyView

.
’
’

Create Windows
window

v

CMyView::0nCreate
handles WM_CREATE

No Yes message
File opened and archive created |
A 4 A
CMyDoc:: CMyDoc:: CM .. s 74
, yDoc::Serialize
OnNewDocument OnOpenDocument " Document
called called \ called to read document file
Archive closed and file closed |
] Document ready to use

27

Programming with MFC

Figure 1.7 Sequence in Creating a View

View
WM_INITIALUPDATE
message sent {0 view
CMyView:: Default
OnInitialUpdate}---1 OnlnitialUpdate calls
handles message CView::OnUpdate
©® ———— View initialized

For information about how the framework initializes the new document, view, and
frame-window objects, see classes CDocument, CView, CFrameWnd,
CMDIFrameWnd, and CMDIChildWnd in the Class Library Reference. Also see
Technical Note 22 under MFC Technical Notes in Visual C++ Books Online, which
explains the creation and initialization processes further under its discussion of the
framework’s standard commands for the New and Open items on the File menu.

Initializing Your Own Additions to These Classes

Figures 1.5, 1.6, and 1.7 also suggest the points at which you can override member
functions to initialize your application’s objects. An override of OnInitialUpdate in
your view class is the best place to initialize the view. The OnlnitialUpdate call
occurs immediately after the frame window is created and the view within the frame
window is attached to its document. For example, if your view is a scroll view
(derived from CScrollView rather than CView), you should set the view size based
on the document size in your OnInitialUpdate override. (This process is described in
the description of class CScrollView.) You can override the CDocument member
functions OnNewDocument and OnOpenDocument to provide application-specific
initialization of the document. Typically, you must override both since a document
can be created in two ways.

In most cases, your override should call the base class version. For more information,
see the named member functions of classes CDocument, CView, CFrameWnd, and
CWinApp in the Class Library Reference.

Windows of Your Own with CWnd

28

Although the framework provides windows on your documents, you may at times
want to create your own windows, particularly child windows. Keeping in mind how
much the framework does for you, the present discussion focuses on windows in a
more general way, with particular emphasis on creating windows of your own. For

Chapter 1 Using the Classes to Write Applications for Windows

more information about the frame windows that the framework creates, see Chapter
3, Working with Frame Windows, Documents, and Views.

In MFC, all windows are ultimately derived from class CWnd. This includes dialog
boxes, controls, control bars, and views as well as frame windows and your own child
windows, as shown in the MFC hierarchy diagram in the Class Library Reference.

Window Objects

A C++ window object (whether for a frame window or some other kind of window) is
distinct from its corresponding Windows window (the HWND), but the two are
tightly linked. A good understanding of this relationship is crucial for effective
programming with MFC.

The window object is an object of the C++ CWnd class (or a derived class) that your
program creates directly. It comes and goes in response to your program’s constructor
and destructor calls. The Windows window, on the other hand, is an opaque handle to
an internal Windows data structure that corresponds to a window and consumes
system resources when present. A Windows window is identified by a “window
handle” (HWND) and is created after the CWnd object is created by a call to the
Create member function of class CWnd. The window may be destroyed either by a
program call or by a user’s action. The window handle is stored in the window
object’s m_hWnd member variable. Figure 1.8 shows the relationship between the
C++ window object and the Windows window. Creating windows is discussed in
Creating Windows. Destroying windows is discussed in Destroying Window Objects.

Figure 1.8 Window Object and Windows Window

HWND
m_hWnd —— >

C-++ Window object (CWnd) Windows window

CWhnd and its derived classes provide constructors, destructors, and member
functions to initialize the object, create the underlying Windows structures, and
access the encapsulated HWND. CWnd also provides member functions that
encapsulate Windows APIs for sending messages, accessing the window’s state,
converting coordinates, updating, scrolling, accessing the Clipboard, and many other
tasks. Most Windows window-management APIs that take an HWND argument are
encapsulated as member functions of CWnd. The names of the functions and their
parameters are preserved in the CWnd member function. For details about the
Windows APIs encapsulated by CWnd, see class CWnd in the Class Library
Reference.

The general literature on programming for Windows is a good resource for learning
how to use the CWnd member functions, which typically encapsulate the HWND

29

Programming with MFC

APIs. For example, see Charles Petzold’s Programming Windows 3.1, third edition,
and Jeffrey Richter’s Advanced Windows NT.

One of the primary purposes of CWnd is to provide an interface for handling
Windows messages, such as WM_PAINT or WM_MOUSEMOVE. Many of the
member functions of CWnd are handlers for standard messages—those beginning
with the identifier afx_msg and the prefix “On,” such as OnPaint and
OnMouseMove. Chapter 2, Working with Messages and Commands, covers
messages and message handling in detail. The information there applies equally to
the framework’s windows and those that you create yourself for special purposes.

Derived Window Classes

30

Although you can create windows directly from CWnd, or derive new window
classes from CWnd, most windows used in a framework program are instead created
from one of the CWnd-derived frame-window classes supplied by MFC:

CFrameWnd Used for SDI frame windows that frame a single document and its
view. The frame window is both the main frame window for the application and
the frame window for the current document.

CMDIFrameWnd Used as the main frame window for MDI applications. The main
frame window is a container for all MDI document windows and shares its menu
bar with them. An MDI frame window is a top-level window that appears on the
desktop.

CMDIChildWnd Used for individual documents opened in an MDI main frame
window. Each document and its view are framed by an MDI child frame window
contained by the MDI main frame window. An MDI child window looks much
like a typical frame window but is contained inside an MDI frame window instead
of sitting on the desktop. However, the MDI child window lacks a menu bar of its
own and must share the menu bar of the MDI frame window that contains it.

In addition to frame windows, several other major categories of windows are derived
from CWnd:

Views Views are created using the CWnd-derived class CView (or one of its derived
classes). A view is attached to a document and acts as an intermediary between the
document and the user. A view is a child window (not an MDI child) that typically
fills the client area of an SDI frame window or an MDI child frame window (or
that portion of the client area not covered by a toolbar and/or a status bar).

Dialog Boxes Dialog boxes are created using the CWnd-derived class CDialog.

Forms Form views based on dialog-template resources, like dialog boxes, are
created using classes CFormView, CRecordView, or CDaoRecordView.

Controls Controls such as buttons, list boxes, and combo boxes are created using
other classes derived from CWnd.

Control Bars Child windows that contain controls. Examples include toolbars and
status bars.

Chapter 1 Using the Classes to Write Applications for Windows

Refer again to the MFC hierarchy diagram in the Class Library Reference. Views are
explained in Chapter 3, Working with Frame Windows, Documents, and Views.
Dialog boxes, controls, and control bars are explained in Chapter 4, Working with
Dialog Boxes, Controls, and Control Bars.

In addition to the window classes provided by the class library, you may need special-
purpose child windows. To create such a window, write your own CWnd-derived
class and make it a child window of a frame or view. Bear in mind that the
framework manages the extent of the client area of a document frame window. Most
of the client area is managed by a view, but other windows, such as control bars or
your own custom windows, may share the space with the view. You may need to
interact with the mechanisms in classes CView and CControlBar for positioning
child windows in a frame window’s client area.

Note As of MFC version 4.0, toolbars and status bars are based on the toolbar and status bar
controls supplied by Windows 95 or Windows NT 3.51. However, the older mechanisms are
preserved. See the article Toolbars: Using Your Old Toolbars.

Creating Windows discusses creation of window objects and the Windows windows
they manage.

Creating Windows

Most of the windows you need in a framework program are created automatically by
the framework. You have already seen how the framework creates the frame windows
associated with documents and views. But you can create your own windows—in
addition to the windows supplied by the framework—for special purposes.

Registering Window “Classes”™

In a traditional program for Windows, you process all messages to a window in its
“window procedure” or “WndProc.” A WndProc is associated with a window by
means of a “window class registration” process. The main window is registered in the
WinMain function, but other classes of windows can be registered anywhere in the
application. Registration depends on a structure that contains a pointer to the
WndProc function together with specifications for the cursor, background brush, and
so forth. The structure is passed as a parameter, along with the string name of the
class, in a prior call to the RegisterClass function. Thus a registration class can be
shared by multiple windows.

In contrast, most window class registration activity is done automatically in a
framework program. If you are using MFC, you typically derive a C++ window class
from an existing library class using the normal C++ syntax for class inheritance. The
framework still uses traditional “registration classes,” and it provides several
standard ones, registered for you in the standard application initialization function.
You can register additional registration classes by calling the AfxRegisterWndClass
global function and then pass the registered class to the Create member function of

31

Programming with MFC

CWnd. As described here, the traditional “registration class” in Windows is not to be
confused with a C++ class.

For more information, see Technical Note 1 under MFC in Books Online.

General Creation Sequence

If you are creating a window of your own, such as a child window, this section
describes what you need to know. The framework uses much the same process to
create windows for your documents as that described earlier in the chapter.

All the window classes provided by MFC employ two-phase construction. That is,
during an invocation of the C++ new operator, the constructor allocates and
initializes a C++ object but does not create a corresponding Windows window. That is
done afterwards by calling the Create member function of the window object.

The Create member function makes the Windows window and stores its HWND in
the C++ object’s public data member m_hWnd. Create gives complete flexibility
over the creation parameters. Before calling Create, you may want to register a
window class with AfxRegister WndClass in order to set the icon and class styles for
the frame.

For frame windows, you can use the LoadFrame member function instead of Create.
LoadFrame makes the Windows window using fewer parameters. It gets many
default values from resources, including the frame’s caption, icon, accelerator table,
and menu.

Note Youricon, accelerator table, and menu resources must have a common resource ID,
such as IDR_MAINFRAME.

Destroying Window Objects

32

Care must be taken with your own child windows to destroy the C++ window object
when the user is finished with the window. If these objects are not destroyed, your
application will not recover their memory. Fortunately, the framework manages
window destruction as well as creation for frame windows, views, and dialog boxes.
If you create additional windows, you are responsible for destroying them.

In the framework, when the user closes the frame window, the window’s default
OnClose handler calls DestroyWindow. The last member function called when the
Windows window is destroyed is OnNcDestroy, which does some cleanup, calls the
Default member function to perform Windows cleanup, and lastly calls the virtual
member function PostNcDestroy. The CFrameWnd implementation of
PostNcDestroy deletes the C++ window object.

Do not use the C++ delete operator to destroy a frame window or view. Instead, call
the CWnd member function DestroyWindow. Frame windows, therefore, should be
allocated on the heap with operator new. Care must be taken when allocating frame

Chapter 1 Using the Classes to Write Applications for Windows

windows on the stack frame or globally. Other windows should be allocated on the
stack frame whenever possible.

If you need to circumvent the object-HWND relationship, MFC provides another
CWnd member function, Detach, which disconnects the C++ window object from
the Windows window. This prevents the destructor from destroying the Windows
window when the object is destroyed.

Working with Window Objects

Working with windows calls for two kinds of activity:

e Handling Windows messages

e Drawing in the window

To handle Windows messages in any window, including your own child windows, use
ClassWizard to map the messages to your window class. Then write message-handler
member functions in your class. Chapter 2, Working with Messages and Commands,

details message handling.

Most drawing in a framework application occurs in the view, whose OnDraw member
function is called whenever the window’s contents must be drawn. If your window is
a child of the view, you might delegate some of the view’s drawing to your child
window by having OnDraw call one of your window’s member functions.

In any case, you will need a device context for drawing.

Device Contexts

A device context is a Windows data structure that contains information about the
drawing attributes of a device such as a display or a printer. All drawing calls are
made through a device-context object, which encapsulates the Windows APIs for
drawing lines, shapes, and text. Device contexts allow device-independent drawing in
Windows. Device contexts can be used to draw to the screen, to the printer, or to a
metafile.

CPaintDC objects encapsulate the common idiom of Windows, calling the
BeginPaint function, then drawing in the device context, then calling the EndPaint
function. The CPaintDC constructor calls BeginPaint for you, and the destructor
calls EndPaint. The simplified process is to create the CDC object, draw, and destroy
the CDC object. In the framework, much of even this process is automated. In
particular, your OnDraw function is passed a CPaintDC already prepared (via
OnPrepareDC), and you simply draw into it. It is destroyed by the framework and
the underlying device context is released to Windows upon return from the call to
your OnDraw function.

CClientDC objects encapsulate working with a device context that represents only
the client area of a window. The CClientDC constructor calls the GetDC function,

33

Programming with MEC

and the destructor calls the ReleaseDC function. CWindowDC objects encapsulate a
device context that represents the whole window, including its frame.

CMetaFileDC objects encapsulate drawing into a Windows metafile. In contrast to
the CPaintDC passed to OnDraw, you must in this case call OnPrepareDC yourself.
For more information about these classes, see the Class Library Reference.

Drawing is discussed in greater detail in Chapter 3, Working with Frame Windows,
Documents, and Views.

Although most drawing—and thus most device-context work—in a framework
program is done in the view’s OnDraw member function, as described in Chapter 3,
you can still use device-context objects for other purposes. For example, to provide
tracking feedback for mouse movement in a view, you need to draw directly into the
view without waiting for OnDraw to be called.

In such a case, you can use a CClientDC device-context object to draw directly into
the view. For more information about mouse drawing, see Interpreting User Input
Through a View in Chapter 3.

Graphic Objects

Windows provides a variety of drawing tools to use in device contexts. It provides
pens to draw lines, brushes to fill interiors, and fonts to draw text. MFC provides
graphic-object classes equivalent to the drawing tools in Windows. Table 1.8 shows
the available classes and the equivalent Windows GDI handle types.

The general literature on programming for the Windows GDI applies to the Microsoft
Foundation classes that encapsulate GDI graphic objects. This section explains the
use of these graphic-object classes:

Table 1.8 Classes for Windows GDI Objects

Class Windows handle type
CPen HPEN

CBrush HBRUSH

CFont HFONT

CBitmap HBITMAP
CPalette HPALETTE
CRgn HRGN

Each of the graphic-object classes in the class library has a constructor that allows
you to create graphic objects of that class, which you must then initialize with the
appropriate create function, such as CreatePen.

34

Chapter 1 Using the Classes to Write Applications for Windows

The following four steps are typically used when you need a graphic object for a
drawing operation:

1. Define a graphic object on the stack frame. Initialize the object with the type-
specific create function, such as CreatePen. Alternatively, initialize the object in
the constructor. See the discussion of one-stage and two-stage creation below.

2. Select the object into the current device context, saving the old graphic object that
was selected before.

3. When done with the current graphic object, select the old graphic object back into
the device context to restore its state.

4. Allow the frame-allocated graphic object to be deleted automatically when the
scope is exited.

Note If you will be using a graphic object repeatedly, you can allocate it once and select it
into a device context each time it is needed. Be sure to delete such an object when you no
longer need it.

You have a choice between two techniques for creating graphic objects:

¢ One-stage construction: Construct and initialize the object in one stage, all with
the constructor.

e Two-stage construction: Construct and initialize the object in two separate stages.
The constructor creates the object and an initialization function initializes it.

Two-stage construction is always safer. In one-stage construction, the constructor
could throw an exception if you provide incorrect arguments or memory allocation
fails. That problem is avoided by two-stage construction, although you do have to
check for failure. In either case, destroying the object is the same process.

35

Programming with MFC

36

The following brief example shows both methods of constructing a pen object:
void CMyView::0OnDraw(CDC* pDC)

{
CPen myPenl(PS_DOT, 5, RGB(@,0,0)); // One-stage
// Two-stage: first construct the pen
CPen myPen2;
// Then initialize it
if(myPen2.CreatePen(PS_DOT, 5, RGB(0,0,0)))
// Use the pen
}

After you create a drawing object, you must select it into the device context in place
of the default pen stored there:

void CMyView::0nDraw(CDC* pDC)

{
CPen penBlack; // Construct it, then initialize
if(newPen.CreatePen(PS_SOLID, 2, RGB(0,0,0)))
{
// Select it into the device context
// Save the old pen at the same time
CPen* pOldPen = pDC->SelectObject(&penBlack);
// Draw with the pen
pDC->MoveTo(...);
pDC->LineTo(...);
// Restore the old pen to the device context
pDC->SelectObject(pOl1dPen);
}
else
{
// Alert the user that resources are low
1
}

The graphic object returned by SelectObject is a “temporary” object. That is, it will
be deleted by the Onldle member function of class CWinApp the next time the
program gets idle time. As long as you use the object returned by SelectObject in a
single function without returning control to the main message loop, you will have no
problem.

CHAPTER 2

Working with Messages and
Commands

Chapter 1 introduced the major objects in a running framework application written
with the Microsoft Foundation Class Library (MFC). This chapter describes how
messages and commands are processed by the framework and how you connect them
to their handler functions using the ClassWizard tool. Topics covered include:

e Messages and commands

* Message categories

e How the framework calls a message handler

e Message maps

e Managing messages and commands with ClassWizard
e Dynamic update of user-interface objects

¢ Dynamic display of command information in the status bar

Messages and Commands in the
Framework

Applications written for Microsoft Windows are “message driven.” In response to
events such as mouse clicks, keystrokes, window movements, and so on, Windows
sends messages to the proper window. Framework applications process Windows
messages like any other application for Windows. But the framework also provides
some enhancements that make processing messages easier, more maintainable, and
better encapsulated.

The following topics introduce the key terms used in the rest of the chapter to discuss
messages and commands:

¢ Messages
e Message handlers

e Message categories

37

Programming with MFC

¢ Windows messages and control-notification messages
¢ Command messages

¢ Message maps

e User-interface objects and command IDs

¢ Command targets

Messages

The message loop in the Run member function of class CWinApp retrieves queued
messages generated by various events. For example, when the user clicks the mouse,
Windows sends several mouse-related messages, such as WM_LBUTTONDOWN
when the left mouse button is pressed and WM_LBUTTONUP when the left mouse
button is released. The framework’s implementation of the application message loop
dispatches the message to the appropriate window.

The important categories of messages are described in Message Categories.

Message Handlers

In MFC, a dedicated handler function processes each separate message. Message-
handler functions are member functions of a class. This book uses the terms message-
handler member function, message-handler function, message handler, and handler
interchangeably. Some kinds of message handlers are also called “command
handlers.”

Writing message handlers accounts for a large proportion of your work in writing a
framework application. This chapter describes how the message-processing
mechanism works.

What does the handler for a message do? The answer is that it does whatever you
want done in response to that message. ClassWizard will create the handlers for you
and allow you to implement them. You can jump directly from ClassWizard to the
handler function’s definition in your source files and fill in the handler’s code using
the Visual C++ source code editor. Or you can create all of your handlers with
ClassWizard, then move to the editor to fill in all functions at once. For details on
using ClassWizard, see How to Manage Commands and Messages with ClassWizard.

You can use all of the facilities of Microsoft Visual C++ and MFC to write your
handlers. For a list of all classes, see About the Microsoft Foundation Classes in the
Class Library Reference.

Message Categories

What kinds of messages do you write handlers for? There are three main categories:

1. Windows messages

38

Chapter 2 Working with Messages and Commands

This includes primarily those messages beginning with the WM_ prefix, except
for WM_COMMAND. Windows messages are handled by windows and views.
These messages often have parameters that are used in determining how to handle
the message.

2. Control notifications

This includes WM_COMMAND notification messages from controls and other
child windows to their parent windows. For example, an edit control sends its
parent a WM_COMMAND message containing the EN_CHANGE control-
notification code when the user has taken an action that may have altered text in
the edit control. The window’s handler for the message responds to the
notification message in some appropriate way, such as retrieving the text in the
control.

The framework routes control-notification messages like other WM_ messages.
One exception, however, is the BN_CLICKED control-notification message sent
by buttons when the user clicks them. This message is treated specially as a
command message and routed like other commands.

3. Command messages

This includes WM_COMMAND notification messages from user-interface
objects: menus, toolbar buttons, and accelerator keys. The framework processes
commands differently from other messages, and they can be handled by more
kinds of objects, as explained below.

Windows Messages and Control-Notification Messages

Messages in categories 1 and 2— Windows messages and control notifications—are
handled by windows: objects of classes derived from class CWnd. This includes
CFrameWnd, CMDIFrameWnd, CMDIChildWnd, CView, CDialog, and your
own classes derived from these base classes. Such objects encapsulate an HWND, a
handle to a Windows window.

Command Messages

Messages in category 3—commands—can be handled by a wider variety of objects:
documents, document templates, and the application object itself in addition to
windows and views. When a command directly affects some particular object, it
makes sense to have that object handle the command. For example, the Open
command on the File menu is logically associated with the application: the
application opens a specified document upon receiving the command. So the handler
for the Open command is a member function of the application class. For more about
commands and how they are routed to objects, see How the Framework Calls a
Handler.

39

Programming with MFC

Mapping Messages
Each framework class that can receive messages or commands has its own “message
map.” The framework uses message maps to connect messages and commands to
their handler functions. Any class derived from class CCmdTarget can have a
message map. Later topics of this chapter explain message maps in detail and
describe how to use them.

In spite of the name “message map,” message maps handle both messages and
commands—all three categories of messages listed in Message Categories.

User-Interface Objects and Command IDs

Menu items, toolbar buttons, and accelerator keys are “user-interface objects” capable
of generating commands. Each such user-interface object has an ID. You associate a
user-interface object with a command by assigning the same ID to the object and the
command. As explained in Messages, commands are implemented as special
messages. Figure 2.1 shows how the framework manages commands. When a user-
interface object generates a command, such as ID_EDIT_CLEAR_ALL, one of the objects
in your application handles the command—in the figure, the document object’s
OnEditClearAll function is called via the document’s message map.

Figure 2.1 Commands in the Framework
User-interface object selected
Command

Command-target message map
ON_COMMAND

Handler

Takes action

Figure 2.2 shows how MFC updates user-interface objects such as menu items and
toolbar buttons. Before a menu drops down, or during the idle loop in the case of
toolbar buttons, MFC routes an update command. In the figure, the document object
calls its update command handler, OnUpdateEditClearAll, to enable or disable the
user-interface object.

40

Chapter 2 Working with Messages and Commands

Figure 22 Command Updating in the Framework

Status of user-interface object noted

Command

Command-target message map
ON_UPDATE_COMMAND_UI

Handler

Takes action

Command IDs

A command is fully described by its command ID alone (encoded in the
WM_COMMAND message). This ID is assigned to the user-interface object that
generates the command. Typically, IDs are named for the functionality of the user-
interface object they are assigned to.

For example, a Clear All item in the Edit menu might be assigned an ID such as
ID_EDIT_CLEAR_ALL. The class library predefines some IDs, particularly for
commands that the framework handles itself, such as ID_EDIT_CLEAR_ALL or
ID_FILE_OPEN. You will create other command IDs yourself.

When you create your own menus in the Visual C++ menu editor, it is a good idea to
follow the class library’s naming convention as illustrated by ID_FILE_OPEN.
Standard Commands explains the standard commands defined by the class library.

Standard Commands

The framework defines many standard command messages. The IDs for these
commands typically take the form:

ID_Source_Item

where Source is usually a menu name and Item is a menu item. For example, the
command ID for the New command on the File menu is ID_FILE_NEW. Standard
command IDs are shown in bold type in the documentation. Programmer-defined IDs
are shown in a font that is different from the surrounding text.

The following is a list of some of the most important commands supported:

File Menu Commands New, Open, Close, Save, Save As, Page Setup, Print Setup,
Print, Print Preview, Exit, and most-recently-used files.

Edit Menu Commands Clear, Clear All, Copy, Cut, Find, Paste, Repeat, Replace,
Select All, Undo, and Redo. '

View Menu Commands Toolbar and Status Bar.

41

Programming with MFC

Window Menu Commands New, Arrange, Cascade, Tile Horizontal, Tile Vertical,
and Split.

Help Menu Commands Index, Using Help, and About.

OLE Commands (Edit Menu) Insert New Object, Edit Links, Paste Link, Paste
Special, and typename Object (verb commands).

The framework provides varying levels of support for these commands. Some
commands are supported only as defined command IDs, while others are supported
with thorough implementations. For example, the framework implements the Open
command on the File menu by creating a new document object, displaying an Open
dialog box, and opening and reading the file. In contrast, you must implement
commands on the Edit menu yourself, since commands like ID_EDIT _COPY
depend on the nature of the data you are copying.

For more information about the commands supported and the level of implementation
provided, see Technical Note 22 under MFC Technical Notes in Books Online. The
standard commands are defined in the file AFXRES.H.

Command Targets

Figure 2.1 shows the connection between a user-interface object, such as a menu
item, and the handler function that the framework calls to carry out the resulting
command when the object is clicked.

Windows sends messages that are not command messages directly to a window whose
handler for the message is then called. However, the framework routes commands to
a number of candidate objects—called “command targets”—one of which normally
invokes a handler for the command. The handler functions work the same way for
both commands and standard Windows messages, but the mechanism by which they
are called is different, as explained in How the Framework Calls a Handler.

How the Framework Calls a Handler

The following topics first examine how the framework routes commands, then
examine how other messages and control notifications are sent to windows:

e Message sending and receiving
¢ How noncommand messages reach their handlers

¢ Command routing

Message Sending and Receiving

Consider the sending part of the process and how the framework responds.

Most messages result from user interaction with the program. Commands are
generated by mouse clicks in menu items or toolbar buttons or by accelerator
keystrokes. The user also generates Windows messages by, for example, moving or

42

Chapter 2 Working with Messages and Commands

resizing a window. Other Windows messages are sent when events such as program
startup or termination occur, as windows get or lose the focus, and so on. Control-
notification messages are generated by mouse clicks or other user interactions with a
control, such as a button or list-box control in a dialog box.

The Run member function of class CWinApp retrieves messages and dispatches
them to the appropriate window. Most command messages are sent to the main frame
window of the application. The WindowProc predefined by the class library gets the
messages and routes them differently, depending on the category of message received.

Now consider the receiving part of the process.

The initial receiver of a message must be a window object. Windows messages are
usually handled directly by that window object. Command messages, usually
originating in the application’s main frame window, get routed to the command-
target chain described in Command Routing.

Each object capable of receiving messages or commands has its own message map
that pairs a message or command with the name of its handler.

When a command-target object receives a message or command, it searches its
message map for a match. If it finds a handler for the message, it calls the handler.
For more information about how message maps are searched, see How the
Framework Searches Message Maps. Refer again to Figure 2.1.

How Noncommand Messages Reach Their Handlers

Unlike commands, standard Windows messages do not get routed through a chain of
command targets but are usually handled by the window to which Windows sends the
message. The window might be a main frame window, an MDI child window, a
standard control, a dialog box, a view, or some other kind of child window.

At run time, each Windows window is attached to a window object (derived directly
or indirectly from CWnd) that has its own associated message map and handler
functions. The framework uses the message map—as for a command—to map
incoming messages to handlers.

Command Routing

Your responsibility in working with commands is limited to making message-map
connections between commands and their handler functions, a task for which you use
ClassWizard. You must also write most command handlers.

All messages are usually sent to the main frame window, but command messages are
then routed to other objects. The framework routes commands through a standard
sequence of command-target objects, one of which is expected to have a handler for
the command. Each command-target object checks its message map to see if it can
handle the incoming message.

43

Programming with MFC

44

Different command-target classes check their own message maps at different times.
Typically, a class routes the command to certain other objects to give them first
chance at the command. If none of those objects handles the command, the original
class checks its own message map. Then, if it can’t supply a handler itself, it may
route the command to yet more command targets. Table 2.1 shows how each of the
classes structures this sequence. The general order in which a command target routes
a command is:

1. To its currently active child command-target object.

2. To itself.

3. To other command targets.

How expensive is this routing mechanism? Compared to what your handler does in
response to a command, the cost of the routing is low. Bear in mind that the

framework generates commands only when the user interacts with a user-interface
object.

Table 2.1 Standard Command Route

When an object of this type It gives itself and other command-target objects a
receives a command. .. chance to handle the command in this order:
MDI frame window 1. Active CMDIChildWnd
(CMDIFrameWnd) 2. This frame window

3. Application (CWinApp object)

Document frame window 1. Active view
(C(;l;;)al'givzlnwd’ d 2. This frame window
ildWnd) 3. Application (CWinApp object)
View 1. This view
2. Document attached to the view
Document 1. This document
2. Document template attached to the document
Dialog box 1. This dialog box

2. Window that owns the dialog box
3. Application (CWinApp object)

Where numbered entries in the second column of Table 2.1 mention other objects,
such as a document, see the corresponding item in the first column. For instance,
when you read in the second column that the view forwards a command to its
document, see the “Document” entry in the first column to follow the routing further.

Chapter 2 Working with Messages and Commands

An Example

To illustrate, consider a command message from a Clear All menu item in an MDI
application’s Edit menu. Suppose the handler function for this command happens to
be a member function of the application’s document class. Here’s how that command
reaches its handler after the user chooses the menu item:

1. The main frame window receives the command message first.

2. The main MDI frame window gives the currently active MDI child window a
chance to handle the command.

3. The standard routing of an MDI child frame window gives its view a chance at the
command before checking its own message map.

4. The view checks its own message map first and, finding no handler, next routes
the command to its associated document.

5. The document checks its message map and finds a handler. This document
member function is called and the routing stops.

If the document did not have a handler, it would next route the command to its
document template. Then the command would return to the view and then the frame
window. Finally, the frame window would check its message map. If that check failed
as well, the command would be routed back to the main MDI frame window and then
to the application object—the ultimate destination of unhandled commands.

OnCmdMsg

To accomplish this routing of commands, each command target calls the
OnCmdMsg member function of the next command target in the sequence.
Command targets use OnCmdMsg to determine whether they can handle a command
and to route it to another command target if they cannot handle it.

Each command-target class may override the OnCmdMsg member function. The
overrides let each class route commands to a particular next target. A frame window,
for example, always routes commands to its current child window or view, as shown
in Table 2.1.

The default CCmdTarget implementation of OnCmdMsg uses the message map of
the command-target class to search for a handler function for each command message
it receives—in the same way that standard messages are searched. If it finds a match,
it calls the handler. Message-map searching is explained in How the Framework
Searches Message Maps.

Overriding the Standard Routing

In rare cases when you must implement some variation of the standard framework
routing, you can override it. The idea is to change the routing in one or more classes
by overriding OnCmdMsg in those classes. Do so:

¢ In the class that breaks the order to pass to a nondefault object.

45

Programming with MFC

e In the new nondefault object or in command targets it might in turn pass
commands to.

If you insert some new object into the routing, its class must be a command-target
class. In your overriding versions of OnCmdMsg, be sure to call the version that
you're overriding. See the OnCmdMsg member function of class CCmdTarget in
the Class Library Reference and the versions in such classes as CView and
CDocument in the supplied source code for examples.

How the Framework Searches Messag
Maps |

The framework searches the message-map table for matches with incoming
messages. Once you use ClassWizard to write a message-map entry for each message
you want a class to handle and to write the corresponding handlers, the framework

calls your handlers automatically. The following topics explain message-map
searching:

® Where to find message maps

® Derived message maps

Where to Find Message Maps

When you create a new skeleton application with AppWizard, AppWizard writes a
message map for each command-target class it creates for you. This includes your
derived application, document, view, and frame-window classes. Some of these
message maps already have AppWizard-supplied entries for certain messages and
predefined commands, and some are just placeholders for handlers that you will add.

A class’s message map is located in the .CPP file for the class. Working with the
basic message maps that AppWizard creates, you use ClassWizard to add entries for
the messages and commands that each class will handle. A typical message map
might look like the following after you add some entries:

BEGIN_MESSAGE_MAP(CMyView, CView)
/T {{AFX_MSG_MAP(CMyView)
ON_WM_MOUSEACTIVATE()
ON_COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAll)
ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL, OnUpdatekditClearAll)
ON_BN_CLICKED(ID_MY_BUTTON, OnMyButton)
//3YAFX_MSG_MAP

END_MESSAGE_MAP()

The message map consists of a collection of macros. Two macros,
BEGIN_MESSAGE_MAP and END_MESSAGE_MAP, bracket the message map.
Other macros, such as ON_COMMAND, fill in the message map’s contents. These
macros are explained later in this chapter.

46

Chapter 2 Working with Messages and Commands

Note The message-map macros are not followed by semicolons.

The message map also includes comments of the form

//{{AFX_MSG_MAP(CMyView)
//3}YAFX_MSG_MAP

that bracket many of the entries (but not necessarily all of them). ClassWizard uses
these special comments when it writes entries for you. All ClassWizard entries go
between the comment lines.

When you use ClassWizard to create a new class, it provides a message map for the
class. Alternatively, you can create a message map manually using the source code
editor.

Derived Message Maps

During message handling, checking a class’s own message map is not the end of the
message-map story. What happens if class CMyView (derived from CView) has no
matching entry for a message?

Keep in mind that CView, the base class of CMyVi ew, is derived in turn from CWnd.
Thus CMyView is a CView and is a CWnd. Each of those classes has its own message
map. Figure 2.3 shows the hierarchical relationship of the classes, but keep in mind
that a CMyView object is a single object that has the characteristics of all three classes.

Figure 2.3 A View Hierarchy

[Cobject]
| CCmdTarget |
— In the class library
| CWnd |
[Cvew 1)
| CMyView |

So if a message can’t be matched in class CMyView’s message map, the framework
also searches the message map of its immediate base class. The
BEGIN_MESSAGE_MAP macro at the start of the message map specifies two class
names as its arguments:

BEGIN_MESSAGE_MAP(CMyView, CView)

47

Programming with MFC

48

The first argument names the class to which the message map belongs. The second
argument provides a connection with the immediate base class—CView here—so
the framework can search its message map, too.

The message handlers provided in a base class are thus inherited by the derived class.
This is very similar to normal virtual member functions without needing to make all
handler member functions virtual.

If no handler is found in any of the base-class message maps, default processing of
the message is performed. If the message is a command, the framework routes it to
the next command target. If it is a standard Windows message, the message is passed
to the appropriate default window procedure.

To speed message-map matching, the framework caches recent matches on the
likelihood that it will receive the same message again. One consequence of this is that
the framework processes unhandled messages quite efficiently. Message maps are

also more space-efficient than implementations that use virtual functions.

Message-Map Structure

In your source files, a message map consists of a sequence of predefined macros. The
macros inside the message map are called “entry macros.” The entry macros used in
a message map depend upon the category of the message to be handled. The
following sample shows a message map with several common entries (given in the
same order as the items in Table 2.2: "

BEGIN_MESSAGE_MAP(CMyView, CView)
//{{AFX_MSG_MAP(CMyView)
ON_WM_MOUSEACTIVATE()
ON:_.COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAil)
ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL, OnUpdateEditClearAll)
ON_BN_CLICKED(ID_MY_BUTTON, OnMyButton)
ON_MESSAGE(WM_MYMESSAGE, OnMyMessage)
ON_REGISTERED_MESSAGE(WM_FIND, OnFind)
//}YYAFX_MSG_MAP

END_MESSAGE_MAP()

Table 2.2 summarizes the various kinds of entries. Each entry consists of a macro
with zero or more arguments. The macros are predefined by the class library. For
examples of the macros, see the message map above.

Table 2.2 Message-Map Entry Macros

Message type Macro form Arguments

Predefined Windows ~ ON_WM_XXXX None

messages ‘

Commands ON_COMMAND Command ID, Handler name
Update commands ON_UPDATE_COMMAND_UI Command ID, Handler name
Control notifications =~ ON_XXXX Control ID, Handler name

Table 2.2 Message-Map Entry Macros (cont.)

Chapter 2 Working with Messages and Commands

Messagetype Macro form Arguments

User-defined ON_MESSAGE User-defined message ID,

message Handler name (see Technical
Note 6 under MFC
Technical Notes in Books
Online)

Registered ON_REGISTERED_MESSAGE Registered message ID

Windows : variable, Handler name (see

message Technical Note 6 under
MFC Technical Notes in
Books Online)

A range of ON_COMMAND_RANGE Start and end of a contiguous

command IDs range of command IDs. See
Message-Map Ranges.

A range of ON_UPDATE_COMMAND _UI _RANGE * Start and end of a contiguous

command IDs range of command IDs. See

for updating o Message-Map Ranges.

A range of ON_CONTROL_RANGE A control-notification code

control IDs : and the start and end of a

contiguous range of
command IDs. See Message-
Map Ranges.

Names in the table with the notation _XXX represent groups of messages whose
names are based on standard message names or control-notification codes in
Windows. For example: ON_WM_PAINT, ON_WM_LBUTTONDOWN,
ON_EN_CHANGE, ON_LB_GETSEL. Even though the ON_WM_XXX macros
take no arguments, the corresponding handler functions often do take arguments,
passed to them by the framework.

Message-Map Ranges

MFC also supports mapping ranges of messages to a single message-handler
function. You can map:

e Ranges of command IDs to:
¢ A command handler function.
e A command update handler function.

¢ A control-notification message for a range of control IDs to a message-handler
function.

Mapping a range of messages is useful in a variety of situations. For example, to
handle the “zoom” command in the MFC OLE sample HIERSVR, a range of menu
command IDs is mapped to a single handler function. You might also map a range of

Programming with MFC

command IDs to a single update handler function so that all of the commands are
either enabled or disabled together. (Update handlers are explained in How to Update
User-Interface Objects.)

Note ClassWizard does not support message-map ranges. You must write these message-
map entries yourself.

For more information about message-map ranges, see the article Message Map:
Ranges of Messages.

Declaring Handler Functions

Certain rules and conventions govern the names of your message-handler functions.
These depend on the message category, as described in the following topics:

e Standard Windows messages

e Commands and control notifications

Standard Windows Messages

Default handlers for standard Windows messages (WM_) are predefined in class
CWnd. The class library bases names for these handlers on the message name. For
example, the handler for the WM_PAINT message is declared in CWnd as:

afx_msg void OnPaint();

The afx_msg keyword suggests the effect of the C++ virtual keyword by
distinguishing the handlers from other CWnd member functions. Note, however, that
these functions are not actually virtual; they are instead implemented through
message maps. Message maps depend solely on standard preprocessor macros, not on
any extensions to the C++ language. The afx_msg keyword resolves to white space
after preprocessing.

To override a handler defined in a base class, simply use ClassWizard to define a
function with the same prototype in your derived class and to make a message-map
entry for the handler. Your handler “overrides” any handler of the same name in any
of your class’s base classes.

In some cases, your handler should call the overridden handler in the base class so
the base class(es) and Windows can operate on the message. Where you call the base-
class handler in your override depends on the circumstances. Sometimes you must
call the base-class handler first and sometimes last. Sometimes you call the base-class
handler conditionally, if you choose not to handle the message yourself. Sometimes
you should call the base-class handler, then conditionally execute your own handler
code, depending on the value or state returnied by the base-class handler.

Important It is not safe to modity the arguments passed into & handler If you intend to pass

them to a base-class handier. For example, you might be tempted to modify the nChar
argument of the onchar handler (to convert to uppercase, for example). This behavior Is fairly

Chapter 2 Working with Messages and Commands

obscure, but if you need to accomplish this effect, use the CWnd member function
SendMessage instead.

How do you determine the proper way to override a given message? ClassWizard
helps with this decision. When ClassWizard writes the skeleton of the handler
function for a given message—an OnCreate handler for WM_CREATE, for
example—it sketches in the form of the recommended overridden member function.
The following example recommends that the handler first call the base-class handler
and proceed only on condition that it does not return —1.

int CMyView::0nCreate(LPCREATESTRUCT 1pCreateStruct)

{
if (CView::0OnCreate(1pCreateStruct) == -1)
return -1;
// TODO: Add your specialized creation code here
return 0;
}

By convention, the names of these handlers begin with the prefix “On.” Some of
these handlers take no arguments, while others take several. Some also have a return
type other than void. The default handlers for all WM_ messages are documented in
the Class Library Reference as member functions of class CWnd whose names begin
with “On.” The member function declarations in CWnd are prefixed with afx_msg.

Commands and Control Notifications

There are no default handlers for commands or control-notification messages.
Therefore, you are bound only by convention in naming your handlers for these
categories of messages. When you map the command or control notification to a
handler, ClassWizard proposes a name based on the command ID or control-
notification code. You can accept the proposed name, change it, or replace it.

Convention suggests that you name handlers in both categories for the user-interface
object they represent. Thus a handler for the Cut command on the Edit menu might
be named

afx_msg void OnEditCut();

Because the Cut command is so commonly implemented in applications, the
framework predefines the command ID for the Cut command as ID_EDIT CUT. For
a list of all predefined command IDs, see the file AFXRES.H. For more information,
see Standard Commands.

In addition, convention suggests a handler for the BN_CLICKED notification
message from a button labeled “Use As Default” might be named

afx_msg void OnClickedUseAsDefault();

You might assign this command an ID of IDC_USE_AS_DEFAULT since it is equivalent
to an application-specific user-interface object.

Both categories of messages take no arguments and return no value.
51

Programming with MFC

How to Manage Commands and Messages
with ClassWizard

ClassWizard is a tool is designed specifically to connect Windows messages and user-
interface objects such as menus to their handlers.

The typical development scenarios are as follows:

e You determine that one of your classes must handle a certain Windows message,
so you run ClassWizard and make the connection.

e You create a menu or accelerator resource, then invoke ClassWizard to connect the
command associated with that object to a handler.

As you work with the framework, you’ll find that ClassWizard greatly simplifies your
message-management tasks.

ClassWizard writes the following information to your source files:

e The appropriate message-map entry for the connection
e A declaration of the handler as a member function of the class

e An empty function template for you to fill in with the handler’s code

For detailed information about using ClassWizard to connect messages to handlers,
see Chapter 14, Working with Classes, in the Visual C++ User’s Guide. For
examples, see Chapter 7, Binding Visual Objects to Code Using WizardBar, and
Chapter 8, Adding a Dialog Box, in Tutorials.

Important Use ClassWizard to create and edit all message-map entries. If you add them
manually, you may not be able to edit them with ClassWizard later. If you add them outside the
bracketing comments, // { {AFX_MSG_MAP(cTassname) and //}}AFX_MSG_MAP,
ClassWizard cannot edit them at all. Note that by the same token ClassWizard will not touch
any entries you add outside the comments, so feel free to add messages outside the
comments if you do not want them to be modified. Some messages, such as message-map
ranges, must be added outside the comments.

How to Update User-Interface Objects

Typically, menu items and toolbar buttons have more than one state. For example, a
menu item is grayed (dimmed) if it is unavailable in the present context. Menu items
can also be checked or unchecked. A toolbar button can also be disabled if
unavailable, or it can be checked.

‘Who updates the state of these items as program conditions change? Logically, if a
menu item generates a command that is handled by, say, a document, it makes sense
to have the document update the menu item. The document probably contains the
information on which the update is based.

52

Chapter 2 Working with Messages and Commands

If a command has multiple user-interface objects (perhaps a menu item and a toolbar
button), both are routed to the same handler function. This encapsulates your user-
interface update code for all of the equivalent user-interface objects in a single place.

The framework provides a convenient interface for automatically updating user-
interface objects. You can choose to do the updating in some other way, but the
interface provided is efficient and easy to use.

The following topics explain the use of update handlers:

e When update handlers are called
e The ON_UPDATE_COMMAND_UI macro
¢ The CCmdUI class

When Update Handlers Are Called

Suppose the user clicks the mouse in the File menu, which generates a
WM_INITMENUPOPUP message. The framework’s update mechanism collectively
updates all items on the File menu before the menu drops down so the user can see it.

To do this, the framework routes update commands for all menu items in the pop-up
menu along the standard command routing. Command targets on the routing have an
opportunity to update any menu items by matching the update command with an
appropriate message-map entry (of the form ON_UPDATE_COMMAND_UI) and
calling an “update handler” function. Thus, for a menu with six menu items, six
update commands are sent out. If an update handler exists for the command ID of the
menu item, it is called to do the updating. If not, the framework checks for the
existence of a handler for that command ID and enables or disables the menu item as
appropriate.

If the framework does not find an ON_UPDATE_COMMAND_UI entry during
command routing, it automatically enables the user-interface object if there is an
ON_COMMAND entry somewhere with the same command ID. Otherwise, it
disables the user-interface object. Therefore, to ensure that a user-interface object is
enabled, supply a handler for the command the object generates or supply an update
handler for it. See Figure 2.2.

It is possible to disable the default disabling of user-interface objects. For more
information, see the m_bAutoMenuEnable member of class CFrameWnd in the
Class Library Reference.

Menu initialization is automatic in the framework, occurring when the application
receives a WM_INITMENUPOPUP message. During the idle loop, the framework
searches the command routing for button update handlers in much the same way as it
does for menus.

53

Programming with MFC

The ON_UPDATE_COMMAND_UI Macro

Use ClassWizard to connect a user-interface object to a command-update handler in a
command-target object. It will automatically connect the user-interface object’s ID to
the ON_UPDATE_COMMAND_UI macro and create a handler in the object that
will handle the update.

For example, the Scribble tutorial in Tutorials updates a Clear All command in its
Edit menu. In the tutorial, ClassWizard adds a message-map entry in the chosen
class, a function declaration for a command-update handler called
OnUpdateEditClearAll in the class declaration, and an empty function template in
the class’s implementation file. The function prototype looks like this:

afx_msg void OnUpdateEditClearAl1(CCmdUI* pCmdUI);

Like all handlers, the function shows the afx_msg keyword. Like all update handlers,
it takes one argument, a pointer to a CCmdUI object.

The CCmdUI Class

When it routes the update command to the handler, the framework passes the handler
a pointer to a CCmdUI object (or to an object of a CCmdUI-derived class). This
object represents the menu item or toolbar button or other user-interface object that
generated the command. The update handler calls member functions of the CCmdUI
structure through the pointer to update the user-interface object. For example, here is
an update handler for the Clear All menu item:

void CMyClass::0nUpdateToolsMyTool(CCmdUI* pCmdUI)
{
if(ToolAvailable())
pCmdUI->Enable(TRUE);
}

This handler calls the Enable member function of an object with access to the menu
item. Enable makes the item available for use.

How to Display Command Information in
the Status Bar

54

When you run AppWizard to create the skeleton of your application, you can easily
support a toolbar and a status bar. A single option in AppWizard supports both.
When a status bar is present, the framework automatically gives helpful feedback as
the user of your application moves the mouse through items in the menus. The
framework automatically displays a prompt string in the status bar when the menu
item is being selected. For example, when the user drags the mouse over the Cut item
on the Edit menu, the framework might display “Cut the selection and put it on the
Clipboard” in the message area of the status bar. The prompt helps the user grasp the
menu item’s purpose. This also works when the user clicks a toolbar button.

Chapter 2 Working with Messages and Commands

You can easily add to this status-bar help by defining prompt strings for the menu
items that you add to the program. To do so, provide the prompt strings when you
edit the properties of the menu item in the menu editor. The strings you define this
way are stored in your application’s resource file; they have the same IDs as the
commands they explain.

By default, AppWizard adds the ID for a standard prompt, “Ready,” which is
displayed when the program is waiting for new messages. If you specify the Context-
Sensitive Help option in AppWizard, the ID for a help prompt, “For Help, press F1,”
is added to your application. This ID is AFX_IDS IDLEMESSAGE.

CHAPTER 3

Working with Frame Windows,
Documents, and Views

Previous chapters introduced the primary objects in an application built upon the
framework of the Microsoft Foundation Class Library (MFC) and showed how these
objects communicate via messages and commands.

This chapter takes you deeper into three of the most important objects in a framework
application:

e Frame windows, which contain and manage your views
¢ Documents, which define your application’s data

¢ Views, which display your documents and manage user interaction with them

The chapter also explaihs how the framework nianages printing and print preview
since printing functionality is intimately tied to the view.

One of the most important features of the framework is the division of labor among
frame windows, documents, and views. The document manages your data. The view
displays it and takes user input. And the frame window puts a frame around the view.
Code that defines and manipulates data resides in the document class. Code that
displays the data and interprets user input resides in the view class.

Frame Windows

When an application runs under Microsoft Windows, the user interacts with
documents displayed in frame windows. A document frame window has two major
components: the frame and the contents that it frames. A document frame window
can be a single document interface (SDI) frame window or a multiple document
interface (MDI) child window. Windows manages most of the user’s interaction with
the frame window: moving and resizing the window, closing it, and minimizing and
maximizing it. You manage the contents inside the frame.

The framework uses frame windows to contain views. The two components— frame
and contents—are represented and managed by two different classes in MFC. A
frame-window class manages the frame, and a view class manages the contents. The

57

Programming with MFC -

view window is a child of the frame window. Drawing and other user interaction with
the document take place in the view’s client area, not the frame window’s client area.
The frame window provides a visible frame around a view, complete with a caption
bar and standard window controls such as a control menu, buttons to minimize and
maximize the window, and controls for resizing the window. The “contents” consist
of the window’s client area, which is fully occupied by a child window—the view.
Figure 3.1 shows the relationship between a frame window and a view.

Figure 3.1 Frame Window and View

Frame - '
Window —— Client area

; Allocated to view
Object (a child window)

T
1
1
1
s

View
Object
(child window)

v 1

Document
Object

This chapter also discusses splitter windows. In a splitter window, the frame
-window’s client area is occupied by a splitter window, which in turn has multiple
child windows, called panes, which are views.

The following topics explain about frame windows:
* Window classes ,
e The frame-window classes created by AppWizard
e Managing child windows
e Managing the current view
. Managing menus, control bars, and accelerators
‘e Working with the File Manager
¢ Orchestrating other window actions

Chapter 3 Working with Frame Windows, Documents, and Views

Window Classes

Each application has one “main frame window,” a desktop window that usually has
the application name in its caption. Each document usually has one “document frame
window.” A document frame window contains at least one view, which presents the
document’s data. For an SDI application, there is one frame window derived from
class CFrameWnd. This window is both the main frame window and the document
frame window. For an MDI application, the main frame window is derived from class
CMDIFrameWnd, and the document frame windows, which are MDI child
windows, are derived from class CMDIChildWnd.

These classes provide most of the frame-window functionality you need for your
applications. Under normal circumstances, the default behavior and appearance they
provide will suit your needs. If you need additional functionality, derive from these
classes.

The Frame-Window Classes Created by AppWizard

When you use AppWizard to create a skeleton application, in addition to application,
document, and view classes, AppWizard creates a derived frame-window class for
your application’s main frame window. The class is called CMainFrame by default,
and the files that contain it are named MAINFRM.H and MAINFRM.CPP.

If your application is SDI, your CMainFrame class is derived from class CFrameWnd.
If your application is MDI, CMainFrame is derived from class CMDIFrameWnd. If
you choose to support a toolbar, the class also has member variables of type
CToolBar and CStatusBar and an OnCreate message-handler function to initialize
the two control bars.

If your application is MDI, AppWizard does not derive a new document frame-
window class for you. Instead, it uses the default implementation in
CMDIChildWnd. Later on, if you need to customize your document frame window,
you can use ClassWizard to create a new document frame-window class.

These frame-window classes work as created, but to enhance their functionality, you
must add member variables and member functions. You may also want to have your
window classes handle other Windows messages.

Using Frame Windows

The framework creates document frame windows—and their views and documents
—as part of its implementation of the New and Open commands on the File menu.
Because the framework does most of the frame-window work for you, you play only a
small role in creating, using, and destroying those windows. You can, however,
explicitly create your own frame windows and child windows for special purposes.

59

Programming with MFC

60

Creating Document Frame Windows

As you saw in Document/View Creation, the CDocTemplate object orchestrates
creating the frame window, document, and view and connecting them all together.
Three CRuntimeClass arguments to the CDocTemplate constructor specify the
frame window, document, and view classes that the document template creates
dynamically in response to user commands such as the New command on the File
menu or the New Window command on an MDI Window menu. The document
template stores this information for later use when it creates a frame window for a
view and document.

In order for the RUNTIME_CLASS mechanism to work correctly, your derived
frame-window classes must be declared with the DECLARE_DYNCREATE macro.
This is because the framework needs to create document frame windows using the
dynamic construction mechanism of class CObject. For details about
DECLARE_DYNCREATE, see the article CObject Class: Deriving a Class from
CObject and the Macros and Globals section in the Class Library Reference.

When the user chooses a command that creates a document, the framework calls
upon the document template to create the document object, its view, and the frame
window that will display the view. Chapter 1, Using the Classes to Write Applications
for Windows, describes this creation process. When it creates the document frame
window, the document template creates an object of the appropriate class—a class
derived from CFrameWnd for an SDI application or from CMDIChildWnd for an
MDI application. The framework then calls the frame-window object’s LoadFrame
member function to get creation information from resources and to create the
Windows window. The framework attaches the window handle to the frame-window
object. Then it creates the view as a child window of the document frame window.

Note You cannot create your own child windows or call any Windows AP functions in the
constructor of a CWnd-derived object. This is because the HWND for the CWnd object has not
been created yet. Most Windows-specific initialization, such as adding child windows, must be
done in an OnCreate message handler.

Destroying Frame Windows

The framework manages window destruction as well as creation for those windows
associated with framework documents and views. If you create additional windows,
you are responsible for destroying them.

In the framework, when the user closes the frame window, the window’s default
OnClose handler calls DestroyWindow. The last member function called when the
Windows window is destroyed is OnNcDestroy, which does some cleanup, calls the
Default member function to perform Windows cleanup, and lastly calls the virtual
member function PostNcDestroy. The CFrameWnd implementation of
PostNcDestroy deletes the C++ window object. You should never use the C++ delete
operator on a frame window. Use DestroyWindow instead.

Chapter 3 Working with Frame Windows, Documents, and Views

When the main window closes, the application closes. If there are modified unsaved
documents, the framework displays a message box to ask if the documents should be
saved and ensures that the appropriate documents are saved if necessary.

What Frame Windows Do

Besides simply framing a view, frame windows are responsible for numerous tasks
involved in coordinating the frame with its view and with the application.
CMDIFrameWnd and CMDIChildWnd inherit from CFrameWnd, so they have
CFrameWnd capabilities as well as new capabilities that they add. Examples of
child windows include views, controls such as buttons and list boxes, and control
bars, including toolbars, status bars, and dialog bars. The frame window is
responsible for managing the layout of its child windows. In the framework, a frame
window positions any control bars, views, and other child windows inside its client
area. The frame window also forwards commands to its views and can respond to
notification messages from control windows. Chapter 1, Using the Classes to Write
Applications for Windows, shows how commands are routed from the frame window
to its view and other command targets.

Managing Child Windows

MDI main frame windows (one per application) contain a special child window
called the MDICLIENT window. The MDICLIENT window manages the client
area of the main frame window, and itself has child windows: the document windows,
derived from CMDIChildWnd. Because the document windows are frame windows
themselves (MDI child windows), they can also have their own children. In all of
these cases, the parent window manages its child windows and forwards some
commands to them.

In an MDI frame window, the frame window manages the MDICLIENT window,
repositioning it in conjunction with control bars. The MDICLIENT window, in turn,
manages all MDI child frame windows. Figure 3.2 shows the relationship between an
MDI frame window, its MDICLIENT window, and its child document frame
windows.

Figure 3.2 MDI Frame Windows and Children

Frame window

MDICLIENT window

Document frame windows

61

Programming with MFC

62

An MDI frame window also works in conjunction with the current MDI child
window, if there is one. The MDI frame window delegates command messages to the
MDI child before it tries to handle them itself.

Managing the Current View

As part of the default implementation of frame windows, a frame window keeps track
of a currently active view. If the frame window contains more than one view, as for
example in a splitter window, the current view is the most recent view in use. The
active view is independent of the active window in Windows or the current input
focus.

When the active view changes, the framework notifies the current view by calling its
OnActivateView member function. You can tell whether the view is being activated
or deactivated by examining OnActivateView’s bActivate parameter. By default,
OnActivateView sets the focus to the current view on activation. You can override
OnActivateView to perform any special processing when the view is deactivated or
reactivated. For example, you might want to provide special visual cues to distinguish
the active view from other, inactive views. For more information, see the
OnActivateView member function of class CView in the Class Library Reference.

A frame window forwards commands to its current (active) view, as described in
Chapter 1, Using the Classes to Write Applications for Windows, as part of the
standard command routing.

Managing Menus, Control Bars, and Accelerators

The frame window manages updating user-interface objects, including menus, toolbar
buttons, and the status bar. It also manages sharing the menu bar in MDI
applications.

The frame window participates in updating user-interface items using the
ON_UPDATE_COMMAND_UI mechanism described in How to Update User-
Interface Objects. Buttons on toolbars and other control bars are updated during the
idle loop. Menu items in drop-down menus on the menu bar are updated just before
the menu drops down.

The frame window also positions the status bar within its client area and manages the
status bar’s indicators. The frame window clears and updates the message area in the
status bar as needed and displays prompt strings as the user selects menu items or
toolbar buttons, as described in Chapter 2, in How to Display Command Information
in the Status Bar.

For MDI applications, the MDI frame window manages the menu bar and caption.
An MDI frame window owns one default menu that is used as the menu bar when
there are no active MDI child windows. When there are active children, the MDI
frame window’s menu bar is taken over by the menu for the active MDI child
window. If an MDI application supports multiple document types, such as chart and

Chapter 3 Working with Frame Windows, Documents, and Views

worksheet documents, each type puts its own menus into the menu bar and changes
the main frame window’s caption.

CMDIFrameWnd provides default implementations for the standard commands on
the Window menu that appears for MDI applications. In particular, the New Window
command (ID_WINDOW_NEW) is implemented to create a new frame window and
view on the current document. You need to override these implementations only if
you need advanced customization.

Multiple MDI child windows of the same document type share menu resources. If
several MDI child windows are created by the same document template, they can all
use the same menu resource, saving on system resources in Windows.

Each frame window maintains an optional accelerator table that does keyboard
accelerator translation for you automatically. This mechanism makes it easy to define
accelerator keys (also called shortcut keys) that invoke menu commands.

Frame-Window Styles

The frame windows you get with the framework are suitable for most programs, but
you can gain additional flexibility by using the advanced functions
PreCreateWindow and AfxRegisterWindowClass. PreCreateWindow is a member
function of CWnd. AfxRegisterWindowClass is a global function documented in
Macros and Globals in the Class Library Reference.

If you apply the WS_HSCROLL and WS_VSCROLL styles to the main frame
window, they are instead applied to the MDICLIENT window so users can scroll the
MDICLIENT area.

If the window’s FWS_ADDTOTITLE style bit is set (which it is by default), the
view tells the frame window what title to display in the window’s title bar based on
the view’s document name.

Working with the File Manager

The frame window manages a relationship with the Windows File Manager.

By adding a few initializing calls in your override of the CWinApp member function
InitInstance, as described in Chapter 1, in CWinApp: The Application Class, you
can have your frame window indirectly open files dragged from the Windows File
Manager and dropped in the frame window. See File Manager Drag and Drop.

The frame window can also respond to dynamic data exchange (DDE) requests to
open files from the File Manager (if the file extension is registered or associated with
the application). See Shell Registration.

Orchestrating Other Window Actions

The frame window orchestrates semimodal states such as context-sensitive help and
print pteview, The framework’s role in managing context-sensitive help is described

63

Programming with MFC

in the article Help. For a description of the frame window’s role in print preview, see
Printing and Print Preview.

Documents and Views

64

The parts of the framework most visible both to the user and to you, the programmer,
are the document and view. Most of your work in developing an application with the
framework goes into writing your document and view classes. This section describes:

e The purposes of documents and views and how they interact in the framework.

¢ What you must do to implement them.

The CDocument class provides the basic functionality for programmer-defined
document classes. A document represents the unit of data that the user typically
opens with the Open command on the File menu and saves with the Save command
on the File menu.

The CView class provides the basic functionality for programmer-defined view
classes. A view is attached to a document and acts as an intermediary between the
document and the user: the view renders an image of the document on the screen and
interprets user input as operations upon the document. The view also renders the
image for both printing and print preview.

Figure 3.3 shows the relationship between a document and its view.

Figure 3.3 Document and View

View

Document

Part of document
currently visible

The document/view implementation in the class library separates the data itself from
its display and from user operations on the data. All changes to the data are managed
through the document class. The view calls this interface to access and update the
data.

Chapter 3 Working with Frame Windows, Documents, and Views

Documents, their associated views, and the frame windows that frame the views are
created by a document template, as described in Document/View Creation. The
document template is responsible for creating and managing all documents of one
document type.

Document and View Classes Created by AppWizard

AppWizard gives you a head start on your program development by creating skeletal
document and view classes for you. You can then use ClassWizard to map commands
and messages to these classes and the Visual C++ source code editor to write their
member functions.

The document class created by AppWizard is derived from class CDocument. The
view class is derived from CView. The names that AppWizard gives these classes
and the files that contain them are based on the project name you supply in the
AppWizard dialog box. From AppWizard, you can use the Classes dialog box to alter
the default names.

Some applications might need more than one document class, view class, or frame-
window class. For more information, see Multiple Document Types, Views, and
Frame Windows.

Using Documents and Views
Working together, documents and views:
e Contain, manage, and display your application-specific data.
e Provide an interface for manipulating the data.
e Participate in writing and reading files.
o Participate in printing.

e Handle most of your application’s commands and messages.

Managing Data
Documents contain and manage your application’s data. To use the AppWizard-
supplied document class, you must do the following:

e Derive a class from CDocument for each type of document.
e Add member variables to store each document’s data.

e Override CDocument’s Serialize member function in your document class.
Serialize writes and reads the document’s data to and from disk.

You may also want to override other CDocument member functions. In particular,
you will often need to overridle OnNewDocument and OnOpenDocument to
initialize the document’s data members and DeleteContents to destroy dynamically
allocated data. For information about overridable members, see class CDocument in
the Class Library Reference.

Programming with MFC

66

Document Data Variables

Implement your document’s data as member variables of your document class. For
example, the Scribble tutorial program declares a data member of type CObList—a
linked list that stores pointers to CObject objects. This list is used to store arrays of
points that make up a freehand line drawing.

How you implement your document’s member data depends on the nature of your
application. To help you out, MFC supplies a group of “collection classes”—arrays,
lists, and maps (dictionaries), including collections based on C++ templates—along
with classes that encapsulate a variety of common data types such as CString,
CRect, CPoint, CSize, and CTime. For more information about these classes, see
the Class Library Overview in the Class Library Reference.

When you define your document’s member data, you will usually add member
functions to the document class to set and get data items and perform other useful
operations on them.

Your views access the document object by using the view’s pointer to the document,
installed in the view at creation time. You can retrieve this pointer in a view’s
member functions by calling the CView member function GetDocument. Be sure to
cast this pointer to your own document type. Then you can access public document
members through the pointer.

If frequent data transfer requires direct access, or you wish to use the nonpublic
members of the document class, you may want to make your view class a friend (in
C++ terms) of the document class.

Serializing Data to and from Files

The basic idea of persistence is that an object should be able to write its current state,
indicated by the values of its member variables, to persistent storage. Later, the object
can be re-created by reading, or “deserializing,” the object’s state from persistent
storage. A key point here is that the object itself is responsible for reading and
writing its own state. Thus, for a class to be persistent, it must implement the basic
serialization operations.

The framework provides a default implementation for saving documents to disk files
in response to the Save and Save As commands on the File menu and for loading
documents from disk files in response to the Open command. With very little work,
you can implement a document’s ability to write and read its data to and from a file.
The main thing you must do is override CDocument’s Serialize member function in
your document class.

AppWizard places a skeletal override of the CDocument member function Serialize
in the document class it creates for you. After you have implemented your
application’s member variables, you can fill in your Serialize override with code
that sends the data to an “archive object” connected to a file. A CArchive object is

Chapter 3 Working with Frame Windows, Documents, and Views

similar to the cin and cout input/output objects from the C++ iostream library.
However, CArchive writes and reads binary format, not formatted text.

The Document’s Role

The framework responds automatically to the File menu’s Open, Save, and Save As
commands by calling the document’s Serialize member function if it is
implemented. An ID_FILE_OPEN command, for example, calls a handler function
in the application object. During this process, the user sees and responds to the File
Open dialog box and the framework obtains the filename the user chooses. The
framework creates a CArchive object set up for loading data into the document and
passes the archive to Serialize. The framework has already opened the file. The
code in your document’s Serialize member function reads the data in through the
archive, reconstructing data objects as needed. For more information about
serialization, see the article Serialization (Object Persistence).

The Data’s Role

In general, class-type data should be able to serialize itself. That is, when you pass an
object to an archive, the object should know how to write itself to the archive and
how to read itself from the archive. MFC provides support for making classes
serializable in this way. If you design a class to define a data type and you intend to
serialize data of that type, design for serialization.

Bypassing the Archive Mechanism

As you have seen, the framework provides a default way to read and write data to and
from files. Serializing through an archive object suits the needs of a great many
applications. Such an application reads a file entirely into memory, lets the user
update the file, and then writes the updated version to disk again.

However, some applications operate on data very differently, and for these
applications serialization through an archive is not suitable. Examples include
database programs, programs that edit only parts of large files, programs that write
text-only files, and programs that share data files.

In these cases, you can override the Serialize member function of CDocument in a
different way to mediate file actions through a CFile object rather than a CArchive
object.

You can use the Open, Read, Write, Close, and Seek member functions of class
CFile to open a file, move the file pointer (seek) to a specific point in the file, read a
record (a specified number of bytes) at that point, let the user update the record, then
seek to the same point again and write the record back to the file. The framework will
open the file for you, and you can use the GetFile member function of class
CArchive to obtain a pointer to the CFile object. For even more sophisticated and
flexible use, you can override the OnOpenDocument and OnSaveDocument

67

Programming with MFC

68

member functions of class CWinApp. For more information, see class CFile in the
Class Library Reference.

In this scenario, your Serialize override does nothing, unless, for example, you
want to have it read and write a file header to keep it up to date when the document
closes.

For an example of such nonarchived processing, see the MFC Advanced Concepts
sample CHKBOOK.

Handling Commands in the Document

Your document class may also handle certain commands generated by menu items,
toolbar buttons, or accelerator keys. By default, CDocument handles the Save and
Save As commands on the File menu, using serialization. Other commands that
affect the data may also be handled by member functions of your document. For
example, in the Scribble tutorial program, class CScribDoc provides a handler for the
Edit Clear All command, which deletes all of the data currently stored in the
document. Unlike views, documents cannot handle standard Windows messages.

Displaying Data in a View and Interacting with the User

The view’s responsibilities are to display the document’s data graphically to the user
and to accept and interpret user input as operations on the document. Your tasks in
writing your view class are to:

e Write your view class’s OnDraw member function, which renders the document’s
data.

¢ Connect appropriate Windows messages and user-interface objects such as menu
items to message-handler member functions in the view class.

¢ Implement those handlers to interpret user input.

In addition, you may need to override other CView member functions in your derived
view class. In particular, you may want to override OnlInitialUpdate to perform
special initialization for the view and OnUpdate to do any special processing needed
just before the view redraws itself. For multipage documents, you also must override
OnPreparePrinting to initialize the Print dialog box with the number of pages to
print and other information. For more information on overriding CView member
functions, see class CView in the Class Library Reference.

The Microsoft Foundation Class Library also provides several derived view classes
for special purposes:

e CScrollView, which provides automatic scrolling and view scaling.

e CFormView, which provides a scrollable view useful for displaying a form made
up of dialog controls. A CFormView object is created from a dialog-template
resource.

Chapter 3 Working with Frame Windows, Documents, and Views

o CRecordView and CDaoRecordView, which are form views whose controls are
connected to the fields of a CRecordset or CDaoRecordset object, respectively,
representing a database table.

e CEditView, which provides a view with the characteristics of an editable-text
control with enhanced editing features. You can use a CEditView object to
implement a simple text editor. Note that as of MFC version 4.0, CEditView has a
new base class, called CCtrlView.

The following table shows CCtrlView and other new view classes:

Table 3.1 New View Classes

Class Description

CCtrlView Base class of CTreeView, CListView, CEditView, and
CRichEditView. These classes let you use document/view
architecture with the indicated Windows common controls.

CDaoRecordView A form view that fills its controls from a CDaoRecordset
object. This class is analogous to CRecordView.

CListView A view containing a CListCtrl object.

CRichEditView A view containing a CRichEditCtrl object. This class is
analogous to CEditView, but unlike CEditView,
CRichEditView handles formatted text.

CTreeView A view containing a CTreeCtrl object, for views that
resemble the Workspace window in Visual C++.

To take advantage of these special classes, derive your view classes from them. For
more information, see Scrolling and Scaling Views and Special View Classes. For
more information on the database classes, see Chapter 7, Working with Databases.

Drawing in a View

Nearly all drawing in your application occurs in the view’s OnDraw member function,
which you must override in your view class. (The exception is mouse drawing,
discussed in Interpreting User Input Through a View.) Your 0nDraw override:

1. Gets data by calling the document member functions you provide.

2. Displays the data by calling member functions of a device-context object that the
framework passes to OnDraw.

When a document’s data changes in some way, the view must be redrawn to reflect
the changes. Typically, this happens when the user makes a change through a view on
the document. In this case, the view calls the document’s UpdateAllViews member
function to notify all views on the same document to update themselves.
UpdateAllViews calls each view’s OnUpdate member function. The default
implementation of OnUpdate invalidates the view’s entire client area. You can

69

Programming with MFC

70

override it to invalidate only those regions of the client area that map to the modified
portions of the document.

The UpdateAll Views member function of class CDocument and the OnUpdate
member function of class CView let you pass information describing what parts of
the document were modified. This “hint” mechanism lets you limit the area that the
view must redraw. OnUpdate takes two “hint” arguments. The first, [Hint, of type
LPARAM, lets you pass any data you like, while the second, pHint, of type
CObject*, lets you pass a pointer to any object derived from CObject.

When a view becomes invalid, Windows sends it a WM_PAINT message. The view’s
OnPaint handler function responds to the message by creating a device-context
object of class CPaintDC and calls your view’s OnDraw member function. You do not
normally have to write an overriding OnPaint handler function.

Recall from Chapter 1 that a device context is a Windows data structure that contains
information about the drawing attributes of a device such as a display or a printer. All
drawing calls are made through a device-context object. For drawing on the screen,
OnDraw is passed a CPaintDC object. For drawing on a printer, it is passed a CDC
object set up for the current printer.

Your code for drawing in the view first retrieves a pointer to the document, then
makes drawing calls through the device context. The following simple OnDraw
example illustrates the process:

void CMyView::0nDraw(CDC* pDC)

{
CMyDoc* pDoc = GetDocument();
CString s = pDoc->GetData(); // Returns a CString
CRect rect;
GetClientRect(&rect);
pDC->SetTextAlign(TA_BASELINE | TA_CENTER);
pDC->TextOut(rect.right / 2, rect.bottom / 2,
s, s.Getlength());
1

In this example, you would define the GetData function as a member of your derived
document class.

The example prints whatever string it gets from the document, centered in the view.
If the OnDraw call is for screen drawing, the CDC object passed in pDC is a
CPaintDC whose constructor has already called BeginPaint. Calls to drawing
functions are made through the device-context pointer. For information about device
contexts and drawing calls, see class CDC in the Class Library Reference and
Working with Window Objects.

For more examples of how to write OnDraw, see the MFC Samples, which you can
access under Samples in Books Online.

Chapter 3 Working with Frame Windows, Documents, and Views

Interpreting User Input Through a View

Other member functions of the view handle and interpret all user input. You will
usually define message-handler member functions in your view class to process:

e Windows messages generated by mouse and keyboard actions.

¢ Commands from menus, toolbar buttons, and accelerator keys.

These message-handler member functions interpret the following actions as data
input, selection, or editing, including moving data to and from the Clipboard:

¢ Mouse movements and clicks, drags, and double-clicks
e Keystrokes

e Menu commands

Which Windows messages your view handles depends on your application’s needs.

You saw earlier, in Messages and Commands in the Framework, how to assign menu
items and other user-interface objects to commands and how to bind the commands to
handler functions with ClassWizard. You have also seen how the framework routes
such commands and sends standard Windows messages to the objects that contain
handlers for them.

For example, your application might need to implement direct mouse drawing in the
view. The Scribble tutorial example shows how to handle the
WM_LBUTTONDOWN, WM_MOUSEMOVE, and WM_LBUTTONUP
messages respectively to begin, continue, and end the drawing of a line segment. On
the other hand, you might sometimes need to interpret a mouse click in your view as
a selection. Your view’s OnLButtonDown handler function would determine whether
the user was drawing or selecting. If selecting, the handler would determine whether
the click was within the bounds of some object in the view and, if so, alter the display
to show the object as selected.

Your view might also handle certain menu commands, such as those from the Edit
menu to cut, copy, paste, or delete selected data using the Clipboard. Such a handler
would call some of the Clipboard-related member functions of class CWnd to
transfer a selected data item to or from the Clipboard.

Printing and the View

Your view also plays two important roles in printing its associated document.
The view:

e Uses the same OnDraw code to draw on the printer as to draw on the screen.

e Manages dividing the document into pages for printing.

For more information about printing and about the view’s role in printing, see
Printing and Print Preview.

7

Programming with MFC

72

Scrolling and Scaling Views

MFC supports views that scroll and views that are automatically scaled to the size of
the frame window that displays them. Class CScrollView supports both kinds of
views.

For more information about scrolling and scaling, see class CScrollView in the Class
Library Reference. For a scrolling example, see Chapter 9, Enhancing Views, in
Tutorials.

Scrolling

Frequently the size of a document is greater than the size its view can display. This
may occur because the document’s data increases or the user shrinks the window that
frames the view. In such cases, the view must support scrolling.

Any view can handle scroll-bar messages in its OnHScroll and OnVScroll member
functions. You can either implement scroll-bar message handling in these functions,
doing all the work yourself, or you can use the CScroll View class to handle scrolling
for you.

CScrollView does the following:

e Manages window and viewport sizes and mapping modes

¢ Scrolls automatically in response to scroll-bar messages

You can specify how much to scroll for a “page” (when the user clicks in a scroll-bar
shaft) and a “line” (when the user clicks in a scroll arrow). Plan these values to suit
the nature of your view. For example, you might want to scroll in 1-pixel increments
for a graphics view but in increments based on the line height in text documents.

Scaling

When you want the view to automatically fit the size of its frame window, you can use
CScrollView for scaling instead of scrolling. The logical view is stretched or shrunk

. to fit the window’s client area exactly. A scaled view has no scroll bars.

Multiple Document Types, Views, and Frame Windows

The standard relationship among a document, its view, and its frame window is
described in Document/View Creation. Many applications support a single document
type (but possibly multiple open documents of that type) with a single view on the
document and only one frame window per document. But some applications may
need to alter one or more of those defaults.

Multiple Document Types

AppWizard creates a single document class for you. In some cases, though, you may
need to support more than one document type. For example, your application may
need worksheet and chart documents. Each document type is represented by its own
document class and probably by its own view class as well. When the user chooses

Chapter 3 Working with Frame Windows, Documents, and Views

the File New command, the framework displays a dialog box that lists the supported
document types. Then it creates a document of the type that the user chooses. Each
document type is managed by its own document-template object.

To create extra document classes, use the Add Class button in the ClassWizard dialog
box. Choose CDocument as the Class Type to derive from and supply the requested
document information. Then implement the new class’s data.

To let the framework know about your extra document class, you must add a second
call to AddDocTemplate in your application class’s InitInstance override. For
more information, see Document Templates.

Multiple Views

Many documents require only a single view, but it is possible to support more than
one view of a single document. To help you implement multiple views, a document
object keeps a list of its views, provides member functions for adding and removing
views, and supplies the UpdateAllViews member function for lettlng multiple views
know when the document’s data has changed.

MEC supports three common user interfaces requlrmg multiple views on the same
document. These models are:

e View objects of the same class, each in a separate MDI document frame window.

You might want to support creating a second frame window on a document. The
user could choose a New Window command to open a second frame with a view of
the same document and then use the two frames to view different portions of the
document simultaneously. The framework supports the New Window command on
the Window menu for MDI applications by duplicating the initial frame window
and view attached to the document.

e View objects of the same class in the same document frame window.

Splitter windows split the view space of a single document window into multiple
separate views of the document. The framework creates multiple view objects from
the same view class. For more information, see Splitter Windows.

e View objects of different classes in a single frame window.

In this model, a variation of the splitter window, multiple views share a single
frame window. The views are constructed from different classes, each view
providing a different way to view the same document. For example, one view
might show a word-processing document in normal mode while the other view
shows it in outline mode. A splitter control allows the user to adjust the relative
sizes of the views.

Figure 3.4 shows the three user-interface models in the order presented above.

73

Programming with MFC

74

Figure 3.4 Multiple-View User Interfaces

Document
View 1/Frame 1
a
View 2/Frame 2
Document
View 1
b Splitter Bar
View 2
Document
c View 2 (Graphics)
View 1 (Text)

The framework provides these models by implementing the New Window command
and by providing class CSplitterWnd, as discussed in Splitter Windows. You can
implement other models using these as your starting point. For sample programs that
illustrate different configurations of views, frame windows, and splitters, see MFC
Samples under Samples in Books Online.

For more information about UpdateAllViews, see class CView in the Class Library
Reference and Chapter 9, Enhancing Views, in Tutorials.

Splitter Windows

In a splitter window, the window is, or can be, split into two or more scrollable panes.
A splitter control (or “split box”) in the window frame next to the scroll bars allows
the user to adjust the relative sizes of the panes. Each pane is a view on the same
document. In “dynamic” splitters, the views are of the same class, as shown in Figure
3.4(b). In “static” splitters, the views can be of different classes. Splitter windows of
both kinds are supported by class CSplitterWnd.

Dynamic splitter windows, with views of the same class, allow the user to split a
window into multiple panes at will and then scroll different panes to see different

Chapter 3 Working with Frame Windows, Documents, and Views

parts of the document. The user can also unsplit the window to remove the additional
views. The splitter windows added to the Scribble application in Chapter 9 of
Tutorials are an example. That chapter describes the technique for creating dynamic
splitter windows. A dynamic splitter window is shown in Figure 3.4(b).

Static splitter windows, with views of different classes, start with the window split
into multiple panes, each with a different purpose. For example, in the Visual C++
bitmap editor, the image window shows two panes side by side. The left-hand pane
displays a life-sized image of the bitmap. The right-hand pane displays a zoomed or
magnified image of the same bitmap. The panes are separated by a “splitter bar” that
the user can drag to change the relative sizes of the panes. A static splitter window is
shown in Figure 3.4(c).

For more information, see class CSplitterWnd in the Class Library Reference and
MEC Samples under Samples in Books Online.

Initializing and Cleaning Up Documents and Views
Use the following guidelines for initializing and cleaning up after your documents
and views:

e The framework initializes documents and views; you initialize any data you add to
them.

e The framework cleans up as documents and views close; you must deallocate any
memory that you allocated on the heap from within the member functions of those
documents and views.

Note Recall that initialization for the whole application is best done in your override of the
Initinstance member function of class CWinApp, and cleanup for the whole application is
best done in your override of the CWinApp member function Exitinstance.

The life cycle of a document (and its frame window and view or views) in an MDI
application is as follows:

1. During dynamic creation, the document constructor is called.

2. For each new document, the document’s OnNewDocument or OnOpenDocument
is called.

3. The user interacts with the document throughout its lifetime.

4. The framework calls DeleteContents to delete data specific to a document.

5. The document’s destructor is called.

In an SDI application, step 1 is performed once, when the document is first created.
Then steps 2 through 4 are performed repeatedly each time a new document is

opened. The new document reuses the existing document object. Finally, step 5 is
performed when the application ends.

7%

Programming with MFC

Initializing

Documents are created in two different ways, so your document class must support
both ways. First, the user can create a new, empty document with the File New
command. In that case, initialize the document in your override of the
OnNewDocument member function of class CDocument. Second, the user can use
the Open command on the File menu to create a new document whose contents are
read from a file. In that case, initialize the document in your override of the
OnOpenDocument member function of class CDocument. If both initializations are
the same, you can call a common member function from both overrides, or
OnOpenDocument can call OnNewDocument to initialize a clean document and
then finish the open operation.

Views are created after their documents are created. The best time to initialize a view
is after the framework has finished creating the document, frame window, and view.
You can initialize your view by overriding the OnlInitialUpdate member function of
CView. If you need to reinitialize or adjust anything each time the document
changes, you can override OnUpdate.

Cleaning Up

When a document is closing, the framework first calls its DeleteContents member
function. If you allocated any memory on the heap during the course of the
document’s operation, DeleteContents is the best place to deallocate it.

Note You should not deallocate document data in the document's destructor. In the case of
an SDI application, the document object might be reused.

You can override a view’s destructor to deallocate any memory you allocated on the
heap.

Special View Classes

76

Besides CScrollView, the Microsoft Foundation Class Library provides three other
classes derived from CView:

e CFormView, a view with attributes of a dialog box and a scrolling view. A
CFormView is created from a dialog-template resource. You can create the dialog-
template resource with the Visual C++ dialog editor.

¢ CRecordView or CDaoRecordView, a form view whose controls are connected to
fields of a CRecordset or CDaoRecordset object that represents a database table.

e CEditView, a view that uses the Windows edit control as a simple multiline text
editor. You can use a CEditView as the view on a document.

About CFormView

CFormView provides a view based on a dialog-template resource. You can use it to
create formlike views with edit boxes and other dialog controls. The user can scroll

Chapter 3 Working with Frame Windows, Documents, and Views

the form view and tab among its controls. Form views support scrolling using the
CScrollView functionality. For more information, see class CFormView in the Class
Library Reference.

About CRecordView and CDaoRecordView

CRecordView provides database forms for applications that use the MFC ODBC
classes. Similarly, CDaoRecordView provides database forms for applications that
use the MFC DAO classes. You can use AppWizard or ClassWizard to create a form
whose controls exchange data directly with the fields data members of a CRecordset
or CDaoRecordset object. The recordset object selects data for a “current record” in
an associated table in a database. For more information, see classes CRecordView,
CDaoRecordView, CRecordset, and CDaoRecordset in the Class Library
Reference and Chapter 7, Working with Databases.

About CEditView

CEditView provides the functionality of a CEdit control with enhanced editing
features: printing; find and replace; cut, copy, paste, clear, and undo commands; and
File Save and File Open commands. You can use a CEditView to implement a simple
text-editor view. See classes CEditView and CEdit in the Class Library Reference.

Printing and Print Preview

Microsoft Windows implements device-independent display. This means that the
same drawing calls, made through a device context passed to your view’s OnDraw
member function, are used to draw on the screen and on other devices, such as
printers. You use the device context to call graphics device interface (GDI) functions,
and the device driver associated with the particular device translates the calls into
calls that the device can understand.

When your framework document prints, OnDraw receives a different kind of device-
context object as its argument; instead of a CPaintDC object, it gets a CDC object
associated with the current printer. OnDraw makes exactly the same calls through the
device context as it does for rendering your document on the screen.

The framework also provides an implementation of the File Print Preview command
as described in Previewing the Printed Document.

The article Printing describes in detail the partnership between you and the
framework during printing and print preview. In particular, see Figure 1 in the
article. Chapter 10, Enhancing Printing, inTutorials provides an example.

Printing the Document

To print, the framework calls member functions of the view object to set up the Print
dialog box, allocate fonts and other resources needed, set the printer mode for a given
page, print a given page, and deallocate resources. Once the document as a whole is

7

Programming with MFC

set up, the process iteratively prints each page. When all pages have been printed, the
framework cleans up and deallocates resources. You can, and sometimes must,
override some view member functions to facilitate printing. For information, see class
CView in the Class Library Reference.

When the view’s OnPrint member function is called, it must calculate what part of
the document image to draw for the given page number. Typically, OnPrint adjusts
the viewport origin or the clipping region of the device context to specify what should
be drawn. Then OnPrint calls the view’s OnDraw member function to draw that
portion of the image.

Previewing the Printed Document

78

The framework also implements print-preview functionality and makes it easy for you
to use this functionality in your applications. Print preview shows a reduced image of
either one or two pages of the document as it would appear when printed. The
implementation also provides controls for printing the displayed page(s), moving to
the next or the previous page, toggling the display between one and two pages,
zooming the display in and out to view it at different sizes, and closing the display. If
the framework knows how long the document is, it can also display a scroll bar for
moving from page to page.

To implement print preview, instead of directly drawing an image on a device, the
framework must simulate the printer using the screen. To do this, MFC implements
the CPreviewDC class, which is used in conjunction with the implementation class
CPreviewView. All CDC objects contain two device contexts. In a CPreviewDC
object, the first device context represents the printer being simulated; the second
represents the screen on which output is actually displayed.

In response to a Print Preview command from the File menu, the framework creates a
CPreviewDC object. Then when your application performs an operation that sets a
characteristic of the printer device context, the framework performs a similar
operation on the screen device context. For example, if your application selects a font
for printing, the framework selects a font for screen display that simulates the printer
font. When your application sends output that would go to the printer, the framework
instead sends it to the screen.

The order and manner in which pages of a document are displayed are also different
for print preview. Instead of printing a range of pages from start to finish, print
preview displays one or two pages at a time and waits for a cue from the user before it
displays different pages.

You are not required to do anything to provide print preview, other than to make sure
the Print Preview command is in the File menu for your application. However, if you
choose, you can modify the behavior of print preview in a number of ways. For more
information about making such modifications to print preview in your application,
see Technical Note 30 under MFC Technical Notes in Books Online.

CHAPTER 4

Working with Dialog Boxes,
Controls, and Control Bars

The previous chapter explained windows, particularly the frame windows used to
display views of documents. As you saw briefly in that chapter, class CWnd is the
base class of many other window classes besides the frame windows.

This chapter covers the following topics, including several additional categories of
window classes:

e Dialog boxes
e Control windows

e Control bars

Dialog boxes are used to retrieve input from the user. Inside a dialog box, the user
interacts with controls, such as buttons, list boxes, combo boxes, and edit boxes. You
can also place controls in a frame window, a view, or a control bar. Using “property
sheets,” your MFC dialog boxes can also use the “tab dialog box” look used in many
dialog boxes in Microsoft Word, Excel, and Visual C++ itself.

A toolbar is a control bar that contains bitmapped buttons; these buttons can be
configured to appear and behave as pushbuttons, radio buttons, or check boxes. An
MEFC toolbar can “dock” to any side of its parent window or float in its own mini-
frame window. A toolbar can also “float” over the application’s windows, and you
can change its size. A status bar is a control bar that contains text-output panes, or
“indicators.” A dialog bar is a control bar based on a dialog-template resource; as in a
dialog box, the user can tab among the controls.

Dialog Boxes

Applications for Windows frequently communicate with the user through dialog
boxes. Class CDialog provides an interface for managing dialog boxes, the Visual
C++ dialog editor makes it easy to design dialog boxes and create their dialog-
template resources, and ClassWizard simplifies the process of initializing and
validating the controls in a dialog box and of gathering the values entered by the user.

79

Programming with MFC

The following topics provide details about dialog boxes:

Dialog components

Modal and modeless dialog boxes

Property sheets and property pages in a dialog box
Creating a dialog resource template

The life cycle of a dialog box

Dialog data exchange and validation

Type-safe access to controls in a dialog box
Mapping Windows messages to your class

Common dialog classes

Dialog-Box Components in the Framework

In the framework, a dialog box has two components:

A dialog-template resource that specifies the dialog box’s controls and their
placement.

The dialog resource stores a dialog template from which Windows creates the
dialog window and displays it. The template specifies the dialog box’s
characteristics, including its size, location, style, and the types and positions of the
dialog box’s controls. You will usually use a dialog template stored as a resource,
but you can also create your own template in memory.

A dialog class, derived from CDialog, to provide a programmatic interface for
managing the dialog box.

A dialog box is a window and will be attached to a Windows window when visible.
When the dialog window is created, the dialog-template resource is used as a
template for creating child window controls for the dialog box.

Modal and Modeless Dialog Boxes

You can use class CDialog to manage two kinds of dialog boxes:

80

Modal dialog boxes, which require the user to respond before continuing the
program

Modeless dialog boxes, which stay on the screen and are available for use at any
time but permit other user activities

The resource editing and ClassWizard procedures for creating a dialog template are
the same for modal and’modeless dialog boxes

Creating a dialog box for your program requires the following steps:

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

1. Use the dialog editor to design the dialog box and create its dialog-template
resource.

2. Use ClassWizard to create a dialog class.
3. Connect the dialog resource’s controls to message handlers in the dialog class.

4. Use ClassWizard to add data members associated with the dialog box’s controls
and to specify dialog data exchange and dialog data validations for the controls.

Property Sheets and Property Pages

An MFC dialog box can take on a “tab dialog” look by incorporating property sheets
and property pages. Called a “property sheet” in MFC, this kind of dialog box,
similar to many dialog boxes in Microsoft Word, Excel, and Visual C++, appears to
contain a stack of tabbed sheets, much like a stack of file folders seen from front to
back, or a group of cascaded windows. Controls on the front tab are visible; only the
labeled tab is visible on the rear tabs. Property sheets are particularly useful for
managing large numbers of properties or settings that fall fairly neatly into several
groups. Typically, one property sheet can simplify a user interface by replacing
several separate dialog boxes.

As of MFC version 4.0, property sheets and property pages are implemented using
the common controls that come with Windows 95 and Windows NT version 3.51 and
later.

Property sheets are implemented with classes CPropertySheet and CPropertyPage
(described in the Class Library Reference). CPropertySheet defines the overall
dialog box, which can contain multiple “pages” based on CPropertyPage.

For information on creating and working with property sheets, see the article
Property Sheets.

Creating the Dialog Resource

To design the dialog box and create the dialog resource, you use the Visual C++
dialog editor. In the dialog editor, you can:

¢ Adjust the size and location yoilr dialog box will have when it appears.

e Drag various kinds of controls from a controls palette and drop them where you
want them in the dialog box.

¢ Position the controls with aligriment buttons on the toolbar.

e Test your dialog box by simulating the appearance and behavior it will have in
your program. In Test mode, you can manipulate the dialog box’s controls by
typing text in text boxes, clicking pushbuttons, and so on.

When you finish, your dialog-template resource is stored in your application’s
resource script file. You can edit it later if needed. For a full description of how to
create and edit dialog resources, see Chapter 6, Using the Dialog Editor, in the Visual

81

Programming with MFC

C++ User’s Guide. This technique is also used to create the dialog-template
resources for CFormView and CRecordView classes.

When the dialog box’s appearance suits you, use ClassWizard to create a dialog class
and map its messages, as discussed in Creating a Dialog Class with ClassWizard.

Creating a Dialog Class with ClassWizard

82

Table 4.1 lists dialog-related tasks that ClassWizard helps you manage.
Table 4.1 Dialog-Related Tasks

Task Applyto...

Create a new CDialog-derived class to Each dialog box.

manage your dialog box.

Map Windows messages to your dialog Each message you want handled.

class.

Declare class member variables to Each control that yields a text or numeric
represent the controls in the dialog box. value you want to access from your program.
Specify how data is to be exchanged Each control you want to access from your
between the controls and the member program.

variables.

Specify validation rules for the member Each control that yields a text or numeric
variables. value, if desired.

Mapping dialog-class member variables to dialog-box controls and specifying data
exchange and validation are explained in Dialog Data Exchange and Validation.

Creating Your Dialog Class

For each dialog box in your program, create a new dialog class to work with the
dialog resource.

Chapter 14, Working with Classes, in the Visual C++ User’s Guide explains how to
create a new dialog class. When you create a dialog class with ClassWizard,
ClassWizard writes the following items in the .H and .CPP files you specify:

In the .H file:

o A class declaration for the dialog class. The class is derived from CDialog.

In fhe .CPP file:

¢ A message map for the class.
¢ A standard constructor for the dialog box.

e An override of the DoDataExchange member function. Edit this function with
ClassWizard. It is used for dialog data exchange and validation capabilities as
described later in this chapter.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

Life Cycle of a Dialog Box

During the life cycle of a dialog box, the user invokes the dialog box, typically inside
a command handler that creates and initializes the dialog object; the user interacts
with the dialog box; and the dialog box closes.

For modal dialog boxes, your handler gathers any data the user entered once the
dialog box closes. Since the dialog object exists after its dialog window has closed,
you can simply use the member variables of your dialog class to extract the data.

For modeless dialog boxes, you may often extract data from the dialog object while
the dialog box is still visible. At some point, the dialog object is destroyed; when this
happens depends on your code.

Creating and Displaying Dialog Boxes

Creating a dialog object is a two-phase operation. First, construct the dialog object.
Then create the dialog window. Modal and modeless dialog boxes differ somewhat in
the process used to create and display them. Table 4.2 lists how modal and modeless
dialog boxes are normally constructed and displayed.

Table 4.2 Dialog Creation

Dialog type How to create it
Modeless Construct CDialog, then call Create member function.
Modal Construct CDialog, then call DoModal member function.

Creating Modal Dialog Boxes

To create a modal dialog box, call either of the two public constructors declared in
CDialog and then call the dialog object’s DoModal member function to display the
dialog box and manage interaction with it until the user chooses OK or Cancel. This
management by DoModal is what makes the dialog box “modal.” For modal dialog
boxes, DoModal loads the dialog resource.

Creating Modeless Dialog Boxes

For a modeless dialog box, you must provide your own public constructor in your
dialog class. To create a modeless dialog box, call your public constructor and then
call the dialog object’s Create member function to load the dialog resource. You can
call Create either during or after the constructor call. If the dialog resource has the
property WS_VISIBLE, the dialog box appears immediately. If not, you must call its
ShowWindow member function.

Using a Dialog Template in Memory

Instead of using the methods given in Table 4.2, you can create either kind of dialog
box indirectly from a dialog template in memory. For more information, see class
CDialog in the Class Library Reference.

83

Programming with MFC

84

Setting the Dialog Box’s Background Color

You can set the background color of your dialog boxes by calling the CWinApp
member function SetDialogBkColor in your InitInstance override. The color you
set is used for all dialog boxes and message boxes.

Initializing the Dialog Box

After the dialog box and all of its controls are created but just before the dialog box
(of either type) appears on the screen, the dialog object’s OnlInitDialog member
function is called. For a modal dialog box, this occurs during the DoMeodal call. For
a modeless dialog box, OnlnitDialog is called when Create is called. You typically
override OnInitDialog to initialize the dialog box’s controls, such as setting the
initial text of an edit box. You must call the OnInitDialog member function of the
base class, CDialog, from your OnInitDialog override.

Handling Windows Messages

Dialog boxes are windows, so they can handle Windows messages if you supply the
appropriate handler functions.

Retrieving Data from the Dialog Object

The framework provides an easy way to initialize the values of controls in a dialog
box and to retrieve values from the controls. The more laborious manual approach is
to call functions such as the SetDlgltemText and GetDIgltemText member functions
of class CWnd, which apply to control windows. With these functions, you access
each control individually to set or get its value, calling functions such as
SetWindowText and GetWindowText. The framework’s approach automates both
initialization and retrieval.

Dialog data exchange (DDX) lets you exchange data between the controls in the
dialog box and member variables in the dialog object more easily. This exchange
works both ways. To initialize the controls in the dialog box, you can set the values of
data members in the dialog object, and the framework will transfer the values to the
controls before the dialog box is displayed. Then you can at any time update the
dialog data members with data entered by the user. At that point, you can use the data
by referring to the data member variables.

You can also arrange for the values of dialog controls to be validated automatically
with dialog data validation (DDV).

Use ClassWizard to add DDX and DDV capabilities to a dialog class. DDX and DDV
are explained in more detail in Dialog Data Exchange and Validation.

For a modal dialog box, you can retrieve any data the user entered when DoModal
returns IDOK but before the dialog object is destroyed. For a modeless dialog box,
you can retrieve data from the dialog object at any time by calling UpdateData with
the argument TRUE and then accessing dialog class member variables. This subject
is discussed in more detail in Dialog Data Exchange and Validation.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

Closing the Dialog Box

A modal dialog box closes when the user chooses one of its buttons, typically the OK
button or the Cancel button. Choosing the OK or Cancel button causes Windows to
send the dialog object a BN_CLICKED control-notification message with the
button’s ID, either IDOK or IDCANCEL. CDialog provides default handler
functions for these messages: OnOK and OnCancel. The default handlers call the
EndDialog member function to close the dialog window. You can also call
EndDialog from your own code. For more information, see the EndDialog member
function of class CDialog in the Class Library Reference.

To arrange for closing and deleting a modeless dialog box, override PostNcDestroy
and invoke the delete operator on the this pointer. Destroying the Dialog Box
explains what happens next.

Destroying the Dialog Box

Modal dialog boxes are normally created on the stack frame and destroyed when the
function that created them ends. The dialog object’s destructor is called when the
object goes out of scope.

Modeless dialog boxes are normally created and “owned” by a parent view or frame
window—the application’s main frame window or a document frame window. The
default OnClose handler calls DestroyWindow, which destroys the dialog-box
window. If the dialog box stands alone, with no pointers to it or other special
ownership semantics, you should override PostNcDestroy to destroy the C++ dialog
object. You should also override OnCancel and call DestroyWindow from within it.
If not, the “owner” of the dialog box should destroy the C++ object when it is no
longer necessary.

Dialog Data Exchange and Validation

Dialog data exchange (DDX) is an easy way to initialize the controls in your dialog
box and to gather data input by the user. Dialog data validation (DDV) is an easy way
to validate data entry in a dialog box. To take advantage of DDX and DDV in your
dialog boxes, use ClassWizard to create the data members and set their data types and
specify validation rules. For additional information about DDX/DDV and for
examples, see Chapter 14, Working with Classes, in the Visual C++ User’s Guide
and Chapter 8, Adding a Dialog Box, in Tutorials.

Data Exchange

If you use the DDX mechanism, you set the initial values of the dialog object’s
member variables, typically in your OnlInitDialog handler or the dialog constructor.
Immediately before the dialog is displayed, the framework’s DDX mechanism
transfers the values of the member variables to the controls in the dialog box, where
they appear when the dialog box itself appears in response to DoModal or Create.
The default implementation of OnlInitDialog in CDialog calls the UpdateData
member function of class CWnd to initialize the controls in the dialog box.

85

Programming with MFC

86

The same mechanism transfers values from the controls to the member variables
when the user clicks the OK button (or whenever you call the UpdateData member
function with the argument TRUE). The dialog data validation mechanism validates
any data items for which you specified validation rules.

Figure 4.1 illustrates dialog data exchange.

Figure 4.1 Dialog Data Exchange

Initialize variables in Initialize controls in
dialog constructor OninitDialog
Dialog box on screen
—_»| Member I S
< Variables -t Thin Pen Width: [[]
Thick Pen Width:] Controls
Default I I OK I | Cancel l
Dialog Object
Retrieve values when Retrieve control values
they are updated with UpdateData

UpdateData works in both directions, as specified by the BOOL parameter passed to
it. To carry out the exchange, UpdateData sets up a CDataExchange object and calls
your dialog class’s override of CDialog’s DoDataExchange member function.
DoDataExchange takes an argument of type CDataExchange. The CDataExchange
object passed to UpdateData represents the context of the exchange, defining such
information as the direction of the exchange.

When you (or ClassWizard) override DoDataExchange, you specify a call to one
DDX function per data member (control). Each DDX function knows how to
exchange data in both directions based on the context supplied by the
CDataExchange argument passed to your DoDataExchange by UpdateData.

MEFC provides many DDX functions for different kinds of exchange. The following
example shows a DoDataExchange override in which two DDX functions and one
DDY function are called:

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

void CMyDialog::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX); // Call base class version
//{{AFX_DATA_MAP(CMyDialog)
DDX_Check(pDX, IDC_MY_CHECKBOX, m_bVar);
DDX_Text(pDX, IDC_MY_TEXTBOX, m_strName);
DDV_MaxChars(pDX, IDC_MY_TEXTBOX, m_strName, 20);
//}YYAFX_DATA_MAP

}

The DDX_ and DDV_ lines between the //{{AFX_DATA_MAP and //}}AFX_DATA_MAP
delimiters are a “data map.” The sample DDX and DDV functions shown are for a
check-box control and an edit-box control, respectively.

If the user cancels a modal dialog box, the OnCancel member function terminates
the dialog box and DoModal returns the value IDCANCEL. In that case, no data is
exchanged between the dialog box and the dialog object.

Data Validation

You can specify validation in addition to data exchange by calling DDV functions, as
shown in the example in Data Exchange. The DDV_MaxChars call in the example
validates that the string entered in the text-box control is not longer than 20
characters. The DDV function typically alerts the user with a message box if the
validation fails and puts the focus on the offending control so the user can reenter the
data. A DDV function for a given control must be called immediately after the DDX
function for the same control.

You can also define your own custom DDX and DDV routines. For details on this
and other aspects of DDX and DDV, see Technical Note 26 under MFC Technical
Notes in Books Online.

ClassWizard will write all of the DDX and DDV calls in the data map for you. Do
not manually edit the lines in the data map between the delimiting comments.

Type-Safe Access to Controls in a Dialog Box

The controls in a dialog box can use the interfaces of MFC control classes such as
CListBox and CEdit. You can create a control object and attach it to a dialog
control. Then you can access the control through its class interface, calling member
functions to operate on the control, as shown below. The methods described here are
designed to give you type-safe access to a control. This is especially useful for
controls such as edit boxes and list boxes.

There are two approaches to making a connection between a control in a dialog box
and a C++ control member variable in a CDialog-derived class.

87

Programming with MFC

88

Without ClassWizard

The first approach uses an inline member function to cast the return type of class
CWnd’s GetDlgItem member function to the appropriate C++ control type, as in
this example:

// Declared inline in class CMyDialog
CButton* GetMyCheckbox()

{
return (CButton*)GetDl1gItem(ID_MYCHECKBOX);
1

You can then use this member function to access the control in a type-safe manner
with code similar to the following:

GetMyCheckbox()->SetState(TRUE);

With ClassWizard

However, there is a much easier way to accomplish the same effect if you are familiar
with the DDX features. You can use the Control property in ClassWizard.

If you simply want access to a control’s value, DDX provides it. If you want to do
more than access a control’s value, use ClassWizard to add a member variable of the
appropriate class to your dialog class. Attach this member variable to the Control

property.

Member variables can have a Control property instead of a Value property. The Value
property refers to the type of data returned from the control, such as CString or int.
The Control property enables direct access to the control through a data member
whose type is one of the control classes in MFC, such as CButton or CEdit.

Note For a given control, you can, if you wish, have multiple member variables with the Value
property and at most one member variable with the Control property. You can have only one
MFC object mapped to a control because multiple objects attached to a control, or any other
window, would lead to an ambiguity in the message map.

You can use this object to call any member functions for the control object. Such calls
affect the control in the dialog box. For example, for a check-box control represented
by a variable m_checkboxDefault, of type CButton, you could call:

m_checkboxDefault.SetState(TRUE);

Here the member variable m_checkboxDefault serves the same purpose as the
member function GetMyCheckbox shown earlier in the “Without ClassWizard”
discussion. If the check box is not an auto check box, you would still need a handler
in your dialog class for the BN_CLICKED control-notification message when the
button is clicked.

For more information about controls, see Controls.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

Mapping Windows Messages to Your Class

If you need your dialog box to handle Windows messages, override the appropriate
handler functions. To do so, use ClassWizard to map the messages to the dialog class.
This writes a message-map entry for each message and adds the message-handler
member functions to the class. Use the Visual C++ source code editor to write code in
the message handlers. Chapter 2, Working with Messages and Commands, describes
message maps and message-handler functions in detail.

Commonly Overridden Member Functions

Table 4.3 lists the most likely member functions to override in your CDialog-derived
class,

Table 4.3 Commonly Overridden Member Functions of Class CDialog

Member function Message it responds to Purpose of the override
OnlInitDialog WML_INITDIALOG Initialize the dialog box’s
controls.
OnOK BN_CLICKED for button Respond when the user clicks
IDOK the OK button.
OnCancel BN_CLICKED for button Respond when the user clicks
IDCANCEL the Cancel button.

OnlnitDialog, OnOK, and OnCancel are virtual functions. To override them, you
declare an overriding function in your derived dialog class using ClassWizard; in
these cases, ClassWizard will not add any message-map entries because they are not
necessary.

OnlnitDialog is called just before the dialog box is displayed. You must call the
default OnInitDialog handler from your override—usually as the first action in the
handler. By default, OnInitDialog returns TRUE to indicate that the focus should be
set to the first control in the dialog box.

OnOK is typically overridden for modeless but not modal dialog boxes. If you
override this handler for a modal dialog box, call the base class version from your
override—to ensure that EndDialog is called—or call EndDialog yourself.

OnCancel is usually overridden for modeless dialog boxes.

For more information about these member functions, see class CDialog in the Class
Library Reference and the discussion on Life Cycle of a Dialog Box.

Commonly Added Member Functions

If your dialog box contains pushbuttons other than OK or Cancel, you need to write
message-handler member functions in your dialog class to respond to the control-
notification messages they generate. For an example, see Chapter 8, Adding a Dialog
Box, in Tutorials. You can also handle control-notification messages from other
controls in your dialog box.

89

Programming with MFC

Common Dialog Classes

In addition to class CDialog, MFC supplies several classes derived from CDialog
that encapsulate commonly used dialog boxes, as shown in Table 4.4. The dialog
boxes encapsulated are called the “common dialog boxes” and are part of the
Windows common dialog library (COMMDLG.DLL). The dialog-template resources
and code for these classes are provided in the Windows common dialog boxes that are
part of Windows versions 3.1 and later.

Table 44 Common Dialog Classes

Derived dialog class Purpose

CColorDialog Lets user select colors.

CFileDialog Lets user select a filename to open or to save.
CFindReplaceDialog Lets user initiate a find or replace operation in a text file.
CFontDialog Lets user specify a font.

CPrintDialog Lets user specify information for a print job.

For more information about the common dialog classes, see the individual class
names in the Class Library Reference. MFC also supplies a number of standard
dialog classes used for OLE. For information about these classes, see the base class,
COleDialog, in the Class Library Reference.

Three other classes in MFC have dialog-like characteristics. For information about
classes CFormView and CRecordView, see About CFormView and About
CRecordView and CDaoRecordView. For information about class CDialogBar, see
Control Bars.

Controls

0

MEC supplies a set of classes that correspond to the standard control windows
provided by Windows. These include buttons of several kinds, static- and editable-
text controls, scroll bars, list boxes, and combo boxes. Table 4.5 lists the classes and
the corresponding standard controls. Additional Controls describes new kinds of
controls.

Table 4.5 Standard Control Window Classes

Class Windows control

CStatic Static-text control

CButton Button control: pushbutton, check box, radio button, or
group-box control

CListBox List-box control

CComboBox Combo-box control

CEdit Edit control

CScrollBar Scroll-bar control

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

Each control class encapsulates a Windows control and provides a member-function
user interface to the underlying control. Using a control object’s member functions,
you can get and set the value or state of the control and respond to various standard
messages sent by the control to its parent window (usually a dialog box). For
additional control classes, see Additional Controls.

You can create control objects in a window or dialog box. You can also use a control
class as an interface to a control created in a dialog box from a dialog-template
resource.

Additional Controls

In addition to the standard Windows controls, MFC provides several other control
classes. These provide buttons labeled with bitmaps instead of text, control bars, and
splitter-window controls. Splitter windows are discussed in Chapter 3, Working with
Frame Windows, Documents, and Views.

Table 4.6 lists the the additional classes and their purposes.
Table 4.6 Additional Control Classes

Class Purpose
CBitmapButton Button labeled with a bitmap instead of text
CToolBar Toolbar arranged along a border of a frame window and

containing other controls

CStatusBar Status bar arranged along a border of a frame window and
containing panes, or indicators

CDialogBar Control bar created from a dialog-template resource and
arranged along a border of a frame window

Note VBX controls are not supported in 32-bit versions of Visual C++.

Control bars, including toolbars, status bars, and dialog bars, are discussed in Control
Bars.

Bitmap Buttons

Class CBitmapButton allows you to have button controls labeled with bitmaps
instead of text. An object of this class stores four CBitmap objects that represent
various states of the button: up (active), down (pushed), focused, and disabled.
Bitmap buttons can be used in dialog boxes. For more information, see class
CBitmapButton in the Class Library Reference. Figure 4.2 shows bitmap buttons in
a dialog box.

9

Programming with MFC

Figure 4.2 Bitmap Buttons

Controls and Dialog Boxes

Normally the controls in a dialog box are created from the dialog template at the time
the dialog box is created. Use ClassWizard to manage the controls in your dialog box.
For details, see Dialog Data Exchange and Validation, Type-Safe Access to Controls
in a Dialog Box, and Mapping Windows Messages to Your Class.

Making and Using Controls

92

You make most controls for dialog boxes in the Visual C++ dialog editor. But you can
also create controls in any dialog box or window. The following topics explain how to
add controls to a dialog box:

¢ Using the dialog editor.
¢ By hand.

e Deriving control classes from existing MFC control classes.

Using the Dialog Editor to Add Controls

When you create your dialog-template resource with the dialog editor, you drag
controls from a controls palette and drop them into the dialog box. This adds the
specifications for that control type to the dialog-template resource. When you
construct a dialog object and call its Create or DoModal member function, the
framework creates a Windows control and places it in the dialog window on screen.

Adding Controls By Hand

To create a control object yourself, you will usually embed the C++ control object in a
C++ dialog or frame-window object. Like many other objects in the framework,
controls require two-stage construction. You should call the control’s Create member
function as part of creating the parent dialog box or frame window. For dialog boxes,
this is usually done in OnlnitDialog, and for frame windows, in OnCreate.

The following example shows how you might declare a CEdit object in the class
declaration of a derived dialog class and then call the Create member function in
OnlInitDialog. Because the CEdit object is declared as an embedded object, it is
automatically constructed when the dialog object is constructed, but it must still be
initialized with its own Create member function.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

class CMyDialog : public CDialog

{
protected:
CEdit m_edit; // Embedded edit object
public:
virtual BOOL OnInitDialog();
}s

The following OnInitDialog function sets up a rectangle, then calls Create to create
the Windows edit control and attach it to the uninitialized CEdit object.

BOOL CMyDialog::0OnInitDialog()

{
CDialog::0OnInitDialog();
CRect rect(85, 110, 180, 210);
m_edit.Create(WS_CHILD | WS_VISIBLE | WS_TABSTOP |
ES_AUTOHSCROLL | WS_BORDER, rect, this, ID_EXTRA_EDIT);
m_edit.SetFocus();
return FALSE;
}

After creating the edit object, you can also set the input focus to the control by calling
the SetFocus member function. Finally, you return O from OnInitDialog to show that
you set the focus. If you return a nonzero value, the dialog manager sets the focus to
the first control item in the dialog item list. In most cases, you’ll want to add controls
to your dialog boxes with the dialog editor.

Deriving Controls from a Standard Control

As with any CWnd-derived class, you can modify a control’s behavior by deriving a
new class from an existing control class.

To create a derived control class, follow these steps:

1. Derive your class from an existing control class and optionally override the Create
member function so that it provides the necessary arguments to the base-class
Create function.

2. Use ClassWizard to provide message-handler member functions and message-map
entries to modify the control’s behavior in response to specific Windows messages.

3. Provide new member functions to extend the functionality of the control
(optional).

Using a derived control in a dialog box requires extra work. The types and positions
of controls in a dialog box are normally specified in a dialog-template resource. If you
create a derived control class, you cannot specify it in a dialog template since the
resource compiler knows nothing about your derived class. To place your derived
control in a dialog box, follow these steps:

1. Embed an object of the derived control class in the declaration of your derived
dialog class.

93

Programming with MFC

2. Override the OnInitDialog member function in your dialog class to call the
SubclassDIgItem member function for the derived control.

SubclassDIgltem “dynamically subclasses” a control created from a dialog template.
When a control is dynamically subclassed, you hook into Windows, process some
messages within your own application, then pass the remaining messages on to
Windows. For more information, see the SubclassDigItem member function of class
CWnd in the Class Library Reference. The following example shows how you might
write an override of OnInitDialog to call SubclassDigltem:

BOOL CMyDialog::0nInitDialog()

{
CDialog::0OnInitDialog();
m_wndMyBtn.SubclassDigltem(IDC_MYBTN, this);
return TRUE;

}

Because the derived control is embedded in the dialog class, it will be constructed
when the dialog box is constructed, and it will be destroyed when the dialog box is
destroyed. Compare this code to the example in Adding Controls By Hand.

Control Bars

94

Control bars greatly enhance a program’s usability by providing quick, one-step
command actions. Control bars include toolbars, status bars, and dialog bars. The
base class of all control bars is CControlBar.

e A toolbar is a control bar that displays a row of bitmapped buttons that activate
commands. Pressing a toolbar button is similar to choosing a menu item. The
buttons can act like pushbuttons, check boxes, or radio buttons. A toolbar is
usually aligned to the top of a frame window, but an MFC toolbar can also be
dragged and “docked” to any other side of its parent window, and it can be
“floated”—placed in a floating mini-frame window. When it is floating, the user
can resize the toolbar. A toolbar can also display “tool tips” as the user moves the
mouse over the toolbar’s buttons. A tool tip is a tiny popup window that presents a
short description of the button’s purpose.

e A status bar is a control bar with a row of text output panes, or “indicators.” The
output panes are commonly used as message lines and as status indicators.
Examples include the command help-message lines that briefly explain the
selected menu or toolbar command and the indicators that indicate the status of
the SCROLL LOCK, NUM LOCK, and other keys. Status bars are usually aligned to the
bottom of a frame window. ‘

o A dialog bar is a control bar with the functionality of a modeless dialog box.
Dialog bars are created from dialog templates and can contain any Windows
control. Dialog bars support tabbing among controls and can be aligned to the top,
bottom, left, or right side of a frame window.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

The basic functionality of all three control-bar types is similar. The base class,
CControlBar, provides the functionality for positioning the control bar in its parent
frame window. Because a control bar is usually a child window of a parent frame
window, it is a “sibling” to the client view or MDI client of the frame window. A
control-bar object uses information about its parent window’s client rectangle to
position itself. Then it alters the parent’s remaining client-window rectangle so that
the client view or MDI client window fills the rest of the client window.

Note If a button on the control bar doesn’t have a COMMAND or UPDATE_COMMAND _UlI
handler, the button is automatically disabled by the framework.

As of MFC version 4.0, toolbars, status bars, and tool tips are implemented using
Windows 95 functionality instead of the previous implementation specific to MFC.

Toolbars — An Overview

Toolbars display a collection of easy-to-use buttons that represent commands.
AppWizard makes it easy to add a toolbar to your application. Moreover, the toolbar
can:

e Remain stationary along one side of its parent window.

e Be dragged and “docked” by the user on any side or sides of the parent window
you specify.

e Be “floated” in its own mini-frame window so the user can move it around to any
convenient position.

¢ Be resized while floating.

Note As of MFC version 4.0, toolbars and tool tips are implemented using Windows
95 functionality instead of the previous implementation specific to MFC. For more
information, see the article Toolbars.

For backward compatibility, MFC retains the older toolbar implementation in class
COldToolBar. The documentation for earlier versions of MFC describe
COldToolBar under CToolBar.

MEC toolbars can also be made to display “tool tips”—tiny popup windows
containing a short text description of a toolbar button’s purpose. As the user moves
the mouse over a toolbar button, the tool tip window pops up to offer a hint.

For more information about “dockable” toolbars, see the article Toolbars: Docking
and Floating. For more information about tool tips, see the article Toolbars: Tool
Tips. For additional information about how toolbars have been reimplemented using
the CToolBarCtrl class, and how that affects you, see the article Toolbars.

The buttons in a toolbar are analogous to the items in a menu. Both kinds of user-
interface objects generate commands, which your program handles by providing
handler functions. Often toolbar buttons duplicate the functionality of menu

95

Programming with MFC

commands, providing an alternative user interface to the same functionality. Such
duplication is arranged by giving the button and the menu item the same ID.

Once constructed, a CToolBar object creates the toolbar image by loading a single
bitmap that contains one image for each button. AppWizard creates a standard
toolbar bitmap that you can customize with the Visual C++ toolbar editor.

You can make the buttons in a toolbar appear and behave as pushbuttons, check
boxes, or radio buttons.

For more information, see class CToolBar in the Class Library Reference. Also see
the articles Toolbars, Toolbars: Docking and Floating, Toolbars: Tool Tips, Status
Bars, Control Bars, Dialog Bars.

Status Bars

96

A CStatusBar object is a control bar with a row of text output panes, or “indicators.”
The output panes commonly are used as message lines and as status indicators.
Examples include the menu help-message lines that briefly explain the selected menu
command and the indicators that show the status of the SCROLL LOCK, NUM LOCK, and
other keys.

As of MFC version 4.0, status bars are implemented using class CStatusBarCtrl,
which encapsulates a Windows 95 status bar control. For backward compatibility,
MEC retains the older status bar implementation in class COldStatusBar. The
documentation for earlier versions of MFC describe COldStatusBar under
CStatusBar.

CStatusBar::GetStatusBarCtrl, a member function new to MFC 4.0, allows you to
take advantage of the Windows common control’s support for status bar
customization and additional functionality. CStatusBar member functions give you
most of the functionality of the Windows common controls; however, when you call
GetStatusBarCtrl, you can give your status bars even more of the characteristics of a
Windows 95 status bar. When you call GetStatusBarCtrl, it will return a reference
to a CStatusBarCtrl object. You can use that reference to manipulate the status bar
control.

Figure 4.3 shows a status bar that displays several indicators.

Figure 4.3 A Status Bar

[Seve the aclive document [CAP INUM [SCRL

Like the toolbar, the status-bar object is embedded in its parent frame window and is
constructed automatically when the frame window is constructed. The status bar, like
all control bars, is destroyed automatically as well.

For an example of using a status bar, see the Scribble tutorial program in Tutorials.
For more information, see class CStatusBar in the Class Library Reference. Also see
the articles Toolbars, Dialog Bars, Control Bars.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

Dialog Bars

Because it has the characteristics of a modeless dialog box, a CDialogBar object
provides a more powerful toolbar. There are several key differences between a toolbar
and a CDialogBar object. A CDialogBar object is created from a dialog-template
resource, which you can create with the Visual C++ dialog editor and which can
contain any kind of Windows control. The user can tab from control to control. And
you can specify an alignment style to align the dialog bar with any part of the parent
frame window or even to leave it in place if the parent is resized. Figure 4.4 shows a
dialog bar with a variety of controls.

Figure 4.4 A Dialog Bar

H geul Pagel Proy Page || Two Pagel Zoom In I Zovm Gut " Close I

In other respects, working with a CDialogBar object is like working with a modeless
dialog box. Use the dialog editor to design and create the dialog resource.

One of the virtues of dialog bars is that they can include controls other than buttons.

While it is normal to derive your own dialog classes from CDialog, you do not
typically derive your own class for a dialog bar. Dialog bars are extensions to a main
window and any dialog-bar control-notification messages, such as BN_CLICKED or
EN_CHANGE, will be sent to the parent of the dialog bar—the main window.

For more information about dialog bars, see class CDialogBar in the Class Library
Reference.

97

CHAPTER

Working with OLE

The OLE classes of the Microsoft Foundation Class Library (MFC) are a set of C++
classes that provide an object-oriented interface to the OLE application programming
interface (API). These OLE classes leverage the class library framework, making it
easy to use OLE with the remainder of the class library, although you can use
portions of the OLE classes without using all of the class library. With Visual C++
version 2.0, the OLE classes were ported to Win32.

The OLE classes add the following components to the class library:

e C++ classes that provide an object-oriented interface to the OLE APL
e Extensions to the document/view architecture to support OLE.

e Extensions to AppWizard for creating programs that use OLE.

e Extensions to ClassWizard for creating and editing automation classes.

e Sample programs that illustrate use of the classes and wizards.

Online documentation that includes overview, tutorials, encyclopedia articles on
programming topics, and class reference materials.

In this chapter, you’ll find information on:
e Overview of OLE
¢ Features of the OLE classes

e Requirements for using the OLE classes

Distributing your application
Getting started with the OLE classes

99

Programming with MFC

Overview of OLE

100

OLE is a technology that allows applications to transfer and share information.

A History of OLE

Originally, OLE was synonymous with the term “compound document” and “OLE”
was an acronym for the phrase “Object Linking and Embedding.” OLE (version 1)
was a mechanism for applications that did not have specific knowledge about one
another to work together to create compound documents, embedding objects created
by one application within a document created by another application.

Today, OLE is much more. So much more, in fact, that OLE is no longer an
abbreviation; it is simply the name applied to this communication technology. In
addition to supporting compound documents, OLE supports automation and OLE
controls. There are also significant improvements to compound documents, now
sometimes called “OLE documents.”

OLE Features

OLE is an extensible technology. It currently supports OLE documents, OLE
Automation, and OLE controls. Without adversely affecting any current features
supported by OLE, new features can seamlessly be added.

OLE documents support more than simply linking and embedding; for example, in-
place activation (visual editing), drag-and-drop editing, and short-cut menus
(context-sensitive menus accessed by the right mouse button). For more information,
see the articles Servers, Containers, and Drag and Drop (OLE).

OLE Automation supports one application exposing objects to be programmatically
manipulated by another application. For example, Microsoft Excel can expose
spreadsheet and chart objects that can be manipulated by a program written using
Visual Basic or Visual C++. For more information, see the articles Automation
Servers and Automation Clients.

OLE and COM

OLE is built upon the Component Object Model (COM), which is a communications
protocol. COM describes manipulating interfaces, reporting status, and the use of the
Registry to resolve universally unique identifiers.

COM is built around interfaces. A COM interface is a specification for interaction
between COM objects. It is a list of semantically related functions (or methods) for
the COM object, each with a known parameter profile and a return type. Once an
interface is defined, it cannot change; any reference to the interface must conform to
that definition. If you use MFC to create your OLE applications, the application
framework will negotiate the OLE interfaces for you. You will only need to supply

Chapter 5 Working with OLE

application-specific functionality for methods provided by these interfaces. For more
information, see Interfaces in OLE 2 Programmer’s Reference, Volume 1.

Many of the functions described in OLE interfaces return status code (SCODE)
values. An SCODE is a 32-bit value containing a severity flag, a facility code, and an
informational code. For more information, see Structure of OLE Error Codes in OLE
2 Programmer’s Reference, Volume 1.

Each interface and each type of COM object is accessed by a universally unique
identifier (UUID). A UUID is a 128-bit value that is used to uniquely identify an
entity within COM/OLE. These are also known as globally unique identifiers
(GUIDs). Two of the most important kinds of UUIDs are interface identifiers (IIDs)
and class identifiers (CLSIDs).

OLE defines an interface identifier for each interface. The IID is used when
manipulating interfaces. For more information, see IUnknown::QueryInterface in
OLE 2 Programmer's Reference, Volume 1.

A class identifier is associated with each class (type) of OLE object (component). The
CLSID is used in creating objects of a given class. For more information, see The
CLSID Key and Subkeys in OLE 2 Programmer’s Reference, Volume 1.

Features of the OLE Classes

The MFC OLE classes supply the following features:

e They are integrated with other parts of MFC.

e They encapsulate much of the complexity of the OLE API in a small set of C++
classes that provide a higher-level interface to OLE.

e They allow you to call OLE API functions directly wherever the OLE classes don’t
meet your needs.

The OLE classes support containers, servers, drag and drop, automation, message
filters, compound files, and automatic registration. Explanations of these terms can
be found in the article OLE Overview. If you need access to other portions of the OLE
API, you can work with it directly. A number of tools and sample applications are
also available to help you test your OLE applications. For more information, see the
article Debugging OLE Applications: Tools.

Visual C++ combines key OLE components, including the required header files,
libraries, DLLs, tools, and documentation. A number of sample programs are also
included for testing your applications.

101

Programming with MFC

Requirements for Using the OLE Classes

This product assumes that you are familiar with C++. It is also helpful if you are
familiar with writing applications for Windows and know how to use the Microsoft
Foundation Class Library. Some understanding of OLE architecture will help, but is
not required; for any OLE information you do need, Visual C++ provides OLE
documentation in the WIN32 Software Development Kit (SDK). Additional
information about OLE is available in Kraig Brockschmidt’s book Inside OLE 2
(Microsoft Press, 1994).

Distributing Your OLE Application

When you write an application with the OLE classes and distribute it to your
customers, you may also need to distribute some DLL components of the OLE SDK
—and MFC. Which DLLs are required depends on how you write your application
with the class library.

Distributable Components

Your Visual C++ license authorizes you to freely distribute the release mode OLE and
MFC DLLs that are needed to support an OLE application developed using Visual
C++. Both the license and the file \REDIST\REDISTRB.WRI on the Visual C++ CD-
ROM disc list the files that are redistributable. Should there be a discrepancy between
these two lists, assume that the list in REDISTRB.WRI is correct.

Getting Started with the MFC OLE Classes

The best place to begin reading about the OLE classes is the article OLE Overview.
OLE Overview introduces the classes and points to related articles about the
concepts, components, and procedures of the OLE classes. For information about how
the articles are structured and how to get the most from them, see the first article,
Using the Encyclopedia. '

For hands-on experience, see the three tutorials for the OLE classes:

o OLE Server Tutorial, which builds a new “Step 7” onto the Scribble
tutorial.presented in Chapters 2 through 11 in Tutorials. The server tutorial begins
in Chapter 12, Creating an OLE Server.

Note The OLE server tutorial is a continuation of the general MFC tutorial, called Scribble.
If you are familiar with MFC programming already, you can begin the server tutorial based
on the Scribble Step 6 files. See the tutorial for details.

¢ OLE Container Tutorial, which builds CONTAINER, an OLE container
application.

¢ OLE Automation Server Tutorial, which creates AUTOCLIK, an OLE automation
server, that is an application that can be driven by other applications.

102

Chapter 5 Working with OLE

The Class Library Overview of the Class Library Reference lists MFC classes by
category, including OLE classes, with brief descriptions designed to help you locate
the class you need.

Note The OLE documentation refers to embedded and linked items as “objects” and refers to
types of items as “classes.” To avoid confusion with C++ terminology, the Visual C++ Class
Library Reference uses the term “item” to distinguish the OLE entity from the corresponding
C++ object, and the term “type” to distinguish the OLE category from the C++ class.

103

CHAPTER 6

Developing OLE Controls

The OLE control classes in the Microsoft Foundation Class Library (MEC) are a set
of C++ classes that you use, in combination with a specialized tool set, to develop
OLE controls. The OLE control classes create a framework that supports OLE
functionality, such as in-place activation, OLE automation, and drag and drop, to
create small, powerful custom controls that are also very portable. OLE controls are
used by specialized OLE control containers in current versions of Visual C++, Visual
Basic, and other products. For more information on fundamental OLE control
concepts, see the article OLE Controls.

OLE controls are reusable software components with features that make them an
attractive solution for unique problems such as monitoring a specific aspect of an
application or displaying data values as a pie chart. Important features include:

e Event firing

OLE controls notify a control container of important actions, such as mouse clicks
and data input, by firing events. OLE controls can implement stock events, such as
Click, or custom events unique to a control.

e OLE Automation

OLE controls support OLE Automation by implementing a set of methods and
properties. These methods and properties control the appearance and
characteristics of the control and are accessible to any OLE control container.

e Persistence

OLE controls can save the state of properties and methods to a stream or file. This
state can be used to initialize a new instance of the control or to restore the control
to its previous state.

¢ Portability between OLE control containers

OLE controls, because they incorporate OLE functionality, can usually be placed
into any OLE control container and work correctly.

105

Programming with MFC

In this chapter, you’ll find information on:

e Implementing an OLE control

¢ Installing the OLE control classes and tools
e Getting started with OLE controls

Implementing an OLE Control

106

An OLE control is implemented as an OLE document object that supports visual
editing. OLE controls have capabilities beyond those of ordinary OLE objects, such as
the ability to fire events.

Frequently, OLE objects require substantial effort to implement. MFC provides a
large part of the required implementation for an OLE control—you need provide
only the implementation code for the control’s interfaces and events. You determine:

e How the control is displayed and painted

You determine how the container draws your control when it is active (full
interaction with its container) or inactive (limited interaction with its container).
You also control the appearance when your control is printed or rendered into a
metafile.

e Control properties

A container can access a control’s properties through the control’s automation
interface. Your application defines what happens when these properties are
changed. You can also design a user interface, called a property page, to allow the
user to access your control’s properties at run time.

e Control events

You can assign arguments to control events and define their names. You can also
determine when an event should be fired.

o Control methods

Methods are operations, such as Refresh and DoClick, that can be invoked by the
control’s user. You define the arguments and return type for methods supported by
the control.

e Which property states of your control need to be persistent

Persistent properties allow the control’s state to be saved to permanent storage.
OLE controls provide functions to serialize any type of control property.

Chapter 6 Developing OLE Controls

When you write an OLE control, your project produces an OLE control file, which is
a dynamic link library (DLL) with an .OCX extension. This file can contain the
implementation of one or more controls and, when registered and loaded, defines the
controls that can be accessed by the user. You can distribute OLE controls that you
develop to other developers and users. For more information, see the article OLE
Controls: Distributing OLE Controls.

Installing OLE Control Classes and Tools

When you install Visual C++, the MFC OLE control classes and retail and debug
OLE control run-time DLLs are automatically installed if OLE Controls are selected
in setup. To install the OLE control development tools, REGSVR32, and Test
Container during Setup, select the Tools button to enable the Details button. Choose
Details and check the OLE Development Tools checkbox. For more information on
Test Container, see the article Test Container.

By default, the OLE control classes and tools are installed in the following
subdirectories:

e BIN

Contains the executables for Test Container and REGSVR32.
e BINIDE

Contains the executable for ControlWizard.
e HELP

Contains the Help files for the OLE control development tools.
e MFC\AINCLUDE

Contains the include files required to develop OLE controls.
e MFC\SRC

Contains the source code for specific OLE control classes in the class library.
e MFC\LIB

Contains the libraries required to develop OLE controls.
¢ SAMPLES\MFC\CONTROLS

Contains a set of OLE control samples.

107

Programming with MFC

Getting Started with OLE Controls

108

The best place to begin reading about OLE controls is the article OLE Controls. This
article introduces the OLE control classes and points to related articles about the
concepts, components, and procedures for developing OLE controls. For information
about how the articles are structured and how to get the most from them, see the first
article, Using the Encyclopedia.

For hands-on experience, see the Circle Tutorial in Tutorials. This tutorial describes
the typical development cycle of an OLE control. It includes steps on adding events,
methods and properties, property pages, and using fonts and pictures. The Circle
tutorial begins in Chapter 20.

CHAPTER 7

Working with Databases

The Microsoft Foundation Class Library (MFC) supplies two distinct sets of database
classes. These sets of classes are for:

e Programming with Data Access Objects (DAO).
e Programming with Open Database Connectivity (ODBC).

Database Class Components

Both sets of classes provide a high-level application programming interface (API) for
access to databases from C++ and Microsoft Windows. Although you can use the
database classes without some parts of the class library application framework, such
as documents and views, in most cases you’ll probably want to take advantage of the
full class library.

The database classes add the following components to the class library:

o C++ database classes that supply a high-level API for accessing databases through
either DAO or ODBC.

o Extensions to AppWizard and ClassWizard for creating application-specific
database classes.

e Sample programs that illustrate use of the classes and the wizards.
¢ Online documentation that includes overviews, tutorials, encyclopedia articles on
programming topics, and class reference materials.

To locate these components, see the encyclopedia articles Database Overview, DAO
and MFC, and ODBC and MFC.

What This Database Chapter Contains
In this chapter, you’ll find information on:

e When you might want to use a database with your application.
e What the MFC database classes are.
e Whether you should use the DAO classes or the ODBC classes.

109

Programming with MFC

e Information about installing either or both.

When Should You Use the Database Classes?

Many applications require data storage in a database, and many other applications
could benefit from using a database. A database gives you a flexible data repository
that can be accessed, in many cases, by multiple users and multiple applications.
Databases can store large amounts of data and provide fast access to the data for
queries and updates.

What Are the Database Classes?

Both sets of MFC database classes supply high-level abstractions that make database
programming easier. You could choose to use DAO or ODBC directly, but writing to
their APIs is considerably more complex and challenging than using the MFC
classes. This is especially true if you are writing small, relatively simple applications.
Ideally, you might wish for the ease of Microsoft Visual Basic or Microsoft Access
Basic without losing the power and flexibility of C++.

Both sets of MEC classes supply a database programming model very similar to the
model used in Microsoft Visual Basic and Microsoft Access Basic. You work with
familiar objects that encapsulate and simplify a great deal of the underlying
functionality, hiding much of the complexity (unless you need it, in which case you
can still use the APIs directly). For example, to create a simple form-based
application for viewing records or data entry, you use a database object to manage
your connection to a database management system (DBMS). And you use one or
more recordset objects to run queries and manage the resulting sets of records.

For more information, see the encyclopedia article Database Overview and its
companion articles DAO and MFC and ODBC and MFC. The article DAO: Writing
a Database Application might be useful as well, even if you are using the ODBC
classes.

Which Classes: DAO or ODBC?

110

Whether you use the DAO classes or the ODBC classes depends on your needs.
Generally speaking, the DAO classes provide more extensive support than the ODBC
classes, including the ability to manipulate the structure of your databases directly
from the MFC classes rather than calling the underlying implementation (DAO or
ODBC).

However, if you’re working entirely with ODBC data sources, especially in
client/server situations, the ODBC classes might be more appropriate for your needs.

MFC still supports the ODBC classes, which are designed for a different set of needs,
but you can also access ODBC data sources via the DAO classes in addition to taking
advantage of the Microsoft Jet database engine. If you don’t require the extra
functionality of the DAO classes, you can continue to use the ODBC classes.

Chapter 7 Working with Databases

The two sets of classes present a sufficiently similar interface that porting from one to
the other is relatively easy.

Note The MFC DAO classes and DAO require additional space on your hard disk.

For additional guidelines, see the encyclopedia article Database Overview.

Installing MFC Database Support

‘When you run Setup for Visual C++, you can choose to install database components
or not.

If you do choose database components, you can select any ODBC drivers you need.
Note that you might need ODBC drivers regardless of whether you plan to use DAO
or ODBC, if you are working with ODBC data sources. If you select any drivers, they
are installed on your hard disk, along with the ODBC driver manager and the ODBC
administrator program.

In addition, Setup installs necessary components from the DAO and ODBC software
development kits (SDKs).

ODBC Drivers Installed
If you select a Typical Installation, Setup installs the following ODBC drivers:

¢ Microsoft FoxPro

¢ Microsoft Access

o dBASE

¢ Microsoft SQL Server

If you select a Custom Installation, you can also install the following additional
ODBC drivers:

o Text files
e Paradox

e Microsoft Excel

See the article ODBC Driver List for a list of ODBC drivers included in this version
of Visual C++ and for information about obtaining additional drivers.

DAO SDK Components Installed

The following components of the DAO SDK are installed by default:
¢ Microsoft Jet (3.x MDB)

e Microsoft Jet (1.x, 2.x)

o All of the database formats listed under Databases You Can Access with DAO in
the article Database Overview

111

Programming with MFC

112

If you wish to install other DAO SDK components, such as the DAO SDK C++
classes, example files, or the Windows Help version of the DAO Help file, run
SETUP.EXE from the \DAOSDK directory of the Visual C++ CD-ROM disc.

ODBC SDK Components Installed

Visual C++ version 4.0 includes many key ODBC components, including the
required header files, libraries, DLLs, and tools. These include the ODBC
Administrator control panel application, which you use to configure ODBC data
sources, and the ODBC Driver Manager. Also included are ODBC drivers for many
popular DBMSs, as listed in ODBC Drivers Installed.

Visual C++ also includes the full ODBC SDK, which gives you additional
information and tools for writing and testing ODBC drivers.

CHAPTER 8

Using the General-Purpose Classes

This chapter summarizes the use of the general-purpose classes in the Microsoft
Foundation Class Library (MFC). These classes provide useful services, including:

e Services provided by deriving your classes from class CObject
¢ File input/output with class CFile

¢ Collection classes for storing aggregate data

e Strings

¢ Time and date

e Diagnostic services

o Exception handling

CObject Services

The CObject base class provides the following services to objects of its derived
classes:

e Object diagnostics
e Run-time class information

¢ Object persistence

Some of these services are available only if you use certain macros in derived class
declarations and implementations. To make use of the services listed above and
explained in the following topics, you should seriously consider deriving most of your
nontrivial classes from CObject. Many of the MFC classes are so derived, including
almost all of the application architecture classes that make up the framework. (The
various categories of classes that make up the framework are listed in the MFC
hierarchy diagrams.)

13

Programming with MFC

Object Diagnostics

MFC provides many diagnostic features. Some object diagnostics include diagnostic
dump context and supplied by the CObject class. For global diagnostic features, see
Memory Diagnostics.

Diagnostic Dump Context

The CDumpContext class works in conjunction with the Dump member function of
the CObject class to provide formatted diagnostic printing of internal object data.
CDumpContext provides an insertion (<<) operator that accepts, among other types,
CObject pointers; standard types, such as BYTE and WORD); and CString and
CTime objects.

A predefined CDumpContext object, afxDump, is available in the Debug version of
the Microsoft Foundation classes (#define_DEBUG is required in your source code).
The afxDump object allows you to send CDumpContext information to the debugger
output window or to a debug terminal. For more information about afxDump, see
Macros and Globals in the Class Library Reference, and Technical Note 12 under
MEFC Technical Notes in Books Online.

Object Validity Checking

You override the base class AssertValid member function in your derived class to
perform a specific test of your object’s internal consistency. Call the
ASSERT_VALID macro, passing it a pointer to any CObject, to call that object’s
AssertValid function. The implementation of an AssertValid function usually
includes calls to the ASSERT macro. For more information about AssertValid, see
the article Diagnostics.

Run-Time Class Information

114

MFC offers the developer some optional features that make it possible to do run-time
type checking,.

Note For related information on Run-Time Type Information support in the C++ language, see
Run-Time Type Information in the C++ Language Reference. However, MFC does not use the
C++ run-time type information (RTTI) mechanism.

If you derive a class from CObject and include one of three macros
(IMPLEMENT _DYNAMIC, IMPLEMENT DYNCREATE, or
IMPLEMENT_SERIAL), you can use member functions to:

e Access the class name at run time.

o Safely cast a generic CObject pointer to a derived class pointer.

Run-time class information is particularly valuable in the Debug environment
because it can be used to detect incorrect casts and to produce object dumps with class

Chapter 8 Using the General-Purpose Classes

names included. For more information, see the article CObject Class: Accessing Run-
Time Class Information.

Note To access run-time type information, you must use the DECLARE_DYNAMIC,
DECLARE_DYNCREATE, or DECLARE_SERIAL macro in your class declaration, and you
must use the corresponding IMPLEMENT_DYNAMIC, IMPLEMENT_DYNCREATE, or
IMPLEMENT_SERIAL macro in your class implementation.

Run-time class information is, of course, available in the Release environment.
During serialization, the run-time class information is used to store the object’s type
with the object data.

Run-time class testing is not meant to be a substitute for using virtual functions added
in a common base class. Use the run-time type information only when virtual
functions are not appropriate.

Object Persistence

Class CObject, in conjunction with class CArchive, supports “object persistence”
through a process called serialization. Object persistence allows you to save a
complex network of objects in a permanent binary form (usually disk storage) that
persists after those objects are deleted from memory. Later you can load the objects
from persistent storage and reconstruct them in memory. Loading and saving
serializable data is mediated by an “archive” object of class CArchive.

To create your own serializable CObject-derived class, you must use the
DECLARE_SERIAL macro in the class declaration, and you must use the
corresponding IMPLEMENT_SERIAL macro in the class implementation. If you
have added new data members in your derived class, you must override the base class
Serialize member function to store object data to the archive object and load object
data from it. Once you have a serializable class, you can serialize objects of that class
to and from a file via a CArchive object.

A CArchive object provides a type-safe buffering mechanism for writing or reading
serializable objects to or from a CFile object. Usually the CFile object represents a
disk file; however, it can be also be a memory file (CMemFile object), perhaps
representing the Clipboard. A given CArchive object either stores (writes, serializes)
data or loads (reads, deserializes) data, but never both. Thus two successively created
CArchive objects are required to serialize data to a file and then deserialize it back
from the file. The life of a CArchive object is limited to one pass—either writing an
object to a file or reading an object from a file.

When storing an object to a file, an archive attaches the CRuntimeClass name to the
object. Then, when another archive loads the object from a file, the archive uses the
CRuntimeClass name of the object to dynamically reconstruct the object in memory.
A given object may be referenced more than once as it is written to the file by the
storing archive. The loading archive, however, will reconstruct the object only once.
The details about how an archive attaches CRuntimeClass information to objects and

115

Programming with MFC

reconstructs objects, taking into account possible multiple references, are described in
Technical Note 2 under MFC Technical Notes in Books Online.

As you serialize data to an archive, the archive accumulates the data until its buffer is
full. When the buffer is full, the archive then writes its buffer to the CFile object
pointed to by the CArchive object. Similarly, as you read data from an archive, the
archive reads data from the file to its buffer, and then from the buffer to your
deserialized object. This buffering reduces the number of times a hard disk is
physically read, thus improving your application’s performance.

There are two ways to create a CArchive object. The most common way, and the
easiest, is to let the framework create one for your document on behalf of the Save,
Save As, and Open commands on the File menu. The other way is to explicitly create
the CArchive object yourself.

To let the framework create the CArchive object for your document, simply
implement the document’s Serialize function, which writes and reads to and from
the archive. You also have to implement Serialize for any CObject-derived objects
that the document’s Serialize function in turn serializes directly or indirectly.

There are other occasions besides serializing a document via the framework when
you may need a CArchive object. For example, you might want to serialize data to
and from the Clipboard, represented by a CMemFile object. Or, you might want to
develop a user interface for saving files that is different from the one offered by the
framework. In this case, you can explicitly create a CArchive object. You do this the
same way the framework does. For more detailed information, see the articles Files
and Serialization (Object Persistence).

The File Classes

116

The CFile family of classes provides a C++ programming interface to files. The
CFile class itself gives access to low-level binary files, and the CStdioFile class gives
access to buffered “standard I/O” files. CStdioFile files are often processed in “text
mode,” which means that newline characters are converted to carriage return—
linefeed pairs on output.

New CFile and its derived classes now make the filename available. See the
GetFileName member function.

CMemFile supports “in-memory files.” The files behave like disk files except that
bytes are stored in RAM. An in-memory file is a useful means of transferring raw
bytes or serialized objects between independent processes.

Because CFile is the base class for all file classes, it provides a polymorphic
programming interface. If a CStdioFile file is opened, for example, its object pointer
can be used by the virtual Read and Write member functions defined for the CFile
class. The CDumpContext and CArchive classes, described previously, depend on
the CFile class for input and output. For more information, see the article Files.

Chapter 8 Using the General-Purpose Classes

The Collection Classes

MEFC contains a number of ready-to-use lists, arrays, and maps that are referred to as
“collection classes.” A collection is a very useful programming idiom for holding and
processing groups of class objects or groups of standard types. A collection object
appears as a single object. Class member functions can operate on all elements of the
collection.

MEC supplies two kinds of collection classes:

¢ Collection templates

¢ Nontemplate collections

The collection template classes are based on C++ templates, but the original
collection classes released with MFC version 1.0—not based on templates—are still
available.

Most collections can be archived or sent to a dump context. The Dump and Serialize
member functions for CObject pointer collections call the corresponding functions
for each of their elements. Some collections cannot be archived—for example,
pointer collections.

Note The collection classes CObArray, CObList, CMapStringToOb, and CMapWordToOb
accept CObject pointer elements and thus are useful for storing collections of objects of
CObject-derived classes. If such a collection is archived or sent to a diagnostic dump context,
then the element objects are automatically archived or dumped as well. For more about
collection classes, including details about which classes can be serialized and dumped, see
the article Collections: Choosing a Collection Class.

When you program with the application framework, the collection classes will be
especially useful for implementing data structures in your document class. For an
example, see the document implementation in the Scribble tutorial contained in
Tutorials.

Lists

In addition to “list” class templates, MFC supplies predefined list classes for CString
objects, CObject pointers, and void pointers. A list is an ordered grouping of
elements. New elements can be added at the head or tail of the list, or before or after
a specified element. The list can be traversed in forward or reverse sequence, and
elements can be retrieved or removed during the traversal.

Arrays

In addition to “array” class templates, MFC supplies predefined array classes for
bytes, words, doublewords, CString objects, CObject pointers, and void pointers. An
array implemented this way is a dynamically sized grouping of elements that is
directly accessible through a zero-based integer subscript. The subscript ([]) operator

117

Programming with MFC

can be used to set or retrieve array elements. If an element above the current array
bound is to be set, you can specify whether the array is to grow automatically. When
growing is not required, array collection access is as fast as standard C array access.

Maps

A “map” is a dictionary that maps keys to values. In addition to map class templates,
predefined map classes support CString objects, words, CObject pointers, and void
pointers. Consider the CMapWordTeOb class as an example. A WORD variable is
used as a key to find the corresponding CObject pointer. Duplicate key values are not
allowed. A key-pointer pair can be inserted only if the key is not already contained in
the map. Key lookups are fast because they rely on a hashing technique.

The CString Class

The CString class supports dynamic character strings. CString objects can grow and
shrink automatically, and they can be serialized. Member functions and overloaded
operators add Basic-like string-processing capability. These features make CString
objects easier to use than C-style fixed-length character arrays. Conversion functions
allow CString objects to be used interchangeably with C-style strings. Thus a
CString object can be passed to a function that expects a pointer to a constant string
(const char*) parameter.

As of MFC version 4.0, CString uses reference counting for efficient return-by-value
and pass-by-value. For more information, see the article Strings.

CString is enabled for both multibyte character sets (MBCS, also known as double-
byte character sets, DBCS) and Unicode. CString now also supplies functionality
similar to sprintf with the Format member function and supports reducing string
storage overhead with the FreeExtra member function.

Note Class CString is not derived from class CObject.

Like other Microsoft Foundation classes, the CString class allocates memory on the
heap. You must be sure that CString destructors are called at appropriate times to
free unneeded memory. There is no automatic “garbage collection” as there is in
Basic. For more information about CString, see the Class Library Reference and the
article Strings.

The CTime and CTimeSpan Classes

118

In addition to the CTime and CTimeSpan classes, which have been part of MFC
from version 1.0, as of version 4.0 you can also use class COleDateTime. You will
probably want to use the new class for most purposes.

The CTime class encapsulates the run-time time_t data type. Thus it represents
absolute time values in the range 1970 to 2036, approximately. There are member

Chapter 8 Using the General-Purpose Classes

functions that convert a time value to years, months, days, hours, minutes, and
seconds. The class has overloaded insertion and extraction operators for archiving
and for diagnostic dumping. For Win32 support, there are also CTime constructors
based on the Win32 SYSTEMTIME and FILETIME structures. The
SYSTEMTIME-based constructor is the most convenient to use with Win32.

The CTimeSpan class extends time_t by representing relative time values. When one
CTime object is subtracted from another one, the result is a CTimeSpan object. A
CTimeSpan object can be added to or subtracted from a CTime object. A
CTimeSpan value is limited to the range of + 68 years, approximately. For more
information about CTime and CTimeSpan, see the Class Library Reference and the
article Date and Time.

Note Classes CTime and CTimeSpan are not derived from class CObject.

Diagnostic Services in MFC

The Microsoft Foundation Class Library provides diagnostic services that make it
easier to debug your programs. These services include macros and global functions
that allow you to trace your program’s memory allocations, dump the contents of
objects during run time, and print debugging messages during run time. Most of
these services require the Debug version of the library and thus should not be used in
released applications. For a detailed description of the functions and macros
available, see the article Diagnostics and the overview of Macros and Globals in the
Class Library Reference.

Diagnostics for Memory

Many applications use the C++ new operator to allocate memory on the heap. MFC
provides a special Debug version of new that inserts extra control bytes in allocated
memory blocks. These control bytes, together with the run-time class information that
results from CObject derivation, allow you to analyze memory-allocation statistics
and detect memory-block bounds violations. A memory dump can include the source
filename and the line number of the allocated memory and, in the case of objects
from CObject-derived classes, the name of the class and the output from its Dump
function. For more information, see Memory Diagnostics in the article Diagnostics:
Detecting Memory Leaks.

Important As of MFC version 4.0, MFC uses the same debug heap as the C run-time library.
For more information, see Chapter 4, Debug Version of the C Run-Time Library in the Run-
Time Library Reference.

Tip You can activate the debug version of new on a per-CPP file basis by #defining
DEBUG_NEW.

119

Programming with MFC

Diagnostic Output

Many programmers want diagnostic output statements in their programs, particularly
during the early stages of development. The TRACE statement acts like printf
except that the TRACE code is not generated by the compiler with the Release
version of the library. In the Windows environment, debugging output goes to the
debugger if it is present.

Important For important information on using TRACE, see the Macros and Globals section of
the Class Library Reference and Technical Note 7 under MFC Technical Notes in Books
Online.

You can use the afxDump dump context object for stream-style dumping of standard
types as well as MFC objects. If you use afxDump, be sure to bracket references with
#ifdef DEBUG and #endif statements. For more information on afxDump, see the
article Diagnostics: Dumping Object Contents.

Assertions

In the Debug environment, the ASSERT macro evaluates a specified condition. If the
condition is false, the macro displays a message in a message box that gives the
source filename and the line number and then terminates the program. In the Release
environment, the ASSERT statement has no effect.

VERIFY, a companion macro, evaluates the condition in both the Debug and
Release environments. It prints and terminates only in the Debug environment.

Classes derived from CObject, directly or indirectly, can also override the
AssertValid member function to test the internal validity of objects of the class. For
an example, see Object Validity Checking.

Note As of version 4.0, MFC uses the C run-time library for assertions, which
results in some changes to assertion message formatting. Assertion message boxes
now include the application ((EXE) name, the filename, and the line number.

Handling Exceptions

120

MFC uses C++ exceptions as proposed by the ANSI C++ standard. The MFC
exception macros used in previous versions of MFC are provided for backward
compatibility with existing MFC applications. You can choose to use either C++
exceptions or the original MFC exception mechanism. These macros allow you to
deal with abnormal conditions that are outside the program’s control. Abnormal
conditions include low memory, I/O errors, and attempted use of an unsupported
feature. They do not include programming errors or normally expected conditions
such as an end-of-file condition. In general, you can consider an uncaught exception
to be a bug that remains in your program after shipping.

Chapter 8 Using the General-Purpose Classes

In most cases, you should use the C++ exception mechanism rather than MFC’s
original macro-based mechanism. If you are programming for Windows NT, you
should use C++ exceptions instead of Windows NT structured exceptions (SEH).

Exception handling in MFC relies on “exception objects” and uses standard C++
exceptions. The process starts with the interruption of normal program execution in
response to a throw expression. Execution resumes at the appropriate catch
statement leading into code that presumably deals with the abnormal condition.
Exception objects can include standard C++ data types as well as objects of classes
derived from CException. CException-based exception objects differentiate the
various kinds of exceptions and are used for communication.

Note MFC now supports C++ exceptions and the try, catch, and throw keywords. For more
information, see the article Exceptions.

This exception-handling scheme eliminates the need for extensive error testing after
every library function call. If, for example, you enclose your entire program in an
exception-handling block, then you don’t have to test for low memory after each
statement that contains the new operator.

If you don’t provide try and catch exception-processing code in your classes,
exceptions will be caught in the Microsoft Foundation code. This results in
termination of the program through the global function AfxTerminate, which
normally calls the run-time function abort. However, if you use the
AfxSetTerminate function, the effect of AfxTerminate is changed. When
programming for Windows, it is important to remember that exceptions cannot cross
the boundary of a “callback.” In other words, if an exception occurs within the scope
of a message or command handler, it must be caught there, before the next message is
processed. If you do not catch an exception, the CWinApp member function
ProcessWndProcException is called as a last resort. This function displays an error
message and then continues processing. You can customize the default handling of
uncaught exceptions by overriding CWinApp::ProcessWndProcException.

For exception-processing examples and a more detailed explanation of error
categories, see the article Exceptions. For a detailed description of the MFC-specific
functions and macros available, see the Macros and Globals section in the Class
Library Reference. For a general discussion of C++ exception handling, see
Chapter 7, C++ Exception Handling, in Programming Techniques.

121

PART 2

MFC Encyclopedia

Main Articles:

Using the Encyclopedia 125
AppWizard 128

ClassWizard 150

Clipboard 175

CObject Class 180

Collections 186

Database Overview 334

Date and Time 348

Debugging 353

Diagnostics 357

Dynamic-Link Libraries (DLLs) 377
Exceptions 402

Files 433

Help 437

Library Versions 458

Memory Management 466
Message Map 477

MFC 486

OLE Controls 550

OLE Overview 623

Printing 629

Property Sheets 649
Serialization (Object Persistence) 729
Strings 756

Toolbars 770

Tools for MEC Programming 778

Using the Encyclopedia

Using the Encyclopedia

The programming articles show you how to accomplish specific tasks and explain
important topics in more detail than is possible in the reference or the tutorial. The
articles are available both online and in print. Online, they are linked with the
reference and with each other, to make browsing easy and to let you find your own
path through the topics. In print, the articles are cross-referenced in the index.

This article explains:
e How the articles are structured

e What the articles contain
e Where to begin

How the Articles Are Structured
The enyclopedia is hierarchical, with the following structure:
o At the top level, there are main articles arranged in alphabetical order.

o Below most of the main articles are clusters of related “child” articles. Child
articles are arranged logically—following their main article—rather than
alphabetically.

The title of each child article begins with the name of its parent main article so you
can always find your way back. For example, the article ClassWizard: OLE Support
is a child article of a main ClassWizard article.

Articles also have the following helpful navigation features:
¢ Each main article usually ends with a list of its child articles.
Online, these are “jumps” for easy access to the articles.

e Most articles contain numerous cross-references to other articles and to related
information in the reference.

¢ Books Online provides scrollbars and browse buttons so you can easily read an
article or group of articles straight through.

What the Articles Contain

Article content is of two types:

e Architectural information

e Procedural information

Architectural articles explain how some part of the class library works. Each article
covers a conceptual topic, such as “how documents and views are created,” “how

125

Using the Encyclopedia

OLE servers and containers interact,” or “how database updates work.” Conceptual
articles give you a foundation as you work out your own solution using the many
facilities of the Microsoft Foundation Class Library.

Procedural articles detail the steps for performing a task. Each article explains
starting conditions, steps to follow, and the results you can expect at the end.
Procedural articles mark out the “beaten path”—the common tasks that most
programmers will need to perform. Most such tasks are of a beginning or
intermediate level of difficulty.

Where to Begin

If you are primarily interested in:

This topic... Begin with the article...

Database topics, including both Open Database Overview (under “D”)
Database Connectivity (ODBC) and Data

Access Objects (DAO)

Debugging and diagnostics Debugging

MFC in general, 32-bit programming, or MFC

porting to 32 bit

OLE topics OLE Overview

OLE controls OLE Controls

Windows Sockets programming Windows Sockets in MFC: Overview

For other MFC programming topics, look up the topic you are interested in. For
example, if you are interested in how to use ClassWizard, begin with the article titled
ClassWizard.

126

Activation

Activation

This article explains the role of “activation” in the visual editing of OLE items. After
a user has embedded an OLE item in a container document, it may need to be used.
To do this, the user double-clicks the item, which activates that item. The most
frequent activity for activation is editing. Many current OLE items, when activated
for editing, cause the menus and toolbars in the current frame window to change to
reflect those belonging to the server application that created this item. This behavior,
known as “in-place activation,” allows the user to edit any embedded item in a
compound document without leaving the container document’s window.

It is also possible to edit embedded OLE items in a separate window. This will
happen if either the container or server application does not support in-place
activation. In this case, when the user double-clicks an embedded item, the server
application is launched in a separate window and the embedded item appears as its
own document. The user edits the item in this window. When editing is complete, the
user closes the server application and returns to the container application.

As an alternative, the user can choose “open editing” with the <object> Open
command on the Edit menu. This opens the object in a separate window.

Note Editing embedded items in a separate window is standard behavior in version 1 of OLE,
and some OLE applications may support only this style of editing.

In-place activation promotes a “document-centric” approach to document creation.
The user can treat a compound document as a single entity, working on it without
switching between applications. However, in-place activation is used only for
embedded items, not for linked items: they must be edited in a separate window. This
is because a linked item is actually stored in a different place. The editing of a linked
item takes place within the actual context of the data, that is where the data is stored.
Editing a linked item in a separate window reminds the user that the data belongs to
another document.

See Also Containers, Servers

Activation: Verbs

This article explains the role primary and secondary verbs play in OLE activation.

Usually, double-clicking an embedded item allows the user to edit it. However, certain
items don’t behave this way. For example, double-clicking an item created with the
Sound Recorder application does not open the server in a separate window; instead, it
plays the sound.

The reason for this behavior difference is that Sound Recorder items have a different
“primary verb.” The primary verb is the action performed when the user double-
clicks an OLE item. For most types of OLE items, the primary verb is Edit, which

127

Administrator, ODBC

launches the server that created the item. For some types of items, such as Sound
Recorder items, the primary verb is Play.

Many types of OLE items support only one verb, and Edit is the most common one.
However, some types of items support multiple verbs. For example, Sound Recorder
items support Edit as a secondary verb.

Another verb used frequently is Open. The Open verb is identical to Edit, except the
server application is launched in a separate window. This verb should be used when
either the container application or the server application does not support in-place
activation.

Any verbs other than the primary verb must be invoked through a submenu command
when the item is selected. This submenu contains all the verbs supported by the item
and is usually reached by the typename Object command on the Edit menu. For
information on the typename Object command, see the article Menus and Resources:
Container Additions.

The verbs a server application supports are listed in the Windows registration
database. If your server application is written with the Microsoft Foundation Class
Library, it will automatically register all verbs when the server is started. If not, you
should register them during the server application’s initialization phase. For more
information, see the article Registration.

See Also Activation, Containers, Servers

Administrator, ODBC

See the articles Data Source: Managing Connections (ODBC) and ODBC
Administrator.

Application Framework

The Microsoft Foundation Class Library (MFC). For more information, see the article
MFC

AppWizard lets you configure the skeleton of a new C++ application that uses the
Microsoft Foundation Class Library (MFC).

To run AppWizard, choose the New command from the File menu in Visual C++. In
the New dialog box, select the file type “Project Workspace.” In the New Project
Workspace dialog box, choose MFC AppWizard (exe) in the Type box. (If you’'re
building an MFC extension DLL, choose MFC AppWizard (dll) instead.) You can
also use AppWizard to insert a new project within your project workspace. From the
Insert menu, choose Project. Then select one of the AppWizard types from the Insert
Project dialog box.

128

AppWizard

For general information about using AppWizard, see Chapter 1, Creating
Applications Using AppWizard in the Visual C++ User’s Guide.

Custom AppWizards

As of Visual C++ version 4.0, you can build your own custom versions of
AppWizard. This lets you create wizards specialized to create the features you need.
For details, see Creating Custom AppWizards in Chapter 25 of the Visual C++
User’s Guide.

AppWizard Features

AppWizard lets you configure the skeleton application with the following options:

e Specify a Visual C++ project name and directory.

e Specify a project type. You can create a project for an executable application
(.EXE) or for a dynamic link library (.DLL).

AppWizard supports the new DLL model in MFC, and you can create a regular
DLL or an MFC extension DLL. Your regular DLL can use MFC either statically
or shared. See the article Dynamic-Link Libraries (DLLs).

e Specify an application type: single document interface (SDI), multiple document
interface (MDI), or dialog-based. The dialog-based option lets you easily use a
dialog box as your application’s user interface.

e Specify a language (locale) for your resources. The default is U.S. English.

New Feature
e Specify database options, either ODBC-based or DAO-based. You can:

¢ Specify minimal support by including the correct header files and link libraries,
or you can derive your view class from CRecordView (ODBC) or
CDaoRecordView (DAO) for a form-based application.

e Provide a user interface for opening and saving disk files in addition to
accessing a database from the same application.

e Specify a data source to connect to and which tables you want to access.

¢ Specify OLE options: your application can be a container, a mini-server, a full
server, or both a container and a server, and it can have OLE Automation support.

Tip To get an OLE in-proc server, choose OLE Automation support for your DLL project
(which must be a regular DLL; it can link statically or dynamically to MFC). Automating an
MFC extension DLL mainly provides only an .ODL file.

New Feature
e Specify support for OLE compound files.

New Feature
o Specify support for OLE controls. See the article OLE Control Containers:
Manually Enabling OLE Control Containment.

129

AppWizard

130

Specify whether you want:

¢ A toolbar or a status bar. By default, the toolbar is an MFC “dockable” toolbar,
a new feature in MFC version 3.0.

* An About dialog box (in dialog-based applications).
¢ Support for printing and print preview.

¢ Support for context-sensitive help. This support has been updated for Windows
95.

¢ Support for 3D controls.

¢ Helpful source-file comments to guide where you add your own code.

New Feature

Specify whether you want support for Windows Open System Architecture
(WOSA) components: MAPI or Windows Sockets. Windows Sockets and OLE
Automation are available in DLLs as well as executable applications.

Specify which styles and captions you want for the main frame and child window.
Specify document template strings.
Specify whether you want splitter window support.

Specify the number of files listed in the most-recently-used (MRU) file list on the
File menu.

Specify whether you want to link with the MFC libraries statically or dynamically.
Linking dynamically with AFXDLL (MFC in a DLL) reduces the size of your
executable file and lets several applications share a single copy of MFC at run
time. By default, AppWizard provides the dynamic linking support.

Specify the names of your application’s classes and what class you derive your
view class from. New view classes are available, including CTreeView,
CListView, CRichEditView, and CDaoRecordView.

Tip To select CRichEditView, your application must be an OLE container. If you didn't
select the Container option, or Both Container and Server, on the OLE options page in
AppWizard, the wizard makes that change for you when you select CRichEditView as your
base view class.

For a description of the most commonly used AppWizard features, see Chapter 1,
Creating Applications Using AppWizard, in the Visual C++ User’s Guide.

The following articles explain other aspects of using AppWizard, including database
and OLE support:

AppWizard: Files Created
AppWizard: Database Support
AppWizard: OLE Support

AppWizard

AppWizard: Files Created

This article describes the files that AppWizard creates for you, depending on which
options you’ve chosen.

The article first describes the core files common to all AppWizard-created
applications and then describes files that are added when you select toolbar and Help
support. Topics include:

¢ File and class naming conventions

¢ Standard AppWizard files

e Precompiled header files

¢ Context-sensitive help files

o AppWizard files added by options

Tip You'll undoubtedly want to examine the source code files you created. To orient you,
AppWizard also creates a text file, README.TXT, in your new application directory. This file

explains the contents and uses of the other new files created by AppWizard for your
application, reflecting your option choices.

File and Class Naming Conventions

In the rest of this article, filenames and class names that AppWizard creates based on
the project name you supply are shown as:

PROJNAMExxx.eee
CProjnameXxx

where xxx is the word View, Doc, Set, and so on, and eee is the filename extension.
AppWizard no longer truncates the project name, so you get whatever you entered as
a project name in full. Support for long filenames in Windows 95 and Windows NT
eliminates the need for truncated names.

Standard AppWizard Files

The following categories of standard files created by AppWizard are described in this
article:

e Project files and makefiles
e Application source and header files

e Resource files

Other files created include:
¢ Precompiled header files
¢ Context-sensitive help files
e AppWizard files added by options
131

AppWizard

132

Project Files and Makefiles
PRJNAME MAK This is the project file for your MFC project. It is also an
NMAKE-compatible file.

PRINAME.CLW This file contains information used by ClassWizard to edit existing
classes or add new classes. ClassWizard also uses this file to store information
needed to create and edit message maps and dialog data maps, and to create
prototype member functions.

Application Source and Header Files

Depending on the type of application—single document, multiple document, or
dialog-based— AppWizard creates some of the following application source and
header files:

PRJNAME.H This is the main include file for the application. It contains all global
symbols and #include directives for other header files.

PRINAME.CPP This file is the main application source file. It creates one object of
the class CPrjnameApp (which is derived from CWinApp) and overrides the
InitInstance member function.

CPrjnameApp::InitInstance does several things. It registers document templates,
which serve as a connection between documents and views, creates a main frame
window, and creates an empty document (or opens a document if one is specified
as a command-line argument to the application).

IPFRAME.CPP, IPFRAME.H These files are created if the Mini-Server or Full-
Server option is selected in AppWizard’s OLE Options page (step 3 of 6). The files
derive and implement the in-place frame window class, named CInPlaceFrame,
used when the server is in-place activated by an OLE container application.

MAINFRM.CPP, MAINFRM.H These files derive the CMainFrame class from
either CFrameWnd (for SDI applications) or CMDIFrameWnd (for MDI
applications). The CMainFrame class handles the creation of toolbar buttons and
the status bar, if the corresponding options are selected in AppWizard’s
Application Options page (step 4 of 6).

CHILDFRM.CPP, CHILDFRM.H These files derive the CChildFrame class from

CMDIChildWnd. The CChildFrame class is used for MDI document frame
windows. These files are always created if you select the MDI option.

PROJNAMEDLG.CPP, PROJNAMEDLG.H These files are created if you choose a
dialog-based application. The files derive and implement the dialog class, named
CProjnameD1g, and include skeleton member functions to initialize a dialog and
perform dialog data exchange (DDX). Your About dialog class is also placed in
these files instead of in PROJNAME.CPP.

PROJNAMEDOC.CPP, PROINAMEDOC.H These files derive and implement the
document class, named CProjnameDoc, and include skeleton member functions to

AppWizard

initialize a document, serialize (save and load) a document, and implement
debugging diagnostics.

PROJNAMEVIEW.CPP, PROJINAMEVIEW.H These files derive and implement the
view class, named CProjnameView, that is used to display and print the document
data. The CProjnameView class is derived from CEditView, CFormView,
CRecordView, CDaoRecordView, CTreeView, CListView, CRichEditView,
CScrollView, or CView and has skeleton member functions to draw the view and
implement debugging diagnostics. If you have enabled support for printing,
message-map entries are added for print, print setup, and print preview command
messages. These entries call the corresponding member functions in the base view
class.

Resource Files
AppWizard creates a number of resource-related files. If the project is for a DLL, the
wizard also creates a .DEF file, which is available for your list of exports.

PROJNAME.RC, RESOURCE.H This is the resource file for the project and its
header file. The resource file contains the default menu definition and accelerator
and string tables for a generic MFC application. It also specifies a default About
box and an icon file (RES\PROJNAME.ICO). The resource file includes the file
AFXRES.RC for standard Microsoft Foundation class resources. If toolbar support
has been specified as an option, it also specifies the toolbar bitmap file
(RES\TOOLBAR.EPS).

RES\PROJNAME.ICO This is the icon file for the generic MFC application. This
icon appears when the application is minimized and is also used in the About box.

RES\TOOLBAR.BMP This bitmap file is used to create tiled images for the toolbar.
The initial toolbar and status bar are constructed in the CMainFrame class.

Precompiled Header Files

STDAFX.CPP, STDAFX.H These files are used to build a precompiled header file
PROJNAME PCH and a precompiled types file STDAFX.OBJ.

Context-Sensitive Help Files
MAKEHELPBAT This batch file can be used to build the Help file for your
application.

PROJNAME HPJ This is the Help project file used by the help compiler to create
your application’s help file.

HLPAFXCORE.RTF This is the template help file for document-based (MDI/SDI)
applications.

HLPAFXPRINT.RTF This file, created if printing support is selected (which it is by
default), describes the printing commands and dialog boxes.

133

AppWizard

HLP\PROJNAME.CNT This file provides the structure for the Contents window in
Windows Help.

Other .RTF files are created if you choose OLE or database options. See
README.TXT in your project directory for a description of these files.

AppWizard Files Added by Options

Most of the options you can choose in AppWizard use the standard files to implement
their features. This section describes additional nonstandard files created to support
certain options.

Note For information about the files created when you choose database options, see the
article AppWizard: Database Source Files and Resources. For information about the files
created when you choose OLE options, see the article describing the option. For example, for
files related to an OLE server application, see the articles on OLE servers.

PROJNAME.ODL This file is created if you have selected OLE Automation support.
You can use this file as input to the Make Type Library utility, which creates a
corresponding type library (.TLB) file.

PROJNAME.REG This file is created in two cases. (1) You have selected any OLE
server option or OLE Automation option. (2) You have selected a document file
extension (one of the options available in the Advanced Options dialog box). The
file demonstrates the kind of registration settings the framework will set for you.

RESNTOOLBAR.BMP This file is created only if you have chosen any OLE server
support and have also chosen the Dockable Toolbar option. The file contains tiled
images for the toolbar when the server application is in-place activated inside a
container application. The file is similar to the standard RES\TOOLBAR.BMP
except that many nonserver commands are removed.

See Also AppWizard: Database Source Files and Resources

AppWizard: Database Support

134

When you set options for your new skeleton application in AppWizard, you can
specify database options in addition to the general AppWizard options. You can set
database options from AppWizard’s Database Options page (step 2 of 6) for a
document-based application (MDI/SDI). This article explains the database options
you can set for:

¢ Open Database Connectivity (ODBC)
e Data Access Objects (DAO)

DAO support is new for MFC version 4.0. For information on both ODBC and DAO
support, see the article Database Overview.

AppWizard

Figure 1 shows the AppWizard Database options page.
Figure 1. AppWizard’s Database Options

Important If you are using the MFC ODBC classes, or if you are using ODBC data sources
through DAO, you must have the Microsoft Open Database Connectivity (ODBC) software
installed on your machine with at least one configured data source and the appropriate ODBC
driver for that data source in order to use the database classes. Visual C++ Setup installs the
ODBC software, including the drivers you select.

If you want database support in your application, use the following procedure. The
procedure assumes you have read the introductory material on AppWizard in Chapter
1, Creating Applications Using AppWizard, in the Visual C++ User’s Guide.

» To create an application with database support

1 Create an MFC AppWizard project.

Tip You might want to consider creating a single document interface (SDI) application. A
data-entry application, for example, probably doesn't require more than one view of the
database.

2 On AppWizard’s Database Options page (step 2 of 6), choose your database
support option. The options are described in the article AppWizard: Database
Options.

3 If you chose either A Database View, Without File Support or Both a Database
View and File Support in step 2 of this procedure, a Data Source button is enabled.
Choose Data Source.

If you chose Only Include Header Files, choose Next and continue with step 6 of
this procedure. You will have to create your recordset classes later with
ClassWizard.

4 In the Database Options dialog box, select either ODBC or DAO.

135

AppWizard

If you choose ODBC in step 4 of this procedure, complete your choices as
described in Choosing ODBC Options. If you choose DAO in step 4 of this
procedure, complete your choices as described in Choosing DAO Options.

5 After completing the actions described in step 4 of this procedure, choose Next
and complete your nondatabase AppWizard selections. When you finish, choose
the Finish button, then OK.

AppWizard creates files for your project.

Tip In the procedures Choosing ODBC Options and Choosing DAO Options, you can select
multiple tables in the Select Database Tables dialog box.

Choosing ODBC Options

Follow the steps listed here to complete your ODBC database selections in
AppWizard. Then return to step 5 in the procedure To Create An Application With
Database Support.

» To complete your ODBC options

1 In the Database Options dialog box, after selecting ODBC, select an ODBC data
source from the drop-down list box, which contains the names of data sources
already registered on your machine through the ODBC Administrator tool
described in the article ODBC Administrator.

2 Select other available options in the Database Options dialog box.

Some options may not be available. For explanations of these options, click the
Help button in the dialog box.

3 Click OK.

4 In the Select Database Tables dialog box, select the names of one or more tables in
the data source whose columns you want to bind to your recordset.

For some ODBC drivers, queries can be used as the source, but the wizards don’t
detect this.

5 Click OK.

6 Return to step 5 in the procedure To Create An Application With Database
Support.

Choosing DAO Options

Follow these steps to complete your DAQO database selections in AppWizard. Then
return to step 5 in the procedure To Create An Application With Database Support.
» To complete your DAO options

1 In the Database Options dialog box, after selecting DAO, click the Browse button
next to the edit control to display an Open dialog box.

2 In the Open dialog box, browse for a database file to open.

136

AppWizard

3 Select other available options in the Database Options dialog box.

Some options may not be available. For explanations of these options, click the
Help button in the dialog box.

4 Click OK.

5 In the Select Database Tables dialog box, select the names of one or more tables in
your chosen database whose columns you want to bind to your recordset.

6 Click OK.

7 Return to step 5 in the procedure To Create An Application With Database
Support.

See Also AppWizard: Database Options, AppWizard: Database Source Files and
Resources, Database Overview

AppWizard: Database Options

This article describes the MFC database options available in AppWizard. These
options include:

o None

Only include header files

¢ A database view, without file support

Both a database view and file support

A record view-—derived from class CRecordView (for ODBC) or class
CDaoRecordView (for DAO)—is a form view, based on a dialog template resource,
that uses dialog data exchange (DDX) to exchange data between the view’s controls
and a CRecordset-derived object (for ODBC) or a CDaoRecordset-derived object
(for DAO). You can map the form’s controls to data members of a recordset. For
more information about record views, see the article Record Views. For more
information about recordsets, see the article Recordset (ODBC) or the article DAO
Recordset.

No Database Support

AppWizard defaults to this option (“None” in the AppWizard dialog box) and adds
no database support to your application.

Only Include Header Files

Choose this option for the minimum database support. AppWizard adds an #include
directive for the header file that defines the database classes. The file AFXDB.H (for
ODBC) and the file AFXDAO.H (for DAO) are included in STDAFX.H.

Note that if you do choose a database view with AppWizard, you will only be given
the single #include that corresponds to your choice of ODBC or DAO. Your

137

AppWizard

138

application probably won’t need access to both. When you don’t choose a database
view, however, AppWizard can’t anticipate which you prefer, so it provides both.

With this support, you can use any of the database classes, related macros and global
functions, and other items defined in the appropriate include file. AppWizard creates
no database-related classes for you except for a view class and a recordset class if you
choose one of the Database View options; you can create what you need later with
ClassWizard.

AppWizard no longer explicitly adds libraries to the link line. The libraries are
automatically included by special #pragma directives scattered throughout the MFC
header files. You don’t need to worry about library names.

A Database View, Without File Support

Choose this option when you want an application with the following characteristics:

e A view class derived from CRecordView or CDaoRecordView rather than
CView.

This view class makes your application form-based. AppWizard creates an empty
dialog template resource to which you must later add dialog controls with the
Visual C++ dialog editor.

e A class derived from CRecordset or CDaoRecordset.

The record view class contains a pointer to a recordset object based on this class.
Record view controls are mapped to recordset field data members via dialog data
exchange (DDX).

o No disk-file user interface and serialization.

A database application usually manages data record-by-record, interacting with
the database, rather than managing whole data files.

o No document-related File-menu commands.

This option also creates a menu resource whose File menu lacks document-related
commands: New, Open, Save, and Save As. Without serialization, you probably
don’t need these commands.

Note Choosing this option makes the application single document interface (SDI). Choosing
file support allows either SDI or MDI (multiple document interface).

This option creates a CDocument-derived class. In general, you’ll use this class to
store 2 CRecordset object, or a pointer to one. For more information on how to use
this document class, see the article MFC: Using Database Classes Without
Documents and Views. The article discusses various document/view configurations,
including applications with no document or view.

For more information about the files and resources AppWizard creates under this
option, see the article AppWizard: Database Source Files and Resources.

AppWizard

Both a Database View and File Support

Choose this option when you want an application with the following characteristics:

e A view class derived from CRecordView or CDaoRecordView rather than
CView.

This view class makes your application form-based. AppWizard creates an empty
dialog template resource to which you must later add dialog controls with the
Visual C++ dialog editor.

e A class derived from CRecordset or CDaoRecordset.

The record view class contains a pointer to a recordset object based on this class.
Record view controls are mapped to recordset field data members via.dialog data
exchange (DDX).

e A disk-file interface in addition to a record view on the database.

This application opens a disk file in addition to a database. The disk file might
store, for example, “style sheet” information, so the user can configure, save, and
quickly restore alternative views of the database.

The document class that AppWizard creates under this option supports serialization,
and the application includes support for document-related commands on the File
menu: New, Open, Save, and Save As. For more information on how to use this
document class, see the article MFC: Using Database Classes Without Documents
and Views.

Note For the last two options, AppWizard binds all columns of the table(s) you select to the
recordset. If you don't want all the columns, you can remove some of them later with
ClassWizard. See the article ClassWizard: Binding Recordset Fields to Table Columns.

For more details about using AppWizard, see Chapter 1, Creating Applications Using
AppWizard, in the Visual C++ User’s Guide.

The following article explains the files and resources that AppWizard creates,
depending on the database options you select:

e AppWizard: Database Source Files and Resources
See Also ClassWizard

AppWizard: Database Source Files and Resources

This article explains:

e The database-related classes and files that AppWizard creates.
e The resources that AppWizard creates.

This article applies to both the MFC ODBC classes and the MFC DAO classes.

139

AppWizard

140

For information about the files and resources that AppWizard creates besides those
for database options, see the article AppWizard: Files Created.

Database Classes and Files

The classes and files that AppWizard creates depend on which option you choose. For
details on the database options, see the article AppWizard: Database Options.

If you choose the None or Only include header files option, AppWizard creates no
special classes or files for database support.

If you choose the option A database view, without file support or the option Both a
database view and file support, AppWizard creates the following classes and files:

Classes Created by AppWizard

AppWizard creates application, frame-window, document, and view classes. The view
class is derived from CRecordView (for ODBC) or CDaoRecordView (for DAO). It
also creates a CRecordset-derived class (for ODBC) or a CDaoRecordset-derived
class (for DAO) associated with the record view class.

Class Names Assigned by AppWizard

AppWizard names the record view class and its associated recordset class as follows:

Record View Class Name AppWizard names the record view class based on the
name of your Visual C++ project, denoted here by Projname. This name has the
form “CProjnameView”. By default, the name ends in “View,” but you can change
the default name offered. If you change the default class name offered, the class is
given the name you specify.

Recordset Class Name The recordset class is named “CProjnameSet” or the base
name you gave for the project with “Set” appended. By default, the name ends in
“Set”, but you can change the default name offered. If you change the default class
name offered, the class is given the name you specify.

Filenames Created by AppWizard

As with other files created by AppWizard, the filenames for the record view class are
based on the name of your Visual C++ project. AppWizard writes the view class in
files PRIONAMEVIEW.H/.CPP. The wizard writes the recordset class in files
PROJNAMESET.H/.CPP. The project name is no longer truncated.

Database Resources

If you choose the A database view, without file Support option or the Both a database
view and file support option, AppWizard creates not only the classes described above
under Database Classes and Files, but also the following resources:

e A dialog template resource whose resource ID is IDD_PROJNAME FORM,
where PROJNAME is based on your project name.

AppWizard

e A menu resource that includes commands for moving from record to record in the
record view. AppWizard also creates command-handler functions and user-
interface update handlers in the CRecordView-derived or CDaoRecordView-
derived class for these commands.

If you choose Both a database view and file support, the menu resource includes
document-related commands on the File menu: New, Open, Save, and Save As.

If you choose A database view, without file support, the document-related File
menu commands are omitted. General commands, such as Exit, remain on the
menu.

If the application is single document interface (SDI), the menu’s resource ID is
IDR_MAINFRAME. For a multiple document interface (MDI) application,
AppWizard uses the document’s menu resource, whose ID is
IDR_DOCNAMETYPE, where DOCNAME is the document’s type string.

Note Choosing the option “A database view, without file support” makes the application
SDI. Choosing file support allows either SDI or MDI.

e A set of toolbar buttons for the navigational commands (if you choose the
Dockable Toolbar option as well as a Database Support option).

Important The dialog template resource that AppWizard creates contains only the static text
string “TODO: Place form controls on this dialog.” You must use the Visual C++ dialog editor to
delete the string and add controls that will map to your recordset data members. See the
article ClassWizard: Creating a Database Form.

See Also ClassWizard

AppWizard: OLE Support

AppWizard supports the following OLE features:
e OLE visual editing

AppWizard creates an entire project, including implementation and header files,
that supports a variety of OLE visual editing application types. These types include
different styles of container applications such as visual editing container/servers
and simple container applications. You can also create visual editing mini-servers
and full-servers. For more information on OLE options, see the article
AppWizard: Creating an OLE Visual Editing Application.

e Ability to support Automation in your classes

Check the Automation support option if you want your application to have OLE
Automation support. This means that your document class is exposed as a
programmable object that can be used by any Automation client. You can also
expose other classes you create as OLE Automation programmable objects. For
more information on Automation, see the articles ClassWizard: OLE Automation
Support, Automation Clients, and Automation Servers.

141

AppWizard

For general information about using AppWizard, see Chapter 1, Creating
Applications Using AppWizard, in the Visual C++ User’s Guide.

See Also OLE Overview

In the Class Library Reference: COleServerDoc, COleDocument,
COleServerItem, COleClientItem, COleIPFrameWnd

AppWizard: Creating an OLE Visual Editing Application

This article explains:
e The purpose of the OLE Options page.

¢ The creation of an OLE visual editing application.
¢ Classes and resources created by AppWizard.

¢ Filenames suggested by AppWizard.

The OLE Options Page

AppWizard’s OLE Options page (step 3 of 6) allows you to access the many features
of OLE that are implemented by the MFC OLE classes. These features include visual
editing, OLE Automation, OLE compound files, and OLE controls. You access these
features by choosing the visual editing options that your application will support,
creating an application of one of the following OLE visual editing types:

¢ Container

o Mini-Server

Full-Server

Both Container and Server

Creating an OLE Visual Editing Application
» To create an OLE visual editing application

1 Create a new MFC AppWizard project and specify the project name, the project
path and drive, and the name of the subdirectory for project files.

Add a subproject to your existing project. To add a subproject, choose Project from
the Insert menu. Specify the name of the subproject. It will be created in a
subdirectory named for your subproject.

2 Use the AppWizard OLE Options page (step 3 of 6).
3 Choose the form of OLE visual editing you want in your application:

¢ None: Select if you do not want visual editing support. This is the default
setting.

142

¢ Container: Select if you want your application to visually contain OLE objects.
For more information on containers, see the article Containers.

¢ Mini-Server: Select if you want your application to be visually embedded inside
an OLE container. Note that mini-servers cannot run as stand-alone
applications, and only support embedded items. For more information on
servers, see the article Servers.

o Full-Server: Select if you want your application to be visually embedded inside
an OLE container. Full-servers are able to run as stand-alone applications, and
support both linked and embedded items. For more information on servers, see
the article “Servers.”

¢ Both container and server: Select if you want your application to be both a
visual editing container and a server.

4 Repeatedly choose Next to move to the next AppWizard Options page and set
other options for your application.

5 When you have finished setting options, choose Finish. This displays your choices.

6 Click OK to confirm your choices.

AppWizard creates files for your classes in the directory you specified and opens the
project. For more information, see Classes and Resources Created and Filenames
Suggested below.

Classes and Resources Created

AppWizard creates application, document, view, and frame-window classes. The
exact classes created will differ depending on which visual editing option you chose
from the OLE Options page.

All document-based (non-dialog based) applications created with AppWizard,
regardless of the type of OLE support, have an application class derived from
CWinApp, an About dialog class created from CDialog, a view class derived from
CView (or from one of its derived classes), and one or two frame-window classes. If
your application uses a multiple document interface, your frame-window classes are
derived from CMDIFrameWnd and CMDIChildWnd. If your application uses a
single document interface, your frame-window class is derived from CFrameWnd.

The class from which your application’s document class is derived will vary
depending on the visual editing options you selected. For non-visual editing
applications, the class is derived from CDocument. For mini-, full-, and container-

servers, the class is derived from COleServerDoc. For containers, the class is derived

from COleDocument.

In addition to the above-mentioned classes, servers will have two additional classes:
an in-place frame-window class derived from COleFrameWnd and a server item
class derived from COleServerIltem.

Containers will have a container class derived from COleClientItem.

AppWizard

143

Asynchronous Access

Filenames Suggested

As with other files created by AppWizard, the suggested filenames for the document,
view, frame window, server item, and container classes are based on the name of your
Visual C++ project. For example, AppWizard writes the view class in files
PROJNAMEVIEW.H/.CPP and the document class is found in files
PROJNAMEDOC.H/.CPP. AppWizard no longer truncates long filenames. You can
¢hange the suggested filenames if you like. For a complete description of the project
created by AppWizard, see the file README.TXT created by AppWizard with the
rest of your project, found in your project directory, and see the article AppWizard:
Files Created. '

Asynchronous Access

See classes CDatabase and CRecordset in the Class Library Reference.

Automation

144

OLE Automation makes it possible for one application to manipulate objects
implemented in another application, or to “expose” objects so they can be
manipulated.

An “automation client” is an application that can manipulate exposed objects
belonging to another application. This is also called an “automation controller.”

An “automation server” is an application that exposes programmable objects to other
applications. This is sometimes also called an “automation component.”

The server application exposes OLE automation objects. These automation objects
have properties and methods as their external interface. Properties are named
attributes of the automation object. Properties are like the data members of a C++
class. Methods are functions that work on an automation object. Methods are like the
public member functions of a C++ class.

Note Properties can have member functions that access them. A Get/Set function pair
typically access a property of the object.

Passing Parameters in OLE Automation

One of the difficulties in creating automation methods is providing a uniform “safe”
mechanism to pass data between between automation servers and clients. OLE
automation uses the VARIANT type to pass data. The VARIANT type is a tagged
union. It has a data member for the value, this is an anonymous C++ union, and a
data member indicating the type of information stored in the union. The VARIANT
type supports a number of standard data types: 2- and 4-byte integers, 4- and 8-byte
floating point numbers, strings, and Boolean values. In addition, it supports the
HRESULT (OLE error codes), CURRENCY (a fixed-point numeric type), and

Automation Clients

DATE (absolute date and time) types, as well as pointers to IUnknown and
IDispatch interfaces.

The VARIANT type is encapsulated in the COleVariant class. The supporting
CURRENCY and DATE classes are encapsulated in the COleCurrency and
COleDateTime classes.

See Also Automation Clients, Automation Servers

Automation Clients

OLE Automation makes it possible for your application to manipulate objects
implemented in another application, or to “expose” objects so they can be
manipulated. An “automation client” is an application that can manipulate exposed
objects belonging to another application. The application that exposes the objects is
called the “OLE Automation server.” The client manipulates the server application’s
objects by accessing those objects’ properties and functions.

There are two types of OLE Automation clients:

¢ Clients that dynamically (at run time) acquire information about the properties
and operations of the server.

¢ Clients that possess static information (provided at compile time) that specifies the
properties and operations of the server.

Clients of the first kind acquire information about the server’s methods and
properties by means of queries to the OLE system’s IDispatch mechanism. Although
it is adequate to use for dynamic clients, IDispatch is difficult to use for static clients,
where the objects being driven must be known at compile time. For static bound
clients, the Microsoft Foundation classes provide the COleDispatchDriver class
along with ClassWizard support.

Static bound clients use a “proxy class” that is statically linked with the client
application. This class provides a type-safe C++ encapsulation of the server
application’s properties and operations.

The class COleDispatchDriver provides the principal support for the client side of
OLE Automation. Using ClassWizard, you create a class derived from
COleDispatchDriver.

You then specify the type-library file describing the properties and functions of the
server application’s object. ClassWizard reads this file and creates the
COleDispatchDriver-derived class, with member functions that your application can
call to access the server application’s objects in C++ in a type-safe manner.
Additional functionality inherited from COleDispatchDriver simplifies the process
of calling the proper OLE Automation server.

145

Automation Clients

See Also Automation Clients: Using Type Libraries, AppWizard: OLE Support,
ClassWizard: OLE Automation Support, ClassWizard: Adding Automation
Properties and Methods

Automation Clients: Using Type Libraries

146

Automation clients must have information about server objects’ properties and
methods if the clients are to manipulate the servers’ objects. Properties have data
types; methods often return values and accept parameters. The client requires
information about the data types of all of these in order to statically bind to the server
object type.

This type information can be made known in several ways. The recommended way is
to create a “type library.”

For information on Microsoft Object Description Language (ODL) and MkTypLib,
see Chapters 2 and 9 of OLE Programmer’s Reference, Volume 2.

ClassWizard can read a type-library file and create a “dispatch class” derived from
COleDispatchDriver. An object of that class has properties and operations
duplicating those of the server object. Your application calls this object’s properties
and operations, and functionality inherited from COleDispatchDriver routes these
calls to the OLE system, which in turn routes them to the server object.

ClassWizard automatically maintains this type-library file for you if you chose to
include OLE Automation when the project was created. As part of each build, the
.TLB file will be built with MkTypLib.

» To create a dispatch class from a type-library (.TLB) file

1 In ClassWizard, click the Add Class button. The Add Class button appears on
each page of ClassWizard.
The Add Class menu appears.

2 From the Add Class menu, choose From An OLE TypeLib.
An Open dialog box appears.

3 Use the Open dialog box to select the .TLB file.
Tip Some type library information is stored in files with .DLL, .OCX, or .OLB file
extensions. , .

4 Click the OK button.
The Confirm Classes dialog box appears. The list box lists the external names of
the classes described in the type-library file. Other controls in the Confirm Classes
dialog box show the proposed names for the dispatch classes and for the header

and implementation files for those classes. As you select a class in the list box, the
Class Name box shows the name for the corresponding class.

Automation Servers

You can use the Browse buttons to select other files, if you prefer to have the
header and implementation information written in existing files or in a directory
other than the project directory.

5 In the Confirm Classes dialog box, edit the names of the new dispatch classes and
their files.

6 Choose OK to close the Confirm Classes dialog box.

The Type Library Tool writes header and implementation code for your dispatch
class, using the class names and filenames you have supplied, and adds the .CPP
file to your project.

See Also ClassWizard: Adding Automation Properties and Methods

Automation Servers

OLE Automation makes it possible for your application to manipulate objects
implemented in another application, or to “expose” objects so they can be
manipulated. An automation server is an application that exposes programmable
objects to other applications, which are called “automation clients.” Exposing
programmable objects enables clients to “automate” certain procedures by directly
accessing the objects and functionality the server makes available.

Exposing objects in this way is beneficial when applications provide functionality
that is useful for other applications. For example, a word processor might expose its
spell-checking functionality so that other programs can use it. Exposure of objects
thus enables vendors to improve their applications’ functionality by using the “ready-
made” functionality of other applications.

By exposing application functionality through a common, well-defined interface,
OLE Automation makes it possible to build applications in a single general
programming language like Microsoft Visual Basic instead of in diverse application-
specific macro languages.

Support for Automation Servers

ClassWizard, AppWizard, and the framework all provide extensive support for
automation servers. They handle much of the overhead involved in making an
automation server, so you can focus your efforts on the functionality of your
application.

The framework’s principal mechanism for supporting OLE Automation is the
dispatch map, a set of macros that expands into the declarations and calls needed to
expose methods and properties for OLE. A typical dispatch map looks like this:

147

Automation Servers

BEGIN_DISPATCH_MAP(CMyServerDoc, COleServerDoc)
//{{AFX_DISPATCH_MAP(CMyServerDoc)
DISP_PROPERTY(CMyServerDoc, "Msg", m_strMsg, VT_BSTR)
DISP_FUNCTION(CMyServerDoc, "SetDirty", SetDirty, VT_EMPTY, VTS_I4)
//}}YAFX_DISPATCH_MAP

END_DISPATCH_MAP()

ClassWizard assists in maintaining dispatch maps. When you add a new method or
property to a class, ClassWizard adds a corresponding DISP_FUNCTION or
DISP_PROPERTY macro with parameters indicating the class name, external and
internal names of the method or property, and data types.

ClassWizard also simplifies the declaration of OLE Automation classes and the
management of their properties and operations. When you use ClassWizard to add a
class to your project, you specify its base class. If the base class allows automation,
ClassWizard displays controls you use to specify whether the new class should
support OLE Automation, whether it is “OLE Createable” (that is, whether objects of
the class can be created on a request from an OLE client), and the external name for
the OLE client to use.

ClassWizard then creates a class declaration, including the appropriate macros for
the OLE features you have specified. ClassWizard also adds the skeleton code for
implementation of your class’s member functions.

AppWizard simplifies the steps involved in getting your automation server
application off the ground. If you select Automation support in AppWizard’s OLE
Options page, AppWizard adds to your application’s InitInstance function the calls
required to register your automation objects and run your application as an OLE
Automation server.

See Also AppWizard: OLE Support, Automation Clients, ClassWizard: OLE
Automation Support

In Tutorials: Chapter 16, Creating an OLE Automation Server
In the Class Library Reference: CCmdTarget, COleDispatchDriver

Automation Servers: Object-Lifetime Issues

148

When an automation client creates or activates an OLE item, the server passes the
client a pointer to that object. The client establishes a reference to the object through
a call to the OLE function IUnknown::AddRef. This reference is in effect until the
client calls IUnknown::Release. (Client applications written with the Microsoft
Foundation Class Library’s OLE classes need not make these calls; the framework
does so0.) The OLE system and the server itself may establish references to the object.
A server should not destroy an object as long as external references to the object
remain in effect.

BLOB

The framework maintains an internal count of the number of references to any server
object derived from CCmdTarget. This count is updated when an automation client
or other entity adds or releases a reference to the object.

‘When the reference count becomes 0, the framework calls the virtual function
CCmdTarget::OnFinalRelease. The default implementation of this function calls
the delete operator to delete this object.

The Microsoft Foundation Class Library provides additional facilities for controlling
application behavior when external clients have references to the application’s
objects. Besides maintaining a count of references to each object, servers also
maintain a global count of active objects. The global functions AfxOleLockApp and
AfxOleUnlockApp update the application’s count of active objects. If this count is
nonzero, the application does not terminate when the user chooses Close from the
system menu or Exit from the File menu. Instead, the application’s main window is
hidden (but not destroyed) until all pending client requests have been completed.
Typically, AfxOleLockApp and AfxOleUnlockApp are called in the constructors
and destructors, respectively, of classes that support OLE Automation.

Sometimes circumstances force the server to terminate while a client still has a
reference to an object. For example, a resource on which the server depends may
become unavailable, causing the server to encounter an error. Or the user may close a
server document that contains objects to which other applications have references.

See Also In the Class Library Reference: AfxOleLockApp, AfxOleUnlockApp,
AfxOleCanExitApp

In the OLE 2 Programmer’s Reference, Volume 1: IlUnknown::AddRef,
IUnknown::Release

Binary Large Object

See the article Recordset: Working with Large Data Items (ODBC).

BLOB

See the article Recordset: Working with Large Data Items (ODBC).

149

Catalog Information

Catalog Information

Information about the tables in a data source can include the names of tables and the
columns in them, table privileges, names of primary and foreign keys, information
about predefined queries or stored procedures, information about indexes on tables,
and statistics about tables.

See the article Data Source: Determining the Schema of the Data Source (ODBC).

See also information about the ODBC “catalog functions” in the ODBC SDK
Programmer’s Reference and the MFC Database sample program CATALOG.

Note Inthe MFC DAO classes, you can get catalog information as follows: Use
CDaoDatabase::GetTableDefCount and CDaoDatabase::GetTableDeflnfo to enumerate the
tables in the database and obtain information for each table in a CDaoTableDeflnfo structure.
For more information, see the article DAO: Obtaining Information About DAO Objects.

ClassWizard

150

ClassWizard helps you create additional classes beyond those you create with
AppWizard. ClassWizard also lets you browse and edit your classes.

To run ClassWizard, choose the ClassWizard command from the View menu in
Visual C++.

Introducing WizardBar

In Visual C++ version 4.0, considerable ClassWizard functionality is available in the
new WizardBar that appears at the top of your source-code windows. For more
information about WizardBar, see Using WizardBar in Chapter 14 of the Visual C++
User’s Guide.

ClassWizard Features

ClassWizard supports the following features:

New and Updated Features
¢ Support for creating and managing new classes derived from most of the MFC
classes.

For example, ClassWizard makes it easy to create classes for your owner-draw list
boxes and other controls.

Other categories of new base classes include new view classes and classes for
DAO database support. For a full list of classes you can derive from with
ClassWizard, see Classes Offered by ClassWizard in Chapter 14 of the Visual C++
User’s Guide.

ClassWizard

e The Add Class feature is easier to use. Class creation options include creating the
new class from scratch, from a file (formerly called importing a class), or from an
OLE type library (formerly on the OLE Automation tab). You can also include
your class in Component Gallery.

e Support for working with classes in multiple projects and in multiple directories.

¢ Support for using OLE controls (control containment). You can use ClassWizard
to:

¢ Map a member variable of your dialog class to an OLE control in the dialog
box. The procedure is the same as for mapping Windows controls.

¢ Handle events fired by an OLE control using member functions of the dialog
class for the dialog box that contains the control. The procedure is the same as
for mapping Windows messages and commands.

e Support for database access, using either Open Database Connectivity (ODBC) or
Data Access Objects (DAO). You can:

o Create classes derived from CRecordset (for ODBC) or CDaoRecordset (for
DAO).

e Specify a data source, tables, and columns for a recordset.

o Create database form classes derived from CRecordView (for ODBC) or
CDaoRecordView (for DAO).

e Map controls of a record view database form to the fields of a recordset object.

e Support for “reflected messages.” For more information, see Message Reflection in
the article MFC: Changes from MFC Versions 3.0 and 3.1.

Existing Features
¢ Support for mapping dialog controls to class member variables.

This helps you enable dialog data exchange (DDX) and dialog data validation
(DDV) for the controls in your dialog boxes. DDX exchanges data between dialog
controls and their corresponding member variables in a dialog class. DDV
validates this data.

e Support for message maps. You can use ClassWizard to:
e Map Windows messages to message-handler functions in your classes.

¢ Map command messages from menu items, toolbar buttons, and accelerators to
handler functions in your classes.

e Map control-notification messages from dialog controls to your classes.

¢ Provide “update handlers” to enable or disable user-interface objects, such as
menus and toolbar buttons.

e Jump from ClassWizard to the handler function for a particular message or
command.

151

ClassWizard

e Specify a “filter” that determines which categories of Windows messages
ClassWizard offers to map to handlers in your class.

¢ Support for OLE Automation. You can use ClassWizard to:
e Add classes that support OLE Automation.
e Add properties and methods to your classes that support OLE Automation.

e Create a C++ class for an existing OLE Automation object on your system,
such as Microsoft Excel.

¢ Support for developing OLE Controls. You can use ClassWizard to:
e Specify properties and methods for OLE Controls.
o Specify the events your OLE Control can fire.

For more information, see the article OLE Controls. The OLE Control
Development Kit (CDK) is now fully integrated with MFC.

¢ Support for overriding many MFC virtual member functions. You can use
ClassWizard to:

e Browse virtual functions provided by MFC and choose the ones you want to
override.

e Jump to the code for editing.
¢ Foreign classes.

Just as you can map dialog box controls to dialog class data members, you can
map window controls to data members of class CRecordset for ODBC or
CDaoRecordset for DAO (called a “foreign class” in this context). For more
information, se¢ the article ClassWizard: Foreign Objects.

For More Information
For general information about using ClassWizard, see Chapter 14, Worklng with
Classes, in the Visual C++ User’s.Guide. :

The following articles describe ClassWizard tips and techniques:

¢ ClassWizard: Tips and Troubleshooting
¢ ClassWizard: Database Support
e ClassWizard: OLE Automation Support

See Also AppWizard

ClassWizard: Special-Format Comment Sections

152

This article explains where and how ClassWizard edits your source files.

When ydu add a new class using ClassWizard, special-format comments are placed in
your code to mark the sections of the header and implementation files that
ClassWizard edits. ClassWizard never modifies code that is outside these commented
sections.

ClassWizard

Message-Map Comments

For most classes, there are two related sections of code that ClassWizard edits: the
member-function definitions in the class header file and the message-map entries in
the class implementation file.

The ClassWizard comments in the header file look like this:

// {{AFX_MSG(<classname>)
afx_msg void OnAppAbout();
//YYAFX_MSG

The ClassWizard section in the implementation file is set off with comments that
look like this:

/1 {{AFX_MSG_MAP(<classname>)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
//}Y}YAFX_MSG_MAP--

The notes in the ClassWizard section act as placeholders. ClassWizard removes the
note from any ClassWizard section in which it writes code.

Virtual Function Comments

As with message handlers, ClassWizard writes code to two locations when you use it
to override a virtual function in one of your classes.

The ClassWizard comments in the header file look like the following example for
virtual function overrides:

//{{AFX_VIRTUAL(<Lclassname>)
virtual BOOL InitInstance();
//}YAFX_VIRTUAL

The ClassWizard section in the implementation file has no special comments. Virtual
function definitions in the .CPP file look like other function definitions.

Data Map Comments

For dialog boxes, form views, and record views, ClassWizard creates and edits three
other sections that are marked with special format comments:

e Member variable declarations in the class header file:
//{{AFX_DATA

//}YAFX_DATA

e Member variable initialization in the class implementation file:
[/ {{AFX_DATA_INIT

//}YAFX_DATA_INIT

153

ClassWizard

154

e Data-exchange macros in the implementation file:

//{{AFX_DATA_MAP

//}3IAFX_DATA_MAP

Field Map Comments

For record field exchange, ClassWizard creates and edits three other sections that are
marked with special format comments:

Member variable declarations in the class header file:
//{{AFX_FIELD

//}YAFX_FIELD

Record exchange function calls in the implementation file:
//{{AFX_FIELD_MAP

//}}YAFX_FIELD_MAP

Member variable initializations in the class header file:
//{{AFX_FIELD_INIT

//}YAFX_FIELD_INIT

OLE Dispatch Map Comments

For OLE method dispatch, ClassWizard creates and edits four other sections that are
marked with special format comments:

OLE events in the class header file:
//{{AFX_EVENT

//YYAFX_EVENT

OLE events in the class implementation file:
//{{AFX_EVENT_MAP

//3}YAFX_EVENT_MAP

OLE Automation declarations in the class header file:
//{{AFX_DISP

//}}YAFX_DISP

ClassWizard

¢ OLE Automation mapping in the class implementation file:
//{{AFX_DISP_MAP

//}YAFX_DISP_MAP

For more information see Working with Dialog Box Data in Chapter 14 of the Visual
C++ User’s Guide.

ClassWizard: Tips and Troubleshooting

This article summarizes key tips and troubleshooting advice for using ClassWizard
effectively. The following topics are covered:

e Using ClassWizard tab dialogs

¢ Adding functions with ClassWizard
e Adding variables with ClassWizard
e Adding code from ClassWizard

e Importing classes from other projects

e Opening your .RC file

Using ClassWizard Tab Dialogs

ClassWizard has a “tab dialog” user interface: the ClassWizard dialog box contains
“tabs” that resemble the tabs on a group of file folders. Each tab’s label shows what
kind of functionality you can edit on that tab. To select a tab, click its label. Use the
following tips:

e Use the Message Maps tab to browse the messages that a class can handle or to
create, edit, or delete the member functions mapped to the messages. Use the Edit
Code button to jump to a message handler function’s code in the Visual C++
source code editor.

e Use the Member Variables tab to bind member variables to dialog, form view, or
record view controls. You can also bind record view member variables both to
record view controls and to the columns of a table in your data source.

¢ Use the OLE Automation tab to create and edit the OLE Automation capabilities
of your application. For example, you can create Automation properties and
methods.

e Use the OLE Events tab to specify actions that will cause your OLE control to fire
events. For example, you can specify that a mouse click on your control fires a
particular event that the control’s container responds to with a handler. Note that
this tab is for OLE control developers. If you are using an OLE control in your
dialog box and want to handle events, use the Message Maps tab just as'you would
for handling messages.

155

ClassWizard

156

¢ Use the Class Info tab to browse and set general class options. You can set a class’s
message filter to determine what messages ClassWizard offers to map to handlers
in your class. You can also view or set a “foreign object” associated with your
dialog form view or record view class. For information about foreign objects, see
the article ClassWizard: Foreign Objects.

Adding Functions with ClassWizard

ClassWizard lets you create handler functions and connect them to the menu items,
toolbar buttons, and accelerators whose commands they respond to. Use the following
tips:

o To connect a dialog box or other user-interface object to a menu command or
toolbar button with ClassWizard, you must first create the dialog box, menu entry,
or toolbar button and its object ID using the appropriate Visual C++ resource
editor.

¢ You can bind more than one user-interface object to a single function. You can
bind both a menu command and a toolbar button to a single function, for instance.
In this case, selecting either object in your application causes the same action.

o If you delete a member function in the ClassWizard dialog box, the declaration is
deleted from the class in the header file, and the message-map entry is deleted
from the implementation file. But you must delete the function code and any cross-
references to the function manually. Use the browser to help you locate these
references.

e To add a function and edit its related code, you should make your selections in this
order on the ClassWizard Message Maps tab:

1. Select a project.

2. Select the project that contains the class you want to edit.
3. Select a class name.

4. Select an Object ID.

5. Select a Message.

You can then select an associated function to edit or delete, or click the Add
Function button to add a member function to the class.

By convention, the names of all message-handling functions begin with the prefix
On.

e Override virtual functions in much the same way, also on the Message Maps tab:
1. Select a class name.
2. In the Object IDs box, select the class name again.
3. In the Messages box, select a virtual function to override.
4. Choose Add Function.

ClassWizard

Adding Variables with ClassWizard

ClassWizard lets you add member variables to some classes. For example, you can
add member variables to a dialog class to represent the dialog box’s controls. Use the
following tips:

Edit Variables is available in the ClassWizard dialog box only in classes with a
data map. This includes dialog, form view, and record view classes. Neither
ClassWizard nor AppWizard make changes to your code outside the data map.

By convention, the names of all member variables begin with the prefix m_.

By using ClassWizard to map a dialog control to a dialog-class member variable
with the Value property (the default), you can use dialog data exchange (DDX)
and dialog data validation (DDV). This eliminates the need to move data between
the control and the member variable yourself. It also allows you to specify
validation rules for the data. For more information about DDX and DDV, see
Dialog Data Exchange in Chapter 14 of the Visual C++ User’s Guide and Dialog
Data Exchange and Validation in Chapter 1 of Programming with MFC.

You can also map a dialog control to a dialog-class member variable with the
Control property. This creates a member variable of an appropriate class, such as
CEdit. You can then call the member functions of the control object through this
variable.

Adding Code from ClassWizard

After you’ve added a new member function in the ClassWizard dialog box, choose
Edit Code to add the implementation code for the function. A Visual C++ source code
editor window opens with the file containing the class for the member function. A
highlighted comment indicates where to add your code. Use the following tip:

You can select a function in ClassWizard’s Message Maps tab and then click Edit
Code to locate and examine code quickly.

Importing Classes from Other Projects

Classes you created for another programming project can sometimes be reused in new
projects. For information about how to “import” these classes into your new project so
that ClassWizard is aware of them, see Importing a Class in Chapter 14 of the Visual
C++ User’s Guide. Also use the following tip:

If you are importing several message-handling classes from another project, you
can save time by rebuilding the ClassWizard information file (project .CLW)
rather than importing each class separately in the Add Class dialog box. You can
completely rebuild the .CLW file by deleting the project’s .CLW file and then
opening ClassWizard. Answer Yes when asked if you want to rebuild the .CLW
file. Then use the Select Source Files dialog box to provide ClassWizard with a list
of files in your project.

157

ClassWizard

Note The .H and .CPP files for the classes you import must have special-format
comments, as described in the article ClassWizard: Special-Format Comment Sections.

Opening Your .RC File

Visual C++ lets you open resources in two ways. You can open individual resources
(in compiled form) in the Visual C++ resource editors. Or you can open the .RC file
to edit it directly as a text file. Use the following tip:

e To open the .RC file as text, choose the Open command on the File menu and
select the Open As option to Text.

ClassWizard: Database Support

158

You can use ClassWizard to work with two main database classes for Open Database
Connectivity (ODBC) or two main classes for Data Access Objects (DAO):

¢ CRecordset (for ODBC) or CDaoRecordset (for DAO) Represents a set of
records selected from a data source.

e CRecordView (for ODBC) or CDaoRecordView (for DAQ) Supplies a database
form, based on a dialog resource template, whose controls map to the field data
members of an associated recordset object.

DDX and Foreign Object Support

When you create a record view class, you associate it with a particular CRecordset-
derived or CDaoRecordset-derived class and map the record view’s controls to field
data members of the recordset class.

This close association between a record view and a recordset takes advantage of
another feature you can use in ClassWizard: “foreign objects.” Dialog data exchange
(DDX) lets you simplify data transfer between the controls in a dialog box or form
view and the data members in a corresponding class. With foreign objects, you can
exchange data between the controls and the data members of a separate object—in
this case, between the controls of a record view and the data members of a recordset.

When you specify the CRecordset-derived class or CDaoRecordset-derived class to
associate with a CRecordView-derived class or CDaoRecordView-derived class, you
can name an existing recordset class or create a new one. ClassWizard adds a
member variable to the record view class named, by default, m_pSet. The data type
of this variable is the recordset class. Figure 1 shows the relationships between a
record view on the screen, a record view object, and a recordset object. The recordset
is the foreign object. ClassWizard creates the record view and recordset classes and
maps record view controls to recordset data members via m_pSet.

ClassWizard

Figure 1 DDX and Foreign Objects
Record View on screen

m_pSet->m_strCourselD
m_pSet->m_strInstructorID

m_pSet->m_strRoomNo

CSectionForm C++ C++ Recordset object
Record View object (Foreign object)
Database Source Files

When you create a CRecordset/CDaoRecordset or
CRecordView/CDaoRecordView class with ClassWizard, the wizard creates the
classes in the files you specify in the Add Class dialog box. The default filenames are
based on the class name you enter. You can modify the default names, place the
recordset and record view in the same files, or consolidate all recordsets in one set of
files.

Browsing and Editing Database Classes

You can also browse and edit existing classes with ClassWizard. When you edit an
existing recordset class, ClassWizard provides a dialog box that you can use to update
the table columns bound to the recordset if the table’s schema has changed since you
created the class. You can also, with a little extra work, use this mechanism to specify
the columns of additional tables for a join of tables. For more information about joins
in ODBC, see the article Recordset: Performing a Join (ODBC). Performing a join
with DAO is similar.

The following articles explain the details of using ClassWizard’s database support:

¢ ClassWizard: Creating a Recordset Class

o ClassWizard: Binding Recordset Fields to Table Columns
o ClassWizard: Creating a Database Form

e ClassWizard: Mapping Form Controls to Recordset Fields
¢ ClassWizard: Foreign Objects

See Also ClassWizard: Creating a Recordset Class, AppWizard, Database Overview

159

ClassWizard

ClassWizard: Creating a Recordset Class

This article explains how to create a recordset class with ClassWizard.

160

You’ll need a new CRecordset-derived class (for ODBC) or CDaoRecordset-derived

class (for DAO) for each table, join of tables, or predefined query you work with in
your program. Each recordset class specifies its own set of columns and may also

specify parameters. For information about the structure of your recordset class and its
uses, see the article Recordset: Architecture (ODBC) or DAO Recordset:

Architecture.

For information about mapping recordset field data members to columns in the table,
see the article ClassWizard: Binding Recordset Fields to Table Columns.

For information about using a CRecordset (ODBC) for a join of tables, see the article

Recordset: Performing a Join (ODBC). (Performing a join with DAO is similar.)

For information about using a CRecordset for a predefined query, see the article
Recordset: Declaring a Class for a Predefined Query (ODBC). For information about
predefined (“saved”) queries in DAO, see the article DAO Querydef.

Table 1 shows the major steps in creating a recordset class.

Table 1 Recordset Class Creation Summary

To Do this
Create the class Use the Add Class dialog box in
ClassWizard.

Select a data source and database table for
the class

Remove any column mappings you don’t
want. By default, AppWizard and
ClassWizard bind all columns in the table
to recordset field data members

Optionally parameterize the underlying
SQL statements

Optionally use dialog data exchange
(DDX) to map recordset data members to
controls in a record view

Select options in the Database Options dialog
box. These include a data source, possibly a
recordset type, and possibly some advanced
options. Then specify details about the data
source in the Select Database dialog box (for
ODBC) or the Open dialog box (for DAO).
Next, use the Select Database Tables dialog
box to select tables from those available on
the data source.

Select a column name on the Member
Variables tab and choose Delete Variable.

Manually add parameter data members, or, in
DAO, base your recordset on a parameterized
a querydef object.

See the article Record Views.

ClassWizard

For more information about parameterizing your class, see the article Recordset:
Parameterizing a Recordset (ODBC) or the article DAO Queries: Filtering and
Parameterizing Queries. For information about using DDX between record view
controls and recordset data members, see the article ClassWizard: Mapping Form
Controls to Recordset Fields.

Creating the Recordset Class

You can add a new class derived from class CRecordset or CDaoRecordset in
ClassWizard’s Add Class dialog box. This dialog box is available from any tab in
ClassWizard. (All figures follow the procedure below.)

» To create the recordset class
1 Run ClassWizard.
2 Choose the Add Class button to open the Add Class dialog box (Figure 1).

3 If you’re using the MFC ODBC classes, select CRecordset as the base-class type
of the new class. If you’re using the MFC DAO classes, select CDaoRecordset.

4 In the Create New Class dialog box, enter a name for the class and filenames for
its .H and .CPP files.

5 Choose the Create button.
The Database Options dialog box (Figure 2) opens.
6 Choose ODBC or DAO. Then select a data source:

e For ODBC, select from the drop-down list. Depending on what you choose, you
might need to make a further selection in an Open dialog box. If the data
source is on a server, you might be prompted to log in to the server.

o For DAO, click the browse button beside the DAO edit control. Then, in the
Open dialog box, navigate to the database file you want to use. (By default, the
dialog box displays only Microsoft Jet databases, .MDB, but you can open any
database that the Microsoft Jet database engine can read. For information, see
the article Database Overview.

7 Click OK.

8 In the Select Database Tables dialog box (shown in Figure 3), select the name(s) of
the table(s) you want.

On ClassWizard’s Member Variables tab, notice that ClassWizard binds all of the
table’s columns to recordset field data members. For information about removing
bindings you don’t want, see the article ClassWizard: Binding Recordset Fields to
Table Columns.

9 When you finish, choose OK to close ClassWizard. ClassWizard writes your class
files in the specified directory and adds them to your project.

161

ClassWizard

Figure 1 Specifying Information for a New Class

Figure 3 Selecting a Database Table in ClassWizard

ect Databaze T:

OURSE
NROLLMENT

See Also ClassWizard: Database Support, ClassWizard: Binding Recordset Fields to
Table Columns

162

ClassWizard

ClassWizard: Binding Recordset Fields to Table

Columns

Both AppWizard and ClassWizard bind all columns of your selected tables to the
recordset. This article applies to both the MFC ODBC classes and the MFC DAO
classes. The article explains how to:

e Remove data members for any columns you don’t want in the recordset.

If you want only a subset of the columns bound by the wizards, use ClassWizard to
remove the field data members for any columns you don’t want.

e Select table columns and map them to recordset field data members.

If you subsequently remove any of the bindings the wizards made, you can later
rebind them with ClassWizard.

e Update columns in your recordset to reflect new columns in the table on the data
source.

This and related articles use the terms “column” and “field” interchangably when
referring to recordset fields.

Removing Columns from Your Recordset

You might sometimes need to remove columns from a recordset. Both AppWizard
and ClassWizard automatically bind all table columns to the recordset. If you want
only a subset of the columns, use the following procedure.
» To remove a column from a recordset

1 In ClassWizard, choose the Member Variables tab.

2 Select a member variable name in the Members column of the Column Names
box.

3 Choose Delete Variable.

The member variable is removed from your recordset class. (The column in the
data source to which the member variable was bound is not deleted.)

Warning Be careful not to remove any columns that are part of the table’s primary key. In
some tables, the primary key is a single column; in others, if's composed of two or more
columns taken together. Removing these columns could damage your data on the data source.

Adding Columns to Your Recordset

Once you select a table, ClassWizard displays a list of all columns in the table. You
can remove column bindings, and you can later rebind columns whose bindings have
been removed. The following procedure explains how to bind an unbound column.

163

ClassWizard

164

» Toadd a column to the recordset
1 Create the recordset class and associate it with one or more database tables.

If you create the class with ClassWizard, follow the procedure To create the
recordset class in this article.

If you create the class with AppWizard, follow the procedure in the article
AppWizard: Database Support.

2 In ClassWizard, on the Member Variables tab, select the recordset class name in
the Class Name box if it is not already selected.

3 Select a column in the Column Names box.
4 Choose the Add Variable button to open the Add Member Variable dialog box.

5 Type a name for the recordset data member that will represent the selected
column.

ClassWizard supplies a standard data member prefix, m_, for the name. Append
the rest of the name to this prefix or type over it.

The variable’s property and data type are already specified in the dialog box. The

property for these variables is always “Value.” The data type is based on the data
type of the column on the data source.

6 Choose OK to close the Add Member Variable dialog box.
7 Choose OK to close ClassWizard.
ClassWizard writes your class files to the specified directory and adds them to your

project.

Tip Rather than binding columns to data members one at a time, you can choose the Bind All
button to bind all columns. ClassWizard gives the data members default names based on the
column names. Binding columns one at a time gives you more control over the columns bound
and how they’re named, but Bind All is quick and easy.

Figure 1 shows the Member Variables tab with a data member added for one of the
available columns.

ClassWizard

Figure 1 Adding a Data Member to the Recordset

CSting _CourseT itle
double m_Hours

Updating Your Recordset’s Columns

Tables in a data source sometimes change—in particular, columns may be added to a
table. To bring your recordset class up to date with respect to these changes, use the
Update Columns button.

» To update the columns in your recordset
1 On ClassWizard’s Member Variables tab, select your recordset class.
2 Choose the Update Columns button.
Any new columns are shown in the list but not yet bound to recordset field data

members. To bind them, see the procedure To add a column to the recordset in
Adding Columns to Your Recordset.

When you use Update Columns, columns you’ve previously bound to recordset data
members are left alone; to unbind a column, delete its data member. Any columns in
the table that aren’t bound to the recordset disappear from the refreshed recordset.

See Also ClassWizard: Creating a Database Form, ClassWizard: Creating a
Recordset Class, AppWizard

ClassWizard: Creating a Database Form

The Microsoft Foundation Class Library database classes supply class CRecordView
(for ODBC) and class CDaoRecordView (for DAO) for implementing database
forms with controls in which to display record fields. This article explains how to
create a record view class with ClassWizard and associate it with a recordset class.

Important To use the MFC database classes, you must have specified at least minimum
database support (“Only include header files”) in AppWizard. If you didn't, open file STDAFX.H

165

ClassWizard

166

and add an #include directive for AFXDB.H {(if you're using the MFC ODBC classes) or
AFXDAO.H (if you're using the MFC DAOQ classes).

The purpose of a record view class is to provide a form view whose controls are
mapped directly to the field data members of a recordset object (and indirectly to the
corresponding columns in a table on the data source). Setting up this mapping
enables dialog data exchange (DDX) directly between the form’s controls and the
recordset’s field data members. This article explains how to make the association.

Tip The easiest way to use a record view as your application’s main view is to do so when
you initially run AppWizard. See the article AppWizard: Database Support.

The following procedure begins the process.

» Tocreate a record view associated with a recordset
1 Create the recordset class.
See the article ClassWizard: Creating a Recordset Class.
2 Create a dialog-template resource.
See Chapter 6, Using the Dialog Editor, in the Visual C++ User’s Guide.

In the Styles and More Styles property pages of your dialog template, set the
following properties, as you would for a CFormView object:

In the Style box, select Child (WS_CHILD on).

In the Border box, select None (WS_BORDER off).
Clear the Visible check box (WS_VISIBLE off).
Clear the Titlebar check box (WS_CAPTION off).

Tip As you place controls on your dialog template, you can help ClassWizard be smarter. See
the tips in the article ClassWizard: Mapping Form Controls to Recordset Fields.

To continue from step 2, see the following procedure.

» To create the record view class

1 Run ClassWizard with the Visual C++ dialog editor open on your dialog-template
resource.

2 In the Adding a Class dialog box, choose Create a New Class (unless you are
importing or using an existing class). For more information, see Adding a Class in
Chapter 14 of the Visual C++ User’s Guide.

3 In the Create New Class dialog box, specify CRecordView (for ODBC) or
CDaoRecordView (for DAO) as the base class for the new class.

4 Enter a name for the class and filenames for its .H and .CPP files and select any
other options you need, such as OLE Automation.

5 Choose the Create button.

ClassWizard

6 In the Select a Recordset dialog box, select the recordset class you created in step 1
of the procedure To create a record view associated with a recordset.

-or—

Choose New to create a new recordset class. In this case, select a data source and
table for the recordset as prompted. Close the Select a Record Set dialog box. On
returning to the Member Variables tab, select your new recordset class.

7 Bind columns to recordset field data members. See the article ClassWizard:
Binding Recordset Fields to Table Columns.

Note If you next choose the Class Info tab, you'll see your recordset class listed in the
Foreign Class box. For more information about “foreign” classes, see the article
ClassWizard: Foreign Objects.

8 Choose OK to exit ClassWizard.

For information about binding your record view controls to the recordset, see the
article ClassWizard: Mapping Form Controls to Recordset Fields.

See Also ClassWizard: Database Support, ClassWizard: Creating a Recordset Class,
ClassWizard: Binding Recordset Fields to Table Columns

ClassWizard: Mapping Form Controls to Recordset
Fields

A database form based on class CRecordView (for the MFC ODBC classes) or
CDaoRecordView (for the MFC DAO classes) uses dialog data exchange (DDX) to
exchange data between the form’s controls and the field data members of the form’s
associated recordset object. This article explains how to use ClassWizard to set up the
DDX connection between the controls and the recordset.

This connection is different from the normal use of DDX, which connects the
controls in a dialog box directly to the data members of the associated dialog class.
DDX for a record view object is indirect. The connection goes from form controls
through the record view object to the field data members of the associated recordset
object. For more information, see the articles Record Views and ClassWizard:
Foreign Objects. Table 1 summarizes the mapping process.

Table 1 Mapping Record View Controls to a Recordset
To Do this

Specify the form control Select the record view class on ClassWizard’s
Member Variables tab and select one of the
form’s control IDs

Specify the recordset data member to Use the Add Variable dialog box to select a

connect it to recordset data member indirectly

167

ClassWizard

The following procedure assumes you have already followed the procedures in the
article ClassWizard: Creating a Database Form. Specifically, you’ve created a
CRecordset-derived or CDaoRecordset-derived class and added some field data
members to it, created a dialog-template resource, created a CRecordView-derived or
CDaoRecordView-derived class, and associated the record view class with the
recordset class. Your record view class is associated with the dialog-template
resource, to which you’ve added controls with the Visual C++ dialog editor.

» To map the form controls to the recordset
1 Choose ClassWizard’s Member Variables tab.
2 In the Class Name box, select the name of your record view class.
3 In the Control IDs box, select a control ID.
4 Choose the Add Variable button to name a variable associated with the control.

5 In the Add Member Variable dialog box, choose a variable name by selecting a
recordset data member in the Member Variable Name drop-down list box.

Important Use the drop-down list box to select a data member name from the associated
recordset (a foreign object). The names that appear are of the form
m_pSet->m_recordsetVarName. You can type the name instead, but selecting from
the drop-down list is faster and more accurate. '

All variables of the recordset class appear in the box, not just variables of the
currently selected data type.

6 Choose OK to close the Add Member Variable dialog box.

7 Repeat steps 3 through 6 for each control in the record view that you want to map
to a recordset field data member.

8 Choose OK to close ClassWizard.

By selecting a name from the drop-down list, you specify a connection that passes
through the record view object to a field data member of its associated recordset
object.

Tip Ifyou're running ClassWizard with the Visual C++ dialog editor open, the following
shortcut is available. Choose a control on the form; then press CTRL and double-click the
mouse. This opens ClassWizard's Add Member Variables dialog box, where you can bind a
recordset field data member to the control. (If you use this shortcut before a class has been
created for the dialog template, ClassWizard opens and displays its Add Class dialog box.)

If you follow a simple rule when placing controls on your record view form, ClassWizard is able
to preselect the most likely recordset member in the dialog box. The rule is to place the static
text label for the control ahead of the corresponding control in the tab order.

Tip You can use cTRL+Double-click for pushbuttons too. In these cases, ClassWizard creates
a message handler function for the BN_CLICKED notification message in your record view
class. You can edit its code to specify the button’s action.

168

See Also ClassWizard: Foreign Objects

ClassWizard: Foreign Objects

ClassWizard extends dialog data exchange (DDX) by allowing you to map controls
on a form or dialog box indirectly to a “foreign object”—a CRecordset or
CDaoRecordset object. This article explains:

e What foreign objects are.

e How to use foreign objects.

Foreign Objects

The best way to understand foreign objects is to consider DDX for a dialog box or
form view and then see how it is extended. This discussion considers a form view,
based on class CFormView.

DDX maps the controls in a form view to data members of the CFormView-derived
class associated with the dialog-template resource. Controls in a form view
correspond one-to-one with form view class data members. Two entities are
connected: the form view on the screen and the form view class. (Dialog boxes work
this way too.)

DDX for foreign objects connects not two entities but three. Figure 1 shows this
connection, with a record view on screen at one end, a CRecordView class in the
middle, and a third object—the foreign object—at the other end: a CRecordset
object. (These could be a CDaoRecordView and a CDaoRecordset.)

Figure 1 DDX for Foreign Objects

Record View on screen

m_pSet->m_strCourselD
m_pSet->m_strInstructorID

m_pSet->m_strRoomNo

CSectionForm C++ C++ Recordset object
Record View object (Foreign object)

The record view class in Figure 1 contains a member variable, a pointer whose type
matches the class of the foreign object. The DDX mapping is from three record view

ClassWizard

169

ClassWizard

controls to members of the foreign object through the pointer, as illustrated by the
following DoDataExchange function:

void CSectionForm::DoDataExchange(CDataExchange* pDX)
{
CRecordView: :DoDataExchange(pDX);
//{{AFX_DATA_MAP(CSectionForm)
DDX_FieldText(pDX, IDC_COURSE,
m_pSet->m_strCourselID, m_pSet);
DDX_FieldText(pDX, IDC_INSTRUCTOR,
m_pSet->m_strinstructor, m_pSet);
DDX_FieldText(pDX, IDC_ROOMNO,
m_pSet->m_strRoomNo, m_pSet);
//}YAFX_DATA_MAP
}

Notice the indirect reference to recordset fields, through the m_pSet pointer to a
CSections recordset object:

m_pSet->m_strCourselD

Also notice that m_pSet is repeated as the fourth argument in each DDX_Field Text
call.

ClassWizard and Foreign Objects

You set the foreign class and object on ClassWizard’s Class Info tab. The Foreign
Class box names the class of the foreign object (CRecordset for ODBC or
CDaoRecordset for DAO). The Foreign Object box names the pointer variable that
points to an object of that class. (You can specify only one foreign object per class.)

If you select a class based on a dialog-template resource on ClassWizard’s Member
Variables tab, ClassWizard locates the appropriate pointer variable in the class and
puts its type into the Foreign Class box. It also puts the variable name into the
Foreign Object box. You can change these values if you wish.

If you create a CRecordView or CDaoRecordView class with AppWizard and then
use ClassWizard to specify the DDX connections, ClassWizard automatically notes
the presence in the view class of a pointer to a CRecordset-derived or
CDaoRecordset-derived object. ClassWizard sets this as the value in the Foreign
Class box. It puts the name of the pointer variable into the Foreign Object box.

See Also ClassWizard: Mapping Form Controls to Recordset Fields

ClassWizard: OLE Automation Support

ClassWizard supports the following OLE Automation features:

e Add classes that support OLE Automation. This makes your application an OLE
Automation server. These classes will be exposed to OLE Automation clients such
as Microsoft Visual Basic or Microsoft Excel.

¢ Add methods and properties to your classes that support OLE Automation.
170

ClassWizard

o Create a C++ class for another OLE Automation object on your system, such as
Microsoft Excel. This makes your application an OLE automation client.

You must call AfxOlelnit in InitInstance to initialize OLE for your application.

For more information, see the article ClassWizard: Accessing Automation Servers.

An OLE Automation class has a programming interface that other applications use to
manipulate objects that your application implements. This is referred to as a
“dispatch interface.” For more information about dispatch interfaces, see the OLE
Programmer’s Reference, Volume 2.

ClassWizard’s Add Class button now allows you to create classes supporting OLE
Automation. Click this button on the OLE Automation tab to display a dialog box in
which you can choose to create a new class or import an existing class. The Create
New Class dialog box appears if you create a new class so you can specify the name
of your class, the base class, the filenames in which your class is implemented, and
and the dialog display resource for the base class, if necessary. You can also choose
whether your class supports OLE Automation, and whether to add the new class to
Component Gallery.

» To add an OLE Automation class
1 Run ClassWizard from the View menu.
2 Click the Add Class button. The Add Class menu appears.
3 From the Add Class menu, select New. The Create New Class dialog box appears.
4 Type a name for the class.

5 Select a base class. Typically, new automation classes are derived from
CCmdTarget.

6 If you do not like the filenames specified by ClassWizard, click the Change button.
The Change Files dialog appears.

Enter new names for the .H and .CPP files. Alternately, you can use the Browse
buttons to select files. Then click OK to return to the Create New Class dialog box.

7 Choose the OLE Automation option to expose this class to OLE Automation
clients. If you choose Creatable By Type ID, you can specify a Type ID for this
automation object. The automation client will create an object of this class using
the Type ID.

8 Set the Add Component To Gallery option if you want to add your new class to
Component Gallery after it is created.

9 When you have entered all the necessary information, click the Create button to
create the necessary code and add it to your project.

To continue defining the dispatch interface for your OLE Automation class, see the
article ClassWizard: Adding Automation Properties and Methods.

17

ClassWizard

A class that is OLE Creatable allows other applications to create a stand-alone object
of the class, for example by using the Visual Basic function CreateObject, and to
incorporate that automation object into their application. In general, you should make
only your top-level classes, such as documents, creatable from other OLE
applications. Classes that are parts of these top-level classes are usually not OLE
Creatable and are instead accessed from a member function in the top-level class.

For example, consider a list document, which contains a list of items. It’s a good idea
to make the top-level document class OLE Creatable, because this allows other
applications to create a list from nothing. You then add/enumerate the items in the
list, but you cannot create them as stand-alone objects because they depend on their
position inside the list. For this reason, only stand-alone objects should be OLE
Creatable. Note that if you selected Creatable By Type ID in AppWizard your
document class is OLE Creatable. In other words, it can be accessed by automation
clients.

Note OLE insertable items are made possible by class COleTemplateServer. When you
choose OLE support in AppWizard, a COleTemplateServer object manages your documents.
Such documents can be created by OLE Automation.

The following articles explain the details of using ClassWizard’s OLE support:
e ClassWizard: Adding Automation Properties and Methods

e ClassWizard: Accessing Automation Servers

ClassWizard: Adding Automation Properties and
Methods

This article explains how to use ClassWizard to add OLE Automation properties and
methods to an OLE Automation class. Topics include:

e Adding a member variable property to your class

e Adding a Get/Set Methods property to your class

e Adding a method to your class

A class that supports OLE Automation exposes a set of functions (known as methods)

and properties—the dispatch interface—for use by other applications. ClassWizard
offers a simple, quick way to implement this ability in your classes.

Member-Variable Properties

Use member variable properties if you need to allocate storage for the values. The
most common case for member variables is when there is no user interface to be
updated when changes occur.

» Toadd a member variable property to your OLE automation class
1 In ClassWizard, choose the OLE Automation tab.

172

ClassWizard

2 Select a class name that supports OLE automation. Your document class supports
OLE automation if you checked the OLE automation check box in AppWizard.
Notice that the Add Property and Add Method buttons are unavailable for classes
that do not support OLE automation.

3 Click the Add Property button and supply the following information:
e External Name: Name that automation clients use to refer to this property.
¢ Type: Any of the choices found in the list box.
e Implementation: Choose Member Variable.
e Variable Name: Name of the C++ class data member.

Tip You can also supply the name of a notification function that is called when the variable
changes.

4 Click OK to close ClassWizard.

Get/Set Properties
Use Get/Set Methods properties if you are dealing with calculated properties. The
most common use of Get/Set properties is to reflect changes in a user interface for
calculated properties or items that are updated.
» To add a Get/Set Methods property to your OLE automation class

1 In ClassWizard, choose the OLE Automation tab.

2 Select a class name that supports OLE automation. You can also select the name of
your document class if you checked the OLE Automation check box in
AppWizard. Notice that the Add Property and Add Method buttons are
unavailable for classes that do not support OLE automation.

3 Click the Add Property button and supply the following information:
¢ External Name: Name that automation clients use to refer to this property.
e Type: Any of the choices found in the list box.
e Implementation: Choose Get/Set Methods.
¢ Get Function: The name of the member function used to get the property value.

e Set Function: The name of the member function used to set the property value.
This function can include special processing for when the property value is
changed.

4 Add any method parameters you need, using the grid control:

e Double-click in the first empty row under the Name label to activate an edit
control; then enter the parameter name.

e Double-click the row under the Type label to activate a drop-down list; then
select the parameter’s type.

173

Client, OLE Automation

Continue this procedure until you have entered all the parameters you need. To
delete a parameter, delete its row by clicking once in the row and pressing the
DELETE key or the BACKSPACE key.

5 Choose OK to create the necessary code.

Tip To create a read-only property, delete the name of the Set Function.

» To add a method to your OLE automation class
1 In ClassWizard, choose the OLE Automation tab.

2 Select a class name that supports OLE automation. You can also select the name of
your document class if you checked the OLE Automation check box in
AppWizard. Notice that the Add Property and Add Method buttons are
unavailable for classes that do not support OLE automation.

3 Open the Add Method dialog box and supply the following information:
e External Name: Name that automation clients use to refer to this method.
e Internal Name: Name of the C++ member function to add to the class.
e Return Type: Any choice found in the list box.

4 Add any method parameters you need, using the grid control:

e Double-click in the first empty row under the Name label to activate an edit
control; then enter the parameter name.

e Double-click the row under the Type label to activate a drop-down list; then
select the parameter’s type.

Continue this procedure until you have entered all the parameters you need. To
delete a parameter, delete its row by clicking once in the row and pressing the
DELETE key or the BACKSPACE key.

5 Choose OK in the Add Method dialog box to create the member function.

See Also ClassWizard: Accessing Automation Servers

ClassWizard: Accessing Automation Servers

OLE automation allows other applications to expose objects and their interfaces to
your application. You can make use of this feature by writing automation clients in
C++, as well as in Visual Basic and other interpreted languages that support
automation.

For information and a procedure, see the article Automation Clients: Using Type
Libraries.

Client, OLE Automation

See the article Automation Clients.

174

Clipboard

Clipboard

The Clipboard is the standard Windows method of transferring data between a source
and a destination. It can also be very useful in OLE operations. With the advent of
OLE, there are two Clipboard mechanisms in Windows. The standard Windows
Clipboard API is still available, but it has been implemented by the OLE data transfer
mechanism. OLE uniform data transfer (UDT) supports Cut, Copy, and Paste with
the Clipboard and drag-and-drop. This article describes:

e When to use the OLE Clipboard mechanism and when to use the standard
Clipboard mechanism.

e Using the OLE Clipboard mechanism.

The Clipboard is a system service shared by the entire Windows session, so it does
not have a handle or class of its own. You manage the Clipboard through member
functions of class CWnd.

For a brief introduction to the standard Windows Clipboard API, see the article
Clipboard: Using the Windows Clipboard.

When to Use Each Mechanism

Follow these guidelines in using the Clipboard:

e Use the OLE Clipboard mechanism now to enable new capabilities in the future.
While the standard Clipboard API will be maintained, the OLE mechanism is the
future of data transfer.

e Use the OLE Clipboard mechanism if you are writing an OLE application or you
want any of the OLE features, such as drag and drop.

e Use the OLE Clipboard mechanism if you are providing OLE formats.

Using the OLE Clipboard Mechanism

OLE uses standard formats and some OLE-specific formats for transferring data
through the Clipboard.

When you cut or copy data from an application, the data is stored on the Clipboard to
be used later in paste operations. This data is in a variety of formats. When a user
chooses to paste data from the Clipboard, the application can choose which of these
formats to use. The application should be written to choose the format that provides
the most information, unless the user specifically asks for a certain format, using
Paste Special. Before continuing, you may want to read the Data Objects and Data
Sources (OLE) family of articles. They describe the fundamentals of how data
transfers work, and how to implement them in your applications.

Windows defines a number of standard formats that can be used for transferring data
through the Clipboard. These include metafiles, text, bitmaps, and others. OLE
defines a number of OLE-specific formats, as well. It is a good idea for applications

175

Clipboard

that need more detail than given by these standard formats to register their own
custom Clipboard formats. Use the RegisterClipboardFormat function to do this.

For example, Microsoft Excel registers a custom format for spreadsheets. This format
carries much more information than, for example, a bitmap does. When this data is
pasted into an application that supports the spreadsheet format, all the formulas and
values from the spreadsheet are retained and can be updated if necessary. Microsoft
Excel also put data on the Clipboard in formats so that it can be pasted as an OLE
item. Any OLE document container can paste this information in as an embedded
item. This embedded item can be changed using Microsoft Excel. The Clipboard also
contains a simple bitmap of the image of the selected range on the spreadsheet. This
can also be pasted into OLE document containers or into bitmap editors, like Paint.
In the case of a bitmap, however, there is no way to manipuate the data as a
spreadsheet.

To retrieve the maximum amount of information from the Clipboard, applications
should check for these custom formats before pasting data from the Clipboard.

For example, to enable the Copy command, you might write a handler something like
the following:

void CMyView::0nEditCopy()

{
// Create an OLE data source on the heap
COleDataSource* pData = new COleDataSource;
1l ...
// Get the currently selected data
/1 ...
// For the appropriate data formats..
pData->CacheData(CF_??, hData);
/7 ..
// The Clipboard now owns the allocated memory
// and will delete this data object
// when new data is put on the Ciipboard
pData->SetClipboard();

}

For more detailed information, see the following articles:
¢ Clipboard: Copying and Pasting Data

¢ Clipboard: Adding Other Formats

¢ Clipboard: Using the Windows Clipboard

See Also Clipboard: Copying and Pasting Data, OLE Overview, Data Objects and
Data Sources (OLE), Clipboard: Using the Windows Clipboard

Clipboard: Using the Windows Clipboard

176

This article describes how to use the standard Windows Clipboard API within your
MEC application.

Clipboard

Most applications for Windows support cutting or copying data to the Windows
Clipboard and pasting data from the Clipboard. The Clipboard data formats vary
among applications. The framework supports only a limited number of Clipboard
formats for a limited number of classes. You will normally implement the Clipboard-
related commands—Cut, Copy, and Paste—on the Edit menu for your view. The
class library defines the command IDs for these commands: ID_EDIT_CUT,
ID_EDIT_COPY, and ID_EDIT_PASTE. Their message-line prompts are also
defined.

Chapter 2, Working with Messages and Commands, explains how to handle menu
commands in your application by mapping the menu command to a handler function.
As long as your application does not define handler functions for the Clipboard
commands on the Edit menu, they remain disabled. To write handler functions for the
Cut and Copy commands, implement selection in your application. To write a handler
function for the Paste command, query the Clipboard to see whether it contains data
in a format your application can accept. For example, to enable the Copy command,
you might write a handler something like the following:

void CMyView::0nEditCopy()

{
if (!0penClipboard())
{
AfxMessageBox("Cannot open the Clipboard”);
return;
}

// Remove the current Clipboard contents
if(EmptyClipboard())

{
AfxMessageBox("Cannot empty the Clipboard”):
return;

}

/7 ...

// Get the currently selected data

/...

// For the appropriate data formats...

if (::SetClipboardbData(CF_??, hData) == NULL)

{
AfxMessageBox("Unable to set Clipboard data");
CloseClipboard();
return;

}

/...

CloseClipboard();

} ‘

The Cut, Copy, and Paste commands are only meaningful in certain contexts. The
Cut and Copy commands should be enabled only when something is selected, and the
Paste command only when something is in the Clipboard. You can provide this
behavior by defining update handler functions that enable or disable these commands
depending on the context. For more information, see How to Update User-Interface
Objects in Chapter 2.

177

Clipboard

The Microsoft Foundation Class Library does provide Clipboard support for text
editing with the CEdit and CEditView classes. The OLE classes also simplify
implementing Clipboard operations that involve OLE items. For more information on
the OLE classes, see Using the OLE Clipboard Mechanism in the article Clipboard.

Implementing other Edit menu commands, such as Undo (ID_EDIT_UNDO) and
Redo (ID_EDIT_REDQO), is also left to you. If your application does not support
these commands, you can easily delete them from your resource file using the Visual
C++ resource editors.

See Also Clipboard: Copying and Pasting Data

Clipboard: Copying and Pasting Data

178

This article describes the minimum work necessary to implement copying to and
pasting from the Clipboard in your OLE application. It is recommended that you read
the Data Objects and Data Sources (OLE) family of articles before proceeding.

Before you can implement either copying or pasting, you must first provide functions
to handle the Copy, Cut, and Paste options on the Edit menu.

Copying Data
» To copy data to the Clipboard
1 Determine whether the data to be copied is native data or is an embedded or linked
item. ‘
¢ If the data is embedded or linked, obtain a pointer to the COleClientItem
object that has been selected.

o If the data is native and the application is a server, create a new object derived
from COleServerItem containing the selected data. Otherwise, create a
COleDataSource object for the data.

2 Call the selected item’s CopyToClipboard member function.

3 If the user chose a Cut operation instead of a Copy operation, delete the selected
data from your application.

To see an example of this sequence, see the OnEditCut and OnEditCopy functions
in the MFC OLE sample programs OCLIENT and HIERSVR. Note that these
samples maintain a pointer to the currently selected data, so step 1 is already
complete. '

Pasting Data

Pasting data is more complicated than copying it because you need to choose the
format to use in pasting the data into your application.

Clipboard

» To paste data from the Clipboard

1 In your view class, implement OnEditPaste to handle users choosing the Paste
option from the Edit menu.

2 In the OnEditPaste function, create a COleDataObject object and call its
AttachClipboard member function to link this object to the data on the
Clipboard.

3 Call COleDataObject::IsDataAvailable to check whether a particular format is
available.

Alternately, you can use COleDataObject::BeginEnumFormats to look for other
formats until you find one most suited to your application.

4 Perform the paste of the format.

For an example of how this works, see the implementation of the OnEditPaste
member functions in the view classes defined in the MFC OLE sample programs
OCLIENT and HIERSVR.

Tip The main benefit of separating the paste operation into its own function is that the same
paste code can be used when data is dropped in your application during a drag-and-drop
operation. As in OCLIENT and HIERSVR, your OnDrop function can also call DoPasteltem,
reusing the code written to implement Paste operations.

To handle the Paste Special option on the Edit menu, see the article Dialog Boxes in
OLE.

See Also Clipboard: Adding Other Formats, Data Objects and Data Sources:
Creation and Destruction, OLE Overview

Clipboard: Adding Other Formats

This article explains how to expand the list of supported formats, particularly for
OLE support. The article Clipboard: Copying and Pasting Data describes the
minimum implementation necessary to support copying and pasting from the
Clipboard. If this is all you implement, the only formats placed on the Clipboard are
CF_METAFILEPICT, CF_EMBEDSOURCE, CF_OBJECTDESCRIPTOR, and
possibly CF_LINKSOURCE. Most applications will need more formats on the
Clipboard than these three.

Registering Custom Formats

To create your own custom formats, follow the same procedure you would use when
registering any custom Clipboard format: pass the name of the format to the
RegisterClipboardFormat function and use its return value as the format ID.

Placing Formats on the Clipboard

To add more formats to those placed on the Clipboard, you must override the
OnGetClipboardData function in the class you derived from either COleClientItem

179

CObject Class

or COleServerItem (depending on whether the data to be copied is native). In this
function, you should use the following procedure.
» To place formats on the Clipboard

1 Create a COleDataSource object.

2 Pass this data source to a function that adds your native data formats to the list of
supported formats by calling COleDataSource::CacheGlobalData.

3 Add standard formats by calling COleDataSource::CacheGlobalData for each
standard format you want to support.

This technique is used in the MFC OLE sample program HIERSVR (examine the
OnGetClipboardData member function of the CServerItem class). The only
difference in this sample is that step three is not implemented because HIERSVR
supports no other standard formats.

See Also Data Objects and Data Sources: Manipulation

CObject Class

CObject is the root base class for most of the Microsoft Foundation Class Library
(MFC). The CObject class contains many useful features that you may want to
incorporate into your own program objects, including serialization support, run-time
class information, and object diagnostic output. If you derive your class from
CObject, your class can exploit these CObject features.

The cost of deriving your class from CObject is minimal. Your derived class will
have the overhead of four virtual functions and a single CRuntimeClass object.

The following articles explain how to derive a class from CObject and how to access
run-time class information using CObject:

e CObject Class: Deriving a Class from CObject

e (CObiject Class: Specifying Levels of Functionality

e CObject Class: Accessing Run-Time Class Information
¢ (CObject Class: Dynamic Object Creation

See Also Files, Serialization (Object Persistence)

CObiject Class: Deriving a Class from CObject

180

This article describes the minimum steps necessary to derive a class from CObject.
Other CObject Class articles describe the steps needed to take advantage of specific
CObject features, such as serialization and diagnostic debugging support.

In the discussions of CObject, the terms “interface file” and “implementation file”
are used frequently. The interface file (often called the header file, or .H file) contains
the class declaration and any other information needed to use the class. The

CObject Class

implementation file (or .CPP file) contains the class definition as well the code that
implements the class member functions. For example, for a class named CPerson,
you would typically create an interface file named PERSON.H and an
implementation file named PERSON.CPP. However, for some small classes that will
not be shared among applications, it is sometimes easier to combine the interface and
implementation into a single .CPP file.

You can choose from four levels of functionality when deriving a class from
CObject:

e Basic functionality: No support for run-time class information or serialization but
includes diagnostic memory management.

e Basic functionality plus support for run-time class information.

e Basic functionality plus support for run-time class information and dynamic
creation.

¢ Basic functionality plus support for run-time class information, dynamic creation,
and serialization.

Classes designed for reuse (those that will later serve as base classes) should at least
include run-time class support and serialization support, if any future serialization
need is anticipated.

You choose the level of functionality by using specific declaration and
implementation macros in the declaration and implementation of the classes you
derive from CObject.

Table 1 shows the relationship among the macros used to support serialization and
run-time information.

Table 1 Macros Used for Serialization and Run-Time Information

CRuntimeClass:: CArchive::operator>>
Macro used CObject::IsKindOf CreateObject CArchive::operator<<
Basic CObject functionality No No No
DECLARE _DYNAMIC Yes No No
DECLARE_DYNCREATE Yes Yes No
DECLARE_SERIAL Yes Yes Yes

» To use basic CObject functionality

e Use the normal C++ syntax to derive your class from CObject (or from a class
derived from CObject).

The following example shows the simplest case, the derivation of a class from
CObject:

181

CObject Class

class CPerson : public CObject
{

// add CPerson-specific members and functions...
}

Normally, however, you may want to override some of CObject’s member functions
to handle the specifics of your new class. For example, you may usually want to
override the Dump function of CObject to provide debugging output for the contents
of your class. For details on how to override Dump, see the article Diagnostics:
Dumping Object Contents. You may also want to override the AssertValid function
of CObject to provide customized testing to validate the consistency of the data
members of class objects. For a description of how to override AssertValid, see
Overriding the AssertValid Function in the article Diagnostics: Checking Object
Validity.

The article CObject Class: Specifying Levels of Functionality describes how to
specify other levels of functionality, including run-time class information, dynamic
object creation, and serialization.

CObject Class: Specitying Levels of Functionality

This article describes how to add the following levels of functionality to your
CObject-derived class:

¢ Run-time class information

¢ Dynamic creation support

e Serialization support

For a general description of CObject functionality, see the article CObject Class:
Deriving a Class from CObject.

» To add run-time class information

CObject supports run-time class information through the IsKindOf function, which
allows you to determine if an object belongs to or is derived from a specified class.
For more detailed information, see the articles Files and Serialization (Object
Persistence). This capability is not supported directly by the C++ language. The
IsKindOf function permits you to do a type-safe cast down to a derived class.

Use the following steps to access run-time class information:

1. Derive your class from CObject, as described in the CObject Class: Deriving a
Class from CObject article.

2. Use the DECLARE_DYNAMIC macro in your class declaration, as shown here:

182

CObject Class

class CPerson : public CObject

{
DECLARE_DYNAMIC(CPerson)

// rest of class declaration follows...
}:

3. Use the IMPLEMENT_DYNAMIC macro in the implementation file (.CPP) of
your class. This macro takes as arguments the name of the class and its base class,
as follows:

IMPLEMENT_DYNAMIC(CPerson, CObject)

Note Always put IMPLEMENT_DYNAMIC in the implementation file (.CPP) for your class.
The IMPLEMENT_DYNAMIC macro should be evaluated only once during a compilation and
therefore should not be used in an interface file (.H) that could potentially be included in more
than one file.

» To add dynamic creation support

CObject also supports dynamic creation, which is the process of creating an object of
a specific class at run time. The object is created by the CreateObject member
function of CRuntimeClass. Your document, view, and frame class should support
dynamic creation because the framework (through the CDocTemplate class) needs to
create them dynamically. Dynamic creation is not supported directly by the C++
language. To add dynamic creation, you must do the following:

1 Derive your class from CObject.

2 Use the DECLARE_DYNCREATE macro in the class declaration.

3 Define a constructor with no arguments (a default constructor).

4 Use the IMPLEMENT_DYNCREATE macro in the class implementation file.

» To add serialization support

“Serialization” is the process of writing or reading the contents of an object to and
from a file. The Microsoft Foundation Class Library uses an object of the CArchive
class as an intermediary between the object to be serialized and the storage medium.
The CArchive object uses overloaded insertion (<<) and extraction (>>) operators to
perform writing and reading operations.

The following steps are required to support serialization in your classes:
1 Derive your class from CObject.

2 Override the Serialize member function.

Note If you call Serialize directly, that is, you do not want to serialize the object through a
polymorphic pointer, omit steps 3 through 5.

3 Use the DECLARE_SERIAL macro in the class declaration.

183

CObject Class

4 Define a constructor with no arguments (a default constructor).
5 Use the IMPLEMENT_SERIAL macro in the class implementation file.

Note A “polymorphic pointer” points to an object of a class (call it A} or to an object of any
class derived from A (say, B). To serialize through a polymorphic pointer, the framework must
determine the run-time class of the object it is serializing (B), since it might be an object of any
class derived from some base class (A).

For more details on how to enable serialization when you derive your class from
CObject, see the articles Files and Serialization (Object Persistence).

See Also CObject Class: Accessing Run-Time Class Information

CObject Class: Accessing Run-Time Class Information

This article explains how to access information about the class of an object at run
time.

Note MFC does not use the Run-Time Type Information (RTTI) support introduced in Visual
C++ 4.0. For more information about RTTI, see Run-Time Type Information in the C++
Language Reference.

If you have derived your class from CObject and used the DECLARE_DYNAMIC
and IMPLEMENT _DYNAMIC, the DECLARE_DYNCREATE and
IMPLEMENT_DYNCREATE, or the DECLARE_SERIAL and
IMPLEMENT_SERIAL macros explained in the article, CObject Class: Deriving a
Class from CObject, the CObject class has the ability to determine the exact class of
an object at run time.

The ability to determine the class of an object at run time is most useful when extra
type checking of function arguments is needed and when you must write special-
purpose code based on the class of an object. However, this practice is not usually
recommended because it duplicates the functionality of virtual functions.

The CObject member function IsKindOf can be used to determine if a particular
object belongs to a specified class or if it is derived from a specific class. The
argument to IsKindOf is a CRuntimeClass object, which you can get using the
RUNTIME_CLASS macro with the name of the class. The use of the

- RUNTIME_CLASS macro is shown in this article.

> To use the RUNTIME_CLASS macro

e Use RUNTIME_CLASS with the name of the class, as shown here for the class
CObject:

CRuntimeClass* pClass = RUNTIME_CLASS(CObject);

You will rarely need to access the run-time class object directly. A more common use
is to pass the run-time class object to the IsKindOf function, as shown in the next

184

CObject Class

procedure. The IsKindOf function tests an object to see if it belongs to a particular
class.

» To use the IsKindOf function

1 Make sure the class has run-time class support. That is, the class must have been
derived directly or indirectly from CObject and used the
DECLARE_DYNAMIC and IMPLEMENT _DYNAMIC, the
DECLARE_DYNCREATE and IMPLEMENT _DYNCREATE, or the
DECLARE_SERIAL and IMPLEMENT _SERIAL macros explained in the
article CObject Class: Deriving a Class from CObject.

2 Call the IsKindOf member function for objects of that class, using the
RUNTIME_CLASS macro to generate the CRuntimeClass argument, as shown
here:

// in .H file
class CPerson : public CObject
{ .
DECLARE_DYNAMIC(CPerson)
public:
CPerson(){};

// other declaration
}s

// in .CPP file
IMPLEMENT_DYNAMIC(CPerson, CObject)

CObject* pMyObject = new CPerson;

if(myObject->IsKindOf(RUNTIME_CLASS(CPerson)))
{
//if IsKindOf is true, then cast is all right
CPerson* pmyPerson = (CPerson*) pmyObject;
}

Note IsKindOf returns TRUE if the object is a member of the specified class or of a class
derived from the specified class. IsKindOf does not support muitiple inheritance or virtual
base classes, although you can use multiple inheritance for your derived Microsoft
Foundation classes if necessary.

One use of run-time class information is in the dynamic creation of objects. This
process is discussed in the article CObject Class: Dynamic Object Creation.

For more detailed information on serialization and run-time class information, see
the articles Files and Serialization (Object Persistence).

185

Collections

CObject Class: Dynamic Object Creation

This article explains how to create an object dynamically at run time. The procedure
uses run-time class information, as discussed in the article CObject Class: Accessing
Run-Time Class Information.

» To dynamically create an object given its run-time class

¢ Use the following code to dynamically create an object by using the CreateObject
function of the CRuntimeClass. Note that on failure, CreateObject returns
NULL instead of raising an exception:
CRuntimeClass* pRuntimeClass = RUNTIME_CLASS(CMyClass);

CObject* pObject = pRuntimeClass->CreateObject();
ASSERT(pObject->IsKindOf(RUNTIME_CLASS(CMyClass)));

Collections

186

This group of articles explains the MFC collection classes.

The Microsoft Foundation Class Library provides collection classes to manage groups
of objects. These classes are of two types:
e Collection classes created from C++ templates

¢ Collection classes not created from templates

Other topics covered in this article include:

¢ Collection shapes

¢ Further reading about collections

Tip The nontemplate collection classes have been provided by MFC beginning with MFC
version 1.0. If your code already uses these classes, you can continue to use them. If you write
new type-safe collection classes for your own data types, consider using the newer template-
based classes.

Collection Shapes

A collection class is characterized by its “shape” and by the types of its elements. The
shape refers to the way the objects are organized and stored by the collection. MFC
provides three basic collection shapes: lists, arrays, and maps (also known as
dictionaries). You can pick the collection shape most suited to your particular
programming problem.

Each of the three provided collection shapes is described briefly below. Table 1 in the
article Collections: Choosing a Collection Class compares the features of the shapes
to help you decide which is best for your program.

o List

Collections

The list class provides an ordered, nonindexed list of elements, implemented as a
doubly linked list. A list has a “head” and a “tail,” and adding or removing
elements from the head or tail, or inserting or deleting elements in the middle, is
very fast.

e Array

The array class provides a dynamically sized, ordered, and integer-indexed array
of objects.

¢ Map (also known as a dictionary)

A map is a collection that associates a key object with a value object.

The Template-Based Collection Classes

The easiest way to implement a type-safe collection that contains objects of any type
is to use one of the MFC template-based classes. For examples of these classes, see
the MFC Advanced Concepts sample COLLECT.

Table 1 lists the MFC template-based collection classes.

Table 1 Collection Template Classes

Collection contents Arrays Lists Maps
Collections of objects ~ CArray CList CMap
of any type

Collections of pointers ~ CTypedPtrArray CTypedPtrList CTypedPtrMap
to objects of any type

The Collection Classes Not Based on Templates

If your application already uses MFC nontemplate classes, you can continue to use
them, although for new collections you should consider using the template-based
classes. Table 2 lists the MFC collection classes not based on templates.

Table 2 Nontemplate Collection Classes

Arrays Lists Maps

CObArray CODbList CMapPtrToWord
CByteArray CPtrList CMapPtrToPtr
CDWordArray CStringList CMapStringToOb
CPtrArray CMapStringToPtr
CStringArray CMapStringToString
CWordArray CMapWordToOb
CUIntArray CMapWordToPtr

Table 2 in the article Collections: Choosing a Collection Class describes the MFC
collection classes in terms of their characteristics (other than shape):

187

Collections

e Whether the class uses C++ templates

‘Whether the elements stored in the collection can be serialized

Whether the elements stored in the collection can be dumped for diagnostics

‘Whether the collection is type-safe

Further Reading About Collections

The following articles describe how to use the collection classes to make type-safe
collections and how to perform a number of other operations using collections:

e Collections: Choosing a Collection Class

¢ Collections: Template-Based Classes

e Collections: How to Make a Type-Safe Collection

e Collections: Accessing All Members of a Collection

¢ Collections: Deleting All Objects in a CObject Collection

¢ Collections: Creating Stack and Queue Collections

Collections: Choosing a Collection Class

This article contains detailed information designed to help you choose a collection
class for your particular application needs.

Your choice of a collection class depends on a number of factors, including:

e The features of the class shape: order, indexing, and performance, as shown in
Table 1

e Whether the class uses C++ templates
e Whether the elements stored in the collection can be serialized
e Whether the elements stored in the collection can be dumped for diagnostics

e Whether the collection is type-safe

Table 1 summarizes the characteristics of the available collection shapes.

¢ Columns 2 and 3 describe each shape’s ordering and access characteristics. In the
table, the term “ordered” means that the order in which items are inserted and
deleted determines their order in the collection; it does not mean the items are
sorted on their contents. The term “indexed” means that the items in the collection
can be retrieved by an integer index, much like items in a typical array.

¢ Columns 4 and 5 describe each shape’s performance. In applications that require
many insertions into the collection, insertion speed might be especially important;
for other applications, lookup speed may be more important.

¢ Column 6 describes whether each shape allows duplicate elements.

188

Table 1 Collection Shape Features

Collections

Insert an Search for specified
Shape Ordered? Indexed? element element Duplicate elements?
List Yes No Fast Slow Yes
Array Yes By int Slow Slow Yes
Map No By key Fast Fast No (keys)

Table 2 summarizes other important characteristics of specific MFC collection classes
as a guide to selection. Your choice may depend on whether the class is based on C++
templates, whether its elements can be serialized via MFC’s document serialization
mechanism, whether its elements can be dumped via MFC’s diagnostic dumping
mechanism, or whether the class is type-safe—that is, whether you can guarantee the

type of elements stored in and retrieved from a collection based on the class.

Table 2 Characteristics of MFC Collection Classes

Yes (values)

Uses C++ Can be Can be Is
Class templates serialized dumped type-safe
CArray Yes Yes 1 Yes1 No
CTypedPtrArray Yes Depends 2 Yes Yes
CByteArray No Yes Yes Yes3
CDWordArray No Yes Yes Yes3
CObArray No Yes Yes No
CPtrArray No No Yes No
CStringArray No Yes Yes Yes 3
CWordArray No Yes Yes Yes 3
CUlntArray No No Yes Yes 3
CList Yes Yes 1 Yes1 No
CTypedPtrList Yes Depends 2 Yes Yes
CObList No Yes Yes No
CPtrList No No Yes No
CStringList No Yes Yes Yes 3
CMap Yes Yes't Yes 1 No
CTypedPtrMap Yes Depends 2 Yes Yes
CMapPtrToWord No No Yes No
CMapPtrToPtr No No Yes No
CMapStringToOb No Yes Yes No
CMapStringToPtr No No Yes No
CMapStringToString No Yes Yes Yes 3

189

Collections

Table 2 Characteristics of MFC Collection Classes (cont.)

Uses C++ Can be Can be Is
Class templates serialized dumped type-safe
CMapWordToOb No Yes Yes No
CMapWordToPtr No No Yes No

1 To serialize, you must explicitly call the collection object’s Serialize function; to dump, you must explicitly call its Dump function.
You cannot use the form ar << collObj to serialize or the form dmp << collObj to dump.

2 Serializability depends on the underlying collection type. For example, if a typed pointer array is based on CObArray, it is
serializable; if based on CPtrArray, it is not serializable. In general, the “Ptr” classes cannot be serialized.

3 If marked Yes in this column, a nontemplate collection class is type-safe provided you use it as intended. That is, for example, if you
store bytes in a CByteArray, the array is type-safe. But if you use it to store characters, its type safety is less certain.

See Also Collections: Template-Based Classes, Collections: How to Make a Type-
Safe Collection, Collections: Accessing All Members of a Collection

Collections: Template-Based Classes

190

This article explains the type-safe template-based collection classes in MFC version
3.0 and later. Using these templates to create type-safe collections is more convenient
and provides better type safety than using the collection classes not based on
templates.

MEC predefines two categories of template-based collections:

e Simple array, list, and map classes
CArray, CList, CMap

e Arrays, lists, and maps of typed pointers
CTypedPtrArray, CTypedPtrList, CTypedPtrMap

The simple collection classes are all derived from class CObject, so they inherit the
serialization, dynamic creation, and other properties of CObject. The typed pointer
collection classes require you to specify the class you derive from—which must be
one of the nontemplate pointer collections predefined by MFC, such as CPtrList or
CPtrArray. Your new collection class inherits from the specified base class, and the
new class’s member functions use encapsulated calls to the base class members to
enforce type safety.

For more information about Visual C++ templates, see Chapter 6, Templates, in
Programming Techniques.

Using Simple Array, List, and Map Templates

To use the simple collection templates, you ne=d to know what kind of data you can
store in these collections and what parameters to use in your collection declarations.

Collections

Simple Array and List Usage

The simple array and list classes, CArray and CList, take two parameters: TYPE and
ARG _TYPE. These classes can store any data type, which you specify in the TYPE
parameter:

¢ Fundamental C++ data types, such as int, char, and float
e C++ structures and classes

¢ Other types that you define

For convenience and efficiency, you can use the ARG TYPE parameter to specify the
type of function arguments. Typically, you specify ARG _TYPE as a reference to the
type you named in the TYPE parameter. For example:

CArray<int, int> myArray;
CList<CPerson, CPerson&> mylList;

The first example declares an array collection, myArray, that contains ints. The
second example declares a list collection, myList, that stores CPerson objects.
Certain member functions of the collection classes take arguments whose type is
specified by the ARG_TYPE template parameter. For example, the Add member
function of class CArray takes an ARG _TYPE argument:

CArray<CPerson, CPerson&> myArray;
CPerson person;
myArray->Add(person);

Simple Map Usage

The simple map class, CMap, takes four parameters: KEY, ARG KEY, VALUE, and
ARG VALUE. Like the array and list classes, the map classes can store any data type.
Unlike arrays and lists, which index and order the data they store, maps associate
keys and values: you access a value stored in a map by specifying the value’s
associated key. The KEY parameter specifies the data type of the keys used to access
data stored in the map. If the type of KEY is a structure or class, the ARG KEY
parameter is typically a reference to the type specified in KEY. The VALUE parameter
specifies the type of the items stored in the map. If the type of ARG _VALUE is a
structure or class, the ARG VALUE parameter is typically a reference to the type
specified in VALUE. For example:

CMap< int, int, MY_STRUCT, MY_STRUCT& > myMapl;
CMap< CString, LPCSTR, CPerson, CPerson& > myMap2;

The first example stores MY_STRUCT values, accesses them by int keys, and returns
accessed MY_STRUCT items by reference. The second example stores CPerson
values, accesses them by CString keys, and returns references to accessed items. This
example might represent a simple address book, in which you look up persons by last
name.

Because the KEY parameter is of type CString and the KEY TYPE parameter is of
type LPCSTR, the keys are stored in the map as items of type CString but are

191

Collections

182

referenced in functions such as SetAt through pointers of type LPCSTR. For
example:

CMap< CString, LPCSTR, CPerson, CPerson& > myMap2;
CPerson person;

LPCSTR TpstrName = "Jones";

myMap2->SetAt(1pstrName, person);

Using Typed-Pointer Collection Templates

To use the typed-pointer collection templates, you need to know what kinds of data
you can store in these collections and what parameters to use in your collection
declarations.

Typed-Pointer Array and List Usage

The typed-pointer array and list classes, CTypedPtrArray and CTypedPtrList, take
two parameters: BASE _CLASS and TYPE. These classes can store any data type,
which you specify in the TYPE parameter. They are derived from one of the
nontemplate collection classes that stores pointers; you specify this base class in
BASE CLASS. For arrays, use either CObArray or CPtrArray. For lists, use either
CObList or CPtrList.

In effect, when you declare a collection based on, say CObList, the new class not
only inherits the members of its base class, but it also declares a number of additional
type-safe member functions and operators that provide type safety by encapsulating
calls to the base class members. These encapsulations manage all necessary type
conversion.

For example:

CTypedPtrArray<CObArray, CPerson*> myArray;
CTypedPtrList<CPtrList, MY_STRUCT*> myList;

The first example declares a typed-pointer array, myArray, derived from CObArray.
The array stores and returns pointers to CPerson objects (where CPerson is a class
derived from CObject). You can call any CObArray member function, or you can
call the new type-safe GetAt and ElementAt functions or use the type-safe []
operator.

The second example declares a typed-pointer list, myL1ist, derived from CPtrList.
The list stores and returns pointers to MY_STRUCT objects. A class based on CPtrList
is used for storing pointers to objects not derived from CObject. CTypedPtrList has
a number of type-safe member functions: GetHead, GetTail, RemoveHead,
RemoveTail, GetNext, GetPrev, and GetAt.

Typed-Pointer Map Usage

The typed-pointer map class, CTypedPtrMap, takes three parameters:

BASE CLASS, KEY, and VALUE. The BASE CLASS parameter specifies the class
from which to derive the new class: CMapPtrToWord, CMapPtrToPtr,
CMapStringToPtr, CMapWordToPtr, CMapStringToODb, and so on. KEY is

Collections

analogous to KEY in CMap: it specifies the type of the key used for lookups. VALUE
is analogous to VALUE in CMap: it specifies the type of object stored in the map.
For example:

CTypedPtrMap<CMapPtrToPtr, CString, MY_STRUCT*> myPtrMap;
CTypedPtrMap<CMapStringToOb, CString, CMyObject*> myObjectMap;

The first example is a map based on CMapPtrToPtr—it uses CString keys mapped
to pointers to MY_STRUCT. You can look up a stored pointer by calling a type-safe
Lookup member function. You can use the [] operator to look up a stored pointer and
add it if not found. And you can iterate the map using the type-safe GetNextAssoc
function. You can also call other member functions of class CMapPtrToPtr.

The second example is a map based on CMapStringToOb—it uses string keys
mapped to stored pointers to CMyObject objects. You can use the same type-safe
members described in the previous paragraph, or you can call members of class
CMapStringToOb.

Note If you specify a class or struct type for the VALUE parameter, rather than a pointer or
reference to the type, the class or structure must have a copy constructor.

See Also Collections: How to Make a Type-Safe Collection

In the Class Library Reference: CArray, CList, CMap, CTypedPtrArray,
CTypedPtrList, CTypedPtrMap

Collections: How to Make a Type-Safe Collection

This article explains how to make type-safe collections for your own data types.
Topics include:

o Using template-based classes for type-safety

¢ Implementing helper functions

¢ Using nontemplate collection classes

The Microsoft Foundation Class Library provides predefined type-safe collections
based on C++ templates. Because they are templates, these classes provide type safety
and ease of use without the type-casting and other extra work involved in using a
nontemplate class for this purpose. The MFC Advanced Concepts sample COLLECT

demonstrates the use of template-based collection classes in an MFC application. In
general, use these classes any time you write new collections code.

Using Template-Based Classes for Type-Safety
» To use template-based classes

1 Declare a variable of the collection class type. For example:
CList<int, int> m_intList;

193

Collections

194

2 Call the member functions of the collection object. For example:

m_intList.AddTail(100);
m_intList.RemoveAll();

3 If necessary, implement the helper functions SerializeElements,
ConstructElements, and DestructElements. For information on implementing
these functions, see Implementing Helper Functions.

This example shows the declaration of a list of integers. The first parameter in step 1
is the type of data stored as elements of the list. The second parameter specifies how
the data is to be passed to and returned from member functions of the collection class,
such as Add and GetAt.

Implementing Helper Functions

The template-based collection classes CArray, CList, and CMap use six global
helper functions that you can customize as needed for your derived collection class.
For information on these helper functions, see Collection Class Helpers in the Class
Library Reference. Three of these helper functions are used in constructing,
destructing, and serializing collection elements; implementations of these functions
are necessary for most uses of the template-based collection classes.

Construction and Destruction
The helper functions ConstructElements and DestructElements are called by
members that respectively add and remove elements from a collection.

Helper- Called directly by Called indirectly by
ConstructElements CArray::SetSize CList::AddHead
CArray::InsertAt CList::AddTail

CList::InsertBefore
CList::InsertAfter
CMap::operator []

DestructElements CArray::SetSize CList::RemoveHead
CArray::RemoveAt CList::RemoveTail
CList::RemoveAll CList::RemoveAt
CMap::RemoveAll CMap::RemoveKey

You should override these functions if their default action is not suitable for your
collection class. The default implementation of ConstructElements sets to 0 the
memory that is allocated for new elements of the collection; no constructors are
called. The default implementation of DestructElements does nothing.

In general, overriding ConstructElements is necessary whenever the collection
stores objects that require a call to a constructor (or other initializing function), or
when the objects have members requiring such calls. Overriding DestructElements
is necessary when an object requires special action, such as the freeing of memory
allocated from the heap, when the object is destroyed.

For example, you might override ConstructElements for an array of CPerson objects
as follows:

CPerson : public CObject { . . . };
CArray< CPerson, CPerson& > personArray;

void ConstructElements(CPerson* pNewPersons, int nCount)
{
for (int i = 0; i < nCount; i++, pNewPersons++)
{
// call CPerson default constructor directly
new(pNewPersons)CPerson;

}

This override iterates through the new CPerson objects, calling each object’s
constructor. The special new operator used here constructs a new CPerson object in
place rather than allocating memory from the heap.

Serializing Elements
The CArray, CList, and CMap classes call SerializeElements to store collection
elements to or read them from an archive.

The default implementation of the SerializeElements helper function does a bitwise
write from the objects to the archive, or a bitwise read from the archive to the objects,
depending on whether the objects are being stored in or retrieved from the archive.
Override SerializeElements if this action is not appropriate.

If your collection stores objects derived from CObject and you use the
IMPLEMENT _SERIAL macro in the implementation of the collection element
class, you can take advantage of the serialization functionality built into CArchive
and CObject:

CPerson : public CObject { . . . };
CArray< CPerson, CPerson& > personArray;

void SerializeElements(CArchive& ar, CPerson* pNewPersons, int nCount)

{
for (int i = @8; i < nCount; i++, pNewPersons++)
{
// Serialize each CPerson object
pNewPersons->Serialize(ar);

}

The overloaded insertion operators for CArchive call CObject::Serialize (or an
override of that function) for each CPerson object.

Using Nontemplate Collection Classes

MEFC also supports the collection classes introduced with MFC version 1.0. These
classes are not based on templates. They can be used to contain data of the supported

Collections

195

Collections

196

types CObject®, UINT, DWORD, and CString. You can use these predefined
collections (such as CObList) to hold collections of any objects derived from
CObject. MFC also provides other predefined collections to hold primitive types
such as UINT and void pointers (void*). In general, however, it is often useful to
define your own type-safe collections to hold objects of a more specific class and its
derivatives. Note that doing so with the collection classes not based on templates is
more work than using the template-based classes.

There are two ways to create type-safe collections with the nontemplate collections:
1. Use the nontemplate collections, with type casting if necessary. This is the easiest
approach.

2. Derive from and extend a nontemplate type-safe collection.

» To use the nontemplate collections with type casting.
¢ Use one of the nontemplate classes, such as CWordArray, directly.

For example, you can create a CWordArray and add any 32-bit values to it, then
retrieve them. There is nothing more to do. You just use the predefined
functionality.

You can also use a predefined collection, such as CObList, to hold any objects
derived from CObject. A CObList collection is defined to hold pointers to
CObject. When you retrieve an object from the list, you may have to cast the
result to the proper type since the CObList functions return pointers to CObject.
For example, if you store CPerson objects in a CObList collection, you have to
cast a retrieved element to be a pointer to a CPerson object. The following
example uses a CObList collection to hold CPerson objects:

class CPerson : public CObject {...};

CPerson* pl = new CPerson(...);
CObList myList;

myList.AddHead(pl); // No cast needed
CPerson* p2 = (CPerson*)mylList.GetHead();

This technique of using a predefined collection type and casting as necessary may
be adequate for many of your collection needs. If you need further functionality or
more type safety, use a template-based class, or read the next procedure.

» To derive and extend a nontemplate type-safe collection

e Derive your own collection class from one of the predefined nontemplate classes.

When you derive your class, you can add type-safe wrapper functions to provide a
type-safe interface to existing functions.

Collections

For example, if you derived a list from CObList to hold CPerson objects, you
might add the wrapper functions AddHeadPerson and GetHeadPerson, as
shown below.

class CPersonlList : public CObList

{
public:
void AddHeadPerson(CPerson* person)
{AddHead(person);}
const CPerson* GetHeadPerson()
{return (CPerson*)GetHead();}
b

These wrapper functions provide a type-safe way to add and retrieve CPerson
objects from the derived list. You can see that for the GetHeadPerson function,
you are simply encapsulating the type casting.

You can also add new functionality by defining new functions that extend the
capabilities of the collection rather than just wrapping existing functionality in
type-safe wrappers. For example, the article Collections: Deleting All Objects in a
CObject Collection describes a function to delete all the objects contained in a list.
This function could be added to the derived class as a member function.

See Also Collections: Accessing All Members of a Collection, Technical Note 4

Collections: Accessing All Members of a Collection

The MFC array collection classes—both template-based and not—use indexes to
access their elements. The MFC list and map collection classes—both template-
based and not—use an indicator of type POSITION to describe a given position
within the collection. To access one or more members of these collections, you first
initialize the position indicator and then repeatedly pass that position to the collection
and ask it to return the next element. The collection is not responsible for
maintaining state information about the progress of the iteration. That information is
kept in the position indicator. But, given a particular position, the collection is
responsible for returning the next element.

The following procedures show how to iterate over the three main types of collections
provided with MFC:

e Iterating an array
o Iterating a list

o Iterating a map

» Toiterate an array

e Use sequential index numbers with the GetAt member function:

197

Collections

198

CTypedPtrArray(CObArray, CPerson*> myArray;

for(int i = @; 1 < myArray.GetSize();i++)
{
CPerson* thePerson = myArray.GetAt(i);

This example uses a typed pointer array that contains pointers to CPerson objects.
The array is derived from class CObArray, one of the nontemplate predefined
classes. GetAt returns a pointer to a CPerson object. For typed pointer collection
classes—arrays or lists—the first parameter specifies the base class; the second
parameter specifies the type to store.

The CTypedPtrArray class also overloads the [] operator so that you can use the
customary array-subscript syntax to access elements of an array. An alternative to
the statement in the body of the for loop above is

CPerson* thePerson = myArray[i 1;

This operator exists in both const and non-const versions. The const version,
which is invoked for const arrays, can appear only on the right side of an
assignment statement.

To iterate a list

Use the member functions GetHeadPosition and GetNext to work your way
through the list:

CTypedPtrList<CObList, CPerson*> myList;

POSITION pos = mylList.GetHeadPosition();
while(pos != NULL)
{
CPerson* thePerson = mylList.GetNext(pos);

This example uses a typed pointer list to contain pointers to CPerson objects. The
list declaration resembles the one for the array in the procedure *“To iterate an
array” (above) but is derived from class CObList. GetNext returns a pointer to a
CPerson object.

To iterate a map

Use GetStartPosition to get to the beginning of the map and GetNextAssoc to
repeatedly get the next key and value from the map, as shown by the following
example:

CMap<CString, LPCTSTR, CPerson*, CPerson*> myMap;

POSITION pos = myMap.GetStartPosition();

Collections

while(pos != NULL)

{
CPerson* pPerson:
CString string;
// Get key (string) and value (pPerson)
myMap.GetNextAssoc(pos, string, pPerson);
// Use string and pPerson

}

This example uses a simple map template (rather than a typed pointer collection)
that uses CString keys and stores pointers to CPerson objects. When you use
access functions such as GetNextAssoc, the class provides pointers to CPerson
objects. If you use one of the nontemplate map collections instead, you must cast
the returned CObject pointer to a pointer to a CPerson.

Note For nontemplate maps, the compiler requires a reference to a CObject pointer in the
last parameter to GetNextAssoc. On input, you must cast your pointers to that type, as
shown in the next example.

The template solution is cleaner and provides better type safety. The nontemplate
code is more complicated, as you can see here:

CMapStringToOb myMap; // A nontemplate collection class

POSITION pos = myMap.GetStartPosition();
while(pos != NULL)
{
CPerson* pPerson;
CString string;
// Gets key (string) and value (pPerson)
myMap.GetNextAssoc(pos, string,
(CObject*&)pPerson);
ASSERT(pPerson->IsKind0f(
RUNTIME_CLASS(CPerson)));
// Use string and pPerson

See Also Collections: Deleting All Objects in a CObject Collection

Collections: Deleting All Objects in a CObject
Collection

This article explains how to delete all objects in a collection (without deleting the
collection object itself).

To delete all the objects in a collection of CObjects (or of objects derived from
CObject), you use one of the iteration techniques described in the article Collections:
Accessing All Members of a Collection to delete each object in turn.

199

Collections

200

Caution Objects in collections can be shared. That is, the collection keeps a pointer fo the
object, but other parts of the program may also have pointers to the same object. You must be
careful not to delete an object that is shared until all the parts have finished using the object.

This article shows you how to delete the objects in:
o Alist
e - An array

* A map

» To delete all objects in a list of pointers to CObject
1 Use GetHeadPosition and GetNext to iterate through the list.
2 Use the delete operator to delete each object as it is encountered in the iteration.

3 Call the RemoveAll function to remove all elements from the list after the objects
associated with those elements have been deleted.

The preceding technique deletes all objects in a list.

The following example shows how to delete all objects from a list of CPerson
objects. Each object in the list is a pointer to a CPerson object that was originally
allocated on the heap.

CTypedPtrList<CObList, CPerson*> myList;
POSITION pos = mylList.GetHeadPosition();

while(pos != NULL)
{
delete myList.GetNext(pos)s
}
myList.RemoveAll1();
The last function call, RemoveAll, is a list member function that removes all
elements from the list. The member function RemoveAt removes a single element.

Notice the difference between deleting an element’s object and removing the element
itself. Removing an element from the list merely removes the list’s reference to the
object. The object still exists in memory. When you delete an object, it ceases to exist
and its memory is reclaimed. Thus, it is important to remove an element immediately
after the element’s object has been deleted so that the list won’t try to access objects
that no longer exist.

» To delete all elements in an array
1 Use GetSize and integer index values to iterate through the array.
2 Use the delete operator to delete each element as it is encountered in the iteration.

3 Call the RemoveAll function to remove all elements from the array after they have
been deleted.

Collections

The code for deleting all elements of an array is as follows:
CArray<CPerson*, CPerson*> myArray;

int i = 0;
while (i < myArray.GetSize())
{

delete myArray.GetAt(i++);
}

myArray.RemoveAll1();

Like the list example above, you can call RemoveAll to remove all elements in an
array or RemoveAt to remove an individual element.

» To delete all elements in a map
1 Use GetStartPosition and GetNextAssoc to iterate through the array.

2 Use the delete operator to delete the key and/or value for each map element as it is
encountered in the iteration.

3 Call the RemoveAll function to remove all elements from the map after they have
been deleted.

The code for deleting all elements of a CMap collection is as follows. Each
element in the map has a string as the key and a CPerson object (derived from
CObject) as the value.

CMap<CString, LPCSTR, CPerson*, CPerson*> myMap;
// ... Add some key-value elements ...

// Now delete the elements

POSITION pos = myMap.GetStartPosition();

while(pos != NULL)

{
CPerson* pPerson;
CString string;
// Gets key (string) and value (pPerson)
myMap.GetNextAssoc(pos, string, pPerson);
delete pPerson;

}

// RemoveAll deletes the keys
myMap.RemoveAl1();

You can call RemoveAll to remove all elements in a map or RemoveKey to remove

an individual element with the specified key.

See Also Collections: Creating Stack and Queue Collections

201

Collections

Collections: Creating Stack and Queue Collections

This article explains how to create other data structures, such as stacks and queues,
from MFC list classes. The examples use classes derived from CList, but you can use
ClList directly unless you need to add functionality.

Stacks

Because the standard list collection has both a head and a tail, it is easy to create a
derived list collection that mimics the behavior of a last-in-first-out stack. A stack is
like a stack of trays in a cafeteria. As trays are added to the stack, they go on top of
the stack. The last tray added is the first to be removed. The list collection member
functions AddHead and RemoveHead can be used to add and remove elements
specifically from the head of the list; thus the most recently added element is the first
to be removed.

» To create a stack collection

o Derive a new list class from one of the existing MFC list classes and add more
member functions to support the functionality of stack operations.

The following example shows how to add member functions to push elements on
to the stack, peek at the top element of the stack, and pop the top element from the

stack:
class CTray : public CObject { ... };
class CStack : public CTypedPtrList< CObList, CTray* >
{
public:
// Add element to top of stack
void Push(CTray* newTray)
{ AddHead(newTray); 1}
// Peek at top element of stack
CTray* Peek()
{ return IsEmpty() ? NULL : GetHead(); }
// Pop top element off stack
CTray* Pop()
{ return RemoveHead(); }
}:

Note that this approach exposes the underlying CObList class. The user can call any
CObList member function, whether it makes sense for a stack or not.

Queues

Because the standard list collection has both a head and a tail, it is also easy to create
a derived list collection that mimics the behavior of a first-in-first-out queue. A queue
is like a line of people in a cafeteria. The first person in line is the first to be served.

202

Commit

As more people come, they go to the end of the line to wait their turn. The list
collection member functions AddTail and RemoveHead can be used to add and
remove elements specifically from the head or tail of the list; thus the most recently
added element is always the last to be removed.

» To create a queue collection

e Derive a new list class from one of the predefined list classes provided with the
MFC Library and add more member functions to support the semantics of queue
operations.

The following example shows how you can append member functions to add an
element to the end of the queue and get the element from the front of the queue.

class CPerson : public CObject { ... }:
class CQueue : public CTypedPtrList< CObList, CPerson* >
{
public:
// Go to the end of the line
void AddToEnd(CPerson* newPerson)
{ AddTail(newPerson); } // End of the queue
// Get first element in line
CPerson* GetFromFront()
{ return IsEmpty() ? NULL : RemoveHead(); }
};

Column

A column is a field in a table. For example, the first field in all the records in a table
constitutes a vertical column in the table.

If you’re using the MFC ODBC classes, see the article Recordset (ODBC). If you’re
using the MFC DAO classes, see the article DAO Workspace: Managing
Transactions.

Commit

Completing an update to the data source.

If you’re using the MFC ODBC classes, see the article Transaction (ODBC). If you’re
using the MFC DAO classes, see the article DAO Workspace: Managing
Transactions.

203

COMMON .RES Sample Resources

COMMON.RES Sample Resources

Visual C++ includes sample resources that you can use in your own application.
These include:

¢ A large number of icons that represent common business and data-processing
tasks.

¢ Several commonly used cursors that are not included as predefined Windows
resources.

e A selection of toolbar-button bitmaps.

These resources are located in a file called COMMON.RES in the MFC General
sample CLIPART on the Visual C++ CD-ROM. Additional sample resources can be
found in this directory.

» To copy resources from COMMON.RES to your own resource script file

1 Use the Visual C++ File menu to open both your .RC file and COMMON.RES at
the same time.

2 Hold down the CTRL key and drag the resources you want from the
COMMON.RES resource browser window to the resource browser window of your
own application.

For more information about browsing and editing resources with Visual C++, see
Chapter 5, Working with Resources, in the Visual C++ User’s Guide.

Connection Points

204

This article explains how to implement OLE connection points using CCmdTarget
and CConnectionPoint.

In the past, OLE’s Component Object Model (COM) defined a general mechanism
(IUnknown::Querylnterface) that allowed objects to implement and expose
functionality in interfaces. However, a corresponding mechanism that allowed objects
to expose their capability to call specific interfaces was not defined. That is, COM
defined how incoming pointers to objects (pointers to that object’s interfaces) were
handled, but it did not have an explicit model for outgoing interfaces (pointers the
object holds to other objects’ interfaces). COM now has a model, called “connection
points,” that supports this functionality.

A connection has two parts: the object calling the interface, called the “source,” and
the object implementing the interface, called the “sink.” A connection point is the
interface exposed by the source. By exposing a connection point, a source allows
sinks to establish connections to itself (the source). Through the connection point
mechanism (the IConnectionPoint interface), a pointer to the sink interface is passed

Connection Points

to the source object. This pointer provides the source with access to the sink’s
implementation of a set of member functions. For example, to fire an event
implemented by the sink, the source can call the appropriate method of the sink’s
implementation. Figure 1 demonstrates the connection point just described.

Figure 1 An Implemented Connection Point

IConnectionPoint interface ISampleSink interface

MFC implements this model in the CConnectionPoint and CCmdTarget classes.
Classes derived from CConnectionPoint implement the IConnectionPoint interface,
used to expose connection points to other OLE objects. Classes derived from
CCmdTarget implement the IConnectionPointContainer interface, which can
enumerate all of an object’s available connection points or find a specific connection
point.

For each connection point implemented in your class, you must declare a “connection
part” that implements the connection point. If you implement one or more connection
points, you must also declare a single “connection map” in your class. A connection
map is a table of connection points supported by the OLE control.

The following examples demonstrate a simple connection map and one connection
point. The first example declares the connection map and point; the second example
implements the map and point. Note that CMyC1ass must be a CCmdTarget-derived
class. In the first example, code is inserted in the class declaration, under the
protected section:

class CMyClass : public CCmdTarget
{

protected:
// Connection point for ISample interface
BEGIN_CONNECTION_PART(CMyClass, SampleConnPt)
CONNECTION_IID(IID_ISampleSink)
END_CONNECTION_PART(SampleConnPt)

DECLARE_CONNECTION_MAP()
};

The BEGIN_CONNECTION_PART and END_CONNECTION_PART macros
declare an embedded class, XSampleConnPt (derived from CConnectionPoint) that
implements this particular connection point. If you want to override any

205

Connection Points

206

CConnectionPoint member functions or add member functions of your own, declare
them between these two macros. For example, the CONNECTION_IID macro
overrides the CConnectionPoint::GetIID member function when placed between
these two macros.

In the second example, code is inserted in the control’s implementation file (.CPP).
This code implements the connection map, which includes the connection point,
SampleConnPt:

BEGIN_CONNECTION_MAP(CMyClass, CMyBaseClass)
CONNECTION_PART(CMyClass, IID_ISampleSink, SampieConnPt)
END_CONNECTION_MAP()

If your class has more than one connection point, insert additional
CONNECTION_PART macros between the BEGIN_CONNECTION_MAP and
END_CONNECTION_MAP macros.

Finally, add a call to EnableConnections in the class’s constructor. For example:

CMyClass::CMyClass()
{
EnableConnections();

}

Once this code has been inserted, your CCmdTarget-derived class exposes a
connection point for the ISampleSink interface. Figure 2 illustrates this example.

Figure 2 A Connection Point Implemented with MFC

IConnectionPointContainer interface ISampleSink interface

XSampleConnPt

IConnectionPoint interface

CMyClass is derived from CCmdTarget.
XSampleConnPt is derived from CConnectionPoint.

Usually, connection points support “multicasting”—the ability to broadcast to multiple
sinks connected to the same interface. The following example fragment demonstrates
how to multicast by iterating through each sink on a connection point:

Containers

void CMyClass::CaliSinkFunc()

{
const CPtrArray* pConnections = m_xSampleConnPt.GetConnections();
ASSERT(pConnections = NULL);
int cConnections = pConnections->GetSize();
ISampleSink* pSampleSink;
for (int i = @; i < cConnections; i++)
{
pSampleSink = (ISampleSink*)(pConnections->GetAt(i));
ASSERT(pSampleSink != NULL);
pSampleSink->SinkFunc();
}
}

This example retrieves the current set of connections on the SampleConnPt
connection point with a call to CConnectionPoint::GetConnections. It then iterates
through the connections and calls ISampleSink::SinkFunc on every active
connection.

Connect String

A string containing the necessary information to connect to an Open Database
Connectivity (ODBC) data source. Connect strings are used with ODBC data sources
whether you are working with MFC’s ODBC classes, including CDatabase, or with
MFC’s Data Access Object (DAO) classes, including CDaoDatabase.

See CDaoDatabase::Open, CDatabase::Open, and
CRecordset::GetDefaultConnect in the Class Library Reference.

Containers

A “container application” is an application that can incorporate embedded or linked
items into its own documents. The documents managed by a container application
must be able to store and display OLE document components as well as data created
by the application itself. A container application must also allow users to insert new
items or edit existing items. Chapters 13 through 15 in Tutorials take you through the
process of creating a container application. You should complete that tutorial before
reading this family of articles.

The following articles detail various issues you must address when writing container
applications:

e Containers: Implementing a Container
¢ Containers: Client Items

e Containers: Compound Files

207

Containers

o Containers: User-Interface Issues

e Containers: Advanced Features

See Also Servers, Activation, Menus and Resources

Containers: Implementing a Container

Chapters 13 through 15 in Tutorials describe the implementation of a simple visual
editing contairier, CONTAINER, explaining each step in detail. This article
summarizes the tutorial procedure and points you to other articles that provide more
detailed explanations of the various facets of implementing containers. It also lists
some optional OLE features you may want to implement and the articles describing
these features. ‘ ,

» To prepare your 'CWinApp-derived class

1 Initialize the OLE libraries by calling AfxOlelnit in the InitInstance member
function.

2 Call CDocTemplate::SetContainerInfo in InitInstance to assign the menu and
accelerator resources used when an embedded item is activated in-place. For more
information on this topic, see the Activation article.

These features are provided for you automatically when you use AppWizard to create
a container application. See the article AppWizard: OLE Support.

» To prepare your view class

1 Keep track of selected items by maintaining a pointer, or list of pointers if you
support multiple selection, to the selected items. Your OnDraw function must
draw all OLE items.

2 Override IsSelected to check whether the item passed to it is currently selected.

3 Implement an OnInsertObject message handler to display the Insert Object
dialog box.

4 Implement an OnSetFocus message handler to transfer focus from the view to an
in-place active OLE embedded item.

5 Implement an OnSize message handler to inform an OLE embedded item that it
needs to change its rectangle to reflect the change in size of its containing view.

Because the implementation of these features varies dramatically from one
application to the next, AppWizard provides only a basic implementation. You will
likely have to customize these functions to get your application to function properly.
For a more detailed explanation and an example of this, see Chapter 15 of Tutorials
and the MFC Tutorial sample CONTAINER. For information about MFC samples,
see MFC Samples under Samples in Books Online.

208

Containers

» To handle embedded and linked items

1 Derive a class from COleClientItem. Objects of this class represent items that
have been embedded in or linked to your OLE document.

2 Override OnChange, OnChangeltemPosition, and OnGetItemPosition. These
functions handle sizing, positioning, and modifying embedded and linked items.

AppWizard will derive the class for you, but you will likely need to override
OnChange and the other functions listed with it in step 2 in the preceding procedure.
The skeleton implementations need to be customized for most applications, because
these functions are implemented differently from one application to the next. For
more information about this, see step 2 of the CONTAINER tutorial in Tutorials and
the MFC OLE sample DRAWCLI. For information about MFC samples, see Samples
in Books Online.

You must add a number of items to the container application’s menu structure to
support OLE. For more information on these, see the article Menus and Resources:
Container Additions.

You may also want to support some of the following features in your container
application:
e In-place activation when editing an embedded item.

For more information, see the article Activation.

e Creation of OLE items by dragging and dropping a selection from a server
application.

For more information, see the article Drag and Drop.
e Links to embedded objects or combination container/server applications.

For more information, see the article Containers: Advanced Features.

See Also Containers: Client Items

Containers: Client Items

This article explains what client items are and from what classes your application
should derive its client items.

“Client items” are data items belonging to another application that are either
contained in or referenced by a container application’s document. Client items whose
data is contained within the document are “embedded;” those whose data is stored in
another location referenced by the container document are “linked.”

The document class in an OLE application is derived from the class COleDocument
rather than CDocument. The COleDocument class inherits from CDocument all of
the functionality necessary for using the document/view architecture on which MFC
applications are based. COleDocument also defines an interface that treats a

209

Containers

document as a collection of CDocItem objects. Several COleDocument member
functions are provided for adding, retrieving, and deleting elements of that collection.

Every container application should derive at least one class from COleClientItem.
Objects of this class represent items, embedded or linked, in the OLE document.
These objects exist for the life of the document containing them, unless they are
deleted from the document.

CDocltem is the base class for COleClientItem and COleServerItem. Objects of
classes derived from these two act as intermediaries between the OLE item and the
client and server applications, respectively. Each time a new OLE item is added to the
document, the framework adds a new object of your client application’s
COleClientItem-derived class to the document’s collection of CDocltem objects.

See Also Containers: Compound Files, Containers: User-Interface Issues,
Containers: Advanced Features

In the Class Library Reference: COleClientItem, COleServerltem

Containers: Client-Item Notifications

210

This article discusses the overridable functions that the framework calls when server
applications modify items in your client application’s document.

COleClientItem defines several overridable functions that are called in response to
requests from the component application, which is also called the “server
application.” These overridables usually act as notifications. They inform the
container application of various events, such as scrolling, activation, or a change of
position, and of changes that the user makes when editing or otherwise manipulating
the item.

The framework notifies your container application of changes through a call to
COleClientItem::OnChange, an overridable function whose implementation is
required. This protected function receives two arguments. The first specifies the
reason the server changed the item:

Notification Meaning

OLE_CHANGED The OLE item’s appearance has changed.

OLE_SAVED The OLE item has been saved.

OLE_CLOSED The OLE item has been closed.

OLE_RENAMED The server document containing the OLE item has been
renamed.

OLE_CHANGED_STATE The OLE item has changed from one state to another.

OLE_CHANGED_ASPECT The OLE item’s draw aspect has been changed by the
framework.

These values are from the OLE_NOTIFICATION enumeration, which is defined in
AFXOLE.H.

Containers

The second argument to this function specifies how the item has changed or what
state it has entered:

When first argument is Second argument

OLE_SAVED or Is not used.

OLE_CLOSED

OLE_CHANGED Specifies the aspect of the OLE item that has changed.

OLE_CHANGED _STATE Describes the state being entered (emptyState,
loadedState, openState, activeState, or
activeUIState).

For further information about the states a client item can assume, see the article
Containers: Client-Item States.

The framework calls COleClientItem::OnGetItemPosition when an item is being
activated for in-place editing. Implementation is required for applications that
support in-place editing. AppWizard provides a basic implementation, which assigns
the item’s coordinates to the CRect object that is passed as an argument to
OnGetItemPosition.

If an OLE item’s position or size changes during in-place editing, the container’s
information about the item’s position and clipping rectangles must be updated and
the server must receive information about the changes. The framework calls
COleClientItem::OnChangeltemPosition for this purpose. AppWizard provides an
override that calls the base class’s function. You should edit the function AppWizard
writes for your COleClientItem-derived class so that the function updates any
information retained by your client-item object.

See Also Containers: Client-Item States

In the Class Library Reference: COleClientItem::OnChangeltemPosition

Containers: Client-Item States

This article explains the different states a client item passes through in its lifetime.

A client item passes through several states as it is created, activated, modified, and
saved. Each time the item’s state changes, the framework calls
COleClientItem::OnChange with the OLE_CHANGED_STATE notification. The
second parameter is a value from the COleClientItem::ItemState enumeration. It
can be one of the following:

e COleClientItem::emptyState
¢ COleClientItem::loadedState
¢ COleClientItem::openState

¢ COleClientItem::activeState
e COleClientItem::activeUlState

21

Containers

In the “empty” state, a client item is not yet completely an item. Memory has been
allocated for it, but it has not yet been initialized with the OLE item’s data. This is
the state a client item is in when it has been created through a call to new but has not
yet undergone the second step of the typical two-step creation.

In the second step, performed through a call to COleClientItem::CreateFromFile or
another CreateFromxxxx function, the item is completely created. The OLE data
(from a file or some other source, such as the Clipboard) has been associated with the
COleClientItem-derived object. Now the item is in the “loaded” state.

When an item has been opened in the server’s window rather than opened in place in
the container’s document, it is in the “open” (or “fully open”) state. In this state, a
cross-hatch usually is drawn over the representation of the item in the container’s
window to indicate that the item is active elsewhere.

When an item has been activated in place, it passes, usually only briefly, through the
“active” state. It then enters the “Ul active” state, in which the server has merged its
menus, toolbars, and other user-interface components with those of the container. The
presence of these user-interface components distinguishes the UI active state from the
active state. Otherwise, the active state resembles the UI active state. If the server
supports Undo, the server is required to retain the OLE item’s undo-state information
until it reaches the loaded or open state.

See Also Activation, Containers: Client-Item Notifications, Trackers

In the Class Library Reference: CRectTracker

Containers: Compound Files

212

This article explains the components and implementation of compound files and the
advantages and disadvantages of using compound files in your OLE applications.

Compound files are an integral part of OLE. They are used to facilitate data transfer
and OLE document storage. Compound files are an implementation of the structured
storage model. Consistent interfaces exist that support serialization to a “storage,” a

“stream,” or a file object. Compound files are supported in the Microsoft Foundation
Class Library by the classes COleStreamFile and COleDocument.

Note Using a compound file does not imply that the information comes from an OLE
document or a compound document. Compound files are just one of the ways to store
compound documents, OLE documents, and other data.

Components of a Compound File

OLE’s implementation of compound files uses three object types: stream objects,
storage objects, and ILockBytes objects. These objects are similar to the components
of a standard file system in the following manner:

e Stream objects, like files, store data of any type.

e Storage objects, like directories, can contain other storage and stream objects.

¢ LockBytes objects represent the interface between the storage objects and the
physical hardware. They determine how the actual bytes are written to whatever
storage device the LockBytes object is accessing, such as a hard drive or an area
of global memory. For more information about LockBytes objects and the
ILockBytes OLE interface, see Chapter 6 in the OLE 2 Programmer’s Reference,
Volume 1.

Advantages and Disadvantages of Compound Files

Compound files provide benefits not available with earlier methods of file storage.
They include:

¢ Incremental file accessing
o File access modes

e Standardization of file structure

The potential disadvantages of compound files—!large size and performance issues
relating to storage on floppy disks—should be considered when deciding whether to
use them in your application.

Incremental Access to Files

Incremental access to files is an automatic benefit of using compound files. Because a
compound file can be viewed as a “file system within a file,” individual object types,
such as stream or storage, can be accessed without the need to load the entire file.
This can drastically decrease the time an application needs to access new objects for
editing by the user. Incremental updating, based on the same concept, offers similar
benefits. Instead of saving the entire file just to save the changes made to one object,
OLE saves only the stream or storage object edited by the user.

File Access Modes

Being able to determine when changes to objects in a compound file are committed to
disk is another benefit of using compound files. The mode in which files are
accessed, either transacted or direct, determines when changes are committed.

e Transacted mode uses a two-phase commit operation to make changes to objects in
a compound file, thereby keeping both the old and the new copies of the document
available until the user chooses to either save or undo the changes.

e Direct mode incorporates changes to the document as they are made, without the
ability to later undo them.

For more information on access modes, see the OLE 2 Programmer’s Reference,
Volume 1.

Containers

213

Containers

Standardization

The standardized structure of compound files allows different OLE applications to
browse through compound files created by your OLE application with no knowledge
of the application that actually created the file.

Size and Performance Considerations

Due to the complexity of the compound file storage structure and the ability to save
data incrementally, files using this format tend to be larger than other files using
unstructured or “flat file” storage. If your application frequently loads and saves files,
using compound files can cause the file size to increase much more quickly. Because
compound files can get large, the access time for files stored on and loaded from
floppy disks can also be affected, resulting in slower access to files.

Another issue that affects performance is compound-file fragmentation. The size of a
compound file is determined by the difference between the first and last disk sectors
used by the file. A fragmented file can contain many areas of free space that do not
contain data, but are counted when calculating the size. During the lifetime of a
compound file, these areas are created by the insertion or deletion of storage objects.

Using Compound Files Format for Your Data

After creating an application that has a COleDocument-derived document class,
ensure that your main document constructor calls EnableCompoundFile. When
AppWizard creates OLE container applications, it inserts this call.

See Also Containers: User-Interface Issues
In the Class Library Reference: COleStreamFile, COleDocument
In the OLE 2 Programmer’s Reference, Volume I: IStream, IStorage, ILockBytes

Containers: User-Interface Issues

214

You must add a number of features to a container application’s user interface to
adequately manage linked and embedded items. These features involve changes to the
menu structure and to the events that the application handles. For detailed
information about them, see the following articles:

For information on See

Menu additions for containers Menus and Resources: Container Additions
Additional resources for Menus and Resources: Container Additions
containers

Painting linked or embedded Tutorials, Container Tutorial, Chapter 13
items

New dialog boxes for Dialog Boxes in OLE

containers

See Also Containers: Advanced Features, Menus and Resources

Containers

Containers: Advanced Features

This article describes the steps necessary to incorporate optional advanced features
into existing container applications. These features are:

e An application that is both a container and a server
¢ An OLE link to an embedded object

Creating a Container/Server Application

A container/server application is an application that acts as both a container and a
server. Microsoft Word for Windows is an example of this. You can embed Word for
Windows documents in other applications, and you can also embed items in Word for
Windows documents. The process for modifying your container application to be both
a container and a full-server (you can’t create a combination container/mini-server
application) is similar to the process for creating a full-server.

The article Servers: Implementing a Server lists a number of tasks required to
implement a server application. If you convert a container application to a
container/server application, you’ll need to perform some of those same tasks, adding
code to the container. The following lists the important things to consider:

¢ The container code created by AppWizard already initializes the OLE subsystem.
You won’t need to change or add anything for that support.

e Wherever the base class of a document class is COleDocument, change the base
class to COleServerDoc.

e Opverride COleClientItem::CanActivate to avoid editing items in place while the
server itself is being used to edit in place.

For example: the MFC OLE sample OCLIENT has embedded an item created by
your container/server application. You open the OCLIENT application and in-
place edit the item created by your container/server application. While editing
your application’s item, you decide you want to embed an item created by the MFC
OLE sample HIERSVR. To do this, you cannot use in-place activation. You must
fully open HIERSVR to activate this item. Because the Microsoft Foundation Class
Library does not support this OLE feature, overriding
COleClientItem::CanActivate allows you to check for this situation and prevent
a possible run-time error in your application.

If you are creating a new application and want it to function as a container/server
application, choose that option in the OLE Options dialog box in AppWizard and this
support will be created automatically. For more information, see the article
AppWizard: Creating an OLE Visual Editing Application. For information about
MEFC samples, see Samples in Books Online.

215

Current Record

Links to Embedded Objects

The Links to Embedded Objects feature enables a user to create a document with an
OLE link to an embedded object inside your container application. For example,
create a document in a word processor containing an embedded spreadsheet. If your
application supports links to embedded objects, it could paste a link to the
spreadsheet contained in the word processor’s document. This feature allows your
application to use the information contained in the spreadsheet without knowing
where the word processor originally got it.

» To link to embedded objects in your application

1 Derive your document class from COleLinkingDoc instead of COleDocument.

2 Create an OLE class ID (CLSID) for your application by using the Class ID
Generator included with the OLE Development Tools.

3 Register the application with OLE.
4 Create a COleTemplateServer object as a member of your application class.
5 In your application class’s InitInstance member function, do the following:

¢ Connect your COleTemplateServer object to your document templates by
calling the object’s ConnectTemplate member function.

e Call the COleTemplateServer::Register All member function to register all
class objects with the OLE system.

¢ Call COleTemplateServer::UpdateRegistry. The only parameter to
UpdateRegistry should be OAT _CONTAINER if the application is not
launched with the “/Embedded” switch. This registers the application as a
container that can support links to embedded objects.

If the application is launched with the “/Embedded” switch, it should not show
its main window, similar to a server application.

The MFC OLE sample OCLIENT implements this feature. For an example of how
this is done, see the InitInstance function in the OCLIENT.CPP file of this sample
application.

See Also Servers

Current Record

216

The current record is the record currently stored in the field data members of a
recordset.

If you’re using the MFC ODBC classes, see the article Recordset (ODBC). If you're
using the MFC DAO classes, see the article DAO Recordset.

DAO and MFC

DAO and MFC

This article describes MFC’s implementation of Microsoft Data Access Objects
(DAO). Topics covered include:

e How MFC Encapsulates DAO

e Mapping of DAO objects to MFC classes

¢ Key differences between MFC and DAO

¢ Further reading about the MFC DAO classes

Note Whether you use the MFC DAQ classes or the MFC ODBC classes depends on your
situation and your needs. For a discussion of the differences between the two and guidance on
choosing one, see the article Database Overview.

How MFC Encapsulates DAO

The MFC DAO classes treat DAO much as the MFC classes for programming
Windows treat the Windows API: MFC encapsulates, or “wraps,” DAO functionality
in a number of classes that correspond closely to DAO objects. Class
CDaoWorkspace encapsulates the DAO workspace object, class CDaoRecordset
encapsulates the DAO recordset object, class CDaoDatabase encapsulates the DAO
database object, and so on.

MFC’s encapsulation of DAO is thorough, but it is not completely one-for-one. Most
major DAO objects do correspond to an MFC class, and the classes supply generally
thorough access to the underlying DAO object’s properties and methods. But some
DAO objects, including fields, indexes, parameters, and relations, do not. Instead, the
appropriate MFC class provides an interface, via member functions, through which
you can access, for example:

o The fields of a recordset object

e The indexes or fields of a table

o The parameters of a querydef

e The relations defined between tables in a database

Mapping of DAO Objects to MFC Classes

The following tables show how DAO objects correspond to MFC objects. Table 1
shows the MFC classes and the DAO objects they encapsulate. Table 2 shows how
MEFC deals with DAO objects that do not map directly to an MFC class.

217

DAO and MFC

Table 1 MFC Classes and Corresponding DAO Objects

Class DAO object Remarks

CDaoWorkspace Workspace Manages a transaction space and provides access to
the database engine.

CDaoDatabase Database Represents a connection to a database.

CDaoTableDef Tabledef Used to examine and manipulate the structure of a
table.

CDaoQueryDef Querydef Used to store queries in a database. You can create

recordsets from a querydef or use it to execute
action or SQL pass-through queries.

CDaoRecordset Recordset Used to manage a result set, a set of records based
on a table or selected by a query.

CDaoException Error MFC responds to all DAO errors by throwing
exceptions of this type.

CDaoFieldExchange None Manages exchange of data between a record in the
database and the field data members of a recordset.

Table2 How MFC Manages DAO Objects Not Mapped to Classes

DAO object How MFC manages it

Field Objects of classes CDaoTableDef and CDaoRecordset encapsulate fields and
supply member functions for adding them, deleting them, and examining them.

Index Objects of classes CDaoTableDef and CDaoRecordset encapsulate indexes
and supply member functions for managing them. Tabledefs can add, delete,
and examine indexes. Tabledefs and recordsets can set or get the currently
active index.

Parameter Objects of class CDaoQueryDef encapsulate parameters and supply member
functions for adding them, deleting them, examining them, and getting and
setting their values.

Relation Objects of class CDaoDatabase encapsulate relations and supply member
functions for adding them, deleting them, and examining them.

DAO Objects Not Exposed in MFC

MFC and DAO do not supply abstractions for some objects used within Microsoft
Access: Application, Container, Control, Debug, Document, Form, Module, Report,
Screen, and Section. If you create a Microsoft Access database and manipulate it
from an MFC application, you can’t access those objects through code.

MFC doesn’t supply classes or interfaces to the DAO group and user objects —to
work with DAO security, you must write your own code.

MFC also doesn’t encapsulate DAO property objects, except that the MFC DAO
classes do give you access to the propetties of all exposed objects.

MEFC does give you access to DAO’s DBEngine object, through class
CDaoWaorkspace.

218

DAO and MFC

Accessing the Unexposed DAO Objects

The unexposed objects listed above can be accessed in two ways:

Outside the MFC classes by using the non-MFC C++ classes provided in the DAO
SDK. The SDK is located in the DAOSDK directory on the Visual C++ CD-ROM.

Inside the MFC classes by calling DAO directly through a DAO interface pointer
supplied by one of the MFC classes. For information, see Technical Note 54.
Technical notes are available under MFC Technical Notes, under MFC in Books
Online.

Key Differences Between MFC and DAO

MEFC’s version of data access objects differs from the underlying structure of DAO in
some ways.

How MFC Accesses the Database Engine

DAO has a DBEngine object that represents the Microsoft Jet database engine. The
DBEngine object provides properties and methods you can use to configure the
database engine.

In MFC, there is no DBEngine object. Access to important properties of the database
engine is supplied via class CDaoWorkspace. To set or get these properties, call any
of the static member functions of CDaoWorkspace. For more information, see the
articles DAO Workspace: The Database Engine and DAO Workspace: Accessing
Properties of the Database Engine.

MFC Flattening of the DAO Object Hierarchy

Because MFC doesn’t supply a class for every DAO object, the effect is that the DAO
object hierarchy is somewhat “flattened” in MFC. The main examples of this
flattening are:

e Putting access to the database engine in class CDaoWorkspace rather than in a
database engine class.

¢ Encapsulating DAO field, index, parameter, and relation objects inside the classes
that represent their owning objects. For example, access to fields is encapsulated
in classes CDaoTableDef and CDaoRecordset. For information, see Table 2, How
MEFC Manages DAO Objects Not Mapped to Classes.

MFC and DAO Security

MFC does not encapsulate the DAO user and group objects in any way, which means
that MFC doesn’t provide DAQ’s security functionality.

You can still use DAO security from your MFC applications, but you will have to call
DAO directly, using the m_pDAOWorkspace data member of class
CDaoWorkspace. That member is a pointer to an OLE interface that gives access to
a DAO workspace object’s methods and properties. For information about calling

219

DAO and MFC

220

DAO directly, see Technical Note 54. Technical notes are available under MFC
Technical Notes, under MFC in Books Online.

Tip The DAO Software Development Kit (SDK) supplies its own set of C++ classes (not
compatible with MFC) for working with DAO. You can use these classes, if you wish, by
installing the DAQ SDK from the \DAOSDK directory on your Visual C++ CD-ROM. These
classes are also an additional source of examples for using DAO from C++.

MFC does allow password protection via various MFC classes. For example, when
you create a CDaoWorkspace object, you can specify a password to protect the
database(s) that the workspace contains. To use this functionality, a SYSTEM.MDA
file must be available to the database engine on the machine running your
application. If no SYSTEM.MDA file is available to the database engine, your
application cannot use any of the security features. For information about the
SYSTEM.MDA file, see the topic Permissions Property in DAO Help.

Further Reading About the MFC DAO Classes

To learn more about using the MFC DAO classes, see the following articles (in the
order recommended here):

¢ DAO: Writing a Database Application

¢ DAO: Database Tasks

® DAO: Creating, Opening, and Closing DAO Objects
e DAO Workspace

¢ DAO Database

¢ DAO Database: Using Workspaces and Databases

e DAO Recordset

* DAO Record Field Exchange (DFX)

¢ DAO Querydef

e DAO Tabledef

¢ DAO Workspace: Managing Transactions

e DAO Collections

e DAO External: Working with External Data Sources (primarily ODBC)
e DAO Workspace: The Database Engine

e AppWizard: Database Support

e (ClassWizard: Database Support

¢ Exceptions: Database Exceptions

o Record Views

DAO: Where Is...

Tip From any of the MFC help topics in this documentation set, you can get to a topic called
DAO: Where Is..., which helps you navigate online to the topics that you need. The topic is
always available via the See Also button in the topic window.

See Also DAO: Where Is...

Data Access Objects (DAQO)

Data Access Objects (DAO) provide a framework for using code to create and
manipulate databases. DAO supplies a hierarchical set of objects that use the
Microsoft Jet database engine to access data and database structure in:

o Microsoft Jet (MDB) databases

¢ ODBC data sources, using an ODBC driver

o Installable ISAM databases, such as dBASEe, Paradox™, Microsoft FoxPro, and
Btrievee, which the database engine can read directly

To begin learning about the DAO technology, see the topic Data Access Objects
Overview in DAO Help.

For information about the MFC classes that encapsulate DAO, begin with the articles
Database Overview and DAO and MFC.

Tip From any of the MFC help topics in this documentation set, you can get to a topic called
DAO: Where s..., which helps you navigate online to the topics that you need. The topic is
always available via the See Also button in the topic window.

See Also DAO: Where Is...

DAO: Where Is...

This article will help you locate topics of interest in the MFC DAO documentation
and in the DAO Help topics. The article, which is always available via the See Also
button in the topic window, is organized into the following categories:

e DAO Overviews

¢ DAO Objects

¢ Information By Topic
e Key DAO Help Topics

Documentation for the MFC DAO classes consists of two components:

e MFC-specific: MFC classes in the Class Library Reference and MFC encyclopedia
articles in Programming with MFC. The articles all begin with the “DAO” prefix.

* DAO-specific: Topics from the DAO Help files shipped with products such as
Microsoft Office. These topics have been incorporated into Visual C++ Books

221

DAO: Where Is...

222

Online, but note that they are oriented toward the Basic programming language.
They are included to provide DAO-specific details in areas where MFC neither
modifies nor adds to DAO functionality.

DAO Overviews

For overviews and general information about MFC DAO, see:

e Database Overview

e DAO and MFC

¢ Data Access Objects (DAO)
e DAO: Writing a Database Application
o DAO: Database Tasks

DAO Objects

Table1 Where to find information about DAO objects

DAO Help topics MFC class MFC topics
Database Object CDaoDatabase DAO Database
Error Object CDaoException CDaoException
Querydef Object CDaoQueryDef DAO Querydef
Recordset Object CDaoRecordset DAO Recordset
Tabledef Object CDaoTableDef DAO Tabledef
Workspace Object CDaoWorkspace DAO Workspace

See Also DAO Database: Using Workspaces and Databases, DAO: Creating,
Opening, and Closing DAO Objects, DAO: Accessing Implicit MFC DAO Objects,
DAO External: Working with External Data Sources, DAO Queries, DAO Record
Field Exchange (DFX), Database Overview, DAO and MFC

Information By Topic
Table2 Where to look for...

Topic Location
Action queries DAO Querydef: Action Queries and SQL Pass-Through
Queries

Adding records

Application design options

Attaching tables
Buffering records

Calling DAO directly

DAO Recordset: Recordset Operations
DAO: Writing a Database Application
DAO External: Working with External Data Sources

DAO Record Field Exchange: Double Buffering
Records

Database Overview

Table 2 Where to look for... (cont.)

DAO: Where Is...

Topic Location

CDaoXInfo structures DAO Collections: Obtaining Information About DAO
Objects

Closing DAO objects DAO: Creating, Opening, and Closing DAO Objects

Collections in DAO DAO Collections

Console applications and DAO DAO: Database Application Design Options

Creating DAO objects DAO: Creating, Opening, and Closing DAO Objects

DAO objects not mapped to
classes

DAO vs. ODBC

Data definition language (DDL)
Database engine (Jet)
Data types

DBMS targets
Default workspace

Definition of DAO

DLLs, DAO in
Document/view architecture
Documentation

Double buffering records

Engine initialization
External data sources, list
Filtering recordsets
Finding

Forms

How MFC encapsulates DAO
Installing DAO

ISAM databases, list

Jet database engine
Multithreading and DAO
Navigating in a recordset
ODBC data sources
ODBC drivers

DAO and MFC

Chapter 7, Working with Databases
Database Overview

Database Overview
DAO Workspace: The Database Engine

DFX Data Types in DAO Record Field Exchange: Using
the DFX Functions

DAO: Writing a Database Application
Database Overview

DAO Workspace: Explicitly Opening the Default
‘Workspace

Database Overview

DAQO: Database Application Design Options
DAO: Writing a Database Application
Database Overview

DAO Record Field Exchange: Double Buffering
Records

DAO Workspace: The Database Engine
DAO: Working with External Data Sources
DAO Queries: Filtering and Parameterizing Queries
DAO Recordset: Recordset Navigation
Record Views

DAO and MFC

Chapter 7, Working with Databases
Database Overview

DAO Workspace: The Database Engine
DAO: Database Application Design Options
DAO Recordset: Recordset Navigation
DAO: Working with External Data Sources
ODBC Driver List

223

DAO: Where Is...

224

Table 2 Where to look for... (cont.)

Topic

Location

ODBC vs. DAO

OLE controls, DAO in
Opening DAO objects
Parameterizing queries

Pass-through queries
Performance

Programming model

Queries

Querydefs

Record Field Exchange (DFX)
Recordsets

Scrolling

Security

Seeking

SQL

Tabledefs

Task-oriented topics
Transactions

Updating data

Views of DAO data

When to use database classes
Workspace, typical scenario
Writing a database application

Chapter 7, Working with Databases
Database Overview

DAOQ: Database Application Design Options
DAQ: Creating, Opening, and Closing DAO Objects
DAO Queries: Filtering and Parameterizing Queries

DAO Querydef: Action Queries and SQL Pass-Through
Queries

DAO External: Improving Performance with External
Data Sources

Database Overview

DAO Queries

DAO Querydef

DAO Record Field Exchange (DFX)
DAO Recordset

DAO Recordset: Recordset Navigation
DAO and MFC

DAO Recordset: Recordset Navigation
DAO Queries: SQL for DAO

DAO Tabledef

DAO: Database Tasks

DAO Workspace: Managing Transactions
DAO Recordset: Recordset Operations
DAO: Writing a Database Application
Chapter 7, Working with Databases
DAO Database: Using Workspaces and Databases
DAO: Writing a Database Application

See Also DAO Database: Using Workspaces and Databases, DAO: Creating,
Opening, and Closing DAO Objects, DAO: Accessing Implicit MFC DAO Objects,
DAO External: Working with External Data Sources, DAO Queries, DAO Record
Field Exchange (DFX), Database Overview, DAO and MFC

Key DAO Help Topics

The following topics are part of DAO Help and are not MFC-specific:

¢ Data Access Object Hierarchy

¢ Data Access Objects and Collections Reference

¢ Using Data Access

DAO: Writing a Database Application

e Trappable Data Access Errors

e Microsoft Jet Database Engine SQL Data Types
o SQL Reserved Words

e Equivalent ANSI SQL Data Types

¢ SQL Aggregate Functions

DAO: Writing a Database Application

This family of articles discusses writing database applications with the MFC DAO
classes. Other articles focus on various parts of the process; this article looks at using
DAO from an application design standpoint.

In This Article
This article considers:

e What is a database application?

e First steps in writing your MFC DAOQ application
e Data viewing choices

¢ Documents and views with DAO

¢ DBMS choices

More Articles on the Process

The following additional articles discuss parts of the design and development process
(in recommended reading order):

¢ DAQO: Database Application Design Options

e DAO: Steps in Writing MFC DAO Applications

What Is a Database Application?

Of course, there is no one kind of database application. Such applications range from
simple data entry or data viewing applications to complex client/server applications
to applications of any sort that happen to use a database rather than disk-based files
for input/output. In any case, the MFC DAO classes supply abstractions that you can
use to accomplish your goals.

First Steps in Writing Your MFC DAO Application

To begin, you must make two fundamental decisions:

¢ How do you want to display data in your application: in a form, as a list, some
other way, or not at all.

e What database management system(s) (DBMSs) do you intend to target?

225

DAO: Writing a Database Application

226

Your decisions determine how your application fits into MFC’s document/view
architecture and how appropriate the DAO classes are for your application. Your
answers also help determine the selections you make when you run AppWizard to
begin constructing your application.

Data Viewing Choices
MEFC supplies varying degrees of support for different viewing choices:

¢ Displaying one record at a time in a form.

AppWizard will create a CDaoRecordView-derived class for you and connect it to
a CDaoRecordset based on a table you specify. This makes it easy to create simple
form-based applications.

e Displaying multiple records at a time.

While AppWizard doesn’t give any special help for this option, you can fairly
easily hook a CDaoRecordset up to a CListView or CTreeView. For examples,
see the MFC Database sample DAOVIEW.

e You can also use multiple views of the data simultaneously, either in separate
windows or in panes of a splitter window.

Documents and Views with DAO

Do you need the MFC document/view architecture? The simplest architecture for
MFC applications is to manage your data within an MFC document object and
manage displaying that data separately in a view object. You aren’t limited to this
structure, though —other options include:

e Using a view object but treating the document as an unused appendage.

You can make your data structures —mainly your CDaoDatabase and
CDaoRecordset objects —members of your CView-derived class rather than of a
CDocument-derived class. Database applications typically don’t need MFC’s
serialization mechanism, which is the primary feature of CDocument.

A particularly strong argument for using MFC’s document/view architecture is the
ability to manage multiple views of your data through the document. CDocument
has an UpdateAllViews member function that you can call to synchronize your
views as data displayed in them changes. This is as useful in database applications
as in any other kind of application.

e Drawing your data directly into the client area of a CFrameWnd-derived class.

You can handle Windows messages in the frame window and thus dispense with
the view and the document. If you use a view, you can’t just strip the document
code from your application, but if you use neither view nor document, you can
remove (or ignore) both. In this case, you can store your CDaoDatabase and
CDaoRecordset objects in the frame window class.

e Basing your application on a dialog box.

DAO: Writing a Database Application

AppWizard supports this approach, and you can store your CDaoDatabase
object(s) as members of your CDialog-derived class.

For related information, see the articles MFC: Using Database Classes with
Documents and Views and MFC: Using Database Classes Without Documents and
Views

DBMS Choices

DAO is based on the Microsoft Jet database engine. This means DAO is optimally
suited for working with Microsoft Jet (MDB) databases. DAO also supports
accessing external databases, including certain installable ISAM databases (which
the database engine can read directly) and ODBC data sources. This means you can
write DBMS-independent applications with DAO, targeting any data source that the
Microsoft Jet database engine can read directly or for which your users will have the
appropriate ODBC driver.

Note, however, that in general it is more efficient, with DAQ, to attach ODBC data

source tables to a Microsoft Jet database than it is to access the external data source

directly. If your application is essentially targeted on an external data source such as
Microsoft SQL Server or Oracle, you might want to consider using the MFC ODBC
classes instead of DAO.

For related information, see the articles Database Overview and DAO External:
Working with External Data Sources.

See Also DAO: Where Is..., DAO: Database Tasks, DAO: Database Application
Design Options, DAO: Steps in Writing MFC DAO Applications, MFC: Using
Database Classes with Documents and Views, MFC: Using Database Classes Without
Documents and Views.

DAQO: Database Application Design Options

This article continues the discussion begun in the article DAQO: Writing a Database

Application. The article DAO: Steps in Writing MFC DAO Applications completes
the discussion. Those articles discuss the decisions you need to make before you run
AppWizard and the steps involved in creating your starter application.

Topics covered include:

e Application design examples
¢ DAO in DLLs, multithreaded applications, and OLE controls

Application Design Examples
This article gives examples to suggest some of the ways you might organize your
application. Sample applications mentioned in the list are available under MFC
Samples, under Samples in Books Online.
Examples:
227

DAO: Writing a Database Application

228

e An application that uses a single form to view one record at a time.

This approach might be suitable for simple data entry or data viewing
applications.

Let AppWizard create the CDaoRecordView and CDaoRecordset classes for you.
Then design the form in the Visual C++ dialog editor.

In this scenario, a single CDaoRecordset object persists for a session, and it uses
an implicitly created CDaoDatabase object. The recordset, a data member of the
CDaoRecordView class called m_pSet, contains all records in a table or all
records returned by a query. The view lets the user scroll through the records one
at a time.

For an example, see Step 1 of the MFC Database sample DAOENROL.

A similar single-form application that displays one record at a time but also uses a
second recordset to fill a list box or combo box.

Let AppWizard create the CDaoRecordView and a CDaoRecordset to control
which record is currently displayed in the form’s general controls.

Use ClassWizard to create a second CDaoRecordset based on the table or query
that fills the list or combo box.

For a view of how this works, see the MFC Database sample ENROLL for the
MFC ODBC classes. You’ll have to translate some of the code, but the model is
the same in DAO, and most of the code is very similar as well.

Create additional recordsets to fill more list or combo boxes as needed.
An application based on multiple forms.

Perhaps the forms appear in separate windows or as panes in a splitter window.
Let AppWizard create the first CDaoRecordView and CDaoRecordset. Then use
ClassWizard to add more of each.

A bulk data processing application, where no view is required.

In AppWizard, select basic database support, without a view. A dialog-based
application might be appropriate for this need.

Use ClassWizard to create a CDaoRecordset class for each end of the migration.
Then write code to use one recordset for input and the other for output. Perform
any necessary data manipulation between the two recordsets. Note that you can use
the MEC DAO classes in console applications. For more information, see DAO in
DLLs, Multithreaded Applications, and OLE Controls.

An application that displays multiple records at a time, perhaps in a CListView or
a CTreeView.

Use AppWizard to specify the view class on which to base your application-
specific view. You can also use multiple views, perhaps displayed as panes of a
splitter window.

For an example, see the MFC Database sample DAOVIEW.

DAO: Writing a Database Application

For information about splitter windows, see Chapter 9, Enhancing Views, in
Tutorials. For information about using multiple views in general, see Multiple
Document Types, Views, and Frame Windows in Chapter 3.

DAO in DLLs, Multithreaded Applications, and OLE

Controls

This topic discusses the MFC DAO classes with respect to support for using the MFC
DAO classes:

e In dynamic link libraries (DLLs)

e In OLE controls

e In multithreaded applications

¢ In console applications

o In applications built for Unicode or double-byte character systems (DBCS)

You can use the MFC DAO classes in any DLL. This means you can also use the
classes in OLE controls.

DAO itself is not multithreaded, so you can’t use the MFC DAO classes in multiple
threads. Confine your DAO code to a single thread of execution.

Depending on what MFC functionality you call, you should be able to use the MFC
DAO classes in console applications as well. Make sure the application uses no
graphical user-interface elements. For example, if you’re using an ODBC data source
and you supply incomplete connection information, ODBC attempts to display a
dialog box for the missing information. Avoid this situation in your console
applications.

The MEC DAO classes are fully enabled for Unicode and DBCS.

See Also DAO: Where Is..., DAO: Database Tasks, DAO: Writing a Database
Application, DAO: Steps in Writing MFC DAO Applications, MFC: Using Database
Classes with Documents and Views, MFC: Using Database Classes Without
Documents and Views.

DAO: Steps in Writing MFC DAO Applications

This article continues the discussion begun in the articles DAO: Writing a Database
Application and DAO: Database Application Design Options. Those articles describe
application design choices. This article explains the steps you take to develop your
application.

Once you’ve made your initial design decisions, follow these general steps:

1. Run AppWizard to create a skeleton application.

229

DAO: Database Tasks

On the databases page, select the database options you want. It is at this stage that
you specify a CDaoRecord View if you want a form-based application.

When you open the Database Options dialog box, select DAO rather than ODBC.
The result is an application with the right include directives and libraries for using
the DAO classes. The wizard prompts you to specify the name of a Microsoft Jet
(.MDB) database.

2. If needed, add a CDaoDatabase object for each database your application can
open simultaneously.

If these objects need to persist for long periods, declare them as data members of
one of your classes —the document is a good choice — that point to
CDaoDatabase objects you create on the heap.

If they are to persist for long, create the objects with the new operator, perhaps in
your document’s OnNewDocument member function or in a command-handler
function for a menu command.

3. Use your CDaoDatabase object(s) to create CDaoRecordset objects that represent
queries.

If you prefer to create your recordsets on the fly, you can omit the CDaoDatabase
object(s). MFC will implicitly create a CDaoDatabase object if you don’t supply a
pointer to one in the recordset’s Open call.

You can create your recordsets on the heap, or you can create them as local
variables in a function.

See Also DAO: Where Is..., DAO Recordset, Record Views, DAO: Database Tasks,
DAO: Database Application Design Options, MFC: Using Database Classes with
Documents and Views, MFC: Using Database Classes Without Documents and Views

DAQO: Database Tasks

230

This article points you to other articles about performing common database tasks.
Table 1 lists the tasks and articles.

Table1 Articles About Common Database Tasks

For information about... See...
Applications Writing a database application DAO: Writing a Database
Application
Accessing the database engine DAO Workspace: Accessing

Properties of the Database Engine
DAO Workspace: The Database
Engine

Creating Objects Creating DAO objects DAO: Creating, Opening, and
Closing DAO Objects

Table 1 Articles About Common Database Tasks (cont.)

DAO: Database Tasks

For information about...

See...

Opening Objects Opening DAO objects

Closing Objects Closing DAO objects

Collections (DAO) Accessing collections
Obtaining information about
objects in collections

Databases Creating an .MDB database
Examining the schema of a
database
Working with multiple databases

ODBC Working with ODBC data
sources

Queries Selecting records

Recordsets
Binding records dynamically
Updating records
Defining stored queries
Navigating in a recordset

Record Field Using DFX to exchange data

Exchange between the database and a
recordset’s field data members
Moving data between a recordset
and the controls on a form

SQL Using SQL with DAO

Tables Adding or deleting a table
Adding or deleting a table field
Adding or deleting a table index

Transactions Managing database transactions

DAQO: Creating, Opening, and
Closing DAO Objects

DAO: Creating, Opening, and
Closing DAO Objects

DAO Collections

DAO: Obtaining Information About
DAO Objects

DAO Database

DAO Tabledef

DAO Tabledef: Examining a
Database Schema at Run Time

DAO Workspace

DAO External: Working with
External Data Sources

DAO Queries

DAO Recordset

DAO Recordset: Creating
Recordsets

DAO Queries: Filtering and
Parameterizing Queries

DAO Recordset: Binding Records
Dynamically

DAO Recordset: Recordset
Operations

DAO Querydef

DAO Recordset: Recordset
Navigation

DAO Record Field Exchange
(DFX)

Dialog Data Exchange and
Validation

DAO Queries: SQL for DAO

DAO Tabledef: Using Tabledefs
DAO Tabledef: Using Tabledefs
DAO Tabledef: Using Tabledefs

DAO Workspace: Managing
Transactions

DAO Workspace: Opening a
Separate Transaction Space

231

DAO: Creating, Opening, and Closing DAO Objects

See Also DAO: Where Is...

DAQO: Creating, Opening, and Closing
DAO Objects

This family of articles explains what it means to “open” or “create” an MFC DAO
object and what it means to “close” the object when you finish with it.

This article discusses how MFEC objects are constructed and points to related general
articles. The following additional articles discuss the Create, Open, and Close
actions:

* DAO: Creating DAO Objects
¢ DAO: Opening DAO Objects
* DAO: Closing DAO Objects

Two-Stage Construction of MFC DAO Objects

As with most MFC objects, you use a two-stage process to create the MFC object and
put it into an open state.

Creating a New Object

» To create a new MFC DAO object
1 Construct the object (on the stack; or on the heap, using the new operator).
2 Call the object’s Create member function.

3 In some cases, then call the Append member function to add the object to the
appropriate DAO collection.

¢ Database objects are appended to the collection automatically upon creation.
CDaoDatabase has no Append member function.

e Workspace and querydef objects can be created as temporary objects. To learn
how to create a temporary object, see its class overview. Temporary objects are
not appended.

¢ Objects that you want to persist between database engine sessions should be
appended.
For details, see each class constructor in the Class Library Reference.
Opening an Existing Object
» To construct and open an MFC DAO Object
1 Construct the object (on the stack; or on the heap, using the new operator).
2 Call the object’s Open member function.

232

DAO: Creating, Opening, and Closing DAO Objects

Before you call Open, the object is typically uninitialized and unusable (for
exceptions, see CDaoWorkspace::Open). This example shows how to construct and
open a CDaoRecordset object:

// CDelinquentSet is derived from CDaoRecordset
// Construct the recordset using the default database
CDelinquentSet rsDelinquentAccts;

// Set the object's properties as needed, then...
rsDelinquentAccts.Open(); // Using default parameters

Related Articles on Creatin’g, Opening, and Closing
Objects

For related information, see the following articles:

® DAO: Accessing Implicit MFC DAO Objects
DAO Workspace: Explicitly Opening the Default Workspace

DAO Workspace: Opening a Separate Transaction Space

DAO Workspace: Accessing Properties of the Database Engine

See Also In the Class Library Reference: CDaoWorkspace::Open,
CDaoWorkspace::Close, CDaoDatabase::Open, CDaoDatabase::Close,
CDaoTableDef::Open, CDaoTableDef::Close, CDaoQueryDef::Open,
CDaoQueryDef::Close, CDaoRecordset::Open, CDaoRecordset::Close,
CDaoDatabase::Create, CDaoQueryDef::Create, CDaoTableDef::Create,
CDaoWorkspace::Create

DAO: Creating DAO Objects

All of the MFC DAO classes, except CDaoRecordset, have member functions for
creating new objects. Creation means somewhat different things for different DAO
objects. Topics covered include:

o (Create member functions

e Meaning of the Create action for different DAO objects

Create Member Functions

The following objects have Create member fun¢tions:
¢ CDaoWorkspace::Create
CDaoDatabase::Create
CDaoQueryDef:iCreate

DaoTableDef::Create

233

DAO: Creating, Opening, and Closing DAO Objects

In addition, some objects supply member functions for creating subordinate objects,
as shown in Table 1. MFC does not supply classes for these subordinate objects;
instead, it supplies access to them through member functions of the appropriate
containing class.

Table 1 Creating DAO Objects without MFC Classes
Owning class Creation functions

CDaoDatabase CreateRelation
CDaoTableDef CreateField, CreateIndex

Meaning of the Create Action for Different DAO Objects

The concept of “create” has different meanings for different MFC DAO objects, as
shown in Table 2.

Table2 Meaning of Create for DAQ Objects

Object Meaning

Database Creates a new Microsoft Jet database; that is, creates the .MDB file on disk.
This is the one object that is automatically appended to its collection upon
creation.

Querydef Creates a new DAO querydef object underlying the MFC querydef object. The
object is not saved in the database until you call CDaoQueryDef::Append.

Recordset No Create member function. Construct a recordset object (usually of a class
derived from CDaoRecordset using the MFC wizards) and call its Open
member function to run the query or open the table. This also creates a new
DAO recordset object underlying the MFC recordset object.

Tabledef Creates a new table in the specified database, and a DAO tabledef object to
represent it. You must then add fields and possibly indexes to complete the
table. The table is actually added to the database when you call
CDaoTableDef::Append.

Workspace Creates a new DAO workspace object underlying the MFC workspace object.
The object is not appended to the Workspaces collection until you call
CDaoWorkspace::Append.

See Also In the Class Library Reference: CDaoWorkspace::Open,
CDaoWorkspace::Close, CDaoDatabase::Open, CDaoDatabase::Close,
CDaoTableDef::Open, CDaoTableDef::Close, CDaoQueryDef::Open,
CDaoQueryDef::Close, CDaoRecordset::Open, CDaoRecordset::Close,
CDaoDatabase::Create, CDaoQueryDef::Create, CDaoTableDef::Create,
CDaoWorkspace::Create .

DAO: Opening DAO Objects

234

Opening a DAO object implies that there is an existing object to be placed in an open
state. This is distinct from creating a new object. In the typical case, the object to

DAO: Creating, Opening, and Closing DAO Objects

open is an element of the appropriate DAO collection, housed in some other DAO
object.

An Open call puts the object into an open state, ready to be used. After using an
object, you should explicitly close it.

Topics include:

¢ Open member functions

e Meaning of the Open action for different DAO objects

Open Member Functions

The following MFC DAO objects have Open member functions:
e CDaoDatabase::Open

e CDaoRecordset::Open

e CDaoQueryDef::Open

e CDaoTableDef::Open

e CDaoWorkspace::Open

Meaning of the Open Action for Different DAO Objects

The concept of “open” has somewhat different meanings for different MFC DAO
objects, as shown in Table 1. Typically, the object is already an element of a DAO
collection that belongs to some other object. For example, each database object has a
TableDefs collection that contains all tabledef objects in the database. The one object
for which Open has a radically different meaning is CDaoDatabase; opening the
object appends it to the Databases collection of a workspace object.

Table 1 Meaning of Open for DAO Objects
Object Meaning

Database Opens an existing database —usually a Microsoft Jet (MDB) database.

Querydef Opens the specified existing querydef object in the QueryDefs collection of a
database.

Recordset Runs the query defined by the recordset’s SQL statement or by an associated
querydef; or opens the specified tabledef via a table-type recordset.

Tabledef Opens the specified existing tabledef object in the TableDefs collection of a
database.

Workspace Opens the default workspace unless you give the name of a workspace
previously created with CDaoWorkspace::Create.

See Also In the Class Library Reference: CDaoWorkspace::Open,
CDaoWorkspace::Close, CDaoDatabase::Open, CDaoDatabase::Close,
CDaoTableDef::Open, CDaoTableDef::Close, CDaoQueryDef::Open,
CDaoQueryDef::Close, CDaoRecordset::Open, CDaoRecordset::Close,

235

DAO: Creating, Opening, and Closing DAO Objects

CDaoDatabase::Create, CDaoQueryDef::Create, CDaoTableDef::Create,
CDaoWorkspace::Create

DAO: Closing DAO Objects

All MEC DAO objects have Close member functions. Calling Close typically closes
any subordinate objects, such as the active recordsets in a database object, before
closing the parent object. The following illustrates closing a database object:

// pdbAccounts is an open CDaoDatabase object

pdbAccounts->Close();

Note ltis considered good practice to explicitly close your objects rather than relying on
containing objects to close them.

Meaning of the Close Action for Different DAO Objects

The concept of “close” is fairly similar for MFC DAO objects. Closing an object:

e Releases memory associated with the object, including buffers used to store
recordset data.

e Releases the underlying DAO object.

¢ Does not remove the object from any collection it belongs to. The exceptions are
the workspace and recordset objects, which don’t persist between database engine
sessions.

What Happens When You Close Objects
For details about what happens when you close an MFC DAO object, see the Close
member function for that object’s class:

¢ (CDaoDatabase::Close
e CDaoQueryDef::Close
e CDaoRecordset::Close
e (CDaoTableDef::Close
¢ CDaoWorkspace::Close

Calling Close does not destroy the MFC object; you must do that separately.

Tip It's considered good programming practice to explicitly close your objects before they go
out of scope.

See Also In the Class Library Reference: CDaoWorkspace::Open,
CDaoWorkspace::Close, CDaoDatabase::Open, CDaoDatabase::Close,
CDaoTableDef::Open, CDaoTableDef::Close, CDaoQueryDef::Open,
CDaoQueryDef::Close, CDaoRecordset::Open, CDaoRecordset::Close,
CDaoDatabase::Create, CDaoQueryDef::Create, CDaoTableDef::Create,
CDaoWorkspace::Create

236

DAO: Accessing Implicit MFC DAO Objects

DAO: Accessing Implicit MFC DAO
Objects

This article describes how to access the implicit MFC DAO objects that MFC creates
for you in certain situations. The classic example is the workspace object associated
with an existing CDaoDatabase or CDaoRecordset object. Normally you don’t need
an explicit CDaoWorkspace object, so you let MFC implicitly provide one. For a
discussion, see the article DAO Database: Using Workspaces and Databases.

The Most Likely Case

In the most likely case—that you already have a CDaoDatabase or a
CDaoRecordset object associated with the workspace you want to access—you can
use data members of these objects to obtain a pointer to the implicit CDaoWorkspace
object that they belong to. There are two scenarios, based on whether you have a
database object or a recordset object to work from.

Scenario 1. One Level of Indirection

You have a CDaoDatabase object based on the workspace. Access the
CDaoDatabase object’s m_pWorkspace data member to obtain a CDaoWorkspace
pointer, like this:

// pdbAccounts is a pointer to a CDaoDatabase object

// for the Accounts database
CDaoWorkspace* pws = pdbAccounts->m_pWorkspace;

Or you might simply use the implicit workspace to call a CDaoWorkspace member
function:

pdbAccounts->m_pWorkspace->BeginTrans();

Calling transaction functions in this way is a common situation.

Scenario 2. Two Levels of Indirection

You have a CDaoRecordset object indirectly based on the workspace (through a
CDaoDatabase). Follow these steps:

1. Access the CDaoRecordset object’s m_pDatabase data member to obtain a
CDaoDatabase pointer.

2. Then access the database object’s m_pWorkspace data member to obtain a
CDaoWorkspace pointer, like this:
// rsDelinquentAccts is an existing CDaoRecordset
// object based on the Accounts database

CDaoDatabase* pdbAccounts = rs.m_pDatabase;
CDaoWorkspace* pws = pdbAccounts->m_pWorkspace;

237

DAO: General Performance Tips

Or you might simply use the implicit workspace behind your recordset’s implicit
database to call a CDaoWorkspace member function:

pdbAccounts->m_pWorkspace->CommitTrans();

Note This is the recommended method for accessing such functions because it doesn't
create a copy of a pointer to an implicit object. Copies of such pointers can be dangerous.

Uses for the Workspace Pointer

You can use the workspace pointer obtained in this indirect way to access the
Workspaces collection, access the Databases collection, access properties of the
database engine, and so on. Note that in most cases the workspace accessed this way
is DAO’s default workspace.

Caution If you store a copy to one of these pointers, be careful not to use it after the original -
object goes out of scope or is otherwise destroyed.

See Also DAO: Where Is..., DAO: Creating, Opening, and Closing DAO Objects

DAQO: General Performance Tips

This article offers tips for improving the performance of your MFC DAO
applications. Use these tips as your starting point, and benchmark your changes.
Keep in mind that these tips will often help, but there are no absolutes. Weigh
everything in the context of your database and your application. Topics covered
include:

e Best tip

e Recordset types

e Selecting records

e ODBC

e Caching and double buffering
¢ Opening databases

¢ Attached tables

e SQL

e Transactions

e Locating records

e Other tips

How you improve performance in a database application depends on what kind of

performance improvement you need. You might need some of the following kinds of
performance improvements more than others:

238

DAO: General Performance Tips

Better query speed

Faster record location

Faster scrolling through records

Up-to-date record content in multi-user environments

Better performance with external databases, especially ODBC data sources

Best Tip

The design of your data is usually a bigger factor in performance than the design of
your code:

Use Microsoft Access to examine your database design, queries, and indexes. Run
your queries in Access and use the results to adjust your table and index designs
for better performance. Then save the queries in your database for use from your
code.

Normalize your database schema to avoid storing multiple copies of your data.
Consult any standard database text, such as C.J. Date’s Introduction to Database
Systems, 10th edition (Addison-Wesley, 1995), or consult the Microsoft Access
documentation.

Also:

Store infrequently updated tables in your local Microsoft Jet (MDB) database. If
the data doesn’t change often, you can keep a local copy for queries and avoid
having to move the data across the network.

Recordset Types

In general, use a table-type recordset rather than either a dynaset-type recordset or
a snapshot-type recordset if possible.

For remote data, use snapshot-type recordsets rather than dynaset-type recordsets.
But beware of Memo fields, especially in ODBC data sources. If the data contains
Memo fields, use a dynaset-type recordset instead if you won’t be retrieving all the
fields from all the rows. Dynaset-type recordsets are also better for OLE objects in
ODBC data sources.

For ODBC data with OLE objects or Memo fields, use dynaset-type recordsets
instead of snapshot-type recordsets.

Selecting Records

For dynaset-type recordsets and snapshot-type recordsets, select only the fields you
need instead of all fields.

For snapshot-type recordsets against ODBC data sources, use the dbForwardOnly
option in your recordsets if you’ll be making a single pass through your data.

239

DAO: General Performance Tips

240

0

For dynaset-type recordsets against ODBC data sources, cache multiple records.
See the article DAO Recordset: Caching Muitiple Records for Performance.

If you’re adding records to a dynaset-type recordset, especially against an ODBC
data source, use the dbAppendOnly option.

Requery recordsets rather than reopening them. Note that you lose this advantage
if you change filters or sorts before you requery.

Parameterize queries instead of using dynamic SQL statements, evspecially against
ODBC data sources.

Store queries instead of using dynamic SQL statements, especially on machines
with low memory.

Refresh current field values by calling Move with a parameter of
AFX_MOVE_REFRESH instead of calling MoveNext and MovePrev. (Calling
Move with a parameter of 0 is equivalent.)

DBC

Attach ODBC tables to a local Microsoft Jet (MDB) database rather than opening
the ODBC data source directly.

Reduce your ODBC timeouts for faster performance in failure cases.

For ODBC data with OLE objects or Memo fields, use dynaset-type recordsets
instead of snapshot-type recordsets.

For snapshot-type recordsets against ODBC data sources, use the dbForwardOnly
option in your recordsets.

For dynaset-type recordsets against ODBC data sources, cache multiple records.
See the article DAO Recordset: Caching Multiple Records for Performance.

With ODBC SQL statements that don’t retrieve data, use pass-through queries
where possible. For related information, see the article DAO Querydef: Action
Queries and SQL Pass-Through Queries.

Speed ODBC finds by downloadihg to a local indexed table and seeking. If you
will be making numerous finds in the data, copy it to a local Microsoft Jet
database table and use Seek to locate information.

On ODBC data, use Find only on indexed fields; otherwise, open a new recordset
using an SQL statement with an appropriate WHERE clause.

For more information about working with ODBC data sources, see the articles
Database Overview and DAO External: Working with External Data Sources.

Caching and Double Buffering

For best performance, turn off MFC’s double-buffering mechanism. However, the
tradeoff is that you must write more code to update a field. For more information,
see the article DAO Record Field Exchange: Double Buffering Records.

DAO: General Performance Tips

e Cache multiple records when you are using an ODBC data source. See the article
DAO Recordset: Caching Multiple Records for Performance.

e Cache tabledef references if they will be used many times. Keep your
CDaoQueryDef objects open and reuse them rather than recreating them.

Opening Databases

¢ Open databases for exclusive use if you are the only user. Open databases read-
only if all users will be read-only.

e Use the dbDenyWrite option if nobody else will be writing to the database.

e Retrieve data from ODBC databases by attaching to a Microsoft Jet (MDB)
database instead of opening the ODBC database directly.

Attached Tables

e Attach ODBC tables to a local Microsoft Jet (MDB) database rather than opening
the ODBC data source directly.

e Open attached Microsoft Jet tables as table-type recordsets by parsing the tabledef
connect string for the database name and then opening that database directly.

SQL

¢ With ODBC SQL statements that don’t retrieve data, use pass-through queries
where possible. For related information, see the article DAO Querydef: Action
Queries and SQL Pass-Through Queries.

e Replace code loops that run a query again and again with the equivalent SQL
statements to run the query once for the whole loop. For example, rather than
doing 100 update calls, run one bulk query for all of the affected records.

¢ Replace repeated execution of the same dynamic SQL with a temporary query.
(This applies only if you are using a querydef pointer in CDaoRecordset::Open to
create your recordset.)

Transactions

e Always embed your MFC DAO code in transactions if you are performing
multiple updates. Balance transaction sizes against the likely available memory.
Don’t try to do ten thousand large updates in a single transaction. Instead, break
the work into smaller lots of, say, 500 records.

Locating Records
e Use Seek rather than Find. (Seek only works with table-type recordsets.)

e Return to a location in a recordset using bookmarks rather than Find. See the
article DAO Recordset: Bookmarks and Record Positions.

24

DAO: General Performance Tips

242

o Speed ODBC finds by downloading to a local indexed table and seeking. If you
will be making numerous finds in the data, copy it to a local Microsoft Jet
database table and use Seek to locate information.

e On ODBC data, use Find only on indexed fields; otherwise, open a new recordset.

Other Tips

Use the power of Microsoft Jet queries to save writing and debugging code. For
example, the Microsoft Jet database engine allows you to update the results of join
queries and automatically distributes the changes to the underlying tables.

* Replace short Memo fields with long text fields.

o Replace floating-point numbers with integers.

DAO Collections

DAO Collections

This article explains how to access the “collections” in which DAO keeps active
DAO objects at all levels of the DAO object hierarchy. The article also explains how
the collections are exposed in MFC. Topics covered include:

e DAO collections: definitions

e How MFC exposes DAO collections

e The default object in a collection

e How to access a collection

¢ The information you obtain about objects in a collection
e Contents of MFC DAO information structures

e Primary, Secondary, and All information

e Information about collections in DAO

DAO Collections: Definition

In DAO, each object in the object hierarchy maintains one or more “collections” of
subordinate objects. For example, the Microsoft Jet database engine maintains a
collection of open workspaces. Each workspace object maintains a collection of open
databases (and other collections, related to security). And so on. For a list of the DAO
objects and the collections they house, see the topic Data Access Objects and
Collections Reference in DAO Help.

How MFC Exposes DAO Collections

In the MFC DAO classes, MFC doesn’t maintain a collection (such as a CObArray)
of C++ objects parallel to the underlying DAO collection. Rather, MFC supplies
member functions and/or data members through which you can access the underlying
collection itself in DAO, where the DAO collections are stored. For example, class
CDaoWorkspace supplies the GetWorkspaceCount member function to determine
how many workspaces are in the database engine’s Workspaces collection and the
GetWorkspaceInfo member function to examine information about any workspace
in the collection.

In general, the MFC DAO classes supply similar functions for all relevant DAO
collections. The one significant exception is the Recordsets collection of the database
object. MFC does not supply GetRecordsetCount and GetRecordsetInfo member
functions in class CDaoDatabase. When you work with recordsets, you always have
an explicit MFC CDaoRecordset object in your application. It’s up to you to keep
track of which recordsets you have open.

243

DAO Collections

244

The Default Object in a Collection

The first element in a DAO collection, at element 0, is the default element of the
collection. In particular, DAO’s default workspace is element 0 in the Workspaces
collection. Collections are zero-based.

How to Access a Collection

The following procedure uses the TableDefs collection of a CDaoDatabase object to
illustrate the general process for accessing objects in a DAO collection.

» To access the TableDefs collection (for example)

1 Construct a CDaoDatabase object, or get a pointer to one from a CDaoRecordset
object.

2 Call the object’s Open member function unless you have obtained a database
pointer from a recordset.

3 Use the GetTableDefCount and GetTableDefInfo member functions of the object
to determine how many tabledefs the collection contains and to loop through the
collection, obtaining information about each tabledef object.

For an example, see the LISTVIEW.CPP file in the MFC Database sample
DAOVIEW. For a procedure, see the article DAO: Obtaining Information About
DAO Objects.

The Information You Obtain About Objects in a Collection

To obtain information about the objects in a collection, you call a GetXInfo member
function of the appropriate class. This function returns an object of one of the
CDaoXInfo structures listed in Table 2 in the article DAO: Obtaining Information
About DAO Objects. In general, there is a CDaoXInfo structure associated with each
DAO object. These structures are commonly referred to as the MFC DAO
“information structures.”

Contents of MFC DAO Information Structures

A typical information structure looks something like this:

struct CDaoDatabaselnfo

{
CString m_strName; // Primary
BOOL m_bUpdatable; // Primary
BOOL m_bTransactions; // Primary
CString m_strVersion; // Secondary
long m_1CollatingOrder; // Secondary
short m_nQueryTimeout; // Secondary
CString m_strConnect; /7 A1l

};

DAO: Obtaining Information About DAO Objects

For detailed descriptions of the structure members, see the individual structure in the
Class Library Reference. Structures are listed in Table 2 in the article DAO:
Obtaining Information About DAO Objects.

Primary, Secondary, and All Information

The notations “Primary,” “Secondary,” and “All” indicate which MFC DAO structure
members are filled when you call a function such as GetDatabaselnfo. You can
specify that you want just primary information, both primary and secondary
information, or all information. Some structures don’t include anything under the All
designation.

Caution Using the Secondary and All options can be slow. In general, Primary is faster than
Secondary, and Secondary is faster than All. Don't use All unless you must.

For more information about using GetTableDefCount, GetTableDefInfo, and
similar functions, see the article DAO: Obtaining Information About DAO Objects.

Information About Collections in DAO

For general information about the DAO collections, see the topic Data Access Objects
and Collections Reference in DAO Help.

See Also DAO: Where Is..., DAO Collections: Obtaining Information About DAO
Objects

DAQO: Obtaining Information About DAO
Objects

Objects of most of the MFC DAO classes contain “collections” of subordinate objects.
For example, a CDaoDatabase object contains collections of tabledefs, querydefs,
and relations. For an explanation of how these collections fit into the MFC
implementation, see the article DAO Collections.

The present article explains how to obtain information about the objects in a
collection. The example given uses the database object’s QueryDefs collection, but
the same mechanism applies to other collections throughout the MFC
implementation of DAO.

Topics covered include:

¢ Functions for accessing DAO collections

¢ Information returned by the GetXInfo functions

Example: Obtaining Information About Querydefs

Constants for specifying the levels of information you want

245

DAO: Obtaining Information About DAO Objects

246

Functions for Accessing DAO Collections

Access the objects in a DAO collection through the GetXCount and GetXInfo
member functions of the appropriate class, where X stands for Database, Field, Index,
Parameter, Query, Table, Relation, or Workspace. Table 1 lists the available
collection-access functions for each MFC class:

Table 1 Class Member Functions for Accessing Collections

Get information about a

Class Count objects in collection specified object
CDaoWorkspace GetDatabaseCount, GetDatabaselnfo,
GetWorkspaceCount GetWorkspacelnfo
CDaoDatabase GetTableDefCount, GetTableDefInfo,
GetRelationCount, GetRelationInfo,
GetQueryDefCount GetQueryDefInfo
CDaoTableDef GetFieldCount, GetFieldInfo,
GetIndexCount GetIndexInfo
CDaoQueryDef GetFieldCount, GetFieldInfo,
GetParameterCount GetParameterInfo
CDaoRecordset GetFieldCount, GetFieldInfo,
GetIndexCount GetIndexInfo

Information Returned by the GetXInfo Functions

In general, use GetXCount functions to determine the upper bound for looping
through a collection. On each iteration of the loop, call GetXInfo functions to retrieve
the information. The GetXInfo functions return a reference to an object of class
CDaoXInfo, which you can examine. Each different CDaoXInfo class (technically a
C++ structure) supplies different information. You pass an object of type CDaoXInfo
in the second (xinfo) parameter.

Note DAO collections are zero-based. When you iterate a collection, begin with element 0.

Table 2 lists the CDaoXInfo classes; see the class for details about its members.

Table 2 Classes for Obtaining Information About Collections

Object Class (structure)
Database CDaoDatabaseInfo
Field CDaoFieldInfo
Index CDaolndexInfo
Index Field (field that is part of an index CDaolndexFieldInfo
object)

Parameter CDaoParameterInfo
QueryDef CDaoQueryDefInfo
Relation CDaoRelationInfo

DAO: Obtaining Information About DAO Objects

Table2 Classes for Obtaining Information About Collections (cont.)

Object Class (structure)
Relation Field (field that is part of arelation =~ CDaoRelationFieldInfo
object)

TableDef CDaoTableDefInfo
Workspace CDaoWorkspacelnfo

One additional DAO object, the error object, is handled somewhat differently in
MFC, so you don’t use the technique described in this article to work with error
objects. For information, see class CDaoException in the Class Library Reference.

Example: Obtaining Information About Querydefs

This example shows how to loop through the QueryDefs collection of a
CDaoDatabase object and obtain information about the QueryDefs in the collection.
The example searches the QueryDefs collection for a particular named query, called
“Senior Students” so it can then extract other information about the query—such as
its SQL string or query type.

// pDB is a pointer to a CDaoDatabase object

// Allocate a CDaoQueryDefInfo object to

/! receive the information

CDaoQueryDefInfo queryinfo;

int nQueries = pDB->GetQueryDefCount();

for (int i = 0; i < nQueries; i++)

{
GetQueryDefInfo(i, queryinfo);
if (queryinfo.m_strName = “Senior Students”)
{
// Get other information about the query ...
/! ...
break;
}
}

The code iterates through the collection, retrieving information about each object
until the desired named query is found. Note that DAO collections are zero-based.

Tip Some MFC DAO class functions use CDaoXInfo structures for input parameters as well
as for output parameters. In those cases, you assign values to a CDaoXinfo object, then pass
the object to the function.

Constants for Specifying the Levels of Information You
Want

The syntax of the GetQueryDefInfo member function used in the example under
Example: Obtaining Information About Querydefs is:

247

DAO Database

void GetQueryDefInfo(int n/ndex, CDaoQueryDefInfo& qgueryinfo, DWORD dwlnfoOptions =
AFX_DAO_PRIMARY_INFO);

In the example, the queryinfo parameter returns a reference to a CDaoQueryDefInfo
object. The example accepts the default value, AFX_DAO_PRIMARY _INFO, for
the dwinfoOptions parameter, which specifies which information to return. Table 3
lists the options in this case.

Table 3 Constants for Specifying the Levels of Information You Want

Constant Meaning

AFX DAO_PRIMARY_INFO Primary level of information; in the querydef
: ~ case, this includes Name and Type.

AFX _DAO_SECONDARY_INFO Primary information plus a secondary level of

information; in the querydef case, this would
include Date Created, Date of Last Update,
Returns Records, and Updatable.

AFX_DAO_ALL_INFO Primary and secondary information plus
additional information: in the querydef case,
this would include SQL., Connect, and
ODBCTimeout.

The items listed in column 2 of Table 3 correspond to data members of the
appropriate CDaoXInfo structure and, beneath that, to DAO properties.

Notice that the levels of information are cumulative: if you specify a higher level,
such as secondary or all, you get the lower levels as well. For details about what
information you can obtain for each collection type, see the appropriate GetXInfo
functions. The functions are listed in Table 2.

Caution In many cases, the information obtained with the AFX_DAQ_ALL_INFO option can
be time-consuming or otherwise costly to obtain. For example, getting a count of the records in
a recordset can be time-consuming. Use this option with care.

See Also DAO: Where Is..., DAO Collections

DAOQO Database

248

This article explains the role of CDaoDatabase objects in your application. For task-
oriented information about using “database” objects, see the article DAO Database:

Using Workspaces and Databases. For an understanding of the DAO database object
underlying each MEC CDaoDatabase object, see the following topics in DAO Help:

e Database Object
e Databases Collection

Topics covered in this article include:

DAO Database

¢ Database: Definition

¢ External databases

e Database collections

¢ Database roles

* Accessing database objects
¢ Database persistence

¢ Further reading about databases

Database: Definition

A DAO database object, represented in MFC by class CDaoDatabase, represents a
connection to a database through which you can operate on the data. You can have
one or more CDaoDatabase objects active at a time in a given “workspace,”
represented by a CDaoWorkspace object.

For information about database management systems (DBMSs) you can work with,
see Databases You Can Access with DAO in the article Database Overview.

External Databases

Besides using CDaoDatabase to work with Microsoft Jet (MDB) databases, you can
also access “external” data sources, particularly Open Database Connectivity (ODBC)
data sources. For a list of external data sources, see the topic External Data Source:
Definition in the article DAO: Working with External Data Sources.

Database Collections
In DAO:

e Each workspace object contains a “collection” of open database objects, called the
Databases collection.

e FEach DAO database objects contains collections of tabledefs, querydefs, recordsets,
and relations.

In MFC, access to a workspace’s Databases collection is through member functions of
class CDaoWorkspace. Access to a database object’s collections is through member
functions of class CDaoDatabase.

Note MFC exposes all of a database’s collections via member functions except for the
Recordsets collection. In MFC, you always have an explicit CDaoRecordset object for each
recordset you create, and it is up to you to track these objects.

For more information about DAO collections in MFC, see the article DAO
Collections. For related information, see the topic Databases Collection in DAO
Help.

249

DAO Database

250

Database Roles

CDaoDatabase can play the following roles—it allows you to:

e Create new Microsoft Jet (MDB) database files.

e Store tabledef objects that you can use to manipulate the structure of the database’s
tables. ‘

e Store querydef objects so you can reuse the queries they represent later.

e View and manipulate data in the database’s tables.

e Work with data in local or remote databases.

o Work with the database’s collections.

Accessing Database Objects

When you open a CDaoRecordset object without specifying an open CDaoDatabase
object, MFC implicitly creates a CDaoDatabase object, along with the
CDaoWorkspace that contains the database and the underlying DAO database
object. You can also create explicit CDaoDatabase objects.

See the article DAO: Accessing Implicit MFC DAOQ Objects for information on
accessing:

¢ The CDaoDatabase object associated with a CDaoRecordset object.
¢ The CDaoWorkspace object associated with a CDaoDatabase object.

Database Persistence

Database objects exist in memory for the life of a database engine session. When that
session terminates, the default workspace, the Workspaces collection, the Databases
collection in each open workspace, and the database objects in the Databases
collection(s) cease to exist (although the databases they represent do persist). These
software objects are not stored on disk or in a database. When you begin a new
database engine session and want to use the workspaces and databases you used in
the last session, you must recreate any explicit workspace objects you need, and
reopen any databases you were using in the workspace.

Tip Use a Windows registry entry to preserve a record of the workspaces and databases you
had open during a database engine session.

Further Reading About Databases

For more information about databases in MFC, see the following articles (in
recommended reading order):

e DAO Database: Using Workspaces and Databases
e DAO External: Working with External Data Sources

DAO Database

e DAO: Accessing Implicit MFC DAO Objects
¢ DAO Collections

e DAO Tabledef

¢ DAO Querydef

¢ DAO Recordset

See Also DAO: Where Is..., DAO: Database Tasks

DAO Database: Using Workspaces and Databases

This article explains how to use CDaoWorkspace and CDaoDatabase objects.
Topics covered include:

e A typical workspace scenario
e Transactions in the typical scenario

¢ Beyond the typical scenario

A Typical Workspace Scenario

In the majority of data access applications, you work less at the workspace level than
at the database or even recordset level. It might seem the normal thing to construct an
explicit CDaoWorkspace object, then from it construct a CDaoDatabase object and
from that construct CDaoRecordset, CDaoQueryDef, and CDaoTableDef objects.
But the more typical approach is one of the following:

e Construct a CDaoDatabase object, perhaps stored in your CDocument-derived
class. Then from it construct the necessary recordsets and other objects. You’re
likely to do this if you want to maintain a connection to a single database for the
life of your application, or at least the life of your document. For related
information, see the articles MFC: Using Database Classes with Documents and
Views, MFC: Using Database Classes Without Documents and Views, and DAO:
Writing a Database Application.

¢ Construct recordsets as needed, relying on MFC to create the necessary
CDaoDatabase and CDaoWorkspace objects behind the scenes. You're likely to
do this if you prefer to construct recordsets within the scope of a function, for
example to run a query based on a menu command.

Note This is inefficient if you are continually opening and closing the same database. In
that case, create an explicit CDaoDatabase object and use it for the life of your application.

Transactions in the Typical Scenario

The primary action taken on a workspace object that might be called typical is to use
the object for transactions against one or more databases. The transaction commands
in MFC are members of class CDaoWorkspace.

251

DAO External: Working with External Data Sources

DAOQ External: Working with External Data

To access transaction commands in the most typical case, you can use the implicit
workspace that MFC creates behind CDaoDatabase and CDaoRecordset objects
(one implicit workspace for multiple objects). To issue transaction commands, such
as BeginTrans, CommitTrans, or Rollback, you can choose to call those member
functions of CDaoWorkspace through the pointer stored in your CDaoRecordset or
CDaoDatabase object. For details about accessing such pointers, see the article
DAO: Accessing Implicit MFC DAO Objects.

For example, from a recordset object, you might call:

// prs is a pointer to an already opened
// CDaoRecordset object
prs->m_pDatabase->m_pWorkspace->BeginTrans();

Beyond the Typical Scenario
The typical scenario is not enough in some fairly rare cases. For a discussion of when
you might need an explicit CDaoWorkspace object, see the article DAO Workspace.

See Also DAO: Where Is..., DAO Workspace: Managing Transactions, DAO
Workspace, DAO Database, DAO: Creating, Opening, and Closing DAO Objects

Sources

252

This article explains the best approaches to using the MFC DAO classes with
external data sources, primarily Open Database Connectivity (ODBC) data sources.

Topics include:

o External data source: definition

e External data sources you can use

e External data access choices

e Performance considerations with external data

e When you might need to open an external table directly
¢ Other articles about accessing external data

e For more information about accessing external data

External Data Source: Definition

Aside from working with a Microsoft Jet (MDB) database on your local machine,
you can use the MFC DAO classes to access “external” data of several kinds.
External data includes data in the following circumstances—the data is in:

o An ODBC data source, either local or on a network server.

DAO External: Working with External Data Sources

e An ISAM database such as dBASEe or Microsoft FoxProe, accessible through the
Microsoft Jet database engine, either locally or on a network server.

e A Microsoft Jet (MDB) database, created directly with Microsoft Access or
created with DAO and stored either locally or on a network server, that contains
tables you want to attach to a primary Microsoft Jet database.

External Data Sources You Can Use

The discussion in this and related articles applies to the following external data

sources:

e Microsoft FoxProe, versions 2.0, 2.5, and 2.6. Can import and export data to and
from version 3.0 but can’t create objects.

e dJBASE Ille, dBASE IVe, and dBASE 5.0e

e Paradox™, versions 3.X, 4.x, and 5.x

e Btrievee, versions 5.1x and 6.0

¢ Databases using the Microsoft Jet database engine (Microsoft Access, Microsoft
Visual Basic, and Microsoft Visual C++), versions 1.x, 2.x, and 3.0

e ODBC data sources, including but not limited to Microsoft SQL Server, SYBASEe
SQL Server, and ORACLEe Server. An ODBC data source is any DBMS for
which you have the appropriate ODBC driver. For Visual C++ versions 2.0 and
later, you need 32-bit ODBC drivers (except on Win32s, where you need 16-bit
ODBC drivers). See the article ODBC Driver List for a list of ODBC drivers
included in this version of Visual C++ and for information about obtaining
additional drivers.

¢ Microsoft Excel version 3.0, 4.0, 5.0, and 7.0 worksheets
e Lotuse WKS, WK1, WK3, WK4 spreadsheets
e Text files

External Data Access Choices

The MFC DAO classes give you two choices for accessing tables stored in external
data sources. You can either:

e Attach the tables to a Microsoft Jet (MDB) database

¢ Open the external database directly.

Attaching Tables

When you attach a table, it is treated in most respects—except that you can’t modify
the table’s schema or open a tabledef or table-type recordset on it—as if it were a
Microsoft Jet database table in the current database. The connection information to
the external data source is stored with the table definition, making it easy to open

253

DAO External: Working with External Data Sources

254

recordsets on the table. The data is still stored in the external data source, however.
For information on attaching tables, see the article DAO External: Attaching
External Tables.

Tip If you attach a table from within Microsoft Access, you can then use the table from MFC.

Opening External Databases Directly

‘When you open a table directly, you specify the connection information each time you
open the external database. This can involve communication overhead. For
information on opening tables directly, see the article DAO External: Opening
External Databases Directly.

Important In most cases, attaching a table is a faster method for accessing external data
than apening a table directly, especially when the table is in an ODBC data source. If possible,
it's best to consider attaching external tables rather than opening them directly. If you do open
a table in an ODBC data source directly, keep in mind that performance will be significantly
slower.

To attach or open a data source on a network, you must have access to the server and
share and to the external table as well as appropriate permissions for access to the
data, if applicable.

Performance Considerations with External Data

Keep in mind that external tables are not actually in your Microsoft Jet database.
Each time you view data in an external table, your program must retrieve records
from another file. This can take time, particularly if the table is an ODBC data
source.

ODBC performance is optimal if you attach tables instead of opening them directly,
and if you retrieve and view only the data you need. Restrict your queries to limit
results and avoid excessive scrolling through records. For more performance tips, see
the article DAO External: Improving Performance with External Data Sources.

For a discussion of why performance suffers with external data sources, particularly
ODBC data sources, see the topic Accessing External Databases with DAO in DAO
Help.

When You Might Need to Open an External Table Directly

Attaching external tables to a Microsoft Jet database is generally more efficient than
opening the external data source directly. However, there still might be circumstances
under which you would prefer to open the external database directly. Reasons:

e Non-ODBC external data sources give faster performance if you open them
directly. Only ODBC is slower when opened directly.

® You need to enumerate the tables in the external data source to find out the
database structure at run time. Unless you know the table names, you can’t attach
them.

DAO External: Working with External Data Sources

¢ You need to manipulate the table’s structure. You can’t modify the schema of an
attached table.

Other Articles About Accessing External Data

For more information, including procedures, see the following articles (in the
recommended reading order):

e DAO External: Attaching External Tables
¢ DAO External: Creating an External Table
e DAO External: Refreshing and Removing Links

e DAO External: Improving Performance with External Data Sources

For More Information About Accessing External Data

An additional source of information is the Advanced Topics book from the Microsoft
Access Developer’s Toolkit. You’ll need to translate Microsoft Access Basic examples
to MFC, but the chapter on Accessing External Data gives detailed advice on using
external data sources such as Microsoft FoxPro, dBASE, Paradox, and Btrieve.

For related information, see the topic Accessing External Databases with DAO in
DAO Help.

For information about accessing specific external data sources, see the following
topics in DAO Help:

e Accessing Data in ODBC Databases with DAO

e Accessing Data in a Btrieve Database with DAO

e Accessing Data in a dBASE Database with DAO

e Accessing Data in a Microsoft Excel Worksheet or Workbook with DAO
¢ Accessing Data in a Microsoft FoxPro Database with DAO

e Accessing Data in a Lotus Spreadsheet with DAO

e Accessing Data in a Paradox Database with DAO

e Accessing Data in a Text Document with DAO

e Accessing Data on CD-ROM with DAO

See Also DAO: Where Is...

DAO External: Attaching External Tables

This article explains how to attach a table from an external data source, such as an
ODBC data source, to your current Microsoft Jet (MDB) database. Attaching
external tables is generally more efficient than opening them directly, as explained in
the article DAO External: Working with External D